1
|
Han W, Song Z, Shan D, Shi Q. Fetal origins of obesity: a novel pathway of regulating appetite neurons in the hypothalamus of growth-restricted rat offspring. Arch Gynecol Obstet 2024; 309:2411-2419. [PMID: 37378669 PMCID: PMC11147910 DOI: 10.1007/s00404-023-07108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
PURPOSE Fetal growth restriction causes a series of sequelae, some of which, such as hyperphagia, reduced satiety and postnatal obesity, are believed to be associated with embryonic hypothalamic neurons impairment. The mechanisms underlying the linkage of fetal brain injuries to break the energy homeostasis have not been elucidated completely. Here, we aim to investigate the effect of intrauterine energy restriction on remodeling appetite neurons in the hypothalamus of fetal and postnatal infant rats. METHODS Low-protein (8%) diet combined with 75% energy restriction was used to establish an animal model. Rats offspring brain tissues, harvested from embryo day 18 and postnatal infant day 1, were sampled for dependent regulator analyses and master neuron assessment. RESULTS Growth-restricted rats showed the increased expression of Bsx and NPY in the hypothalamus as well as remodeling hypothalamic neurons differentiation compared to controls. Intriguingly, in cells cultured in vitro test, we found that activated effects of Bsx and NPY could be exacerbated by DNMT1 inhibitor. CONCLUSIONS In embryonic and early postnatal stage of FGR rats, we detected high concentrations of orexigenic neurons in the hypothalamus. DNMT1 activity is correlated with early embryonic neurogenesis by mediating the expression of Bsx and NPY. It may be one of the reasons for the abnormal development of the appetite regulation pathway and higher susceptibility to obesity in FGR offspring.
Collapse
Affiliation(s)
- Weiling Han
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China
| | - Zhaoyi Song
- STI-Zhilian Research Institute for Innovation and Digital Health, Beijing, China
| | - Dan Shan
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China
- Department of Obstetrics and Gynecology, The People's Hospital of Yongcheng, Dongcheng District, Yongcheng City, Henan Province, China
| | - Qingyun Shi
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China.
| |
Collapse
|
2
|
Developmental and Transmittable Origins of Obesity-Associated Health Disorders. Trends Genet 2017; 33:399-407. [PMID: 28438343 DOI: 10.1016/j.tig.2017.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/23/2022]
Abstract
The current global obesity pandemic is clearly linked to both the increasing prevalence of, and preference for, foods high in calories, specifically fat and sucrose, and declining levels of daily physical activity. A less commonly discussed possible explanation is that risk of obesity begins in utero as a result of developmental plasticity during early life. This idea fits into the broader Developmental Origins of Health and Diseases (DOHAD) hypothesis, which holds that stressful in utero exposure manifests as disease in adulthood. In this review, we highlight several studies that have revealed the role of epigenetics in multigenerational transmission of developmentally programmed obesity and associated cardiometabolic disease.
Collapse
|
3
|
Briffa JF, McAinch AJ, Romano T, Wlodek ME, Hryciw DH. Leptin in pregnancy and development: a contributor to adulthood disease? Am J Physiol Endocrinol Metab 2015; 308:E335-50. [PMID: 25516549 DOI: 10.1152/ajpendo.00312.2014] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Emerging research has highlighted the importance of leptin in fetal growth and development independent of its essential role in the maintenance of hunger and satiety through the modulation of neuropeptide Y and proopiomelanocortin neurons. Alterations in maternal-placental-fetal leptin exchange may modify the development of the fetus and contribute to the increased risk of developing disease in adulthood. In addition, leptin also plays an important role in reproductive functions, with plasma leptin concentrations rising in pregnant women, peaking during the third trimester. Elevated plasma leptin concentrations occur at the completion of organogenesis, and research in animal models has demonstrated that leptin is involved in the development and maturation of a number of organs, including the heart, brain, kidneys, and pancreas. Elevated maternal plasma leptin is associated with maternal obesity, and reduced fetal plasma leptin is correlated with intrauterine growth restriction. Alterations in plasma leptin during development may be associated with an increased risk of developing a number of adulthood diseases, including cardiovascular, metabolic, and renal diseases via altered fetal development and organogenesis. Importantly, research has shown that leptin antagonism after birth significantly reduces maturation of numerous organs. Conversely, restoration of the leptin deficiency after birth in growth-restricted animals restores the offspring's body weight and improves organogenesis. Therefore, leptin appears to play a major role in organogenesis, which may adversely affect the risk of developing a number of diseases in adulthood. Therefore, greater understanding of the role of leptin during development may assist in the prevention and treatment of a number of disease states that occur in adulthood.
Collapse
Affiliation(s)
- Jessica F Briffa
- Department of Physiology, University of Melbourne, Parkville, Australia
| | - Andrew J McAinch
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St. Albans, Australia; and
| | - Tania Romano
- Department of Human Biosciences, Latrobe University, Bundoora, Australia
| | - Mary E Wlodek
- Department of Physiology, University of Melbourne, Parkville, Australia
| | - Deanne H Hryciw
- Department of Physiology, University of Melbourne, Parkville, Australia;
| |
Collapse
|
4
|
Shi Q, Wang J, Yan S, Zhao J, Li H. Expression of neuropeptide Y and pro-opiomelanocortin in hypothalamic arcuate nucleus in 17α-ethinyl estradiol-induced intrahepatic cholestasis pregnant rat offspring. J Obstet Gynaecol Res 2013; 40:445-52. [PMID: 24147859 DOI: 10.1111/jog.12206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/09/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Qingyun Shi
- Department of Obstetrics and Gynecology; Beijing Shi Jitan Hospital; Capital Medical University; Beijing China
| | - Jingjing Wang
- Department of Laboratory Animal Sciences; Capital Medical University; Beijing China
| | - Shi Yan
- Department of clinical Medical; West China Medical School; Sichuan University; Chendu China
| | - Jin Zhao
- Department of Obstetrics and Gynecology; Beijing Shi Jitan Hospital; Capital Medical University; Beijing China
| | - Hongxia Li
- Department of Obstetrics and Gynecology; Beijing Shi Jitan Hospital; Capital Medical University; Beijing China
| |
Collapse
|
5
|
Thompson RF, Einstein FH. Epigenetic basis for fetal origins of age-related disease. J Womens Health (Larchmt) 2013; 19:581-7. [PMID: 20136551 DOI: 10.1089/jwh.2009.1408] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The current concept of fetal origins of adult diseases describes in utero programming, or adaptation to a spectrum of adverse environmental conditions that ultimately leads to increased susceptibility to age-related diseases (e.g., type 2 diabetes and cardiovascular disease) later in life. Although the precise mechanism of this biological memory remains unclear, mounting evidence suggests an epigenetic basis. The increased susceptibility to chronic disease and involvement of multiple organ systems that is observed is analogous to the decline in resistance to disease that is typical of normal aging. Although the cumulative environment over the course of a lifetime can induce increasing epigenetic dysregulation, we propose that adverse events that occur during early development can induce significant additional dysregulation of the epigenome. Here, we describe the current evidence for fetal origins of adult disease and the associated role of epigenetic dysregulation. In addition, we present a new perspective on the induction of epigenetic alterations in utero, which subsequently lead to an aging phenotype marked by increased susceptibility to age-related diseases.
