1
|
Ali S, Mirza R, Shah KU, Javed A, Dilawar N. "Harnessing green synthesized zinc oxide nanoparticles for dual action in wound management: Antibiotic delivery and healing Promotion". Microb Pathog 2025; 200:107314. [PMID: 39848301 DOI: 10.1016/j.micpath.2025.107314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Wound infections are characterized by the invasion of microorganisms into bodily tissues, leading to inflammation and potentially affecting any type of wound, including surgical incisions and chronic ulcers. If left untreated, they can delay recovery and cause tissue damage. Healthcare providers face challenges in treating these infections, which necessitate efficient treatment plans involving microbiological testing and clinical evaluation. The effectiveness of conventional treatments like antibiotics is limited by resistance. Various forms of nanotechnology have been developed, each exhibiting unique properties that address particular issues with conventional therapies. Among all the Nanocarriers, zinc oxide nanoparticles (ZnO NPs), offer promising treatments for persistent wound infections. ZnO NPs possess strong antibacterial, antioxidant, anti-inflammatory, and anti-diabetic properties, making them suitable for wound care applications. These nanoparticles can be produced economically and environmentally using green synthesis techniques that minimize toxicity and are biocompatible. While chemical and physical techniques offer precise control over nanoparticle characteristics, they often involve hazardous substances and energy-intensive procedures. The antibacterial qualities, low toxicity, and biological compatibility of green-synthesized ZnO NPs make them a promising treatment for wound infections. Their use in scaffolds, drug delivery systems, and wound dressings provides a viable approach to combat antibiotic resistance and enhance wound treatment outcomes. Furthermore research is necessary to fully realize the benefits of ZnO NPs in clinical practice.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Rashna Mirza
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Kifayat Ullah Shah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Aqeedat Javed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Naz Dilawar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
2
|
Mira NM, Henaish AM, Moussa EA, Helal IB, Kasem SM. Improved antiparasitic effects of mebendazole using chitosan and zinc oxide nanocomposites for drug delivery in Trichinella spiralis infected mice during the muscular phase. Acta Trop 2025; 263:107565. [PMID: 39986444 DOI: 10.1016/j.actatropica.2025.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
This study was performed to assess the use of chitosan (Cs) and zinc oxide nanocomposites ZnO NCP with full and half dose mebendazole (MBZ) during the muscular phases of Trichinella spiralis infection. Sixty Swiss Albino male mice were divided into six groups: G1 (negative control), G2 (positive control), G3 (MBZ at 200 mg/kg/day), G4 (Cs@MBZ NCP at 400 mg/kg/day), G5 (Cs@MBZ400.ZnO NCP), and G6 (Cs@MBZ200.ZnO NCP). Mice were infected orally with 200 T. spiralis larvae and received treatments starting on day 35 post-infection for five consecutive days. Treatment outcomes were evaluated by counting total muscular larvae, conducting blood biochemical measurements, and performing histopathological examinations of the liver and hip joint muscles. ELISA was used to measure serum levels of transforming growth factor-beta1 (TGF-β1), tumor necrosis factor-alpha (TNF-α), and vascular endothelial growth factor (VEGF). Results indicated that both Cs@MBZ400.ZnO NCP and Cs@MBZ200.ZnO NCP groups exhibited significant reductions in muscular larval counts (96.4 % and 96.1 %, respectively). Treated mice also showed reduced AST and ALT levels, increased total protein and albumin, and decreased globulin levels compared to positive controls. Cytokines levels of TNF-α, TGF-β1, and VEGF were lower in treated groups. Histopathological examination revealed that Cs@MBZ400.ZnO and Cs@MBZ200.ZnO NCP restored up to 90 % of normal tissue architecture. In conclusion, chitosan and zinc oxide nanocomposites enhanced the therapeutic ability of mebendazole against T. spiralis muscular stage as these nanocomposites had the highest effect on reducing parasite burden, improving blood biochemical, decreasing cytokines levels and restoring normal histological architecture.
Collapse
Affiliation(s)
- Nabila M Mira
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt
| | - Aya M Henaish
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt
| | - Eman A Moussa
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt
| | - Ibrahim B Helal
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Shaimaa M Kasem
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt.
| |
Collapse
|
3
|
Yilmaz E, Gul M. Effects of essential oils on heat-stressed poultry: A review. J Anim Physiol Anim Nutr (Berl) 2024; 108:1481-1497. [PMID: 38808374 DOI: 10.1111/jpn.13992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
While certain animal species are sensitive to heat stress, poultry particularly modern breeds, are more susceptible to high ambient temperatures. This has major implications for the poultry industry, as heat stress causes large financial losses. These economic losses will probably increase as a consequence of a predicted rise in global temperatures. Heat stress adversely affects various aspects of poultry, including physiological responses, growth and production performance, meat quality, egg quality, and reproductive activities. These effects occur through specific molecular and metabolic pathways. To mitigate the impacts of heat stress, it is crucial to go beyond administrative practices and implement dietary interventions during high ambient temperature. Such interventions aim to optimize the development of stressed bird species in terms of performance, health, and profitability. Essential oils have shown promising in mitigating the negative effects of heat stress and improved antioxidant status, growth and yield performance, as well as meat and egg quality in poultry. They actively participate in certain metabolic and molecular pathways that help to counteract the effects of heat stress. The article discusses the impacts of essential oil supplementation on the relationships between antioxidant enzyme activity, these molecular, and metabolic pathways, as well as various parameters such as growth and yield performance, and product quality heat-stressed poultry.
Collapse
Affiliation(s)
- Emre Yilmaz
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Mehmet Gul
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| |
Collapse
|
4
|
Yehia SA, Badr AM, Bashtar AR, Ibrahim MAA, Mousa MR, Mostafa NA. Immune response, oxidative stress, and histological changes of Wistar rats after being administered with Parascaris equorum antigen. Sci Rep 2024; 14:18069. [PMID: 39103392 PMCID: PMC11300452 DOI: 10.1038/s41598-024-67788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024] Open
Abstract
Worldwide, particularly in developing nations, helminth infections are the leading causes of livestock illness and mortality. Parascaris (P.) equorum, a parasitic worm from the Ascarididae family, significantly impacts the production, health, and working performance of equines. This study aimed to investigate the impact of intraperitoneal sensitization of P. equorum on the immune system, oxidative stress, and histology in Wistar rats. After acclimatization for 7 days, we divided the rats into five groups, each consisting of six rats. Group I, serving as the control, was administered distilled water, followed by groups II (day 7), III (day 14), IV (day 21), and V (day 33). The rats were euthanized every day mentioned (Days 7-33). On day 0, a dosage of 1ml/100 gm rat (containing 500 μg/ml protein content) emulsified crude antigen extract with an incomplete Freund's adjuvant (1:1 volume), followed by a second dose of the same antigen concentration on day 7. To assess the allergenicity of this nematode, we measured a whole blood profile, serum levels of IFN-γ, IL-5, IL-10, IL-13, and IL-33, total immunoglobulins IgE and IgG, and oxidative stress markers. Also, we examined histological changes in the liver, kidney, and spleen. The results showed that values of total leukocyte count, granulocytes, monocytes, and lymphocytes were significantly (P < 0.05) increased on day 14 post-infection relative to other days of investigation. It was found that the levels of total immunoglobulins (IgE and IgG) and cytokines (INF-γ, IL-5, IL-13, and IL-33) on days 14 and 21 were significantly higher than in the control group. At all periods of the experiment, the injected group exhibited significantly higher concentrations of MDA and NO compared to the control group (P < 0.05). Conversely, GSH and CAT levels (P < 0.05) dropped significantly on days 7, 14, and 21. Different rat tissues showed alterations. Ultimately, this study described the detrimental effects of P. equorum crude antigen administration on the immune system, oxidative states, and histological changes of Wistar rats at various intervals.
Collapse
Affiliation(s)
- Salma Adel Yehia
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | | | - Mohamed Refat Mousa
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
5
|
Ramadan RM, Taha NM, Auda HM, Elsamman EM, El-Bahy MM, Salem MA. Molecular and immunological studies on Theileria equi and its vector in Egypt. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:439-458. [PMID: 38967736 PMCID: PMC11269342 DOI: 10.1007/s10493-024-00933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
Equine piroplasmosis is not fully understood regarding pathogenicity, prophylaxis, host immune response expression, and specific vectors. Accurately identifying the parasite vector is crucial for developing an effective control plan for a particular infection. This study focused on morphologically identifying two Hyalomma species (H. anatolicum and H. marginatum) and one Rhipicephalus annulatus (R. annulatus) at the species level. The identification process was followed by phylogenetic analysis using the neighbor-joining method based on the cytochrome oxidase subunit 1 (COXI) gene as a specific vector for Theileria equi (T. equi) in horses. T. equi was diagnosed morphologically and molecularly from infected blood samples and crushed tick species using conventional PCR. Subsequently, phylogenetic analysis based on the amplification of the 18 S rRNA gene was conducted. The obtained sequence data were evaluated and registered in GenBank under accession numbers OR064161, OR067911, OR187727, and OR068139, representing the three tick species and the isolated T. equi, respectively. The study demonstrated that T. equi infection leads to immune system suppression by significantly increasing the levels of oxidative stress markers (CAT, GPx, MDA, and SOD) (P ≤ 0.0001), with this elevation being directly proportional to parasitemia levels in infected blood cells. Furthermore, a correlation was observed between parasitemia levels and the expression of immune response infection genes (IFN-gamma, TGF-β1, and IL-1β cytokines) in infected horses compared to non-infected equine. Common macroscopic symptoms indicating T. equi infection in horses include intermittent fever, enlarged lymph nodes (LN), and tick infestation.
Collapse
Affiliation(s)
- Reem M Ramadan
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Noha Madbouly Taha
- Department of Parasitology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hend M Auda
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eslam M Elsamman
- Faculty of Veterinary Medicine, Cairo University (Equine Veterinarian), Giza, 12211, Egypt
| | - Mohamed M El-Bahy
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mai A Salem
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
6
|
Allahyari M, Malekifard F, Yakhchali M. Anthelmintic effects of some medicinal plants on different life stages of Fasciola hepatica: Evidence on oxidative stress biomarkers, and DNA damage. PLoS Negl Trop Dis 2024; 18:e0012251. [PMID: 38885188 PMCID: PMC11182539 DOI: 10.1371/journal.pntd.0012251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Fasciolosis caused by Fasciola hepatica is a major public health and economic problem worldwide. Due to the lack of a successful vaccine and emerging resistance to the drug triclabendazole, alternative phytotherapeutic approaches are being investigated. This study investigated the in vitro anthelmintic activity of Lavender (Lavandula angustifolia) and carob (Ceratonia siliqua L.) essential oils (EOs) against F. hepatica. The in vitro study was based on an egg hatch assay (EHA), adult motility inhibition assays, DNA damage, reactive oxygen species (ROS) level along with several oxidative stress biomarkers including glutathione peroxidase (GSH), and glutathione-S-transferase (GST), superoxide dismutase (SOD) and malondialdehyde (MDA). To this end, different concentrations of L. angustifolia and C. siliqua EOs (1, 5, 10, 25 and 50 mg/mL) were used to assess anthelmintic effects on different life stages including egg, and adults of F. hepatica for 24 hrs. The results indicated that these EOs play a significant role as anthelminthics, and the effect was dependent on time and concentration. The in vitro treatment of F. hepatica worms with both L. angustifolia and C. siliqua EOs increased DNA damage, ROS production and induction of oxidative stress (decreased SOD, GST and GSH, and increased MDA), significantly compared to control. Therefore, it can be concluded that L. angustifolia and C. siliqua EOs have the potential to be used as novel agents for the control and treatment of F. hepatica infections. Further studies are required to investigate their pharmacological potential and effectiveness in vivo for the treatment of parasitic infections.
