1
|
Hoeijmakers LL, Rozeman EA, Lopez-Yurda M, Grijpink-Ongering LG, Heeres BC, van de Wiel BA, Flohil C, Sari A, Heijmink SWTPJ, van den Broek D, Broeks A, de Groot JWB, Vollebergh MA, Wilgenhof S, van Thienen JV, Haanen JBAG, Blank CU. Durable responses upon short-term addition of targeted therapy to anti-PD1 in advanced melanoma patients: 5-year progression-free and overall survival update of the IMPemBra trial. Eur J Cancer 2025; 222:115431. [PMID: 40279684 DOI: 10.1016/j.ejca.2025.115431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/27/2025]
Abstract
BACKGROUND The addition of targeted therapy (TT) to immune checkpoint inhibitors has been shown to transiently increase immune infiltration in melanoma. This formed the rationale for the IMPemBra trial, which showed a numerical increase in progression-free survival (PFS) in patients treated with short-term/intermittent TT and anti-PD1 compared to anti-PD1 alone. In this report, the final toxicity-analysis, 5-year PFS and exploratory analysis of overall survival (OS) will be reported, together with an analysis of subsequent therapies. PATIENTS AND METHODS 32 treatment-naïve patients with a BRAFV600E/K-mutated advanced melanoma were treated with 2 cycles of pembrolizumab 200 mg every 3 weeks, followed by randomization to continue pembrolizumab monotherapy for six weeks in cohort-1 versus pembrolizumab plus intermittent dabrafenib 150 mg BID + trametinib 2 mg QD 2×1-week (cohort 2), 2×2-weeks (cohort 3), or 1×6-weeks (cohort 4). After week 12, all patients continued pembrolizumab monotherapy for a maximum of 2 years. RESULTS With a median follow-up of 73 months, final grade 3-4 immune-related adverse events are 12 % (cohort 1), 12 % (cohort 2), 38 % (cohort 3) and 63 % (cohort 4). Estimated 5-year PFS and OS rates were 25 % and 50 % for pembrolizumab monotherapy (cohort-1) and 46 % and 71 % for pembrolizumab + intermittent TT (cohorts 2-4). Estimated 5-year PFS and OS were 63 % and 63 % (cohort 2), 38 % and 75 % (cohort 3), and 38 % and 75 % (cohort 4), respectively. The subsequent therapies were balanced between cohorts. Patients treated with short-term/intermittent schemes achieved durable responses upon subsequent TT again. CONCLUSION This survival update from the IMPemBra trial demonstrates that combination of short-term TT and checkpoint inhibition can induce long-lasting responses, warranting further analyses in larger cohorts, and in a randomized design.
Collapse
Affiliation(s)
- L L Hoeijmakers
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - E A Rozeman
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - M Lopez-Yurda
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - B C Heeres
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - B A van de Wiel
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - C Flohil
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - A Sari
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - S W T P J Heijmink
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - D van den Broek
- Department of Laboratory medicine, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - A Broeks
- Core Facility Molecular Pathology and Biobanking, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - M A Vollebergh
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - S Wilgenhof
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - J V van Thienen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - J B A G Haanen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, Leiden University Medical Center, the Netherlands
| | - C U Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, Leiden University Medical Center, the Netherlands; Department of Hematology and Oncology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Joshi UM, Hundal J, Mata JR, Schollenberger MD, Warrier G, Luke JJ, Lipson EJ, Funchain P. Beyond Checkpoint Inhibition: Keeping Therapeutic Options Open. Am Soc Clin Oncol Educ Book 2025; 45:e473856. [PMID: 40233298 DOI: 10.1200/edbk-25-473856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Combination immune checkpoint inhibitor therapy (ICI) with ipilimumab (anti-cytotoxic T-lymphocyte-associated protein 4) + nivolumab (anti-PD-1) in untreated, metastatic melanoma has achieved a ten-year melanoma-specific survival of 52%. However, approximately 40%-55% of patients with metastatic melanoma have primary resistance and do not initially respond to anti-PD-1, and an additional 25% of patients develop secondary resistance, exhibiting an initial response followed by disease progression. In PD-1-refractory melanoma, treatment options are limited. Addition of ipilimumab, relatlimab (anti-LAG3), or lenvatinib (VEGFR TKI) has minimal to modest efficacy. Switching to targeted BRAF/MEK inhibition improves survival for BRAF-mutant disease. MEK and KIT inhibitors have limited activity in NRAS- and KIT-mutant metastatic melanoma, respectively. Recently, personalized, autologous tumor-infiltrating lymphocyte therapy has become a US Food and Drug Administration-approved second-line option; lifileucel demonstrates durable response (approximately 30%) in heavily pretreated, metastatic melanoma. Emerging therapeutics that show promising clinical benefit in ongoing clinical trials include novel engineered oncolytic viral and human leukocyte antigen (HLA)-restricted immune-mediated T-cell therapies. As a therapy which is limited to patients who are HLA-A*02:01, T-cell receptor (TCR) engineered T cells (TCR-T) iterates on personalized adoptive cell transfer, and immune mobilizing monoclonal TCRs against cancer are CD3 bispecifics that bind glycoprotein 100 (tebentafusp, approved for metastatic uveal melanoma) or PRAME to activate T cells. Finally, in patients at high risk for immune-related adverse events (irAEs), ICI should still be considered. ICI may be given with modified immunosuppression in patients with autoimmune disease or previous organ transplantation. Cumulative data support safe administration in older patients and in ICI rechallenge for patients with previous irAE.
Collapse
Affiliation(s)
- Urvashi Mitbander Joshi
- Division of Malignant Hematology and Medical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Jasmin Hundal
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | | | - Megan D Schollenberger
- Department of Oncology, Johns Hopkins University, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Govind Warrier
- Department of Oncology, Johns Hopkins University, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jason J Luke
- Division of Malignant Hematology and Medical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Evan J Lipson
- Department of Oncology, Johns Hopkins University, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Pauline Funchain
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
3
|
Zhang M, Liu C, Tu J, Tang M, Ashrafizadeh M, Nabavi N, Sethi G, Zhao P, Liu S. Advances in cancer immunotherapy: historical perspectives, current developments, and future directions. Mol Cancer 2025; 24:136. [PMID: 40336045 PMCID: PMC12057291 DOI: 10.1186/s12943-025-02305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/15/2025] [Indexed: 05/09/2025] Open
Abstract
Cancer immunotherapy, encompassing both experimental and standard-of-care therapies, has emerged as a promising approach to harnessing the immune system for tumor suppression. Experimental strategies, including novel immunotherapies and preclinical models, are actively being explored, while established treatments, such as immune checkpoint inhibitors (ICIs), are widely implemented in clinical settings. This comprehensive review examines the historical evolution, underlying mechanisms, and diverse strategies of cancer immunotherapy, highlighting both its clinical applications and ongoing preclinical advancements. The review delves into the essential components of anticancer immunity, including dendritic cell activation, T cell priming, and immune surveillance, while addressing the challenges posed by immune evasion mechanisms. Key immunotherapeutic strategies, such as cancer vaccines, oncolytic viruses, adoptive cell transfer, and ICIs, are discussed in detail. Additionally, the role of nanotechnology, cytokines, chemokines, and adjuvants in enhancing the precision and efficacy of immunotherapies were explored. Combination therapies, particularly those integrating immunotherapy with radiotherapy or chemotherapy, exhibit synergistic potential but necessitate careful management to reduce side effects. Emerging factors influencing immunotherapy outcomes, including tumor heterogeneity, gut microbiota composition, and genomic and epigenetic modifications, are also examined. Furthermore, the molecular mechanisms underlying immune evasion and therapeutic resistance are analyzed, with a focus on the contributions of noncoding RNAs and epigenetic alterations, along with innovative intervention strategies. This review emphasizes recent preclinical and clinical advancements, with particular attention to biomarker-driven approaches aimed at optimizing patient prognosis. Challenges such as immunotherapy-related toxicity, limited efficacy in solid tumors, and production constraints are highlighted as critical areas for future research. Advancements in personalized therapies and novel delivery systems are proposed as avenues to enhance treatment effectiveness and accessibility. By incorporating insights from multiple disciplines, this review aims to deepen the understanding and application of cancer immunotherapy, ultimately fostering more effective and widely accessible therapeutic solutions.
Collapse
Affiliation(s)
- Meiyin Zhang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chaojun Liu
- Department of Breast Surgery, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Jing Tu
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8 V 1P7, Canada
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR) Yong Loo Lin, School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Peiqing Zhao
- Translational Medicine Center, Zibo Central Hospital Affiliated to Binzhou Medical University, No. 54 Communist Youth League Road, Zibo, China.
| | - Shijian Liu
- Department of General Medicine, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, 150081, China.
| |
Collapse
|
4
|
Wang X, Wang L, Liu Y. Current Status of Immune Checkpoint Inhibitors and Treatment Responsive Biomarkers for Triple-Negative Breast Cancer. Thorac Cancer 2025; 16:e70072. [PMID: 40324951 PMCID: PMC12052518 DOI: 10.1111/1759-7714.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/24/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
Triple-negative breast cancer (TNBC), accounting for about 10%-20% of all breast cancer cases, is characterized by its aggressive nature, high recurrence rates, and poor prognosis. Unlike other breast cancer subtypes, TNBC lacks hormone receptors and specific molecular targets, limiting therapeutic options. In recent years, immune checkpoint inhibitors (ICIs) have shown promise in treating TNBC by targeting immune evasion mechanisms. Despite these advancements, several issues remain unresolved, including low response rates in programmed cell death ligand 1 (PD-L1) negative TNBC subtypes and the challenge of predicting which patients will benefit from ICIs. Consequently, there is growing interest in identifying reliable biomarkers beyond PD-L1 expression. This review synthesizes recent studies to provide a comprehensive perspective on ICI therapy in TNBC, clarifying the status of single-agent ICI therapies and combination strategies, emphasizing the need for further research into biomarkers. These insights provide clues for more personalized and effective treatment approaches, ultimately aiming to improve clinical outcomes for patients with TNBC.
Collapse
Affiliation(s)
- Xinran Wang
- Department of PathologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Lingxia Wang
- Value & Implementation, Global Medical & Scientific AffairsMSD ChinaShanghaiChina
| | - Yueping Liu
- Department of PathologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|
5
|
Kim KB, Desprez PY, de Semir D, Woo RWL, Sharma A, Jones R, Caressi C, Nosrati M, Janiczek E, Rivera Penafiel J, Kashani-Sabet M. Phase II Study of Niraparib in Patients With Advanced Melanoma With Homologous Recombination Pathway Gene Mutations. JCO Precis Oncol 2025; 9:e2400658. [PMID: 40373259 DOI: 10.1200/po-24-00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/16/2025] [Accepted: 03/07/2025] [Indexed: 05/17/2025] Open
Abstract
PURPOSE Patients with metastatic melanoma who progress on checkpoint inhibitors and BRAF-targeting drugs have limited therapeutic options. Up to one third of melanomas harbor at least one molecular aberration in the homologous recombination (HR) pathway, leading to HR deficiency. PATIENTS AND METHODS In this single-arm trial, we assessed the overall response rate to niraparib in patients with metastatic melanoma, harboring a genetic alteration in the HR pathway (ARID1A/B, ARID2, ATM, ATR, ATRX, BARD1, BRCA1/2, BAP1, BRIP1, CHEK2, FANCD2, MRE11A, RAD50, RAD51, RAD54B, or PALB2) who had disease progression after PD-1 blockade or BRAF/MEK inhibition if BRAF-mutant. Niraparib was administered orally at 300 mg or 200 mg daily, based on body weight and platelet count. RESULTS Fourteen patients were accrued to the trial, which was discontinued because of slow accrual. The median age was 71 years. Nine patients had an Eastern Cooperative Oncology Group performance status of 1. Eleven patients had elevated lactate dehydrogenase levels. Ten patients had nonuveal melanoma and four had uveal melanoma. Two (14%) had a partial response and seven (50%) had stable disease, with a disease control rate of 64%. The median progression-free survival was 16 weeks. Among the patients with nonuveal melanoma, two (20%) achieved partial response with a time to progression of 32 and 24 weeks, while five (50%) had stable disease lasting 16-98 weeks. None of the four patients with uveal melanoma responded. There were no unexpected adverse events related to niraparib treatment. Notably, one responder with an ARID1A mutation had detectable circulating tumor DNA at baseline, which became undetectable during treatment. CONCLUSION Despite the small sample size, our results indicate a promising signal for single agent niraparib in patients with pretreated nonuveal metastatic melanoma with HR gene mutations.
Collapse
Affiliation(s)
- Kevin B Kim
- Center for Melanoma Research and Treatment, Sutter California Pacific Medical Center, San Francisco, CA
- California Pacific Medical Center Research Institute, San Francisco, CA
| | | | - David de Semir
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Rinette W L Woo
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Anima Sharma
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Robyn Jones
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Chongshan Caressi
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Mehdi Nosrati
- Center for Melanoma Research and Treatment, Sutter California Pacific Medical Center, San Francisco, CA
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Emilia Janiczek
- Center for Melanoma Research and Treatment, Sutter California Pacific Medical Center, San Francisco, CA
| | - Julia Rivera Penafiel
- Center for Melanoma Research and Treatment, Sutter California Pacific Medical Center, San Francisco, CA
| | - Mohammed Kashani-Sabet
- Center for Melanoma Research and Treatment, Sutter California Pacific Medical Center, San Francisco, CA
- California Pacific Medical Center Research Institute, San Francisco, CA
| |
Collapse
|
6
|
Szabó IL, Emri G, Ladányi A, Tímár J. Clinical Applications of the Molecular Landscape of Melanoma: Integration of Research into Diagnostic and Therapeutic Strategies. Cancers (Basel) 2025; 17:1422. [PMID: 40361349 PMCID: PMC12071057 DOI: 10.3390/cancers17091422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
The molecular landscape of cutaneous melanoma is complex and heterogeneous, and a deeper understanding of the genesis and progression of the tumor driven by genetic alterations is essential for the development of effective diagnostic and therapeutic strategies. Molecular diagnostics and the use of biomarkers are increasingly playing a role in treatment decisions. However, further research is urgently needed to elucidate the relationships between complex genetic alterations and the effectiveness of target therapies (although BRAF mutation is still the only targeted genetic alteration). Further research is required to exploit other targetable genetic alterations such as NRAS, KIT or rare mutations. Treatment guidelines for cutaneous melanoma are continually evolving based on data from recent and ongoing clinical trials. These advancements reflect changes mainly in the optimal timing of systemic therapy and the choice of combination therapies increasingly tailored to molecular profiles of individual tumors. Mono- or combination immunotherapies demonstrated unprecedented success of melanoma treatment; still, there is room for improvement: though several factors of primary or acquired resistance are known, they are not part of patient management as biomarkers. The novel developments of cancer vaccines to treat melanoma (melanoma-marker-based or personalized neoantigen-based) are encouraging; introduction of them into clinical practice without proper biomarkers would be the same mistake made in the case of first-generation immunotherapies.
Collapse
Affiliation(s)
- Imre Lőrinc Szabó
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.L.S.); (G.E.)
- HUN-REN-UD Allergology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.L.S.); (G.E.)
- HUN-REN-UD Allergology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology, National Institute of Oncology, 1122 Budapest, Hungary;
- National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary
| | - József Tímár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| |
Collapse
|
7
|
Nair R, Somasundaram V, Kuriakose A, Krishn SR, Raben D, Salazar R, Nair P. Deciphering T-cell exhaustion in the tumor microenvironment: paving the way for innovative solid tumor therapies. Front Immunol 2025; 16:1548234. [PMID: 40236693 PMCID: PMC11996672 DOI: 10.3389/fimmu.2025.1548234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
In solid tumors, the tumor microenvironment (TME) is a complex mix of tumor, immune, stromal cells, fibroblasts, and the extracellular matrix. Cytotoxic T lymphocytes (CTLs) constitute a fraction of immune cells that may infiltrate into the TME. The primary function of these T-cells is to detect and eliminate tumor cells. However, due to the immunosuppressive factors present in the TME primarily mediated by Myeloid-Derived Suppressor Cells (MDSCs), Tumor associated macrophages (TAMs), Cancer Associated Fibroblasts (CAFs) as well as the tumor cells themselves, T-cells fail to differentiate into effector cells or become dysfunctional and are unable to eliminate the tumor. In addition, chronic antigen stimulation within the TME also leads to a phenomenon, first identified in chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, where the T-cells become exhausted and lose their effector functions. Exhausted T-cells (Tex) are characterized by the presence of remarkably conserved inhibitory receptors, transcription and signaling factors and the downregulation of key effector molecules. Tex cells have been identified in various malignancies, including melanoma, colorectal and hepatocellular cancers. Recent studies have indicated novel strategies to reverse T-cell exhaustion. These include checkpoint inhibitor blockade targeting programmed cell death protein 1 (PD-1), T-cell immunoglobulin and mucin-domain containing-3 (Tim-3), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), or combinations of different immune checkpoint therapies (ICTs) or combination of ICTs with cytokine co-stimulation. In this review, we discuss aspects of T-cell dysfunction within the TME with a focus on T-cell exhaustion. We believe that gaining insight into the mechanisms of T-cell exhaustion within the TME of human solid tumors will pave the way for developing therapeutic strategies to target and potentially re-invigorate exhausted T-cells in cancer.