Collapse
|
6
|
Vickers MH, Sloboda DM. Strategies for reversing the effects of metabolic disorders induced as a consequence of developmental programming. Front Physiol 2012; 3:242. [PMID: 22783205 PMCID: PMC3387724 DOI: 10.3389/fphys.2012.00242] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/13/2012] [Indexed: 01/21/2023] Open
Abstract
Obesity and the metabolic syndrome have reached epidemic proportions worldwide with far-reaching health care and economic implications. The rapid increase in the prevalence of these disorders suggests that environmental and behavioral influences, rather than genetic causes, are fueling the epidemic. The developmental origins of health and disease hypothesis has highlighted the link between the periconceptual, fetal, and early infant phases of life and the subsequent development of metabolic disorders in later life. In particular, the impact of poor maternal nutrition on susceptibility to later life metabolic disease in offspring is now well documented. Several studies have now shown, at least in experimental animal models, that some components of the metabolic syndrome, induced as a consequence of developmental programming, are potentially reversible by nutritional or targeted therapeutic interventions during windows of developmental plasticity. This review will focus on critical windows of development and possible therapeutic avenues that may reduce metabolic and obesogenic risk following an adverse early life environment.
Collapse
Affiliation(s)
- M H Vickers
- National Research Centre for Growth and Development, Liggins Institute, University of Auckland Auckland, New Zealand
| | | |
Collapse
|
7
|
Roth CL, Sathyanarayana S. Mechanisms affecting neuroendocrine and epigenetic regulation of body weight and onset of puberty: potential implications in the child born small for gestational age (SGA). Rev Endocr Metab Disord 2012; 13:129-40. [PMID: 22415297 DOI: 10.1007/s11154-012-9212-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Signaling peptides produced in peripheral tissues such as gut, adipose tissue, and pancreas communicate with brain centers, such as hypothalamus and hindbrain to manage energy homeostasis. These regulatory mechanisms of energy intake and storage have evolved during long periods of hunger in the evolution of man to protect the species from extinction. It is now clear that these circuitries are influenced by prenatal and postnatal environmental factors including endocrine disruptive chemicals. Hypothalamic appetite regulatory systems develop and mature in utero and early infancy, and involve signaling pathways that are important also for the regulation of puberty onset. Recent studies in humans and animals have shown that metabolic pathways involved in regulation of growth, body weight gain and sexual maturation are largely affected by epigenetic programming that can impact both current and future generations. In particular, intrauterine and early infantile developmental phases of high plasticity are susceptible to factors that affect metabolic programming that therefore, affect metabolic function throughout life. In children born small for gestational age, poor nutritional conditions during gestation can modify metabolic systems to adapt to expectations of chronic undernutrition. These children are potentially poorly equipped to cope with energy-dense diets and are possibly programmed to store as much energy as possible, leading to later obesity, metabolic syndrome, disturbed regulation of normal puberty and early onset of cardiovascular disease. Most cases of disturbed energy balance are likely a result of a combination of genetics, epigenetics and environment. This review will discuss potential mechanisms linking intrauterine growth retardation with changes in growth, energy homeostasis and sexual maturation.
Collapse
Affiliation(s)
- Christian L Roth
- Division of Endocrinology, Seattle Children's Hospital Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA.
| | | |
Collapse
|
8
|
Shin BC, Dai Y, Thamotharan M, Gibson LC, Devaskar SU. Pre- and postnatal calorie restriction perturbs early hypothalamic neuropeptide and energy balance. J Neurosci Res 2012; 90:1169-82. [PMID: 22388752 PMCID: PMC4208917 DOI: 10.1002/jnr.23013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 12/15/2022]
Abstract
Energy balance is regulated by circulating leptin concentrations and hypothalamic leptin receptor (ObRb) signaling via STAT3 but is inhibited by SOCS3 and PTP1B. Leptin signaling enhances anorexigenic neuropeptides and receptor (POMC, MC3-R, MC4-R) activation while suppressing orexigenic neuropeptides (NPY, AgRP). We investigated in a sex-specific manner the early (PN2) and late (PN21) postnatal hypothalamic mechanisms in response to intrauterine (IUGR), postnatal (PNGR), and combined (IPGR) calorie and growth restriction. At PN2, both male and female IUGR were hypoleptinemic, but hypothalamic leptin signaling in females was activated as seen by enhanced STAT3. In addition, increased SOCS3 and PTP1B supported early initiation of leptin resistance in females that led to elevated AgRP but diminished MC3-R and MC4-R. In contrast, males demonstrated leptin sensitivity seen as a reduction in PTP1B and MC3-R and MC4-R with no effect on neuropeptide expression. At PN21, with adequate postnatal caloric intake, a sex-specific dichotomy in leptin concentrations was seen in IUGR, with euleptinemia in males indicative of persisting leptin sensitivity and hyperleptinemia in females consistent with leptin resistance, both with normal hypothalamic ObRb signaling, neuropeptides, and energy balance. In contrast, superimposition of PNGR upon IUGR (IPGR) led to diminished leptin concentrations with enhanced PTP1B and an imbalance in arcuate nuclear NPY/AgRP and POMC expression that favored exponential hyperphagia and diminished energy expenditure postweaning. We conclude that IUGR results in sex-specific leptin resistance observed mainly in females, whereas PNGR and IPGR abolish this sex-specificity, setting the stage for acquiring obesity after weaning.
Collapse
Affiliation(s)
- Bo-Chul Shin
- Division of Neonatology & Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Yun Dai
- Division of Neonatology & Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Manikkavasagar Thamotharan
- Division of Neonatology & Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - L. Caroline Gibson
- Division of Neonatology & Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Sherin U. Devaskar
- Division of Neonatology & Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| |
Collapse
|
9
|
Vickers MH. Developmental programming of the metabolic syndrome - critical windows for intervention. World J Diabetes 2011; 2:137-48. [PMID: 21954418 PMCID: PMC3180526 DOI: 10.4239/wjd.v2.i9.137] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/15/2011] [Accepted: 08/31/2011] [Indexed: 02/05/2023] Open
Abstract
Metabolic disease results from a complex interaction of many factors, including genetic, physiological, behavioral and environmental influences. The recent rate at which these diseases have increased suggests that environmental and behavioral influences, rather than genetic causes, are fuelling the present epidemic. In this context, the developmental origins of health and disease hypothesis has highlighted the link between the periconceptual, fetal and early infant phases of life and the subsequent development of adult obesity and the metabolic syndrome. Although the mechanisms are yet to be fully elucidated, this programming was generally considered an irreversible change in developmental trajectory. Recent work in animal models suggests that developmental programming of metabolic disorders is potentially reversible by nutritional or targeted therapeutic interventions during the period of developmental plasticity. This review will discuss critical windows of developmental plasticity and possible avenues to ameliorate the development of postnatal metabolic disorders following an adverse early life environment.
Collapse
Affiliation(s)
- Mark H Vickers
- Mark H Vickers, Liggins Institute and the National Research Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
10
|
Nüsken KD, Schneider H, Plank C, Trollmann R, Nüsken E, Rascher W, Dötsch J. Fetal programming of gene expression in growth-restricted rats depends on the cause of low birth weight. Endocrinology 2011; 152:1327-35. [PMID: 21266509 DOI: 10.1210/en.2010-1116] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Low birth weight and intrauterine growth restriction (IUGR) can be caused by numerous different conditions. In many experimental settings, however, these different causes are not accounted for. This study aimed at comparing the impact of two frequent causes of IUGR (low utero-placental blood flow vs. malnutrition) on fetal programming of gene expression. We studied offspring of dams treated by uterine artery ligation or sham operation compared with untreated controls and offspring of dams that were fed either a low protein or normal protein diet. After Cesarean section at term, placental and fetal hepatic expression of key "metabolic" and "vasoregulative" genes was investigated by quantitative RT-PCR. Ligation neonates showed IUGR, reduced expression of placental leptin, placental and hepatic IGF-I, hepatic inducible nitric oxide synthase, and increased expression of placental IGF binding protein 1, hepatic IGF-II receptor and erythropoietin (EPO). Low protein offspring also showed IUGR but increased expression of placental leptin; IGF-I; placental and hepatic inducible nitric oxide synthase; hepatic insulin, IGF-I, and IGF-II receptors; and reduced expression of placental IGF binding protein 1, IGF-II, leptin-receptor type A, placental and hepatic leptin receptor type B, and EPO. Expression was independent of sex, birth weight, fetal intrauterine position, and EPO expression. In conclusion, the impact of IUGR on fetal and placental gene expression depends on the cause of low birth weight. Therefore, morbidity after IUGR should be analyzed referring to its pathophysiological cause rather than referring to low birth weight itself. Fetal hypoxia as estimated by hepatic EPO expression does not seem to be a key regulator of transcriptional activity in our models.
