1
|
Zhang L, Wang Q, Wang X, Fu C, Zhang X, Li X, Wang Z, Zhu D. Association of birth weight, midlife obesity, and transition patterns with mild cognitive impairment and brain MRI indices: A prospective population-based study. J Affect Disord 2025; 380:384-393. [PMID: 40154798 DOI: 10.1016/j.jad.2025.03.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND To evaluate associations of birth weight, midlife weight, and their transitions with mild cognitive impairment (MCI) and brain MRI indices. METHODS This prospective cohort study included 200,726 UK Biobank participants. Self-reported birth weight and measured midlife anthropometrics were used to classify obesity (waist circumference [WC]/waist-to-hip ratio [WHR]). We constructed nine weight transition patterns from birth to midlife WC, six from birth to midlife WHR. Cox proportional hazards models and linear regression models were used to examine associations of birth weight, midlife body size and their transitions with MCI and brain MRI indices. RESULTS Compared to normal birth weight, low birth weight (HR: 1.29, 95 % CI: 1.16-1.44) and high birth weight (1.11, 1.01-1.22) were both associated with increased risk of MCI, showing a U-shaped relationship. Compared to normal weight at midlife, midlife central obesity [WC (1.25, 1.15-1.37) and WHR (1.27, 1.17-1.37)] were significantly associated with elevated MCI risk. Compared to individuals with normal weight at birth and midlife, those with low birth weight who transition to central obesity at midlife, defined by WC (1.51, 1.27-1.78) or WHR (1.42, 1.22-1.66), showed the highest risk of MCI. Weight transitions were also associated with brain structure, individuals who had low or high birth weight and developed midlife obesity showed significant reductions in total brain volume and grey matter volume, as well as increases in white matter hyperintensity volume. CONCLUSIONS Birth weight exhibited a U-shaped association with MCI risk. Individuals transitioning from low birth weight to midlife central obesity demonstrated the highest MCI susceptibility.
Collapse
Affiliation(s)
- Luyi Zhang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Qi Wang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaoyi Wang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chunying Fu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaoyu Zhang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiang Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhongxuan Wang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongshan Zhu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Center for Clinical Epidemiology and Evidence-based Medicine, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Zhang W, Sun C, Huang Y, Zhang M, Xu A, Wang C, Lv F, Pan T. Inflammation levels in type 2 diabetes mellitus patients with mild cognitive impairment: Assessment followed by amelioration via dapagliflozin therapy. J Diabetes Complications 2025; 39:109017. [PMID: 40228375 DOI: 10.1016/j.jdiacomp.2025.109017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/16/2025]
Abstract
AIMS To investigate systemic inflammation and the effect of dapagliflozin treatment in (type 2 diabetes mellitus) T2DM patients with mild cognitive impairment (MCI). METHODS Between January and December 2023, 200 participants were recruited from the Department of Endocrinology of Hefei First People's Hospital. Baseline data collected included medical history, fasting blood glucose, HbA1c, liver and kidney function, lipid profiles, IL-1β, TNF-α, sVCAM-1 level, and the urinary albumin-creatinine ratio (uACR). Based on their Montreal Cognitive Assessment Scale (MoCA) scores, these participants were categorized into two groups: 127 in the MCI group and 73 in the non-MCI group. MCI group received dapagliflozin (10 mg daily) alongside standard treatment. RESULTS The MCI group showed higher age, height, weight, BMI, HbA1c, FBG, disease duration, carotid plaques, stenosis rates, and elevated IL-1β, TNF-α, and sVCAM-1. MoCA scores were significantly lower in the MCI group. Correlation analysis showed a negative correlation of MoCA scores with IL-1β, TNF-α, sVCAM-1, plaques, stenosis, FBG, and HbA1c, and a positive correlation with height. Binary logistic regression identified age, BMI, IL-1β, sVCAM-1, and FBG as predictors of cognitive impairment in T2DM. Dapagliflozin treatment reduced BMI, HbA1c, inflammatory markers, and FBG, improving MoCA scores. CONCLUSION Dapagliflozin treatment may improve cognitive function by reducing inflammation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Department of Endocrinology, The Third Affiliated Hospital of Anhui Medical University (Hefei First People's Hospital), Hefei 230061, China
| | - Chunping Sun
- Department of Endocrinology, The Third Affiliated Hospital of Anhui Medical University (Hefei First People's Hospital), Hefei 230061, China
| | - Yating Huang
- Department of Endocrinology, The Third Affiliated Hospital of Anhui Medical University (Hefei First People's Hospital), Hefei 230061, China
| | - Meng Zhang
- Department of Endocrinology, The Third Affiliated Hospital of Anhui Medical University (Hefei First People's Hospital), Hefei 230061, China
| | - Ao Xu
- Department of Endocrinology, The Third Affiliated Hospital of Anhui Medical University (Hefei First People's Hospital), Hefei 230061, China
| | - Chen Wang
- Department of Endocrinology, The Third Affiliated Hospital of Anhui Medical University (Hefei First People's Hospital), Hefei 230061, China
| | - Fang Lv
- Department of Endocrinology, The Third Affiliated Hospital of Anhui Medical University (Hefei First People's Hospital), Hefei 230061, China.
| | - Tianrong Pan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
3
|
Zhou Q, Zhu W, Cai X, Jing J, Wang M, Wang S, Jin A, Meng X, Wei T, Wang Y, Pan Y. Obesity and brain volumes: mediation by cardiometabolic and inflammatory measures. Stroke Vasc Neurol 2025; 10:e003045. [PMID: 39160093 DOI: 10.1136/svn-2023-003045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND This study aimed to investigate the relationship between overall obesity, central obesity and brain volumes, as well as to determine the extent to which cardiometabolic and inflammatory measures act as mediators in the association between body mass index (BMI), waist-hip ratio (WHR) and brain volumes. METHODS In the context of counterfactual framework, mediation analysis was used to explore the potential mediation in which cardiometabolic and inflammatory measures may mediate the relationship between BMI, WHR, and brain volumes. RESULTS Among 2413 community-dwelling participants, those with high BMI or WHR levels experienced an approximately brain ageing of 4 years. Especially, individuals with high WHR or BMI under the age of 65 exhibited white matter hyperintensity volume (WMHV) differences equivalent to around 5 years of ageing. Conversely, in the high-level WHR population over the age of 65, premature brain ageing in gray matter volume (GMV) exceeded 4.5 years. For GMV, more than 45% of the observed effect of WHR was mediated by glycaemic metabolism indicators. This proportion increases to 78.70% when blood pressure, triglyceride, leucocyte count, and neutrophil count are jointly considered with glycaemic metabolism indicators. Regarding WHR and BMI's association with WMHV, cardiometabolic and inflammatory indicators, along with high-density lipoprotein cholesterol, mediated 35.50% and 20.20% of the respective effects. CONCLUSIONS Overall obesity and central obesity were associated with lower GMV and higher WMHV, a process that is partially mediated by the presence of cardiometabolic and inflammatory measures.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wanlin Zhu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xueli Cai
- Department of Neurology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
- Lishui Clinical Research Center for Neurological Diseases, Lishui, Zhejiang, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Mengxing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Suying Wang
- Cerebrovascular Research Lab, Lishui Hospital, Zhejiang University School of Medicine, Lishui, Zhejiang, China
| | - Aoming Jin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tiemin Wei
- Department of Cardiology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, Zhejiang, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, 2019RU018, Beijing, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
4
|
Crain E, Minaya DM, de La Serre CB. Microbiota-induced inflammation mediates the impacts of a Western diet on hippocampal-dependent memory. Nutr Res 2025; 138:89-106. [PMID: 40339190 DOI: 10.1016/j.nutres.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 05/10/2025]
Abstract
Obesity is associated with impaired hippocampal-dependent memory, but the mechanisms driving this pathology are not fully understood. Western diets (WD) contribute to obesity, and previous reviews have described a role for WD in impaired hippocampal-dependent memory. However, there is need for a more detailed description of the pathways by which WD may impair memory. The short vs long-term effect of specific dietary components on brain structure and functions as well as the precise mechanism and molecular pathways involved are still not fully understood. This review focuses on the mechanisms and effects of gut microbiota-driven neuroinflammation. WD leads to changes and imbalance in bacterial taxa abundances that are deleterious to the host health (gut dysbiosis) and studies in rodent models show these changes are sufficient to impair hippocampal-dependent memory. Here, we discuss a variety of proposed mechanisms linking microbiota composition to hippocampal function, with a focus on neuroinflammation. Gut microbiota impacts gastrointestinal barrier function, leading to increased circulating proinflammatory bacterial products, increased blood-brain barrier permeability, and neuroinflammation.
Collapse
Affiliation(s)
- Eden Crain
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Dulce M Minaya
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Claire B de La Serre
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
5
|
Zeng M, Chen Y, Lobanov-Rostovsky S, Liu Y, Steptoe A, Brunner EJ, Liao J. Adiposity and dementia among Chinese adults: longitudinal study in the China Health and Retirement Longitudinal Study (CHARLS). Int J Obes (Lond) 2025; 49:706-714. [PMID: 39695279 PMCID: PMC11999862 DOI: 10.1038/s41366-024-01698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Evidence on the age-dependent association between adiposity and risk of dementia in the Chinese population is unclear. We aim to disentangle the association of mid- and late- life adiposity with subsequent dementia risk in Chinese adults and compare ageing trajectories of adiposity between those with/out dementia. METHODS Dementia was ascertained based on cognitive batteries and the Activity of Daily Living Scale in the China Health and Retirement Longitudinal Study (CHARLS). Adiposity was measured by body mass index (BMI), waist circumference (WC), and waist-to-height ratio (WtHR). We estimated hazard ratio (HR) of adiposity for incident dementia by age groups (i.e. 50-64, and ≥65). Age trajectories of adiposity measures were fitted using a mixed-effect model in a case-control design. The interaction terms of age and dementia were included to examine the difference between cases and controls. RESULTS Hazard ratios (HRs) for incident dementia in two age groups (50-64 and ≥65) were estimated in 13,355 participants. Raised mid-life BMI was associated with incident dementia (HR (95% CI): overweight 1.33 (1.03 to 1.73), obesity 1.63 (1.17 to 2.28)). Mid-life abdominal obesity was associated with incident dementia (WC 1.45 (1.15 to 1.84), WtHR 1.44 (1.08 to 1.94)), accounting for ≤24.2% of dementia cases. Among participants developing dementia, adiposity measures were higher in mid-life and declined faster with age, compared to those remaining dementia-free. Late-life adiposity was not associated with dementia risk. CONCLUSION Mid-life but not late-life adiposity was associated with dementia incidence in China. Accelerated weight loss in prodromal dementia is likely to explain the mixed evidence on adiposity and dementia risk in the Chinese population. Rapid decline in adiposity in later life may be an early sign. Reducing mid-life adiposity in the population may mitigate the future dementia burden.
Collapse
Affiliation(s)
- Minrui Zeng
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yuntao Chen
- Department of Epidemiology & Public Health, University College London, London, UK
| | | | - Yuyang Liu
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Andrew Steptoe
- Department of Behavioural Science and Health, University College London, London, UK
| | - Eric John Brunner
- Department of Epidemiology & Public Health, University College London, London, UK
| | - Jing Liao
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.
- Sun Yat-sen Global Health Institute, Institute of State Governance, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Govindarajan ST, Mamourian E, Erus G, Abdulkadir A, Melhem R, Doshi J, Pomponio R, Tosun D, Bilgel M, An Y, Sotiras A, Marcus DS, LaMontagne P, Benzinger TLS, Espeland MA, Masters CL, Maruff P, Launer LJ, Fripp J, Johnson SC, Morris JC, Albert MS, Bryan RN, Resnick SM, Habes M, Shou H, Wolk DA, Nasrallah IM, Davatzikos C. Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals. Nat Commun 2025; 16:2724. [PMID: 40108173 PMCID: PMC11923046 DOI: 10.1038/s41467-025-57867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
Comorbid cardiovascular and metabolic risk factors (CVM) differentially impact brain structure and increase dementia risk, but their specific magnetic resonance imaging signatures (MRI) remain poorly characterized. To address this, we developed and validated machine learning models to quantify the distinct spatial patterns of atrophy and white matter hyperintensities related to hypertension, hyperlipidemia, smoking, obesity, and type-2 diabetes mellitus at the patient level. Using harmonized MRI data from 37,096 participants (45-85 years) in a large multinational dataset of 10 cohort studies, we generated five in silico severity markers that: i) outperformed conventional structural MRI markers with a ten-fold increase in effect sizes, ii) captured subtle patterns at sub-clinical CVM stages, iii) were most sensitive in mid-life (45-64 years), iv) were associated with brain beta-amyloid status, and v) showed stronger associations with cognitive performance than diagnostic CVM status. Integrating personalized measurements of CVM-specific brain signatures into phenotypic frameworks could guide early risk detection and stratification in clinical studies.
Collapse
Grants
- RF1 AG054409 NIA NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- The iSTAGING study is a multi-institutional effort funded by the National Institute on Aging (NIA) by RF1 AG054409 (C. Davatzikos). Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. ADNI is funded by the NIA, the National Institute of Biomedical Imaging and Bioengineering and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica; Biogen; Bristol-Myers Squibb; CereSpir; Cogstate; Eisai; Elan Pharmaceuticals; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche and its affiliated company Genentech; Fujirebio; GE Healthcare; IXICO; Janssen Alzheimer Immunotherapy Research & Development; Johnson & Johnson Pharmaceutical Research & Development; Lumosity; Lundbeck; Merck & Co; Meso Scale Diagnostics; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Data used in the preparation of this article was obtained from the Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) which was made available at the ADNI database (www.loni.usc.edu/ADNI). The AIBL researchers contributed data but did not participate in analysis or writing of this report. AIBL researchers are listed at www.aibl.csiro.au. The BIOCARD study is partly supported by NIH grant U19-AG033655 (M.S. Albert). The BLSA neuroimaging study is funded by the Intramural Research Program, NIA, National Institutes of Health (NIH), and by HHSN271201600059C (S. M. Resnick, M. Bilgel, Y. An). CARDIA study is conducted and supported by the NHLBI in collaboration with the University of Alabama at Birmingham (HHSN268201300025C and HHSN268201300026C), Northwestern University (HHSN268201300027C), University of Minnesota (HHSN268201300028C), Kaiser Foundation Research Institute (HHSN268201300029C), and Johns Hopkins University School of Medicine (HHSN268200900041C). CARDIA is also partially supported by the Intramural Research Program of the National Institute on Aging (NIA) and an intra-agency agreement between NIA and NHLBI (AG0005) (L.J. Launer). Data used in the preparation of this article was obtained from the OASIS study funded in part by grants P50 AG05681, P01 AG03991, P01 AG026276, R01 AG021910, P20 MH071616, U24 RR021382 for OASIS-1, P50 AG05681, P01 AG03991, P01 AG026276, R01 AG021910, P20 MH071616, U24 RR021382 for OASIS-2, and NIH P30 AG066444, P50 AG00561, P30 NS09857781, P01 AG026276, P01 AG003991, R01 AG043434, UL1 TR000448, R01 EB009352 for OASIS-3 (T. Benzinger, D. Marcus, J. Morris, P. LaMontagne). Data used in the preparation of this article was obtained at Penn Alzheimer’s Disease Research Center funded in part by grant P30 AG072979 (D.A. Wolk). Data used in the preparation of this article was obtained from the UK Biobank Resource under application number 35148. The Women’s Health Initiative was funded by the National Heart, Lung and Blood Institute of the NIH, US Department of Health and Human Services. Contracts HHSN268200464221C and N01-WH-4-4221 provided additional support. The WHIMS (M.A. Espeland) was funded in part by Wyeth Pharmaceuticals. The WRAP study was supported by grants: NIH R01AG027161 and R01AG054047 (S.C. Johnson). The authors would like to acknowledge the clinical and neuropathology diagnostic support provided by the Wisconsin ADRC’s Clinical, Neuropathology and Biomarkers Cores, and biostatistical support provided by the Data Management and Biostatistics Core. S.T. Govindarajan was partly supported by the Alzheimer’s Association Research Fellowship AARFD-23-1151286. A. Abdulkadir was funded through grants 191026 and 206795 awarded by the Swiss National Science Foundation. M. Habes was supported by grant 1R01AG080821 from the National Institutes of Health.