Collapse
Affiliation(s)
- Reshmi Nair
- Syngene International Limited, Bengaluru, India
| | | | | | | | - David Raben
- Bicara Therapeutics, Boston, MA, United States
| | | | - Pradip Nair
- Syngene International Limited, Bengaluru, India
| |
Collapse
|
8
|
Kottschade L, Rodriguez EW, Harding S, Ranjan S, Mcintyre L, Prieto PA, Gray L, Joseph J, Swank J. Tumor-Infiltrating Lymphocyte Cell Therapy for the Treatment of Advanced Melanoma: From Patient Identification to Posttreatment Management. J Adv Pract Oncol 2025; 16:1-14. [PMID: 40224920 PMCID: PMC11982140 DOI: 10.6004/jadpro.2025.16.7.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Adoptive cell therapy with tumor-infiltrating lymphocytes (TILs) was recently approved for patients with advanced melanoma (metastatic or unresectable) previously treated with immune checkpoint inhibitors and BRAF/MEK targeted therapies (where appropriate). Tumor-infiltrating lymphocytes isolated from patient-derived tumor tissues enter the tumor microenvironment and recognize tumor-specific antigens, leading to the destruction of tumor cells. The multistep TIL cell therapy journey is led by a multidisciplinary health care team. Patients selected for TIL cell therapy undergo tumor tissue procurement for TIL generation, followed by preparative lymphodepletion before receiving a single-dose infusion of TIL and a short course of high-dose interleukin-2. Successful implementation of TIL cell therapy requires well-established procedures and workflows to select and screen patients, procure tumor tissue, administer TIL cell therapy, and monitor patients during treatment and after discharge. The advanced practice provider plays a central role in a patient's TIL treatment journey by planning and coordinating care across the health-care system, educating patients and staff, and providing direct and supportive patient care. Here, we review the treatment landscape for advanced melanoma and clinical data supporting TIL cell therapy. We also provide guidance related to patient selection, tumor tissue procurement, TIL cell therapy regimen, safety monitoring, symptom management, and post-discharge follow-up.
Collapse
Affiliation(s)
| | | | | | - Smita Ranjan
- UofL Health – Brown Cancer Center, Louisville, Kentucky
| | | | | | - Lissa Gray
- Iovance Biotherapeutics, Inc., San Carlos, California
| | | | | |
Collapse
|
9
|
Jiang Y, Bei W, Wang L, Lu N, Xu C, Liang H, Ke L, Ye Y, He S, Dong S, Liu Q, Zhang C, Wang X, Xia W, Zhao C, Huang Y, Xiang Y, Liu G. Efficacy and safety of cadonilimab (PD-1/CTLA-4 bispecific) in combination with chemotherapy in anti-PD-1-resistant recurrent or metastatic nasopharyngeal carcinoma: a single-arm, open-label, phase 2 trial. BMC Med 2025; 23:152. [PMID: 40069710 PMCID: PMC11899053 DOI: 10.1186/s12916-025-03985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND We aimed to evaluate the efficacy and safety of cadonilimab (anti-PD-1 and CTLA-4 bispecific antibody) plus TPC chemotherapy (NAB-paclitaxel, cisplatin or lobaplatin, and capecitabine) in patients with recurrent or metastatic nasopharyngeal carcinoma (RM-NPC) who failed to PD-1 inhibitor-containing regimens. METHODS In this single-arm, open-label, phase 2 study, RM-NPC patients who failed to at least one line of systemic chemotherapy and anti-PD-1 immunotherapy were enrolled and received cadonilimab plus TPC chemotherapy every 3 weeks for up to 6 cycles, followed by cadonilimab plus capecitabine every 3 weeks for a maximum of 2 years. The primary endpoint was the objective response rate (ORR). The secondary endpoints included progression-free survival (PFS), overall survival (OS), duration of response (DoR), and safety. RESULTS Twenty-five patients were enrolled (84% male; median age 44 years (range, 24-60)), with a median follow-up of 10.2 months. The ORR was 68%, with 3 complete responses, 14 partial responses, and 6 stable diseases. The median DoR was 9.1 months (95% CI, 3.8-14.5 months). The median PFS was 10.6 months (95% CI, 5.2-16.0 months). The 12-month OS was 75.6%. Treatment was well tolerated. Grade 3 or 4 treatment-related adverse events occurred in 12 (48%) patients. Fourteen patients (56%) experienced potentially immune-related adverse events (irAEs). One patient experienced a grade 3 immune-related rash and another patient had grade 3 immune-related lipase increased. No treatment-related death occurred. CONCLUSIONS Cadonilimab in combination with TPC chemotherapy demonstrated promising antitumoral efficacy and manageable toxicities in patients with RM-NPC who failed frontline immunotherapy. Further trials are warranted to confirm and expand these findings. TRIAL REGISTRATION This trial was registered at chictr.org.cn (ChiCTR2200067057).
Collapse
Affiliation(s)
- Yaofei Jiang
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Oncology, The First Affiliated Hospital of Nanchang University, NanChang, China
| | - Weixin Bei
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lin Wang
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Nian Lu
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Cheng Xu
- Department of Radiotherapy, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hu Liang
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liangru Ke
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yanfang Ye
- Clinical Research Design Division, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuiqing He
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shuhui Dong
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qin Liu
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chuanrun Zhang
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xuguang Wang
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Weixiong Xia
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chong Zhao
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ying Huang
- Department of Radiotherapy, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Yanqun Xiang
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Guoying Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
Ogasawara A, Hasegawa K. Recent advances in immunotherapy for cervical cancer. Int J Clin Oncol 2025; 30:434-448. [PMID: 39888529 PMCID: PMC11842527 DOI: 10.1007/s10147-025-02699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025]
Abstract
Cervical cancer is the third most common malignant tumor in women worldwide in terms of both incidence and mortality. The field of cervical cancer treatment is rapidly evolving, and various combination therapies are being explored to enhance the efficacy of immune checkpoint inhibitors (ICI) and provide new treatment options for patients at different disease stages. Clinical trials involving immune checkpoint inhibitors are now being conducted following a phase 3 trial with cemiplimab, an ICI, which demonstrated a significant improvement in prognosis in advanced or metastatic cervical cancer patients. These trials include monotherapy and combination therapy with other immune therapies, chemotherapy, or radiation therapy. Furthermore, other approaches for controlling tumors via the immune system, such as therapeutic vaccination for specific tumor antigens or immune cell therapy including chimeric antigen receptor (CAR)-T cell therapy and tumor-infiltrating lymphocytes are being investigated. Ongoing trials will continue to illuminate the optimal strategies for combining these therapies and addressing challenges associated with immune checkpoint failure in cervical cancer. Herein, we conducted a review of articles related to immunotherapy for cervical cancer and describe current treatment strategies for cervical cancer via immunotherapy.
Collapse
Affiliation(s)
- Aiko Ogasawara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1298, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1298, Japan.
| |
Collapse
|
11
|
Wang G, Li J, Sun S, Yang Y, Han Z, Pei Z, Cheng L. An electrically activable nanochip to intensify gas-ionic-immunotherapy. Sci Bull (Beijing) 2025; 70:390-406. [PMID: 39667986 DOI: 10.1016/j.scib.2024.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/07/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024]
Abstract
Excess intracellular H2S induces destructive mitochondrial toxicity, while overload of Zn2+ results in cell pyroptosis and potentiates the tumor immunogenicity for immunotherapy. However, the precise delivery of both therapeutics remains a great challenge. Herein, an electrically activable ZnS nanochip for the controlled release of H2S and Zn2+ was developed for enhanced gas-ionic-immunotherapy (GIIT). Under an electric field, a locality with particularly high concentrations of H2S and Zn2+ was established by the voltage-controlled degradation of the ZnS nanoparticles (NPs). Consequently, the ZnS nanochip-mediated gas-ionic therapy (GIT) resulted in mitochondrial membrane potential depolarization, energy generation inhibition, and oxidative stress imbalance in tumor cells. Interestingly, the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) signaling pathway was activated due to the mitochondrial destruction. Moreover, the released Zn2+ resulted in the increase of the intracellular Zn levels and cell pyroptosis, which enhanced the immunogenicity via the release of damage-associated molecular patterns (DAMPs). In vitro and in vivo studies revealed that the ZnS nanochip-based GIT effectively eliminated the tumors under an electric field and mobilized the cytotoxic T lymphocytes for immunotherapy. The combination with αCTLA-4 further promoted the adaptive immune response and inhibited tumor metastasis and long-term tumor recurrence. This work presented an electrically activable ZnS nanochip for combined immunotherapy, which might inspire the development of electric stimulation therapy.
Collapse
Affiliation(s)
- Gang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jingrui Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Shumin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yuqi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhihui Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
12
|
Tompkins AG, Gray ZN, Dadey RE, Zenkin S, Batavani N, Newman S, Amouzegar A, Ak M, Ak N, Pak TY, Peddagangireddy V, Mamindla P, Amjadzadeh M, Behr S, Goodman A, Ploucha DL, Kirkwood JM, Zarour HM, Najjar YG, Davar D, Tatsuoka C, Colen RR, Luke JJ, Bao R. Radiomic analysis of patient and interorgan heterogeneity in response to immunotherapies and BRAF-targeted therapy in metastatic melanoma. J Immunother Cancer 2025; 13:e009568. [PMID: 39939139 PMCID: PMC11822426 DOI: 10.1136/jitc-2024-009568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
Variability in treatment response may be attributable to organ-level heterogeneity in tumor lesions. Radiomic analysis of medical images can elucidate non-invasive biomarkers of clinical outcome. Organ-specific radiomic comparison across immunotherapies and targeted therapies has not been previously reported. We queried the UPMC Hillman Cancer Center registry for patients with metastatic melanoma (MEL) treated with immune checkpoint inhibitors (ICI) (anti-programmed cell death protein-1 (PD-1)/cytotoxic T-lymphocyte associated protein 4 (CTLA-4) (ipilimumab+nivolumab; I+N) or anti-PD-1 monotherapy) or BRAF-targeted therapy. The best overall response was measured using Response Evaluation Criteria in Solid Tumors V.1.1. Lesions were segmented into discrete volume-of-interest with 400 radiomics features extracted. Overall and organ-specific machine-learning models were constructed to predict disease control (DC) versus progressive disease (PD) using XGBoost. 291 patients with MEL were identified, including 242 ICI (91 I+N, 151 PD-1) and 49 BRAF. 667 metastases were analyzed, including 541 ICI (236 I+N, 305 PD-1) and 126 BRAF. Across cohorts, baseline demographics included 39-47% women, 24%-29% M1C, 24-46% M1D, and 61-80% with elevated lactate dehydrogenase. Among ICI patients experiencing DC, the organs with the greatest reduction were liver (-66%±8%; mean±SEM) and lung (-63%±5%). For patients with multiple same-organ target lesions, the highest interlesion heterogeneity was observed in brain among patients who received ICI while no intraorgan heterogeneity was observed in BRAF. 221 ICI patients were included for radiomic modeling, consisting of 86 I+N and 135 PD-1. Models consisting of optimized radiomic signatures classified DC/PD across I+N (area under curve (AUC)=0.85) and PD-1 (0.71) and within individual organ sites (AUC=0.72~0.94). Integration of clinical variables improved the models' performance. Comparison of models between treatments and across organ sites suggested mostly non-overlapping DC or PD features. Skewness, kurtosis, and informational measure of correlation (IMC) were among the radiomic features shared between overall response models. Kurtosis and IMC were also used by multiple organ-site models. In conclusion, differential organ-specific response was observed across BRAF and ICI with within organ heterogeneity observed for ICI but not for BRAF. Radiomic features of organ-specific response demonstrated little overlap. Integrating clinical factors with radiomics improves the prediction of disease course outcome and prediction of tumor heterogeneity.
Collapse
Affiliation(s)
- Alexandra G Tompkins
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zane N Gray
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebekah E Dadey
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Serafettin Zenkin
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nasim Batavani
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Newman
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Afsaneh Amouzegar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Murat Ak
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nursima Ak
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Taha Yasin Pak
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vishal Peddagangireddy
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Priyadarshini Mamindla
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mohammadreza Amjadzadeh
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Behr
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Amy Goodman
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | - John M Kirkwood
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hassane M Zarour
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yana G Najjar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Diwakar Davar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Curtis Tatsuoka
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rivka R Colen
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason John Luke
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Riyue Bao
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Zielińska MK, Ciążyńska M, Sulejczak D, Rutkowski P, Czarnecka AM. Mechanisms of Resistance to Anti-PD-1 Immunotherapy in Melanoma and Strategies to Overcome It. Biomolecules 2025; 15:269. [PMID: 40001572 PMCID: PMC11853485 DOI: 10.3390/biom15020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025] Open
Abstract
Resistance to anti-PD-1 therapy in melanoma remains a major obstacle in achieving effective and durable treatment outcomes, highlighting the need to understand and address the underlying mechanisms. The first key factor is innate anti-PD-1 resistance signature (IPRES), an expression of a group of genes associated with tumor plasticity and immune evasion. IPRES promotes epithelial-to-mesenchymal transition (EMT), increasing melanoma cells' invasiveness and survival. Overexpressed AXL, TWIST2, and WNT5a induce phenotypic changes. The upregulation of pro-inflammatory cytokines frequently coincides with EMT-related changes, further promoting a resistant and aggressive tumor phenotype. Inflamed tumor microenvironment may also drive the expression of resistance. The complexity of immune resistance development suggests that combination therapies are necessary to overcome it. Furthermore, targeting epigenetic regulation and exploring novel approaches such as miR-146a modulation may provide new strategies to counter resistance in melanoma.
Collapse
Affiliation(s)
- Magdalena K. Zielińska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Faculty of Medicine, Warsaw Medical University, 02-091 Warsaw, Poland
| | - Magdalena Ciążyńska
- Chemotherapy Unit and Day Chemotherapy Ward, Specialised Oncology Hospital, 97-200 Tomaszów Mazowiecki, Poland;
- Department of Dermatology, Paediatric Dermatology and Oncology Clinic, Medical University of Lodz, 91-347 Łódź, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
14
|
Chan LL, Kwong TT, Yau JCW, Chan SL. Treatment for hepatocellular carcinoma after immunotherapy. Ann Hepatol 2025; 30:101781. [PMID: 39929474 DOI: 10.1016/j.aohep.2025.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
Immunotherapy has revolutionized the treatment landscape for advanced HCC, resulting in prolonged response and improved survival. With these results, a pressing question arises: what is the optimal treatment following first-line immunotherapy? Despite the benefits of immunotherapy, most patients will experience disease progression within six months and will require subsequent therapies. International guidelines recommend second-line multi-kinase inhibitors following progression on immunotherapy; however, this recommendation is primarily based on expert consensus rather than high-quality evidence. Nevertheless, real-world data indicate that these agents demonstrate similar efficacy and safety when used as first-line treatments. Conversely, it remains unclear whether continuing immunotherapy after progression is beneficial. In some cases, adding anti-CTLA-4 as salvage therapy has shown effectiveness. Molecular-directed therapies have also been tested, showing some initial promise, but further data is needed to confirm the benefits of this approach. Emerging evidence suggests that patients experiencing oligoprogression may benefit from local or locoregional therapies while continuing immunotherapy. In this review, we will discuss treatment strategies following progression after first-line immunotherapy.