Collapse
Affiliation(s)
- Mohaddeseh Allahyari
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Farnaz Malekifard
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mohammad Yakhchali
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
7
|
Ravvaz A, Malekifard F, Esmaeilnejad B. In vitro assessment of the anthelmintic activity of copper oxide and zinc oxide nanoparticles on egg and adult stages of Fasciola hepatica: evidence on oxidative stress biomarkers, and DNA damage. BMC Vet Res 2024; 20:137. [PMID: 38575964 PMCID: PMC10993569 DOI: 10.1186/s12917-024-03994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVES Fasciolosis is of significant economic and public health importance worldwide. The lack of a successful vaccine and emerging resistance in flukes to the drug of choice, triclabendazole, has initiated the search for alternative approaches. In recent years, metallic nanoparticles have been extensively investigated for their anthelmintic effects. This study investigates the in vitro anthelmintic activity of copper oxide and zinc oxide nanoparticles against Fasciola hepatica. METHODS The in vitro study was based on egg hatchability test (EHA), adult motility inhibition tests, DNA damage, ROS levels, as well as several biomarkers of oxidative stress, including glutathione peroxidase (GSH) and glutathione S-transferase (GST), superoxide dismutase (SOD) and malondialdehyde (MDA). For this purpose, different concentrations of copper oxide nanoparticles (CuO-NPs) and Zinc oxide nanoparticles (ZnO-NPs) (1, 4, 8, 12, and 16 ppm) were used to evaluate the anthelmintic effect on different life stages, including egg and adults of Fasciola hepatica, over 24 h. RESULTS In vitro treatment of F. hepatica worms with both CuO-NPs and ZnO-NPs could significantly increase ROS production and oxidative stress induction (decreased SOD, GST and GSH and increased MDA) compared to control group. CONCLUSIONS Based on the results, it seems that CuO-NPs and ZnO-NPs may be effective in the control and treatment of F. hepatica infection. Further research is needed to investigate their potential for in vivo use in the treatment of parasitic infections.
Collapse
Affiliation(s)
- Amirhassan Ravvaz
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, P.O. Box 1177, Urmia, Iran
| | - Farnaz Malekifard
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, P.O. Box 1177, Urmia, Iran.
| | - Bijan Esmaeilnejad
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, P.O. Box 1177, Urmia, Iran
| |
Collapse
|
8
|
Ahmadzadeh Naghadeh Y, Malekifard F, Esmaeilnejad B. In Vitro anthelmintic efficacy of medicinal plant essential oils against Marshallagia marshalli: Evidence on oxidative/nitrosative stress biomarkers, DNA damage, and egg hatchability. Vet Parasitol 2024; 327:110138. [PMID: 38286059 DOI: 10.1016/j.vetpar.2024.110138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
One of the major public health problems is drug resistance in parasitic diseases. It is therefore important to find new active ingredients to combat parasites. Herbal products such as essential oils (EOs) may show promise in treating infections caused by gastrointestinal nematodes (GINs). This study investigated the in vitro anthelmintic activity of the EOs of Lavandula angustifolia and Quercus infectoria against Marshallagia marshalli. The in vitro study was based on an egg hatch test (EHT), adult and larval motility inhibition tests, DNA damage, and several biomarkers of oxidative/nitrosative stress, including superoxide dismutase [SOD], catalase [CAT], and glutathione peroxidase [GSH -Px], protein carbonylation [PCO], malondialdehyde [MDA], total antioxidant status [TAS], and nitric oxide levels [NO]. Different concentrations of Lavandula angustifolia and Quercus infectoria EOs (1, 5, 10, 25 and 50 mg/ml) were used to determine the anthelmintic effect on three stages of the life cycle of M. marshalli, i.e. eggs, larvae and adult parasites, for 24 hr. The results showed that EOs of L. angustifolia and Q. infectoria play an important role as anthelmintics. These essential oils significantly reduced the egg hatching and motility of larval and adult worms. This anthelmintic effect is dependent on concentration and time. Furthermore, the EOs of L. angustifolia and Q. infectoria caused oxidative/nitrosative stress (reduced SOD, GSH-Px and CAT and increased MDA, PCO and NO) and DNA damage, thereby providing significant antihelminthic effects. Based on the results, it seems that the EOs extracted from L. angustifolia and Q. infectoria may be effective in the control and treatment of M. marshalli infections. Further research is needed to investigate their potential for in vivo use in the treatment of parasitic infections.
Collapse
Affiliation(s)
| | - Farnaz Malekifard
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Bijan Esmaeilnejad
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
9
|
Mostafa NA, Hamdi SAH, Fol MF. Potential anthelmintic effect of chitosan on Syphacia muris infecting Wistar rats: biochemical, immunological, and histopathological studies. Sci Rep 2024; 14:2825. [PMID: 38310115 PMCID: PMC10838320 DOI: 10.1038/s41598-024-52309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
Natural products extracted from animal sources have many biological activities, such as chitosan, which is being researched for its medicinal or therapeutic potential. Syphacia muris is the most well-known intestinal nematode, infecting laboratory rats and influencing their immune systems. In this study, we looked at the anthelminthic activity of chitosan particles against S. muris infection using biochemical, immunological, and histopathological methods. Chitosan particles were characterized using Fourier-transform infrared spectroscopy (FTIR). Rats were separated into four groups, each consisting of seven individuals (n = 7). The first group was the control (non-infected), the second group was infected, and both groups received 0.5 ml of 1% glacial acetic acid orally. The third group was the infected group (treated), and the fourth group (normal) received 0.5 ml of 30 mg/kg/day chitosan dissolved in 1% glacial acetic acid for 14 days using gavage. Liver and kidney parameters, oxidative stress markers, serum levels of cytokines (IFN-γ, IL-5, IL-13, IL-33, and IL-10), as well as immunoglobulins (total IgE and IgG), were assessed. Histological examinations of host tissues (intestine, liver, kidney, and spleen) were also performed. Following chitosan treatment, a significant decrease in worm count (P < 0.05) was indicated; this was associated with an enhancement of biochemical and oxidative stress biomarkers, which were altered due to infection. Moreover, immunological analysis revealed a significant drop in INF-γ, IL-5, IL-13, and IL-33 levels and total immunoglobulins (IgE and IgG) as well as an improvement in rat tissues. Conclusively, this study showed the anthelminthic effect of chitosan against S. muris infection.
Collapse
Affiliation(s)
- Nesma A Mostafa
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Salwa A H Hamdi
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mona F Fol
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
10
|
Kambale EK, Domingues I, Zhang W, Marotti V, Chen C, Hughes K, Quetin-Leclercq J, Memvanga PB, Beloqui A. "Green" synthesized versus chemically synthesized zinc oxide nanoparticles: In vivo antihyperglycemic activity and pharmacokinetics. Int J Pharm 2024; 650:123701. [PMID: 38081556 DOI: 10.1016/j.ijpharm.2023.123701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/08/2024]
Abstract
Zinc is one of the most studied trace elements, commonly used as supplement in diabetes treatment. By its involvement in the synthesis, secretion of insulin, promotion of insulin sensitivity and its multiple enzymatic functions it is known to contribute to reduce hyperglycemia. Researchers have shown that zinc administered under the form of zinc oxide nanoparticles (ZnONPs) is more effective than under its ionic form. Studies evaluating the antihyperglycemic activity of these nanocarriers include both ZnONPs synthesised using plants (i.e. green synthesized) or chemically synthesized. The present work aims to compare green synthesized ZnONPs with the marketed chemically synthesized ones. Green ZnONPs were synthesized using the aqueous extract of the stem bark of the medicinal plant Panda oleosa and zinc nitrate hexahydrate. Both nanocarriers were compared in terms of optical properties, morphology, composition, chemical functions, resistance to oxidation, in vivo antihyperglycemic activity via oral glucose tolerance test (OGTT) and pharmacokinetics in relation to zinc in C57BL/6J mice. A UV absorption peak was observed at 354 nm and 374 nm for the green and marketed ZnONPs, respectively. The shape and hydrodynamic diameters were anisotropic and of 228.8 ± 3.0 nm for the green ZnONPs and spherical and of 225.6 ± 0.9 nm for the marketed ZnONPs. Phenolic compounds accounted for 2.58 ± 0.04% of the green ZnONPs and allowed them to be more stable and unaffected by an oxidizing agent during the experiment, while the marketed chemically synthesized ZnONPs aggregated with or without contact with an oxidizing agent. No significant differences were observed on the amounts of zinc absorbed when comparing green ZnONPs, chemically synthesized ZnONPs and zinc sulfate in a pharmacokinetics study in normoglycemic mice. When evaluating the in vivo hypoglycemic activity of the nanocarriers in obese/diabetic mice, green synthesized ZnONPs displayed a significant hypoglycemic effect compared with the chemically synthesized nanoparticles following an OGTT. Altogether, these data indicate that phytocompounds, as catechin derivatives and polyphenols, attached to the green synthesized ZnONPs' surface, could contribute to their hypoglycemic activity. The comparison thus demonstrated that green synthesized ZnONPs are significantly more efficient than chemically ones at reducing hyperglycemia regardless of their absorption.
Collapse
Affiliation(s)
- Espoir K Kambale
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| | - Inês Domingues
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Wunan Zhang
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Valentina Marotti
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Cheng Chen
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Kristelle Hughes
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Patrick B Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo; Centre de Recherche et d'Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium.
| |
Collapse
|
11
|
Govardhane S, Shende P. Zinc-Phthalocyanine Loaded PLGA-PVA-Chitosan Nanosystem for the Enhancement of Antidiabetic Activity. Mol Pharm 2024; 21:62-75. [PMID: 38038273 DOI: 10.1021/acs.molpharmaceut.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Zinc, one of the most common nutraceutical agents, proved to be effective for diabetes as it regulates the blood glucose level by inhibiting glucagon secretion. However, the hepatotoxicity of zinc creates necrosis, hepatic glycogen depletion, and apoptosis of hepatocytes at the concentration of 10 μg/kg. Phthalocyanine, a blue-colored compound, is an aromatic macrocyclic compound with good antioxidant ability owing to its heterocyclic nitrogen conjugation. The conjugation of zinc with phthalocyanine aimed to reduce the toxicity associated with zinc and enhance the antidiabetic activity at a lower dose. Hence, the present research work possessed the insights of the synthetic aspect of zinc with phthalocyanine along with its entrapment in the poly(lactic-co-glycolic acid) (PLGA)-chitosan nanosystem via oral administration in the treatment of diabetes. A nanoprecipitation technique was implemented for the synthesis of PLGA chitosan nanoparticles, and formulation was further optimized using a central composite design. Twenty trials provided by the software selected optimum concentrations of PLGA, poly(vinyl alcohol) (PVA), and chitosan in consideration with particle size up to 335.6 nm, zeta potential 27.87 mV, and entrapment efficiency of 75.67 ± 8.13%. Addition of chitosan to the nanocarrier system for controlling the release of the drug for 3 days was accompanied by the improvement in the glucose level within 28 days. The delivery of the nanoparticles showed enhancement in the cholesterol, triglyceride, alkaline phosphatase (ALP), urine parameters, and pro-inflammatory cytokines. The application of DoE (design of experiments) for the optimization of the nanoparticles established a controlled release formulation for diabetes, which displayed safety and effectiveness in streptozotocin (STZ)-induced diabetic rats.