Collapse
Affiliation(s)
| | - Elizabeth Mamourian
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdulkadir
- Centre for Artificial Intelligence, ZHAW School of Engineering, Winterthur, Switzerland
| | - Randa Melhem
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jimit Doshi
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Raymond Pomponio
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Aristeidis Sotiras
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pamela LaMontagne
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark A Espeland
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Colin L Masters
- Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Paul Maruff
- Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Lenore J Launer
- Neuroepidemiology Section, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, Australian e-Health Research Centre CSIRO, Brisbane, Queensland, Australia
| | - Sterling C Johnson
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - John C Morris
- Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R Nick Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mohamad Habes
- Biggs Alzheimer's Institute, University of Texas San Antonio Health Science Center, San Antonio, TX, USA
| | - Haochang Shou
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ilya M Nasrallah
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Elzinga SE, Guo K, Turfah A, Henn RE, Webber‐Davis IF, Hayes JM, Pacut CM, Teener SJ, Carter AD, Rigan DM, Allouch AM, Jang D, Parent R, Glass E, Murphy GG, Lentz SI, Chen KS, Zhao L, Hur J, Feldman EL. Metabolic stress and age drive inflammation and cognitive decline in mice and humans. Alzheimers Dement 2025; 21:e70060. [PMID: 40110679 PMCID: PMC11923576 DOI: 10.1002/alz.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/17/2025] [Accepted: 01/31/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Metabolic stressors (obesity, metabolic syndrome, prediabetes, and type 2 diabetes [T2D]) increase the risk of cognitive impairment (CI), including Alzheimer's disease (AD). Immune system dysregulation and inflammation, particularly microglial mediated, may underlie this risk, but mechanisms remain unclear. METHODS Using a high-fat diet-fed (HFD) model, we assessed longitudinal metabolism and cognition, and terminal inflammation and brain spatial transcriptomics. Additionally, we performed hippocampal spatial transcriptomics and single-cell RNA sequencing of post mortem tissue from AD and T2D human subjects versus controls. RESULTS HFD induced progressive metabolic and CI with terminal inflammatory changes, and dysmetabolic, neurodegenerative, and inflammatory gene expression profiles, particularly in microglia. AD and T2D human subjects had similar gene expression changes, including in secreted phosphoprotein 1 (SPP1), a pro-inflammatory gene associated with AD. DISCUSSION These data show that metabolic stressors cause early and progressive CI, with inflammatory changes that promote disease. They also indicate a role for microglia, particularly microglial SPP1, in CI. HIGHLIGHTS Metabolic stress causes persistent metabolic and cognitive impairments in mice. Murine and human brain spatial transcriptomics align and indicate a pro-inflammatory milieu. Transcriptomic data indicate a role for microglial-mediated inflammatory mechanisms. Secreted phosphoprotein 1 emerged as a potential target of interest in metabolically driven cognitive impairment.
Collapse
Affiliation(s)
- Sarah E. Elzinga
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- Department of PhysiologyMichigan State UniversityEast LansingMichiganUSA
| | - Kai Guo
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Ali Turfah
- Department of BiostatisticsSchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Rosemary E. Henn
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - John M. Hayes
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Crystal M. Pacut
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Samuel J. Teener
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Andrew D. Carter
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Diana M. Rigan
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Adam M. Allouch
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Dae‐Gyu Jang
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Rachel Parent
- Department of Internal MedicineGeneral MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Emily Glass
- Department of Molecular and Integrative PhysiologyDivision of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Geoffrey G. Murphy
- Department of Molecular and Integrative PhysiologyDivision of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Stephen I. Lentz
- Department of Internal MedicineDivision of MetabolismEndocrinology, and DiabetesUniversity of MichiganAnn ArborMichiganUSA
| | - Kevin S. Chen
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Lili Zhao
- Department of BiostatisticsSchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Junguk Hur
- Department of Biomedical SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
8
|
Lin J, Shen H, Yang W, Zhang G, Sun J, Shen W, Huang L, Chen H. Association between weight-adjusted waist index and cognitive impairment in Chinese older men: a 7-year longitudinal study. Front Aging Neurosci 2025; 17:1510781. [PMID: 39906714 PMCID: PMC11790604 DOI: 10.3389/fnagi.2025.1510781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025] Open
Abstract
Background Obesity, through mechanisms such as insulin resistance and systemic low-grade inflammation, can damage the central nervous system and impair cognitive function. Weight-adjusted waist index (WWI) is a novel measure of obesity that may offer more precise assessments of muscle and fat mass. This study aims to investigate the association between WWI and cognitive function in older Chinese men. Methods Data from the 2011-2018 China Longitudinal Health and Longevity Survey (CLHLS) were used in this study. WWI and cognitive function were examined in both linear and non-linear situations using Kaplan-Meier survival curves, multivariate Cox regression models, and restricted cubic spline (RCS) regression. Results This study included 1,392 older Chinese men aged 65 years and over for whom complete data were available. After controlling for all potential confounding variables, our analysis showed a statistically significant positive association between WWI and cognitive decline. Specifically, for every 1 cm/√kg increase in WWI, the risk of cognitive impairment increased by 17% (HR = 1.17, 95% CI: 1.02-1.35). Using 11.52 cm/√kg as the cutoff point for WWI, we found that High WWI was associated with a 44% increased risk of cognitive impairment compared with Low WWI (HR = 1.44, 95% CI: 1.07-1.96). RCS regression analysis confirmed a linear positive correlation between WWI and cognitive impairment. Conclusion Higher WWI is linked to worse cognitive performance in older Chinese men.
Collapse
Affiliation(s)
- Jie Lin
- Guali Branch of the First People’s Hospital of Xiaoshan, Hangzhou, China
| | - Hongchen Shen
- Renji College, Wenzhou Medical University, Wenzhou, China
| | - Wenjuan Yang
- Guali Branch of the First People’s Hospital of Xiaoshan, Hangzhou, China
| | - Guojun Zhang
- Guali Branch of the First People’s Hospital of Xiaoshan, Hangzhou, China
| | - Jie Sun
- Guali Branch of the First People’s Hospital of Xiaoshan, Hangzhou, China
| | - Wenqin Shen
- Guali Branch of the First People’s Hospital of Xiaoshan, Hangzhou, China
| | - Li Huang
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Huajian Chen
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Li H, Zhong W, Cheng H, Wang S, Li R, Wang L, He C, Wei Q. Association between weight-adjusted-waist index and long-term prognostic outcomes in cardiovascular disease patients: results from the NHANES 1999-2018 study. Diabetol Metab Syndr 2025; 17:19. [PMID: 39825364 PMCID: PMC11740466 DOI: 10.1186/s13098-025-01590-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND As cardiovascular disease (CVD) morbidity and mortality increase yearly, this study aimed to explore the potential of the weight-adjusted-waist index (WWI) and its relation to long-term mortality in patients with CVD. METHODS The diagnosis of CVD was based on standardized medical condition questionnaires that incorporated participants' self-reported physician diagnoses. WWI (cm/√kg) is a continuous variable and calculated as waist circumference (WC, cm) divided by square root of body weight (kg). For analysis purposes, the participants were divided into four groups based on the quartiles (Q1 - Q4) of the WWI. The study's primary outcome was all-cause mortality in patients with CVD, with cardiovascular mortality as the secondary outcome, and sample weights and complex survey designs were used to ensure reliable, accurate results. RESULTS The final analysis included 4,445 study participants. In the fully adjusted model, the highest quartile (WWI > 12.05 cm/√ kg) showed a higher all-cause mortality rate compared with the lowest quartile (WWI < 11.03 cm/√ kg) (HR = 1.37, 95% CI: 1.03, 1.82, P < 0.05). The risk of all-cause mortality increased with WWI and showed a linear association in patients with congestive heart failure, heart attack (P-overall < 0.05, P - nonlinear > 0.05); WWI was nonlinearly associated with the risk of all-cause mortality in patients with coronary heart disease and angina (P-overall < 0.05, P - nonlinear < 0.05). Survival curve analysis further showed that all cause and cardiovascular mortality were higher in the high WWI group (Q4) (P < 0.001). The time-dependent receiver operating characteristic (ROC) curve showed that WWI's area under the curves (AUC) for 5- and 10-year survival rates were 0.76 and 0.792 for all-cause mortality and 0.734 and 0.757 for CVD mortality. WWI's AUC were higher than those of body mass index (BMI) and WC (all P < 0.01). CONCLUSION Our findings indicate that a high WWI is positively associated with an increased risk of all-cause mortality. Additionally, the high AUC values for WWI strengthen its potential as a meaningful prognostic marker, underscoring its utility in clinical practice for assessing long-term survival risk in patients with CVD.
Collapse
Affiliation(s)
- Hanbin Li
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wen Zhong
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongxin Cheng
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shiqi Wang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ran Li
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Wang
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengqi He
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Quan Wei
- Rehabilitation Medicine Center, Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Qiu K, Liu Y, Hu C, Gu J, Huang Y. Threshold effects of sleep duration and cognitive function in older adults with BMI ≥ 25 kg/m 2. Front Aging Neurosci 2025; 16:1529639. [PMID: 39839310 PMCID: PMC11747229 DOI: 10.3389/fnagi.2024.1529639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
Background It has been demonstrated that older adults' cognitive capacities can be improved with sleep duration. However, the relationship between overweight, obesity, and cognitive decline remains a subject of debate. The impact of sleep duration on cognitive performance in seniors with a body mass index (BMI) ≥ 25 kg/m2 is largely unknown. This makes it an intriguing subject to explore further. Methods This study used data from the National Health and Nutrition Examination Survey (NHANES) (2011-2014) with 2,243 participants. Weighted multivariate linear regression and smooth curve fitting were employed to investigate linear and non-linear relationships. A two-part linear regression model was used to determine the threshold effects. Additionally, subgroup analysis and interaction tests were conducted. Results Results showed that a negative association was found between sleep duration and scores in the fully adjusted model in the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) test, the Animal Fluency test (AFT), and the Digit Symbol Substitution test (DSST). A two-piecewise linear regression model was then applied to explore the threshold effect of sleep duration on cognitive performance. When sleep duration was less than 5 and 6 h per day, sleep duration was positively correlated with CERAD test scores [ß (95% CI): 2.11 (1.17, 3.05), p < 0.0001], AFT scores [β (95% CI): 0.25 (-0.17, 0.67), p = 0.2376], and DSST scores [ß (95% CI): 0.49 (-0.57, 1.56), p = 0.3654]. However, there was a threshold effect where sleep duration reached the three inflection points. Conclusion In overweight and obese older adults, there is a clear inverted U-shaped relationship between sleep duration and cognitive function, with consistent results across different subgroups. Sleep durations of around 5-6 h may help prevent cognitive decline in older adults with a BMI ≥ 25 kg/m2.
Collapse
Affiliation(s)
- Kunyu Qiu
- Shanghai Putuo District Changzheng Town Community Health Service Center, Shanghai, China
- Department of General Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yilei Liu
- Shanghai Putuo District Changzheng Town Community Health Service Center, Shanghai, China
| | - Chengwei Hu
- Shanghai Putuo District Changzheng Town Community Health Service Center, Shanghai, China
| | - Jie Gu
- Department of General Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanyan Huang
- Department of General Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Wang Y, Yu S, Zhang M, Zhu H, Chen S, Zhou Y, Zhou X, Sun Z, Yu X, Zhu X. Cerebrospinal fluid Visinin-like protein-1 was associated with the relationship of body mass index with Alzheimer's disease pathology and cognition in non-demented elderly. J Alzheimers Dis Rep 2025; 9:25424823251331000. [PMID: 40182696 PMCID: PMC11967223 DOI: 10.1177/25424823251331000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Background The relationship and mechanisms between body mass index (BMI) and cognition are complex and inconclusive. Additionally, the role of neuronal calcium dysfunction, reflected by cerebrospinal fluid (CSF) Visinin-like protein 1 (VILIP-1), in the mechanisms linked with BMI and Alzheimer's disease (AD) has not been investigated. Objective To investigate the relationship between CSF VILIP-1, BMI, and AD pathologies in non-demented elderly at early stages of AD. Methods Baseline CSF AD core biomarkers (amyloid-β42 [Aβ42], phosphorylated tau [P-tau], and total tau [T-tau]) were measured for 1201 non-demented participants, selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, among whom 128 had measurements of CSF VILIP-1. Multivariate linear regression, causal mediation analyses, and linear mixed effects models were conducted to detect these associations. Results The average age of participants was 72.6. CSF VILIP-1 was decreased in A+/TN- (A-positive/T- and N- negative) group and elevated in A-/TN + (A-negative/T- or N-positive) and A+/TN + groups, as compared with A-/TN- group. In total participants, BMI was negatively related to CSF P-tau, T-tau, P-tau/Aβ42 and T-tau/Aβ42. Noticeable associations were also presented between CSF VILIP-1 and AD core biomarkers, but not with Aβ42 after stratification by A/T/N scheme. Furthermore, the influences of BMI on CSF tau pathology were mediated by CSF VILIP-1. Higher baseline CSF VILIP-1 correspond to faster longitudinal cognitive decline. Conclusions Our findings indicated that CSF VILIP-1 changed dynamically and might be a key mediator in the associations between BMI and tau pathology, providing new insights into understanding the mechanisms underlying BMI-related cognitive deficits in non-demented elderly.