Collapse
Affiliation(s)
- Landon L Chan
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Tsz Tung Kwong
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Johnny C W Yau
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Stephen L Chan
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
15
|
Wu M, Fulgenzi CA, D’Alessio A, Cortellini A, Celsa C, Manfredi GF, Stefanini B, Wu YL, Huang YH, Saeed A, Pirozzi A, Pressiani T, Rimassa L, Schoenlein M, Schulze K, von Felden J, Mohamed Y, Kaseb AO, Vogel A, Roehlen N, Silletta M, Nishida N, Kudo M, Vivaldi C, Balcar L, Scheiner B, Pinter M, Singal AG, Glover J, Ulahannan S, Foerster F, Weinmann A, Galle PR, Parikh ND, Hsu WF, Parisi A, Chon HJ, Pinato DJ, Ang C. Second-line treatment patterns and outcomes in advanced HCC after progression on atezolizumab/bevacizumab. JHEP Rep 2025; 7:101232. [PMID: 39877031 PMCID: PMC11773230 DOI: 10.1016/j.jhepr.2024.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 01/31/2025] Open
Abstract
Background & Aims Atezolizumab/bevacizumab (A/B) is now a standard first-line treatment for advanced hepatocellular carcinoma (HCC), but the optimal second-line regimen is not known. We evaluated real-world treatment patterns and outcomes to investigate factors associated with post-progression survival (PPS). Methods In this multicenter, international, retrospective study, we examined clinical characteristics and outcomes of patients with advanced HCC who progressed on first-line A/B. The primary outcome of PPS was defined as time from first radiographic progression on A/B to death. Results A total of 406 patients alive after progression on first-line A/B were included in the final analysis, of whom 45.3% (n = 184) received best supportive treatment (BST) and 54.7% (n = 222) continued active systemic treatment. In the second line, 155 patients were treated with tyrosine kinase inhibitors (TKIs), 45 with immune checkpoint inhibitor (IO)-based regimens, and 3 had missing data. Median PPS of the whole cohort (mPPS) was 6.0 months (95% CI 5.2-7.2). On multivariate Cox regression analysis, absence of portal vein tumor thrombus, ECOG <2, and continued active treatment were predictors of better PPS. mPPS was significantly longer for patients who continued active treatment vs. BST (9.7 vs. 2.6 months; HR 0.41, p <0.001). In the second-line setting, patients treated with TKIs had a numerically shorter mPPS compared to those treated with IO (8.4 vs. 14.9 months; HR 1.37, p = 0.256). Conclusions Continuation of active therapy after A/B progression was independently associated with better survival even after adjusting for baseline disease characteristics. mPPS with IO-based therapy exceeded a year, suggesting that IO continuation post-progression may retain benefit. The precise sequencing of TKI and IO regimens warrants further investigation. Impact and implications There is currently a lack of level 1 data on second-line treatment options for patients with advanced hepatocellular carcinoma who progress after frontline atezolizumab plus bevacizumab, as all second-line approvals were established during the frontline sorafenib era. Our study aims to fill in some of the knowledge gap by investigating real-world patient outcomes in the second-line treatment setting. Findings from this study show that patients who continued active treatment had improved post-progression survival compared to those who received best supportive care, and medication regimens incorporating tyrosine kinase inhibitors as well as immunotherapy agents were active. These results can help inform clinicians of possible treatment options for patients who progress after frontline atezolizumab plus bevacizumab while we await maturing data from randomized-controlled trials.
Collapse
Affiliation(s)
- Meng Wu
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Mount Sinai Hospital, New York, NY, USA
| | - Claudia A.M. Fulgenzi
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Antonio D’Alessio
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alessio Cortellini
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Operative Research Unit of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Ciro Celsa
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child-Care, Internal Medicine and Medical Specialties PROMISE, University of Palermo, Palermo, Italy
| | - Giulia F. Manfredi
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Bernardo Stefanini
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Y. Linda Wu
- Division of Hematology/Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Yi-Hsiang Huang
- Healthcare and Service Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
| | - Anwaar Saeed
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh (UPMC), Pittsburgh, PA, USA
| | - Angelo Pirozzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Tiziana Pressiani
- Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martin Schoenlein
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kornelius Schulze
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johann von Felden
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yehia Mohamed
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmed O. Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arndt Vogel
- Toronto General Hospital, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany
| | - Natascha Roehlen
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Freiburg University Medical Center, Faculty of Medicine, Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marianna Silletta
- Operative Research Unit of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Caterina Vivaldi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Unit of Medical Oncology 2, University Hospital of Pisa, Pisa, Italy
| | - Lorenz Balcar
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Amit G. Singal
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joshua Glover
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Susanna Ulahannan
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Fredrich Foerster
- Department of Medicine, University Medical Centre Mainz, Mainz, Germany
| | - Arndt Weinmann
- Department of Medicine, University Medical Centre Mainz, Mainz, Germany
| | - Peter R. Galle
- Department of Medicine, University Medical Centre Mainz, Mainz, Germany
| | - Neehar D. Parikh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Wei-Fan Hsu
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Alessandro Parisi
- Department of Oncology, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria delle Marche, Ancona, Italy
| | - Hong Jae Chon
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Centre, CHA University, Seongnam, Republic of Korea
| | - David J. Pinato
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Celina Ang
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
16
|
Liu P, Guo J, Xie Z, Pan Y, Wei B, Peng Y, Hu S, Ding J, Chen X, Su J, Liu H, Zhou W. Co-Delivery of aPD-L1 and CD73 Inhibitor Using Calcium Phosphate Nanoparticles for Enhanced Melanoma Immunotherapy with Reduced Toxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410545. [PMID: 39716993 PMCID: PMC11831434 DOI: 10.1002/advs.202410545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/18/2024] [Indexed: 12/25/2024]
Abstract
Melanoma, a malignant skin tumor, presents significant treatment challenges, particularly in unresectable and metastatic cases. While immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 have brought new hope, their efficacy is limited by low response rates and significant immune-mediated adverse events (irAEs). Through multi-omics data analysis, it is discovered that the spatial co-localization of CD73 and PD-L1 in melanoma correlates with improved progression-free survival (PFS), suggesting a synergistic potential of their inhibitors. Building on these insights, a novel therapeutic strategy using calcium phosphate (CaP) nanoparticles is developed for the co-delivery of aPD-L1 and APCP, a CD73 inhibitor. These nanoparticles, constructed via a biomineralization method, exhibit high drug-loading capacity and pH-responsive drug release. Compared to free aPD-L1, the CaP-delivered aPD-L1 effectively avoids systemic side effects while significantly enhancing anti-tumor efficacy, surpassing even a 20-fold dose of free aPD-L1. Furthermore, the co-delivery of aPD-L1 and APCP via CaP nanoparticles demonstrates a synergistic anti-tumor effect, with substantial immune activation and prevention of tumor recurrence through immune memory effects. These findings suggest that the co-delivery of aPD-L1 and APCP using CaP nanoparticles is a promising approach for improving melanoma immunotherapy, achieving enhanced efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Peng Liu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
- Department of Nuclear MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Biological NanotechnologyChangshaHunan410008China
| | - Jia Guo
- Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunan410008China
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunan410008China
| | - Zuozhong Xie
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
| | - Yusheng Pan
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Benliang Wei
- Big Data InstituteCentral South UniversityChangshaHunan410083China
| | - Ying Peng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Shuo Hu
- Department of Nuclear MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Biological NanotechnologyChangshaHunan410008China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Xiang Chen
- Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunan410008China
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunan410008China
| | - Juan Su
- Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunan410008China
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunan410008China
| | - Hong Liu
- Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaHunan410008China
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaHunan410008China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
- Key Laboratory of Biological NanotechnologyChangshaHunan410008China
| |
Collapse
|
17
|
Zhang DY, Zhang ZH, Liu WT, Zhou WM, Zhou PF, Wei JJ, Dai XJ, Zeng XL, Zhou YQ, Li HW, Zhang H, Shen AL, Cheng LS, Shen GD, He YF. A humanized anti-MSLN×4-1BB bispecific antibody exhibits potent antitumour activity through 4-1BB signaling activation and fc function without systemic toxicity. J Transl Med 2025; 23:53. [PMID: 39806351 PMCID: PMC11726934 DOI: 10.1186/s12967-025-06107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Agonistic monoclonal antibodies targeting 4-1BB/CD137 have shown preclinical promise, but their clinical development has been limited by severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy. METHODS A novel anti-MSLN×4-1BB bispecific antibody (bsAb) was generated via antibody engineering, and its affinity and activity were detected via enzyme-linked immunosorbent assay (ELISA), flow cytometry, and T-cell activation and luciferase reporter assays. In vivo antitumour activity was assessed by establishing humanized mice bearing human MSLN-expressing MC38 (MC38/hMSLN) or CT26 (CT26/hMSLN) cells, and safety was further evaluated in cynomolgus monkeys. RESULTS We generated two humanized anti-MSLN×4-1BB bsAbs (HK013-G1/G4) by fusing an anti-4-1BB scFv to the C-terminus of an anti-MSLN VHH with an intact Fc fragment from human IgG1 or IgG4. The two bsAbs were able to block the binding of CA125 to MSLN and stimulate 4-1BB signaling pathway, which was strictly dependent on MSLN expression. In particular, HK013-G1 retained Fc function and induced ADCC effect in tumour cells, whereas HK013-G4 did not. Strikingly, HK013-G1 showed superior antitumour activity to HK013-G4 both in vitro and in vivo and remained effective even in the presence of soluble MSLN. HK013-G1 enhanced antitumour immunity and induced durable antigen-specific immune memory to prevent rechallenged tumour growth, even at a dose as low as 1 mg/kg. Furthermore, HK013-G1 did not induce nonspecific production of proinflammatory cytokines and showed good tolerability up to the highest tested dose (30 mg/kg weekly) for 5 weeks, with no HK013-G1-related adverse effects observed in cynomolgus monkeys. In addition, the mean half-life of HK013-G1 was approximately 61 and 97 h at single doses of 3 and 30 mg/kg, respectively. CONCLUSION The optimal anti-MSLN×4-1BB bsAb HK013-G1 exhibited synergistic antitumour effects by inducing an ADCC effect (innate immunity) and stimulating the 4-1BB signaling pathway (adaptive immunity) upon cross-bridging with MSLN with no systemic toxicity, which may offer the promise of an improved therapeutic window relative to that of 4-1BB agonists.
Collapse
Affiliation(s)
- Da-Yan Zhang
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230031, Anhui, China
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Zhi-Hua Zhang
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Wen-Ting Liu
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Wei-Ming Zhou
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Peng-Fei Zhou
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Juan-Juan Wei
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Xue-Jing Dai
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Xiao-Li Zeng
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Yu-Qiong Zhou
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Han-Wang Li
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Heng Zhang
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China
| | - Ao-Lin Shen
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China.
- Department of General Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Lian-Sheng Cheng
- Hefei HankeMab Biotechnology Co., Ltd.; Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, 230031, Anhui, China.
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China.
| | - Guo-Dong Shen
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China.
- Department of Geriatrics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Yi-Fu He
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230031, Anhui, China.
- Anhui Province Key Laboratory of Geriatric Immunotherapy and Nutrition Therapy, Gerontology Institute of Anhui Province, Hefei, 230001, Anhui, China.
| |
Collapse
|
18
|
Acar C, Yüksel HÇ, Şahin G, Açar FP, Tünbekici S, Çelebi G, Karaca B. Efficacy and prognostic factors of anti-PD1 and nivolumab-ipilimumab therapy in advanced melanoma patients resistant to prior ICI treatment. Discov Oncol 2024; 15:813. [PMID: 39704850 DOI: 10.1007/s12672-024-01702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have significantly improved the five-year survival rate for advanced melanoma. However, many patients exhibit resistance to ICI therapy. This study evaluated the efficacy and prognostic factors of anti-PD-1 (Group A) and nivolumab-ipilimumab (Group B) therapy in patients with advanced melanoma who were resistant to prior ICI therapy. We conducted a retrospective analysis of 56 patients with advanced melanoma who had previously shown resistance to ICI therapy. In the Group A (who have previously shown resistance to anti-CTLA-4, n = 28), the objective response rate (ORR) was 42.9%, with a disease control rate (DCR) of 53%. In the Group B (previously shown resistance to anti-PD-1, n = 28), the ORR was 17.9%, and the DCR was 25%. The ORR was lower in two subgroups: patients who showed progression or relapse in the the initial radiological assessment of prior ICI therapy (ORR 10.5%) and patients who had previously received ICI in the adjuvant setting (ORR 8.3%). A Royal Marsden Hospital (RMH) score of 2-3 was a predictor of OS in both groups (Group A: HR 3.789, 95% CI 1.356-10.589, p = 0.011; Group B: HR 4.281, 95% CI 1.490-12.300, p = 0.007) and for PFS in the Group B (HR 3.167, 95% CI 1.062-9.442, p = 0.039). Anti-PD-1 therapy demonstrated efficacy following resistance to anti-CTLA-4, whereas combination ICI therapy showed lower response rates in patients resistant to anti-PD-1. Further studies are needed to confirm the RMH scores and other prognostic markers and to evaluate subgroups with lower efficacy of nivolumab-ipilimumab therapy.
Collapse
Affiliation(s)
- Caner Acar
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, Izmir, 35100, Turkey.
| | - Haydar Çağatay Yüksel
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, Izmir, 35100, Turkey
| | - Gökhan Şahin
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, Izmir, 35100, Turkey
| | - Fatma Pinar Açar
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, Izmir, 35100, Turkey
| | - Salih Tünbekici
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, Izmir, 35100, Turkey
| | - Gülçin Çelebi
- Department of Internal Medicine, Ege University Medical Faculty, Izmir, Turkey, 35100
| | - Burçak Karaca
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, Izmir, 35100, Turkey
| |
Collapse
|
19
|
Goswami S, Pauken KE, Wang L, Sharma P. Next-generation combination approaches for immune checkpoint therapy. Nat Immunol 2024; 25:2186-2199. [PMID: 39587347 DOI: 10.1038/s41590-024-02015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024]
Abstract
Immune checkpoint therapy has revolutionized cancer treatment, leading to dramatic clinical outcomes for a subset of patients. However, many patients do not experience durable responses following immune checkpoint therapy owing to multiple resistance mechanisms, highlighting the need for effective combination strategies that target these resistance pathways and improve clinical responses. The development of combination strategies based on an understanding of the complex biology that regulates human antitumor immune responses has been a major challenge. In this Review, we describe the current landscape of combination therapies. We also discuss how the development of effective combination strategies will require the integration of small, tissue-rich clinical trials, to determine how therapy-driven perturbation of the human immune system affects downstream biological responses and eventual clinical outcomes, reverse translation of clinical observations to immunocompetent preclinical models, to interrogate specific biological pathways and their impact on antitumor immune responses, and novel computational methods and machine learning, to integrate multiple datasets across clinical and preclinical studies for the identification of the most relevant pathways that need to be targeted for successful combination strategies.
Collapse
Affiliation(s)
- Sangeeta Goswami
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- James P Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristen E Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- James P Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Data Sciences in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- James P Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
20
|
Fischer A, Martínez-Gómez JM, Mangana J, Dummer R, Erlic Z, Nölting S, Beuschlein F, Maurer A, Messerli M, Huellner MW, Skawran S. 18 F-FDG PET/CT for Detection of Immunotherapy-Induced Hypophysitis-A Case-Control Study. Clin Nucl Med 2024; 49:e656-e663. [PMID: 39325145 DOI: 10.1097/rlu.0000000000005440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
PURPOSE Hypophysitis occurs in up to 10% of patients treated with immune-checkpoint inhibitors (ICIs). MRI shows no abnormalities of the pituitary gland in one third of patients. A delayed diagnosis increases the risk for life-threatening adrenal crisis, underscoring the need for early detection. This study evaluates the diagnostic accuracy FDG PET/CT in detecting ICI-induced hypophysitis in a cohort of melanoma patients. MATERIALS AND METHODS Patients with metastatic melanoma and ICI-induced hypophysitis, who underwent FDG PET/CT 90 days before to 10 days after diagnosis, were compared with an age- and sex-matched control group of patients undergoing ICI treatment without signs of hypophysitis. The ratio of SUV max of the pituitary gland to the SUV mean of the blood pool (target-to-background ratio [TBR]) was calculated. Diagnostic accuracy of the TBR was assessed using area under the receiver operating characteristics curve analysis. RESULTS A total of 28 patients was included. The majority of patients with hypophysitis received ipilimumab/nivolumab (64.3%, 9/14). Visual assessment of the TBR distribution demonstrated a positive correlation with decreasing time to diagnosis. To evaluate diagnostic performance, only patients with FDG PET/CT 50 days before to 8 days after diagnosis (11/14) were included. TBR was significantly higher in these compared with the control group (median [interquartile range], 2.78 [2.41] vs 1.59 [0.70], respectively; P = 0.034). A sensitivity of 72.7% and a specificity of 90.9% were achieved at a TBR threshold of 2.41 (area under the receiver operating characteristics curve = 0.769). CONCLUSIONS Our findings suggest that, in patients undergoing ICI treatment for metastatic melanoma, a pituitary TBR of approximately 2.4 may indicate impending ICI-induced hypophysitis.
Collapse
|
21
|
Mi L, Zhang H. Myriad factors and pathways influencing tumor radiotherapy resistance. Open Life Sci 2024; 19:20220992. [PMID: 39655194 PMCID: PMC11627069 DOI: 10.1515/biol-2022-0992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024] Open
Abstract
Radiotherapy is a cornerstone in the treatment of various tumors, yet radioresistance often leads to treatment failure and tumor recurrence. Several factors contribute to this resistance, including hypoxia, DNA repair mechanisms, and cancer stem cells. This review explores the diverse elements that drive tumor radiotherapy resistance. Historically, resistance has been attributed to cellular repair and tumor repopulation, but recent research has expanded this understanding. The tumor microenvironment - characterized by hypoxia, immune evasion, and stromal interactions - further complicates treatment. Additionally, molecular mechanisms such as aberrant signaling pathways, epigenetic modifications, and non-B-DNA structures play significant roles in mediating resistance. This review synthesizes current knowledge, highlighting the interplay of these factors and their clinical implications. Understanding these mechanisms is crucial for developing strategies to overcome resistance and improve therapeutic outcomes in cancer patients.