Collapse
Affiliation(s)
- Kai-Dietrich Nüsken
- Department of Pediatrics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
11
|
Remmers F, Delemarre-van de Waal HA. Developmental programming of energy balance and its hypothalamic regulation. Endocr Rev 2011; 32:272-311. [PMID: 21051592 DOI: 10.1210/er.2009-0028] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Developmental programming is an important physiological process that allows different phenotypes to originate from a single genotype. Through plasticity in early life, the developing organism can adopt a phenotype (within the limits of its genetic background) that is best suited to its expected environment. In humans, together with the relative irreversibility of the phenomenon, the low predictive value of the fetal environment for later conditions in affluent countries makes it a potential contributor to the obesity epidemic of recent decades. Here, we review the current evidence for developmental programming of energy balance. For a proper understanding of the subject, knowledge about energy balance is indispensable. Therefore, we first present an overview of the major hypothalamic routes through which energy balance is regulated and their ontogeny. With this background, we then turn to the available evidence for programming of energy balance by the early nutritional environment, in both man and rodent models. A wealth of studies suggest that energy balance can indeed be permanently affected by the early-life environment. However, the direction of the effects of programming appears to vary considerably, both between and within different animal models. Because of these inconsistencies, a comprehensive picture is still elusive. More standardization between studies seems essential to reach veritable conclusions about the role of developmental programming in adult energy balance and obesity.
Collapse
Affiliation(s)
- Floor Remmers
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Germany.
| | | |
Collapse
|
12
|
Delahaye F, Lukaszewski MA, Wattez JS, Cisse O, Dutriez-Casteloot I, Fajardy I, Montel V, Dickes-Coopman A, Laborie C, Lesage J, Breton C, Vieau D. Maternal perinatal undernutrition programs a “brown-like” phenotype of gonadal white fat in male rat at weaning. Am J Physiol Regul Integr Comp Physiol 2010; 299:R101-10. [DOI: 10.1152/ajpregu.00604.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several studies indicate that maternal undernutrition sensitizes the offspring to the development of metabolic disorders, such as obesity. Using a model of perinatal maternal 50% food-restricted diet (FR50), we recently reported that rat neonates from undernourished mothers exhibit decreased leptin plasma levels associated with alterations of hypothalamic proopiomelanocortin system. The present study aimed at examining the consequences of FR50 on the brain-adipose axis in male rat neonates. Using quantitative RT-PCR array containing 84 obesity-related genes, we demonstrated that most of the genes involved in energy metabolism regulation are expressed in rat gonadal white adipose tissue (WAT) and are sensitive to maternal perinatal undernutrition (MPU). In contrast, hypothalamic gene expression was not substantially affected by MPU. Gene expression of uncoupling protein 1 (UCP1), a marker of brown adipocytes, showed an almost 400-fold stimulation in postnatal day 21 (PND21) FR50 animals, suggesting that their gonadal WAT possesses a brown-like phenotype. This was confirmed by histological and immunoshistochemical procedures, which demonstrated that PND21 FR50 gonadal adipocytes are multilocular, resembling those present in interscapular brown adipose tissue, and exhibit an overexpression of UCP1 and neuropeptide Y (NPY) at the protein level. Control animals contained almost exclusively “classical” unilocular white adipocytes that did not show high UCP1 and NPY labeling. After weaning, FR50 animals exhibited a transient hyperphagia that was associated with the disappearance of brown-like fat pads in PND30 WAT. Our results demonstrate that MPU delays the maturation of gonadal WAT during critical developmental time windows, suggesting that it could have long-term consequences on body weight regulation in the offspring.
Collapse
Affiliation(s)
- Fabien Delahaye
- Unité Environnement Périnatal et Croissance EA 4489, Université Lille-Nord de France, Equipe Dénutritions Maternelles Périnatales, Université de Lille 1, Villeneuve d'Ascq, France
| | - Marie-Amélie Lukaszewski
- Unité Environnement Périnatal et Croissance EA 4489, Université Lille-Nord de France, Equipe Dénutritions Maternelles Périnatales, Université de Lille 1, Villeneuve d'Ascq, France
| | - Jean-Sébastien Wattez
- Unité Environnement Périnatal et Croissance EA 4489, Université Lille-Nord de France, Equipe Dénutritions Maternelles Périnatales, Université de Lille 1, Villeneuve d'Ascq, France
| | - Ouma Cisse
- Unité Environnement Périnatal et Croissance EA 4489, Université Lille-Nord de France, Equipe Dénutritions Maternelles Périnatales, Université de Lille 1, Villeneuve d'Ascq, France
| | - Isabelle Dutriez-Casteloot
- Unité Environnement Périnatal et Croissance EA 4489, Université Lille-Nord de France, Equipe Dénutritions Maternelles Périnatales, Université de Lille 1, Villeneuve d'Ascq, France
| | - Isabelle Fajardy
- Unité Environnement Périnatal et Croissance EA 4489, Université Lille-Nord de France, Equipe Dénutritions Maternelles Périnatales, Université de Lille 1, Villeneuve d'Ascq, France
| | - Valérie Montel
- Unité Environnement Périnatal et Croissance EA 4489, Université Lille-Nord de France, Equipe Dénutritions Maternelles Périnatales, Université de Lille 1, Villeneuve d'Ascq, France
| | - Anne Dickes-Coopman
- Unité Environnement Périnatal et Croissance EA 4489, Université Lille-Nord de France, Equipe Dénutritions Maternelles Périnatales, Université de Lille 1, Villeneuve d'Ascq, France
| | - Christine Laborie
- Unité Environnement Périnatal et Croissance EA 4489, Université Lille-Nord de France, Equipe Dénutritions Maternelles Périnatales, Université de Lille 1, Villeneuve d'Ascq, France
| | - Jean Lesage
- Unité Environnement Périnatal et Croissance EA 4489, Université Lille-Nord de France, Equipe Dénutritions Maternelles Périnatales, Université de Lille 1, Villeneuve d'Ascq, France
| | - Christophe Breton
- Unité Environnement Périnatal et Croissance EA 4489, Université Lille-Nord de France, Equipe Dénutritions Maternelles Périnatales, Université de Lille 1, Villeneuve d'Ascq, France
| | - Didier Vieau
- Unité Environnement Périnatal et Croissance EA 4489, Université Lille-Nord de France, Equipe Dénutritions Maternelles Périnatales, Université de Lille 1, Villeneuve d'Ascq, France
| |
Collapse
|
13
|
Moritz KM, Mazzuca MQ, Siebel AL, Mibus A, Arena D, Tare M, Owens JA, Wlodek ME. Uteroplacental insufficiency causes a nephron deficit, modest renal insufficiency but no hypertension with ageing in female rats. J Physiol 2009; 587:2635-46. [PMID: 19359373 DOI: 10.1113/jphysiol.2009.170407] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In rats, uteroplacental insufficiency induced by uterine vessel ligation restricts fetal growth and impairs mammary development compromising postnatal growth. In male offspring, this results in a nephron deficit and hypertension which can be reversed by improving lactation and postnatal growth. Here, growth, blood pressure and nephron endowment in female offspring from mothers which underwent bilateral uterine vessel ligation (Restricted) on day 18 of pregnancy were examined. Sham surgery (Control) and a reduced litter group (Reduced at birth to 5, equivalent to Restricted group) were used as controls. Offspring (Control, Reduced, Restricted) were cross-fostered on postnatal day 1 onto a Control (normal lactation) or Restricted (impaired lactation) mother. Restricted-on-Restricted offspring were born small but were of similar weight to Control-on-Control by postnatal day 35. Blood pressure was not different between groups at 8, 12 or 20 weeks of age. Glomerular number was reduced in Restricted-on-Restricted offspring at 6 months without glomerular hypertrophy. Cross-fostering a Restricted pup onto a Control dam resulted in a glomerular number intermediate between Control-on-Control and Restricted-on-Restricted. Blood pressure, along with renal function, morphology and mRNA expression, was examined in Control-on-Control and Restricted-on-Restricted females at 18 months. Restricted-on-Restricted offspring did not become hypertensive but developed glomerular hypertrophy by 18 months. They had elevated plasma creatinine and alterations in renal mRNA expression of transforming growth factor-beta(1), collagen IV (alpha1) and matrix matelloproteinase-9. This suggests that perinatally growth restricted female offspring may be susceptible to onset of renal injury and renal insufficiency with ageing in the absence of concomitant hypertension.
