1
|
Moserová H, Frgelecová L, Morávek R, Proks P. Prenatal ultrasound diagnosis of ectopic ureter and renal hypoplasia in two puppies: a case report. Vet Res Commun 2025; 49:163. [PMID: 40214841 PMCID: PMC11991952 DOI: 10.1007/s11259-025-10732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
This study reports two cases of prenatal ultrasound diagnosis of ectopic ureter and bilateral renal hypoplasia in two different canine fetuses. These developmental disorders were detected during a routine pregnancy ultrasound examination of a female Golden retriever and a female Old English bulldog. A suspected diagnosis of ectopic ureter was made based on the ultrasonographic detection of fetal kidney hydronephrosis and ureteral dilatation, along with consideration of breed predisposition. Bilateral fetal renal hypoplasia presented with ultrasonographic detection of reduced, hyperechogenic fetal kidneys without a distinguishable renal pelvis. Ultrasonographic findings were subsequently confirmed postnatally at surgery or autopsy and histopathology. Our findings highlight the potential for early detection of urogenital anomalies in canines and the importance of knowledge of normal fetal anatomy during ultrasound examination of pregnancy.
Collapse
Affiliation(s)
- H Moserová
- Department of Diagnostic Imaging, Faculty of Veterinary Medicine, Small Animal Clinic, University of Veterinary Sciences Brno, Brno, 612 42, Czech Republic.
| | - L Frgelecová
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences Brno, Brno, 612 42, Czech Republic
| | - R Morávek
- Department of Diagnostic Imaging, Faculty of Veterinary Medicine, Small Animal Clinic, University of Veterinary Sciences Brno, Brno, 612 42, Czech Republic
| | - P Proks
- Department of Diagnostic Imaging, Faculty of Veterinary Medicine, Small Animal Clinic, University of Veterinary Sciences Brno, Brno, 612 42, Czech Republic
| |
Collapse
|
2
|
Milner AR, Johnson AC, Attipoe EM, Wu W, Challagundla L, Garrett MR. Methylseq, single-nuclei RNAseq, and discovery proteomics identify pathways associated with nephron-deficit CKD in the HSRA rat model. Am J Physiol Renal Physiol 2025; 328:F470-F488. [PMID: 39982494 DOI: 10.1152/ajprenal.00258.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/01/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025] Open
Abstract
Low nephron numbers are associated with an increased risk of developing chronic kidney disease (CKD) and hypertension, which are significant global health problems. To investigate the impact of nephron deficiency, our laboratory developed a novel inbred rat model (HSRA rat). In this model, ∼75% of offspring are born with a single kidney (HSRA-S), compared with two-kidney littermates (HSRA-C). HSRA-S rats show impaired kidney development, resulting in ∼20% fewer nephrons. Our previous data and current findings demonstrate that nephron deficit (failure of one kidney to form and altered development in the remaining kidney) predisposes HSRA-S to CKD late in life (with increased proteinuria by 18 mo of age in HSRA-S = 51 ± 3.4 vs. HSRA-C = 8 ± 1.5 mg/24 h). To understand early molecular mechanisms contributing to the increased predisposition to CKD, Methylseq using reduced representation bisulfite sequencing, single-nuclei (sn)RNAseq, and discovery proteomics were performed in kidneys of 4-wk-old HSRA rats. Methylation analysis revealed a small number of differences, including five differentially methylated cytosines and six differentially methylated regions between groups. The snRNAseq analysis identified differentially expressed genes in most kidney cell types, with several hundred genes dysregulated depending on the analysis method (Seurat vs. DESeq2). Notably, many genes are involved in kidney development. Discovery proteomic analysis identified 366 differentially expressed proteins. A key finding was dysregulation of Deptor/DEPTOR and Amdhd2/AMDHD2 across omics layers, suggesting a potential role in compensatory mechanisms or the genetic basis of altered kidney development. Further understanding of these mechanisms may guide interventions to preserve nephron health and slow kidney disease progression.NEW & NOTEWORTHY The HSRA rat is a novel model of nephron deficiency and provides a unique opportunity to study the association between nephron number and chronic kidney disease (CKD). Previous work characterized the impact of age, hypertension, and diabetes on the development of CKD in HSRA animals. This study examined early changes in epigenetics, cell-type specific transcriptome, and proteomic changes in the kidney that likely predispose the model to CKD with age.
Collapse
Affiliation(s)
- Andrew R Milner
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Ashley C Johnson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Esinam M Attipoe
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Wenjie Wu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lavanya Challagundla
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Michael R Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Pediatrics (Genetics), University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
3
|
Romagnani P, Agarwal R, Chan JCN, Levin A, Kalyesubula R, Karam S, Nangaku M, Rodríguez-Iturbe B, Anders HJ. Chronic kidney disease. Nat Rev Dis Primers 2025; 11:8. [PMID: 39885176 DOI: 10.1038/s41572-024-00589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 02/01/2025]
Abstract
Chronic kidney disease (CKD) is defined by persistent abnormalities of kidney function or structure that have consequences for the health. A progressive decline of excretory kidney function has effects on body homeostasis. CKD is tightly associated with accelerated cardiovascular disease and severe infections, and with premature death. Kidney failure without access to kidney replacement therapy is fatal - a reality in many regions of the world. CKD can be the consequence of a single cause, but CKD in adults frequently relates rather to sequential injuries accumulating over the life course or to the presence of concomitant risk factors. The shared pathomechanism of CKD progression is the irreversible loss of kidney cells or nephrons together with haemodynamic and metabolic overload of the remaining nephrons, leading to further loss of kidney cells or nephrons. The management of patients with CKD focuses on early detection and on controlling all modifiable risk factors. This approach includes reducing the overload of the remaining nephrons with inhibitors of the renin-angiotensin system and the sodium-glucose transporter 2, as well as disease-specific drug interventions, if available. Hypertension, anaemia, metabolic acidosis and secondary hyperparathyroidism contribute to cardiovascular morbidity and reduced quality of life, and require diagnosis and treatment.
Collapse
Affiliation(s)
- Paola Romagnani
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Rajiv Agarwal
- Richard L. Roudebush VA Medical Center and Indiana University, Indianapolis, IN, USA
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences and Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Adeera Levin
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Renal, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Robert Kalyesubula
- African Community Center for Social Sustainability, Nakaseke District, Uganda
- Department of Physiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sabine Karam
- Division of Nephrology and Hypertension, University of Minnesota, Minneapolis, MN, USA
- Department of Internal Medicine, Division of Nephrology and Hypertension, American University of Beirut, Beirut, Lebanon
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo, Bunkyo City, Tokyo, Japan
| | | | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
4
|
Brockwell M, Hergenrother S, Satariano M, Shah R, Raina R. Pathophysiology of Congenital Anomalies of the Kidney and Urinary Tract: A Comprehensive Review. Cells 2024; 13:1866. [PMID: 39594614 PMCID: PMC11593116 DOI: 10.3390/cells13221866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) represent a broad range of diseases with differing mechanisms, clinical presentations, and prognoses. With an estimated prevalence of between 4 and 60 per 10,000 births, CAKUT represents a sizable number of patients for pediatric and adult nephrologists as therapies have progressed, allowing longer life spans. Many CAKUT disorders are associated with genetic mutations, and with advances in genomic sequencing, these genes are being identified at an increasing rate. Understanding these mutations provides insight into these conditions' molecular mechanisms and pathophysiology. In this article, we discuss the epidemiology, presentation, and outcomes of CAKUT in addition to our current understanding of genetic and molecular mechanisms in these diseases.
Collapse
Affiliation(s)
- Maximilian Brockwell
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (M.B.); (S.H.); (M.S.); (R.S.)
| | - Sean Hergenrother
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (M.B.); (S.H.); (M.S.); (R.S.)
| | - Matthew Satariano
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (M.B.); (S.H.); (M.S.); (R.S.)
| | - Raghav Shah
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (M.B.); (S.H.); (M.S.); (R.S.)
| | - Rupesh Raina
- Akron Nephrology Associates, Cleveland Clinic Akron General Medical Center, Akron, OH 44307, USA
- Department of Nephrology, Akron Children’s Hospital, Akron, OH 44308, USA
| |
Collapse
|
5
|
Gazeu A, Collardeau-Frachon S. Practical Approach to Congenital Anomalies of the Kidneys: Focus on Anomalies With Insufficient or Abnormal Nephron Development: Renal Dysplasia, Renal Hypoplasia, and Renal Tubular Dysgenesis. Pediatr Dev Pathol 2024; 27:459-493. [PMID: 39270126 DOI: 10.1177/10935266241239241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) accounts for up to 30% of antenatal congenital anomalies and is the main cause of kidney failure in children worldwide. This review focuses on practical approaches to CAKUT, particularly those with insufficient or abnormal nephron development, such as renal dysplasia, renal hypoplasia, and renal tubular dysgenesis. The review provides insights into the histological features, pathogenesis, mechanisms, etiologies, antenatal and postnatal presentation, management, and prognosis of these anomalies. Differential diagnoses are discussed as several syndromes may include CAKUT as a phenotypic component and renal dysplasia may occur in some ciliopathies, tumor predisposition syndromes, and inborn errors of metabolism. Diagnosis and genetic counseling for CAKUT are challenging, due to the extensive variability in presentation, genetic and phenotypic heterogeneity, and difficulties to assess postnatal lung and renal function on prenatal imaging. The review highlights the importance of perinatal autopsy and pathological findings in surgical specimens to establish the diagnosis and prognosis of CAKUT. The indications and the type of genetic testing are discussed. The aim is to provide essential insights into the practical approaches, diagnostic processes, and genetic considerations offering valuable guidance for pediatric and perinatal pathologists.
Collapse
Affiliation(s)
- Alexia Gazeu
- Department of pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, University Hospital of Lyon, Lyon Bron, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Sophie Collardeau-Frachon
- Department of pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, University Hospital of Lyon, Lyon Bron, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
- Société française de Fœtopathologie, Soffoet, Paris, France
| |
Collapse
|
6
|
Mahmoud AH, Talaat IM, Tlili A, Hamoudi R. Congenital anomalies of the kidney and urinary tract. Front Med (Lausanne) 2024; 11:1384676. [PMID: 39076761 PMCID: PMC11284074 DOI: 10.3389/fmed.2024.1384676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/19/2024] [Indexed: 07/31/2024] Open
Abstract
Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) refer to a range of conditions that affect the kidney and urinary tract. These anomalies can be severe, such as kidney agenesis, or milder, such as vesicoureteral reflux. CAKUT affects over 1% of live births and accounts for 40-50% of cases of chronic kidney failure in children. The pathogenesis of CAKUT is caused by various environmental, genetic, and epigenetic factors that disrupt normal nephrogenesis. Environmental factors that can lead to CAKUT include maternal diabetes, obesity, malnutrition, alcohol consumption, or medications affecting kidneys development. Genetic factors can cause an imbalance in the metanephros and the ureteric bud interaction. Defects in specific genes such as PAX2, TBX18, NRIP1, REX, SIX2, BMP4, and chromosome 17 cause CAKUT. Over 50 genes have been identified as the root cause of this condition, with monogenetic variants causing up to 20% of all cases. CAKUTs can be diagnosed through fetal ultrasonography, but some anomalies may remain undetected. GWASs, Next Generation Sequencing for targeted and whole exome DNA sequencing may provide additional diagnostic methods. This review article highlights some the leading factors that cause CAKUT, which adversely affects kidney development and urinary tract function.