Collapse
Affiliation(s)
- Lanjuan Mi
- School of Life and Health Sciences, Huzhou College, Hu Zhou, China
| | - Hongquan Zhang
- The First Affiliated Hospital of Huzhou University, Hu Zhou, China
| |
Collapse
|
22
|
Kamara S, Wen H, Guo Y, Liu Y, Liu L, Du W, Chen J, Zhu S, Zhang L. Axl and EGFR Dual-Specific Binding Affibody for Targeted Therapy in Nasopharyngeal Carcinoma. Cells 2024; 13:1823. [PMID: 39594573 PMCID: PMC11592995 DOI: 10.3390/cells13221823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a tumor of the head and neck, with a higher incidence in southern China and Southeast Asia. Radiotherapy and chemotherapy are the main treatments; however, metastasis and recurrence remain the main causes of treatment failure. Further, the majority of patients are diagnosed in the late stage due to lack of tumor-specific biomarker for early diagnosis. Therefore, an effective treatment and early detection can improve the outcome of patient with NPC. Axl and EGFR are co-expressed in NPC tissues and play key roles in tumor proliferation, migration, and invasion, which are often correlated with poor prognosis and therapy resistance. In this study, we generated a novel bispecific affibody (Z239-1907) for the dual targeting and inhibition of Axl and EGFR expression in NPC-positive cells both in vitro and in vivo. The in vitro experiments demonstrated that Z239-1907 had more pronounced antitumor effects than either modality alone (ZAXL239 or ZEGFR1907) in NPC-positive cells. Further, mice bearing NPC-positive tumors showed significant inhibition in tumor growth after treatment with Z239-1907 compared to ZAXL239 and ZEGFR1907. The in vivo tumor targeting ability and imaging also showed that Z239-1907 specifically and selectively targeted NPC xenograft mice models and accumulate at tumor site as early as 30 min and disappeared within 24 h post-injection. Collectively, these results suggest that Z239-1907 dual-target affibody is a promising therapeutic agent and a molecular imaging probe for early diagnosis in NPC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (S.K.); (H.W.); (Y.G.); (Y.L.); (L.L.); (W.D.); (J.C.); (S.Z.)
| |
Collapse
|
23
|
Yi M, Li T, Niu M, Wu Y, Zhao B, Shen Z, Hu S, Zhang C, Zhang X, Zhang J, Yan Y, Zhou P, Chu Q, Dai Z, Wu K. Blockade of CCR5 + T Cell Accumulation in the Tumor Microenvironment Optimizes Anti-TGF-β/PD-L1 Bispecific Antibody. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408598. [PMID: 39303165 PMCID: PMC11578335 DOI: 10.1002/advs.202408598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Indexed: 09/22/2024]
Abstract
In the previous studies, anti-TGF-β/PD-L1 bispecific antibody YM101 is demonstrated, with superior efficacy to anti-PD-L1 monotherapy in multiple tumor models. However, YM101 therapy can not achieve complete regression in most tumor-bearing mice, suggesting the presence of other immunosuppressive elements in the tumor microenvironment (TME) beyond TGF-β and PD-L1. Thoroughly exploring the TME is imperative to pave the way for the successful translation of anti-TGF-β/PD-L1 BsAb into clinical practice. In this work, scRNA-seq is employed to comprehensively profile the TME changes induced by YM101. The scRNA-seq analysis reveals an increase in immune cell populations associated with antitumor immunity and enhances cell-killing pathways. However, the analysis also uncovers the presence of immunosuppressive CCR5+ T cells in the TME after YM101 treatment. To overcome this hurdle, YM101 is combined with Maraviroc, a widely used CCR5 antagonist for treating HIV infection, suppressing CCR5+ T cell accumulation, and optimizing the immune response. Mechanistically, YM101-induced neutrophil activation recruits immunosuppressive CCR5+ T cells via CCR5 ligand secretion, creating a feedback loop that diminishes the antitumor response. Maraviroc then cleared these infiltrating cells and offset YM101-mediated immunosuppressive effects, further unleashing the antitumor immunity. These findings suggest selectively targeting CCR5 signaling with Maraviroc represents a promising and strategic approach to enhance YM101 efficacy.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical ScienceTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032P. R. China
| | - Tianye Li
- Department of GynecologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhou310009P. R. China
| | - Mengke Niu
- Department of Medical OncologyThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Yuze Wu
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Bin Zhao
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
| | - Zhuoyang Shen
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
| | - Shengtao Hu
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
| | - Chaomei Zhang
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
| | - Xiaojun Zhang
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical ScienceTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032P. R. China
| | - Jing Zhang
- Wuhan YZY Biopharma Co., LtdBiolake, C2‐1, No.666 Gaoxin RoadWuhan430075P. R. China
| | - Yongxiang Yan
- Wuhan YZY Biopharma Co., LtdBiolake, C2‐1, No.666 Gaoxin RoadWuhan430075P. R. China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., LtdBiolake, C2‐1, No.666 Gaoxin RoadWuhan430075P. R. China
| | - Qian Chu
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Zhijun Dai
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
| | - Kongming Wu
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical ScienceTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032P. R. China
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| |
Collapse
|
24
|
Skoulidis F, Araujo HA, Do MT, Qian Y, Sun X, Cobo AG, Le JT, Montesion M, Palmer R, Jahchan N, Juan JM, Min C, Yu Y, Pan X, Arbour KC, Vokes N, Schmidt ST, Molkentine D, Owen DH, Memmott R, Patil PD, Marmarelis ME, Awad MM, Murray JC, Hellyer JA, Gainor JF, Dimou A, Bestvina CM, Shu CA, Riess JW, Blakely CM, Pecot CV, Mezquita L, Tabbó F, Scheffler M, Digumarthy S, Mooradian MJ, Sacher AG, Lau SCM, Saltos AN, Rotow J, Johnson RP, Liu C, Stewart T, Goldberg SB, Killam J, Walther Z, Schalper K, Davies KD, Woodcock MG, Anagnostou V, Marrone KA, Forde PM, Ricciuti B, Venkatraman D, Van Allen EM, Cummings AL, Goldman JW, Shaish H, Kier M, Katz S, Aggarwal C, Ni Y, Azok JT, Segal J, Ritterhouse L, Neal JW, Lacroix L, Elamin YY, Negrao MV, Le X, Lam VK, Lewis WE, Kemp HN, Carter B, Roth JA, Swisher S, Lee R, Zhou T, Poteete A, Kong Y, Takehara T, Paula AG, Parra Cuentas ER, Behrens C, Wistuba II, Zhang J, Blumenschein GR, Gay C, Byers LA, Gibbons DL, Tsao A, Lee JJ, Bivona TG, Camidge DR, Gray JE, Leighl NB, Levy B, Brahmer JR, Garassino MC, et alSkoulidis F, Araujo HA, Do MT, Qian Y, Sun X, Cobo AG, Le JT, Montesion M, Palmer R, Jahchan N, Juan JM, Min C, Yu Y, Pan X, Arbour KC, Vokes N, Schmidt ST, Molkentine D, Owen DH, Memmott R, Patil PD, Marmarelis ME, Awad MM, Murray JC, Hellyer JA, Gainor JF, Dimou A, Bestvina CM, Shu CA, Riess JW, Blakely CM, Pecot CV, Mezquita L, Tabbó F, Scheffler M, Digumarthy S, Mooradian MJ, Sacher AG, Lau SCM, Saltos AN, Rotow J, Johnson RP, Liu C, Stewart T, Goldberg SB, Killam J, Walther Z, Schalper K, Davies KD, Woodcock MG, Anagnostou V, Marrone KA, Forde PM, Ricciuti B, Venkatraman D, Van Allen EM, Cummings AL, Goldman JW, Shaish H, Kier M, Katz S, Aggarwal C, Ni Y, Azok JT, Segal J, Ritterhouse L, Neal JW, Lacroix L, Elamin YY, Negrao MV, Le X, Lam VK, Lewis WE, Kemp HN, Carter B, Roth JA, Swisher S, Lee R, Zhou T, Poteete A, Kong Y, Takehara T, Paula AG, Parra Cuentas ER, Behrens C, Wistuba II, Zhang J, Blumenschein GR, Gay C, Byers LA, Gibbons DL, Tsao A, Lee JJ, Bivona TG, Camidge DR, Gray JE, Leighl NB, Levy B, Brahmer JR, Garassino MC, Gandara DR, Garon EB, Rizvi NA, Scagliotti GV, Wolf J, Planchard D, Besse B, Herbst RS, Wakelee HA, Pennell NA, Shaw AT, Jänne PA, Carbone DP, Hellmann MD, Rudin CM, Albacker L, Mann H, Zhu Z, Lai Z, Stewart R, Peters S, Johnson ML, Wong KK, Huang A, Winslow MM, Rosen MJ, Winters IP, Papadimitrakopoulou VA, Cascone T, Jewsbury P, Heymach JV. CTLA4 blockade abrogates KEAP1/STK11-related resistance to PD-(L)1 inhibitors. Nature 2024; 635:462-471. [PMID: 39385035 PMCID: PMC11560846 DOI: 10.1038/s41586-024-07943-7] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/13/2024] [Indexed: 10/11/2024]
Abstract
For patients with advanced non-small-cell lung cancer (NSCLC), dual immune checkpoint blockade (ICB) with CTLA4 inhibitors and PD-1 or PD-L1 inhibitors (hereafter, PD-(L)1 inhibitors) is associated with higher rates of anti-tumour activity and immune-related toxicities, when compared with treatment with PD-(L)1 inhibitors alone. However, there are currently no validated biomarkers to identify which patients will benefit from dual ICB1,2. Here we show that patients with NSCLC who have mutations in the STK11 and/or KEAP1 tumour suppressor genes derived clinical benefit from dual ICB with the PD-L1 inhibitor durvalumab and the CTLA4 inhibitor tremelimumab, but not from durvalumab alone, when added to chemotherapy in the randomized phase III POSEIDON trial3. Unbiased genetic screens identified loss of both of these tumour suppressor genes as independent drivers of resistance to PD-(L)1 inhibition, and showed that loss of Keap1 was the strongest genomic predictor of dual ICB efficacy-a finding that was confirmed in several mouse models of Kras-driven NSCLC. In both mouse models and patients, KEAP1 and STK11 alterations were associated with an adverse tumour microenvironment, which was characterized by a preponderance of suppressive myeloid cells and the depletion of CD8+ cytotoxic T cells, but relative sparing of CD4+ effector subsets. Dual ICB potently engaged CD4+ effector cells and reprogrammed the tumour myeloid cell compartment towards inducible nitric oxide synthase (iNOS)-expressing tumoricidal phenotypes that-together with CD4+ and CD8+ T cells-contributed to anti-tumour efficacy. These data support the use of chemo-immunotherapy with dual ICB to mitigate resistance to PD-(L)1 inhibition in patients with NSCLC who have STK11 and/or KEAP1 alterations.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- AMP-Activated Protein Kinase Kinases/genetics
- AMP-Activated Protein Kinase Kinases/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/antagonists & inhibitors
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/immunology
- Clinical Trials, Phase III as Topic
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Kelch-Like ECH-Associated Protein 1/genetics
- Kelch-Like ECH-Associated Protein 1/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Mutation
- Nitric Oxide Synthase Type II/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Genes, Tumor Suppressor
Collapse
Affiliation(s)
- Ferdinandos Skoulidis
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Haniel A Araujo
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minh Truong Do
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Qian
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Sun
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Galan Cobo
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John T Le
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | - Yi Yu
- Tango Therapeutics, Boston, MA, USA
| | | | - Kathryn C Arbour
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natalie Vokes
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie T Schmidt
- Department of Genomic Medicine and the Institute for Data Science in Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Molkentine
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dwight H Owen
- Division of Medical Oncology, Ohio State University-James Comprehensive Cancer Center, Columbus, OH, USA
| | - Regan Memmott
- Division of Medical Oncology, Ohio State University-James Comprehensive Cancer Center, Columbus, OH, USA
| | - Pradnya D Patil
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Melina E Marmarelis
- Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joseph C Murray
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | - Jonathan W Riess
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | | | - Chad V Pecot
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Laura Mezquita
- Department of Medical Oncology, Hospital Clinic de Barcelona, Barcelona, Spain
| | | | - Matthias Scheffler
- Department of Internal Medicine, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany
| | - Subba Digumarthy
- Department of Radiology, Massachussetts General Hospital, Boston, MA, USA
| | | | | | - Sally C M Lau
- Department of Medical Oncology, NYU Langone Perlmutter Cancer Center, New York, NY, USA
| | - Andreas N Saltos
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Julia Rotow
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rocio Perez Johnson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Corinne Liu
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tyler Stewart
- Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | | | | | - Zenta Walther
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Kurt Schalper
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Kurtis D Davies
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark G Woodcock
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Valsamo Anagnostou
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristen A Marrone
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick M Forde
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Deepti Venkatraman
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eliezer M Van Allen
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy L Cummings
- David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Jonathan W Goldman
- David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | | | - Melanie Kier
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sharyn Katz
- Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Charu Aggarwal
- Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Ni
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joseph T Azok
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeremy Segal
- Department of Pathology, University of Chicago, Chicago, USA
| | | | - Joel W Neal
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Yasir Y Elamin
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcelo V Negrao
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vincent K Lam
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Whitney E Lewis
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haley N Kemp
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brett Carter
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen Swisher
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard Lee
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Teng Zhou
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alissa Poteete
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifan Kong
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tomohiro Takehara
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alvaro Guimaraes Paula
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin R Parra Cuentas
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George R Blumenschein
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carl Gay
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren A Byers
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne Tsao
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Jack Lee
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Trever G Bivona
- University of California San Francisco, San Francisco, CA, USA
| | | | - Jhannelle E Gray
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | - Benjamin Levy
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julie R Brahmer
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - David R Gandara
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Edward B Garon
- David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | | | | | - Jürgen Wolf
- Department of Internal Medicine, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany
| | | | | | | | | | | | - Alice T Shaw
- Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David P Carbone
- Division of Medical Oncology, Ohio State University-James Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University, Lausanne, Switzerland
| | - Melissa L Johnson
- Sarah Cannon Research Institute, Tennessee Oncology, Nashville, TN, USA
| | - Kwok K Wong
- Division of Hematology & Medical Oncology, NYU Langone Perlmutter Cancer Center, New York, NY, USA
| | | | - Monte M Winslow
- D2G Oncology, Mountain View, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | | | | | - Tina Cascone
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - John V Heymach
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
25
|
Yang N, Guo XY, Ding J, Wang F, Liu TL, Zhu H, Yang Z. Copper-64 Based PET-Radiopharmaceuticals: Ways to Clinical Translational. Semin Nucl Med 2024; 54:792-800. [PMID: 39521713 DOI: 10.1053/j.semnuclmed.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Positron emission tomography (PET) as an advanced noninvasive imaging technique, provides unprecedented insights into the study of physiological and biochemical processes in vivo. Copper-64 (64Cu) has a ideal half-life of 12.7 hours, with β+ and β-dual decay modes and abundant coordination chemistry, enabling the development of a wide variety of radiopharmaceuticals for PET imaging and radionuclide therapy.This review provides a comprehensive overview of the latest advances in Copper-64 (64Cu)-based PET radionuclides, covering their production, radiolabeling strategies, and clinical applications. It highlights the role of 64Cu-PET in enhancing diagnostic accuracy and therapeutic outcomes across various tumor types. Additionally, future research directions and the evolving clinical applications of 64Cu-based radiopharmaceuticals are discussed, offering insights into their potential impact on clinical practice.
Collapse
Affiliation(s)
- Nan Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Yi Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Ding
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Feng Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Te-Li Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
26
|
Woodford R, McKeown J, Hoeijmakers LL, Mangana J, Dimitriou F, Allayous C, Zaman F, Aya F, Marsiglio J, Goodman R, Rayson V, Placzke J, Kessels J, Ramalyte E, Haque W, Wilson I, Trojaniello C, Benannoune N, Roberts-Thomson R, Robert C, Blank CU, Dummer R, Lebbe C, Haydon A, Arance A, Hu-Lieskovan S, Johnson DB, Mcarthur GA, Rutkowski P, Neyns B, Sullivan RJ, Weber J, Carlino MS, Ascierto PA, Lo S, Long GV, Menzies AM. Nature and management of melanoma recurrences following adjuvant anti-PD-1 based therapy. Eur J Cancer 2024; 212:115055. [PMID: 39366209 DOI: 10.1016/j.ejca.2024.115055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024]
Abstract
INTRODUCTION Approximately 50 % of resected stage II-IV melanoma patients develop recurrent disease by 5 years despite adjuvant anti-PD-1 therapy. Data to define best management of recurrences is lacking. METHODS This was a multicentre, international, retrospective cohort study. Patients with resected stage II-IV melanoma who commenced adjuvant anti-PD-1-based therapy before January 2022 and later recurred were identified. Data on demographics, disease characteristics, recurrence patterns, management and outcomes were collected. RESULTS 711 patients from 17 sites were included. Median age was 60 [range 16-92], 64 % were male, 2 % stage II, 91 % were stage III, 7 % stage IV. Median time to recurrence was 6.2 months (0-68.5) and median follow up time from recurrence was 19.8 months (range 0.2-73.1). 63 % recurred on anti-PD-1 therapy, 36 % off therapy [3 % < 6 months, 33 % > 6 months]. Initial recurrences were locoregional (LR) alone in 44 %, distant alone (DR) in 43 %, and 11 % in both sites. LR recurrences were managed with local therapy, alone (62 %) or with "second adjuvant" anti-PD-1 (14 %) or BRAF/MEK therapy (23 %); 12 m RFS2 was 25 %, 29 % and 69 % respectively (p = 0.0045). Definitive systemic therapy at first recurrence was given in 16 % LR and 86 % DR, with best outcomes for anti-CTLA4 + anti-PD-1 and trial combinations (24 m PFS 63 % and 69 %, respectively). The 24 m OS for the entire cohort was 65 %. CONCLUSION Most recurrences following adjuvant anti-PD-1 based therapy occur early and while still on drug. Outcomes are poor, regardless of site, timing of recurrence, and subsequent treatment.