Collapse
Affiliation(s)
- Yayu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siqi Yu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Man Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huaiyuan Zhu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Clinical Pharmacy, Henan Province Key Subjects of Medicine, the First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Xinxiang Key Laboratory for Individualized Drug Use Research for Immune Diseases, Weihui, China
| | - Shujian Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yajun Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xianfeng Yu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoqun Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | |
Collapse
|
12
|
Xu S, Lv K, Sun Y, Chen T, He J, Xu J, Xu H. Altered structural node of default mode network mediated general cognitive ability in young adults with obesity. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111132. [PMID: 39218345 DOI: 10.1016/j.pnpbp.2024.111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Obesity, characterized by excessive adiposity, is associated with brain structural abnormalities. Nevertheless, the relationships between altered structural nodes of default mode network (DMN), body mass index (BMI), general cognitive ability remained unclear in young adults. METHODS In this study, we divided a large sample of young adults into three BMI-based groups. We then conducted one-way analyses of variance and post-hoc tests with Bonferroni corrections to investigate abnormal structural brain regions associated with obesity. Furthermore, mediation effects models were built to explore whether the structural alterations influenced the relationship between BMI and general cognitive ability. RESULTS Compared to their lean and overweight counterparts, young adults with obesity exhibited significantly lower general cognitive ability, higher impulsivity traits, and worse sleep quality. Furthermore, compared with lean group, young adults with obesity exhibited altered cortical thickness of both the left temporal pole and right superior parietal lobule, and abnormal cortical surface area (CSA) of the left entorhinal cortex (EC), a hub within DMN. Moreover, CSA of the left EC mediated the relationship between BMI and general cognitive ability. CONCLUSION Obesity was linked to altered structural node of DMN, which mediated general cognitive ability in young adults. These findings indicated the negative effect of obesity on DMN and general cognitive ability in young adults.
Collapse
Affiliation(s)
- ShengJie Xu
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - KeZhen Lv
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - YuQi Sun
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Teng Chen
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Junhao He
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Jing Xu
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Hui Xu
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
13
|
Chen B, de Launoit E, Meseguer D, Garcia Caceres C, Eichmann A, Renier N, Schneeberger M. The interactions between energy homeostasis and neurovascular plasticity. Nat Rev Endocrinol 2024; 20:749-759. [PMID: 39054359 DOI: 10.1038/s41574-024-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Food intake and energy expenditure are sensed and processed by multiple brain centres to uphold energy homeostasis. Evidence from the past decade points to the brain vasculature as a new critical player in regulating energy balance that functions in close association with the local neuronal networks. Nutritional imbalances alter many properties of the neurovascular system (such as neurovascular coupling and blood-brain barrier permeability), thus suggesting a bidirectional link between the nutritional milieu and neurovascular health. Increasing numbers of people are consuming a Western diet (comprising ultra-processed food with high-fat and high-sugar content) and have a sedentary lifestyle, with these factors contributing to the current obesity epidemic. Emerging pharmacological interventions (for example, glucagon-like peptide 1 receptor agonists) successfully trigger weight loss. However, whether these approaches can reverse the detrimental effects of long-term exposure to the Western diet (such as neurovascular uncoupling, neuroinflammation and blood-brain barrier disruption) and maintain stable body weight in the long-term needs to be clarified in addition to possible adverse effects. Lifestyle interventions revert the nutritional trigger for obesity and positively affect our overall health, including the cardiovascular system. This Perspective examines how lifestyle interventions affect the neurovascular system and neuronal networks.
Collapse
Affiliation(s)
- Bandy Chen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Elisa de Launoit
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, Paris, France
| | - David Meseguer
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Cristina Garcia Caceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich & German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Paris Cardiovascular Research Center, Inserm U970, Université Paris, Paris, France
| | - Nicolas Renier
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Marc Schneeberger
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT, USA.
| |
Collapse
|
14
|
Hao J, Lu Y, Zhang L, Li X, Wen H, Zhao X, Wang L, Tu J, Wang J, Yang C, Ning X, Li Y. Association of triglyceride glucose index combined with obesity indicators with cognitive impairment. Lipids Health Dis 2024; 23:397. [PMID: 39616366 PMCID: PMC11607975 DOI: 10.1186/s12944-024-02388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/24/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND The association of a combination of the TyG index and obesity markers, specifically waist circumference (WC), with cognitive function is unknown. This research investigated the relationship between TyG-WC measurements and cognitive impairment in a low-income population in China; moreover, this study evaluated the role of diabetes mellitus and body mass index (BMI) in modulating this relationship. METHODS 1125 eligible individuals aged ≥ 60 years participated in this study. The TyG index and obesity indicators (BMI, WC, and waist-to-height ratio) were calculated for individual participants and categorized into quartiles. Multivariate logistic regression analysis was used to evaluate the correlation between TyG-WC values and cognitive impairment; the possibility of a nonlinear relationship was explored using constrained cubic spline analysis. The participants were divided into different groups according to their diabetes status and BMI category for subgroup analyses. Linear regression was used to investigate the correlation between TyG-WC values and MMSE scores. RESULTS The prevalence of cognitive impairment in the study participants was 47.3%, with a significant negative association between TyG-WC values and cognitive impairment, (odds ratio [OR] = 0.999; 95% confidence interval [CI], 0.997-1.00, P = 0.009). A U-shaped correlation was observed between the TyG-WC values and cognitive impairment (P = 0.008). Subgroup analyses showed that the inverse association between TyG-WC values and cognitive impairment was stronger in non-diabetic individuals (OR = 0.998; 95% CI, 0.997-0.999; P = 0.002) and in those with a lower BMI (< 24 kg/m2; OR = 0.996; 95% CI, 0.994-0.998; P = 0.001). A positive correlation was found between TyG-WC values and MMSE scores, particularly in men and non-diabetic individuals (β = 0.003; 95% CI, 0.0002-0.005; P = 0.031). CONCLUSION This study demonstrates a nonlinear U-shaped relationship between TyG-WC values and cognitive function. The stronger inverse association between TyG-WC values and cognitive decline in the non-diabetic and low-BMI subgroups suggests that these populations may benefit the most from targeted interventions. These findings are important for clinical practice and formulating disease-prevention policies, emphasizing the need for metabolic health management to prevent cognitive decline, particularly in low-income populations.
Collapse
Affiliation(s)
- Juan Hao
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yuting Lu
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lei Zhang
- Tianjin Medical University Jizhou Clinical College, Tianjin, 301900, China
| | - Xiao Li
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Haotian Wen
- The First Clinical School of Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Xiyu Zhao
- Department of Critical Care Medicine, Tianjin Jizhou People's Hospital, Tianjin, 301900, China
| | - Lifeng Wang
- Tianjin Medical University Jizhou Clinical College;Institute of Clinical Epidemiology & Evidence-Based Medicine, Tianjin Jizhou People's Hospital, Tianjin, 301900, China
| | - Jun Tu
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Medical University Jizhou Clinical College;Institute of Clinical Epidemiology & Evidence-Based Medicine, Tianjin Jizhou People's Hospital, Tianjin, 301900, China
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, 300052, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Jinghua Wang
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Medical University Jizhou Clinical College;Institute of Clinical Epidemiology & Evidence-Based Medicine, Tianjin Jizhou People's Hospital, Tianjin, 301900, China
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, 300052, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Chunsheng Yang
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Xianjia Ning
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin Medical University Jizhou Clinical College;Institute of Clinical Epidemiology & Evidence-Based Medicine, Tianjin Jizhou People's Hospital, Tianjin, 301900, China.
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, 300052, China.
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, 300052, China.
| | - Yan Li
- Tianjin Medical University Jizhou Clinical College;Institute of Clinical Epidemiology & Evidence-Based Medicine, Tianjin Jizhou People's Hospital, Tianjin, 301900, China.
| |
Collapse
|
15
|
Weinstein AA, de Avila L, Fadahunsi AI, Price JK, Golabi P, Escheik C, Gerber LH, Younossi ZM. Liver disease-linked metabolic and behavioral factors associated with cognitive performance in an observational study of community dwelling adults. Medicine (Baltimore) 2024; 103:e40448. [PMID: 39809142 PMCID: PMC11596524 DOI: 10.1097/md.0000000000040448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/22/2024] [Indexed: 01/16/2025] Open
Abstract
Modifiable risk factors associated with cognitive functioning are important for identifying potential targets for intervention development. Although there are a few recognized modifiable risk factors (e.g., diabetes mellitus, diet, physical activity), there are limitations in the conclusions that can be drawn due to limited data. Therefore, this study examined the relationship between modifiable liver disease-linked metabolic and behavioral factors in a sample of community dwelling adults who do not currently experience functional limitations due to cognitive abilities. Individuals aged 19 to 69 were recruited to participate in this cross-sectional study in the Washington, DC area. Participants were assessed using anthropometric measures, ultrasound of the liver, glycated hemoglobin A1C, self-reported fatigue, clinical history, and 7 domains of cognitive function: processing speed, short- and long-term visual memory, working memory, inhibition, shifting, and abstract reasoning. The study included 104 participants (44% female, 51.1 ± 13.5 years old). The modifiable factors that were most consistently related to cognitive performance were waist-to-height ratio, which was related to a decrease in performance in 4 of the domains (short-term and long-term visual memory, working memory, and abstract reasoning), and the presence of nonalcoholic fatty liver disease, which was related to an increase in performance in the same 4 domains. This study suggests that liver disease-linked modifiable factors are associated with cognitive performance, even in middle-aged individuals without self-reported cognitive dysfunction. Further research is needed to explore the mechanisms that impact cognitive performance in relation to these factors to establish early intervention targets for reducing future cognitive deficits.
Collapse
Affiliation(s)
- Ali A. Weinstein
- Beatty Liver and Obesity Research Program, Inova Fairfax Medical Campus, Falls Church, VA
- Department of Global and Community Health, George Mason University, Fairfax, VA
| | - Leyla de Avila
- Beatty Liver and Obesity Research Program, Inova Fairfax Medical Campus, Falls Church, VA
| | | | - Jillian K. Price
- Beatty Liver and Obesity Research Program, Inova Fairfax Medical Campus, Falls Church, VA
| | - Pegah Golabi
- Beatty Liver and Obesity Research Program, Inova Fairfax Medical Campus, Falls Church, VA
| | - Carey Escheik
- Beatty Liver and Obesity Research Program, Inova Fairfax Medical Campus, Falls Church, VA
| | - Lynn H. Gerber
- Beatty Liver and Obesity Research Program, Inova Fairfax Medical Campus, Falls Church, VA
| | - Zobair M. Younossi
- Beatty Liver and Obesity Research Program, Inova Fairfax Medical Campus, Falls Church, VA
| |
Collapse
|
16
|
Liu T, Zhou L, Dong R, Qu Y, Liu Y, Song W, Lv J, Wu S, Peng W, Shi L. Isomalto-Oligosaccharide Potentiates Alleviating Effects of Intermittent Fasting on Obesity-Related Cognitive Impairment during Weight Loss and the Rebound Weight Gain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23875-23892. [PMID: 39431286 DOI: 10.1021/acs.jafc.4c07351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Obesity-related cognitive dysfunction poses a significant threat to public health. The present study demonstrated mitigating effects of intermittent fasting (IF) and its combination with isomalto-oligosaccharides and IF (IF + IMO) on cognitive impairments induced by a high-fat-high-fructose (HFHF) diet in mice, with IF + IMO exhibiting superior effects. Transcriptomic analysis of the hippocampus revealed that the protective effects on cognition might be attributed to the suppression of toll-like receptor 4 (TLR4)/NFκB signaling, oxidative phosphorylation, and neuroinflammation. Moreover, both IF and IF + IMO modulated the gut microbiome and promoted the production of short-chain fatty acids, with IF + IMO displaying more pronounced effects. IF + IMO-modulated gut microbiota, metabolites, and molecular targets associated with cognitive impairments were further corroborated using human data from public databases Gmrepo and gutMgene. Furthermore, the fecal microbiome transplantation confirmed the direct impacts of IF + IMO-derived microbiota on improving cognition functions by suppressing TLR4/NFκB signaling and increasing BDNF levels. Notably, prior exposure to IF + IMO prevented weight-regain-induced cognitive decline, suppressed TLR4/NFκB signaling and inflammatory cytokines in the hippocampus, and mitigated weight regain-caused gut dysbacteriosis without altering body weight. Our study underscores that IMO-augmented alleviating effects of IF on obesity-related cognitive impairment particularly during weight-loss and weight-regain periods, presenting a novel nutritional strategy to tackle obesity-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Dong
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yizhe Qu
- School of Physical Education, Shaanxi Normal University, Xi'an 710062, China
| | - Yuan Liu
- School of Physical Education, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Song
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Jiayao Lv
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Shan Wu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Wen Peng
- Nutrition and Health Promotion Center, Department of Public Health, Medical College, Qinghai University, Xining 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Xining 810016, Qinghai, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
17
|
Maćków M, Dziubyna T, Jamer T, Slivinskyi D, Pytrus T, Neubauer K, Zwolińska-Wcisło M, Stawarski A, Piotrowska E, Nowacki D. The Role of Dietary Ingredients and Herbs in the Prevention of Non-Communicable Chronic Liver Disease. Nutrients 2024; 16:3505. [PMID: 39458499 PMCID: PMC11510335 DOI: 10.3390/nu16203505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Liver diseases are among the most commonly diagnosed conditions, with the main risk factors being inappropriate lifestyles, including poor diet, excessive alcohol consumption, low physical activity and smoking, including electronic cigarettes. Non-communicable chronic liver diseases also often develop as a result of accompanying overweight and obesity, as well as type 2 diabetes. METHODS The literature on risk factors for non-communicable chronic liver diseases, which show a high strong influence on their occurrence, was analysed. RESULTS Measures to prevent non-communicable chronic liver disease include the selection of suitable food ingredients that have proven protective effects on the liver. Such ingredients include dietary fibre, probiotics, herbs, various types of polyphenols and fatty acids (omega-3). CONCLUSIONS Because of their liver-protective effects, nutritionists recommend consuming vegetables, fruits, herbs and spices that provide valuable ingredients with anti-inflammatory and anti-cancer effects. These components should be provided with food and, in the case of probiotics, supplementation appears to be important. As a preventive measure, a diet rich in these nutrients is therefore recommended, as well as one that prevents overweight and other diseases that can result in liver disease.
Collapse
Affiliation(s)
- Monika Maćków
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (M.M.); (E.P.); (D.N.)
