1
|
Rosendo-Silva D, Lopes E, Monteiro-Alfredo T, Falcão-Pires I, Eickhoff H, Viana S, Reis F, Pires AS, Abrantes AM, Botelho MF, Seiça R, Matafome P. The adipose tissue melanocortin 3 receptor is targeted by ghrelin and leptin and may be a therapeutic target in obesity. Mol Cell Endocrinol 2024; 594:112367. [PMID: 39293775 DOI: 10.1016/j.mce.2024.112367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVE Obesity is linked to perturbations in energy balance mechanisms, including ghrelin and leptin actions at the hypothalamic circuitry of neuropeptide Y (NPY) and melanocortin. However, information about the regulation of this system in the periphery is still scarce. Our objective was to study the regulation of the NPY/melanocortin system in the adipose tissue (AT) and evaluate its therapeutic potential for obesity and type 2 diabetes. METHODS The expression of the NPY/melanocortin receptors' levels was assessed in the visceral AT of individuals with obesity and altered metabolism. Protein levels of these receptors were evaluated in cultured adipocytes incubated with ghrelin (30 and 100 ng/mL) and leptin (1 and 10 nM) and in the AT of an animal model with a mutation in the leptin receptor (ZSF1 rat), to understand their regulation by leptin and ghrelin. The vertical sleeve gastrectomy animal model was used to evaluate the putative therapeutic potential of the NPY/melanocortin system. RESULTS In this study, we unravelled that leptin (1 nM and 10 nM) selectively reduced the levels of NPY5R and MC3R but no other NPYR/MCRs in cultured adipocytes. In turn, acylated ghrelin (100 ng/mL) significantly increased NPY1R, but the inhibition of its receptor also abrogates MC3R levels. However, in the Lepr-deficient ZSF1 rat, both NPY5R and MC3R levels were reduced, along with other NPYRs and MCRs, suggesting that leptin resistance negatively affects NPY and melanocortin signalling. In human adipose tissue, we found a downregulation of genes encoding the NPY and melanocortin receptors in the visceral AT of individuals with obesity and insulin resistance, being correlated with genes regulating metabolic activity. Additionally, diabetic obese rats submitted to vertical sleeve gastrectomy showed increased levels of NPY, melanocortin, ghrelin, and leptin receptors in the AT, including MC3R, suggesting it may constitute a therapeutic target in obesity. CONCLUSIONS Our results suggest that the AT NPY/melanocortin system, particularly the MC3R, may be involved in the neuroendocrine regulation of adipocyte metabolism. Altogether, our work shows MC3R is under the control of the ghrelin/leptin duo, is reduced in patients with obesity and prediabetes, and may constitute a therapeutic target in obesity.
Collapse
Affiliation(s)
- Daniela Rosendo-Silva
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| | - Eduardo Lopes
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Tamaeh Monteiro-Alfredo
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Hans Eickhoff
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, Coimbra, Portugal
| | - Sofia Viana
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, iCBR and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Polytechnic University of Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Flávio Reis
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, iCBR and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal
| | - Ana Salomé Pires
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, iCBR Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
| | - Ana Margarida Abrantes
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, iCBR Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
| | - Maria Filomena Botelho
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, iCBR Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
| | - Raquel Seiça
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, Coimbra, Portugal
| | - Paulo Matafome
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Polytechnic University of Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal.
| |
Collapse
|
2
|
Solak H, Gormus ZIS, Koca RO, Gunes CE, Iyisoy MS, Kurar E, Kutlu S. 'The effect of neuropeptide Y1 receptor agonist on hypothalamic neurogenesis in rat experimental depression model'. Metab Brain Dis 2024; 40:39. [PMID: 39576364 DOI: 10.1007/s11011-024-01445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024]
Abstract
Depression is responsible for neuropathies such as decreased neurogenesis and increased dendritic atrophy. There is information that antidepressant treatments have an effect by increasing hippocampal neurogenesis and neurotrophic factor expression. The neuropeptide Y1 (NPY1R) receptor agonist has been suggested to have anxiolytic effects. Based on this information, it was aimed to investigate the effect of NPY1R agonist on depression in rats with depression using the CMS model and to determine how depression affects cell proliferation in the hypothalamus and hypothalamic peptide levels. Forty-eight adult, male Wistar albino rats were divided into groups as Control, Depression (D), Depression + NPY1R and NPY1R. Various stressors were applied to D for 30 days. An open field test (OFT) and forced swim test (FST) were performed to check whether the animals were depressed. On the 16th day, an osmotic mini pump was placed under the skin and NPY1R (130 ul/kg/day) was applied for 15 days. Behavioral tests were performed, hypothalamic peptide gene expression levels were analyzed by quantitative RT-PCR and statistical evaluations were made using ANOVA. A decrease in the percentage of movement in the D and control groups were noted in the OFT, an increase in the immobility time in the D group in the FST, and an increase in swimming behavior in the DNPY1R group. The animals did not display any anxiety behavior based on the elevated plus maze test results. It caused a decrease in IGF1R, FGF2, POMC, NPY and GLUT2 gene expression in the hypothalamus of depression group animals, and an increase in NPY gene expression in NPY1R treatment. This study compellingly demonstrated that exposure to chronic mild stress simultaneously downregulates gene expression in the hypothalamus; we observed that NPY receptor NPY1R treatment increased the effect of NPY. Therefore, adjunctive treatments with appropriate molecules such as NPY, Y1 receptor agonists or pharmacological derivatives may have significant potential in the treatment of depression.