Collapse
Affiliation(s)
- Rachel Woodford
- Melanoma Institute Australia, University of Sydney, 45 Rocklands Road, Wollstonecraft, Sydney, NSW, Australia
| | - Janet McKeown
- Melanoma Institute Australia, University of Sydney, 45 Rocklands Road, Wollstonecraft, Sydney, NSW, Australia
| | - Lotte L Hoeijmakers
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Plesmanlaan 121, Amsterdam, The Netherlands
| | - Johanna Mangana
- Department of Dermatology, University Hospital of Zurich, University of Zurich, Ramistrasse 100, Zurich, Switzerland
| | - Florentia Dimitriou
- Department of Dermatology, University Hospital of Zurich, University of Zurich, Ramistrasse 100, Zurich, Switzerland
| | - Clara Allayous
- APHP Hospital St-Louis, Dermatology Department, DMU ICARE, Paris, France
| | - Farzana Zaman
- Department of Medical Oncology, The Alfred Hospital, 55 Commercial Road, Melbourne, Victoria, Australia
| | - Francisco Aya
- Hospital Clinic Barcelona, Calle de Villaroel 170, Barcelona, Spain
| | - John Marsiglio
- Huntsman Cancer Institute, University of Utah School of Medicine, UT, USA
| | - Rachel Goodman
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Victoria Rayson
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia
| | - Joanna Placzke
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skowska-Curie Research Institute of Oncology, Masovian Voivodeship, Warsaw, Poland
| | - Jolien Kessels
- Department of Medical Oncology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Belgium
| | | | - Waqas Haque
- Department of Medicine, New York University Grossman School of Medicine Langone, Manhattan, NY, USA
| | - Isabella Wilson
- Department of Medical Oncology, Westmead and Blacktown Hospitals, NSW, Australia
| | - Claudia Trojaniello
- Unit of Melanoma Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Naima Benannoune
- Dermatology Unit, Gustave-Roussy Paris Saclay University, 39 Rue Camille Desmoulins, Villejuif, France
| | | | - Caroline Robert
- Dermatology Unit, Gustave-Roussy Paris Saclay University, 39 Rue Camille Desmoulins, Villejuif, France
| | - Christian U Blank
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Plesmanlaan 121, Amsterdam, The Netherlands
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zurich, University of Zurich, Ramistrasse 100, Zurich, Switzerland
| | - Celeste Lebbe
- APHP Hospital St-Louis, Dermatology Department, DMU ICARE, Paris, France; Universite de Paris Cité, 45 Rue des Saint-Pères, Paris, France
| | - Andrew Haydon
- Department of Medical Oncology, The Alfred Hospital, 55 Commercial Road, Melbourne, Victoria, Australia
| | - Ana Arance
- Hospital Clinic Barcelona, Calle de Villaroel 170, Barcelona, Spain
| | - Siwen Hu-Lieskovan
- Huntsman Cancer Institute, University of Utah School of Medicine, UT, USA
| | | | - Grant A Mcarthur
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, Australia
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skowska-Curie Research Institute of Oncology, Masovian Voivodeship, Warsaw, Poland
| | - Bart Neyns
- Department of Medical Oncology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Belgium
| | | | - Jeffrey Weber
- Department of Medicine, New York University Grossman School of Medicine Langone, Manhattan, NY, USA
| | - Matteo S Carlino
- Melanoma Institute Australia, University of Sydney, 45 Rocklands Road, Wollstonecraft, Sydney, NSW, Australia; Department of Medical Oncology, Westmead and Blacktown Hospitals, NSW, Australia
| | - Paolo A Ascierto
- Unit of Melanoma Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Serigne Lo
- Melanoma Institute Australia, University of Sydney, 45 Rocklands Road, Wollstonecraft, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, University of Sydney, 45 Rocklands Road, Wollstonecraft, Sydney, NSW, Australia; Department of Medical Oncology, Royal North Shore Hospital, North Sydney, Sydney, NSW, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, University of Sydney, 45 Rocklands Road, Wollstonecraft, Sydney, NSW, Australia; Department of Medical Oncology, Royal North Shore Hospital, North Sydney, Sydney, NSW, Australia.
| |
Collapse
|
27
|
Li H, Zhao W, Li C, Shen H, Li M, Wang C, Han C, Yi C, Wang J, Meng X, Liu L, Yu S, Li J. The efficacy and safety of a novel PD-1/CTLA-4 bispecific antibody cadonilimab (AK104) in advanced non-small cell lung cancer: A multicenter retrospective observational study. Thorac Cancer 2024; 15:2327-2338. [PMID: 39390972 PMCID: PMC11554550 DOI: 10.1111/1759-7714.15455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/10/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND For patients with advanced non-small cell lung cancer (NSCLC) who have received frontline immunochemotherapy, subsequent treatment options are limited. As the first dual programmed cell death-1 (PD-1)/cytotoxic T lymphocyte-associated antigen-4 bispecific antibody approved globally, cadonilimab demonstrated potential antitumor activity in advanced NSCLC patients resistant to anti-PD-1/PD-L1 antibodies. METHODS We retrospectively collected efficacy and safety data from advanced NSCLC patients treated with cadonilimab-based regimens in later therapy lines. RESULTS A total of 41 advanced NSCLC patients refractory to anti-PD-1/PD-L1 therapy were enrolled. More than half of the patients received cadonilimab-based regimen as a fourth or later line of treatment. At the data cutoff date, treatment efficacy could be evaluated in 23 patients. One patient (4.3%) achieved partial response, eight patients (34.8%) experienced stable disease, and 14 patients (60.9%) progressed. The objective response rate and disease control rate were 4.3% and 39.1%, respectively. The median progression-free survival for all evaluated patients was 108.0 days. Due to the short follow-up period, the median overall survival has not yet been reached. Treatment-related adverse events (TRAEs) and immune-related AEs occurred in 63.4% and 22% patients, respectively. The most common TRAEs included gamma-glutamyl transferase elevation (17.1%), coughing (14.6%), and fatigue (12.2%). Five patients (12.2%) experienced grade ≥3 TRAEs. CONCLUSIONS In this heavily pretreated cohort of advanced NSCLC patients, cadonilimab-based regimens showed moderate antitumor efficacy with a generally tolerable and manageable safety profile. However, more evidence is needed to support the administration of cadonilimab in NSCLC patients refractory to previous anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Hongxin Li
- School of Pharmaceutical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Wen Zhao
- Department of Medical OncologyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Chengming Li
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Hongchang Shen
- Department of OncologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Meiying Li
- Clinical Trial CenterShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Chengjun Wang
- Department of Medical OncologyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Chunyan Han
- Department of OncologyShandong Provincial Third Hospital, Shandong UniversityJinanChina
- Department of RadiotherapyThe Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences)JinanChina
| | - Cuihua Yi
- Department of Medical OncologyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Jun Wang
- Department of OncologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
- Shandong Lung Cancer InstituteJinanChina
| | - Xue Meng
- Department of Radiation OncologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Lian Liu
- Department of Medical OncologyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Shuwen Yu
- Department of PharmacyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Clinical Trial CenterNMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Shandong UniversityJinanChina
| | - Jisheng Li
- Department of Medical OncologyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| |
Collapse
|
28
|
Wang Z, Zou X, Wang H, Hao Z, Li G, Wang S. Companion diagnostics and predictive biomarkers for PD-1/PD-L1 immune checkpoint inhibitors therapy in malignant melanoma. Front Immunol 2024; 15:1454720. [PMID: 39530091 PMCID: PMC11550933 DOI: 10.3389/fimmu.2024.1454720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
Programmed cell death receptor 1 (PD-1), when bound to the ligand programmed death-ligand 1 (PD-L1), can suppress cellular immunity and play a critical role in the initiation and development of cancer. Immune drugs targeting these two sites have been developed for different cancers, including malignant melanoma. The accompanying diagnostic method has been approved by the FDA to guide patient medication. However, the method of immunohistochemical staining, which varies widely due to the antibody and staining cut-off values, has certain limitations in application and does not benefit all patients. Increasing researches begin to focus on new biomarkers to improve objective response rates and survival in cancer patients. In this article, we enumerated three major groups, including tumour microenvironment, peripheral circulation, and gene mutation, which covered the current main research directions. In the future, we hope those biomarkers may be used to guide the treatment of patients with malignant melanoma.
Collapse
Affiliation(s)
- Zeping Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaojing Zou
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haiyan Wang
- Beijing Biomedical Science and Technology Center, Zhaofenghua Biotechnology (Nanjing) Company Limited, Beijing, China
| | - Zhihui Hao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing, China
| | - Gebin Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuaiyu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing, China
| |
Collapse
|
29
|
Misiąg P, Molik K, Kisielewska M, Typek P, Skowron I, Karwowska A, Kuźnicki J, Wojno A, Ekiert M, Choromańska A. Amelanotic Melanoma-Biochemical and Molecular Induction Pathways. Int J Mol Sci 2024; 25:11502. [PMID: 39519055 PMCID: PMC11546312 DOI: 10.3390/ijms252111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Amelanotic melanoma (AM) is a subtype of hypomelanotic or completely amelanotic melanoma. AM is a rare subtype of melanoma that exhibits a higher recurrence rate and aggressiveness as well as worse surveillance than typical melanoma. AM shows a dysregulation of melanin production, cell cycle control, and apoptosis pathways. Knowing these pathways has an application in medicine due to targeted therapies based on the inhibiting elements of the abovementioned pathways. Therefore, we summarized and discussed AM biochemical and molecular induction pathways and personalized medicine approaches, clinical management, and future directions due to the fact that AM is relatively rare. AM is commonly misdiagnosed. Hence, the role of biomarkers is becoming significant. Nonetheless, there is a shortage of biomarkers specific to AM. BRAF, NRAS, and c-KIT genes are the main targets of therapy. However, the role of BRAF and KIT in AM varied among studies. BRAF inhibitors combined with MAK inhibitors demonstrate better results. Immune checkpoint inhibitors targeting CTLA-4 combined with a programmed death receptor 1 (PD-1) show better outcomes than separately. Fecal microbiota transplantation may overcome resistance to immune checkpoint therapy of AM. Immune-modulatory vaccines against indoleamine 2,3-dioxygenase (IDO) and PD ligand (PD-L1) combined with nivolumab may be efficient in melanoma treatment.
Collapse
Affiliation(s)
- Piotr Misiąg
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Klaudia Molik
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Monika Kisielewska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Paulina Typek
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Izabela Skowron
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Anna Karwowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Aleksandra Wojno
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.M.); (K.M.); (M.K.); (P.T.); (I.S.); (A.K.); (J.K.); (A.W.)
- Students Scientific Group No. 148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Marcin Ekiert
- Department of Oncology, Wroclaw Medical University, pl. L. Hirszfelda 12, 53-413 Wroclaw, Poland;
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
30
|
Xu Y, Xiong Y. Targeting STING signaling for the optimal cancer immunotherapy. Front Immunol 2024; 15:1482738. [PMID: 39450170 PMCID: PMC11500076 DOI: 10.3389/fimmu.2024.1482738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Despite the transformative impact of anti-PD-1/PD-L1 therapies, challenges such as low response rates persist. The stimulator of interferon genes (STING) pathway, a crucial element of innate immunity, emerges as a strategic target to overcome these limitations. Understanding its multifaceted functions in cancer, including antigen presentation and response to DNA damage, provides valuable insights. STING agonists, categorized into cyclic dinucleotides (CDNs) and non-CDNs, exhibit promising safety and efficacy profiles. Innovative delivery systems, including antibody-drug conjugates, nanocarriers, and exosome-based therapies, address challenges associated with systemic administration and enhance targeted tumor delivery. Personalized vaccines, such as DT-Exo-STING, showcase the adaptability of STING agonists for individualized treatment. These advancements not only offer new prospects for combination therapies but also pave the way for overcoming resistance mechanisms. This review focuses on the potential of targeting STING pathway to enhance cancer immunotherapy. The integration of STING agonists into cancer immunotherapy holds promise for more effective, personalized, and successful approaches against malignancies, presenting a beacon of hope for the future of cancer treatment.
Collapse
Affiliation(s)
| | - Ying Xiong
- Department of Obstetrics and Gynecology, Haiyan People’s Hospital,
Jiaxing, China
| |
Collapse
|
31
|
Tang B, Chen Y, Jiang Y, Fang M, Gao Q, Ren X, Yao L, Huang G, Chen J, Zhang X, Li R, Zhao S, Gao M, Luo R, Qi M, Li F, Zheng F, Lee M, Tao X, Duan R, Guo J, Chi Z, Cui C. Toripalimab in combination with HBM4003, an anti-CTLA-4 heavy chain-only antibody, in advanced melanoma and other solid tumors: an open-label phase I trial. J Immunother Cancer 2024; 12:e009662. [PMID: 39366752 PMCID: PMC11459314 DOI: 10.1136/jitc-2024-009662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND HBM4003 is a novel anti-CTLA-4 heavy chain-only antibody, designed to enhance Treg ablation and antibody-dependent cell-mediated cytotoxicity while ensuring a manageable safety profile. This phase I trial investigated the safety, pharmacokinetics, immunogenicity and preliminary efficacy of HBM4003 plus with anti-PD-1 antibody toripalimab in patients with advanced solid tumors, especially focusing on melanoma. METHODS The multicenter, open-label phase I trial was divided into two parts: dose-escalation phase (part 1) and dose-expansion phase (part 2). In part 1, HBM4003 was administered at doses of 0.03, 0.1, 0.3 mg/kg in combination with toripalimab with fixed dosage of 240 mg every 3 weeks. The recommended phase II dose (RP2D) was used in the expansion phase. Primary endpoints were safety and RP2D in part 1 and objective response rate (ORR) in part 2. Biomarkers based on cytokines and multiplex immunofluorescence staining were explored. RESULTS A total of 40 patients received study treatment, including 36 patients treated with RP2D of HBM4003 0.3 mg/kg plus toripalimab 240 mg every 3 week. 36 participants (90.0%) experienced at least one treatment-related adverse event (TRAE), of which 10 (25.0%) patients experienced grade ≥3 TRAEs and 5 (12.5%) experienced immune-mediated adverse events (irAEs) with maximum severity of grade 3. No grade 4 or 5 irAEs occurred. Efficacy analysis set included 32 melanoma patients treated with RP2D and with available post-baseline imaging data. The ORRs of anti-PD-1/PD-L1 treatment-naïve subgroup and anti-PD-1/PD-L1 treatment-failed subgroup were 33.3% and 5.9%, respectively. In mucosal melanoma, the ORR of the two subgroups were 40.0% and 10.0%, respectively. Baseline high Treg/CD4+ratio in the tumor serves as an independent predictive factor for the efficacy of immunotherapy. CONCLUSIONS HBM4003 0.3 mg/kg plus toripalimab 240 mg every 3 week demonstrated manageable safety in solid tumors and no new safety signal. Limited data demonstrated promising antitumor activity, especially in PD-1 treatment-naïve mucosal melanoma. TRIAL REGISTRATION NUMBER NCT04727164.
Collapse
Affiliation(s)
- Bixia Tang
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Yu Jiang
- Department of Head and Neck Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Meiyu Fang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Quanli Gao
- Immunotherapy Department, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Li Yao
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gang Huang
- Central South University (Hunan Cancer Hospital), Changsha, Hunan, China
| | - Jing Chen
- Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoshi Zhang
- Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Rongqing Li
- Tumor Radiotherapy Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | | | | | | | - Meng Qi
- Harbour BioMed, Shanghai, China
| | - Feng Li
- Harbour BioMed, Shanghai, China
| | | | | | | | - Rong Duan
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Guo
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhihong Chi
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Chuanliang Cui
- Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
32
|
Ochenduszko S, Puskulluoglu M, Pacholczak-Madej R, Ruiz-Millo O. Adjuvant anti-PD1 immunotherapy of resected skin melanoma: an example of non-personalized medicine with no overall survival benefit. Crit Rev Oncol Hematol 2024; 202:104443. [PMID: 39025250 DOI: 10.1016/j.critrevonc.2024.104443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024] Open
Abstract
Randomized clinical trials demonstrated a recurrence-free survival benefit with adjuvant anti-programmed death-1 (anti-PD1) inhibitors of resected stage IIB-IV melanoma. However, no improvement in overall survival has been observed thus far. Furthermore, there are no predictive markers for immunotherapy response in melanoma, therefore adjuvant treatment is offered to all comers based exclusively on the pathological and clinical stages. Additionally, one year of treatment duration and the risk of chronic immune-related adverse effects may negatively impact patients´ quality of life. In this review, we will try to answer whether the currently available data on adjuvant anti-PD1 therapy of stage IIB-IV resected melanoma is sufficient to make this strategy available to all patients. We will also discuss the economic impact of this therapy on healthcare system budgets. Recent studies suggest that the high cost of cancer drugs may affect access to these agents globally by raising questions of sustainability for patients and society.