Collapse
Affiliation(s)
- Sharayu Govardhane
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| |
Collapse
|
12
|
Nair VR, R V G, R P P. Aldose Reductase and Protein Glycation Inhibitory Activity of Dark Chocolate-Assisted Zinc Oxide Nanoparticles. Cureus 2023; 15:e48953. [PMID: 38111407 PMCID: PMC10726068 DOI: 10.7759/cureus.48953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction One of the most common health issues that the global population is dealing with is the associated complications of diabetes, which encompasses cataracts, peripheral neuropathy, vascular damage, impaired wound healing, retinal issues, and arterial wall stiffening. The present study is aimed to evaluate the effect of dark chocolate and its assisted zinc oxide nanoparticles against diabetes-associated complications. Materials and methods Zinc oxide nanoparticles were synthesized using commercially dark chocolate (DC-ZnO NP). The synthesized DC-ZnO NPs were evaluated against recombinant aldose reductase (AR) activity and the formation of advanced glycation end products (AGEs). Aminoguanidine and gallic acid were used as reference standards for AGE assay and sorbitol accumulation inhibition, respectively. Results The results of the present study showed that green synthesized DC-ZnO NP had a significant dose-dependent inhibitory activity on both AR and AGEs. The inhibitory activity was compared to that of quercetin and aminoguanidine, respectively. Conclusion Targeting the endogenous antioxidant systems like AGEs and AR enzymes seems to provide a promising therapeutic approach, thus concluding that ZnO-NP could be a promising agent for treating diabetes-related complications such as diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy that provide grounds for further clinical investigations and trials.
Collapse
Affiliation(s)
- Vedha R Nair
- Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Geetha R V
- Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Parameswari R P
- Pharmacology, Centre for Transdisciplinary Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technial Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
13
|
Gracias S, Ayyanar M, Peramaiyan G, Kalaskar M, Redasani V, Gurav N, Nadaf S, Deshpande M, Bhole R, Khan MS, Chikhale R, Gurav S. Fabrication of chitosan nanocomposites loaded with biosynthetic metallic nanoparticles and their therapeutic investigation. ENVIRONMENTAL RESEARCH 2023; 234:116609. [PMID: 37437861 DOI: 10.1016/j.envres.2023.116609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
The present research demonstrates the formation of zinc oxide nanoparticles facilitated by Cissus quadrangularis (CQ-ZnONPs) and subsequent synthesis of chitosan-conjugated nanocomposites (CQ-CS/ZnONCs) along with their biological assessment. The biosynthesized nanoparticles and nanocomposites were physicochemically characterized and therapeutically assessed for their antioxidant, antibacterial, and antidiabetic potential. The formation of CQ-ZnONPs and CQ-CS/ZnONCs was preliminarily validated by the change in color and subsequently by UV-visible spectroscopic analysis. The crystalline peaks associated with the CQ-ZnONPs in CQ-CS/ZnONCs were established by XRD analysis. Morphological evaluation of CQ-ZnONPs and CQ-CS/ZnONCs was carried out through FE-SEM and HRTEM studies. The particle size of the CQ-ZnONPs and CQ-CS/ZnONCs was 243.3 nm and 176.6 nm, with a PDI of 0.188 and 0.199, respectively. Nanoparticles and nanocomposites expressed Zeta potential of -15.7 mV and -16.2 mV, respectively. The CQ-ZnONPs and CQ-CS/ZnONCs showed good radical effectiveness with various in-vitro assays. The formulated nanoparticles and nanocomposites displayed significant antibacterial activity against the selected bacterial pathogens. CQ-CS/ZnONCs presented noteworthy α-amylase and α-glucosidase inhibitory effects compared to CQ-ZnONPs with IC50 of 73.66 ± 1.21 μg/mL and 87.59 ± 1.29 μg/mL, respectively. Moreover, the synthesized CQ-CS/ZnONCs demonstrated 98.92 ± 0.39% and 99.58 ± 0.16% wound contraction (at 7 and 14 mg, respectively), significantly (p < 0.05) higher than the standard and CQ-ZnONPs. Thus, the CQ-ZnONPs and CQ-CS/ZnONCs could effectively develop promising drug delivery systems to inhibit pathogens and chronic tissue repair.
Collapse
Affiliation(s)
- Slavika Gracias
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa, 403 001, India
| | - Muniappan Ayyanar
- Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous), Poondi (Affiliated to Bharathidasan University), 613 503, India
| | - Gangapriya Peramaiyan
- Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous), Poondi (Affiliated to Bharathidasan University), 613 503, India
| | - Mohan Kalaskar
- R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Vivek Redasani
- Yashoda Technical Campus, Faculty of Pharmacy, Satara, Maharashtra, 415 011, India
| | - Nilambari Gurav
- PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa University, Goa, 403401, India
| | - Sameer Nadaf
- Sant Gajanan Maharaj College of Pharmacy, Mahagao, 416 503, Maharashtra, India
| | - Mangirish Deshpande
- PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa University, Goa, 403401, India
| | - Ritesh Bhole
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rupesh Chikhale
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa, 403 001, India.
| |
Collapse
|
14
|
Halarnekar D, Ayyanar M, Gangapriya P, Kalaskar M, Redasani V, Gurav N, Nadaf S, Saoji S, Rarokar N, Gurav S. Eco synthesized chitosan/zinc oxide nanocomposites as the next generation of nano-delivery for antibacterial, antioxidant, antidiabetic potential, and chronic wound repair. Int J Biol Macromol 2023; 242:124764. [PMID: 37148929 DOI: 10.1016/j.ijbiomac.2023.124764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
The present research work aimed at synthesizing chitosan-coated Zinc oxide nanocomposites (NS-CS/ZnONCs) by a bio-inspired method using an aqueous extract of Nigella sativa (NS) seeds and employing a quality-by-design approach (Box-Behnken design). The biosynthesized NS-CS/ZnONCs were physicochemically characterized and subjected to their in-vitro and in-vivo therapeutic potential. The zeta potential value of -11.2 mV and -12.6 mV indicated the stability of NS-mediated synthesized zinc oxide nanoparticles (NS-ZnONPs) and NS-CS/ZnONCs, respectively. The particle size of NS-ZnONPs and NS-CS/ZnONCs were 288.1 nm and 130.2 nm, respectively, with PDI of 0.198 and 0.158. NS-ZnONPs and NS-CS/ZnONCs showed superior radical scavenging abilities, excellent α-amylase, and α-glucosidase inhibitory activities. Also, NS-ZnONPs and NS-CS/ZnONCs demonstrated effective antibacterial activity against selected pathogens. Furthermore, NS-ZnONPs and NS-CS/ZnONCs demonstrated significant (p < 0.001) wound closure with 93.00 ± 0.43 % and 95.67 ± 0.43 % on the 15th day of treatment at the dose of 14 mg/wound, compared to 93.42 ± 0.58 % of standard. Collagen turnover was represented by hydroxyproline, which was shown to be significantly (p < 0.001) higher in the NS-ZnONPs (60.70 ± 1.44 mg/g of tissue) and NS-CS/ZnONCs (66.10 ± 1.23 mg/g of tissue) treatment groups than in the control group (47.7 ± 0.81 mg/g of tissue). Thus the NS-ZnONPs and NS-CS/ZnONCs could effectively develop promising drugs to inhibit pathogens and chronic tissue repair.
Collapse
Affiliation(s)
- Diksha Halarnekar
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa 403 001, India
| | - Muniappan Ayyanar
- Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous), Poondi (Affiliated to Bharathidasan University), 613 503, India
| | - Peramaiyan Gangapriya
- Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous), Poondi (Affiliated to Bharathidasan University), 613 503, India
| | - Mohan Kalaskar
- R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Vivek Redasani
- Yashoda Technical Campus, Faculty of Pharmacy, Satara 415 011, India
| | - Nilambari Gurav
- PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa University, Goa 403401, India
| | - Sameer Nadaf
- Sant Gajanan Maharaj College of Pharmacy, Mahagao 416 503, Maharashtra, India
| | - Suprit Saoji
- Formulations and Development Department, Slyaback Pharma, Telangana, India
| | - Nilesh Rarokar
- Department of Pharmaceutical Sciences, R.T. M. University, Nagpur, Maharashtra, India
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa 403 001, India.
| |
Collapse
|
15
|
Pino P, Bosco F, Mollea C, Onida B. Antimicrobial Nano-Zinc Oxide Biocomposites for Wound Healing Applications: A Review. Pharmaceutics 2023; 15:pharmaceutics15030970. [PMID: 36986831 PMCID: PMC10053511 DOI: 10.3390/pharmaceutics15030970] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic wounds are a major concern for global health, affecting millions of individuals worldwide. As their occurrence is correlated with age and age-related comorbidities, their incidence in the population is set to increase in the forthcoming years. This burden is further worsened by the rise of antimicrobial resistance (AMR), which causes wound infections that are increasingly hard to treat with current antibiotics. Antimicrobial bionanocomposites are an emerging class of materials that combine the biocompatibility and tissue-mimicking properties of biomacromolecules with the antimicrobial activity of metal or metal oxide nanoparticles. Among these nanostructured agents, zinc oxide (ZnO) is one of the most promising for its microbicidal effects and its anti-inflammatory properties, and as a source of essential zinc ions. This review analyses the most recent developments in the field of nano-ZnO–bionanocomposite (nZnO-BNC) materials—mainly in the form of films, but also hydrogel or electrospun bandages—from the different preparation techniques to their properties and antibacterial and wound-healing performances. The effect of nanostructured ZnO on the mechanical, water and gas barrier, swelling, optical, thermal, water affinity, and drug-release properties are examined and linked to the preparation methods. Antimicrobial assays over a wide range of bacterial strains are extensively surveyed, and wound-healing studies are finally considered to provide a comprehensive assessment framework. While early results are promising, a systematic and standardised testing procedure for the comparison of antibacterial properties is still lacking, partly because of a not-yet fully understood antimicrobial mechanism. This work, therefore, allowed, on one hand, the determination of the best strategies for the design, engineering, and application of n-ZnO-BNC, and, on the other hand, the identification of the current challenges and opportunities for future research.
Collapse
|
16
|
Attia MM, Khalifa MM. Virulence of Babesia bigemina in infected cattle (Bos taurus): Molecular and immunological studies. Res Vet Sci 2023; 156:7-13. [PMID: 36731184 DOI: 10.1016/j.rvsc.2023.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
This study examined 400 tick-infested cattle from the following four governorates in Egypt: Faiyum, Beni Suef, Giza, and Minya. These cattle were examined for blood parasites between January 2021 and April 2022. The infected cattle were classified into four groups based on tick infestations and clinical signs. Blood was drawn for assessing oxidative stress markers as well as for parasitological examination and molecular analysis of the 18S rRNA gene of Babesia bigemina (B. bigemina). We performed a comparison of the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) between B. bigemina-infected blood samples and non-infected blood samples used as negative controls. Babesia spp. infection increases hemolysis, which in turn increases oxidative stress marker levels and cell-mediated immune response.
Collapse
Affiliation(s)
- Marwa M Attia
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt.
| | - Marwa M Khalifa
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt.
| |
Collapse
|
17
|
Miguel F, Barbosa F, Ferreira FC, Silva JC. Electrically Conductive Hydrogels for Articular Cartilage Tissue Engineering. Gels 2022; 8:710. [PMID: 36354618 PMCID: PMC9689960 DOI: 10.3390/gels8110710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 09/10/2023] Open
Abstract
Articular cartilage is a highly specialized tissue found in diarthrodial joints, which is crucial for healthy articular motion. Despite its importance, articular cartilage has limited regenerative capacities, and the degeneration of this tissue is a leading cause of disability worldwide, with hundreds of millions of people affected. As current treatment options for cartilage degeneration remain ineffective, tissue engineering has emerged as an exciting approach to create cartilage substitutes. In particular, hydrogels seem to be suitable candidates for this purpose due to their biocompatibility and high customizability, being able to be tailored to fit the biophysical properties of native cartilage. Furthermore, these hydrogel matrices can be combined with conductive materials in order to simulate the natural electrochemical properties of articular cartilage. In this review, we highlight the most common conductive materials combined with hydrogels and their diverse applications, and then present the current state of research on the development of electrically conductive hydrogels for cartilage tissue engineering. Finally, the main challenges and future perspectives for the application of electrically conductive hydrogels on articular cartilage repair strategies are also discussed.