Collapse
Affiliation(s)
- Karen M Moritz
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Breton C, Lukaszewski MA, Risold PY, Enache M, Guillemot J, Rivière G, Delahaye F, Lesage J, Dutriez-Casteloot I, Laborie C, Vieau D. Maternal prenatal undernutrition alters the response of POMC neurons to energy status variation in adult male rat offspring. Am J Physiol Endocrinol Metab 2009; 296:E462-72. [PMID: 19088253 DOI: 10.1152/ajpendo.90740.2008] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epidemiological studies suggest that maternal undernutrition predisposes the offspring to development of energy balance metabolic pathologies in adulthood. Using a model of a prenatal maternal 70% food-restricted diet (FR30) in rats, we evaluated peripheral parameters involved in nutritional regulation, as well as the hypothalamic appetite-regulatory system, in nonfasted and 48-h-fasted adult offspring. Despite comparable glycemia in both groups, mild glucose intolerance, with a defect in glucose-induced insulin secretion, was observed in FR30 animals. They also exhibited hyperleptinemia, despite similar visible fat deposits. Using semiquantitative RT-PCR, we observed no basal difference of hypothalamic proopiomelanocortin (POMC) and neuropeptide Y (NPY) gene expression, but a decrease of the OB-Rb and an increase of insulin receptor mRNA levels, in FR30 animals. These animals also exhibited basal hypercorticosteronemia and a blunted increase of corticosterone in fasted compared with control animals. After fasting, FR30 animals showed no marked reduction of POMC mRNA levels or intensity of beta-endorphin-immunoreactive fiber projections. By contrast, NPY gene expression and immunoreactive fiber intensity increased. FR30 rats also displayed subtle alterations of food intake: body weight-related food intake was higher and light-dark phase rhythm and refeeding time course were modified after fasting. At rest, in the morning, hyperinsulinemia and a striking increase in the number of c-Fos-containing cells in the arcuate nucleus were observed. About 30% of the c-Fos-expressing cells were POMC neurons. Our data suggest that maternal undernutrition differently programs the long-term appetite-regulatory system of offspring, especially the response of POMC neurons to energy status and food intake rhythm.
Collapse
Affiliation(s)
- Christophe Breton
- Neurosciences et Physiologie Adaptatives, Université de Lille I, Villeneuve d'Ascq, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Obesity is a growing threat worldwide, and the prevalence has risen dramatically over the last decade. A number of epidemiological studies have shown that there is a direct relationship between birth weight and BMI in childhood and in adult life. A number of factors influence the development of childhood and adult obesity and birth weight as a proxy for the intrauterine environment may be one of the many. For example, a number of investigators have reported a significant increase in the rates of obesity in children, adolescents, and adults whose mothers had diabetes during pregnancy. A large number of studies have also linked low birth weight to the later development of central adiposity. Thus, both excess and reduced nutrient availability during fetal development can lead to the later development of obesity. This review summarizes both human and animal studies relating fetal exposures to later obesity.
Collapse
Affiliation(s)
- Rebecca Simmons
- Department of Pediatrics, Children's Hospital Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Remmers F, Verhagen LAW, Adan RAH, Delemarre-van de Waal HA. Hypothalamic neuropeptide expression of juvenile and middle-aged rats after early postnatal food restriction. Endocrinology 2008; 149:3617-25. [PMID: 18372335 DOI: 10.1210/en.2007-1388] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rats subjected to early postnatal food restriction (FR) show persistent changes in energy balance. The hypothalamus plays a major role in the regulation of energy balance. Therefore, we hypothesized that early postnatal food restriction induces developmental programming of hypothalamic gene expression of neuropeptides involved in this regulation. In the hypothalamus of juvenile and middle-aged rats that were raised in control (10 pups) or FR litters (20 pups), gene expression was investigated for neuropeptide Y (NPY), agouti-related protein (AgRP), proopiomelanocortin (POMC), and cocaine- and amphetamine-regulated transcript (CART) in the arcuate nucleus (ARC); CRH and TRH in the paraventricular nucleus; and melanin-concentrating hormone (MCH) and orexin in the lateral hypothalamic area. Early postnatal FR acutely and persistently reduced body size. Juvenile FR rats had significantly reduced CART gene expression and increased MCH expression. In middle-aged FR rats, POMC and CART mRNA levels were significantly reduced. The ratio between expression of the ARC orexigenic peptides (NPY and AgRP) and anorexigenic peptides (POMC and CART) was increased in juvenile, but not in middle-aged, FR rats. These results suggest that in neonatal rats, FR already triggers the ARC, and to a lesser extent the lateral hypothalamic area, but not the paraventricular nucleus, to increase expression of orexigenic relative to anorexigenic peptides. In addition, with enduring small body size and normalized hypothalamic gene expression, the adult FR rats appeared to have accepted this smaller body size as normal. This suggests that the body weight set-point was differently programmed in animals with early postnatal FR.
Collapse
Affiliation(s)
- Floor Remmers
- Department of Pediatrics, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
17
|
Nüsken KD, Dötsch J, Rauh M, Rascher W, Schneider H. Uteroplacental insufficiency after bilateral uterine artery ligation in the rat: impact on postnatal glucose and lipid metabolism and evidence for metabolic programming of the offspring by sham operation. Endocrinology 2008; 149:1056-63. [PMID: 18063678 DOI: 10.1210/en.2007-0891] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ligation of the uterine arteries (LIG) in rats serves as a model of intrauterine growth restriction and subsequent developmental programming of impaired glucose tolerance, hyperinsulinemia, and adiposity in the offspring. Its impact on lipid metabolism has been less well investigated. We compared parameters of glucose and lipid metabolism and glucocorticoid levels in the offspring of dams that underwent either LIG or sham operation (SOP) with those of untreated controls. Blood parameters including insulin, leptin, and visfatin as well as body weight, food intake, and creatinine clearance were recorded up to an age of 30 wk. Glucose tolerance tests were performed, and both leptin and visfatin expression in liver, muscle, and epididymal and mesenteric fat was quantified by RT-PCR. After catch-up growth, weight gain of all groups was similar, despite lower food intake of the LIG rats. LIG offspring showed impaired glucose tolerance from the age of 15 wk as well as elevated glycosylated hemoglobin and corticosterone levels. However, the body fat content of both LIG and SOP animals increased relative to controls, and both showed elevated triglyceride, total cholesterol, and leptin levels as well as a reduced proportion of high-density lipoprotein cholesterol. Thus, use of the LIG model requires both SOP and untreated controls. Although only LIG is associated with impaired glucose tolerance, pathogenic programming of the lipid metabolism can also be induced by SOP. Visfatin does not appear to be involved in the disturbed glucose metabolism after intrauterine growth restriction and may represent only a marker of fat accumulation.