Collapse
Affiliation(s)
- Anfal Hussain Mahmoud
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman M. Talaat
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
7
|
Moradi B, Golezar MH, Mortazavi Ardestani R, Hassanzadeh S, Jannatdoust P, Banihashemian M, Batavani N. Ultrasound and magnetic resonance imaging features of fetal urogenital anomalies: A pictorial essay. Congenit Anom (Kyoto) 2024; 64:70-90. [PMID: 38586935 DOI: 10.1111/cga.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/27/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
This pictorial essay focuses on ultrasound (US) and magnetic resonance imaging (MRI) features of fetal urogenital anomalies. Fetal urogenital malformations account for 30%-50% of all anomalies discovered during pregnancy or at birth. They are usually detected by fetal ultrasound exams. However, when ultrasound data on their characteristics is insufficient, MRI is the best option for detecting other associated anomalies. The prognosis highly depends on their type and whether they are associated with other fetal abnormalities.
Collapse
Affiliation(s)
- Behnaz Moradi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Yas Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Golezar
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | | | - Sara Hassanzadeh
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Payam Jannatdoust
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Banihashemian
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Batavani
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Kirschen GW, Blakemore K, Al-Kouatly HB, Fridkis G, Baschat A, Gearhart J, Jelin AC. The genetic etiologies of bilateral renal agenesis. Prenat Diagn 2024; 44:205-221. [PMID: 38180355 PMCID: PMC10932914 DOI: 10.1002/pd.6516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE The goal of this study was to review and analyze the medical literature for cases of prenatal and/or postnatally diagnosed bilateral renal agenesis (BRA) and create a comprehensive summary of the genetic etiologies known to be associated with this condition. METHODS A literature search was conducted as a scoping review employing Online Mendeliain Inheritance in Man, PubMed, and Cochrane to identify cases of BRA with known underlying genetic (chromosomal vs. single gene) etiologies and those described in syndromes without any known genetic etiology. The cases were further categorized as isolated versus non-isolated, describing additional findings reported prenatally, postnatally, and postmortem. Inheritance pattern was also documented when appropriate in addition to the reported timing of diagnosis and sex. RESULTS We identified six cytogenetic abnormalities and 21 genes responsible for 20 single gene disorders associated with BRA. Five genes have been reported to associate with BRA without other renal anomalies; sixteen others associate with both BRA as well as unilateral renal agenesis. Six clinically recognized syndromes/associations were identified with an unknown underlying genetic etiology. Genetic etiologies of BRA are often phenotypically expressed as other urogenital anomalies as well as complex multi-system syndromes. CONCLUSION Multiple genetic etiologies of BRA have been described, including cytogenetic abnormalities and monogenic syndromes. The current era of the utilization of exome and genome-wide sequencing is likely to significantly expand our understanding of the underlying genetic architecture of BRA.
Collapse
Affiliation(s)
- Gregory W Kirschen
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Karin Blakemore
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Huda B Al-Kouatly
- Division of Maternal-Fetal Medicine, Jefferson Health, Philadelphia, New York, USA
| | - Gila Fridkis
- Physician Affiliate Group of New York, P.C. (PAGNY), Department of Pediatrics, Metropolitan Hospital Center, New York, New York, USA
| | - Ahmet Baschat
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - John Gearhart
- Department of Urology, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Angie C Jelin
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Singh K, Jain M, Pujani M, Chauhan V, Khandelwal A, Abbas SZ. Congenital Unilateral Hypoplasia of Kidney with Mesonephric Remnants in the Ureter: A Case Report. Indian J Nephrol 2023; 33:373-376. [PMID: 37881746 PMCID: PMC10593295 DOI: 10.4103/ijn.ijn_579_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/17/2022] [Accepted: 04/18/2022] [Indexed: 10/27/2023] Open
Abstract
Mesonephric remnants persist as an appendix of epididymis and paradidymis in efferent ductules in males and skene's glands and Gartner's ducts in females. The mesonephric remnant in the renal parenchyma is extremely rare and only a few cases have been reported in the literature. We present a case with a non-functioning atrophic left kidney. Histopathology showed variable-sized ducts filled with colloid-like material surrounded by collagenized stroma. The ureter showed hypertrophied muscle and a few ducts lined by flattened and a few by columnar epithelium resembling epididymis suggestive of mesonephric remnants. IHC for CD10, PAX 8, and GATA3 was positive. A diagnosis of congenital unilateral hypoplasia of kidneys and ureter with mesonephric remnants was given.
Collapse
Affiliation(s)
- Kanika Singh
- Department of Pathology, ESIC Medical College, Faridabad, Haryana, India
| | - Manjula Jain
- Department of Pathology, ESIC Medical College, Faridabad, Haryana, India
| | - Mukta Pujani
- Department of Pathology, ESIC Medical College, Faridabad, Haryana, India
| | - Varsha Chauhan
- Department of Pathology, ESIC Medical College, Faridabad, Haryana, India
| | - Aparna Khandelwal
- Department of Pathology, ESIC Medical College, Faridabad, Haryana, India
| | - Syed Zafar Abbas
- Department of Radiology, ESIC Medical College, Faridabad, Haryana, India
| |
Collapse
|
10
|
Li G, Strong A, Wang H, Kim JS, Watson D, Zhao S, Vaccaro C, Hartung E, Hakonarson H, Zhang TJ, Giampietro PF, Wu N. TBX6 as a cause of a combined skeletal-kidney dysplasia syndrome. Am J Med Genet A 2022; 188:3469-3481. [PMID: 36161696 PMCID: PMC10473889 DOI: 10.1002/ajmg.a.62972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/24/2022] [Accepted: 08/06/2022] [Indexed: 01/31/2023]
Abstract
TBX6 encodes transcription-factor box 6, a transcription factor critical to paraxial mesoderm segmentation and somitogenesis during embryonic development. TBX6 haploinsufficiency is believed to drive the skeletal and kidney phenotypes associated with the 16p11.2 deletion syndrome. Heterozygous and biallelic variants in TBX6 are associated with vertebral and rib malformations (TBX6-associated congenital scoliosis) and spondylocostal dysostosis, and heterozygous TBX6 variants are associated with increased risk of genitourinary tract malformations. Combined skeletal and kidney phenotypes in individuals harboring heterozygous or biallelic TBX6 variants are rare. Here, we present seven individuals with vertebral and rib malformations and structural kidney differences associated with heterozygous TBX6 gene deletion in trans with a hypomorphic TBX6 allele or biallelic TBX6 variants. Our case series highlights the association between TBX6 and both skeletal and kidney disease.
Collapse
Affiliation(s)
- Guozhuang Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Alanna Strong
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Haojun Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ji-Sun Kim
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical Center, New Brunswick, NJ
| | - Deborah Watson
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Courtney Vaccaro
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Erum Hartung
- Division of Nephrology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hakon Hakonarson
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Philip F. Giampietro
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical Center, New Brunswick, NJ
- Department of Pediatrics, University of Illinois-Chicago, Chicago, IL
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| |
Collapse
|
11
|
Abstract
Congenital anomalies of the kidney and urinary tract encompass a broad spectrum of developmental conditions that together account for the majority of childhood chronic kidney diseases. Kidney abnormalities are the most commonly diagnosed congenital anomaly in children, and detection of this anomaly is increasing as a result of improved antenatal care and widespread access to more sensitive screening ultrasonography. Most paediatricians will encounter children with congenital kidney anomalies across a wide spectrum of disorders, and a broad understanding of the classification, investigation, and basis of management is important to appropriately direct their care.
Collapse
Affiliation(s)
- Caoimhe S Costigan
- Division of Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G1X8, Canada
| | - Norman D Rosenblum
- Division of Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G1X8, Canada; Developmental & Stem Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Physiology, and Laboratory Medicine and Pathobiology, University of Toronto; Peter Gilgan Centre for Research and Learning, 686 Bay Street, 16th Floor, Room 16.9706, Toronto, ON M5G 0A4, Canada.
| |
Collapse
|
12
|
Anatomy and embryology of congenital surgical anomalies: Congenital Anomalies of the Kidney and Urinary Tract. Semin Pediatr Surg 2022; 31:151232. [PMID: 36423515 DOI: 10.1016/j.sempedsurg.2022.151232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Congenital anomalies of the kidney and urinary tract or "CAKUT" describes a spectrum of developmental disorders with a range of associated clinical presentations and functional consequences. CAKUT underlies the majority of chronic kidney disease and kidney replacement therapy requirement in children, but functional deterioration can also emerge in adulthood. Understanding the normal embryological processes involved in kidney development allows us to appreciate the timing and sequence of critical events implicated when things go wrong. In this review, we will describe the normal developmental mechanisms and relate this to what we currently know about the pathological processes involved in various forms of CAKUT. We will also review the proposed etiological factors, in particular genetics, involved in CAKUT.
Collapse
|
13
|
Perl AJ, Schuh MP, Kopan R. Regulation of nephron progenitor cell lifespan and nephron endowment. Nat Rev Nephrol 2022; 18:683-695. [PMID: 36104510 PMCID: PMC11078284 DOI: 10.1038/s41581-022-00620-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Low nephron number - resulting, for example, from prematurity or developmental anomalies - is a risk factor for the development of hypertension, chronic kidney disease and kidney failure. Considerable interest therefore exists in the mechanisms that regulate nephron endowment and contribute to the premature cessation of nephrogenesis following preterm birth. The cessation of nephrogenesis in utero or shortly after birth is synchronized across multiple niches in all mammals, and is coupled with the exhaustion of nephron progenitor cells. Consequently, no nephrons are formed after the cessation of developmental nephrogenesis, and lifelong renal function therefore depends on the complement of nephrons generated during gestation. In humans, a tenfold variation in nephron endowment between individuals contributes to differences in susceptibility to kidney disease; however, the mechanisms underlying this variation are not yet clear. Salient advances in our understanding of environmental inputs, and of intrinsic molecular mechanisms that contribute to the regulation of cessation timing or nephron progenitor cell exhaustion, have the potential to inform interventions to enhance nephron endowment and improve lifelong kidney health for susceptible individuals.
Collapse
Affiliation(s)
- Alison J Perl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Meredith P Schuh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Muacevic A, Adler JR. Wunderlich Syndrome: Spontaneous Cystic Rupture on Account of Acquired Kidney Atrophy. Cureus 2022; 14:e30386. [PMID: 36407245 PMCID: PMC9668205 DOI: 10.7759/cureus.30386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 01/25/2023] Open
Abstract
Wunderlich syndrome is an uncommon condition of spontaneous subcapsular and perirenal hemorrhage of atraumatic etiology in the kidney, with the potential to spread to the retroperitoneal region beyond the perirenal fascias. Its clinical manifestations usually include Lenk's triad, namely, acute flank pain, flank mass, and hemodynamic instability, which vary depending on the causative underlying renal pathology. Tumor bleeding of benign and malignant renal neoplasms is the most common cause of this syndrome, followed by vascular disorders and renal cystic diseases. Here, we report the case of a unilateral subcapsular renal hematoma on account of a left atrophic kidney with parapelvic cystic formations and variant hypoplastic vasculature which was successfully managed via radical nephrectomy after initial conservative treatment. Spontaneous cystic rupture contributed to the emergence of the syndrome, and its mechanisms are being addressed.