Collapse
Affiliation(s)
- Hatice Solak
- Department of Physiology, Faculty of Medicine, Kutahya Health Science University, Kutahya, Turkey.
| | - Z Isik Solak Gormus
- Department of Physiology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Raviye Ozen Koca
- Department of Physiology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Canan Eroglu Gunes
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Sinan Iyisoy
- Department of Medical Education and Informatics, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ercan Kurar
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Selim Kutlu
- Department of Physiology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
3
|
Mazumdar D, Singh S. Diabetic Encephalopathy: Role of Oxidative and Nitrosative Factors in Type 2 Diabetes. Indian J Clin Biochem 2024; 39:3-17. [PMID: 38223005 PMCID: PMC10784252 DOI: 10.1007/s12291-022-01107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus is a set of complex metabolic disorders characterized by chronic hyperglycaemic condition due to defective insulin secretion (Type 1) and action (Type 2), which leads to serious micro and macro-vascular damage, inflammation, oxidative and nitrosative stress and a deranged energy homeostasis due to imbalance in the glucose and lipid metabolism. Moreover, patient with diabetes mellitus often showed the nervous system disorders known as diabetic encephalopathy. The precise pathological mechanism of diabetic encephalopathy by which it effects the central nervous system directly or indirectly causing the cognitive and motor impairment, is not completely understood. However, it has been speculated that like other extracerebellar tissues, oxidative and nitrosative stress may play significant role in the pathogenesis of diabetic encephalopathy. Therefore, the present review aimed to explain the possible association of the oxidative and nitrosative stress caused by the chronic hyperglycaemic condition with the central nervous system complications of the type 2 diabetes mellitus induced diabetic encephalopathy.
Collapse
Affiliation(s)
- Debashree Mazumdar
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh 495009 India
| | - Santosh Singh
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh 495009 India
| |
Collapse
|
4
|
Sex differences in behavioral and metabolic effects of gene inactivation: The neuropeptide Y and Y receptors in the brain. Neurosci Biobehav Rev 2020; 119:333-347. [PMID: 33045245 DOI: 10.1016/j.neubiorev.2020.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Brain and gonadal hormones interplay controls metabolic and behavioral functions in a sex-related manner. However, most translational neuroscience research related to animal models of endocrine and psychiatric disorders are often carried out in male animals only. The Neuropeptide Y (NPY) system shows sex-dependent differences and is sensitive to gonadal steroids. Based on published data from our and other laboratories, in this review we will discuss the sex related differences of NPY action on energy balance, bone homeostasis and behavior in rodents with the genetic manipulation of genes encoding NPY and its Y1, Y2 and Y5 cognate receptors. Comparative analyses of the phenotype of transgenic and knockout NPY and Y receptor rodents unravels sex dependent differences in the functions of this neurotransmission system, potentially helping to develop therapeutics for a variety of sex-related disorders including metabolic syndrome, osteoporosis and ethanol addiction.
Collapse
|
5
|
Sergi D, Williams LM. Potential relationship between dietary long-chain saturated fatty acids and hypothalamic dysfunction in obesity. Nutr Rev 2020; 78:261-277. [PMID: 31532491 DOI: 10.1093/nutrit/nuz056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diet-induced hypothalamic inflammation, which leads to hypothalamic dysfunction and a loss of regulation of energy balance, is emerging as a potential driver of obesity. Excessive intake of long-chain saturated fatty acids is held to be the causative dietary component in hypothalamic inflammation. This review summarizes current evidence on the role of long-chain saturated fatty acids in promoting hypothalamic inflammation and the related induction of central insulin and leptin insensitivity. Particularly, the present review focuses on the molecular mechanisms linking long-chain saturated fatty acids and hypothalamic inflammation, emphasizing the metabolic fate of fatty acids and the resulting lipotoxicity, which is a key driver of hypothalamic dysfunction. In conclusion, long-chain saturated fatty acids are key nutrients that promote hypothalamic inflammation and dysfunction by fostering the build-up of lipotoxic lipid species, such as ceramide. Furthermore, when long-chain saturated fatty acids are consumed in combination with high levels of refined carbohydrates, the proinflammatory effects are exacerbated via a mechanism that relies on the formation of advanced glycation end products.