- Regional Specialist Hospital in Wrocław, Research and Development Center, Kamieńskiego 73A, 51-124 Wroclaw, Poland
| | - Tomasz Dziubyna
- Unit of Clinical Dietetics, Department of Gastroenterology and Hepatology, Faculty of Medicine, Jagiellonian University Medical College, M. Jakubowskiego 2, 30-688 Kraków, Poland;
| | - Tatiana Jamer
- 2nd Department and Clinic of Paediatrics, Gastroenterology and Nutrition, Wrocław Medical University, M. Curie-Skłodowskiej 50/52, 50-367 Wrocław, Poland; (T.J.); (T.P.); (A.S.)
| | - Dmytro Slivinskyi
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland;
| | - Tomasz Pytrus
- 2nd Department and Clinic of Paediatrics, Gastroenterology and Nutrition, Wrocław Medical University, M. Curie-Skłodowskiej 50/52, 50-367 Wrocław, Poland; (T.J.); (T.P.); (A.S.)
| | - Katarzyna Neubauer
- Department and Clinic of Gastroenterology and Hepatology, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland;
| | - Małgorzata Zwolińska-Wcisło
- Unit of Clinical Dietetics, Department of Gastroenterology and Hepatology, Faculty of Medicine, Jagiellonian University Medical College, M. Jakubowskiego 2, 30-688 Kraków, Poland;
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Jagiellonian University Medical College, M. Jakubowskiego 2, 30-688 Kraków, Poland
| | - Andrzej Stawarski
- 2nd Department and Clinic of Paediatrics, Gastroenterology and Nutrition, Wrocław Medical University, M. Curie-Skłodowskiej 50/52, 50-367 Wrocław, Poland; (T.J.); (T.P.); (A.S.)
| | - Ewa Piotrowska
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (M.M.); (E.P.); (D.N.)
| | - Dorian Nowacki
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (M.M.); (E.P.); (D.N.)
| |
Collapse
|
18
|
Chen B, Yu X, Horvath-Diano C, Ortuño MJ, Tschöp MH, Jastreboff AM, Schneeberger M. GLP-1 programs the neurovascular landscape. Cell Metab 2024; 36:2173-2189. [PMID: 39357509 DOI: 10.1016/j.cmet.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Readily available nutrient-rich foods exploit our inherent drive to overconsume, creating an environment of overnutrition. This transformative setting has led to persistent health issues, such as obesity and metabolic syndrome. The development of glucagon-like peptide-1 receptor (GLP-1R) agonists reveals our ability to pharmacologically manage weight and address metabolic conditions. Obesity is directly linked to chronic low-grade inflammation, connecting our metabolic environment to neurodegenerative diseases. GLP-1R agonism in curbing obesity, achieved by impacting appetite and addressing associated metabolic defects, is revealing additional benefits extending beyond weight loss. Whether GLP-1R agonism directly impacts brain health or does so indirectly through improved metabolic health remains to be elucidated. In exploring the intricate connection between obesity and neurological conditions, recent literature suggests that GLP-1R agonism may have the capacity to shape the neurovascular landscape. Thus, GLP-1R agonism emerges as a promising strategy for addressing the complex interplay between metabolic health and cognitive well-being.
Collapse
Affiliation(s)
- Bandy Chen
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Claudia Horvath-Diano
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - María José Ortuño
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | - Ania M Jastreboff
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Marc Schneeberger
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT, USA.
| |
Collapse
|
19
|
Zhao X, Zuo M, Zhan F, Fan P, Liu S, Taylor M, Ganau M, Hall WA, Ruan H, Wan L. Cognition mediates the relationship between white matter hyperintensity and motor function in patients with cerebral small vessel disease: a cross-sectional study. Quant Imaging Med Surg 2024; 14:7306-7317. [PMID: 39429558 PMCID: PMC11485344 DOI: 10.21037/qims-24-1058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/29/2024] [Indexed: 10/22/2024]
Abstract
Background White matter hyperintensity (WMH) is a common neuroimaging marker of cerebral small vessel disease (SVD) and a critical independent predictor of motor dysfunction, which increases the risk of disability, morbidity, and mortality. However, the mechanism underlying the relationship between WMH and motor function has not yet been fully clarified. It was hypothesized that cognitive impairment mediates the relationship between WMH and motor dysfunction in patients with SVD, which were considered predictor and outcome variables, respectively. Methods A total of 221 patients with SVD were enrolled in this study, and their magnetic resonance imaging (MRI), neuropsychological, and motor function data were collected. The MRI data were visually assessed to determine the WMH burden using the Fazekas scale. Cognition was evaluated using the Montreal Cognitive Assessment (MoCA). Motor function was assessed using the Tinetti Gait and Balance Scale and the Short Physical Performance Battery (SPPB). Finally, a bootstrap analysis was performed to determine whether cognition mediated the relationship between WMH and motor function. Results Of all the patients, 30.3% had mild WMH, 37.6% had moderate WMH, and 32.1% had severe WMH. Patients' cognition and motor function decreased as the WMH burden increased (P<0.01). The MoCA scores were associated with the Tinetti scale (r=0.545, P<0.01) and SPPB scores (r=0.365, P<0.01). Finally, multi-categorical mediation models confirmed our research hypothesis; the coefficients for the indirect effects had 95% confidence intervals (CIs) that excluded zero, indicating statistically significant mediation effects. Conclusions WMH is associated with motor dysfunction, and this association is mediated by cognition in patients with SVD. This finding highlights the importance of early interventions targeting cognitive function to reduce the risk of motor dysfunction.
Collapse
Affiliation(s)
- Xueyang Zhao
- School of Nursing, Sun Yat-sen University, Guangzhou, China
| | - Mengyun Zuo
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fufang Zhan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ping Fan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sanxin Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Marcus Taylor
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Mario Ganau
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Walter A. Hall
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Hengfang Ruan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lihong Wan
- School of Nursing, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Tian Y, Jing G, Ma M, Yin R, Zhang M. Microglial activation and polarization in type 2 diabetes-related cognitive impairment: A focused review of pathogenesis. Neurosci Biobehav Rev 2024; 165:105848. [PMID: 39142542 DOI: 10.1016/j.neubiorev.2024.105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Microglia, as immune cells in the central nervous system, are closely related to cognitive impairment associated with type 2 diabetes (T2D). Preliminary explorations have investigated the relationship between T2D-related cognitive impairment and the activation and polarization of microglia. This review summarizes the potential mechanisms of microglial activation and polarization in the context of T2D. It discusses central inflammatory responses, neuronal apoptosis, amyloid-β deposition, and abnormal phosphorylation of Tau protein mediated by microglial activation and polarization, exploring the connections between microglial activation and polarization and T2D-related cognitive impairment from multiple perspectives. Additionally, this review provides references for future treatment targeting microglia in T2D-related cognitive impairment and for clinical translation.
Collapse
Affiliation(s)
- Yue Tian
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guangchan Jing
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mei Ma
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ruiying Yin
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
21
|
Chen T, Liu YL, Li F, Qiu HN, Haghbin N, Li YS, Lin CY, Wu F, Xia LF, Li JB, Lin JN. Association of waist-to-hip ratio adjusted for body mass index with cognitive impairment in middle-aged and elderly patients with type 2 diabetes mellitus: a cross-sectional study. BMC Public Health 2024; 24:2424. [PMID: 39243030 PMCID: PMC11378611 DOI: 10.1186/s12889-024-19985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Numerous reports indicate that both obesity and type 2 diabetes mellitus (T2DM) are factors associated with cognitive impairment (CI). The objective was to assess the relationship between abdominal obesity as measured by waist-to-hip ratio adjusted for body mass index (WHRadjBMI) and CI in middle-aged and elderly patients with T2DM. METHODS A cross-sectional study was conducted, in which a total of 1154 patients with T2DM aged ≥ 40 years were included. WHRadjBMI was calculated based on anthropometric measurements and CI was assessed utilizing the Montreal Cognitive Assessment (MoCA). Participants were divided into CI group (n = 509) and normal cognition group (n = 645). Correlation analysis and binary logistic regression were used to explore the relationship between obesity-related indicators including WHRadjBMI, BMI as well as waist circumference (WC) and CI. Meanwhile, the predictive power of these indicators for CI was estimated by receiver operating characteristic (ROC) curves. RESULTS WHRadjBMI was positively correlated with MoCA scores, independent of sex. The Area Under the Curve (AUC) for WHRadjBMI, BMI and WC were 0.639, 0.521 and 0.533 respectively, and WHRadjBMI had the highest predictive power for CI. Whether or not covariates were adjusted, one-SD increase in WHRadjBMI was significantly related to an increased risk of CI with an adjusted OR of 1.451 (95% CI: 1.261-1.671). After multivariate adjustment, the risk of CI increased with rising WHRadjBMI quartiles (Q4 vs. Q1 OR: 2.980, 95%CI: 2.032-4.371, P for trend < 0.001). CONCLUSIONS Our study illustrated that higher WHRadjBMI is likely to be associated with an increased risk of CI among patients with T2DM. These findings support the detrimental effects of excess visceral fat accumulation on cognitive function in middle-aged and elderly T2DM patients.
Collapse
Affiliation(s)
- Tong Chen
- School of Medicine, Nankai University, Tianjin, China
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Yan-Lan Liu
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Fang Li
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Hui-Na Qiu
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Nahal Haghbin
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao-Shuang Li
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
| | - Chen-Ying Lin
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
| | - Fan Wu
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Long-Fei Xia
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
| | - Jing-Bo Li
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China.
| | - Jing-Na Lin
- School of Medicine, Nankai University, Tianjin, China.
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China.
| |
Collapse
|
22
|
Moran C, Herson J, Than S, Collyer T, Beare R, Syed S, Srikanth V. Interactions between age, sex and visceral adipose tissue on brain ageing. Diabetes Obes Metab 2024; 26:3821-3829. [PMID: 38899555 PMCID: PMC11300145 DOI: 10.1111/dom.15727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
AIM To examine the associations between visceral adipose tissue (VAT) and brain structural measures at midlife and explore how these associations may be affected by age, sex and cardiometabolic factors. METHODS We used abdominal and brain magnetic resonance imaging data from a population-based cohort of people at midlife in the UK Biobank. Regression modelling was applied to study associations of VAT volume with total brain volume (TBV), grey matter volume (GMV), white matter volume, white matter hyperintensity volume (WMHV) and total hippocampal volume (THV), and whether these associations were altered by age, sex or cardiometabolic factors. RESULTS Complete data were available for 17 377 participants (mean age 63 years, standard deviation = 12, 53% female). Greater VAT was associated with lower TBV, GMV and THV (P < .001). We found an interaction between VAT and sex on TBV (P < .001), such that the negative association of VAT with TBV was greater in men (β = -2.89, 95% confidence interval [CI] -2.32 to -10.15) than in women (β = -1.32, 95% CI -0.49 to -3.14), with similar findings for GMV. We also found an interaction between VAT and age (but not sex) on WMHV (P < .001). The addition of other cardiometabolic factors or measures of physical activity resulted in little change to the models. CONCLUSIONS VAT volume is associated with poorer brain health in midlife and this relationship is greatest in men and those at younger ages.
Collapse
Affiliation(s)
- Chris Moran
- Peninsula Clinical School, Central Clinical School, Monash University, PO Box 52, Frankston VIC 3199, Australia
- Department of Geriatric Medicine, Peninsula Health, 24 Separation Street Mornington VIC 3931, Australia
- National Centre for Healthy Ageing, PO Box 52, Frankston VIC 3199, Australia
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne 3004, Victoria, Australia
- Department of Home, Acute and Community, Alfred Health, 260 Kooyong Rd, Caulfield VIC 3162, Australia
| | - Jarin Herson
- Department of Geriatric Medicine, Peninsula Health, 24 Separation Street Mornington VIC 3931, Australia
| | - Stephanie Than
- Peninsula Clinical School, Central Clinical School, Monash University, PO Box 52, Frankston VIC 3199, Australia
- Department of Geriatric Medicine, Peninsula Health, 24 Separation Street Mornington VIC 3931, Australia
- National Centre for Healthy Ageing, PO Box 52, Frankston VIC 3199, Australia
- Department of Geriatric Medicine, Western Health, 160 Gordon Street, Footscray 3011, Australia
| | - Taya Collyer
- Peninsula Clinical School, Central Clinical School, Monash University, PO Box 52, Frankston VIC 3199, Australia
- National Centre for Healthy Ageing, PO Box 52, Frankston VIC 3199, Australia
| | - Richard Beare
- Peninsula Clinical School, Central Clinical School, Monash University, PO Box 52, Frankston VIC 3199, Australia
- National Centre for Healthy Ageing, PO Box 52, Frankston VIC 3199, Australia
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, 50 Flemington Rd, Parkville VIC 3052, Australia
| | - Sarah Syed
- Department of Home, Acute and Community, Alfred Health, 260 Kooyong Rd, Caulfield VIC 3162, Australia
| | - Velandai Srikanth
- Peninsula Clinical School, Central Clinical School, Monash University, PO Box 52, Frankston VIC 3199, Australia
- Department of Geriatric Medicine, Peninsula Health, 24 Separation Street Mornington VIC 3931, Australia
- National Centre for Healthy Ageing, PO Box 52, Frankston VIC 3199, Australia
| |
Collapse
|
23
|
Tweedale M, Morys F, Pastor-Bernier A, Azizi H, Tremblay C, Dagher A. Obesity and diffusion-weighted imaging of subcortical grey matter in young and older adults. Appetite 2024; 200:107527. [PMID: 38797235 DOI: 10.1016/j.appet.2024.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Obesity and hypothalamic inflammation are causally related. It is unclear whether this neuroinflammation precedes or results from obesity. Animal studies show that an increase in food intake can lead to hypothalamic inflammation, but hypothalamic inflammation can create a feedback loop that further increases food intake. Internal and external factors mediate patterns of food intake and how it can affect the hypothalamus. Measures of water diffusivity in magnetic resonance imaging of the brain such as fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD) are associated with grey matter inflammation. Here, we investigated how those measures are associated with obesity-related variables in groups of young and older adults. We found relationships between decreased diffusivity and obesity markers in young adults. In older adults, obesity and comorbidities were also related to significant changes in diffusivity. Here, diffusivity was strongly associated with body mass index (BMI) and blood levels of C-reactive protein (CRP) in multiple subcortical regions, rather than only the hypothalamus. Our results suggest that diffusivity measures can be used to investigate obesity-associated changes in the brain that can potentially reflect neuroinflammation. The connection seen between subcortical inflammation and obesity opens the conversation on preventative interventions needed to reduce the effects of obesity at all stages in life.
Collapse
Affiliation(s)
- Max Tweedale
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Filip Morys
- Montreal Neurological Institute, McGill University, Montreal, Canada.
| | | | - Houman Azizi
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
24
|
Chen L, Hou Y, Sun Y, Peng D. Association of obesity indicators with cognitive function among US adults aged 60 years and older: Results from NHANES. Brain Behav 2024; 14:e70006. [PMID: 39262162 PMCID: PMC11391027 DOI: 10.1002/brb3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Midlife obesity is a significant risk factor for Alzheimer's disease, but the effects of obesity on cognitive function, either detrimental or beneficial, are controversial among older individuals. This study aims to assess this associations of body mass index (BMI) or waist circumference (WC) with cognitive function among United States older individuals. METHODS A cross-sectional research study was conducted utilizing data from the 2011 to 2014 National Health and Nutrition Examination Survey (NHANES). Initially, the study compared differences in cognitive function among the normal weight, overweight, and obese groups. Subsequently, we examined the relationships between BMI or WC and cognitive function using multivariate linear regression. Finally, structural equation models were constructed to assess the relationships among body shape, lifestyle, and cognitive function pathways. RESULTS The study included 2254 individuals. Obese subjects had lower scores in the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) word list learning tasks (CERAD-WL) (χ2 = 7.804, p = .020) and digit symbol substitution test (χ2 = 8.869, p = .012). The regression analysis showed that WC was negatively connected with the CERAD-WL score after adjusting for confounding factors (β = -.029, p = .045). Moreover, WC had a mediating effect on the path from lifestyle to cognition (CERAD-WL). However, there was no difference in the CERAD delayed recall score and the animal fluency test between the obese and the other groups. CONCLUSIONS Obese older adults exhibited impaired cognitive abilities in terms of learning and working memory performance. The impact of lifestyle on cognition was mediated by obesity-related anthropometric indices. Sleep, physical activity, and diet influenced the degree of obesity, which subsequently determined cognitive function. Prioritizing weight management in elderly people is crucial for safeguarding cognitive function.