Collapse
Affiliation(s)
| | - Miroslawa Puskulluoglu
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow Branch, Krakow, Poland
| | - Renata Pacholczak-Madej
- Department of Gynaecological Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow Branch, Krakow, Poland; Department of Anatomy, Jagiellonian University, Medical College, Krakow, Poland
| | - Oreto Ruiz-Millo
- Department of Pharmacy, Dr. Peset University Hospital, Valencia, Spain
| |
Collapse
|
33
|
Martín-Lluesma S, Svane IM, Dafni U, Vervita K, Karlis D, Dimopoulou G, Tsourti Z, Rohaan MW, Haanen JBAG, Coukos G. Efficacy of TIL therapy in advanced cutaneous melanoma in the current immuno-oncology era: updated systematic review and meta-analysis. Ann Oncol 2024; 35:860-872. [PMID: 39053767 DOI: 10.1016/j.annonc.2024.07.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL-ACT) has consistently shown efficacy in advanced melanoma. New results in the field provide now the opportunity to assess overall survival (OS) after TIL-ACT and to examine the effect of prior anti-programmed cell death protein 1/programmed death-ligand 1 [anti-PD-(L)1] therapy on its efficacy. METHODS A comprehensive search was conducted in PubMed up to 29 February 2024. Ιn this meta-analysis we focused on studies including high-dose interleukin 2, doubling the patient numbers from our previous meta-analysis conducted up to December 2018 and using OS as the primary endpoint. Objective response rate (ORR), complete response rate (CRR), and duration of response were secondary endpoints. Findings are synthesized using tables, Kaplan-Meier plots, and forest plots. Pooled estimates for ORR and CRR were derived from fixed or random effects models. RESULTS A total of 13 high-dose interleukin 2 studies were included in this updated meta-analysis, with OS information available for 617 patients. No difference was found in median OS between studies with prior anti-PD-(L)1 treatment {n = 238; 17.5 months [95% confidence interval (CI) 13.8-20.5 months]} and without [n = 379; 16.3 months (95% CI 14.2-20.6 months)] (log-rank P = 0.53). ORR was estimated to be 34% (95% CI 16%-52%) and 44% (95% CI 37%-51%), for the studies with and without prior anti-PD-(L)1, respectively. The pooled estimate for CRR was 10% for both groups. No statistically significant difference was observed between the two groups, either for ORR (P = 0.15) or CRR (P = 0.45). CONCLUSIONS Prior anti-PD-(L)1 treatment has no effect on the clinical response or survival benefit from TIL-ACT in advanced cutaneous melanoma. The benefit of TIL therapy in the second-line setting is also present after anti-PD-(L)1 treatment. Our data reinforce the evidence that TIL-ACT should be considered as a treatment of choice in second line for metastatic melanoma patients failing anti-PD-(L)1 therapy.
Collapse
Affiliation(s)
- S Martín-Lluesma
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona; Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - I M Svane
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - U Dafni
- Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece; Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland.
| | - K Vervita
- Scientific Research Consulting Hellas, Statistics Center, Athens
| | - D Karlis
- Department of Statistics, Athens University of Economics and Business, Athens, Greece
| | - G Dimopoulou
- Scientific Research Consulting Hellas, Statistics Center, Athens
| | - Z Tsourti
- Scientific Research Consulting Hellas, Statistics Center, Athens
| | - M W Rohaan
- Division of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam
| | - J B A G Haanen
- Division of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam; Department of Medical Oncology, Leiden University Medical Oncology, Leiden, Netherlands; Melanoma Clinic, CHUV, Lausanne
| | - G Coukos
- Department of Oncology, Lausanne University Hospital and University of Lausanne Ludwig Institute for Cancer Research Lausanne Branch, Switzerland
| |
Collapse
|
34
|
Mori N, Tamaki N, Takaki S, Tsuji K, Tada T, Nakamura S, Ochi H, Mashiba T, Doisaki M, Marusawa H, Kobashi H, Fujii H, Ogawa C, Nonogi M, Arai H, Uchida Y, Urawa N, Narita R, Akahane T, Kondo M, Yasui Y, Tsuchiya K, Izumi N, Kurosaki M. Treatment response to durvalumab plus tremelimumab after progression with previous immune checkpoint inhibitor in unresectable hepatocellular carcinoma. Invest New Drugs 2024; 42:559-565. [PMID: 39212893 DOI: 10.1007/s10637-024-01470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Although immune checkpoint inhibitors (ICI) are used for unresectable hepatocellular carcinoma (HCC), it is unclear whether sequential ICI treatment-durvalumab plus tremelimumab (DT) after progression on atezolizumab plus bevacizumab (AB)-is effective for HCC. In this nationwide multicenter study, we aimed to investigate the effect of DT treatment based on the timing of treatment. A total of 85 patients receiving DT treatment were enrolled. The primary endpoint is treatment response at week 8 among patients receiving first-line DT treatment, those receiving second-line or later treatment without prior AB therapy, and those receiving second-line or later treatment with prior AB therapy. Objective response rates (ORRs) in patients with first-line treatment, second-line treatment without AB, and second-line treatment with prior AB were 44%, 54%, and 5%, respectively (p < 0.001). Similarly, disease control rates (DCRs) were 69%, 91%, and 26%, respectively (p < 0.001). ORR and DCR were significantly lower in patients with prior AB treatment. Progression free survival (PFS) was significantly shortened in patients receiving second-line therapy following prior AB treatment and an adjusted hazard ratio (95% confidence interval) in those patients for PFS, using first-line therapy as a reference, was 2.35 (1.1-5.1, p = 0.03). In conclusion, the impact of DT sequencing following AB treatment was limited. However, even after second-line treatment, the treatment effect can be equivalent to that of first-line treatment in cases with no history of AB treatment. Thus, prior treatment history should be taken into account when initiating DT treatment.
Collapse
Affiliation(s)
- Nami Mori
- Department of Gastroenterology, Hiroshima Red Cross Hospital & Atomic-Bomb Survivors Hospital, Hiroshima, Japan
| | - Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, 1-26-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8610, Japan
| | - Shintaro Takaki
- Department of Gastroenterology, Hiroshima Red Cross Hospital & Atomic-Bomb Survivors Hospital, Hiroshima, Japan
| | - Keiji Tsuji
- Department of Gastroenterology, Hiroshima Red Cross Hospital & Atomic-Bomb Survivors Hospital, Hiroshima, Japan
| | - Toshifumi Tada
- Department of Internal Medicine, Japanese Red Cross Society Himeji Hospital, Himeji, Japan
| | - Shinichiro Nakamura
- Department of Internal Medicine, Japanese Red Cross Society Himeji Hospital, Himeji, Japan
| | - Hironori Ochi
- Center for Liver-Biliary-Pancreatic Disease, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Toshie Mashiba
- Center for Liver-Biliary-Pancreatic Disease, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Masao Doisaki
- Department of Gastroenterology and Hepatology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Haruhiko Kobashi
- Department of Gastroenterology, Japanese Red Cross Okayama Hospital, Okayama, Japan
| | - Hideki Fujii
- Department of Gastroenterology, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Chikara Ogawa
- Department of Gastroenterology and Hepatology, Takamatsu Red Cross Hospital, Takamatsu, Japan
| | - Michiko Nonogi
- Department of Gastroenterology, Tokushima Red Cross Hospital, Tokushima, Japan
| | - Hirotaka Arai
- Department of Gastroenterology, Maebashi Red Cross Hospital, Maebashi, Japan
| | - Yasushi Uchida
- Department of Gastroenterology, Matsue Red Cross Hospital, Matsue, Japan
| | - Naohito Urawa
- Department of Gastroenterology and Hepatology, Ise Red Cross Hospital, Ise, Japan
| | - Ryoichi Narita
- Department of Gastroenterology, Oita Red Cross Hospital, Oita, Japan
| | - Takehiro Akahane
- Department of Gastroenterology, Ishinomaki Red Cross Hospital, Ishinomaki, Japan
| | - Masahiko Kondo
- Department of Gastroenterology, Otsu Red Cross Hospital, Otsu, Japan
| | - Yutaka Yasui
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, 1-26-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8610, Japan
| | - Kaoru Tsuchiya
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, 1-26-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8610, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, 1-26-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8610, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, 1-26-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8610, Japan.
| |
Collapse
|
35
|
You J, Guo Y, Dong Z. Polypeptides-Based Nanocarriers in Tumor Therapy. Pharmaceutics 2024; 16:1192. [PMID: 39339228 PMCID: PMC11435007 DOI: 10.3390/pharmaceutics16091192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer remains a worldwide problem, and new treatment strategies are being actively developed. Peptides have the characteristics of good biocompatibility, strong targeting, functional diversity, modifiability, membrane permeable ability, and low immunogenicity, and they have been widely used to construct targeted drug delivery systems (DDSs). In addition, peptides, as endogenous substances, have a high affinity, which can not only regulate immune cells but also work synergistically with drugs to kill tumor cells, demonstrating significant potential for application. In this review, the latest progress of polypeptides-based nanocarriers in tumor therapy has been outlined, focusing on their applications in killing tumor cells and regulating immune cells. Additionally, peptides as carriers were found to primarily provide a transport function, which was also a subject of interest to us. At the end of the paper, the shortcomings in the construction of peptide nano-delivery system have been summarized, and possible solutions are proposed therein. The application of peptides provides a promising outlook for cancer treatment, and we hope this article can provide in-depth insights into possible future avenues of exploration.
Collapse
Affiliation(s)
- Juhua You
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zhengqi Dong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
36
|
Li W, Gu J, Fan H, Zhang L, Guo J, Si L. Evolving cancer resistance to anti-PD-1/PD-L1 antibodies in melanoma: Comprehensive insights with future prospects. Crit Rev Oncol Hematol 2024; 201:104426. [PMID: 38908767 DOI: 10.1016/j.critrevonc.2024.104426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Immunotherapy has transformed the treatment of advanced melanoma. However, up to two-thirds of patients experience disease progression after initially achieving a response to immunotherapy. Furthermore, most research has focused on cutaneous melanoma rather than acral or mucosal melanoma, although the latter predominates in Asian populations. In this review, we examine and summarize current definitions of resistance to immunotherapy and the epidemiology of resistance to PD-1 inhibition. We also review the available literature on molecular mechanisms of resistance, including how the tumor mutational landscape and tumor microenvironments of immunotherapy-resistant acral and mucosal melanomas may influence resistance. Finally, we review strategies for overcoming resistance to PD-1 inhibition and summarize completed studies and ongoing clinical trials. Our review highlights that improving the understanding of resistance mechanisms, optimizing existing therapies and further studying high-risk populations would maximize the potential of immunotherapy and result in optimized treatment outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Wenyu Li
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Junjie Gu
- Department of Urological Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Hongwei Fan
- Value & Implementation, Global Medical & Scientific Affairs, Merck Sharp & Dohme (MSD) China, Shanghai, China
| | - Li Zhang
- Value & Implementation, Global Medical & Scientific Affairs, Merck Sharp & Dohme (MSD) China, Shanghai, China
| | - Jun Guo
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China; Department of Urological Oncology, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Lu Si
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
37
|
Hamid O, Lewis KD, Weise A, McKean M, Papadopoulos KP, Crown J, Kim TM, Lee DH, Thomas SS, Mehnert J, Kaczmar J, Lakhani NJ, Kim KB, Middleton MR, Rabinowits G, Spira AI, Yushak M, Mehmi I, Fang F, Chen S, Mani J, Jankovic V, Wang F, Fiaschi N, Brennan L, Paccaly A, Masinde S, Salvati M, Fury MG, Kroog G, Lowy I, Gullo G. Phase I Study of Fianlimab, a Human Lymphocyte Activation Gene-3 (LAG-3) Monoclonal Antibody, in Combination With Cemiplimab in Advanced Melanoma. J Clin Oncol 2024; 42:2928-2938. [PMID: 38900987 PMCID: PMC11328921 DOI: 10.1200/jco.23.02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/26/2024] [Accepted: 03/20/2024] [Indexed: 06/22/2024] Open
Abstract
PURPOSE Coblockade of lymphocyte activation gene-3 (LAG-3) and PD-1 receptors could provide significant clinical benefit for patients with advanced melanoma. Fianlimab and cemiplimab are high-affinity, human, hinge-stabilized IgG4 monoclonal antibodies, targeting LAG-3 and PD-1, respectively. We report results from a first-in-human phase-I study of fianlimab and cemiplimab safety and efficacy in various malignancies including advanced melanoma. METHODS Patients with advanced melanoma were eligible for enrollment into four cohorts: three for patients without and one for patients with previous anti-PD-1 therapy in the advanced disease setting. Patients were treated with fianlimab 1,600 mg and cemiplimab 350 mg intravenously once every 3 weeks for up to 51 weeks, with an optional additional 51 weeks if clinically indicated. The primary end point was objective response rate (ORR) per RECIST 1.1 criteria. RESULTS ORRs were 63% for patients with anti-PD-1-naïve melanoma (cohort-6; n = 40; median follow-up 20.8 months), 63% for patients with systemic treatment-naïve melanoma (cohort-15; n = 40; 11.5 months), and 56% for patients with previous neo/adjuvant treatment melanoma (cohort-16; n = 18, 9.7 months). At a median follow-up of 12.6 months for the combined cohorts (6 + 15 + 16), the ORR was 61.2% and the median progression-free survival (mPFS) 13.3 months (95% CI, 7.5 to not estimated [NE]). In patients (n = 13) with previous anti-PD-1 adjuvant therapy, ORR was 61.5% and mPFS 12 months (95% CI, 1.4 to NE). ORR in patients with previous anti-PD-1 therapy for advanced disease (n = 15) was 13.3% and mPFS 1.5 months (95% CI, 1.3 to 7.7). Treatment-emergent and treatment-related adverse events ≥grade 3 (G3) were observed in 44% and 22% of patients, respectively. Except for increased incidence of adrenal insufficiency (12%-G1-4, 4%-G3-4), no new safety signals were recorded. CONCLUSION The current results show a promising benefit-risk profile of fianlimab/cemiplimab combination for patients with advanced melanoma, including those with previous anti-PD-1 therapy in the adjuvant, but not advanced, setting.
Collapse
Affiliation(s)
- Omid Hamid
- The Angeles Clinical and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, CA
| | - Karl D. Lewis
- University of Colorado Denver Cancer Center, Aurora, CO
| | | | - Meredith McKean
- Sarah Cannon Research Institute/Tennessee Oncology PLLC, Nashville, TN
| | | | - John Crown
- St Vincent's University Hospital, Dublin, Ireland
| | - Tae Min Kim
- Seoul National University Hospital, Seoul, South Korea
| | | | - Sajeve S. Thomas
- University of Florida Health Cancer Center at Orlando Health, Orlando, FL
| | - Janice Mehnert
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | | | | | - Kevin B. Kim
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, CA
| | - Mark R. Middleton
- Department of Oncology, NIHR Biomedical Research Centre, Oxford, United Kingdom
| | | | | | - Melinda Yushak
- Department of Hematology and Medical Oncology at Emory University School of Medicine, Atlanta, GA
| | - Inderjit Mehmi
- The Angeles Clinical and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, CA
| | - Fang Fang
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | | | - Fang Wang
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | | | | | | | | | - Glenn Kroog
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | - Israel Lowy
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | |
Collapse
|
38
|
Kim NH, Lee J, Kim SH, Kang SH, Bae S, Yu CH, Seo J, Kim HT. ALK5/VEGFR2 dual inhibitor TU2218 alone or in combination with immune checkpoint inhibitors enhances immune-mediated antitumor effects. Cancer Immunol Immunother 2024; 73:190. [PMID: 39105882 PMCID: PMC11303640 DOI: 10.1007/s00262-024-03777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Transforming growth factor β (TGFβ) is present in blood of patients who do not respond to anti-programmed cell death (ligand) 1 [PD-(L)1] treatment, and through synergy with vascular endothelial growth factor (VEGF), it helps to create an environment that promotes tumor immune evasion and immune tolerance. Therefore, simultaneous inhibition of TGFβ/VEGF is more effective than targeting TGFβ alone. In this study, the dual inhibitory mechanism of TU2218 was identified through in vitro analysis mimicking the tumor microenvironment, and its antitumor effects were analyzed using mouse syngeneic tumor models. TU2218 directly restored the activity of damaged cytotoxic T lymphocytes (CTLs) and natural killer cells inhibited by TGFβ and suppressed the activity and viability of regulatory T cells. The inactivation of endothelial cells induced by VEGF stimulation was completely ameliorated by TU2218, an effect not observed with vactosertib, which inhibits only TGFβ signaling. The combination of TU2218 and anti-PD1 therapy had a significantly greater antitumor effect than either drug alone in the poorly immunogenic B16F10 syngeneic tumor model. The mechanism of tumor reduction was confirmed by flow cytometry, which showed upregulated VCAM-1 expression in vascular cells and increased influx of CD8 + CTLs into the tumor. As another strategy, combination of anti-CTLA4 therapy and TU2218 resulted in high complete regression (CR) rates in CT26 and WEHI-164 tumor models. In particular, immunological memory generated by the combination of anti-CTLA4 and TU2218 in the CT26 model prevented the development of tumors after additional tumor cell transplantation, suggesting that the TU2218-based combination has therapeutic potential in immunotherapy.