Collapse
Affiliation(s)
- Kai-Dietrich Nüsken
- Department of Pediatrics, Nikolaus Fiebiger Centre of Molecular Medicine, University Erlangen-Nuernberg, Loschgestrasse 15, 91054 Erlangen, Germany.
| | | | | | | | | |
Collapse
|
18
|
O'Dowd R, Kent JC, Moseley JM, Wlodek ME. Effects of uteroplacental insufficiency and reducing litter size on maternal mammary function and postnatal offspring growth. Am J Physiol Regul Integr Comp Physiol 2008; 294:R539-48. [DOI: 10.1152/ajpregu.00628.2007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human intrauterine growth restriction is often associated with uteroplacental insufficiency and a decline in nutrient and oxygen supply to the fetus. This study investigated the effects of uteroplacental insufficiency and intrauterine growth restriction (Restricted) or reducing litter size for normally grown pups (Reduced Litter) on maternal mammary development and function, milk composition, offspring milk intake, and their resultant effects on postnatal growth. Uteroplacental insufficiency was surgically induced by bilateral uterine vessel ligation on day 18 of gestation in the Wistar Kyoto rat. At birth, a group of sham control rats had their litter size reduced to five (Reduced Litter) to match that of the Restricted group. Cohorts of rats were terminally anesthetized on day 20 of gestation or day 6 of lactation, and a third group was studied throughout lactation. Restricted pups had a lower birth weight (by 16%) and litter size (by 36%) compared with controls, as well as reduced mammary parathyroid hormone-related protein content and milk ionic calcium concentrations associated with reduced total pup calcium. Restricted dams with lower circulating progesterone experienced premature lactogenesis, producing less milk per pup with altered composition compared with controls, further slowing growth during lactation. Reducing litter size of pups born of normal birth weight (Reduced Litter) was associated with decreased pup growth, highlighting the importance of appropriate controls. The present study demonstrates that uteroplacental insufficiency impairs mammary function, compromises milk quality and quantity, and reduces calcium transport into milk, further restraining postnatal growth.
Collapse
|
19
|
Wlodek ME, Mibus A, Tan A, Siebel AL, Owens JA, Moritz KM. Normal Lactational Environment Restores Nephron Endowment and Prevents Hypertension after Placental Restriction in the Rat. J Am Soc Nephrol 2007; 18:1688-96. [PMID: 17442788 DOI: 10.1681/asn.2007010015] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Uteroplacental insufficiency in the rat restricts fetal growth, impairs mammary development, compromising postnatal growth; and increases adult BP. The roles of prenatal and postnatal nutritional restraint on later BP and nephron endowment in offspring from mothers that underwent bilateral uterine vessel ligation (restricted) on day 18 of pregnancy were examined. Sham surgery (control) and a group of rats with reduced litter size (reduced; litter size reduced at birth to five, equivalent to restricted group) were used as controls. Offspring (control, reduced, and restricted) were cross-fostered on postnatal day 1 onto a control (normal lactation) or restricted (impaired lactation) mother. BP in male offspring was determined by tail cuff at 8, 12, and 20 wk of age, with glomerular number and volume (Cavalieri/Physical Dissector method) and renal angiotensin II type 1 receptor (AT(1)R) mRNA expression (real-time PCR) determined at 6 mo. Restricted-on-restricted male offspring developed hypertension (+16 mmHg) by 20 wk together with a nephron deficit (-26%) and glomerular hypertrophy (P < 0.05). In contrast, providing a normal lactational environment to restricted offspring improved postnatal growth and prevented the nephron deficit and hypertension. Reduced-on-restricted pups that were born of normal weight but with impaired growth during lactation subsequently grew faster, developed hypertension (+16 mmHg), had increased AT(1A)R and AT(1B)R mRNA expression (P < 0.05), but had no nephron deficit. Our study identifies the prenatal and postnatal nutritional environments in the programming of adult hypertension, associated with distinct renal changes. It is shown for the first time that a prenatally induced nephron deficit can be restored by correcting growth restriction during lactation.
Collapse
MESH Headings
- Animals
- Animals, Suckling
- Birth Weight
- Blood Pressure
- Female
- Fetal Growth Retardation/pathology
- Fetal Growth Retardation/physiopathology
- Hypertension, Renal/pathology
- Hypertension, Renal/physiopathology
- Hypertension, Renal/prevention & control
- Kidney Glomerulus/abnormalities
- Kidney Glomerulus/cytology
- Kidney Glomerulus/physiology
- Lactation
- Litter Size
- Male
- Milk
- Nephrons/abnormalities
- Nephrons/cytology
- Nephrons/physiology
- Organ Size
- Pregnancy
- Prenatal Exposure Delayed Effects/pathology
- Prenatal Exposure Delayed Effects/physiopathology
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
Collapse
Affiliation(s)
- Mary E Wlodek
- Department of Physiology, University of Melbourne, Parkville 3010, Australia.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Obesity and type 2 diabetes are serious health issues in the developed world and are becoming increasingly important on a global scale. Furthermore, the marked increases in both childhood obesity and type 2 diabetes will translate to further increases in adult obesity, diabetes and associated co-morbidities in the near future; as such it has been ranked as a critical public health threat. It is a widely held view that the primary cause of obesity is the development of an obesogenic environment, due to ease of access to highly calorific food and reduced energy expenditure in work and leisure activities. In addition there is strong evidence for a genetic component to human obesity with the identification of a number of genes associated with human obesity. However, on its own the genetic component of this condition cannot account for the dramatic increase in the prevalence of obesity in recent years. Of relevance and as highlighted by epidemiological and experimental studies, is the relationship between the periconceptual, fetal and early infant phases of life and the subsequent development of adult obesity. The terms “developmental programming” and the “Developmental Origins of Adult Health and Disease” are preferentially used to describe these relationships. Despite initial controversy when these relationships were first suggested, both prospective clinical and experimental studies have clearly shown that the propensity to develop abnormalities of cardiovascular, endocrine and metabolic homeostasis in adulthood are increased when fetal development has been adversely affected. This pathogenesis is not based on genetic defects but on altered gene expression seen as a result of fetal adaptation to an adverse intrauterine environment. The relative role of genetic versus environmental factors and the mechanisms underlying developmental programming remain speculative. It is generally argued that in response to an adverse intrauterine environment, the fetus adapts its physiological development to maximise its immediate chances for survival. Owing to the plasticity of the fetus, these adaptations may include resetting of metabolic homeostasis and endocrine systems and the down-regulation of growth, commonly reflected in an altered birth phenotype. It is thought that whilst these changes in fetal physiology (i.e. the prenatal environment) may be beneficial for short term survivalin uterothey may be maladaptive in postnatal life, contributing to poor health outcomes when offspring are exposed to catch-up growth, diet-induced obesity and other factors. The “predictive adaptive response” hypothesis proposes that the degree of mismatch between the pre- and postnatal environments is a major determinant of subsequent disease. This review will address recent work in animal models and observations in the clinical and epidemiological settings onin uteroadaptations and subsequent development of obesity and type 2 diabetes.