Collapse
Affiliation(s)
- Leian Chen
- China‐Japan Friendship Hospital (Institute of Clinical Medical Sciences)Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of NeurologyChina‐Japan Friendship HospitalBeijingChina
| | - Ying Hou
- Department of NeurologyChina‐Japan Friendship HospitalBeijingChina
- Peking University China‐Japan Friendship School of Clinical MedicineBeijingChina
| | - Yu Sun
- Department of NeurologyChina‐Japan Friendship HospitalBeijingChina
| | - Dantao Peng
- China‐Japan Friendship Hospital (Institute of Clinical Medical Sciences)Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of NeurologyChina‐Japan Friendship HospitalBeijingChina
- Peking University China‐Japan Friendship School of Clinical MedicineBeijingChina
| |
Collapse
|
25
|
Song H, Bharadwaj PK, Raichlen DA, Habeck CG, Grilli MD, Huentelman MJ, Hishaw GA, Trouard TP, Alexander GE. Cortical lobar volume reductions associated with homocysteine-related subcortical brain atrophy and poorer cognition in healthy aging. Front Aging Neurosci 2024; 16:1406394. [PMID: 39170895 PMCID: PMC11335513 DOI: 10.3389/fnagi.2024.1406394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Homocysteine (Hcy) is a cardiovascular risk factor implicated in cognitive impairment and cerebrovascular disease but has also been associated with Alzheimer's disease. In 160 healthy older adults (mean age = 69.66 ± 9.95 years), we sought to investigate the association of cortical brain volume with white matter hyperintensity (WMH) burden and a previously identified Hcy-related multivariate network pattern showing reductions in subcortical gray matter (SGM) volumes of hippocampus and nucleus accumbens with relative preservation of basal ganglia. We additionally evaluated the potential role of these brain imaging markers as a series of mediators in a vascular brain pathway leading to age-related cognitive dysfunction in healthy aging. We found reductions in parietal lobar gray matter associated with the Hcy-SGM pattern, which was further associated with WMH burden. Mediation analyses revealed that slowed processing speed related to aging, but not executive functioning or memory, was mediated sequentially through increased WMH lesion volume, greater Hcy-SGM pattern expression, and then smaller parietal lobe volume. Together, these findings suggest that volume reductions in parietal gray matter associated with a pattern of Hcy-related SGM volume differences may be indicative of slowed processing speed in cognitive aging, potentially linking cardiovascular risk to an important aspect of cognitive dysfunction in healthy aging.
Collapse
Affiliation(s)
- Hyun Song
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Pradyumna K. Bharadwaj
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - David A. Raichlen
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Christian G. Habeck
- Cognitive Neuroscience Division, Department of Neurology and Taub Institute, Columbia University, New York, NY, United States
| | - Matthew D. Grilli
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Matthew J. Huentelman
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Neurogenomics Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
- Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Georg A. Hishaw
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Theodore P. Trouard
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Arizona Alzheimer's Consortium, Phoenix, AZ, United States
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Gene E. Alexander
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Arizona Alzheimer's Consortium, Phoenix, AZ, United States
- Department of Psychiatry, University of Arizona, Tucson, AZ, United States
- Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
26
|
Weijie Z, Meng Z, Chunxiao W, Lingjie M, Anguo Z, Yan Z, Xinran C, Yanjiao X, Li S. Obesity-induced chronic low-grade inflammation in adipose tissue: A pathway to Alzheimer's disease. Ageing Res Rev 2024; 99:102402. [PMID: 38977081 DOI: 10.1016/j.arr.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of cognitive impairment worldwide. Overweight and obesity are strongly associated with comorbidities, such as hypertension, diabetes, and insulin resistance (IR), which contribute substantially to the development of AD and subsequent morbidity and mortality. Adipose tissue (AT) is a highly dynamic organ composed of a diverse array of cell types, which can be classified based on their anatomic localization or cellular composition. The expansion and remodeling of AT in the context of obesity involves immunometabolic and functional shifts steered by the intertwined actions of multiple immune cells and cytokine signaling within AT, which contribute to the development of metabolic disorders, IR, and systemic markers of chronic low-grade inflammation. Chronic low-grade inflammation, a prolonged, low-dose stimulation by specific immunogens that can progress from localized sites and affect multiple organs throughout the body, leads to neurodystrophy, increased apoptosis, and disruption of homeostasis, manifesting as brain atrophy and AD-related pathology. In this review, we sought to elucidate the mechanisms by which AT contributes to the onset and progression of AD in obesity through the mediation of chronic low-grade inflammation, particularly focusing on the roles of adipokines and AT-resident immune cells.
Collapse
Affiliation(s)
- Zhai Weijie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhao Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Wei Chunxiao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Meng Lingjie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhao Anguo
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000 China
| | - Zhang Yan
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Cui Xinran
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xu Yanjiao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Sun Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China; Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
27
|
Campolim CM, Schimenes BC, Veras MM, Kim YB, Prada PO. Air pollution accelerates the development of obesity and Alzheimer's disease: the role of leptin and inflammation - a mini-review. Front Immunol 2024; 15:1401800. [PMID: 38933275 PMCID: PMC11199417 DOI: 10.3389/fimmu.2024.1401800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Air pollution is an urgent concern linked to numerous health problems in low- and middle-income countries, where 92% of air pollution-related deaths occur. Particulate matter 2.5 (PM2.5) is the most harmful component of air pollutants, increasing inflammation and changing gut microbiota, favoring obesity, type 2 diabetes, and Alzheimer's Disease (AD). PM2.5 contains lipopolysaccharides (LPS), which can activate the Toll-like receptor 4 (TLR4) signaling pathway. This pathway can lead to the release of pro-inflammatory markers, including interleukins, and suppressor of cytokine signaling-3 (SOCS3), which inhibits leptin action, a hormone that keeps the energy homeostasis. Leptin plays a role in preventing amyloid plaque deposition and hyperphosphorylation of tau-protein (p-tau), mechanisms involved in the neurodegeneration in AD. Approximately 50 million people worldwide are affected by dementia, with a significant proportion living in low-and middle-income countries. This number is expected to triple by 2050. This mini-review focuses on the potential impact of PM2.5 exposure on the TLR4 signaling pathway, its contribution to leptin resistance, and dysbiosis that exacerbates the link between obesity and AD.
Collapse
Affiliation(s)
- Clara Machado Campolim
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, United States
| | | | - Mariana Matera Veras
- Laboratory of Environmental and Experimental Pathology LIM05, Department of Pathology, School of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, United States
| | - Patricia Oliveira Prada
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, Campinas, SP, Brazil
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
28
|
Hannan J, Busby N, Roth R, Wilmskoetter J, Newman-Norlund R, Rorden C, Bonilha L, Fridriksson J. Under pressure: the interplay of hypertension and white matter hyperintensities with cognition in chronic stroke aphasia. Brain Commun 2024; 6:fcae200. [PMID: 38894950 PMCID: PMC11184349 DOI: 10.1093/braincomms/fcae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/08/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
While converging research suggests that increased white matter hyperintensity load is associated with poorer cognition, and the presence of hypertension is associated with increased white matter hyperintensity load, the relationship among hypertension, cognition and white matter hyperintensities is not well understood. We sought to determine the effect of white matter hyperintensity burden on the relationship between hypertension and cognition in individuals with post-stroke aphasia, with the hypothesis that white matter hyperintensity load moderates the relationship between history of hypertension and cognitive function. Health history, Fazekas scores for white matter hyperintensities and Wechsler Adult Intelligence Scale Matrix Reasoning subtest scores for 79 people with aphasia collected as part of the Predicting Outcomes of Language Rehabilitation study at the Center for the Study of Aphasia Recovery at the University of South Carolina and the Medical University of South Carolina were analysed retrospectively. We found that participants with a history of hypertension had increased deep white matter hyperintensity severity (P < 0.001), but not periventricular white matter hyperintensity severity (P = 0.116). Moderation analysis revealed that deep white matter hyperintensity load moderates the relationship between high blood pressure and Wechsler Adult Intelligence Scale scores when controlling for age, education, aphasia severity and lesion volume. The interaction is significant, showing that a history of high blood pressure and severe deep white matter hyperintensities together are associated with poorer Matrix Reasoning scores. The overall model explains 41.85% of the overall variation in Matrix Reasoning score in this group of participants. These findings underscore the importance of considering cardiovascular risk factors in aphasia treatment, specifically hypertension and its relationship to brain health in post-stroke cognitive function.
Collapse
Affiliation(s)
- Jade Hannan
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Rebecca Roth
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Janina Wilmskoetter
- Department of Health and Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Leonardo Bonilha
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
29
|
Morys F, Tremblay C, Rahayel S, Hansen JY, Dai A, Misic B, Dagher A. Neural correlates of obesity across the lifespan. Commun Biol 2024; 7:656. [PMID: 38806652 PMCID: PMC11133431 DOI: 10.1038/s42003-024-06361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Associations between brain and obesity are bidirectional: changes in brain structure and function underpin over-eating, while chronic adiposity leads to brain atrophy. Investigating brain-obesity interactions across the lifespan can help better understand these relationships. This study explores the interaction between obesity and cortical morphometry in children, young adults, adults, and older adults. We also investigate the genetic, neurochemical, and cognitive correlates of the brain-obesity associations. Our findings reveal a pattern of lower cortical thickness in fronto-temporal brain regions associated with obesity across all age cohorts and varying age-dependent patterns in the remaining brain regions. In adults and older adults, obesity correlates with neurochemical changes and expression of inflammatory and mitochondrial genes. In children and older adults, adiposity is associated with modifications in brain regions involved in emotional and attentional processes. Thus, obesity might originate from cognitive changes during early adolescence, leading to neurodegeneration in later life through mitochondrial and inflammatory mechanisms.
Collapse
Affiliation(s)
- Filip Morys
- Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, QC, Canada.
| | - Christina Tremblay
- Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, QC, Canada
| | - Shady Rahayel
- Department of Medicine and Medical Specialties, University of Montreal, Montreal, QC, Canada
- Center for Advanced Research in Sleep Medicine, Hopital du Sacre-Coeur de Montreal, Montreal, QC, Canada
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, QC, Canada
| | - Alyssa Dai
- Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, QC, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, QC, Canada
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, QC, Canada
| |
Collapse
|
30
|
Wang J, Li G, Ji G, Hu Y, Zhang W, Ji W, Yu J, Han Y, Cui G, Wang H, Manza P, Volkow ND, Wang GJ, Zhang Y. Habenula Volume and Functional Connectivity Changes Following Laparoscopic Sleeve Gastrectomy for Obesity Treatment. Biol Psychiatry 2024; 95:916-925. [PMID: 37480977 DOI: 10.1016/j.biopsych.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/18/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Neuroimaging studies have revealed alterations in habenular (Hb) structure and functional connectivity (FC) in psychiatric conditions. The Hb plays a particularly critical role in regulating negative emotions, which trigger excessive food intake and obesity. However, obesity and weight loss intervention (i.e., laparoscopic sleeve gastrectomy [LSG])-associated changes in Hb structure and FC have not been studied. METHODS We used voxel-based morphometry analysis to measure changes in gray matter volume (GMV) in the Hb in 56 patients with obesity at pre-LSG and 12 months post-LSG and in 78 normal-weight (NW) control participants. Then, we conducted Hb seed-based resting-state FC (RSFC) to examine obesity-related and LSG-induced alterations in RSFC. Finally, we used mediation analysis to characterize the interrelationships among Hb GMV, RSFC, and behaviors. RESULTS Compared with NW participants, Hb GMV was smaller in patients at pre-LSG and increased at 12 months post-LSG to levels equivalent to that of NW; in addition, increases in Hb GMV were correlated with reduced body mass index (BMI). Compared with NW participants, pre-LSG patients showed greater RSFCs of the Hb-insula, Hb-precentral gyrus, and Hb-rolandic operculum and weaker RSFCs of the Hb-thalamus, Hb-hypothalamus, and Hb-caudate; LSG normalized these RSFCs. Decreased RSFC of the Hb-insula was correlated with reduced BMI, Yale Food Addiction Scale rating, and emotional eating; reduced hunger levels were correlated with increased RSFCs of the Hb-thalamus and Hb-hypothalamus; and reduced BMI and Yale Food Addiction Scale ratings were correlated with increased RSFCs of the Hb-thalamus and Hb-hypothalamus, respectively. The bidirectional relationships between Hb GMV and RSFC of the Hb-insula contributed to reduced BMI. CONCLUSIONS These findings indicate that LSG increased Hb GMV and that its related improvement in RSFC of the Hb-insula may mediate long-term benefits of LSG for eating behaviors and weight loss.
Collapse
Affiliation(s)
- Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Gang Ji
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Juan Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China.
| |
Collapse
|
31
|
Esze R, Balkay L, Barna S, Egeresi LS, Emri M, Páll D, Paragh G, Rajnai L, Somodi S, Képes Z, Garai I, Káplár M. Impact of Fat Distribution and Metabolic Diseases on Cerebral Microcirculation: A Multimodal Study on Type 2 Diabetic and Obese Patients. J Clin Med 2024; 13:2900. [PMID: 38792441 PMCID: PMC11122647 DOI: 10.3390/jcm13102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Since metabolic diseases and atherosclerotic vascular events are firmly associated, herein we investigate changes in central microcirculation and atherosclerosis-related body fat distribution in patients with type 2 diabetes mellitus and obesity. Methods: Resting brain perfusion single-photon emission computed tomography (SPECT) imaging with Technetium-99m hexamethylpropylene amine oxime ([99mTc]Tc-HMPAO SPECT) was performed, and the breath-holding index (BHI) and carotid intima-media thickness (cIMT) were measured to characterise central microcirculation. Besides CT-based abdominal fat tissue segmentation, C-peptide level, glycaemic and anthropometric parameters were registered to search for correlations with cerebral blood flow and vasoreactivity. Results: Although no significant difference was found between the resting cerebral perfusion of the two patient cohorts, a greater blood flow increase was experienced in the obese after the breath-holding test than in the diabetics (p < 0.05). A significant positive correlation was encountered between resting and provocation-triggered brain perfusion and C-peptide levels (p < 0.005). BMI and cIMT were negatively correlated (rho = -0.27 and -0.23 for maximum and mean cIMT, respectively), while BMI and BHI showed a positive association (rho = 0.31 and rho = 0.29 for maximum and mean BHI, respectively), which could be explained by BMI-dependent changes in fat tissue distribution. cIMT demonstrated a disproportional relationship with increasing age, and higher cIMT values were observed for the men. Conclusions: Overall, C-peptide levels and circulatory parameters seem to be strong applicants to predict brain microvascular alterations and related cognitive decline in such patient populations.
Collapse
Affiliation(s)
- Regina Esze
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (D.P.); (G.P.); (L.R.); (S.S.); (M.K.)
- Kálmán Laki Doctoral School, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - László Balkay
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (L.B.); (S.B.); (M.E.); (Z.K.); (I.G.)
| | - Sándor Barna
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (L.B.); (S.B.); (M.E.); (Z.K.); (I.G.)
| | - Lilla Szatmáriné Egeresi
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - Miklós Emri
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (L.B.); (S.B.); (M.E.); (Z.K.); (I.G.)
| | - Dénes Páll
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (D.P.); (G.P.); (L.R.); (S.S.); (M.K.)