Collapse
|
15
|
Evaluation of subclinical cardiovascular risk and cardiac function in children with vesicoureteral reflux: a prospective study. Cardiol Young 2022; 32:1222-1228. [PMID: 34583805 DOI: 10.1017/s1047951121004005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Vesicoureteral reflux is a prominent congenital anomaly of the kidney and the urinary tract. Further, renal scarring is known to be related to chronic inflammation. However, there have been limited studies to date regarding the cardiovascular consequences of vesicoureteral reflux. OBJECTIVE The aim of this study is to evaluate the possible subclinical atherosclerosis and cardiovascular complications in children with vesicoureteral reflux. METHODS Patients with vesicoureteral reflux and age matched healthy controls were prospectively included in this case-control study. Patients were divided into two groups concerning renal scarring status. To assess cardiac functions, carotid artery intima media, epicardial adipose tissue, and periaortic adipose tissue thicknesses were evaluated. RESULTS There were 50 patients with vesicoureteral reflux; 26 patients without renal scarring and 24 patients with renal scarring, as well as 40 healthy controls. Myocardial performance indexes (Tei indexes) measured by tissue Doppler echocardiography from septum and left ventricle were significantly increased in study group (for all, p < 0.001). Also, intima media, epicardial adipose tissue, and periaortic adipose tissue thicknesses of the study groups were significantly higher than the control group (for all, p < 0.001). However, no statistical difference was observed between renal scarring (-) and renal scarring (+) groups. CONCLUSIONS Results of our study showed early deterioration of cardiac systolic and diastolic functions in children with vesicoureteral reflux regardless of renal scarring. Also, diagnosis of vesicoureteral reflux is an important risk factor for subclinical atherosclerosis, independent of renal scarring, which should be considered in the follow-up of these patients.
Collapse
|
16
|
State of the Science for Kidney Disorders in Phelan-McDermid Syndrome: UPK3A, FBLN1, WNT7B, and CELSR1 as Candidate Genes. Genes (Basel) 2022; 13:genes13061042. [PMID: 35741804 PMCID: PMC9223119 DOI: 10.3390/genes13061042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023] Open
Abstract
Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder caused by chromosomal rearrangements affecting the 22q13.3 region or by SHANK3 pathogenic variants. The scientific literature suggests that up to 40% of individuals with PMS have kidney disorders, yet little research has been conducted on the renal system to assess candidate genes attributed to these disorders. Therefore, we first conducted a systematic review of the literature to identify kidney disorders in PMS and then pooled the data to create a cohort of individuals to identify candidate genes for renal disorders in PMS. We found 7 types of renal disorders reported: renal cysts, renal hypoplasia or agenesis, hydronephrosis, vesicoureteral reflux, kidney dysplasia, horseshoe kidneys, and pyelectasis. Association analysis from the pooled data from 152 individuals with PMS across 22 articles identified three genomic regions spanning chromosomal bands 22q13.31, 22q13.32, and 22q13.33, significantly associated with kidney disorders. We propose UPK3A, FBLN1, WNT7B, and CELSR1, located from 4.5 Mb to 5.5 Mb from the telomere, as candidate genes. Our findings support the hypothesis that genes included in this region may play a role in the pathogenesis of kidney disorders in PMS.
Collapse
|
17
|
Cwiek A, Suzuki M, deRonde K, Conaway M, Bennett KM, El Dahr S, Reidy KJ, Charlton JR. Premature differentiation of nephron progenitor cell and dysregulation of gene pathways critical to kidney development in a model of preterm birth. Sci Rep 2021; 11:21667. [PMID: 34737344 PMCID: PMC8569166 DOI: 10.1038/s41598-021-00489-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
Preterm birth is a leading cause of neonatal morbidity. Survivors have a greater risk for kidney dysfunction and hypertension. Little is known about the molecular changes that occur in the kidney of individuals born preterm. Here, we demonstrate that mice delivered two days prior to full term gestation undergo premature cessation of nephrogenesis, resulting in a lower glomerular density. Kidneys from preterm and term groups exhibited differences in gene expression profiles at 20- and 27-days post-conception, including significant differences in the expression of fat-soluble vitamin-related genes. Kidneys of the preterm mice exhibited decreased proportions of endothelial cells and a lower expression of genes promoting angiogenesis compared to the term group. Kidneys from the preterm mice also had altered nephron progenitor subpopulations, early Six2 depletion, and altered Jag1 expression in the nephrogenic zone, consistent with premature differentiation of nephron progenitor cells. In conclusion, preterm birth alone was sufficient to shorten the duration of nephrogenesis and cause premature differentiation of nephron progenitor cells. These candidate genes and pathways may provide targets to improve kidney health in preterm infants.
Collapse
Affiliation(s)
- Aleksandra Cwiek
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA
- Cell & Developmental Biology Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Kimberly deRonde
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA
| | - Mark Conaway
- University of Virginia Health System, Charlottesville, VA, USA
- Division of Translational Research and Applied Statistics, Department of Public Health Sciences, University of Virginia School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Kevin M Bennett
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Samir El Dahr
- Department of Pediatrics, Tulane University School of Medicine and Children's Hospital of New Orleans, New Orleans, LA, USA
| | - Kimberly J Reidy
- Division of Nephrology, Department of Pediatrics, Children's Hospital at Montefiore, New York, NY, USA
| | - Jennifer R Charlton
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA.
| |
Collapse
|
18
|
Kim DW, Ahn HG, Kim J, Yoon CS, Kim JH, Yang S. Advanced Kidney Volume Measurement Method Using Ultrasonography with Artificial Intelligence-Based Hybrid Learning in Children. SENSORS (BASEL, SWITZERLAND) 2021; 21:6846. [PMID: 34696057 PMCID: PMC8539895 DOI: 10.3390/s21206846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022]
Abstract
In this study, we aimed to develop a new automated method for kidney volume measurement in children using ultrasonography (US) with image pre-processing and hybrid learning and to formulate an equation to calculate the expected kidney volume. The volumes of 282 kidneys (141 subjects, <19 years old) with normal function and structure were measured using US. The volumes of 58 kidneys in 29 subjects who underwent US and computed tomography (CT) were determined by image segmentation and compared to those calculated by the conventional ellipsoidal method and CT using intraclass correlation coefficients (ICCs). An expected kidney volume equation was developed using multivariate regression analysis. Manual image segmentation was automated using hybrid learning to calculate the kidney volume. The ICCs for volume determined by image segmentation and ellipsoidal method were significantly different, while that for volume calculated by hybrid learning was significantly higher than that for ellipsoidal method. Volume determined by image segmentation was significantly correlated with weight, body surface area, and height. Expected kidney volume was calculated as (2.22 × weight (kg) + 0.252 × height (cm) + 5.138). This method will be valuable in establishing an age-matched normal kidney growth chart through the accumulation and analysis of large-scale data.
Collapse
Affiliation(s)
- Dong-Wook Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26494, Korea; (D.-W.K.); (H.-G.A.); (J.K.)
| | - Hong-Gi Ahn
- Department of Biomedical Engineering, Yonsei University, Wonju 26494, Korea; (D.-W.K.); (H.-G.A.); (J.K.)
| | - Jeeyoung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26494, Korea; (D.-W.K.); (H.-G.A.); (J.K.)
| | - Choon-Sik Yoon
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Ji-Hong Kim
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Sejung Yang
- Department of Biomedical Engineering, Yonsei University, Wonju 26494, Korea; (D.-W.K.); (H.-G.A.); (J.K.)
| |
Collapse
|
19
|
Frazier KS. The Impact of Functional and Structural Maturation of the Kidney on Susceptibility to Drug and Chemical Toxicity in Neonatal Rodents. Toxicol Pathol 2021; 49:1377-1388. [PMID: 34338059 DOI: 10.1177/01926233211035683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drug responses are often unpredictable in juvenile animal toxicity studies; hence, optimizing dosages is challenging. Renal functional differences based on age of development will often result in vastly different toxicologic responses. Developmental changes in renal function can alter plasma clearance of compounds with extensive renal elimination. Absorption, distribution, metabolism, and excretion of drugs vary depending on animal age and kidney maturation. Toxicity can result in malformations or renal degeneration. Although renal morphologic development in humans generally occurs in utero, maximal levels of tubular secretion, acid-base equilibrium, concentrating ability, or glomerular filtration rate (GFR) are reached postnatally in humans and animals and subject to drug effects. Maturation of renal metabolism and transporters occurs postnatally and plays a critical role in detoxification and excretion. Maturation times must be considered when designing juvenile toxicity studies and may require cohorts of animals of specific ages to achieve optimal dosing schemes and toxicokinetics. In recent years, critical end points and windows of susceptibility have been established comparatively between species to better model pharmacokinetics and understand pediatric nephrotoxicity. There are examples of agents where toxicity is enhanced in neonates, others where it is diminished, and others where rat nephrotoxicity is expressed as juvenile toxicity, but in humans as gestational toxicity.
Collapse
|
20
|
Pleskow DK, Zhang L, Turzhitsky V, Coughlan MF, Khan U, Zhang X, Sheil CJ, Glyavina M, Chen L, Shinagare S, Zakharov YN, Vitkin E, Itzkan I, Perelman LT, Qiu L. Coherent confocal light scattering spectroscopic microscopy evaluates cancer progression and aggressiveness in live cells and tissue. ACS PHOTONICS 2021; 8:2050-2059. [PMID: 34485615 PMCID: PMC8411902 DOI: 10.1021/acsphotonics.1c00217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The observation of biological structures in live cells beyond the diffraction limit with super-resolution fluorescence microscopy is limited by the ability of fluorescence probes to permeate live cells and the effect of these probes, which are often toxic, on cellular behavior. Here we present a coherent confocal light scattering and absorption spectroscopic microscopy that for the first time enables the use of large numerical aperture optics to characterize structures in live cells down to 10 nm spatial scales, well beyond the diffraction limit. Not only does this new capability allow high resolution microscopy with light scattering contrast, but it can also be used with almost any light scattering spectroscopic application which employs lenses. We demonstrate that the coherent light scattering contrast based technique allows continuous temporal tracking of the transition from non-cancerous to an early cancerous state in live cells, without exogenous markers. We also use the technique to sense differences in the aggressiveness of cancer in live cells and for label free identification of different grades of cancer in resected tumor tissues.
Collapse
Affiliation(s)
- Douglas K. Pleskow
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
- Center for Advanced Endoscopy, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Lei Zhang
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Vladimir Turzhitsky
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Mark F. Coughlan
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Umar Khan
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Xuejun Zhang
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Conor J. Sheil
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Maria Glyavina
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Liming Chen
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Shweta Shinagare
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard University
| | - Yuri N. Zakharov
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Edward Vitkin
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Irving Itzkan
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| | - Lev T. Perelman
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
- Biological and Biomedical Sciences Program, Harvard University
| | - Le Qiu
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University
| |
Collapse
|
21
|
Effects of Environmental Conditions on Nephron Number: Modeling Maternal Disease and Epigenetic Regulation in Renal Development. Int J Mol Sci 2021; 22:ijms22084157. [PMID: 33923831 PMCID: PMC8073167 DOI: 10.3390/ijms22084157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
A growing body of evidence suggests that low nephron numbers at birth can increase the risk of chronic kidney disease or hypertension later in life. Environmental stressors, such as maternal malnutrition, medication and smoking, can influence renal size at birth. Using metanephric organ cultures to model single-variable environmental conditions, models of maternal disease were evaluated for patterns of developmental impairment. While hyperthermia had limited effects on renal development, fetal iron deficiency was associated with severe impairment of renal growth and nephrogenesis with an all-proximal phenotype. Culturing kidney explants under high glucose conditions led to cellular and transcriptomic changes resembling human diabetic nephropathy. Short-term high glucose culture conditions were sufficient for long-term alterations in DNA methylation-associated epigenetic memory. Finally, the role of epigenetic modifiers in renal development was tested using a small compound library. Among the selected epigenetic inhibitors, various compounds elicited an effect on renal growth, such as HDAC (entinostat, TH39), histone demethylase (deferasirox, deferoxamine) and histone methyltransferase (cyproheptadine) inhibitors. Thus, metanephric organ cultures provide a valuable system for studying metabolic conditions and a tool for screening for epigenetic modifiers in renal development.