Collapse
|
21
|
Simmons R. Perinatal programming of obesity. Exp Gerontol 2005; 40:863-6. [PMID: 16216461 DOI: 10.1016/j.exger.2005.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 09/16/2005] [Accepted: 09/16/2005] [Indexed: 11/23/2022]
Affiliation(s)
- Rebecca Simmons
- Department of Pediatrics Children's Hospital Philadelphia and University of Pennsylvania School of Medicine, BRB II/III, Rm 1308, 421 Curie Blvd, Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Wlodek ME, Westcott KT, O'Dowd R, Serruto A, Wassef L, Moritz KM, Moseley JM. Uteroplacental restriction in the rat impairs fetal growth in association with alterations in placental growth factors including PTHrP. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1620-7. [PMID: 15661964 DOI: 10.1152/ajpregu.00789.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During pregnancy, parathyroid hormone-related protein (PTHrP) is one of many growth factors that play important roles to promote fetal growth and development, including stimulation of placental calcium transport. Angiotensin II, acting through the AT1a receptor, is also known to promote placental growth. We examined the effects of bilateral uterine artery and vein ligation (restriction), which mimics placental insufficiency in humans, on growth, intrauterine PTHrP, placental AT1a, and pup calcium. Growth restriction was surgically induced on day 18 of pregnancy in Wistar-Kyoto female rats by uterine vessel ligation. Uteroplacental insufficiency reduced fetal body weight by 15% and litter size ( P < 0.001) compared with the control rats with no effect on placental weight or amniotic fluid volume. Uteroplacental insufficiency reduced placental PTHrP content by 46%, with increases in PTHrP (by 2.6-fold), parathyroid hormone (PTH)/PTHrP receptor (by 11.6-fold), and AT1a (by 1.7-fold) relative mRNA in placenta following restriction compared with results in control ( P < 0.05). There were no alterations in uterine PTHrP and PTH/PTHrP receptor mRNA expression. Maternal and fetal plasma PTHrP and calcium concentrations were unchanged. Although fetal total body calcium was not altered, placental restriction altered perinatal calcium homeostasis, as evidenced by lower pup total body calcium after birth ( P < 0.05). The increased uterine and amniotic fluid PTHrP ( P < 0.05) may be an attempt to compensate for the induced impaired placental function. The present study demonstrates that uteroplacental insufficiency alters intrauterine PTHrP, placental AT1a expression, and perinatal calcium in association with a reduction in fetal growth. Uteroplacental insufficiency may provide an important model for exploring the early origins of adult diseases.
Collapse
Affiliation(s)
- Mary E Wlodek
- Department of Physiology, University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | | | | | |
Collapse
|
23
|
McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 2005; 85:571-633. [PMID: 15788706 DOI: 10.1152/physrev.00053.2003] [Citation(s) in RCA: 1300] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The "fetal" or "early" origins of adult disease hypothesis was originally put forward by David Barker and colleagues and stated that environmental factors, particularly nutrition, act in early life to program the risks for adverse health outcomes in adult life. This hypothesis has been supported by a worldwide series of epidemiological studies that have provided evidence for the association between the perturbation of the early nutritional environment and the major risk factors (hypertension, insulin resistance, and obesity) for cardiovascular disease, diabetes, and the metabolic syndrome in adult life. It is also clear from experimental studies that a range of molecular, cellular, metabolic, neuroendocrine, and physiological adaptations to changes in the early nutritional environment result in a permanent alteration of the developmental pattern of cellular proliferation and differentiation in key tissue and organ systems that result in pathological consequences in adult life. This review focuses on those experimental studies that have investigated the critical windows during which perturbations of the intrauterine environment have major effects, the nature of the epigenetic, structural, and functional adaptive responses which result in a permanent programming of cardiovascular and metabolic function, and the role of the interaction between the pre- and postnatal environment in determining final health outcomes.
Collapse
Affiliation(s)
- I Caroline McMillen
- Discipline of Physiology, School of Molecular and Biomeducal Sciences, and Department of Obstetrics and Gynaecology, University of Adelaide, Australia.
| | | |
Collapse
|
24
|
Varma A, He J, Shin BC, Weissfeld LA, Devaskar SU. Postnatal intracerebroventricular exposure to leptin causes an altered adult female phenotype. Am J Physiol Endocrinol Metab 2004; 287:E1132-41. [PMID: 15315906 DOI: 10.1152/ajpendo.00228.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effect of daily intracerebroventricular (ICV) leptin administration (neonatal age 2-7 days) on hypothalamic neuropeptides (neuropeptide Y, alpha-melanocyte-stimulating hormone) that regulate food intake, body weight (BW) gain, and the metabolic/hormonal profile in suckling (8 and 21 days) and adult rat (35, 60, 90, and 120 days). ICV leptin (0.16 mug.g BW(-1).dose(-1); n = 70) led to a postnatal decline in BW (P = 0.0002) that persisted only in the adult females (P = 0.002). The postnatal decline in BW due to leptin was associated with a decline in food intake (P = 0.01) and hypothalamic leptin receptor (P = 0.008) and neuropeptide Y (P = 0.008) immunoreactivities and an increase in alpha-melanocyte-stimulating hormone (P = 0.008) immunoreactivity. In addition, hyperinsulinemia (P = 0.01) with hypocorticosteronemia (P = 0.007) occurred during the postnatal period with hypercorticosteronemia (P = 0.007) and hypoleptinemia (P = 0.008) and an increase in leutinizing hormone (P = 0.01) in the adult male and female progeny. Persistent hyperinsulinemia (P = 0.015) with hyperglycemia (P = 0.008) and glucose intolerance (P = 0.001) were observed only in the adult female. We conclude that postnatal leptin administration alters the adult female phenotype and speculate that this may relate to retention of leptin sensitivity resulting in a lipoatrophic state.
Collapse
Affiliation(s)
- Amit Varma
- Divisions of Neonatology and Developmental Biology, Dept. of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, 10833 LeConte Ave., MDCC-B2-375, Los Angeles, CA 90095-1752, USA
| | | | | | | | | |
Collapse
|
25
|
McMillen IC, Muhlhausler BS, Duffield JA, Yuen BSJ. Prenatal programming of postnatal obesity: fetal nutrition and the regulation of leptin synthesis and secretion before birth. Proc Nutr Soc 2004; 63:405-12. [PMID: 15373950 DOI: 10.1079/pns2004370] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exposure to either an increased or decreased level of intrauterine nutrition can result in an increase in adiposity and in circulating leptin concentrations in later life. In animals such as the sheep and pig in which fat is deposited before birth, leptin is synthesised in fetal adipose tissue and is present in the fetal circulation throughout late gestation. In the sheep a moderate increase or decrease in the level of maternal nutrition does not alter fetal plasma leptin concentrations, but there is evidence that chronic fetal hyperglycaemia and hyperinsulinaemia increase fetal fat mass and leptin synthesis within fetal fat depots. Importantly, there is a positive relationship between the relative mass of the 'unilocular' component of fetal perirenal and interscapular adipose tissue and circulating fetal leptin concentrations in the sheep. Thus, as in the neonate and adult, circulating leptin concentrations may be a signal of fat mass in fetal life. There is also evidence that leptin can act to regulate the lipid storage, leptin synthetic capacity and potential thermogenic functions of fat before birth. Thus, leptin may act as a signal of energy supply and have a 'lipostatic' role before birth. Future studies are clearly required to determine whether the intrauterine and early postnatal nutrient environment programme the endocrine feedback loop between adipose tissue and the central and peripheral neuroendocrine systems that regulate energy balance, resulting in an enhanced risk of obesity in adult life.