Collapse
Affiliation(s)
- Filipe Miguel
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Frederico Barbosa
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Frederico Castelo Ferreira
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Carlos Silva
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
18
|
Shaban EE, Abd El-Aziz ME, Ibrahim KS, Nasr SM, Desouky HM, Elbakry HF. Effect of zinc oxide nanoparticles on diabetes development and complications in diabetic rats compared to conventional zinc sulfate and metformin. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Hu B, Lin ZY, Cai Y, Sun YX, Yang SQ, Guo JL, Zhang S, Sun DL. A cross-sectional study on the effect of dietary zinc intake on the relationship between serum vitamin D3 and HOMA-IR. Front Nutr 2022; 9:945811. [PMID: 36352900 PMCID: PMC9638013 DOI: 10.3389/fnut.2022.945811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Serum vitamin D3 concentration is associated with the risk of insulin resistance. Zinc has also been reported to be associated with a lower risk of insulin resistance. In addition, zinc is an essential cofactor in the activation of vitamin D3. However, the effect of dietary zinc intake on the relationship between vitamin D3 and insulin resistance risk has not been fully studied. Therefore, we designed this cross-sectional study to assess the impact of changes in zinc intake on the relationship between vitamin D3 and insulin resistance risk. Study design and methods This study analyzed data from the national Health and Nutrition Examination Survey (NHANES) from 2005 to 2018, involving 9,545 participants. Participants were stratified by zinc intake category (low zinc intake <9.58 mg/ day; High zinc intake: ≥9.58 mg/ day). Results In this cross-sectional study, serum vitamin D3 levels were independently associated with the risk of insulin resistance in both the low and high Zinc intakes (β: −0.26, 95%Cl: −0.56~0.04 vs. β: −0.56, 95%Cl: −1.01~-0.11). In addition, this association was influenced by different dietary zinc intakes (interaction P < 0.05). Conclusions Our results suggest that zinc intake may influence the association between serum vitamin D3 and the risk of insulin resistance. Further randomized controlled trials are needed to provide more evidence of this finding.
Collapse
Affiliation(s)
- Biao Hu
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Zheng-yang Lin
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yuan Cai
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yue-xin Sun
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Shu-qi Yang
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Jiang-long Guo
- Department of Medical Imaging, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Shi Zhang
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shi Zhang
| | - Dong-lin Sun
- Guangzhou Medical University, Guangzhou, China
- Dong-lin Sun
| |
Collapse
|
20
|
Gadoa Z, Moustafa AH, El Rayes SM, Arisha AA, Mansour MF. Zinc Oxide Nanoparticles and Synthesized Pyrazolopyrimidine Alleviate Diabetic Effects in Rats Induced by Type II Diabetes. ACS OMEGA 2022; 7:36865-36872. [PMID: 36278044 PMCID: PMC9583298 DOI: 10.1021/acsomega.2c05638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 05/28/2023]
Abstract
Diabetes mellitus (DM) is a category of metabolic illness characterized by high blood sugar levels and insufficient pancreatic insulin production or activity within the body. The most common type of diabetes is type II diabetes, which is a metabolic condition characterized by insulin resistance and pancreatic islet β-cell failure, resulting in hyperglycemia. The goal of this study was to examine the anti-diabetic implications of zinc oxide nanoparticles (ZnO NPs) and/or pyrazolopyrimidine in type II diabetic rats. Rats with a weight of 150 ± 20 g were used. Animals were divided into five groups as follows: group 1: control, group 2: type II diabetic rats, group 3: diabetic rats received ZnO NPs (10 mg/kg/orally/day), group 4: diabetic rats received pyrazolopyrimidine (5 mg/kg/orally/day), and group 5: diabetic rats received ZnO NPs (10 mg/kg/orally/day) + pyrazolopyrimidine (5 mg/kg/orally/day), respectively, for 30 days. The results indicated that serum glucose, total cholesterol (TC), triacylglycerol (TG), low-density lipoprotein-cholesterol (LDL-c), very low-density lipoprotein-cholesterol (VLDL-c), malondialdehyde, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha PGC-1α mRNA expressions were increased in the diabetic group versus the control group, while serum insulin, high-density lipoprotein-cholesterol (HDL-c), superoxide dismutase (SOD), and carnitine palmitoyltransferase 1A (CPT1A) mRNA expression levels were decreased. These parameters were reserved in the treated groups (ZnO NPs, pyrazolopyrimidine, and ZnO NPs + pyrazolopyrimidine). This study proved that ZnO NPs and pyrazolopyrimidine had an ameliorative effect on blood glucose levels, antioxidant status, lipid profile, liver function enzymes, and mRNA expression of hepatic genes.
Collapse
Affiliation(s)
- Zahraa
Alaaeldein Gadoa
- Department
of Chemistry, Faculty of Science, Suez Canal
University in Ismailia, Ismailia 41522, Egypt
| | | | - Samir Mohamed El Rayes
- Department
of Chemistry, Faculty of Science, Suez Canal
University in Ismailia, Ismailia 41522, Egypt
| | - Ahmed A. Arisha
- Department
of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Cairo, Egypt
- Department
of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Fouad Mansour
- Department
of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
21
|
Alsmadi MM, Al-Nemrawi NK, Obaidat R, Abu Alkahsi AE, Korshed KM, Lahlouh IK. Insights into the mapping of green synthesis conditions for ZnO nanoparticles and their toxicokinetics. Nanomedicine (Lond) 2022; 17:1281-1303. [PMID: 36254841 DOI: 10.2217/nnm-2022-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Research on ZnO nanoparticles (NPs) has broad medical applications. However, the green synthesis of ZnO NPs involves a wide range of properties requiring optimization. ZnO NPs show toxicity at lower doses. This toxicity is a function of NP properties and pharmacokinetics. Moreover, NP toxicity and pharmacokinetics are affected by the species type and age of the animals tested. Physiologically based pharmacokinetic (PBPK) modeling offers a mechanistic platform to scrutinize the colligative effect of the interplay between these factors, which reduces the need for in vivo studies. This review provides a guide to choosing green synthesis conditions that result in minimal toxicity using a mechanistic tool, namely PBPK modeling.
Collapse
Affiliation(s)
- Mo'tasem M Alsmadi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Nusaiba K Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Rana Obaidat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Anwar E Abu Alkahsi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Khetam M Korshed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Ishraq K Lahlouh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
22
|
Biogenic synthesis of zinc oxide nanoparticles using mushroom fungus Cordyceps militaris: Characterization and mechanistic insights of therapeutic investigation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Asghari K, Shargh Z, Fatehfar S, Chodari L, Sameei P. The impact of zinc on the molecular signaling pathways in the diabetes disease. J Trace Elem Med Biol 2022; 72:126985. [PMID: 35429747 DOI: 10.1016/j.jtemb.2022.126985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 01/11/2023]
Abstract
Since there's been an upsurge in people with diabetes or pre-diabetes conditions, many studies have been conducted to evaluate approaches for reducing the complications of diabetes. One of the most common therapeutic elements suggested for this purpose is zinc (Zn). Zn has long been shown to positively improve complications of both type 1 and type 2 diabetes. This review aims to provide comprehensive information about the influence of Zn on the various signaling pathways in multiple tissues with diabetic conditions, with great attention to the treatment period and effective dose of Zn.
Collapse
Affiliation(s)
- Keyvan Asghari
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Shargh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sina Fatehfar
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Parsa Sameei
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
24
|
Raha S, Ahmaruzzaman M. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. NANOSCALE ADVANCES 2022; 4:1868-1925. [PMID: 36133407 PMCID: PMC9419838 DOI: 10.1039/d1na00880c] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/07/2022] [Indexed: 05/22/2023]
Abstract
Extensive research in nanotechnology has been conducted to investigate new behaviours and properties of materials with nanoscale dimensions. ZnO NPs owing to their distinct physical and chemical properties have gained considerable importance and are hence investigated to a detailed degree for exploitation of these properties. This communication, at the outset, elaborates the various chemical methods of preparation of ZnO NPs, viz., the mechanochemical process, controlled precipitation, sol-gel method, vapour transport method, solvothermal and hydrothermal methods, and methods using emulsion and micro-emulsion environments. The paper further describes the green methods employing the use of plant extracts, in particular, for the synthesis of ZnO NPs. The modifications of ZnO with organic (carboxylic acid, silanes) and inorganic (metal oxides) compounds and polymer matrices have then been described. The multitudinous applications of ZnO NPs across a variety of fields such as the rubber industry, pharmaceutical industry, cosmetics, textile industry, opto-electronics and agriculture have been presented. Elaborative narratives on the photocatalytic and a variety of biomedical applications of ZnO have also been included. The ecotoxic impacts of ZnO NPs have additionally been briefly highlighted. Finally, efforts have been made to examine the current challenges and future scope of the synthetic modes and applications of ZnO NPs.
Collapse
Affiliation(s)
- Sauvik Raha
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
25
|
Zingiber officinale Driven Bioproduction of ZnO Nanoparticles and its Anti-inflammatory, Anti-diabetic, Anti-Alzheimer, Anti-oxidant, and Anti-microbial Applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Toxicities of the copper and zinc oxide nanoparticles on Marshallagia marshalli (Nematoda: Trichostrongylidae): evidence on oxidative/nitrosative stress biomarkers, DNA damage and egg hatchability. J Helminthol 2021; 95:e70. [PMID: 34852860 DOI: 10.1017/s0022149x21000584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study investigated the in vitro anthelmintic activity of copper oxide (CuO) and zinc oxide (ZnO) nanoparticles (NPs) against Marshallagia marshalli. The in vitro study was based on an egg hatch assay, adult and larvae motility inhibition assays, DNA damage, intensity protein profile along with several oxidative/nitrosative stress biomarkers including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), protein carbonylation (PCO), malondialdehyde (MDA), total antioxidant status (TAS) and nitric oxide (NO) content. Different concentrations of CuO-NPs and ZnO-NPs (1, 4, 8, 12 and 16 ppm) were used to assess anthelmintic effects on three stages of M. marshalli life cycle - that is, eggs, larvae and adult parasites for 24 h. The results indicated that CuO-NPs and ZnO-NPs played a significant role as anthelminthics, and the effect was dependent on time and concentration. The concentrations of 12 and 16 ppm of CuO-NPs and 16 ppm of ZnO-NPs resulted in the induction of oxidative/nitrosative stress (decreased SOD, GSH-Px and CAT, and increased MDA, PCO and NO), increased DNA damage, inhibition of adult and larval motility, egg hatch and low intensity of protein bands following sodium dodecyl sulphate-polyacrylamide gel electrophoresis, compared to control. It was concluded that CuO-NPs and ZnO-NPs could be utilized as novel and potential agents for the control and treatment of M. marshalli infection, and they have the pharmacological potential to be studied in vivo for further utilization in treating parasitic infections.