Collapse
Affiliation(s)
- Nam-Hoon Kim
- TiumBio Co., Ltd. Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jihyun Lee
- TiumBio Co., Ltd. Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seung-Hyun Kim
- TiumBio Co., Ltd. Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seong-Ho Kang
- TiumBio Co., Ltd. Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Sowon Bae
- TiumBio Co., Ltd. Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Chan-Hee Yu
- TiumBio Co., Ltd. Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jeongmin Seo
- TiumBio Co., Ltd. Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hun-Taek Kim
- TiumBio Co., Ltd. Seongnam-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
39
|
Meng Y, Sun J, Zhang G. A viable remedy for overcoming resistance to anti-PD-1 immunotherapy: Fecal microbiota transplantation. Crit Rev Oncol Hematol 2024; 200:104403. [PMID: 38838927 DOI: 10.1016/j.critrevonc.2024.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Anti-PD-1 immunotherapy is a cancer therapy that focuses explicitly on the PD-1 receptor found on the surface of immune cells. This targeted therapeutic strategy is specifically designed to amplify the immune system's innate capacity to detect and subsequently eliminate cells that have become cancerous. Nevertheless, it should be noted that not all patients exhibit a favourable response to this particular therapeutic modality, necessitating the exploration of novel strategies to augment the effectiveness of immunotherapy. Previous studies have shown that fecal microbiota transplantation (FMT) can enhance the efficacy of anti-PD-1 immunotherapy in advanced melanoma patients. To investigate this intriguing possibility further, we turned to PubMed and conducted a comprehensive search for studies that analyzed the interplay between FMT and anti-PD-1 therapy in the context of tumor treatment. Our search criteria were centred around two key phrases: "fecal microbiota transplantation" and "anti-PD-1 therapy." The studies we uncovered all echo a similar sentiment. They pointed towards the potential of FMT to improve the effectiveness of immunotherapy. FMT may enhance the effectiveness of immunotherapy by altering the gut microbiota and boosting the patient's immunological response. Although promising, additional investigation is needed to improve the efficacy of FMT in the context of cancer therapy and attain a comprehensive understanding of the possible advantages and drawbacks associated with this therapeutic strategy.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| |
Collapse
|
40
|
Robert C, Gastman B, Gogas H, Rutkowski P, Long GV, Chaney MF, Joshi H, Lin YL, Snyder W, Chesney JA. Open-label, phase II study of talimogene laherparepvec plus pembrolizumab for the treatment of advanced melanoma that progressed on prior anti-PD-1 therapy: MASTERKEY-115. Eur J Cancer 2024; 207:114120. [PMID: 38870745 DOI: 10.1016/j.ejca.2024.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Treatment options for immunotherapy-refractory melanoma are an unmet need. The MASTERKEY-115 phase II, open-label, multicenter trial evaluated talimogene laherparepvec (T-VEC) plus pembrolizumab in advanced melanoma that progressed on prior programmed cell death protein-1 (PD-1) inhibitors. METHODS Cohorts 1 and 2 comprised patients (unresectable/metastatic melanoma) who had primary or acquired resistance, respectively, and disease progression within 12 weeks of their last anti-PD-1 dose. Cohorts 3 and 4 comprised patients (resectable disease) who underwent complete surgery, received adjuvant anti-PD-1, and experienced recurrence. Cohort 3 were disease-free for < 6 months and cohort 4 for ≥ 6 months after starting the adjuvant anti-PD-1 therapy and before confirmed recurrence. The primary endpoint was objective response rate (ORR) per RECIST v1.1. Secondary endpoints included complete response rate (CRR), disease control rate (DCR) and progression-free survival (PFS) per RECIST v1.1 and irRC-RECIST, and safety. RESULTS Of the 72 enrolled patients, 71 were treated. The ORR (95% CI) was 0%, 6.7% (0.2-32.0), 40.0% (16.3-67.7), and 46.7% (21.3-73.4) in cohorts 1-4, respectively; iORR was 3.8% (0.1-19.6), 6.7% (0.2-32.0), 53.3% (26.6-78.7), and 46.7% (21.3-73.4). iCRR was 0%, 0%, 13.3%, and 13.3%. Median iPFS (months) was 5.5, 8.2, not estimable [NE], and NE for cohorts 1-4, respectively; iDCR was 50.0%, 40.0%, 73.3%, and 86.7%. Treatment-related adverse events (TRAEs), grade ≥ 3 TRAEs, serious AEs, and fatal AEs occurred in 54 (76.1%), 9 (12.7%), 24 (33.8%), and 10 (14.1%) patients, respectively. CONCLUSION T-VEC-pembrolizumab demonstrated antitumor activity and tolerability in PD-1-refractory melanoma, specifically in patients with disease recurrence on or after adjuvant anti-PD-1. TRIAL REGISTRATION ClinicalTrials.gov identifier - NCT04068181.
Collapse
Affiliation(s)
- Caroline Robert
- Gustave Roussy and Paris-Saclay University, Villejuif, France
| | - Brian Gastman
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Helen Gogas
- National and Kapodistrian University of Athens, Athens, Greece
| | - Piotr Rutkowski
- Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, and Royal North Shore and Mater Hospitals, New South Wales, Australia
| | | | | | | | | | - Jason A Chesney
- UofL Health - Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
41
|
Leong SP. Immune responses and immunotherapeutic approaches in the treatment against cancer. Clin Exp Metastasis 2024; 41:473-493. [PMID: 39155358 PMCID: PMC11374840 DOI: 10.1007/s10585-024-10300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/15/2024] [Indexed: 08/20/2024]
Abstract
Cancer cells within a population are heterogeneous due to genomic mutations or epigenetic changes. The immune response to cancer especially the T cell repertoire within the cancer microenvionment is important to the control and growth of cancer cells. When a cancer clone breaks through the surveillance of the immune system, it wins the battle to overcome the host's immune system. In this review, the complicated profile of the cancer microenvironment is emphasized. The molecular evidence of immune responses to cancer has been recently established. Based on these molecular mechanisms of immune interactions with cancer, clinical trials based on checkpoint inhibition therapy against CTLA-4 and/or PD-1 versus PD-L1 have been successful in the treatment of melanoma, lung cancer and other types of cancer. The diversity of the T cell repertoire is described and the tumor infiltrating lymphocytes within the cancer may be expanded ex vivo and infused back to the patient as a treatment modality for adoptive immunotherapy.
Collapse
Affiliation(s)
- Stanley P Leong
- California Pacific Medical Center and Research Institute, University of California School of Medicine, San Francisco, USA.
| |
Collapse
|
42
|
Xu J, Mu S, Wang Y, Yu S, Wang Z. Recent advances in immunotherapy and its combination therapies for advanced melanoma: a review. Front Oncol 2024; 14:1400193. [PMID: 39081713 PMCID: PMC11286497 DOI: 10.3389/fonc.2024.1400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
The incidence of melanoma is increasing year by year and is highly malignant, with a poor prognosis. Its treatment has always attracted much attention. Among the more clinically applied immunotherapies are immune checkpoint inhibitors, bispecific antibodies, cancer vaccines, adoptive cell transfer therapy, and oncolytic virotherapy. With the continuous development of technology and trials, in addition to immune monotherapy, combinations of immunotherapy and radiotherapy have shown surprising efficacy. In this article, we review the research progress of immune monotherapy and combination therapy for advanced melanoma, with the aim of providing new ideas for the treatment strategy for advanced melanoma.
Collapse
Affiliation(s)
- Jiamin Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shukun Mu
- Department of Radiation Oncology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Yun Wang
- Department of Radiation Oncology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Suchun Yu
- Department of Pharmacy, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Zhongming Wang
- Department of Radiation Oncology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
43
|
Tan S, Zheng Q, Zhang W, Zhou M, Xia C, Feng W. Prognostic value of inflammatory markers NLR, PLR, and LMR in gastric cancer patients treated with immune checkpoint inhibitors: a meta-analysis and systematic review. Front Immunol 2024; 15:1408700. [PMID: 39050856 PMCID: PMC11266030 DOI: 10.3389/fimmu.2024.1408700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) represent a groundbreaking approach to cancer therapy. Inflammatory markers such as the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR) have emerged as potential indicators strongly associated with tumor prognosis, albeit their prognostic significance remains contentious. The predictive value of NLR, PLR, LMR in patients with gastric cancer (GC) treated with ICIs has not been fully explored; therefore, we conducted a meta-analysis to examine the potential of inflammatory markers NLR, PLR, and LMR as survival predictors in this population. Methods A comprehensive search was conducted across PubMed, Embase, Web of Science, and Cochrane databases, with the search cut-off date set as March 2024. Hazard ratios (HR) and their corresponding 95% confidence intervals (CI) were calculated to assess the prognostic significance of NLR, PLR, and LMR for both progression-free survival (PFS) and overall survival (OS). Results Fifteen cohort studies involving 1336 gastric cancer patients were finally included in this meta-analysis. The results of the meta-analysis showed that high levels of NLR were associated with poorer OS and PFS in GC patients receiving ICIs, with combined HRs of OS [HR=2.01, 95%CI (1.72,2.34), P<0.01], and PFS PFS[HR=1.59, 95%CI (1.37,1.86), P<0.01], respectively; high levels of PLR were associated with poorer OS and PFS, and the combined HR was OS [HR=1.57, 95%CI (1.25,1.96), P<0.01], PFS [HR=1.52,95%CI (1.20, 1.94), P<0.01], respectively; and there was an association between elevated LMR and prolonged OS and PFS, and the combined HR was OS [HR=0.62, 95%CI (0.47,0.81), P<0.01], and PFS [HR=0.69, 95%CI (0.50,0.95), P<0.01]. Conclusion In gastric cancer (GC) patients treated with immune checkpoint inhibitors (ICIs), elevated neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) were associated with poorer overall survival (OS) and progression-free survival (PFS), while high lymphocyte-to-monocyte ratio (LMR) was linked to improved OS and PFS. Subgroup analyses suggested that NLR might be particularly pertinent to the prognosis of GC patients. In conclusion, the inflammatory markers NLR, PLR, and LMR serve as effective biomarkers for prognostic assessment in GC patients, offering valuable insights for therapeutic decision-making in the realm of GC immunotherapy. Prospective studies of high quality are eagerly awaited to validate these findings in the future. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/#myprospero, identifier CRD42024524321.
Collapse
Affiliation(s)
- Shufa Tan
- Shaanxi University of Traditional Chinese Medicine the First Clinical Medical College, Shaanxi, China
| | - Qin Zheng
- Fuling District Zhenxi Central Health Center, Inpatient Department, Chongqing, China
| | - Wei Zhang
- Shaanxi University of Traditional Chinese Medicine the First Clinical Medical College, Shaanxi, China
| | - Mi Zhou
- Physical Examination Center of Fuling Hospital Affiliated to Chongqing University, Chongqing, China
| | - Chunyan Xia
- Physical Examination Center of Fuling Hospital Affiliated to Chongqing University, Chongqing, China
| | - Wenzhe Feng
- Anorectal Department, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Shaanxi, China
| |
Collapse
|
44
|
Shi S, Li B, Zhou P, Chen L, Li H, Wang Y, Deng X, Dang Q, Wu J, Zha B, Li P, Zheng Y, Yang D. Analysis of the clinical efficacy and safety of anti-PD-1 immune checkpoint inhibitors in locally advanced nasopharyngeal cancer. Cancer Med 2024; 13:e7359. [PMID: 39032129 PMCID: PMC11260107 DOI: 10.1002/cam4.7359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/17/2024] [Accepted: 05/26/2024] [Indexed: 07/22/2024] Open
Abstract
OBJECTIVE To analyze the efficacy and adverse effects of anti-PD-1 immune checkpoint inhibitors aimed at nasopharyngeal carcinoma (NPC). METHODS During the first stage of the study, using 40 patients with stage III/IVa NPC treated with anti-PD-1 immune checkpoint inhibitors in combination with chemoradiotherapy as a first-line treatment (observation group) and 70 patients with NPC treated with chemoradiotherapy alone (control group). In the second stage of the study, 88 patients with NPC treated with immune checkpoint inhibitors were grouped according to the number of lines of immunotherapy, the number of times, and the types of application. RESULTS Observation of the short-term effects in the first stage indicated that the objective response rate (ORR) of the observation group and the control group against primary foci of NPC was 75.0% versus 40.0%; the mortality rate of the observation group was much lower than that of the control group. The overall first-line treatment evaluation of the observation vs. control groups were as follows: ORR (67.5% vs. 38.6%); median PFS (17.52 vs. 17.21 months); and median OS (18.68 vs. 18.14 months), respectively (p < 0.05). The second stage of the study had an ORR of 53.4%, and the efficacy of immunotherapy was related to staging, timing, and frequency. CONCLUSION Anti-PD-1 immune checkpoint inhibitors combined with chemoradiotherapy as the first-line treatment for nasopharyngeal carcinoma may improve patient outcomes significantly. Timing, frequency, and the type of immunotherapy exerted an effect on the efficacy of immunotherapy. Adverse effects that occurred during treatment were tolerable and controllable.
Collapse
Affiliation(s)
- Shuling Shi
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Bingyan Li
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Pengcheng Zhou
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Linhui Chen
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Huizhen Li
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yingyi Wang
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xiaoyu Deng
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | | | - Jingjing Wu
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Boya Zha
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Peihong Li
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yingjuan Zheng
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Institute of Radiotherapy and Critical Care OncologyZhengzhou UniversityZhengzhouHenanChina
| | - Daoke Yang
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Institute of Radiotherapy and Critical Care OncologyZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
45
|
Tang B, Duan R, Zhang X, Qin S, Wu D, Chen J, Yao H, Chi Z, Guo J, Yan X. Five-Year Follow-Up of POLARIS-01 Phase II Trial: Toripalimab as Salvage Monotherapy in Chinese Patients With Advanced Melanoma. Oncologist 2024; 29:e822-e827. [PMID: 38547052 PMCID: PMC11144968 DOI: 10.1093/oncolo/oyae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/19/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND To investigate the efficacy and toxicity after long-term follow-up of anti-PD-1 antibody in advanced melanoma with predominantly acral and mucosal subtypes. METHODS AND PATIENTS In the POLARIS-01 phase II trial, 128 Chinese patients with advanced melanoma refractory to standard therapy received toripalimab until disease progression or unacceptable toxicity for ≤2 years. For those who progressed after discontinuation due to 2-year treatment completion, rechallenge was allowed. The primary objectives were safety and overall response rate (ORR). RESULTS As of February 8, 2021, ORR was 17.3% (95% CI: 11.2-25.0) evaluated by the independent radiologic review committee. The median overall survival (OS) for patients with known melanoma subtypes was 16.3 m for acral, 41.5 m for nonacral cutaneous, and 10.3 m for mucosal melanoma. Thereafter, the evaluation was continued by investigators. As of November 4, 2022, 5 years after the last enrollment, median duration of response was 15.6 months (range, 3.7-64.5+), median progression-free survival (PFS) was 3.5 months (95% CI, 2.2-5.3), and 60-month OS rate was 28.5% (95% CI: 20.2-37.2). Thirteen patients completed a 2-year treatment of toripalimab, with the subtypes of acral (2/13), non-acral cutaneous (4/13), mucosal (3/13) and unknown primary (4/13). Five patients were rechallenged. Four of them, all of whom were non-mucosal, completed the rechallenge course of 2 years with PFS ≥ 24 months. CONCLUSIONS This is the largest prospective anti-PD-1 trial with mature data in advanced melanoma in China. Toripalimab demonstrated a manageable safety profile and durable clinical response in Chinese patients with metastatic melanoma who had failed in standard therapy. Immunotherapy seems less efficacious for long-term responders with mucosal primaries as rechallenge therapy.