Collapse
Affiliation(s)
- I C McMillen
- Discipline of Physiology, School of Molecular and Biomedical Sciences, University of Adelaide, SA 5005, Australia.
| | | | | | | |
Collapse
|
26
|
He J, Varma A, Weissfeld LA, Devaskar SU. Postnatal glucocorticoid exposure alters the adult phenotype. Am J Physiol Regul Integr Comp Physiol 2004; 287:R198-208. [PMID: 15001431 DOI: 10.1152/ajpregu.00349.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effect of six doses of dexamethasone (Dex) administered daily (2–7 days of age) to postnatal rats on body weight gain, food and water intake, peripheral hormonal/metabolic milieu, and hypothalamic neuropeptides that regulate food intake. We observed a Dex-induced acute (3 days of age) suppression of endogenous corticosterone and an increase in circulating leptin concentrations that were associated with a decrease in body weight in males and females. Followup during the suckling, postsuckling, and adult stages (7–120 days of age) revealed hypoleptinemia in males and females, and hypoinsulinemia, a relative increase in the glucose-to-insulin ratio, and a larger increase in skeletal muscle glucose transporter (GLUT 4) concentrations predominantly in the males, reflective of a catabolic state associated with a persistent decrease in body weight gain. The increase in the glucose-to-insulin ratio and hyperglycemia was associated with an increase in water intake. In addition, the changes in the hormonal/metabolic milieu were associated with an increase in hypothalamic neuropeptide Y content in males and females during the suckling phase, which persisted only in the 120-day-old female with a transient postnatal decline in α-melanocyte-stimulating hormone and corticotropin-releasing factor. This increase in neuropeptide Y (NPY) during the suckling phase in males and females was associated with a subsequent increase in adult food intake that outweighed the demands of body weight gain. In contrast to the adult hypothalamic findings, cerebral ventricular dilatation was more prominent in adult males. We conclude that postnatal Dex treatment causes permanent sex-specific changes in the adult phenotype, setting the stage for future development of diabetes (increased glucose:insulin ratio), obesity (increased NPY and food intake), and neurological impairment (loss of cerebral volume).
Collapse
Affiliation(s)
- Jing He
- Divisions of Neonatology and Developmental Biology, Departments of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
27
|
Gosby AK, Maloney CA, Phuyal JL, Denyer GS, Bryson JM, Caterson ID. Maternal protein restriction increases hepatic glycogen storage in young rats. Pediatr Res 2003; 54:413-8. [PMID: 12788979 DOI: 10.1203/01.pdr.0000077470.63060.9b] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This study aimed to determine whether maternal protein restriction alters hepatic glycogen metabolism. Mated female rats were fed diets containing 20% protein throughout pregnancy and lactation (CONT), 8% protein throughout pregnancy and lactation (LP), or 8% protein during the last week of pregnancy only and lactation (LLP). Weights and lengths were reduced in the LLP and LP offspring compared with the CONT offspring. The LLP and LP offspring demonstrated reduced insulin concentrations at both 10 and 26 d and also failed to show the increase in insulin seen with time in the CONT offspring. Serum glucose and leptin levels increased with time but were not different among the groups; however, in relation to adiposity leptin levels were greater in the LLP and LP offspring at 26 d. The LLP and LP offspring had increased hepatic glycogen at day 10 (CONT, 75.1 +/- 9.8; LLP, 103.4 +/- 11.0; LP, 116.0 +/- 18.4 glucose residues/g tissue) and d 26 (CONT, 183.1 +/- 38.9; LLP, 395.3 +/- 16.8; LP, 396.6 +/- 15.1 glucose residues/g tissue). Glycogen synthase expression was increased in the LLP and LP offspring at 10 d but not 26 d; glucose transporter 2 and glycogen phosphorylase expressions were not different at either time. At 26 d glycogen synthase activity was not different; however, glycogen phosphorylase a activity was reduced. The enhanced capacity to store glycogen despite reductions in insulin secretion suggests increased insulin sensitivity possibly acting with an alternative non-insulin-dependent glycogen storage mechanism.
Collapse
Affiliation(s)
- Alison K Gosby
- Human Nutrition Unit, School of Molecular and Microbial Biosciences, University of Sydney, Sydney NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
28
|
Wagner KD, Scholz H. The long-lasting impact of postnatal neuropeptide Y. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1382-3. [PMID: 12736174 DOI: 10.1152/ajpregu.00124.2003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Varma A, He J, Weissfeld L, Devaskar SU. Postnatal intracerebroventricular exposure to neuropeptide Y causes weight loss in female adult rats. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1560-6. [PMID: 12573978 DOI: 10.1152/ajpregu.00557.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We investigated the effect of repetitive postnatal (2-7 days) intracerebroventricular administration of neuropeptide Y (NPY) on food intake and body weight gain in the 3- to 120-day-old Sprague-Dawley rats. NPY caused a 32% transient increase in body weight gain with elevated circulating insulin concentrations within 24 h. This early intervention led to the persistence of hyperinsulinemia and relative hyperleptinemia with euglycemia in the 120-day-old female alone. This perturbation was associated with 50% suppression in adult female hypothalamic NPY concentrations and a 50-85% decline in NPY immunoreactivity in the paraventricular and arcuate nuclei. This change was paralleled by a approximately 20% decline in food intake and body weight gain at 60 and 120 days. However, when exogenous NPY was stereotaxically reinjected into the paraventricular nucleus of the approximately 120-day-old adult females who were pretreated with NPY postnatally, an increase in food intake and body weight gain was noted, attesting to no disruption in the NPY end-organ responsivity. We conclude that postnatal intracerebroventricular NPY has long-lasting effects that predetermine the resultant adult phenotype in a sex-specific manner.
Collapse
Affiliation(s)
- Amit Varma
- University of Pittsburgh Schools of Medicine; Public Health, Pittsburgh, Pennsylvania 15213-3180, USA
| | | | | | | |
Collapse
|
30
|
Thamotharan M, McKnight RA, Thamotharan S, Kao DJ, Devaskar SU. Aberrant insulin-induced GLUT4 translocation predicts glucose intolerance in the offspring of a diabetic mother. Am J Physiol Endocrinol Metab 2003; 284:E901-14. [PMID: 12540375 DOI: 10.1152/ajpendo.00516.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the long-term effect of in utero exposure to streptozotocin-induced maternal diabetes on the progeny that postnatally received either ad libitum access to milk by being fed by control mothers (CM/DP) or were subjected to relative nutrient restriction by being fed by diabetic mothers (DM/DP) compared with the control progeny fed by control mothers (CM/CP). There was increased food intake, glucose intolerance, and obesity in the CM/DP group and diminished food intake, glucose tolerance, and postnatal growth restriction in the DM/DP group, persisting in the adult. These changes were associated with aberrations in hormonal and metabolic profiles and alterations in hypothalamic neuropeptide Y concentrations. By use of subfractionation and Western blot analysis techniques, the CM/DP group demonstrated a higher skeletal muscle sarcolemma-associated (days 1 and 60) and white adipose tissue plasma membrane-associated (day 60) GLUT4 in the basal state with a lack of insulin-induced translocation. The DM/DP group demonstrated a partial amelioration of this change observed in the CM/DP group. We conclude that the offspring of a diabetic mother with ad libitum postnatal nutrition demonstrates increased food intake and resistance to insulin-induced translocation of GLUT4 in skeletal muscle and white adipose tissue. This in turn leads to glucose intolerance and obesity at a later stage (day 180). Postnatal nutrient restriction results in reversal of this adult phenotype, thereby explaining the phenotypic heterogeneity that exists in this population.