Collapse
|
27
|
Dutta G, Sugumaran A. Bioengineered zinc oxide nanoparticles: Chemical, green, biological fabrication methods and its potential biomedical applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Haque ST, Saha SK, Haque ME, Biswas N. Nanotechnology-based therapeutic applications: in vitro and in vivo clinical studies for diabetic wound healing. Biomater Sci 2021; 9:7705-7747. [PMID: 34709244 DOI: 10.1039/d1bm01211h] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetic wounds often indicate chronic complications that are difficult to treat. Unfortunately, existing conventional treatment modalities often cause unpremeditated side effects, given the need to develop alternative therapeutic phenotypes that are safe or have minimal side effects and risks. Nanotechnology-based platforms, including nanotherapeutics, nanoparticles (NPs), nanofibers, nanohydrogels, and nanoscaffolds, have garnered attention for their groundbreaking potential to decipher the biological environment and offer personalized treatment methods for wound healing. These nanotechnology-based platforms can successfully overcome the impediments posed by drug toxicity, existing treatment modalities, and the physiology and complexity of the wound sites. Furthermore, studies have shown that they play an essential role in influencing angiogenesis, collagen production, and extracellular matrix (ECM) synthesis, which are integral in skin repair mechanisms. In this review, we emphasized the importance of various nanotechnology-based platforms for healing diabetic wounds and report on the innovative preclinical and clinical outcomes of different nanotechnology-based platforms. This review also outlined the limitations of existing conventional treatment modalities and summarized the physiology of acute and chronic diabetic wounds.
Collapse
Affiliation(s)
- Sheikh Tanzina Haque
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Subbroto Kumar Saha
- Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA.,Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neugdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Md Enamul Haque
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Nirupam Biswas
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN-46202, USA.,Department of Immunology and Microbial Diseases, Albany Medical College, Albany, NY-12208, USA.
| |
Collapse
|
29
|
Abdulmalek S, Nasef M, Awad D, Balbaa M. Protective Effect of Natural Antioxidant, Curcumin Nanoparticles, and Zinc Oxide Nanoparticles against Type 2 Diabetes-Promoted Hippocampal Neurotoxicity in Rats. Pharmaceutics 2021; 13:1937. [PMID: 34834352 PMCID: PMC8621156 DOI: 10.3390/pharmaceutics13111937] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous epidemiological findings have repeatedly established associations between Type 2 Diabetes Mellitus (T2DM) and Alzheimer's disease. Targeting different pathways in the brain with T2DM-therapy offers a novel and appealing strategy to treat diabetes-related neuronal alterations. Therefore, here we investigated the capability of a natural compound, curcumin nanoparticle (CurNP), and a biomedical metal, zinc oxide nanoparticle (ZnONP), to alleviate hippocampal modifications in T2DM-induced rats. The diabetes model was induced in male Wistar rats by feeding a high-fat diet (HFD) for eight weeks followed by intraperitoneal injection of streptozotocin (STZ). Then model groups were treated orally with curcumin, zinc sulfate, two doses of CurNP and ZnONP, as well as metformin, for six weeks. HFD/STZ-induced rats exhibited numerous biochemical and molecular changes besides behavioral impairment. Compared with model rats, CurNP and ZnONP boosted learning and memory function, improved redox and inflammation status, lowered Bax, and upregulated Bcl2 expressions in the hippocampus. In addition, the phosphorylation level of the MAPK/ERK pathway was downregulated significantly. The expression of amyloidogenic-related genes and amyloid-beta accumulation, along with tau hyperphosphorylation, were lessened considerably. In addition, both nanoparticles significantly improved histological lesions in the hippocampus. Based on our findings, CurNP and ZnONP appear to be potential neuroprotective agents to mitigate diabetic complications-associated hippocampal toxicity.
Collapse
Affiliation(s)
- Shaymaa Abdulmalek
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; (S.A.); (M.N.); (D.A.)
- Center of Excellency for Preclinical Study (CE-PCS), Pharmaceutical and Fermentation Industries Development Centre, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Egypt
| | - Mayada Nasef
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; (S.A.); (M.N.); (D.A.)
| | - Doaa Awad
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; (S.A.); (M.N.); (D.A.)
| | - Mahmoud Balbaa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; (S.A.); (M.N.); (D.A.)
| |
Collapse
|
30
|
Abdulmalek S, Eldala A, Awad D, Balbaa M. Ameliorative effect of curcumin and zinc oxide nanoparticles on multiple mechanisms in obese rats with induced type 2 diabetes. Sci Rep 2021; 11:20677. [PMID: 34667196 PMCID: PMC8526574 DOI: 10.1038/s41598-021-00108-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
The present study was carried out to investigate the therapeutic effect of synthesized naturally compounds, curcumin nanoparticles (CurNPs) and metal oxide, zinc oxide nanoparticles (ZnONPs) on a high-fat diet (HFD)/streptozotocin (STZ)-induced hepatic and pancreatic pathophysiology in type 2 diabetes mellitus (T2DM) via measuring AKT pathway and MAPK pathway. T2DM rats were intraperitoneally injected with a low dose of 35 mg/kg STZ after being fed by HFD for 8 weeks. Then the rats have orally received treatments for 6 weeks. HFD/STZ-induced hepatic inflammation, reflected by increased phosphorylation of p38-MAPK pathway's molecules, was significantly decreased after nanoparticle supplementation. In addition, both nanoparticles significantly alleviated the decreased phosphorylation of AKT pathway. Further, administration of ZnONPs, CurNPs, conventional curcumin, and ZnSO4 (zinc sulfate), as well as metformin, effectively counteracted diabetes-induced oxidative stress and inflammation in the internal hepatic and pancreatic tissues. Based on the results of the current study, ZnONPs and CurNPs could be explored as a therapeutic adjuvant against complications associated with T2DM. Both nanoparticles could effectively delay the progression of several complications by activating AKT pathway and down-regulating MAPK pathway. Our findings may provide an experimental basis for the application of nanoparticles in the treatment of T2DM with low toxicity.
Collapse
Affiliation(s)
- Shaymaa Abdulmalek
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Center of Excellency for Preclinical Study (CE-PCS), Pharmaceutical and Fermentation Industries Development Centre, The City of Scientific Research and Technological Applications, SRTA-City, New Borg El-Arab City, Alexandria, Egypt
| | - Asmaa Eldala
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Doaa Awad
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Mahmoud Balbaa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
31
|
Ceballos-Gutiérrez A, Rodríguez-Hernández A, Álvarez-Valadez MDR, Limón-Miranda S, Andrade F, Figueroa-Gutiérrez A, Díaz-Reval I, Apolinar-Iribe A, Castro-Sánchez L, Alamilla J, Sánchez-Pastor E, Virgen-Ortiz A. ZnO Nanoparticles Induce Dyslipidemia and Atherosclerotic Lesions Leading to Changes in Vascular Contractility and Cannabinoid Receptors Expression as Well as Increased Blood Pressure. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2319. [PMID: 34578635 PMCID: PMC8472382 DOI: 10.3390/nano11092319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/04/2022]
Abstract
ZnO nanoparticles (ZnONPs) have been shown to have therapeutic potential in some diseases such as diabetes and cancer. However, concentration-dependent adverse effects have also been reported. Studies which evaluate the effects of ZnONPs on the cardiovascular system are scarce. This study aimed to evaluate the cardiovascular effects of a low dose of ZnONPs administered chronically in healthy rats. Changes in dyslipidemia biomarkers, blood pressure, aortic wall structure, vascular contractility, and expression of cannabinoid receptors in the aorta wall were evaluated. Healthy rats were divided into two groups: control or treated (one, two, and three months). The treated rats received an oral dose of 10 mg/kg/day. The results showed that treatment with ZnONPs induced dyslipidemia from the first month, increasing atherosclerosis risk, which was confirmed by presence of atherosclerotic alterations revealed by aorta histological analysis. In in vitro assays, ZnONPs modified the aorta contractile activity in response to the activation of cannabinoid receptors (CB1 and CB2). The expression of CB1 and CB2 was modified as well. Moreover, ZnONPs elicited an increase in blood pressure. In conclusion, long-time oral administration of ZnONPs induce dyslipidemia and atherosclerosis eliciting alterations in aorta contractility, CB1 and CB2 receptors expression, and an increase in blood pressure in healthy rats.
Collapse
Affiliation(s)
| | | | | | - Saraí Limón-Miranda
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Unidad Regional Sur, Universidad de Sonora, Navojoa 85880, Mexico;
| | | | | | - Irene Díaz-Reval
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.d.R.Á.-V.); (I.D.-R.)
| | | | - Luis Castro-Sánchez
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Universidad de Colima, Colima 28045, Mexico; (L.C.-S.); (J.A.)
| | - Javier Alamilla
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Universidad de Colima, Colima 28045, Mexico; (L.C.-S.); (J.A.)
| | - Enrique Sánchez-Pastor
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.d.R.Á.-V.); (I.D.-R.)
| | - Adolfo Virgen-Ortiz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.d.R.Á.-V.); (I.D.-R.)
| |
Collapse
|
32
|
Singh TA, Sharma A, Tejwan N, Ghosh N, Das J, Sil PC. A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv Colloid Interface Sci 2021; 295:102495. [PMID: 34375877 DOI: 10.1016/j.cis.2021.102495] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022]
Abstract
Recently, zinc oxide nanoparticles (ZnONPs) are gaining much interest of nanobiotechnologists due to their profound biomedical applications. ZnONPs are used as antibacterial agents, which cause both gram-positive and negative bacterial cell death through the generation of reactive free radicals as well as membrane rupture. ZnONPs show excellent antioxidant properties in normal mammalian cells via the scavenging of reactive free radicals and up-regulation of antioxidant enzyme activities. Besides, it also shows hypoglycaemic effect in diabetic animals via pancreatic β-cells mediated increased insulin secretion and glucose uptake by liver, skeletal muscles and adipose tissues. Among the other potential applications, ZnONPs-induced bone and soft-tissue regeneration open a new horizon in the field of tissue engineering. Here, first we reviewed the complete synthesis routes of ZnONPs by physical, chemical, and biological pathways as well as outlined the advantages and disadvantages of the techniques. Further, we discussed the several important aspects of physicochemical analysis of ZnONPs. Additionally, we extensively reviewed the important biomedical applications of ZnONPs as antibacterial, antioxidant, and antidiabetic agents, and in the field of tissue engineering with special emphasis on their mechanisms of actions. Furthermore, the future perspectives of the ZnONPs are also discussed.
Collapse
Affiliation(s)
- Th Abhishek Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173212, India
| | - Anirudh Sharma
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173212, India
| | - Neeraj Tejwan
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173212, India
| | - Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Joydeep Das
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
33
|
Hassan RM, Elsayed M, Kholief TE, Hassanen NHM, Gafer JA, Attia YA. Mitigating effect of single or combined administration of nanoparticles of zinc oxide, chromium oxide, and selenium on genotoxicity and metabolic insult in fructose/streptozotocin diabetic rat model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48517-48534. [PMID: 33907960 PMCID: PMC8079231 DOI: 10.1007/s11356-021-14089-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
This research was intended to evaluate the antidiabetic effect of single or combined administration of nanoparticles of zinc oxide nanoparticles (ZnONPs), chromium oxide nanoparticles (Cr2O3NPs), and selenium nanoparticles (SeNPs), on genetic and metabolic insult in fructose/streptozotocin diabetic rat model. Type 2 diabetes mellitus was induced by feeding sixty adult male albino rats with a high fructose diet accompanied by a single i.p. injection of streptozotocin (STZ). The rats were divided into 6 groups (10 rats/each) and the doses of nanoparticles were 10 mg/kg b.wt for ZnONPs, 1 mg/kg b.wt for Cr2O3, and 0.4 mg/kg b.wt for SeNPs. The results displayed that diabetes significantly decreased bodyweight, serum insulin, C-peptide, adiponectin levels, erythrocyte glutathione peroxidase, serum superoxide dismutase activities, high-density lipoprotein cholesterol (HDL-C), and total antioxidant capacity while causing a substantial increase in serum glucose, C-reactive protein, atherogenic index, HOMA-IR, malondialdehyde, lipid profile, interleukin-6 levels, and liver function and kidney function parameters. Furthermore, the findings showed a decrease in insulin receptor substrate-1 (IRS-1) hepatic mRNA expression level and peroxisome proliferator-activated receptor (PPAR-γ) adipocyte mRNA expression level in type 2 diabetic rats. DNA damage was confirmed by performing the comet assay. Moreover, histological observation of pancreatic and hepatic tissues was performed, which were consistent with the biochemical results. The present study confirmed that oral administration of ZnONPs, Cr2O3NPs, SeNPs, and their mixture improved all the biochemical and genetic parameters toward normal levels and ameliorated the diabetic consequences that were manifested by restricting cellular DNA damage which maintaining pancreatic and hepatic tissues from oxidative damage. The best reported antidiabetic effect was observed in the mixture administered group.