Collapse
|
22
|
Dalkiran T, Kandur Y, Dagoglu B, Saki H, Gungor S, Ipek S. The comparison of the resistivity index values in the ultrasonographic evaluation of a unilateral atrophic/hypoplastic kidney. Ren Fail 2020; 42:289-293. [PMID: 32208786 PMCID: PMC7144252 DOI: 10.1080/0886022x.2020.1743720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background In the study, we aimed to determine the sensitivity of the renal resistivity index (RI) in differentiating hypoplastic and atrophic kidneys in patients with small-sized kidneys, and to evaluate its capacity to predict the renal involvement confirmed by the DMSA scintigraphy. Material and methods We retrospectively reviewed the ultrasonography (US) and DMSA findings, and medical records of pediatric patients with unilateral diminutive kidneys followed between January 2017 and June 2018. The RI measurements were performed twice, and the mean RI was calculated for each kidney of all patients. Results Sixty-three (male/female, m/f = 28/35) pediatric patients aged 107.2 ± 49.4 months (range 14–206 months) were included in this study. The DMSA scintigraphy revealed abnormal changes to atrophic kidneys in 38 patients and hypoplastic kidneys in 25. There were no differences between the groups with atrophy and hypoplasia by age, gender, urine density, and creatinine. The patient group with atrophic kidneys had a mean RI of 0.55 ± 0.21, and patients with hypoplastic kidneys had a mean RI of 0.67 ± 0.03. The mean RI and systolic/diastolic rates of the patients with atrophy were significantly lower than of the patients with hypoplastic kidneys (p = 0.042 and p = 0.048, respectively). There was a positive correlation between RI and DFR in the group with atrophy (r = 0.461, p = 0.016), but this was not the case for the group with hypoplastic kidneys (r= −0.066, p = 0.889). Conclusions The resistivity index might be very useful for differentiating atrophy and hypoplasia in patients with unilateral small kidneys and can be used instead of scintigraphic evaluation.
Collapse
Affiliation(s)
- Tahir Dalkiran
- Department of Pediatric Intensive Care, Necip Fazil City Hospital, Kahramanmaras, Turkey
| | - Yasar Kandur
- Department of Pediatric Nephrology, School of Medicine, Kirikkale University, Kirikkale, Turkey
| | - Besra Dagoglu
- Department of Radiology, Necip Fazil City Hospital, Kahramanmaras, Turkey
| | - Hatice Saki
- Department of Nuclear Medicine, Necip Fazil City Hospital, Kahramanmaras, Turkey
| | - Sukru Gungor
- Department of Pediatric Gastroenterology, Necip Fazil City Hospital, Kahramanmaras, Turkey
| | - Sevcan Ipek
- Department of Pediatrics, Faculty of Medicine, Kahramanmaras Sutcu Imam University Kahramanmaras, Turkey
| |
Collapse
|
23
|
Ezeofor SN, Anyanwu GE, Obikili EN. Reference indices for evaluating kidney dimensions in children using anthropometric measurements. SA J Radiol 2020; 24:1882. [PMID: 32934838 PMCID: PMC7479434 DOI: 10.4102/sajr.v24i1.1882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/14/2020] [Indexed: 11/23/2022] Open
Abstract
Background Kidney pathologies often result in change in renal size. Knowledge of normal kidney sizes is important for screening, diagnosis, prognosis and follow-up management of paediatric renal diseases. Objectives The aim of this study was to establish the age-, height- and weight-matched kidney dimensions in apparently healthy Nigerian children. Method A descriptive, cross-sectional study of right and left kidney parameters (length, width, thickness and volume) of 1315 school-aged Nigerian children was conducted over 8 months. Ages ranged from 5 to 17 years. Parameters were obtained using a General Electric (GE) LOGIC 400CL ultrasound machine. Kidney dimensions were correlated with age, sex and anthropometric measurements. Results Normative values for all the kidney parameters for each age, height and weight groups and also gender were established for the study population. The left kidneys were noted to be longer and thicker, and of more volume than the right kidneys. The right kidneys were seen to be wider (p < 0.01). Length of the left kidneys in females was noted to be more than those of the males in the age- and weight-matched categories (p < 0.05). The width of both kidneys was higher in the males in all the categories (p < 0.05). Males showed higher values of thickness and volume in the height category. All the renal parameters significantly correlated with body size indicators, except for body mass index. Conclusion This study has established gender-, age-, weight- and height-specific range of values of the kidney parameters of apparently healthy children together with regression models.
Collapse
Affiliation(s)
- Salome N Ezeofor
- Department of Radiation Medicine, Faculty of Medical Sciences, College of Medicine, University of Nigeria, Ituku Ozalla, Enugu Nigeria
| | - Godson E Anyanwu
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, University of Nigeria, Enugu Nigeria
| | - Emmanuel N Obikili
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, University of Nigeria, Enugu Nigeria
| |
Collapse
|
24
|
Obert LA, Suttie A, Abdi M, Gales T, Dwyer D, Fritz W, Robertson N, Weir L, Frazier K. Congenital Unilateral Renal Aplasia in a Cynomolgus Monkey ( Macaca fascicularis) With Investigation Into Potential Pathogenesis. Toxicol Pathol 2020; 48:766-783. [PMID: 32815469 DOI: 10.1177/0192623320941834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We describe and characterize unilateral renal aplasia in a cynomolgus monkey (Macaca fascicularis) from a chronic toxicology study adding to the limited histopathology reports of congenital renal anomalies in macaques. In the current case, the affected kidney was macroscopically small and characterized microscopically by a thin cortex with an underdeveloped medulla and an absent papilla. The remnant medulla lacked a corticomedullary junction and contained only a few irregular collecting duct-like structures. The cortex had extensive interstitial mature collagen deposition with fibromuscular collar formation around Bowman's capsules. Due to parenchymal collapse, mature glomeruli were condensed together with occasional atrophic and sclerotic glomeruli. The majority of the cortical tubules were poorly differentiated with only small islands of fully developed cortical tubules present. Histochemical and immunohistochemical stains were utilized to demonstrate key diagnostic features of this congenital defect, to assist with differentiating it from renal dysplasia, and to provide potential mechanistic pathways. Immunostaining (S100, paired box gene 2 [PAX2], aquaporins) of the medulla was compatible with incomplete maturation associated with aplasia, while the immunostaining profile for the cortex (vimentin, calbindin, PAX2-positive cortical tubules, and smooth muscle actin-positive fibromuscular collars) was most compatible with dedifferentiation secondary to degenerative changes.
Collapse
Affiliation(s)
| | | | | | | | | | - Wayne Fritz
- 201915Covance Laboratories Inc., Madison, WI, USA
| | | | | | | |
Collapse
|
25
|
Asi T, Dogan HS, Bozaci AC, Citamak B, Altan M, Tekgul S. A single center's experience in pediatric cystine stone disease management: what changed over time? Urolithiasis 2020; 48:493-499. [PMID: 32556828 DOI: 10.1007/s00240-020-01200-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/06/2020] [Indexed: 11/29/2022]
Abstract
The authors aimed to evaluate the factors affecting clinical outcomes of cystine stone disease in children and to understand the change in disease management over time. Between January 1991 and September 2017, the demographic and clinical data of pediatric patients with documented cystine stone disease were retrospectively analyzed. Patients with at least 12-month follow-up were included. Disease management and clinical outcomes were compared between the first and second 35 patients managed during the study's time frame. A total of 70 patients were included. The female to male ratio was 30/40. The mean age and follow-up period was 29.8 ± 40.1 months and 106.5 ± 56 months, respectively. The mean initial procedure number to treat the first stone episode was 2.4 ± 1.6. Single stone and single affected site were significant predictors for stone clearance. Overall, patients underwent a mean of 5.5 procedure during their follow-up. Recurrence was detected in 71.4% (50/70) of patients. Residual fragments and non-compliance to medical treatment after the initial intervention were significant predictors for recurrence within shorter interval period. 31.4% (22/70) of patients had renal atrophy during follow-up. They were older at the initial diagnosis and had average urine pH lower than 7.5. The first 35 patients had more open procedures. Still, they had more recurrence rate and tend to have more renal atrophy. As a conclusion, cystine stone disease has a recurrent course in children. Stone and fragments entirely removed (SaFER) concept with all minimally invasive methods available and strict follow-up should be the basis for any management plan.
Collapse
Affiliation(s)
- Tariq Asi
- Department of Urology, Hacettepe University, Faculty of Medicine, Ankara, Turkey.
| | - Hasan Serkan Dogan
- Department of Urology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Ali Cansu Bozaci
- Department of Urology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Burak Citamak
- Department of Urology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Mesut Altan
- Department of Urology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Serdar Tekgul
- Department of Urology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
26
|
Quercetin treatment reduces the severity of renal dysplasia in a beta-catenin dependent manner. PLoS One 2020; 15:e0234375. [PMID: 32555682 PMCID: PMC7299361 DOI: 10.1371/journal.pone.0234375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022] Open
Abstract
Renal dysplasia, the major cause of childhood renal failure, is characterized by defective branching morphogenesis and nephrogenesis. Beta-catenin, a transcription factor and cell adhesion molecule, is markedly increased in the nucleus of kidney cells in human renal dysplasia and contributes to its pathogenesis by altering target genes that are essential for kidney development. Quercetin, a naturally occurring flavonoid, reduces nuclear beta-catenin levels and reduces beta-catenin transcriptional activity. In this study, we utilized wild type and dysplastic mouse kidney organ explants to determine if quercetin reduces beta-catenin activity during kidney development and whether it improves the severity of renal dysplasia. In wild type kidney explants, quercetin treatment resulted in abnormal branching morphogenesis and nephrogenesis in a dose dependent manner. In wild type embryonic kidneys, quercetin reduced nuclear beta-catenin expression and decreased expression of beta-catenin target genes Pax2, Six2, and Gdnf, which are essential for kidney development. Our RDB mouse model of renal dysplasia recapitulates the overexpression of beta-catenin and histopathological changes observed in human renal dysplasia. RDB kidneys treated with quercetin resulted in improvements in the overall histopathology, tissue organization, ureteric branching morphogenesis, and nephrogenesis. Quercetin treatment also resulted in reduced nuclear beta-catenin and reduced Pax2 expression. These improvements were associated with the proper organization of vimentin, NCAM, and E-cadherin, and a 45% increase in the number of developing and maturing nephrons. Further, our results show that in human renal dysplasia, beta-catenin, vimentin, and e-cadherin also have abnormal expression patterns. Taken together, these data demonstrate that quercetin treatment reduces nuclear beta-catenin and this is associated with improved epithelial organization of developing nephrons, resulting in increased developing nephrons and a partial rescue of renal dysplasia.