- Department of Medical Clinical Pharmacology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - György Paragh
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (D.P.); (G.P.); (L.R.); (S.S.); (M.K.)
| | - Liliána Rajnai
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (D.P.); (G.P.); (L.R.); (S.S.); (M.K.)
| | - Sándor Somodi
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (D.P.); (G.P.); (L.R.); (S.S.); (M.K.)
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (L.B.); (S.B.); (M.E.); (Z.K.); (I.G.)
| | - Ildikó Garai
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (L.B.); (S.B.); (M.E.); (Z.K.); (I.G.)
- ScanoMed Ltd., Nuclear Medicine Centers, Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Miklós Káplár
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (D.P.); (G.P.); (L.R.); (S.S.); (M.K.)
| |
Collapse
|
32
|
Firth W, Pye KR, Weightman Potter PG. Astrocytes at the intersection of ageing, obesity, and neurodegeneration. Clin Sci (Lond) 2024; 138:515-536. [PMID: 38652065 DOI: 10.1042/cs20230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Once considered passive cells of the central nervous system (CNS), glia are now known to actively maintain the CNS parenchyma; in recent years, the evidence for glial functions in CNS physiology and pathophysiology has only grown. Astrocytes, a heterogeneous group of glial cells, play key roles in regulating the metabolic and inflammatory landscape of the CNS and have emerged as potential therapeutic targets for a variety of disorders. This review will outline astrocyte functions in the CNS in healthy ageing, obesity, and neurodegeneration, with a focus on the inflammatory responses and mitochondrial function, and will address therapeutic outlooks.
Collapse
Affiliation(s)
- Wyn Firth
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, U.K
| | - Katherine R Pye
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Paul G Weightman Potter
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| |
Collapse
|
33
|
Pino JMV, Silva VF, Campos RMS, Mônico-Neto M, de Araujo KA, Seva DC, Kato MY, Galvão TD, Bitterncourt LRA, Tufik S, Lee KS. Impact of Bariatric Surgery on Circulating Metabolites and Cognitive Performance. Obes Surg 2024; 34:1102-1112. [PMID: 38363496 DOI: 10.1007/s11695-024-07096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
INTRODUCTION Bariatric surgery is an effective intervention to reduce obesity and improve associated comorbidities. However, its effects on cognitive function are still the subject of debate. Given that the bioavailability of circulating metabolites can influence brain metabolism and cognitive performance, we aimed to assess the effects of bariatric surgery on plasma metabolic profiles and cognitive performance. METHODS We recruited 26 women undergoing gastric bypass surgery. We conducted anthropometric assessments and collected plasma samples for metabolomic analysis. A set of 4 cognitive tests were used to evaluate cognitive performance. Participants were reevaluated 1 year post-surgery. RESULTS After surgery, attention capacity and executive function were improved, while immediate memory had deteriorated. Regarding metabolic profile, reduction of beta-tocopherol and increase of serine, glutamic acid, butanoic acid, and glycolic acid were observed. To better understand the relationship between cognitive function and metabolites, a cluster analysis was conducted to identify more homogeneous subgroups based on the cognitive performance. We identified cluster 1, which did not show changes in cognitive performance after surgery, and cluster 2, which showed improved attention and executive function, but reduced performance in the immediate memory test. Thus, cluster 2 was more homogeneous group that replicated the results of non-clustered subjects. Analysis of the metabolic profile of cluster 2 confirmed serine, glutamic acid, and glycolic acid as potential metabolites associated with cognitive performance. CONCLUSIONS Metabolites identified in this study have potential for biomarkers and alternative therapeutic target to prevent obesity-related cognitive decline. KEY POINTS • Attention capacity and executive function were improved 12 months post bariatric surgery. • Immediate memory was worsened 12 months post bariatric surgery. • Serine, glutamic acid, and glycolic acid are potential metabolites linked to the alteration of cognitive performance.
Collapse
Affiliation(s)
- Jessica M V Pino
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Edifício de Pesquisa II, Rua Pedro de Toledo, 669, 8º Andar, CEP, São Paulo, 04039-032, Brazil
| | - Vitória F Silva
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Edifício de Pesquisa II, Rua Pedro de Toledo, 669, 8º Andar, CEP, São Paulo, 04039-032, Brazil
| | - Raquel M S Campos
- Post Graduated Program of Interdisciplinary Health Sciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Marcos Mônico-Neto
- Post Graduated Program of Interdisciplinary Health Sciences, Universidade Federal de São Paulo, Santos, Brazil
- BariMais Clinic-Integrated Medicine, São Paulo, Brazil
| | - Kaique A de Araujo
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Edifício de Pesquisa II, Rua Pedro de Toledo, 669, 8º Andar, CEP, São Paulo, 04039-032, Brazil
| | - Danielle C Seva
- Post Graduated Program of Interdisciplinary Health Sciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Melissa Y Kato
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Edifício de Pesquisa II, Rua Pedro de Toledo, 669, 8º Andar, CEP, São Paulo, 04039-032, Brazil
| | | | - Lia R A Bitterncourt
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sergio Tufik
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Kil S Lee
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Edifício de Pesquisa II, Rua Pedro de Toledo, 669, 8º Andar, CEP, São Paulo, 04039-032, Brazil.
| |
Collapse
|
34
|
Ahmed M, Lai AY, Hill ME, Ribeiro JA, Amiraslani A, McLaurin J. Obesity differentially effects the somatosensory cortex and striatum of TgF344-AD rats. Sci Rep 2024; 14:7235. [PMID: 38538727 PMCID: PMC10973391 DOI: 10.1038/s41598-024-57953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Lifestyle choices leading to obesity, hypertension and diabetes in mid-life contribute directly to the risk of late-life Alzheimer's disease (AD). However, in late-life or in late-stage AD conditions, obesity reduces the risk of AD and disease progression. To examine the mechanisms underlying this paradox, TgF344-AD rats were fed a varied high-carbohydrate, high-fat (HCHF) diet to induce obesity from nine months of age representing early stages of AD to twelve months of age in which rats exhibit the full spectrum of AD symptomology. We hypothesized regions primarily composed of gray matter, such as the somatosensory cortex (SSC), would be differentially affected compared to regions primarily composed of white matter, such as the striatum. We found increased myelin and oligodendrocytes in the somatosensory cortex of rats fed the HCHF diet with an absence of neuronal loss. We observed decreased inflammation in the somatosensory cortex despite increased AD pathology. Compared to the somatosensory cortex, the striatum had fewer changes. Overall, our results suggest that the interaction between diet and AD progression affects myelination in a brain region specific manner such that regions with a lower density of white matter are preferentially affected. Our results offer a possible mechanistic explanation for the obesity paradox.
Collapse
Affiliation(s)
- Minhal Ahmed
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Aaron Y Lai
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Mary E Hill
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Jessica A Ribeiro
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Ashley Amiraslani
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - JoAnne McLaurin
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada.
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
35
|
Gurholt TP, Borda MG, Parker N, Fominykh V, Kjelkenes R, Linge J, van der Meer D, Sønderby IE, Duque G, Westlye LT, Aarsland D, Andreassen OA. Linking sarcopenia, brain structure and cognitive performance: a large-scale UK Biobank study. Brain Commun 2024; 6:fcae083. [PMID: 38510210 PMCID: PMC10953622 DOI: 10.1093/braincomms/fcae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/15/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Sarcopenia refers to age-related loss of muscle mass and function and is related to impaired somatic and brain health, including cognitive decline and Alzheimer's disease. However, the relationships between sarcopenia, brain structure and cognition are poorly understood. Here, we investigate the associations between sarcopenic traits, brain structure and cognitive performance. We included 33 709 UK Biobank participants (54.2% female; age range 44-82 years) with structural and diffusion magnetic resonance imaging, thigh muscle fat infiltration (n = 30 561) from whole-body magnetic resonance imaging (muscle quality indicator) and general cognitive performance as indicated by the first principal component of a principal component analysis across multiple cognitive tests (n = 22 530). Of these, 1703 participants qualified for probable sarcopenia based on low handgrip strength, and we assigned the remaining 32 006 participants to the non-sarcopenia group. We used multiple linear regression to test how sarcopenic traits (probable sarcopenia versus non-sarcopenia and percentage of thigh muscle fat infiltration) relate to cognitive performance and brain structure (cortical thickness and area, white matter fractional anisotropy and deep and lower brain volumes). Next, we used structural equation modelling to test whether brain structure mediated the association between sarcopenic and cognitive traits. We adjusted all statistical analyses for confounders. We show that sarcopenic traits (probable sarcopenia versus non-sarcopenia and muscle fat infiltration) are significantly associated with lower cognitive performance and various brain magnetic resonance imaging measures. In probable sarcopenia, for the included brain regions, we observed widespread significant lower white matter fractional anisotropy (77.1% of tracts), predominantly lower regional brain volumes (61.3% of volumes) and thinner cortical thickness (37.9% of parcellations), with |r| effect sizes in (0.02, 0.06) and P-values in (0.0002, 4.2e-29). In contrast, we observed significant associations between higher muscle fat infiltration and widespread thinner cortical thickness (76.5% of parcellations), lower white matter fractional anisotropy (62.5% of tracts) and predominantly lower brain volumes (35.5% of volumes), with |r| effect sizes in (0.02, 0.07) and P-values in (0.0002, 1.9e-31). The regions showing the most significant effect sizes across the cortex, white matter and volumes were of the sensorimotor system. Structural equation modelling analysis revealed that sensorimotor brain regions mediate the link between sarcopenic and cognitive traits [probable sarcopenia: P-values in (0.0001, 1.0e-11); muscle fat infiltration: P-values in (7.7e-05, 1.7e-12)]. Our findings show significant associations between sarcopenic traits, brain structure and cognitive performance in a middle-aged and older adult population. Mediation analyses suggest that regional brain structure mediates the association between sarcopenic and cognitive traits, with potential implications for dementia development and prevention.
Collapse
Affiliation(s)
- Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo 0424, Norway
| | - Miguel Germán Borda
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger 4068, Norway
- Faculty of Health Sciences, University of Stavanger, Stavanger 4036, Norway
- Semillero de Neurociencias y Envejecimiento, Ageing Institute, Medical School, Pontificia Universidad Javeriana, Bogota 111611, Colombia
| | - Nadine Parker
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo 0424, Norway
| | - Vera Fominykh
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo 0424, Norway
| | - Rikka Kjelkenes
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo 0424, Norway
- Department of Psychology, University of Oslo, Oslo 0373, Norway
| | - Jennifer Linge
- AMRA Medical AB, Linköping 58222, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping 58183, Sweden
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo 0424, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht 6200MD, The Netherlands
| | - Ida E Sønderby
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo 0424, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo 0424, Norway
| | - Gustavo Duque
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine and Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo 0424, Norway
- Department of Psychology, University of Oslo, Oslo 0373, Norway
| | - Dag Aarsland
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger 4068, Norway
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London WC2R 2LS, UK
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo 0424, Norway
| |
Collapse
|
36
|
Deng X, Lu S, Li Y, Fang X, Zhang R, Shen X, Du J, Xie S. Association between increased BMI and cognitive function in first-episode drug-naïve male schizophrenia. Front Psychiatry 2024; 15:1362674. [PMID: 38505798 PMCID: PMC10948420 DOI: 10.3389/fpsyt.2024.1362674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Objective Although the adverse effects of obesity in schizophrenia are documented, there is limited research exists on the implications for untreated initial schizophrenia. Our investigation aimed to explore the connections between BMI and cognitive function in first-episode drug-naïve (FEDN)schizophrenia. Methods We enrolled 143 FEDN schizophrenia patients, and collected data on their body mass index, fasting blood glucose and lipid levels. Cognitive function was measured with the MATRICS Consensus Cognitive Battery (MCCB). Using correlation and regression analysis to assess the relationship between BMI and cognitive performance. Results The prevalence rate of overweight plus obesity in FEDN schizophrenia patients was 33.57%. Patients with FEDN schizophrenia exhibited extensive cognitive impairment, and those who were overweight/obesity demonstrated more severe impairments in working memory and visual learning when compared to normal/under weight counterparts. Correlation analysis indicated a negative association between working memory and BMI and TG, as well as a link between visual learning and BMI and LDL-C. Multiple linear regression analysis revealed that a higher BMI predicted a decrease in working memory in FEDN schizophrenia patients. Conclusion Our results indicate that the rate of overweight plus obesity is high in FEDN schizophrenia patients, and there is an association between BMI and cognitive function in schizophrenia, particularly in relation to working memory.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinglun Du
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shiping Xie
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Lu P, Gao CX, Luo FJ, Huang YT, Gao MM, Long YS. Hippocampal proteomic changes in high-fat diet-induced obese mice associated with memory decline. J Nutr Biochem 2024; 125:109554. [PMID: 38142716 DOI: 10.1016/j.jnutbio.2023.109554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Substantial evidence suggest that chronic consumption of high-fat diets (HFDs) can lead to obesity, abnormal metabolism, as well as cognitive impairment. Molecular and cellular changes regarding hippocampal dysfunctions have been identified in multiple HFD animal models. Therefore, in-depth identification of expression changes of hippocampal proteins is critical for understanding the mechanism of HFD-induced cognitive deficits. In this study, we fed 3-week-old male mice with HFD for 3 months to generate obese mice who exhibit systemic metabolic abnormality and learning and memory decline. Using an iTRAQ-labeled proteomic analysis, we identified a total of 82 differentially expressed proteins (DEPs) in the hippocampus upon HFD with 35 up-regulated proteins and 47 down-regulated proteins. Functional enrichment indicated that these DEPs were predominantly enriched in regulation of catabolic process, dendritic shaft, neuron projection morphogenesis and GTPase regulator activity. Protein-protein interaction enrichment showed that the DEPs are mostly enriched in postsynaptic functions; and of them, six proteins (i.e., DLG3, SYNGAP1, DCLK1, GRIA4, GRIP1, and ARHGAP32) were involved in several functional assemblies of the postsynaptic density including G-protein signaling, scaffolding and adaptor, kinase and AMPA signaling, respectively. Collectively, our findings suggest that these DEPs upon HFD might contribute to memory decline by disturbing neuronal and postsynaptic functions in the hippocampus.
Collapse
Affiliation(s)
- Ping Lu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Cun-Xiu Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Fei-Jian Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yu-Ting Huang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Mei-Mei Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yue-Sheng Long
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
38
|
Etholén A, Kouvonen A, Hänninen M, Kulmala J, Rahkonen O, Mänty M, Lallukka T. Individual and dual trajectories of insomnia symptoms and body mass index before and after retirement and their associations with changes in subjective cognitive functioning. Prev Med 2024; 179:107830. [PMID: 38142966 DOI: 10.1016/j.ypmed.2023.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND We examined individual and dual trajectories of insomnia symptoms and body mass index (BMI) before and after retirement, and their associations with changes in subjective cognitive functioning after retirement. METHODS We used the Helsinki Health Study's (n = 2360, 79% women, aged 40-60 at baseline, Finland) repeated surveys to identify the developmental patterns of insomnia symptoms and BMI (2000-2017) and changes in subjective cognitive functioning (2017-2022). We analysed the data using latent group-based dual trajectory modelling and logistic regression analysis. RESULTS Three latent groups were identified for insomnia symptoms (stable low, decreasing and increasing symptoms) and BMI (stable healthy weight, stable overweight and stable obesity). Insomnia symptoms were associated with declining subjective cognitive functioning and largely explained the effects in the dual models. CONCLUSION The association between dual trajectories of insomnia symptoms and BMI with subjective cognitive decline is dominated by insomnia symptoms.