Collapse
Affiliation(s)
- Rasha M Hassan
- Department of biochemistry and nutrition, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt
- Egyptian Ministry of Environment, Cairo, 11728, Egypt
| | - Mai Elsayed
- Department of biochemistry and nutrition, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt
| | - Tahany E Kholief
- Department of biochemistry and nutrition, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt
| | - Naglaa H M Hassanen
- Department of Special Food and Nutrition, Agricultural Research Center, Giza, 12619, Egypt
| | - Jehan A Gafer
- Animal Reproduction Research Institute, Giza, 12556, Egypt
| | - Yasser A Attia
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
34
|
Alomari G, Al‐Trad B, Hamdan S, Aljabali AAA, Al Zoubi MS, Al‐Batanyeh K, Qar J, Eaton GJ, Alkaraki AK, Alshaer W, Haifawi S, Jemon K, Chellappan DK, Dua K, Tambuwala MM. Alleviation of diabetic nephropathy by zinc oxide nanoparticles in streptozotocin-induced type 1 diabetes in rats. IET Nanobiotechnol 2021; 15:473-483. [PMID: 34694755 PMCID: PMC8675811 DOI: 10.1049/nbt2.12026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/17/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
This study examines the effect of nanoparticles with zinc oxides (ZnONPs) on diabetic nephropathy, which is the primary cause of mortality for diabetic patients with end-stage renal disease. Diabetes in adult male rats was induced via intraperitoneal injection of streptozotocin. ZnONPs were intraperitoneally administered to diabetic rats daily for 7 weeks. Diabetes was associated with increases in blood glucose level, 24-h urinary albumin excretion rate, glomerular basement membrane thickness, renal oxidative stress markers, and renal mRNA or protein expression of transforming growth factor-β1, fibronectin, collagen-IV, tumour necrosis factor-α and vascular endothelial growth factor-A. Moreover, the expression of nephrin and podocin, and the mRNA expression of matrix metalloproteinase-9 were decreased in the diabetic group. These changes were not detected in the control group and were significantly prevented by ZnONP treatment. These results provide evidence that ZnONPs ameliorate the renal damage induced in a diabetic rat model of nephropathy through improving renal functionality; inhibiting renal fibrosis, oxidative stress, inflammation and abnormal angiogenesis; and delaying the development of podocyte injury. The present findings may help design the clinical application of ZnONPs for protection against the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Ghada Alomari
- Department of Bioscience, Faculty of ScienceUniversiti Teknologi MalaysiaJohor BahruJohorMalaysia
- Department of Biological SciencesYarmouk UniversityIrbidJordan
| | - Bahaa Al‐Trad
- Department of Biological SciencesYarmouk UniversityIrbidJordan
| | - Salehhuddin Hamdan
- Department of Bioscience, Faculty of ScienceUniversiti Teknologi MalaysiaJohor BahruJohorMalaysia
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical TechnologyFaculty of PharmacyYarmouk UniversityIrbidJordan
| | - Mazhar Salim Al Zoubi
- Department of Basic Medical SciencesFaculty of MedicineYarmouk UniversityIrbidJordan
| | | | - Janti Qar
- Department of Biological SciencesYarmouk UniversityIrbidJordan
| | - Gregory J. Eaton
- Department of Biological SciencesCollege of Science and MathematicsRowan UniversityGlassboroNew JerseyUSA
| | | | | | - Saja Haifawi
- Department of Biological SciencesYarmouk UniversityIrbidJordan
| | - Khairunadwa Jemon
- Department of Bioscience, Faculty of ScienceUniversiti Teknologi MalaysiaJohor BahruJohorMalaysia
| | - Dinesh Kumar Chellappan
- Department of Life SciencesSchool of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Kamal Dua
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanAustralia
| | | |
Collapse
|
35
|
Fatima F, Siddiqui S, Khan WA. Nanoparticles as Novel Emerging Therapeutic Antibacterial Agents in the Antibiotics Resistant Era. Biol Trace Elem Res 2021; 199:2552-2564. [PMID: 33030657 DOI: 10.1007/s12011-020-02394-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/13/2020] [Indexed: 01/21/2023]
Abstract
Microorganisms are highly resistant to the antibiotics that are commonly used and thus are becoming serious public health problem. There is an urgent need for new approaches to monitor microbial behavior, and hence, nanomaterial can be a very promising solution. Nanotechnology has led to generation of novel antimicrobial agents such as gold, silver, zinc, copper, poly-£-lysine, iron, and chitosan which have shown remarkable potential, demonstrating their applicability as proficient antibiotic agents against various pathogenic bacterial species. The antimicrobial nanoproduct physically kills the organism's cell membranes that prevent the production of drug-resistant microorganisms. These nanosized particles can also be used as diagnostic agents, targeted drug delivery vehicle, noninvasive imaging technologies, and in vivo visual monitoring of tumors angiogenesis. These nanomaterials provide a promising platform for diagnostics, prognostic, drug delivery, and treatment of diseases by means of nanoengineered products/devices. This owes to their small size, prolonged antimicrobial efficacy with insignificant toxicity creating less environmental hazard or toxicity. Scientists address several problems such as health, bioethical problems, toxicity risks, physiological, and pharmaceutical concerns related with the usage of NPs as antimicrobial agents as current research lack adequate data and information on the safe use of certain tools and materials.
Collapse
Affiliation(s)
- Faria Fatima
- Department of Agriculture, Integral Institute of Agricultural Sciences and Technology, Integral University, Lucknow, 226026, India.
| | - Saba Siddiqui
- Department of Agriculture, Integral Institute of Agricultural Sciences and Technology, Integral University, Lucknow, 226026, India
| | - Waqar Ahmad Khan
- Department of Business Management, Ishik University, Kurdistan, Erbil, Iraq
| |
Collapse
|
36
|
Kerry RG, Mahapatra GP, Maurya GK, Patra S, Mahari S, Das G, Patra JK, Sahoo S. Molecular prospect of type-2 diabetes: Nanotechnology based diagnostics and therapeutic intervention. Rev Endocr Metab Disord 2021; 22:421-451. [PMID: 33052523 DOI: 10.1007/s11154-020-09606-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
About ninety percent of all diabetic conditions account for T2D caused due to abnormal insulin secretion/ action or increased hepatic glucose production. Factors that contribute towards the aetiology of T2D could be well explained through biochemical, molecular, and cellular aspects. In this review, we attempt to explain the recent evolving molecular and cellular advancement associated with T2D pathophysiology. Current progress fabricated in T2D research concerning intracellular signaling cascade, inflammasome, autophagy, genetic and epigenetics changes is discretely explained in simple terms. Present available anti-diabetic therapeutic strategies commercialized and their limitations which are needed to be acknowledged are addressed in the current review. In particular, the pre-eminence of nanotechnology-based approaches to nullify the inadequacy of conventional anti-diabetic therapeutics and heterogeneous nanoparticulated systems exploited in diabetic researches are also discretely mentioned and are also listed in a tabular format in the review. Additionally, as a future prospect of nanotechnology, the review presents several strategic hypotheses to ameliorate the austerity of T2D by an engineered smart targeted nano-delivery system. In detail, an effort has been made to hypothesize novel nanotechnological based therapeutic strategies, which exploits previously described inflammasome, autophagic target points. Utilizing graphical description it is explained how a smart targeted nano-delivery system could promote β-cell growth and development by inducing the Wnt signaling pathway (inhibiting Gsk3β), inhibiting inflammasome (inhibiting NLRP3), and activating autophagic target points (protecting Atg3/Atg7 complex from oxidative stress) thereby might ameliorate the severity of T2D. Additionally, several targeting molecules associated with autophagic and epigenetic factors are also highlighted, which can be exploited in future diabetic research.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha, 757003, India
| | - Subhasis Mahari
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Sabuj Sahoo
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
37
|
Prasad AR, Williams L, Garvasis J, Shamsheera K, Basheer SM, Kuruvilla M, Joseph A. Applications of phytogenic ZnO nanoparticles: A review on recent advancements. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Feng J, Wang H, Jing Z, Wang Y, Wang W, Jiang Y, Sun W. Relationships of the Trace Elements Zinc and Magnesium With Diabetic Nephropathy-Associated Renal Functional Damage in Patients With Type 2 Diabetes Mellitus. Front Med (Lausanne) 2021; 8:626909. [PMID: 33859989 PMCID: PMC8042293 DOI: 10.3389/fmed.2021.626909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/09/2021] [Indexed: 11/25/2022] Open
Abstract
Zinc (Zn) and magnesium (Mg) are essential trace elements in humans. Their deficiency may be associated with inflammation and oxidative stress (OS) in patients with diabetic nephropathy (DN), but the mechanisms involved have not been fully characterized. We aimed to investigate the relationships between circulating concentrations of Zn and Mg and pro-inflammatory factors with DN-associated renal functional damage in patients with type 2 diabetes mellitus (T2DM). To this end, we studied 20 healthy people, 24 patients with T2DM, and 59 patients with T2DM and T2DN. Serum and urine Zn and Mg concentrations were measured using the 2-(5-nitro-2-pyridylazo)-5-(N-propyl-N-sulfopropylamine) phenol (nitro-PAPS) chromogenic method and the xylidyl blue method, respectively, and the circulating concentrations of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12, and tumor necrosis factor-α (TNF-α)] were measured using flow cytometry. The serum concentrations of Zn and Mg were significantly lower in patients with T2DM and DN than in healthy controls. Serum Zn, urine Zn, and urine Mg concentrations decreased, while those of IL-6 and IL-8 increased with the progression of DN-associated renal functional damage. Furthermore, the serum and urine Zn concentrations negatively correlated with the serum IL-6 and IL-8 concentrations. Notably, the serum Zn concentration was found to independently protect against DN in patients with T2DM. Hypozincemia may be associated with the T2DN-associated renal functional damage because it exacerbates inflammation.
Collapse
Affiliation(s)
- Jianan Feng
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China.,Department of Blood Purification, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Zhe Jing
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yue Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Wanning Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
39
|
Esmaeilnejad B, Dalir-Naghadeh B, Tavassoli M, Asri-Rezaei S, Mahmoudi S, Rajabi S, Aligolzadeh A, Akbari H, Morvaridi A. Assessment of hepatic oxidative damage, paraoxonase-1 activity, and lipid profile in cattle naturally infected with Ba7besia bigemina. Trop Anim Health Prod 2021; 53:219. [PMID: 33751256 DOI: 10.1007/s11250-021-02662-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/14/2021] [Indexed: 11/27/2022]
Abstract
Naturally occurring Babesia bigemina infection in cattle is associated with changes in the status of oxidative stress, trace elements, sialic acid, and cholinesterase activity in blood. However, to date there is no description of hepatic damage in the infected animals. More importantly, the majority of the above-mentioned causative factors are synthesized or stored in the liver. Therefore, this study was undertaken to evaluate biomarkers of hepatic function, paraoxonase-1 activity, and lipid profile in 13 cattle infected with B. bigemina which did not respond to standard treatment. The animals were necropsied and the histopathology of the liver and DNA damage of hepatocytes were examined. Blood analysis revealed a significant parasitemia burden-dependent increase in the activities of hepatic enzymes and total bilirubin and a decrease in albumin concentrations in the infected cattle compared to the control ones. Paraoxonase-1 activity was remarkably lower in the infected animals than the control. A significant decrease in the blood concentrations of total cholesterol, low density lipoprotein, and high density lipoprotein and a significant increase in the triglyceride concentration were observed in the infected animals. Severe oxidative damages were also recorded in the haptic tissue evidenced by significant alterations in the activities of antioxidant enzymes, suppression of total antioxidant capacity, and oxidation of biomolecules. Congestion of blood vessels, bile duct hyperplasia, and hepatocyte necrosis were the evident histopathologic findings. Our results revealed significant changes in the indices of liver function in the diseased cattle, leading to the conclusion that the parasite can potentially cause liver dysfunction.