Collapse
|
27
|
Human and mouse studies establish TBX6 in Mendelian CAKUT and as a potential driver of kidney defects associated with the 16p11.2 microdeletion syndrome. Kidney Int 2020; 98:1020-1030. [PMID: 32450157 DOI: 10.1016/j.kint.2020.04.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/03/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUTs) are the most common cause of chronic kidney disease in children. Human 16p11.2 deletions have been associated with CAKUT, but the responsible molecular mechanism remains to be illuminated. To explore this, we investigated 102 carriers of 16p11.2 deletion from multi-center cohorts, among which we retrospectively ascertained kidney morphologic and functional data from 37 individuals (12 Chinese and 25 Caucasian/Hispanic). Significantly higher CAKUT rates were observed in 16p11.2 deletion carriers (about 25% in Chinese and 16% in Caucasian/Hispanic) than those found in the non-clinically ascertained general populations (about 1/1000 found at autopsy). Furthermore, we identified seven additional individuals with heterozygous loss-of-function variants in TBX6, a gene that maps to the 16p11.2 region. Four of these seven cases showed obvious CAKUT. To further investigate the role of TBX6 in kidney development, we engineered mice with mutated Tbx6 alleles. The Tbx6 heterozygous null (i.e., loss-of-function) mutant (Tbx6+/‒) resulted in 13% solitary kidneys. Remarkably, this incidence increased to 29% in a compound heterozygous model (Tbx6mh/‒) that reduced Tbx6 gene dosage to below haploinsufficiency, by combining the null allele with a novel mild hypomorphic allele (mh). Renal hypoplasia was also frequently observed in these Tbx6-mutated mouse models. Thus, our findings in patients and mice establish TBX6 as a novel gene involved in CAKUT and its gene dosage insufficiency as a potential driver for kidney defects observed in the 16p11.2 microdeletion syndrome.
Collapse
|
28
|
Eze CU, Eze CU, Adeyomoye A. Sonographic evaluation of kidney echogenicity and morphology among HIV sero-positive adults at Lagos University Teaching Hospital. J Ultrasound 2018; 21:25-34. [PMID: 29374399 PMCID: PMC5845938 DOI: 10.1007/s40477-017-0279-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/13/2017] [Indexed: 11/28/2022] Open
Abstract
AIM To evaluate the role of kidney echogenicity and morphology in the diagnosis of human immunodeficiency virus-associated nephropathy (HIVAN). SUBJECTS AND METHODS In the cross-sectional study, a sample of 340 anti-retroviral therapy (ART)-naïve AIDS patients underwent laboratory CD4+ count, serum creatinine determination and sonographic renal echogenicity grading and size measurement. Rounded kidneys were described as bulbous while bean-shaped kidneys were described as reniform; echogenicity was categorized into grades 0, 1, 2 and 3. Kidney length, width, thickness and volume were measured in HIVAN and control groups. RESULTS Mean age of the population was 42.7 ± 9.4 years; 87.4% had HIVAN. Mean CD4+ count, serum creatinine and GFR for HIVAN patients were 153.1 ± 103.2 cells/mm3, 218.4 ± 147.4 mmol/L and 50.1 ± 23.6 mL/min/1.73 m2 for males and 121.9 ± 91.0 cells/mm3, and 222.0 ± 150.4 mmol/L and 39.3 ± 20.6 mL/min/1.73 m2 for females, respectively; control subjects and non-HIVAN patients had grade 0 renal echogenicity; 56.9% of HIVAN patients had echogenicity grade 3; 5.3% had kidney length < 10 cm; 73.9% had bulbous kidneys; the kidney was significantly wider and thicker in HIVAN (p < 0.05). CONCLUSION Sonographic evaluation of renal echogenicity and morphology can reliably predict HIVAN diagnosis. Apathy to screening and late presentation were high while HIV/AIDS remains an important public health problem in the city of Lagos. Unilateral reduction in kidney size could be a major sequela of AIDS while sonographic measurement of absolute kidney length appears inadequate in the evaluation of AIDS patients with nephropathy.
Collapse
Affiliation(s)
- Cletus Uche Eze
- Department of Radiation Biology, Radiotherapy, Radiodiagnosis and Radiography, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Ishaga Road, Idi-araba, Lagos, Nigeria.
| | - Charles Ugwoke Eze
- Department of Medical Radiography and Radiological Sciences, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Adekunle Adeyomoye
- Department of Radiation Biology, Radiotherapy, Radiodiagnosis and Radiography, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Ishaga Road, Idi-araba, Lagos, Nigeria
| |
Collapse
|
29
|
Phelep A, Laouari D, Bharti K, Burtin M, Tammaccaro S, Garbay S, Nguyen C, Vasseur F, Blanc T, Berissi S, Langa-Vives F, Fischer E, Druilhe A, Arnheiter H, Friedlander G, Pontoglio M, Terzi F. MITF - A controls branching morphogenesis and nephron endowment. PLoS Genet 2017; 13:e1007093. [PMID: 29240767 PMCID: PMC5746285 DOI: 10.1371/journal.pgen.1007093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/28/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022] Open
Abstract
Congenital nephron number varies widely in the human population and individuals with low nephron number are at risk of developing hypertension and chronic kidney disease. The development of the kidney occurs via an orchestrated morphogenetic process where metanephric mesenchyme and ureteric bud reciprocally interact to induce nephron formation. The genetic networks that modulate the extent of this process and set the final nephron number are mostly unknown. Here, we identified a specific isoform of MITF (MITF-A), a bHLH-Zip transcription factor, as a novel regulator of the final nephron number. We showed that overexpression of MITF-A leads to a substantial increase of nephron number and bigger kidneys, whereas Mitfa deficiency results in reduced nephron number. Furthermore, we demonstrated that MITF-A triggers ureteric bud branching, a phenotype that is associated with increased ureteric bud cell proliferation. Molecular studies associated with an in silico analyses revealed that amongst the putative MITF-A targets, Ret was significantly modulated by MITF-A. Consistent with the key role of this network in kidney morphogenesis, Ret heterozygosis prevented the increase of nephron number in mice overexpressing MITF-A. Collectively, these results uncover a novel transcriptional network that controls branching morphogenesis during kidney development and identifies one of the first modifier genes of nephron endowment. The number of nephrons, the functional unit of kidney, varies widely among humans. Indeed, it has been shown that kidneys may contain from 0.3 to more than 2 million of nephrons. Nephrons are formed during development via a coordinated morphogenetic program in which the metanephric mesenchyme reciprocally and recursively interacts with the ureteric bud. The fine-tuning of this cross-talk determines the final number of nephrons. Strong evidence indicates that suboptimal nephron endowment is associated with an increased risk of hypertension and chronic kidney disease, a major healthcare burden. Indeed, chronic kidney disease is characterized by the progressive decline of renal function towards end stage renal disease, which occurs once a critical number of nephrons has been lost. Elucidating the molecular mechanisms that control nephron endowment is, therefore, a critical issue for public health. However, little is known about the factors that determine the final number of nephrons in the healthy population. Our data showed that nephron endowment is genetically predetermined and identified Mitfa, a bHLH transcription factor, as one of the first modifiers of nephron formation during kidney development. By generating an allelic series of transgenic mice expressing different levels of MITF-A, we discovered that MITF-A promotes final nephron endowment. In addition, we elucidated the molecular mechanisms by which MITF-A promotes nephron formation and identified RET as one of the critical effectors.
Collapse
Affiliation(s)
- Aurélie Phelep
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Denise Laouari
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Kapil Bharti
- Unit on Ocular and Stem Cells Translational Research National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Martine Burtin
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Salvina Tammaccaro
- INSERM U1016-CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Serge Garbay
- INSERM U1016-CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Clément Nguyen
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Florence Vasseur
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Thomas Blanc
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Sophie Berissi
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | | | - Evelyne Fischer
- INSERM U1016-CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Anne Druilhe
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Heinz Arnheiter
- Scientist Emeritus, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD, United States of America
| | - Gerard Friedlander
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Marco Pontoglio
- INSERM U1016-CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Fabiola Terzi
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
30
|
Abstract
Chronic kidney disease (CKD) is defined by persistent urine abnormalities, structural abnormalities or impaired excretory renal function suggestive of a loss of functional nephrons. The majority of patients with CKD are at risk of accelerated cardiovascular disease and death. For those who progress to end-stage renal disease, the limited accessibility to renal replacement therapy is a problem in many parts of the world. Risk factors for the development and progression of CKD include low nephron number at birth, nephron loss due to increasing age and acute or chronic kidney injuries caused by toxic exposures or diseases (for example, obesity and type 2 diabetes mellitus). The management of patients with CKD is focused on early detection or prevention, treatment of the underlying cause (if possible) to curb progression and attention to secondary processes that contribute to ongoing nephron loss. Blood pressure control, inhibition of the renin-angiotensin system and disease-specific interventions are the cornerstones of therapy. CKD complications such as anaemia, metabolic acidosis and secondary hyperparathyroidism affect cardiovascular health and quality of life, and require diagnosis and treatment.
Collapse
|
31
|
Le Tanno P, Breton J, Bidart M, Satre V, Harbuz R, Ray PF, Bosson C, Dieterich K, Jaillard S, Odent S, Poke G, Beddow R, Digilio MC, Novelli A, Bernardini L, Pisanti MA, Mackenroth L, Hackmann K, Vogel I, Christensen R, Fokstuen S, Béna F, Amblard F, Devillard F, Vieville G, Apostolou A, Jouk PS, Guebre-Egziabher F, Sartelet H, Coutton C. PBX1 haploinsufficiency leads to syndromic congenital anomalies of the kidney and urinary tract (CAKUT) in humans. J Med Genet 2017; 54:502-510. [PMID: 28270404 DOI: 10.1136/jmedgenet-2016-104435] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/03/2017] [Accepted: 01/17/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Congenital anomalies of the kidney and urinary tract (CAKUT) represent a significant healthcare burden since it is the primary cause of chronic kidney in children. CNVs represent a recurrent molecular cause of CAKUT but the culprit gene remains often elusive. Our study aimed to define the gene responsible for CAKUT in patients with an 1q23.3q24.1 microdeletion. METHODS We describe eight patients presenting with CAKUT carrying an 1q23.3q24.1 microdeletion as identified by chromosomal microarray analysis (CMA). Clinical features were collected, especially the renal and urinary tract phenotype, and extrarenal features. We characterised PBX1 expression and localisation in fetal and adult kidneys using quantitative RT-PCR and immunohistochemistry. RESULTS We defined a 276-kb minimal common region (MCR) that only overlaps with the PBX1 gene. All eight patients presented with syndromic CAKUT. CAKUT were mostly bilateral renal hypoplasia (75%). The most frequent extrarenal symptoms were developmental delay and ear malformations. We demonstrate that PBX1 is strongly expressed in fetal kidneys and brain and expression levels decreased in adult samples. In control fetal kidneys, PBX1 was localised in nuclei of medullary, interstitial and mesenchymal cells, whereas it was present in endothelial cells in adult kidneys. CONCLUSIONS Our results indicate that PBX1 haploinsufficiency leads to syndromic CAKUT as supported by the Pbx1-null mice model. Correct PBX1 dosage appears to be critical for normal nephrogenesis and seems important for brain development in humans. CMA should be recommended in cases of fetal renal anomalies to improve genetic counselling and pregnancy management.