Collapse
Affiliation(s)
- M Thamotharan
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1752, USA
| | | | | | | | | |
Collapse
|
31
|
Sankar R, Thamotharan S, Shin D, Moley KH, Devaskar SU. Insulin-responsive glucose transporters-GLUT8 and GLUT4 are expressed in the developing mammalian brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 107:157-65. [PMID: 12425944 DOI: 10.1016/s0169-328x(02)00487-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We investigated the spatial and temporal distribution of insulin-responsive facilitative glucose transporter isoforms GLUT4 and GLUT8 in the developing mouse brain. Employing Western blot analysis and specific antibodies, GLUT4 and GLUT8 peaked during the suckling phase. Immunohistochemical analysis revealed the presence of GLUT4 mainly in neurites in sensory and motor areas of cortical and subcortical structures of the brain from P7 until adulthood. In contrast, GLUT8 was found in the same anatomical structures within neurites and cell bodies. Most striking was the presence of GLUT8 in the cell bodies of the substantia nigra. We conclude that both GLUT4 and GLUT8 are present in murine brain, with highest concentrations noted during the suckling phase. These insulin-responsive isoforms may have a unique role in augmenting substrate delivery under conditions of increased demand.
Collapse
Affiliation(s)
- Raman Sankar
- Department of Pediatrics, UCLA School of Medicine, Los Angeles, CA 90095-1752, USA
| | | | | | | | | |
Collapse
|
32
|
Devaskar SU, Anthony R, Hay W. Ontogeny and insulin regulation of fetal ovine white adipose tissue leptin expression. Am J Physiol Regul Integr Comp Physiol 2002; 282:R431-8. [PMID: 11792652 DOI: 10.1152/ajpregu.2002.282.2.r431] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leptin, an adipocyte-derived factor, has multiple biological roles including mitogenesis. We investigated the effect of normal development, acute and chronic hyperglycemia and hypoglycemia, and selective acute hyperglycemia, or hyperinsulinemia, on fetal ovine white adipose tissue (WAT) leptin mRNA concentrations. Leptin mRNA amounts expressed as a ratio to the internal control ribosomal S2 mRNA decreased threefold with advancing gestational age (P < 0.05). This gestational decrease was opposite to the 10-fold increase in fetal body weight during the same developmental period. Chronic hyperglycemia with hyperinsulinemia led to no change in WAT leptin mRNA concentrations over a 1- to 10-day duration, but it caused a 40% increase over a 14- to 20-day duration (P < 0.05) along with an increase in fetal body weight (P < 0.05). In contrast, hypoglycemia with hypoinsulinemia, while not affecting WAT leptin mRNA from 1 to 34 days, resulted in a 50% decline over a 36- to 76-day duration along with a decline in fetal body weight (P < 0.05). Acute 24-h studies of selective hyperglycemia with euinsulinemia showed no significant change in WAT leptin mRNA, but in response to selective hyperinsulinemia with euglycemia at 24 h, a twofold increase was observed (P < 0.05). We conclude that fetal WAT leptin mRNA amounts are regulated by fetal development and circulating insulin concentrations. We speculate that chronic in utero metabolic perturbations that alter circulating insulin concentrations affect fetal leptin production that may mediate insulin's influence on fetal growth.
Collapse
Affiliation(s)
- Sherin U Devaskar
- Department of University of California Los Angeles School of Medicine, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
33
|
Abstract
The regulation of body weight is a complex process which relies on a balance between supply of nutrients and demand on these nutrients in the form of energy expenditure. Various central and peripheral mechanisms play a crucial role in maintaining this balance. While various neuropeptides in the central nervous system (CNS), particularly in the hypothalamus, maintain the necessary harmony between hyperphagia and anorexia, peripheral signals arising from the gastrointestinal tract (cholecystokinin-8 [CCK-8], amylin), pancreas (insulin) and adipose tissue (leptin) provide the necessary stimuli or a feedback inhibition for the synthesis and secretion of these hypothalamic neuropeptides. Various metabolites of the carbohydrate and fat metabolism are also involved in regulating the neuronal activity in the hypothalamus which ultimately leads to a release of key neuropeptides. In addition to the central mechanisms, peripheral mechanisms that regulate energy expenditure, particularly in the brown adipose tissue and skeletal muscle, are critical in maintaining the overall balance. Insight into these mechanisms sets the stage for developing novel strategies in the treatment of emerging childhood diseases such as obesity, anorexia nervosa, and bulimia. Further, delineation of these processes in the fetus and newborn sets the stage for investigating their role in molding the adult phenotype due to intrauterine adaptations.
Collapse
Affiliation(s)
- S U Devaskar
- Department of Pediatrics, UCLA School of Medicine & Mattel Children's Hospital at UCLA, Los Angeles, CA 90095-1752, USA.
| |
Collapse
|
34
|
Huizinga CT, Oudejans CB, Steiner RA, Clifton DK, Delemarre-van de Waal HA. Effects of intrauterine and early postnatal growth restriction on hypothalamic somatostatin gene expression in the rat. Pediatr Res 2000; 48:815-20. [PMID: 11102552 DOI: 10.1203/00006450-200012000-00019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the human, intrauterine growth retardation (IUGR) can result in persistent postnatal growth failure, which may be attributable, in part, to abnormal GH secretion. Whether putative alterations in GH secretion are the result of abnormalities intrinsic to the pituitary or reflect changes in the production of GH-releasing hormone or somatostatin (SS) is unknown. We tested the hypothesis that growth failure associated with IUGR or early postnatal food restriction (FR) is caused by a central defect in hypothalamic SS gene expression. Both models displayed persistent growth failure postnatally without any catch-up growth. We measured levels of SS mRNA levels in rats experimentally subjected to IUGR or FR. SS mRNA levels were measured by semiquantitative in situ hybridization throughout development. Levels of SS mRNA in the periventricular nucleus were significantly higher in both male and female IUGR rats in the juvenile and adult stages compared with matched controls (p < or = 0.05). FR was associated with higher SS mRNA levels only in neonatal female rats (p < or = 0.05). These results suggest that intrauterine malnutrition induces a persistent increase in the expression of SS mRNA in the periventricular nucleus, whereas early postnatal FR results in only a transient increase in SS gene expression. Because IGF-I levels were normal in juvenile IUGR and FR rats, central dysregulation of SS neurons does not appear to be the cause of early postnatal growth failure in either model. However, these observations are consistent with the hypothesis that nutritional stress at critical times during development can have persistent and potentially irreversible effects on organ function.
Collapse
Affiliation(s)
- C T Huizinga
- Research Institute for Endocrinology, Reproduction and Metabolism, Departments of Pediatrics, University Hospital Vrije Universiteit, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Fields HM, Rinaman L, Devaskar SU. Distribution of glucose transporter isoform-3 and hexokinase I in the postnatal murine brain. Brain Res 1999; 846:260-4. [PMID: 10556644 DOI: 10.1016/s0006-8993(99)01979-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The facilitative glucose transporter-3 (GLUT 3) and hexokinase I were examined in postnatal mouse brains using immunohistochemical methods. GLUT 3 demonstrated a polarized distribution limited to neuronal processes of most anatomical regions except the suprachiasmatic nucleus and the cerebellum, where GLUT 3 expression was limited to neuronal cell somata. In contrast, hexokinase I was observed in the cytoplasm of neuronal and non-neuronal (subependymal and choroid plexus epithelial) cell bodies in all regions. In general, while the spatial distribution of GLUT 3 and hexokinase I did not change with age, a temporal increase in intensity was noted in all regions except for the decline in suprachiasmatic nuclear GLUT 3 immunoreactivity.
Collapse
Affiliation(s)
- H M Fields
- Division of Neonatology and Developmental Biology, Department of Pediatrics, University of Pittsburgh, Magee-Womens Research Institute, Pittsburgh, PA, USA
| | | | | |
Collapse
|