Collapse
Affiliation(s)
- Bixia Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma Oncology, Peking University Cancer Hospital and Institute, Beijing, People’s Republic of China
| | - Rong Duan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital and Institute, Beijing, People’s Republic of China
| | - Xiaoshi Zhang
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Shuikui Qin
- Cancer Centre of Jinling Hospital, Nanjing University of Chinese Medicine and Nanjing Medical University, Nanjing, People’s Republic of China
| | - Di Wu
- Department of Tumor Center, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jing Chen
- Institute of Radiation Oncology, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hong Yao
- Department of Cancer Biotherapy Center, Tumor Hospital of Yunnan Province & The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, People’s Republic of China
| | - Zhihong Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma Oncology, Peking University Cancer Hospital and Institute, Beijing, People’s Republic of China
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital and Institute, Beijing, People’s Republic of China
| | - Xieqiao Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital and Institute, Beijing, People’s Republic of China
| |
Collapse
|
46
|
Dima D, Lopetegui‐Lia N, Ogbue O, Osantowski B, Ullah F, Jia X, Song JM, Gastman B, Isaacs J, Kennedy LB, Funchain P. Real-world outcomes of patients with resected stage III melanoma treated with adjuvant therapies. Cancer Med 2024; 13:e7257. [PMID: 39031560 PMCID: PMC11190025 DOI: 10.1002/cam4.7257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/28/2023] [Accepted: 04/27/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Both immunotherapy (IO) and targeted therapy (TT) are used as adjuvant (adj) treatment for stage III melanoma, however, data describing real-world outcomes are limited. In addition, a significant proportion of patients relapse, for whom best management is unclear. The aim of our study was to assess the efficacy, and safety of adj anti-PD1 IO and TT in a real-world cohort of patients with resected stage III melanoma, and further delineate patterns of recurrence and treatment strategies. METHODS We retrospectively analyzed 130 patients who received adj therapy (100 anti-PD1 IO and 30 TT). RESULTS At a median follow-up of 30 months, median relapse-free survival (RFS) was 24.6 (95% CI, 17-not reached [NR]) versus 64 (95% CI, 29.5-NR) months for the TT and IO groups, respectively (p = 0.26). Median overall survival (OS) was NR for either subgroup. At data cutoff, 77% and 82% of patients in TT and IO arms were alive. A higher number of grade ≥3 treatment-related adverse events (AEs) were noted in the IO group (11% vs. 3%), however, a higher proportion of patients permanently discontinued adj therapy in the TT group (43% vs. 11%) due to toxicity. Strategies at relapse and outcomes were variable based on location and timing of recurrence. A significant number of patients who relapsed after adj IO received a second round of IO. Among them, patients who were off adj IO at relapse had superior second median RFS (mRFS2), compared to those who relapsed while on adj IO; mRFS2 was NR versus 5.1 months (95% CI, 2.5-NR), respectively, p = 0.02. CONCLUSION In summary, both TT and IO yielded prolonged RFS in a real-world setting, however, longer follow-up is needed to determine any potential OS benefit. Adj therapy, particularly TT, may not be as well tolerated as suggested in clinical trials, with lower completion rates (59% vs. 74%) in a real-life setting. Overall, patients who relapse during adj therapy have poor outcomes, while patients who relapse after discontinuation of adj IO therapy appear to benefit from IO re-treatment.
Collapse
Affiliation(s)
- Danai Dima
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Nerea Lopetegui‐Lia
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Olisaemeka Ogbue
- Department of Internal MedicineCleveland Clinic FoundationClevelandOhioUSA
| | - Bennett Osantowski
- Department of Internal MedicineCleveland Clinic FoundationClevelandOhioUSA
| | - Fauzia Ullah
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Xuefei Jia
- Department of BiostatisticsCleveland Clinic FoundationClevelandOhioUSA
| | - Jung Min Song
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Brian Gastman
- Department of Plastic SurgeryCleveland Clinic FoundationClevelandOhioUSA
| | - James Isaacs
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Lucy Boyce Kennedy
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Pauline Funchain
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
- Division of Oncology, Stanford Cancer InstituteStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
47
|
Bai X, Lawless AR, Czapla JA, Gerstberger SC, Park BC, Jung S, Johnson R, Yamazaki N, Ogata D, Umeda Y, Li C, Guo J, Flaherty KT, Nakamura Y, Namikawa K, Long GV, Menzies AM, Johnson DB, Sullivan RJ, Boland GM, Si L. Benefit, recurrence pattern, and toxicity to adjuvant anti-PD-1 monotherapy varies by ethnicity and melanoma subtype: An international multicenter cohort study. JAAD Int 2024; 15:105-114. [PMID: 38500872 PMCID: PMC10945245 DOI: 10.1016/j.jdin.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2023] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Anti-Program-Death-1 (PD-1) is a standard adjuvant therapy for patients with resected melanoma. We hypothesized that there are discrepancies in survival, recurrence pattern and toxicity to adjuvant PD-1 between different ethnicities and melanoma subtypes. OBJECTIVE We performed a multicenter cohort study incorporating 6 independent institutions in Australia, China, Japan, and the United States. The primary outcomes were recurrence free survival (RFS) and overall survival (OS). Secondary outcomes were disease recurrence patterns and toxicities. RESULTS In total 534 patients were included. East-Asian/Hispanic/African reported significantly poorer RFS/OS. Nonacral cutaneous or melanoma of unknown primary reported the best RFS/OS, followed by acral, and mucosal was the poorest. Within the nonacral cutaneous or melanoma of unknown primary subtypes, East-Asian/Hispanic/African reported significantly poorer RFS/OS than Caucasian. In the multivariate analysis incorporating ethnicity/melanoma-subtype/age/sex/stage/lactate dehydrogenase/BRAF (v-Raf murine sarcoma viral oncogene homolog B)-mutation/adjuvant radiotherapy, East-Asian/Hispanic/African had independently significantly poorer outcomes (RFS: HR, 1.71; 95% CI, 1.19-2.44 and OS: HR, 2.34; 95% CI, 1.39-3.95), as was mucosal subtype (RFS: HR, 3.25; 95% CI, 2.04-5.17 and OS: HR, 3.20; 95% CI, 1.68-6.08). Mucosal melanoma was an independent risk factor for distant metastasis, especially liver metastasis. East-Asian/Hispanic/African had significantly lower incidence of gastrointestinal/musculoskeletal/respiratory/other-rare-type-toxicities; but higher incidences of liver toxicities. LIMITATIONS A retrospective study. CONCLUSIONS Ethnicity and melanoma subtype are associated with survival and recurrence pattern in melanoma patients treated with adjuvant anti-PD-1. Toxicity profile differs by ethnicity and may require a precision toxicity surveillance strategy.
Collapse
Affiliation(s)
- Xue Bai
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Aleigha R. Lawless
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Juliane A. Czapla
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | | | - Benjamin C. Park
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Seungyeon Jung
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rebecca Johnson
- Melanoma Institute Australia, The University of Sydney, Faculty of Medicine and Health, The University of Sydney, and Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, Australia
| | - Naoya Yamazaki
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Dai Ogata
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiyasu Umeda
- Department of Skin Oncology/Dermatology, Comprehensive Cancer Center, Saitama Medical University International Medical Center, Saitama, Japan
| | - Caili Li
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Guo
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Keith T. Flaherty
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Yasuhiro Nakamura
- Department of Skin Oncology/Dermatology, Comprehensive Cancer Center, Saitama Medical University International Medical Center, Saitama, Japan
| | - Kenjiro Namikawa
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Faculty of Medicine and Health, The University of Sydney, and Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, Australia
| | - Alexander M. Menzies
- Melanoma Institute Australia, The University of Sydney, Faculty of Medicine and Health, The University of Sydney, and Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, Australia
| | - Douglas B. Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ryan J. Sullivan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Genevieve M. Boland
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Masssachusetts
| | - Lu Si
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
48
|
Bishnoi S, Kotasek D, Aghmesheh M, Yau T, Cosman R, Prawira A, Moore M, Chan SL, Mant A, Eek R, Zielinski R, Su R, Pan Z, Ma Y, Li F, Li P, Tse AN. Dual CTLA-4 and PD-1 checkpoint blockade using CS1002 and CS1003 (nofazinlimab) in patients with advanced solid tumors: A first-in-human, dose-escalation, and dose-expansion study. Cancer 2024; 130:1991-2002. [PMID: 38404184 DOI: 10.1002/cncr.35226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 02/27/2024]
Abstract
BACKGROUND This study investigated the safety and efficacy of an anti-CTLA-4 monoclonal antibody (CS1002) as monotherapy and in combination with an anti-PD-1 monoclonal antibody (CS1003) in patients with advanced/metastatic solid tumors. METHODS The phase 1 study involved phase 1a monotherapy dose-escalation (part 1) and phase 1b combination therapy dose escalation (part 2) and expansion (part 3). Various dosing schedules of CS1002 (0.3, 1, or 3 mg/kg every 3 weeks, or 3 mg/kg every 9 weeks) were evaluated with 200 mg CS1003 every 3 weeks in part 3. RESULTS Parts 1, 2, and 3 included a total of 13, 18, and 61 patients, respectively. No dose-limiting toxicities or maximum tolerated doses were observed. Treatment-related adverse events (TRAEs) were reported in 30.8%, 83.3%, and 75.0% of patients in parts 1, 2, and 3, respectively. Grade ≥3 TRAEs were experienced by 15.4%, 50.0%, and 18.3% of patients in each part. Of 61 patients evaluable for efficacy, 23 (37.7%) achieved objective responses in multiple tumor types. Higher objective response rates were observed with conventional and high-dose CS1002 regimens (1 mg/kg every 3 weeks or 3 mg/kg every 9 weeks) compared to low-dose CS1002 (0.3 mg/kg every 3 weeks) in microsatellite instability-high/mismatch repair-deficient tumors, melanoma, and hepatocellular carcinoma (50.0% vs. 58.8%, 14.3% vs. 42.9%, and 0% vs. 16.7%). CONCLUSION CS1002, as monotherapy, and in combination with CS1003, had a manageable safety profile across a broad dosing range. Promising antitumor activities were observed in patients with immune oncology (IO)-naive and IO-refractory tumors across CS1002 dose levels when combined with CS1003, supporting further evaluation of this treatment combination for solid tumors. PLAIN LANGUAGE SUMMARY CS1002 is a human immunoglobulin (Ig) G1 monoclonal antibody that blocks the interaction of CTLA-4 with its ligands and increases T-cell activation/proliferation. CS1003, now named nofazinlimab, is a humanized, recombinant IgG4 monoclonal antibody that blocks the interaction between human PD-1 and its ligands. In this original article, we determined the safety profile of CS1002 as monotherapy and in combination with CS1003. Furthermore, we explored the antitumor activity of the combination in anti-programmed cell death protein (ligand)-1 (PD-[L]1)-naive microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) pan tumors, and anti-PD-(L)1-refractory melanoma and hepatocellular carcinoma (HCC). CS1002 in combination with CS1003 had manageable safety profile across a broad dosing range and showed promising antitumor activities across CS1002 dose levels when combined with CS1003. This supports further assessment of CS1002 in combination with CS1003 for the treatment of solid tumors.
Collapse
Affiliation(s)
- Sarwan Bishnoi
- Department of Medical Oncology, Ashford Cancer Centre Research and ICON Cancer Centre, Kurralta Park, South Australia, Australia
- Division of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Dusan Kotasek
- Department of Medical Oncology, Ashford Cancer Centre Research and ICON Cancer Centre, Kurralta Park, South Australia, Australia
- Division of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Morteza Aghmesheh
- Department of Oncology, Southern Medical Day Care Centre, Wollongong, New South Wales, Australia
| | - Thomas Yau
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Rasha Cosman
- Department of Medical Oncology, The Kinghorn Cancer Centre, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Amy Prawira
- Department of Medical Oncology, The Kinghorn Cancer Centre, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Maggie Moore
- Department of Medical Oncology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Stephen L Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Andrew Mant
- Department of Oncology, Box Hill Hospital, Eastern Health, Melbourne, Victoria, Australia
| | - Richard Eek
- Border Medical Oncology Research Unit, Department of Oncology, Albury-Wodonga Regional Cancer Centre, Albury, New South Wales, Australia
| | - Robert Zielinski
- Department of Oncology, Orange Health Service, Orange, New South Wales, Australia
| | - Rila Su
- Translational Medicine and Early Development Department, CStone Pharmaceuticals, Suzhou, China
| | - Zhaoxuan Pan
- Translational Medicine and Early Development Department, CStone Pharmaceuticals, Suzhou, China
| | - Yiding Ma
- Clinical Department, CStone Pharmaceuticals, Suzhou, China
| | - Fei Li
- Clinical Department, CStone Pharmaceuticals, Suzhou, China
| | - Peiqi Li
- Clinical Department, CStone Pharmaceuticals, Suzhou, China
| | - Archie N Tse
- Translational Medicine and Early Development Department, CStone Pharmaceuticals, Suzhou, China
| |
Collapse
|
49
|
Zhu L, Shi Y, Feng Z, Yuan D, Guo S, Wang Y, Shen H, Li Y, Yan F, Wang Y. Fatostatin promotes anti-tumor immunity by reducing SREBP2 mediated cholesterol metabolism in tumor-infiltrating T lymphocytes. Eur J Pharmacol 2024; 971:176519. [PMID: 38522641 DOI: 10.1016/j.ejphar.2024.176519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Aberrant lipid metabolism impacts intratumoral T cell-mediated immune response and tumor growth. Fatostatin functions as an inhibitor of sterol regulatory element binding protein (SREBP) activation. However, the complex effects of fatostatin on cholesterol metabolism in the tumor microenvironment (TME) and its influence on T cell anti-tumor immunity remain unclear. In this study, fatostatin effectively suppressed B16 melanoma, MC38 colon cancer, and Lewis lung cancer (LLC) transplanted tumor growth in immunocompetent mice by reducing SREBPs-mediated lipid metabolism, especially cholesterol levels. Mechanistically, fatostatin decreased intracellular cholesterol accumulation and inhibited X-box binding protein 1 (XBP1)-mediated endoplasmic reticulum (ER) stress, reducing Treg cells and alleviating CD8+ T cell exhaustion in the TME, exerting anti-tumor activity. Nevertheless, this effect was impaired in immunodeficient nude mice, suggesting fatostatin's anti-tumor efficacy in transplanted tumors partly relies on T cell-mediated anti-tumor immunity. Our study highlights SREBP2-mediated cholesterol metabolism as a potential strategy for anti-tumor immunotherapy, and confirms fatostatin's promise in tumor immunotherapy.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yilin Shi
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhelong Feng
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Dingyi Yuan
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shiduo Guo
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuxia Wang
- Department of Pharmaceutical Analysis, School of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Haowen Shen
- Department of Pharmaceutical Analysis, School of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Institute of Medical Device Testing, Nanjing, 210022, China
| | - Yan Li
- Integrated Service& Management Office, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, China
| | - Fang Yan
- Department of Pharmaceutical Analysis, School of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yajing Wang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
50
|
Tang S, Fan T, Wang X, Yu C, Zhang C, Zhou Y. Cancer Immunotherapy and Medical Imaging Research Trends from 2003 to 2023: A Bibliometric Analysis. J Multidiscip Healthc 2024; 17:2105-2120. [PMID: 38736544 PMCID: PMC11086400 DOI: 10.2147/jmdh.s457367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose With the rapid development of immunotherapy, cancer treatment has entered a new phase. Medical imaging, as a primary diagnostic method, is closely related to cancer immunotherapy. However, until now, there has been no systematic bibliometric analysis of the state of this field. Therefore, the main purpose of this article is to clarify the past research trajectory, summarize current research hotspots, reveal dynamic scientific developments, and explore future research directions. Patients and Methods A comprehensive search was conducted on the Web of Science Core Collection (WoSCC) database to identify publications related to immunotherapy specifically for the medical imaging of carcinoma. The search spanned the period from the year 2003 to 2023. Several analytical tools were employed. These included CiteSpace (6.2.4), and the Microsoft Office Excel (2016). Results By searching the database, a total of 704 English articles published between 2003 and 2023 were obtained. We have observed a rapid increase in the number of publications since 2018. The two most active countries are the United States (n=265) and China (n=170). Pittock, Sean J and Abu-sbeih, Hamzah are very concerned about the relationship between cancer immunotherapy and medical images and have published more academic papers (n = 5; n = 4). Among the top 10 co-cited authors, Topalian Sl (n=43) cited ranked first, followed by Graus F (n=40) cited. According to clustering, timeline, and burst word analysis, the results show that the current research focus is on "MRI", "deep learning", "tumor microenvironment" and so on. Conclusion Medical imaging and cancer immunotherapy are hot topics. The United States is the country with the most publications and the greatest influence in this field, followed by China. "MRI", "PET/PET-CT", "deep learning", "immune-related adverse events" and "tumor microenvironment" are currently hot research topics and potential targets.
Collapse
Affiliation(s)
- Shuli Tang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150010, People’s Republic of China
| | - Tiantian Fan
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150010, People’s Republic of China
| | - Xinxin Wang
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150010, People’s Republic of China
| | - Can Yu
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150010, People’s Republic of China
| | - Chunhui Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150010, People’s Republic of China
| | - Yang Zhou
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150010, People’s Republic of China
| |
Collapse
|