Collapse
Affiliation(s)
- Pauline Le Tanno
- Département de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
| | - Julie Breton
- Département d'Anatomie et Cytologie Pathologiques, CHU Grenoble Alpes, Grenoble, France
| | - Marie Bidart
- Université Grenoble Alpes, Grenoble, France
- UF Clinatec, Pôle Recherche, CHU Grenoble Alpes, Grenoble, France
| | - Véronique Satre
- Département de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
- Equipe "Génétique, Epigénétique et Thérapies de l'Infertilité", Institut Albert Bonniot, La Tronche, France
| | - Radu Harbuz
- Département de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble, France
- Equipe "Génétique, Epigénétique et Thérapies de l'Infertilité", Institut Albert Bonniot, La Tronche, France
- Laboratoire de Biochimie Génétique et Moléculaire, Institut de Biologie et Pathologie, CHU Grenoble Alpes, Grenoble, France
| | - Caroline Bosson
- Laboratoire de Biochimie Génétique et Moléculaire, Institut de Biologie et Pathologie, CHU Grenoble Alpes, Grenoble, France
| | - Klaus Dieterich
- Département de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| | - Sylvie Jaillard
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, Université de Rennes, Rennes, France
| | - Sylvie Odent
- CHU Rennes, Service de Génétique Clinique, Centre de Référence Anomalies du Développement CLAD-Ouest, Hôpital Sud, Rennes, France
| | - Gemma Poke
- Genetic Health Service New Zealand Central Hub, Wellington, New Zealand
| | - Rachel Beddow
- Genetic Health Service New Zealand Central Hub, Wellington, New Zealand
| | | | - Antonio Novelli
- Department of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Laura Bernardini
- Mendel Laboratory IRCCS "Casa Sollievo della Sofferenza" Hospital, Foggia, Italy
| | | | - Luisa Mackenroth
- Institut fuer Klinische Genetik, Medizinische Fakultaet Carl Gustav Carus, Technische Universitaet Dresden, Dresden, Germany
| | - Karl Hackmann
- Institut fuer Klinische Genetik, Medizinische Fakultaet Carl Gustav Carus, Technische Universitaet Dresden, Dresden, Germany
| | - Ida Vogel
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Christensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Siv Fokstuen
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Frédérique Béna
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Florence Amblard
- Département de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
| | - Francoise Devillard
- Département de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
| | - Gaelle Vieville
- Département de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
| | - Alexia Apostolou
- Département d'Anatomie et Cytologie Pathologiques, CHU Grenoble Alpes, Grenoble, France
| | - Pierre-Simon Jouk
- Département de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| | | | - Hervé Sartelet
- Département d'Anatomie et Cytologie Pathologiques, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| | - Charles Coutton
- Département de Génétique et Procréation, CHU Grenoble Alpes, Grenoble, France
- Equipe "Génétique, Epigénétique et Thérapies de l'Infertilité", Institut Albert Bonniot, La Tronche, France
- Université Grenoble Alpes, Grenoble, France
- Génétique et Procréation, Laboratoire de Génétique Chromosomique, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
32
|
Abstract
Congenital abnormalities of the kidney and urinary tract (CAKUT) are one of the leading congenital defects to be identified on prenatal ultrasound. CAKUT represent a broad spectrum of abnormalities, from transient hydronephrosis to severe bilateral renal agenesis. CAKUT are a major contributor to chronic and end stage kidney disease (CKD/ESKD) in children. Prenatal imaging is useful to identify CAKUT, but will not detect all defects. Both genetic abnormalities and the fetal environment contribute to CAKUT. Monogenic gene mutations identified in human CAKUT have advanced our understanding of molecular mechanisms of renal development. Low nephron number and solitary kidneys are associated with increased risk of adult onset CKD and ESKD. Premature and low birth weight infants represent a high risk population for low nephron number. Additional research is needed to identify biomarkers and appropriate follow-up of premature and low birth weight infants into adulthood.
Collapse
Affiliation(s)
- Stacy Rosenblum
- Department of Pediatrics/Neonatology, Children's Hospital of Montefiore/Einstein, Bronx, NY, USA
| | - Abhijeet Pal
- Department of Pediatrics/Nephrology, Children's Hospital of Montefiore/Einstein, Bronx, NY, USA
| | - Kimberly Reidy
- Department of Pediatrics/Nephrology, Children's Hospital of Montefiore/Einstein, Bronx, NY, USA.
| |
Collapse
|
33
|
Kaczmarczyk M, Loniewska B, Kuprjanowicz A, Binczak-Kuleta A, Goracy I, Ryder M, Taryma-Lesniak O, Ciechanowicz A. Association Between RET (rs1800860) and GFRA1 (rs45568534, rs8192663, rs181595401, rs7090693, and rs2694770) Variants and Kidney Size in Healthy Newborns. Genet Test Mol Biomarkers 2016; 20:624-628. [PMID: 27533506 DOI: 10.1089/gtmb.2016.0079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Abnormal congenital nephron number has been implicated in the pathogenesis of hypertension and renal disease. The RET receptor complex propagates signals essential for nephrogenesis and the RET c.1296G>A polymorphism, leading to aberrant splicing of exon 7, is associated with reduced kidney volume, a surrogate for nephron endowment. The glial cell-derived neurotrophic factor (GDNF) family receptor alpha 1 (GFRA1) is a component of the RET receptor complex, and three alternatively spliced GFRA1 transcripts (with or without exon 5) have been identified. In rats, exclusion of exon 5 results in stronger GDNF binding affinity and RET activation. The aims of this study were to investigate further the relationship between RET c.1296G>A and kidney volume, and also to investigate the association between the GFRA1 polymorphisms near and within the alternatively spliced exon 5, as well as the functional 5'-UTR c.-193C>G with kidney volume. MATERIALS AND METHODS The study included 188 healthy full-term newborns. Genotyping of the RET (NM_020975.4:c.1296G>A, rs1800860) and GFRA1 (NM_005264.5:c.-193C>G, rs45568534; c.419-87A>G, rs8192663; c.429G>A, rs181595401; c.433+127A>G, rs7090693; c.433+245A>G, rs2694770) polymorphisms was performed using polymerase chain reaction-restriction fragment length polymorphism, minisequencing, or sequencing. Total kidney volume (TKV) was determined by ultrasound and normalized to body surface area (TKV/BSA). Both marker-by-marker and haplotype-based methods were used to test for associations between polymorphisms and TKV/BSA. RESULTS TKV/BSA in RET c.1296A allele carriers was significantly lower compared with GG homozygotes (103 ± 23 vs. 110 ± 19 mL/m2, p = 0.034). c.429G>A was invariant in our sample. There was no association between any of the GFRA1 polymorphisms and renal volume. CONCLUSIONS RET c.1296A may be a common susceptibility allele for nephron underdosing-related diseases. The 5'-UTR and intronic variants near exon 5 of GFRA1 are not associated with nephron endowment.
Collapse
Affiliation(s)
- Mariusz Kaczmarczyk
- 1 Department of Clinical and Molecular Biochemistry, Pomeranian Medical University , Szczecin, Poland
| | - Beata Loniewska
- 2 Department of Neonatal Diseases, Pomeranian Medical University , Szczecin, Poland
| | - Anna Kuprjanowicz
- 3 Department of Radiology, Pomeranian Medical University , Szczecin, Poland
| | - Agnieszka Binczak-Kuleta
- 1 Department of Clinical and Molecular Biochemistry, Pomeranian Medical University , Szczecin, Poland
| | - Iwona Goracy
- 1 Department of Clinical and Molecular Biochemistry, Pomeranian Medical University , Szczecin, Poland
| | - Malgorzata Ryder
- 1 Department of Clinical and Molecular Biochemistry, Pomeranian Medical University , Szczecin, Poland
| | - Olga Taryma-Lesniak
- 1 Department of Clinical and Molecular Biochemistry, Pomeranian Medical University , Szczecin, Poland
| | - Andrzej Ciechanowicz
- 1 Department of Clinical and Molecular Biochemistry, Pomeranian Medical University , Szczecin, Poland
| |
Collapse
|
34
|
Xu J, Liu H, Chai OH, Lan Y, Jiang R. Osr1 Interacts Synergistically with Wt1 to Regulate Kidney Organogenesis. PLoS One 2016; 11:e0159597. [PMID: 27442016 PMCID: PMC4956120 DOI: 10.1371/journal.pone.0159597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/01/2016] [Indexed: 12/29/2022] Open
Abstract
Renal hypoplasia is a common cause of pediatric renal failure and several adult-onset diseases. Recent studies have associated a variant of the OSR1 gene with reduction of newborn kidney size and function in heterozygotes and neonatal lethality with kidney defects in homozygotes. How OSR1 regulates kidney development and nephron endowment is not well understood, however. In this study, by using the recently developed CRISPR genome editing technology, we genetically labeled the endogenous Osr1 protein and show that Osr1 interacts with Wt1 in the developing kidney. Whereas mice heterozygous for either an Osr1 or Wt1 null allele have normal kidneys at birth, most mice heterozygous for both Osr1 and Wt1 exhibit defects in metanephric kidney development, including unilateral or bilateral kidney agenesis or hypoplasia. The developmental defects in the Osr1+/-Wt1+/- mouse embryos were detected as early as E10.5, during specification of the metanephric mesenchyme, with the Osr1+/-Wt1+/- mouse embryos exhibiting significantly reduced Pax2-positive and Six2-positive nephron progenitor cells. Moreover, expression of Gdnf, the major nephrogenic signal for inducing ureteric bud outgrowth, was significantly reduced in the metanephric mesenchyme in Osr1+/-Wt1+/- embryos in comparison with the Osr1+/- or Wt1+/- littermates. By E11.5, as the ureteric buds invade the metanephric mesenchyme and initiate branching morphogenesis, kidney morphogenesis was significantly impaired in the Osr1+/-Wt1+/- embryos in comparison with the Osr1+/- or Wt1+/- embryos. These results indicate that Osr1 and Wt1 act synergistically to regulate nephron endowment by controlling metanephric mesenchyme specification during early nephrogenesis.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
| | - Han Liu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
| | - Ok Hee Chai
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
- Department of Anatomy, Chonbuk National University Medical School and Institute for Medical Sciences, Deokjin-gu, Jeonju 561–756, Republic of Korea
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
- Division of Plastic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
- Division of Plastic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
- * E-mail:
| |
Collapse
|
35
|
Oh MS, Hwang G, Han S, Kang HS, Kim SH, Kim YD, Kang KS, Shin KS, Lee MS, Choi GM, Han KH. Sonographic Growth Charts for Kidney Length in Normal Korean Children: a Prospective Observational Study. J Korean Med Sci 2016; 31:1089-93. [PMID: 27366007 PMCID: PMC4901001 DOI: 10.3346/jkms.2016.31.7.1089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/09/2016] [Indexed: 11/20/2022] Open
Abstract
Kidney length is the most useful parameter for clinical measurement of kidney size, and is useful to distinguish acute kidney injury from chronic kidney disease. In this prospective observational study of 437 normal children aged between 0 and < 13 years, kidney length was measured using sonography. There were good correlations between kidney length and somatic values, including age, weight, height, and body surface area. The rapid growth of height during the first 2 years of life was intimately associated with a similar increase in kidney length, suggesting that height should be considered an important factor correlating with kidney length. Based on our findings, the following regression equation for the reference values of bilateral kidney length for Korean children was obtained: kidney length of the right kidney (cm) = 0.051 × height (cm) + 2.102; kidney length of the left kidney (cm) = 0.051 × height (cm) + 2.280. This equation may aid in the diagnosis of various kidney disorders.