Collapse
Affiliation(s)
- Antti Etholén
- Department of Public Health, PO BOX 20 (Tukholmankatu 8 B), 00014 University of Helsinki, Finland.
| | - Anne Kouvonen
- Faculty of Social Sciences, University of Helsinki, POB 54, 00014 University of Helsinki, Finland; Centre for Public Health, Queen's University Belfast, Royal Victoria Hospital, Belfast BT12 6BA, UK.
| | - Mirja Hänninen
- Department of Public Health, PO BOX 20 (Tukholmankatu 8 B), 00014 University of Helsinki, Finland; Western Uusimaa Wellbeing Services County, Social and Health Care Services, P.O. BOX 33, 02033 Espoo, Finland.
| | - Jenni Kulmala
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center (GEREC), Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland; Population Health Unit, Finnish Institute for Health and Welfare, POB 30, 00271 Helsinki, Finland; Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden.
| | - Ossi Rahkonen
- Department of Public Health, PO BOX 20 (Tukholmankatu 8 B), 00014 University of Helsinki, Finland.
| | - Minna Mänty
- Department of Public Health, PO BOX 20 (Tukholmankatu 8 B), 00014 University of Helsinki, Finland.
| | - Tea Lallukka
- Department of Public Health, PO BOX 20 (Tukholmankatu 8 B), 00014 University of Helsinki, Finland.
| |
Collapse
|
39
|
Lupianez-Merly C, Dilmaghani S, Vosoughi K, Camilleri M. Review article: Pharmacologic management of obesity - updates on approved medications, indications and risks. Aliment Pharmacol Ther 2024; 59:475-491. [PMID: 38169126 DOI: 10.1111/apt.17856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Obesity has reached epidemic proportions, with >40% of the US population affected. Although traditionally managed by lifestyle modification, and less frequently by bariatric therapies, there are significant pharmacological advancements. AIMS To conduct a narrative review of the neurohormonal and physiological understanding of weight gain and obesity, and the development, clinical testing, indications, expected clinical outcomes, and associated risks of current FDA-approved and upcoming anti-obesity medications (AOMs). METHODS We conducted a comprehensive review in PubMed for articles on pathophysiology and complications of obesity, including terms 'neurohormonal', 'obesity', 'incretin', and 'weight loss'. Next, we searched for clinical trial data of all FDA-approved AOMs, including both the generic and trade names of orlistat, phentermine/topiramate, bupropion/naltrexone, liraglutide, and semaglutide. Additional searches were conducted for tirzepatide and retatrutide - medications expecting regulatory approval. Searches included combinations of terms related to mechanism of action, indications, side effects, risks, and future directions. RESULTS We reviewed the pathophysiology of obesity, including specific role of incretins and glucagon. Clinical data supporting the use of various FDA-approved medications for weight loss are presented, including placebo-controlled or, when available, head-to-head trials. Beneficial metabolic effects, including impact on liver disease, adverse effects and risks of medications are discussed, including altered gastrointestinal motility and risk for periprocedural aspiration. CONCLUSION AOMs have established efficacy and effectiveness for weight loss even beyond 52 weeks. Further pharmacological options, such as dual and triple incretins, are probable forthcoming additions to clinical practice for combating obesity and its metabolic consequences such as metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Camille Lupianez-Merly
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Saam Dilmaghani
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kia Vosoughi
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
40
|
Ahmed M, Lai AY, Hill ME, Ribeiro JA, Amiraslani A, McLaurin J. Obesity differentially effects the somatosensory cortex and striatum of TgF344-AD rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576454. [PMID: 38545621 PMCID: PMC10970715 DOI: 10.1101/2024.01.22.576454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Lifestyle choices leading to obesity, hypertension and diabetes in mid-life contribute directly to the risk of late-life Alzheimer's disease (AD). However, in late-life or in late-stage AD conditions, obesity reduces the risk of AD and disease progression. To examine the mechanisms underlying this paradox, TgF344-AD rats were fed a varied high-carbohydrate, high-fat (HCHF) diet to induce obesity from nine months of age representing early stages of AD to twelve months of age in which rats exhibit the full spectrum of AD symptomology. We hypothesized regions primarily composed of gray matter, such as the somatosensory cortex (SSC), would be differentially affected compared to regions primarily composed of white matter, such as the striatum. We found increased myelin and oligodendrocytes in the somatosensory cortex of rats fed the HCHF diet with an absence of neuronal loss. We observed decreased inflammation in the somatosensory cortex despite increased AD pathology. Compared to the somatosensory cortex, the striatum had fewer changes. Overall, our results suggest that the interaction between diet and AD progression affects myelination in a brain region specific manner such that regions with a lower density of white matter are preferentially effected. Our results offer a possible mechanistic explanation for the obesity paradox.
Collapse
|
41
|
Li YS, Li JB, Wang JJ, Wang XH, Jiang WR, Qiu HN, Xia LF, Wu F, Lin CY, Liu YL, Lin JN. Risk factors for cognitive impairment in middle-aged type 2 diabetic patients: a cross-sectional study. BMJ Open 2024; 14:e074753. [PMID: 38167287 PMCID: PMC10773412 DOI: 10.1136/bmjopen-2023-074753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate risk factors for cognitive impairment (CI) and explore the relationship between obesity and cognition in hospitalised middle-aged patients with type 2 diabetes (T2DM). METHODS Subjects were divided into normal cognitive function (NCF) (n=320) and CI (n=204) groups based on the results of the Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE). The risk factors for CI were determined by logistic regression analysis and generalised linear modelling. The associations between obesity parameters (body mass index (BMI) and waist circumference (WC)) and cognitive ability were studied with the use of linear regression analysis, piecewise regression modelling and interaction analysis. The receiver operating characteristic curve analysis was used to examine the diagnostic value of influencing factors for cc RESULTS: The prevalence of CI was 38.9% in hospitalised middle-aged T2DM patients (median age, 58 years). Age, WC, hypoglycaemic episode within past 3 months and cerebrovascular disease (CVD) were identified as independent risk factors for CI, while the independent protective factors were education, diabetic dietary pattern, overweight and obesity. BMI was a protective factor for the MoCA score within a certain range, whereas WC was a risk factor for the MMSE and MoCA scores. The area under the curve for the combination of BMI and WC was 0.754 (p<0.001). CONCLUSION Age, education, diabetic dietary pattern, WC, overweight, obesity, hypoglycaemic episode in 3 months and CVD may be potential influencing factors for the occurrence of CI in hospitalised middle-aged population with T2DM. The combination of BMI and WC may represent a good predictor for early screening of CI in this population. Nevertheless, more relevant prospective studies are still needed.
Collapse
Affiliation(s)
- Yao-Shuang Li
- Tianjin Union Medical Center, Tianjin Medical University, Heping, Tianjin, China
- Department of Endocrinology, Tianjin Union Medical Center Tianjin People's Hospital, Hongqiao, Tianjin, China
| | - Jing-Bo Li
- Department of Endocrinology, Tianjin Union Medical Center Tianjin People's Hospital, Hongqiao, Tianjin, China
| | - Jun-Jia Wang
- Department of Endocrinology, Tianjin Union Medical Center Tianjin People's Hospital, Hongqiao, Tianjin, China
- Tianjin Union Medical Center, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xiao-He Wang
- Institute of Non-Communicable Diseases Control and Prevention, Tianjin Centers for Disease Control and Prevention, Hedong, Tianjin, China
| | - Wei-Ran Jiang
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, USA
| | - Hui-Na Qiu
- Department of Endocrinology, Tianjin Union Medical Center Tianjin People's Hospital, Hongqiao, Tianjin, China
| | - Long-Fei Xia
- Tianjin Union Medical Center, Tianjin Medical University, Heping, Tianjin, China
- Department of Endocrinology, Tianjin Union Medical Center Tianjin People's Hospital, Hongqiao, Tianjin, China
| | - Fan Wu
- Department of Endocrinology, Tianjin Union Medical Center Tianjin People's Hospital, Hongqiao, Tianjin, China
| | - Chen-Ying Lin
- Tianjin Union Medical Center, Tianjin Medical University, Heping, Tianjin, China
- Department of Endocrinology, Tianjin Union Medical Center Tianjin People's Hospital, Hongqiao, Tianjin, China
| | - Yan-Lan Liu
- Department of Endocrinology, Tianjin Union Medical Center Tianjin People's Hospital, Hongqiao, Tianjin, China
| | - Jing-Na Lin
- Department of Endocrinology, Tianjin Union Medical Center Tianjin People's Hospital, Hongqiao, Tianjin, China
| |
Collapse
|
42
|
Thornton T, Mills D, Bliss E. The impact of lipopolysaccharide on cerebrovascular function and cognition resulting from obesity-induced gut dysbiosis. Life Sci 2024; 336:122337. [PMID: 38072189 DOI: 10.1016/j.lfs.2023.122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Obesity is a worldwide epidemic coinciding with a concomitant increase in the incidence of neurodegenerative diseases, particularly dementia. Obesity is characterised by increased adiposity, chronic low-grade systemic inflammation, and oxidative stress, which promote endothelial dysfunction. Endothelial dysfunction reduces cerebrovascular function leading to reduced cerebral blood flow and, eventually, cognitive decline, thus predisposing to a neurodegenerative disease. Obesity is also characterised by gut dysbiosis and a subsequent increase in the lipopolysaccharide which increasingly activates toll-like receptor 4 (TLR4) and further promotes chronic low-grade systemic inflammation. This also disrupts the crosstalk within the gut-brain axis, thus influencing the functions of the central nervous system, including cognition. However, the mechanisms by which obesity-related increases in oxidative stress, inflammation and endothelial dysfunction are driven by, or associated with, increased systemic lipopolysaccharide leading to reduced cerebrovascular function and cognition, beyond normal ageing, have not been elucidated. Hence, this review examines how increased concentrations of lipopolysaccharide and the subsequent increased TLR4 activation observed in obesity exacerbate the development of obesity-induced reductions in cerebrovascular function and cognition.
Collapse
Affiliation(s)
- Tammy Thornton
- School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia; Respiratory and Exercise Physiology Research Group, School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia.
| | - Dean Mills
- School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia; Respiratory and Exercise Physiology Research Group, School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia; Centre for Health Research, Institute for Resilient Regions, University of Southern Queensland, Ipswich, QLD 4305, Australia; Molecular Biomarkers Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Edward Bliss
- School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia; Respiratory and Exercise Physiology Research Group, School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia; Centre for Health Research, Institute for Resilient Regions, University of Southern Queensland, Ipswich, QLD 4305, Australia; Molecular Biomarkers Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| |
Collapse
|
43
|
Kueck PJ, Morris JK, Stanford JA. Current Perspectives: Obesity and Neurodegeneration - Links and Risks. Degener Neurol Neuromuscul Dis 2023; 13:111-129. [PMID: 38196559 PMCID: PMC10774290 DOI: 10.2147/dnnd.s388579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
Obesity is increasing in prevalence across all age groups. Long-term obesity can lead to the development of metabolic and cardiovascular diseases through its effects on adipose, skeletal muscle, and liver tissue. Pathological mechanisms associated with obesity include immune response and inflammation as well as oxidative stress and consequent endothelial and mitochondrial dysfunction. Recent evidence links obesity to diminished brain health and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Both AD and PD are associated with insulin resistance, an underlying syndrome of obesity. Despite these links, causative mechanism(s) resulting in neurodegenerative disease remain unclear. This review discusses relationships between obesity, AD, and PD, including clinical and preclinical findings. The review then briefly explores nonpharmacological directions for intervention.
Collapse
Affiliation(s)
- Paul J Kueck
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jill K Morris
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John A Stanford
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
44
|
Schindler LS, Subramaniapillai S, Ambikairajah A, Barth C, Crestol A, Voldsbekk I, Beck D, Gurholt TP, Topiwala A, Suri S, Ebmeier KP, Andreassen OA, Draganski B, Westlye LT, de Lange AMG. Cardiometabolic health across menopausal years is linked to white matter hyperintensities up to a decade later. Front Glob Womens Health 2023; 4:1320640. [PMID: 38213741 PMCID: PMC10783171 DOI: 10.3389/fgwh.2023.1320640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024] Open
Abstract
Introduction The menopause transition is associated with several cardiometabolic risk factors. Poor cardiometabolic health is further linked to microvascular brain lesions, which can be detected as white matter hyperintensities (WMHs) using T2-FLAIR magnetic resonance imaging (MRI) scans. Females show higher risk for WMHs post-menopause, but it remains unclear whether changes in cardiometabolic risk factors underlie menopause-related increase in brain pathology. Methods In this study, we assessed whether cross-sectional measures of cardiometabolic health, including body mass index (BMI) and waist-to-hip ratio (WHR), blood lipids, blood pressure, and long-term blood glucose (HbA1c), as well as longitudinal changes in BMI and WHR, differed according to menopausal status at baseline in 9,882 UK Biobank females (age range 40-70 years, n premenopausal = 3,529, n postmenopausal = 6,353). Furthermore, we examined whether these cardiometabolic factors were associated with WMH outcomes at the follow-up assessment, on average 8.78 years after baseline. Results Postmenopausal females showed higher levels of baseline blood lipids (HDL β = 0.14, p < 0.001, LDL β = 0.20, p < 0.001, triglycerides β = 0.12, p < 0.001) and HbA1c (β = 0.24, p < 0.001) compared to premenopausal women, beyond the effects of age. Over time, BMI increased more in the premenopausal compared to the postmenopausal group (β = -0.08, p < 0.001), while WHR increased to a similar extent in both groups (β = -0.03, p = 0.102). The change in WHR was however driven by increased waist circumference only in the premenopausal group. While the group level changes in BMI and WHR were in general small, these findings point to distinct anthropometric changes in pre- and postmenopausal females over time. Higher baseline measures of BMI, WHR, triglycerides, blood pressure, and HbA1c, as well as longitudinal increases in BMI and WHR, were associated with larger WMH volumes (β range = 0.03-0.13, p ≤ 0.002). HDL showed a significant inverse relationship with WMH volume (β = -0.27, p < 0.001). Discussion Our findings emphasise the importance of monitoring cardiometabolic risk factors in females from midlife through the menopause transition and into the postmenopausal phase, to ensure improved cerebrovascular outcomes in later years.