Collapse
Affiliation(s)
- Bijan Esmaeilnejad
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Bahram Dalir-Naghadeh
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mousa Tavassoli
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Siamak Asri-Rezaei
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Soraya Mahmoudi
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Sepideh Rajabi
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Armin Aligolzadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hamid Akbari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Asghar Morvaridi
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
40
|
Alkazazz FF, Taher ZA. A Review on nanoparticles as a promising approach to improving diabetes mellitus. JOURNAL OF PHYSICS: CONFERENCE SERIES 2021; 1853:012056. [DOI: 10.1088/1742-6596/1853/1/012056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Diabetes mellitus (DM) is a chronic disease condition that causes multiple complications in various organs such as kidney, reproductive system, and liver. It is mainly characterized by high blood glucose, insulin secretion deficiency or insulin resistance. In conventional diabetes, medications of insulin production and increased insulin sensitivity usually cause undesirable side effects and lead to poor adherence and therapy failure. In addition to insulin and oral hypoglycemic agents, there are different healthy ways to treat diabetes. Nanoparticles (NPs) such as zinc oxide (ZnO) NPs, selenium (Se) NPs, magnesium oxide (MgO) NPs, Copper (Cu) NPs, and cerium oxide (CeO2) NPs play an important role in controlling diabetes. The results reviewed here presented antidiabetic activity of CeO2 NPs, Se NPs, ZnO NPs, Cu NPs, and MgO NPs with fewer side effects when compared to antioxidant enzymes, glucose use, or increased insulin sensitivity, as these showed complications with diabetes.
Collapse
|
41
|
Morsy K, Sheraba N, Alhamhoom Y, Dajem S, Al-Kahtani M, Shati A, Alfaifi M, Elbehairi S, El-Mekkawy H, El-Kott A, Ezzat A, Meferij M, Saber S. Garlic oil as a fight against histological and oxidative stress abnormalities in Wistar rats after oral inoculation of Anisakis spp. Type II (L3) (Nematoda). ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT The consumption of inadequately thermally treated fish is a public health risk due to the possible propagation of Anisakis larvae and their antigenic proteins, the causative agent of the zoonotic disease anisakidosis. The present study demonstrated the physiological and histopathological changes that accompanied an oral inoculation of crude extracts from fresh and thermally treated Anisakis Type II (L3) in Wistar albino rats. Nematode worms were isolated from the marine fish Dicentrarchus labrax. They were examined and taxonomically identified using light and scanning electron microscopy. The study was performed in 6 rat groups: a control group (I), a garlic oil (GO) inoculated group (II), a fresh L3 inoculated group (III), a thermally treated L3 inoculated group (IV), a fresh L3 + GO inoculated group (V), and a thermally treated L3 + GO inoculated group (VI). It was observed that rats inoculated with fresh and thermally treated L3 crude extracts showed abnormal oxidative stress markers associated with the destruction of normal architecture of spleen and thymus. GO produced a protective effect in rat groups inoculated with L3 extracts + GO administration via the amelioration of oxidative stress markers, which was confirmed by the marked normal structure of the organs’ histology. Cooking of L3 infected fish induced severe physiological and histopathological alterations compared to uncooked infected fish. The administration of garlic before and after fish eating is recommended to avoid the dangerous effect of anisakids, even if they are cooked.
Collapse
Affiliation(s)
- K. Morsy
- King Khalid University, Saudi Arabia; Cairo University, Egypt
| | - N. Sheraba
- King Khalid University, Saudi Arabia; VACSERA, Egypt
| | | | | | | | - A. Shati
- King Khalid University, Saudi Arabia
| | | | | | | | - A. El-Kott
- King Khalid University, Saudi Arabia; Damanhour University, Egypt
| | - A. Ezzat
- King Khalid University, Saudi Arabia; South Valley University, Egypt
| | - M.B. Meferij
- Princess Nourah bint Abdelrahman University, Saudi Arabia
| | - S. Saber
- National Organization for Drug Control and Research, Egypt
| |
Collapse
|
42
|
Effect of different levels of clove (Syzygium aromaticum L.) essential oil on growth performance and oxidative/nitrosative stress biomarkers in broilers under heat stress. Trop Anim Health Prod 2021; 53:84. [PMID: 33411054 DOI: 10.1007/s11250-020-02517-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
A 49-day fully randomized trial was conducted to investigate the dietary effects of clove (Syzygium aromaticum L.) essential oil (CEO) on growth performance and oxidative/nitrosative stress biomarkers in broilers under heat stress. A total of 288 male broilers (Ross 308) were randomly divided into 6 dietary groups (4 replicates and 12 birds/replicate) and supplemented as follows: (I) Normal control (NC) received only basal diet under normal condition. The rest of the animals were challenged with heat and assigned to the following groups: (II) Heat stress control (HSC) received only basal diet; (III) Standard treatment (ST) received basal diet + vit E (100 ppm); (IV-VI) Herbal treatments (HT) received basal diet + 250, 350, and 450 ppm CEO. Heat stress could significantly decrease the animals' performance and induce severe oxidative/nitrosative stress. The HT at the middle dose could significantly improve body weight, body weight gain, and feed intake compared to HSC; however, none of the treatments had a significant effect on feed conversion ratio after inducing heat stress. Moreover, both ST and HT with a trend towards concentration-dependent fashion significantly contributed to normalization of oxidative/nitrosative biomarkers. It appears that CEO is a potential replacement for synthetic antioxidants in broiler diets.
Collapse
|
43
|
Hamza RZ, Al-Salmi FA, El-Shenawy NS. Zinc oxide nanoparticles with green tea extract complex in the pancreas of rats against monosodium glutamate toxicity. J Basic Clin Physiol Pharmacol 2020; 32:979-985. [PMID: 33180034 DOI: 10.1515/jbcpp-2020-0164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 09/10/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Nanotechnology is an exciting field for investigators. Green zinc oxide nanoparticles (ZnO NPs) with Camellia sinensis extract complex are proved to be used in the treatment of the toxicity of monosodium glutamate (MSG) in the liver, kidney, and testis of rats. Therefore, the synthesized complex of green nanoparticles using green tea extract (GTE) was tested against the toxicity of MSG on the pancreas. METHODS The glucose and insulin levels were estimated as well as some biochemical parameters for evaluating the antioxidant status of the pancreas tissue. The histopathological change of the pancreas also has been determined. RESULTS It indicates the biomedical capability of ZnO NPs/GTE to act as potent antidiabetic through decreasing blood glucose and increasing serum insulin also, inhibition of lipid peroxidation and enhancement of the antioxidant parameters. CONCLUSIONS The ZnO NPs/GTE enhanced the pancreatic cell and Langerhans islets as well lowered the sugar levels and stimulated insulin.
Collapse
Affiliation(s)
- Reham Z Hamza
- Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia.,Department of Zoology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Fawziah A Al-Salmi
- Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Nahla S El-Shenawy
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
44
|
Virgen-Ortiz A, Apolinar-Iribe A, Díaz-Reval I, Parra-Delgado H, Limón-Miranda S, Sánchez-Pastor EA, Castro-Sánchez L, Jesús Castillo S, Dagnino-Acosta A, Bonales-Alatorre E, Rodríguez-Hernández A. Zinc Oxide Nanoparticles Induce an Adverse Effect on Blood Glucose Levels Depending On the Dose and Route of Administration in Healthy and Diabetic Rats. NANOMATERIALS 2020; 10:nano10102005. [PMID: 33053624 PMCID: PMC7599450 DOI: 10.3390/nano10102005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
Different studies in experimental diabetes models suggest that zinc oxide nanoparticles (ZnONPs) are useful as antidiabetic agents. However, this evidence was performed and measured in long-term treatments and with repeated doses of ZnONPs. This work aimed to evaluate the ZnONPs acute effects on glycemia during the next six h after an oral or intraperitoneal administration of the treatment in healthy and diabetic rats. In this study, the streptozotocin-nicotinamide intraperitoneal administration in male Wistar rats were used as a diabetes model. 10 mg/kg ZnONPs did not modify the baseline glucose in any group. Nevertheless, the ZnONPs short-term administration (100 mg/kg) induced a hyperglycemic response in a dose and route-dependent administration in healthy (130 ± 2 and 165 ± 10 mg/dL with oral and intraperitoneal, respectively) and diabetic rats (155 ± 2 and 240 ± 20 mg/dL with oral, and intraperitoneal, respectively). The diabetic rats were 1.5 fold more sensitive to ZnONPs effect by the intraperitoneal route. In conclusion, this study provides new information about the acute response of ZnONPs on fasting glycemia in diabetic and healthy rat models; these data are essential for possible future clinical approaches.
Collapse
Affiliation(s)
- Adolfo Virgen-Ortiz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima C.P. 28045, Mexico; (I.D.-R.); (E.A.S.-P.); (E.B.-A.)
- Correspondence:
| | - Alejandro Apolinar-Iribe
- Departamento de Física, Universidad de Sonora, A.P. 1626, Hermosillo, Sonora C.P. 83000, Mexico;
| | - Irene Díaz-Reval
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima C.P. 28045, Mexico; (I.D.-R.); (E.A.S.-P.); (E.B.-A.)
| | - Hortensia Parra-Delgado
- Facultad de Ciencias Químicas, Universidad de Colima, Coquimatlán, Colima C.P. 28400, Mexico;
| | - Saraí Limón-Miranda
- Departamento de Ciencias Químico Biológicas y Agropecuarias, URS, Universidad de Sonora, Navojoa, Sonora C.P. 85880, Mexico;
| | - Enrique Alejandro Sánchez-Pastor
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima C.P. 28045, Mexico; (I.D.-R.); (E.A.S.-P.); (E.B.-A.)
| | - Luis Castro-Sánchez
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Universidad de Colima, Colima C.P. 28045, Mexico; (L.C.-S.); (A.D.-A.)
| | - Santos Jesús Castillo
- Departamento de Investigación en Física, A.P. 5-088, Hermosillo, Sonora C.P. 83000, Mexico;
| | - Adan Dagnino-Acosta
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Universidad de Colima, Colima C.P. 28045, Mexico; (L.C.-S.); (A.D.-A.)
| | - Edgar Bonales-Alatorre
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima C.P. 28045, Mexico; (I.D.-R.); (E.A.S.-P.); (E.B.-A.)