Collapse
Affiliation(s)
- Min-su Oh
- Department of Pediatrics, Jeju National University Hospital, Jeju, Korea
| | - Geol Hwang
- Department of Pediatrics, Jeju National University Hospital, Jeju, Korea
| | - Sanghoon Han
- Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Korea
| | - Hyun Sik Kang
- Department of Pediatrics, Jeju National University Hospital, Jeju, Korea
| | - Seung Hyo Kim
- Department of Pediatrics, Jeju National University School of Medicine, Jeju, Korea
| | - Young Don Kim
- Department of Pediatrics, Jeju National University School of Medicine, Jeju, Korea
| | - Ki-Soo Kang
- Department of Pediatrics, Jeju National University School of Medicine, Jeju, Korea
| | - Kyung-Sue Shin
- Department of Pediatrics, Jeju National University School of Medicine, Jeju, Korea
| | - Mu Sook Lee
- Department of Diagnostic Radiology, Jeju National University School of Medicine, Jeju, Korea
| | - Guk Myung Choi
- Department of Diagnostic Radiology, Jeju National University School of Medicine, Jeju, Korea
| | - Kyoung Hee Han
- Department of Pediatrics, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
36
|
Becherucci F, Roperto RM, Materassi M, Romagnani P. Chronic kidney disease in children. Clin Kidney J 2016; 9:583-91. [PMID: 27478602 PMCID: PMC4957724 DOI: 10.1093/ckj/sfw047] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease (CKD) is a major health problem worldwide. Although relatively uncommon in children, it can be a devastating illness with many long-term consequences. CKD presents unique features in childhood and may be considered, at least in part, as a stand-alone nosologic entity. Moreover, some typical features of paediatric CKD, such as the disease aetiology or cardiovascular complications, will not only influence the child's health, but also have long-term impact on the life of the adult that they will become. In this review we will focus on the unique issues of paediatric CKD, in terms of aetiology, clinical features and treatment. In addition, we will discuss factors related to CKD that start during childhood and require appropriate treatments in order to optimize health outcomes and transition to nephrologist management in adult life.
Collapse
Affiliation(s)
| | - Rosa Maria Roperto
- Nephrology and Dialysis Unit , Meyer Children's Hospital , Florence , Italy
| | - Marco Materassi
- Nephrology and Dialysis Unit , Meyer Children's Hospital , Florence , Italy
| | - Paola Romagnani
- Nephrology andDialysis Unit, Meyer Children's Hospital, Florence, Italy; Department ofBiomedical Experimental and Clinical Sciences 'Mario Serio', University of Florence, Florence, Italy
| |
Collapse
|
37
|
Boivin FJ, Sarin S, Evans JC, Bridgewater D. The Good and Bad of β-Catenin in Kidney Development and Renal Dysplasia. Front Cell Dev Biol 2015; 3:81. [PMID: 26734608 PMCID: PMC4686587 DOI: 10.3389/fcell.2015.00081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/04/2015] [Indexed: 11/23/2022] Open
Abstract
Congenital renal malformations are a major cause of childhood and adult onset chronic kidney disease. Identifying the etiology of these renal defects is often challenging since disruptions in the processes that drive kidney development can result from disruptions in environmental, genetic, or epigenetic cues. β-catenin is an intracellular molecule involved in cell adhesion, cell signaling, and regulation of gene transcription. It plays essential roles in kidney development and in the pathogenesis of renal dysplasia. Here, we review the function of β-catenin during kidney development and in the genesis of renal dysplasia.
Collapse
Affiliation(s)
- Felix J Boivin
- Department of Pathology and Molecular Medicine, McMaster University Hamilton, ON, Canada
| | - Sanjay Sarin
- Department of Pathology and Molecular Medicine, McMaster University Hamilton, ON, Canada
| | - J Colin Evans
- Department of Pathology and Molecular Medicine, McMaster University Hamilton, ON, Canada
| | - Darren Bridgewater
- Department of Pathology and Molecular Medicine, McMaster University Hamilton, ON, Canada
| |
Collapse
|
38
|
MDCT and MR Urogram Spectrum of Congenital Anomalies of the Kidney and Urinary Tract Diagnosed in Adulthood. AJR Am J Roentgenol 2015; 205:W294-304. [PMID: 26295665 DOI: 10.2214/ajr.14.12867] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Congenital anomalies of the kidneys and urinary tract (CAKUT) encompass a spectrum of anomalies that result from genetic, epigenetic, environmental, and molecular signal aberrations at key stages of urinary tract development. CAKUT can be seen incidentally on cross-sectional imaging of the abdomen or can be a cause for adult-onset chronic kidney disease, posing new challenges for nephrologists, urologists, and radiologists. CONCLUSION Awareness of CAKUT and familiarity with their imaging findings permit optimal patient management and thorough workup to prevent hypertension and progression from CAKUT to renal failure. The purpose of this article is to review the cross-sectional imaging findings of CAKUT that may present in adulthood.
Collapse
|
39
|
Smeeton J, Dhir P, Hu D, Feeney MM, Chen L, Rosenblum ND. Integrin-linked Kinase Controls Renal Branching Morphogenesis via Dual Specificity Phosphatase 8. J Am Soc Nephrol 2015; 27:1465-77. [PMID: 26407593 DOI: 10.1681/asn.2015020139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 08/11/2015] [Indexed: 11/03/2022] Open
Abstract
Integrin-linked kinase (ILK) is an intracellular scaffold protein with critical cell-specific functions in the embryonic and mature mammalian kidney. Previously, we demonstrated a requirement for Ilk during ureteric branching and cell cycle regulation in collecting duct cells in vivo Although in vitro data indicate that ILK controls p38 mitogen-activated protein kinase (p38MAPK) activity, the contribution of ILK-p38MAPK signaling to branching morphogenesis in vivo is not defined. Here, we identified genes that are regulated by Ilk in ureteric cells using a whole-genome expression analysis of whole-kidney mRNA in mice with Ilk deficiency in the ureteric cell lineage. Six genes with expression in ureteric tip cells, including Wnt11, were downregulated, whereas the expression of dual-specificity phosphatase 8 (DUSP8) was upregulated. Phosphorylation of p38MAPK was decreased in kidney tissue with Ilk deficiency, but no significant decrease in the phosphorylation of other intracellular effectors previously shown to control renal morphogenesis was observed. Pharmacologic inhibition of p38MAPK activity in murine inner medullary collecting duct 3 (mIMCD3) cells decreased expression of Wnt11, Krt23, and Slo4c1 DUSP8 overexpression in mIMCD3 cells significantly inhibited p38MAPK activation and the expression of Wnt11 and Slo4c1. Adenovirus-mediated overexpression of DUSP8 in cultured embryonic murine kidneys decreased ureteric branching and p38MAPK activation. Together, these data demonstrate that Ilk controls branching morphogenesis by regulating the expression of DUSP8, which inhibits p38MAPK activity and decreases branching morphogenesis.
Collapse
Affiliation(s)
- Joanna Smeeton
- Program in Developmental and Stem Cell Biology, and Departments of Paediatrics, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Priya Dhir
- Program in Developmental and Stem Cell Biology, and
| | - Di Hu
- Program in Developmental and Stem Cell Biology, and
| | | | - Lin Chen
- Program in Developmental and Stem Cell Biology, and
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, and Departments of Paediatrics, and Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada; and
| |
Collapse
|
40
|
Herlan L, Schulz A, Schulte L, Schulz H, Hübner N, Kreutz R. Novel candidate genes for impaired nephron development in a rat model with inherited nephron deficit and albuminuria. Clin Exp Pharmacol Physiol 2015; 42:1051-8. [DOI: 10.1111/1440-1681.12462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/29/2015] [Accepted: 07/13/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Laura Herlan
- Department of Clinical Pharmacology and Toxicology; CharitéCenter 4 - Therapy and Research; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Angela Schulz
- Department of Clinical Pharmacology and Toxicology; CharitéCenter 4 - Therapy and Research; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Leonard Schulte
- Department of Clinical Pharmacology and Toxicology; CharitéCenter 4 - Therapy and Research; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Herbert Schulz
- Max-Delbrück Center for Molecular Medicine; Berlin Germany
| | - Norbert Hübner
- Max-Delbrück Center for Molecular Medicine; Berlin Germany
| | - Reinhold Kreutz
- Department of Clinical Pharmacology and Toxicology; CharitéCenter 4 - Therapy and Research; Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
41
|
SNP Variants in RET and PAX2 and Their Possible Contribution to the Primary Hyperoxaluria Type 1 Phenotype. Biochem Genet 2015; 53:23-8. [PMID: 25854853 DOI: 10.1007/s10528-015-9667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare genetic kidney disease caused by a deficiency of alanine:glyoxylate aminotransferase (AGT). Genetic heterogeneity of the AGT gene cannot fully account for heterogeneity in the clinical phenotype. This study investigates a possible contribution to the clinical phenotype from SNPs in RET or PAX2 genes associated with reduced nephron number. The frequencies of these SNPs were compared in PH1-affected DNA samples and normal controls, and relative to age of onset in PH1-affected individuals. The frequencies of the risk alleles were higher with early age of onset, although not significantly so. However, homozygosity for the risk alleles of RET and PAX2 was not seen in the late onset group. The overall frequencies of risk alleles and the numbers of homozygotes were significantly higher for PAX2 in PH1 samples versus controls, suggestive of a bias towards more severe clinical phenotypes in the PH1 samples submitted for analysis.
Collapse
|
42
|
Charlton JR, Springsteen CH, Carmody JB. Nephron number and its determinants in early life: a primer. Pediatr Nephrol 2014; 29:2299-308. [PMID: 24488483 DOI: 10.1007/s00467-014-2758-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/10/2013] [Accepted: 01/07/2014] [Indexed: 12/19/2022]
Abstract
Although there is wide variation, humans possess on average 900,000 nephrons per kidney. So far as is known, nephrons cannot regenerate; therefore, an individual's nephron endowment has profound implications in determining his or her long-term risk of developing chronic kidney disease. Most of the variability in human nephron number is determined early in life. Nephrogenesis is a complex and carefully orchestrated process that occurs during a narrow time window until 36 weeks gestation in humans, and disruption of any part of this sequence may lead to reduced nephron number. In utero, genetic abnormalities, toxic insults, and nutritional deficiencies can each alter final nephron number. Infants born prematurely must continue nephrogenesis in an ex utero environment where there may be multiple threats to successful nephrogenesis. Once the nephron endowment is determined, postnatal factors (such as acute kidney injury or chronic illnesses) can only decrease nephron number. Current techniques for estimating nephron number require an invasive procedure or complete destruction of the tissue, making noninvasive means for counting nephron surgently needed. A better understanding of nephron number and its determinants, particularly during growth and maturation, could allow the development of therapies to support, prolong, or resume nephrogenesis.
Collapse
Affiliation(s)
- Jennifer R Charlton
- Department of Pediatrics, Division of Nephrology, University of Virginia, Box 800386, Charlottesville, VA, 22908, USA,
| | | | | |
Collapse
|
43
|
Abstract
In utero exposure to certain drugs early in pregnancy may adversely affect nephrogenesis. Exposure to drugs later in pregnancy may affect the renin-angiotensin system, which could have an impact on fetal or neonatal renal function. Reduction in nephron number and renal function could have adverse consequences for the child several years later. Data are limited on the information needed to guide decisions for patients and providers regarding the use of certain drugs in pregnancy. The study of drug nephroteratogenicity has not been systematized, a large, standardized, global approach is needed to evaluate the renal risks of in utero drug exposures.