Collapse
Affiliation(s)
- Louise S. Schindler
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Sivaniya Subramaniapillai
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ananthan Ambikairajah
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australia
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Arielle Crestol
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Irene Voldsbekk
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dani Beck
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tiril P. Gurholt
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anya Topiwala
- Nuffield Department Population Health, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Klaus P. Ebmeier
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Ole A. Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Bogdan Draganski
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lars T. Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ann-Marie G. de Lange
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Huang XT, Lv X, Jiang H. The weight-adjusted-waist index and cognitive impairment among U.S. older adults: a population-based study. Front Endocrinol (Lausanne) 2023; 14:1276212. [PMID: 38027119 PMCID: PMC10663941 DOI: 10.3389/fendo.2023.1276212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives Multiple research projects have provided evidence of the correlation between obesity and cognitive impairment. WWI, a novel metric for assessing obesity, has the potential to provide a more precise assessment of muscle and fat mass. This research aimed to investigate the association between WWI and cognitive functioning among elderly individuals residing in the United States. Methods This study utilized data from the National Health and Nutrition Examination Survey (NHANES) conducted between 2011 and 2014. Weighted multiple linear regression models, smoothed fitted curves, and generalized weighted models were employed to examine the associations between WWI and cognitive function in linear and nonlinear contexts. Results The study included a cohort of 2,764 adult volunteers aged 60 years and older, all with complete data. Upon controlling for all potential confounding variables, our analysis revealed statistically significant negative associations between WWI and the Digit Symbol Substitution Test (DSST) score. Specifically, for each 1-unit increase in WWI, there was a corresponding loss of 3.57 points in the DSST score [-3.57 (-4.31, -2.82)]. The negative correlations between WWI with CERAD total word recall [-0.63 (-0.85, -0.40)], CERAD delayed recall [-0.19 (-0.30, -0.07)], and AFT [-0.65 (-0.94, -0.37)] were significant only in partially adjusted models. Conclusion Higher WWI was associated with poorer cognitive function.
Collapse
Affiliation(s)
| | - Xiang Lv
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Xu H, Owens MM, MacKillop J. Neuroanatomical profile of BMI implicates impulsive delay discounting and general cognitive ability. Obesity (Silver Spring) 2023; 31:2799-2808. [PMID: 37853988 DOI: 10.1002/oby.23880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE Obesity is a disorder of excessive adiposity, typically assessed via the anthropometric density measure of BMI. Numerous studies have implicated BMI with differences in brain structure, but with highly inconsistent findings. METHODS Machine learning elastic net regression models with cross-validation were conducted to characterize a neuroanatomical morphometry profile associated with BMI in 1100 participants (22% BMI > 30, n = 242) from the Human Connectome Project Young Adult project. RESULTS Using five-fold cross-validation, the multiregion neuroanatomical profile substantively predicted BMI (R2 = 10.05%), and this was robust in a held-out test set (R2 = 8.87%). In terms of specific regions, the neuroanatomical profile was enriched for nodes in the default mode, executive control, and salience networks. The relationship between the morphometry profile and BMI itself was partially mediated by impulsive delay discounting and general cognitive ability. CONCLUSIONS Taken together, these findings reveal a robust machine learning-derived neuroanatomical profile of BMI, one that comprises nodes in motivational brain networks and suggests the functional links to obesity are via self-regulatory capacity and cognitive function.
Collapse
Affiliation(s)
- Hui Xu
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton/McMaster University, Hamilton, Ontario, Canada
| | - Max M Owens
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton/McMaster University, Hamilton, Ontario, Canada
| | - James MacKillop
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton/McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Centre for Medicinal Cannabis Research, St. Joseph's Healthcare Hamilton/McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
47
|
Ali Z, Godoy-Corchuelo JM, Martins-Bach AB, Garcia-Toledo I, Fernández-Beltrán LC, Nair RR, Spring S, Nieman BJ, Jimenez-Coca I, Bains RS, Forrest H, Lerch JP, Miller KL, Fisher EMC, Cunningham TJ, Corrochano S. Mutation in the FUS nuclear localisation signal domain causes neurodevelopmental and systemic metabolic alterations. Dis Model Mech 2023; 16:dmm050200. [PMID: 37772684 PMCID: PMC10642611 DOI: 10.1242/dmm.050200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Variants in the ubiquitously expressed DNA/RNA-binding protein FUS cause aggressive juvenile forms of amyotrophic lateral sclerosis (ALS). Most FUS mutation studies have focused on motor neuron degeneration; little is known about wider systemic or developmental effects. We studied pleiotropic phenotypes in a physiological knock-in mouse model carrying the pathogenic FUSDelta14 mutation in homozygosity. RNA sequencing of multiple organs aimed to identify pathways altered by the mutant protein in the systemic transcriptome, including metabolic tissues, given the link between ALS-frontotemporal dementia and altered metabolism. Few genes were commonly altered across all tissues, and most genes and pathways affected were generally tissue specific. Phenotypic assessment of mice revealed systemic metabolic alterations related to the pathway changes identified. Magnetic resonance imaging brain scans and histological characterisation revealed that homozygous FUSDelta14 brains were smaller than heterozygous and wild-type brains and displayed significant morphological alterations, including a thinner cortex, reduced neuronal number and increased gliosis, which correlated with early cognitive impairment and fatal seizures. These findings show that the disease aetiology of FUS variants can include both neurodevelopmental and systemic alterations.
Collapse
Affiliation(s)
- Zeinab Ali
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
| | - Juan M. Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Aurea B. Martins-Bach
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9D, UK
| | - Irene Garcia-Toledo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Luis C. Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
- Department of Medicine, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Remya R. Nair
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M57 3H7, Canada
| | - Brian J. Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M57 3H7, Canada
| | - Irene Jimenez-Coca
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Rasneer S. Bains
- Mary Lyon Centre at MRC Harwell, Didcot, Oxfordshire OX11 ORD, UK
| | - Hamish Forrest
- Mary Lyon Centre at MRC Harwell, Didcot, Oxfordshire OX11 ORD, UK
| | - Jason P. Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9D, UK
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9D, UK
| | - Elizabeth M. C. Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas J. Cunningham
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London W1W 7FF, UK
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
| |
Collapse
|
48
|
Ben-Porat T, Alberga A, Audet MC, Belleville S, Cohen TR, Garneau PY, Lavoie KL, Marion P, Mellah S, Pescarus R, Rahme E, Santosa S, Studer AS, Vuckovic D, Woods R, Yousefi R, Bacon SL. Understanding the impact of radical changes in diet and the gut microbiota on brain function and structure: rationale and design of the EMBRACE study. Surg Obes Relat Dis 2023; 19:1000-1012. [PMID: 37088645 DOI: 10.1016/j.soard.2023.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/18/2023] [Accepted: 02/24/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Bariatric surgery leads to profound changes in gut microbiota and dietary patterns, both of which may interact to impact gut-brain communication. Though cognitive function improves postsurgery, there is a large variability in outcomes. How bariatric surgery-induced modifications in the gut microbiota and dietary patterns influence the variability in cognitive function is still unclear. OBJECTIVES To elucidate the associations between bariatric surgery-induced changes in dietary and gut microbiota patterns with cognition and brain structure. SETTING University hospital. METHODS A total of 120 adult patients (≥30 years) scheduled to undergo a primary bariatric surgery along with 60 age-, sex-, and body mass index-matched patients on the surgery waitlist will undergo assessments 3-months presurgery and 6- and 12-month postsurgery (or an equivalent time for the waitlist group). Additionally, 60 age-and sex-matched nonbariatric surgery eligible individuals will complete the presurgical assessments only. Evaluations will include sociodemographic and health behavior questionnaires, physiological assessments (anthropometrics, blood-, urine-, and fecal-based measures), neuropsychological cognitive tests, and structural magnetic resonance imaging. Cluster analyses of the dietary and gut microbiota changes will define the various dietary patterns and microbiota profiles, then using repeated measures mixed models, their associations with global cognitive and structural brain alterations will be explored. RESULTS The coordinating study site (Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, QC, Canada), provided the primary ethical approval (Research Ethics Board#: MP-32-2022-2412). CONCLUSIONS The insights generated from this study can be used to develop individually-targeted neurodegenerative disease prevention strategies, as well as providing critical mechanistic information.
Collapse
Affiliation(s)
- Tair Ben-Porat
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada; Montreal Behavioural Medicine Centre (MBMC), Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Quebec, Canada
| | - Angela Alberga
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada
| | - Marie-Claude Audet
- School of Nutrition Sciences, University of Ottawa, Ontario, Canada; The Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Sylvie Belleville
- Research centre of the Institut Universitaire de Gériatrie de Montréal (CRIUGM), Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Île-de-Montréal (CIUSSS-CSMTL), Montreal, Quebec, Canada; Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Tamara R Cohen
- Faculty of Land and Food Systems, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Pierre Y Garneau
- Division of Bariatric Surgery, CIUSSS-NIM, Montreal, Canada; Department of Surgery, Université de Montréal, Montréal, Canada
| | - Kim L Lavoie
- Montreal Behavioural Medicine Centre (MBMC), Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Quebec, Canada; Department of Psychology, Université du Québec a Montréal (UQAM), Montreal, Quebec, Canada
| | - Patrick Marion
- Montreal Behavioural Medicine Centre (MBMC), Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Quebec, Canada
| | - Samira Mellah
- Research centre of the Institut Universitaire de Gériatrie de Montréal (CRIUGM), Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Île-de-Montréal (CIUSSS-CSMTL), Montreal, Quebec, Canada
| | - Radu Pescarus
- Division of Bariatric Surgery, CIUSSS-NIM, Montreal, Canada; Department of Surgery, Université de Montréal, Montréal, Canada
| | - Elham Rahme
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Center for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre (MUHC), Montreal, Quebec, Canada
| | - Sylvia Santosa
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada; Metabolism, Obesity and Nutrition Lab, PERFORM Centre, Concordia University, Montreal, Quebec, Canada; Research Centre, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Quebec, Canada
| | - Anne-Sophie Studer
- Division of Bariatric Surgery, CIUSSS-NIM, Montreal, Canada; Department of Surgery, Université de Montréal, Montréal, Canada
| | - Dajana Vuckovic
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| | - Robbie Woods
- Montreal Behavioural Medicine Centre (MBMC), Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Quebec, Canada; Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Reyhaneh Yousefi
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada; Montreal Behavioural Medicine Centre (MBMC), Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Quebec, Canada
| | - Simon L Bacon
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada; Montreal Behavioural Medicine Centre (MBMC), Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Quebec, Canada.
| |
Collapse
|
49
|
Liu Q, Liao X, Pan Y, Xiang X, Zhang Y. The Obesity Paradox: Effect of Body Mass Index and Waist Circumference on Post-Stroke Cognitive Impairment. Diabetes Metab Syndr Obes 2023; 16:2457-2467. [PMID: 37605774 PMCID: PMC10440092 DOI: 10.2147/dmso.s420824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
Background Obesity is a risk factor for dementia within the old population however not within the middle-aged population, that is referred to the "obesity paradox". This study explored the association of body mass index (BMI) and waist circumference (WC) with post-stroke cognitive impairment (PSCI) in middle-aged (40-65 years) versus old population (≥ 65 years). Methods The current study enrolled 1735 individuals over the age of 40 who had their first ischemic stroke from the Impairment of Cognition and Sleep (ICONS) subgroup of the China National Stroke Registry-3 (CNSR-3). BMI and WC were used for the diagnosis of obesity and central obesity, respectively. PSCI was diagnosed according to the Montreal Cognitive Assessment (MoCA). The main clinical outcome was the incidence of PSCI assessed at three months after stroke. Multivariable regression analysis was performed to evaluate the association between obesity and three-month PSCI. Stratified analysis was also performed to explore the effect of age on the relationship between obesity and PSCI. Results In the general population, multivariable logistic regression found that the adjusted odds ratio (OR) with 95% confidence interval (CI) of general obesity was 1.45 (1.06-1.98) and that of central obesity was 1.54 (1.24-1.91) for the three-month incidence of PSCI. Stratified analysis by age showed that the adjusted OR with a 95% CI of general obesity was 1.84 (1.24-2.72) in middle-aged patients and 0.89 (0.52-1.54) in elderly patients (p-value for interaction = 0.05). Central obesity was associated with PSCI in all age groups: 1.57 (1.18-2.09) in middle-aged patients and 1.52 (1.08-2.15) in elderly patients (p-value for interaction= 0.93). Conclusion General obesity was related to an increased risk of PSCI in middle-aged but not elderly patients, whereas central obesity was associated with an increased risk of PSCI in all age groups, suggesting that the obesity paradox arises only obesity is outlined by BMI.
Collapse
Affiliation(s)
- Qi Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiaoling Liao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
| | - Yuesong Pan
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
| | - Xianglong Xiang
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
| | - Yumei Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
50
|
Li YS, Liu YL, Wang JJ, Haghbin N, Wang XH, Jiang WR, Qiu HN, Xia LF, Wu F, Lin CY, Li JB, Lin JN. Relationships Between Body Composition and Cognitive Impairment in Hospitalised Middle-Aged Type 2 Diabetic Patients. Diabetes Metab Syndr Obes 2023; 16:2389-2400. [PMID: 37581116 PMCID: PMC10423571 DOI: 10.2147/dmso.s418111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023] Open
Abstract
Objective The aim of this study was to elucidate the relationship between specific body composition and the risk of Cognitive Impairment (CI) in middle-aged Type 2 Diabetes Mellitus (T2DM) patients. Methods This cross-sectional study included 504 hospitalized patients with T2DM from the Department of Endocrinology and Metabolism of the Tianjin Union Medical Center. Subjects were grouped by sex, and cognitive status was assessed using the Montreal Cognitive Assessment (MoCA). The relationship between body composition and cognitive ability was investigated with the use of linear regression analysis. The association between body composition and CI risk was determined by logistic regression analysis. Results The prevalence of CI was 39.3% in middle-aged T2DM patients. After adjusting for age, education, marriage status, carotid atherosclerosis, cerebrovascular disease and hemoglobin, multiple linear regression analysis showed that lean mass index (LMI), body mass index (BMI) and appendicular skeletal muscle index (SMI) were significant predictors for the MoCA scores in men (p < 0.05). In addition, BMI (OR 0.913, 95% CI 0.840-0.992) and LMI (OR 0.820, 95% CI 0.682-0.916) were independent protective factors for CI in males. After adjusted for age, education, marriage status, dietary control of diabetes and cerebrovascular disease, visceral obesity (VO, OR 1.950, 95% CI 1.033-3.684) and abdominal obesity (AO, OR 2.537, 95% CI 1.191-5.403) were risk factors for CI in female patients. Conclusion The results suggest that there may be different mechanisms underlying the relationship of body compositions and cognitive performance between middle-aged male and female patients with T2DM. In addition, our finding of potential determinants of cognitive impairment may facilitate the development of intervention programs for middle-aged type 2 diabetic patients. Nevertheless, more large prospective studies looking at cognition and changes in body composition over time are needed in the future to further support their association.
Collapse
Affiliation(s)
- Yao-Shuang Li
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, People’s Republic of China
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| | - Yan-Lan Liu
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| | - Jun-Jia Wang
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
- Tianjin Union Medical Center, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Nahal Haghbin
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiao-He Wang
- Institute of Non-Communicable Diseases Control and Prevention, Tianjin Center for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Wei-Ran Jiang
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Hui-Na Qiu
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| | - Long-Fei Xia
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, People’s Republic of China
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| | - Fan Wu
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
- Tianjin Union Medical Center, School of Medicine, Nankai University, Tianjin, People’s Republic of China
| | - Chen-Ying Lin
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, People’s Republic of China
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| | - Jing-Bo Li
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| | - Jing-Na Lin
- Department of Endocrinology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| |
Collapse
|