| | | |
Collapse
|
45
|
Othman MS, Hafez MM, Abdel Moneim AE. The Potential Role of Zinc Oxide Nanoparticles in MicroRNAs Dysregulation in STZ-Induced Type 2 Diabetes in Rats. Biol Trace Elem Res 2020; 197:606-618. [PMID: 31845207 DOI: 10.1007/s12011-019-02012-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders that are characterized by a loss of glucose homeostasis and insufficiency in production or action of insulin. Development of newly antidiabetic molecules using a variety of organic compounds and biomolecules has been in practice for a long time. Recently, nanomaterials are also being used in antidiabetic studies for their unique properties. In this context, zinc nanoparticles have drawn attention due to the relationship between diabetes and imbalance of zinc homeostasis. Few studies have attempted to investigate the effect of zinc oxide nanoparticles (ZON) in microRNA dysregulations in diabetes. To evaluate the therapeutic effect of ZON on streptozotocin (STZ)-induced diabetic rats as well as its role in microRNA dysregulations. Diabetes was induced in rats by 60 mg/kg body weight (bwt) of STZ and then treated with ZON (5 mg/kg bwt) for 15 consecutive days. The levels of glucose, insulin, oxidative stress markers, and microRNAs expression were measured in liver and pancreas tissues. Intraperitoneal injection of 60 mg/kg bwt of STZ to Wistar rats caused significant decreases in the body weight and Zn contents of pancreas, liver, and kidney. Also, STZ injection increased the blood glucose level and oxidative stress (lipid peroxidation (LPO) and nitric oxide (NO). Meanwhile, STZ decreased blood insulin and pancreatic anti-oxidants. STZ also resulted in β cell dysfunction and destruction and altered the expression of certain pancreatic and liver microRNAs. ZON treatment for 15 days, at a dose of 5 mg/kg bwt resulted in marked improvements in the blood insulin, glucose tolerance, and structure and function of the pancreatic β cells. Furthermore, ZON administration reduced LPO and NO, and increased the levels of enzymatic and non-enzymatic anti-oxidants in STZ-induced diabetic rats. It was found also that ZON specifically regulated the expression of pancreatic and liver microRNAs that involved in diabetes development. The obtained results revealed that ZON is a promising antidiabetic agent. The antidiabetic effect of ZON was partially mediated by restoring the oxidants/antioxidants balance and by modulating the alerted microRNAs.
Collapse
Affiliation(s)
- Mohamed S Othman
- B.Sc. Department, Preparatory Year College, University of Ha'il, Hail, Saudi Arabia
- Faculty of Biotechnology, MSA University, Giza, Egypt
| | - Mohamed M Hafez
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
46
|
Ashrafizadeh H, Abtahi SR, Oroojan AA. Trace element nanoparticles improved diabetes mellitus; a brief report. Diabetes Metab Syndr 2020; 14:443-445. [PMID: 32371187 DOI: 10.1016/j.dsx.2020.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disease that induces several complications in various organs such as the liver, kidney, and reproductive system. Trace elements such as copper, zinc, selenium, and magnesium play an essential role in the management or treatment of diabetes mellitus. AIM the aim of the present study was conducted to investigate the effect of these trace elements nanoparticles and their probable mechanism of action on diabetes and its complications. METHODS The present brief report was conducted with a search of articles published in several databases including PubMed, ScienceDirect, Google Scholar, and Scopus. The articles were selected from 2011 to 2018 using the keywords "zinc," "copper," "selenium," "magnesium," and "diabetes." Following the eligibility criteria were selected 16 articles and 1 book. RESULTS The scientific results of the presented brief report show that zinc, copper, selenium, and magnesium have antidiabetic effects. Also, they improved the diabetes-induced complications through increase antioxidant enzyme level, glucose utilization, and insulin sensitivity. CONCLUSION While zinc, copper, selenium, and magnesium revealed antidiabetic effects, but their nanoparticles were more potent for the treatment of this disease.
Collapse
Affiliation(s)
- Hadis Ashrafizadeh
- Department of Nursing, School of Nursing and Midwifery, Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Seyed Reza Abtahi
- Department of Pharmacology and Toxicology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Oroojan
- Department of Physiology, Faculty of Medicine, Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran.
| |
Collapse
|
47
|
Esmaeilnejad B, Tavassoli M, Dalir-Naghadeh B, Samiei A, Rajabi S, Mohammadi V, Anassori E, Ehteshamfar S. Status of oxidative stress, trace elements, sialic acid and cholinesterase activity in cattle naturally infected with Babesia bigemina. Comp Immunol Microbiol Infect Dis 2020; 71:101503. [PMID: 32505767 DOI: 10.1016/j.cimid.2020.101503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 11/15/2022]
Abstract
Babesia bigemina infection (also known as Texas fever) is reported as the most prevalent and main causative agent of bovine babesiosis, worldwide. The current study was undertaken to assess indicators of oxidative stress including activities of antioxidant enzymes and total antioxidant capacity (TAC), oxidation status of biomolecules and serum levels of trace elements as well as indicators of inflammation including sialic acid (SA) contents and cholinesterase activity in cattle naturally infected with B. bigemina. An infected group comprised of 20 crossbred Holstein cattle (3-4 years old) were diagnosed to be positive by both microscopy and nested PCR assay. The infected animals were subdivided into two groups according to their parasitemia rates (<20 % and>20 %). Furthermore, 10 healthy cattle were included as the control. The infection caused severe anemia in a parasitemia-burden dependent fashion. The activities of catalase and glucose-6-phosphate dehydrogenase as well as the levels of TAC, zinc, selenium, copper and manganese were significantly decreased as the parasitemia increased, accordingly. However, the activity of superoxide dismutase as well as the levels of malondialdehyde, protein carbonylation, DNA damage and iron, were significantly elevated in a parasitemeia-burden dependent manner. Additionally, glutathione peroxidase activity was significantly elevated with the lower rate of parasitemia, but the higher rate had no significant effect as compared to control. Moreover, total, protein and lipid binding SA contents were significantly increased but the activities of acetylcholinesterase and butyrylcholinesterase were significantly reduced, parasitemia dependently. Conclusively, the infection was remarkably associated with the induction of anemia, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Bijan Esmaeilnejad
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Mousa Tavassoli
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Bahram Dalir-Naghadeh
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Awat Samiei
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Sepideh Rajabi
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Vahid Mohammadi
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ehsan Anassori
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Shahin Ehteshamfar
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
48
|
Bauomy AA. Zinc oxide nanoparticles and L-carnitine effects on neuro-schistosomiasis mansoni induced in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18699-18707. [PMID: 32207001 DOI: 10.1007/s11356-020-08356-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Neuro-schistosomiasis can induce neurological symptoms and severe disability. Since the resistance against the chemotherapy "praziquantel" was reported, the aim of the present study was investigating the anti-neuro-schistosomal effects of ZnO nanoparticles and/or L-carnitine (as free radicals scavenger) on schistosome-infected mice, where technology of nanoparticles has come to the forefront in the medical diagnosis and therapeutic drug delivery. In the human body, nanoscale-sized particles can move freely and reveal unique biological, mechanical, electrical, and chemical properties. In the present study, mice were divided into five groups. The first group served as the non-infected control group. Groups II, III, IV, and V were infected with cercariae of Schistosoma mansoni. Mice of groups III and IV were treated with ZnO nanoparticles (5.6 mg/kg b. wt.) and L-carnitine (500 mg/kg b. wt.), respectively, after 47 days post-infection. Finally, mice of the fifth group were injected with ZnO nanoparticles and after 1 h, the mice were intraperitoneally injected with L-carnitine once daily for 5 days. On day 52, post-infection mice of all groups were cervically decapitated. The treatment of ZnO nanoparticles and/or L-carnitine to schistosome-infected mice decreased brain oxidative stress parameters, where glutathione level and catalase activity were significantly increased as compared to schistosome-infected group. On the contrary, the treatment decreased nitrite/nitrate, malondialdehyde, and reactive oxygen species levels significantly. In addition, ZnO nanoparticles and/or L-carnitine treatment restored DNA laddering profile and improved the brain histopathological impairments resulting from neuro-schistosomiasis. Finally, the ZnO nanoparticle treatment and the co-treatment of ZnO nanoparticles and L-carnitine revealed anti-neuro-schistosomal effects on the infected mice.
Collapse
Affiliation(s)
- Amira A Bauomy
- Department of Laboratory Sciences, College of Science & Arts, Al-Rass, Qassim University, Al-Rass, 51921, Saudi Arabia.
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Ain Helwan,, 11795, Egypt.
| |
Collapse
|
49
|
Qi S, He J, Zheng H, Chen C, Jiang H, Lan S. Zinc Supplementation Increased Bone Mineral Density, Improves Bone Histomorphology, and Prevents Bone Loss in Diabetic Rat. Biol Trace Elem Res 2020; 194:493-501. [PMID: 31363990 DOI: 10.1007/s12011-019-01810-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022]
Abstract
Diabetic osteoporosis (DOP) is a complication of diabetes, with the characteristics of bone mineral density (BMD) reduction and bone structure destruction. Zinc was reported has a benefit effect on postmenopausal osteoporosise, it was also has hypoglycemic effect, whether zinc was beneficial on diabetes-induced osteoporosis has not been reported. So in the present study, we established a diabetic rat model by streptozotocin injection (60 mg/kg), and administered zinc sulfate by oral gavage to investigate the protective effects of zinc on DOP and the underline possible mechanism. Thirty six Sprague Dawley rats were divided into T1DM group (diabetic rats), control group (vehicle treatment), and T1DM-Zinc group (diabetic rats administered zinc sulfate 0.25 mg/kg by oral gavage). The bone histomorphological parameters, serum bone metabolism markers (including ALP, OPG, RUNX 2, and RANKL), BMD, and bone marrow adipocyte numbers were detected after eight weeks of zinc sulfate treatment. The results showed zinc sulfate administration (0.25 mg/kg/d) decreased blood glucose, increased the BMD, decreased serum ALP, and RANKL, increased serum OPG and RUNX 2 levels, as well as OPG/RANKL ratio of T1DM rats. Meanwhile, the bone histomorphological parameters, bone marrow adipocytes numbers were returned to be normal. The RUNX 2, and OPG mRNA expression levels in bone tissues of T1DM-Zinc group rats were increased after zinc sulfate treatment compared with the diabetic rats (P < 0.05). Those indicating that zinc sulfate can prevent DOP, the protective mechanism were mainly related to its hypoglycemic effect, bone marrow lipogenesis inhibition effect, OPG/RANKL ratio and RUNX 2 up-regulation effect.
Collapse
Affiliation(s)
- Shanshan Qi
- Vitamin D Research Institute, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| | - Jia He
- Vitamin D Research Institute, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| | - Hongxing Zheng
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China.
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Hai Jiang
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Shiqiang Lan
- Vitamin D Research Institute, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| |
Collapse
|
50
|
Assessment of oxidative/nitrosative stress biomarkers and DNA damage in Teladorsagia circumcincta following exposure to zinc oxide nanoparticles. J Helminthol 2020; 94:e115. [PMID: 31931890 DOI: 10.1017/s0022149x19001068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Drug resistance to helminth parasites is one of the most serious problems to threaten the livestock industry. The problem also poses a major threat to public health. Therefore, novel and safe agents should urgently be investigated to control parasitic infections. The current study was conducted to evaluate the possible antiparasitic effects of zinc oxide nanoparticles (ZnO-NPs) on one of the most prevalent gastrointestinal nematodes, Teladorsagia circumcincta. The worms were incubated with various concentrations of ZnO-NPs: 1, 4, 8, 12 and 16 ppm for 24 hours. Mobility and mortality of the parasites were recorded at four-hour intervals. At the endpoint, several biomarkers of oxidative/nitrosative stress, including superoxide dismutase, glutathione peroxidase and catalase, as well as lipid peroxidation, protein carbonylation, total antioxidant status, nitric oxide contents and DNA damage, were measured in the homogenized samples. ZnO-NPs showed significant anthelminthic effects, depending on time and concentration. Furthermore, the nanoparticle induced severe oxidative/nitrosative stress and DNA damage. ZnO-NPs could be considered as a novel and potent anthelminthic agent.
Collapse
|