Collapse
|
44
|
Blake J, Rosenblum ND. Renal branching morphogenesis: morphogenetic and signaling mechanisms. Semin Cell Dev Biol 2014; 36:2-12. [PMID: 25080023 DOI: 10.1016/j.semcdb.2014.07.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 12/28/2022]
Abstract
The human kidney is composed of an arborized network of collecting ducts, calyces and urinary pelvis that facilitate urine excretion and regulate urine composition. The renal collecting system is formed in utero, completed by the 34th week of gestation in humans, and dictates final nephron complement. The renal collecting system arises from the ureteric bud, a derivative of the intermediate-mesoderm derived nephric duct that responds to inductive signals from adjacent tissues via a process termed ureteric induction. The ureteric bud subsequently undergoes a series of iterative branching and remodeling events in a process called renal branching morphogenesis. Altered signaling that disrupts patterning of the nephric duct, ureteric induction, or renal branching morphogenesis leads to varied malformations of the renal collecting system collectively known as congenital anomalies of the kidney and urinary tract (CAKUT) and is the most frequently detected congenital renal aberration in infants. Here, we describe critical morphogenetic and cellular events that govern nephric duct specification, ureteric bud induction, renal branching morphogenesis, and cessation of renal branching morphogenesis. We also highlight salient molecular signaling pathways that govern these processes, and the investigative techniques used to interrogate them.
Collapse
Affiliation(s)
- Joshua Blake
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Canada; Department of Physiology, University of Toronto, Canada
| | - Norman D Rosenblum
- Division of Nephrology, Department of Paediatrics, The Hospital for Sick Children, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Canada; Department of Physiology, University of Toronto, Canada.
| |
Collapse
|
45
|
Plumb LA, Marlais M, Bierzynska A, Martin H, Brugger K, Abbs S, Saleem MA. Unilateral hypoplastic kidney - a novel highly penetrant feature of familial juvenile hyperuricaemic nephropathy. BMC Nephrol 2014; 15:76. [PMID: 24886545 PMCID: PMC4036736 DOI: 10.1186/1471-2369-15-76] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 04/16/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Familial juvenile hyperuricaemic nephropathy is a rare inherited nephropathy with genetic heterogeneity. Categorised by genetic defect, mutations in uromodulin (UMOD), renin (REN) and hepatocyte nuclear factor-1β (HNF-1β) genes as well as linkage to chromosome 2p22.1-21 have previously been identified. Knowledge of the genetics of this phenotype has provided important clues to developmental pathways in the kidney. CASE PRESENTATION We report a novel phenotype, with the typical features of hyperuricemia and renal deterioration, but with the additional unexpected feature of unilateral renal hypoplasia. Mutation analyses of the existing known genes and genetic loci were negative indicating a new monogenic cause. Interestingly two cousins of the index case did not share the latter feature, suggesting a modifier gene effect. CONCLUSION Unilateral renal hypo/aplasia is usually sporadic and relatively common, with no genetic cause to date identified. This reported pedigree reveals the possibility that a new, unknown renal developmental gene may be implicated in the FJHN phenotype.
Collapse
Affiliation(s)
- Lucy A Plumb
- Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol BS2 8BJ, UK
| | - Matko Marlais
- Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol BS2 8BJ, UK
| | - Agnieszka Bierzynska
- Academic Renal Unit, University of Bristol, Dorothy Hodgkin building level 1, Whitson Street, Bristol BS1 3NY, UK
| | - Howard Martin
- Department of Molecular Genetics, Regional Molecular Genetics Laboratories, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Kim Brugger
- Department of Molecular Genetics, Regional Molecular Genetics Laboratories, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Stephen Abbs
- Department of Molecular Genetics, Regional Molecular Genetics Laboratories, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Moin A Saleem
- Department of Paediatric Nephrology, University of Bristol, Bristol Royal Hospital for Children, Bristol BS2 8BJ, UK
| |
Collapse
|
46
|
Short K, Combes A, Lefevre J, Ju A, Georgas K, Lamberton T, Cairncross O, Rumballe B, McMahon A, Hamilton N, Smyth I, Little M. Global Quantification of Tissue Dynamics in the Developing Mouse Kidney. Dev Cell 2014; 29:188-202. [DOI: 10.1016/j.devcel.2014.02.017] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/06/2013] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
|
47
|
Cebrian C, Asai N, D'Agati V, Costantini F. The number of fetal nephron progenitor cells limits ureteric branching and adult nephron endowment. Cell Rep 2014; 7:127-37. [PMID: 24656820 DOI: 10.1016/j.celrep.2014.02.033] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/23/2014] [Accepted: 02/22/2014] [Indexed: 01/16/2023] Open
Abstract
Nephrons, the functional units of the kidney, develop from progenitor cells (cap mesenchyme [CM]) surrounding the epithelial ureteric bud (UB) tips. Reciprocal signaling between UB and CM induces nephrogenesis and UB branching. Although low nephron number is implicated in hypertension and renal disease, the mechanisms that determine nephron number are obscure. To test the importance of nephron progenitor cell number, we genetically ablated 40% of these cells, asking whether this would limit kidney size and nephron number or whether compensatory mechanisms would allow the developing organ to recover. The reduction in CM cell number decreased the rate of branching, which in turn allowed the number of CM cells per UB tip to normalize, revealing a self-correction mechanism. However, the retarded UB branching impaired kidney growth, leaving a permanent nephron deficit. Thus, the number of fetal nephron progenitor cells is an important determinant of nephron endowment, largely via its effect on UB branching.
Collapse
Affiliation(s)
- Cristina Cebrian
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Naoya Asai
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Vivette D'Agati
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Frank Costantini
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
48
|
Basgen JM, Sobin C. Early chronic low-level lead exposure produces glomerular hypertrophy in young C57BL/6J mice. Toxicol Lett 2013; 225:48-56. [PMID: 24300173 DOI: 10.1016/j.toxlet.2013.11.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 11/30/2022]
Abstract
Early chronic lead exposure continues to pose serious health risks for children, particularly those living in lower socioeconomic environments. This study examined effects on developing glomeruli in young C57BL/6J mice exposed to low (30 ppm), higher (330 ppm) or no lead via dams' drinking water from birth to sacrifice on post-natal day 28. Low-level lead exposed mice [BLL mean (SD); 3.19 (0.70) μg/dL] had an increase in glomerular volume but no change in podocyte number compared to control mice [0.03 (0.01) μg/dL]. Higher-level lead exposed mice [14.68 (2.74) μg/dL] had no change in either glomerular volume or podocyte number. The increase in glomerular volume was explained by increases in glomerular capillary and mesangial volumes with no change in podocyte volume. Early chronic lead exposure yielding very low blood lead levels alters glomerular development in pre-adolescent animals.
Collapse
Affiliation(s)
- John M Basgen
- Life Sciences Institute, Charles R. Drew University of Medicine and Science, 1731 E 120th Street, Los Angeles, CA 90059, USA.
| | - Christina Sobin
- Department of Public Health Sciences, College of Health Science, University of Texas, El Paso, El Paso, TX 79902, USA; Border Biomedical Research Center, College of Science, University of Texas, El Paso, El Paso, TX, USA; Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
49
|
Deletion of the prorenin receptor from the ureteric bud causes renal hypodysplasia. PLoS One 2013; 8:e63835. [PMID: 23704941 PMCID: PMC3660567 DOI: 10.1371/journal.pone.0063835] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/07/2013] [Indexed: 01/04/2023] Open
Abstract
The role of the prorenin receptor (PRR) in the regulation of ureteric bud (UB) branching morphogenesis is unknown. Here, we investigated whether PRR acts specifically in the UB to regulate UB branching, kidney development and function. We demonstrate that embryonic (E) day E13.5 mouse metanephroi, isolated intact E11.5 UBs and cultured UB cells express PRR mRNA. To study its role in UB development, we conditionally ablated PRR in the developing UB (PRRUB−/−) using Hoxb7Cre mice. On E12.5, PRRUB−/− mice had decreased UB branching and increased UB cell apoptosis. These defects were associated with decreased expression of Ret, Wnt11, Etv4/Etv5, and reduced phosphorylation of Erk1/2 in the UB. On E18.5, mutants had marked kidney hypoplasia, widespread apoptosis of medullary collecting duct cells and decreased expression of Foxi1, AE1 and H+-ATPase α4 mRNA. Ultimately, they developed occasional small cysts in medullary collecting ducts and had decreased nephron number. To test the functional consequences of these alterations, we determined the ability of PRRUB−/− mice to acidify and concentrate the urine on postnatal (P) day P30. PRRUB−/− mice were polyuric, had lower urine osmolality and a higher urine pH following 48 hours of acidic loading with NH4Cl. Taken together, these data show that PRR present in the UB epithelia performs essential functions during UB branching morphogenesis and collecting duct development via control of Ret/Wnt11 pathway gene expression, UB cell survival, activation of Erk1/2, terminal differentiation and function of collecting duct cells needed for maintaining adequate water and acid-base homeostasis. We propose that mutations in PRR could possibly cause renal hypodysplasia and renal tubular acidosis in humans.
Collapse
|
50
|
Kaczmarczyk M, Goracy I, Loniewska B, Kuprjanowicz A, Binczak-Kuleta A, Clark JS, Ciechanowicz A. Association of BMPR1A polymorphism, but not BMP4, with kidney size in full-term newborns. Pediatr Nephrol 2013; 28:433-8. [PMID: 22886282 PMCID: PMC3555310 DOI: 10.1007/s00467-012-2277-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND A correlation between renal mass and nephron number in newborns allows the use of total kidney volume at birth as a surrogate for congenital nephron number. As the bone morphogenetic protein type 4 (BMP4), and its receptor type 1A (BMPR1A, ALK3), play an important role in renal development, we hypothesized that common, functional polymorphisms in their genes might be responsible for variation in kidney size among healthy individuals. METHODS We recruited 179 healthy full-term newborns born to healthy women. Kidney volume was measured sonographically. Total kidney volume (TKV) was calculated as the sum of left and right kidneys, and normalized for body surface area (TKV/BSA). Genomic DNA was extracted from umbilical cord blood leukocytes, and c.455T > C (rs17563) BMP4 and c.67 + 5659A > T (rs7922846) BMPR1A genotypes were identified by PCR-RFLP. RESULTS TKV/BSA in newborns carrying at least one A BMPR1A allele (AA + AT) was significantly reduced by approximately 13 % as compared with TT homozygous newborns (106.7 ± 21.5 ml/m(2) vs. 122.7 ± 43.8 ml/m(2), p < 0.02). No significant differences in TKV/BSA were found among newborns with different BMP4 genotypes. CONCLUSIONS Results suggest that rs7922846 BMPR1A polymorphism may account for subtle variation in kidney size at birth, reflecting congenital nephron endowment.
Collapse
Affiliation(s)
- Mariusz Kaczmarczyk
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, ul. Powstancow Wlkp. 72, 70-111 Szczecin, Poland.
| | - Iwona Goracy
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, ul. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Beata Loniewska
- Department of Neonatal Diseases, Pomeranian Medical University, ul. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Anna Kuprjanowicz
- Department of Radiology, Pomeranian Medical University, ul. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Agnieszka Binczak-Kuleta
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, ul. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Jeremy S. Clark
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, ul. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, ul. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|