Collapse
Affiliation(s)
- Domenico Sergi
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - Lynda M Williams
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
6
|
Zhang W, Yang M, Zhou M, Wang Y, Wu X, Zhang X, Ding Y, Zhao G, Yin Z, Wang C. Identification of Signatures of Selection by Whole-Genome Resequencing of a Chinese Native Pig. Front Genet 2020; 11:566255. [PMID: 33093844 PMCID: PMC7527633 DOI: 10.3389/fgene.2020.566255] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/20/2020] [Indexed: 12/03/2022] Open
Abstract
Identification of genomic signatures of selection that help reveal genetic mechanisms underlying traits in domesticated pigs is of importance. Anqing six-end-white pig (ASP), a representative of the native breeds in China, has many distinguishing phenotypic characteristics. To identify the genomic signatures of selection of the ASP, whole-genome sequencing of 20 ASPs produced 469.01 Gb of sequence data and more than 26 million single-nucleotide polymorphisms. Combining these data with the available whole genomes of 13 Chinese wild boars, 157 selected regions harboring 48 protein-coding genes were identified by applying the polymorphism levels (θπ) and genetic differentiation (FST) based cross approaches. The genes found to be positively selected in ASP are involved in crucial biological processes such as coat color (MC1R), salivary secretion (STATH), reproduction (SPIRE2, OSBP2, LIMK2, FANCA, and CABS1), olfactory transduction (OR5K4), and growth (NPY1R, NPY5R, and SELENOM). Our research increased the knowledge of ASP phenotype-related genes and help to improve our understanding of the underlying biological mechanisms and provide valuable genetic resources that enable effective use of pigs in agricultural production.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Min Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Mei Zhou
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yuanlang Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xudong Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaodong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yueyun Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Guiying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
7
|
Sike Á, Wengenroth J, Upīte J, Brüning T, Eiriz I, Sántha P, Biverstål H, Jansone B, Haugen HJ, Krohn M, Pahnke J. Improved method for cannula fixation for long-term intracerebral brain infusion. J Neurosci Methods 2017; 290:145-150. [DOI: 10.1016/j.jneumeth.2017.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 11/28/2022]
|
8
|
Abstract
Many molecules are involved in the regulation of feeding behavior, and they and their receptors are located in the brain hypothalamus and adipocytes. On the basis of evidence suggesting an association between the brain and adipose tissue, we propose the concept of the brain-adipose axis. This model consists of (l) the expression of endogenous molecules and/or their receptors in the hypothalamus and peripheral adipose tissue, (2) the function of these molecules as appetite regulators in the brain, (3) their existence in the general circulation as secreted proteins and (4) the physiological affects of these molecules on fat cell size and number. These molecules can be divided into two anorexigenic and orexigenic classes. In adipose tissue, all orexigenic molecules possess adipogenic activity, and almost all anorexigenic molecules suppress fat cell proliferation. Although the manner, in which they present in the circulating blood connect the brain and peripheral adipocytes, remains to be well-organized, these observations suggest the positive feedback axis affecting molecules in the hypothalamus and adipose tissue. Analysis of the disturbance and dysregulation of this axis might promote the development of new anti-obesity drugs useful in treating the metabolic syndrome.
Collapse
Affiliation(s)
- Hiroyuki Shimizu
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | |
Collapse
|
9
|
North KE, Almasy L, Göring HHH, Cole SA, Diego VP, Laston S, Cantu T, Williams JT, Howard BV, Lee ET, Best LG, Fabsitz RR, MacCluer JW. Linkage Analysis of Factors Underlying Insulin Resistance: Strong Heart Family Study. ACTA ACUST UNITED AC 2012; 13:1877-84. [PMID: 16339117 DOI: 10.1038/oby.2005.230] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In previous work in non-diabetic participants of the Strong Heart Family Study, we identified three heritable principal components of nine insulin resistance (IR) phenotypes: 1) a glucose/insulin/obesity factor, 2) a blood pressure factor, and 3) a dyslipidemia factor. To localize quantitative trait loci (QTL) potentially influencing these factors, we conducted a genome scan of factor scores in Strong Heart Family Study participants. Approximately 599 men and women, >or=18 years of age, in 32 extended families at three centers (in Arizona, Oklahoma, and North and South Dakota), were examined between 1997 and 1999. We used variance components linkage analysis to identify QTLs for the IR factors. With age, sex, and study center as covariates, we detected linkage of the glucose/insulin/obesity factor to chromosome 4 (robust logarithm of the odds (LOD) = 2.2), the dyslipidemia factor to chromosome 12 (robust LOD = 2.7), and the blood pressure factor to chromosome 1 (robust LOD = 1.6). The peak linkage signals identified for these IR factors support several positive findings from other studies and occur in regions harboring interesting candidate genes. The corroboration of existing QTLs will bring us closer to the identification of the functional genes that predispose to IR.
Collapse
Affiliation(s)
- Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, Bank of America Center, 137 E. Franklin Street, Suite 306, NC 27514, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nguyen AD, Mitchell NF, Lin S, Macia L, Yulyaningsih E, Baldock PA, Enriquez RF, Zhang L, Shi YC, Zolotukhin S, Herzog H, Sainsbury A. Y1 and Y5 receptors are both required for the regulation of food intake and energy homeostasis in mice. PLoS One 2012; 7:e40191. [PMID: 22768253 PMCID: PMC3387009 DOI: 10.1371/journal.pone.0040191] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/02/2012] [Indexed: 01/30/2023] Open
Abstract
Neuropeptide Y (NPY) acting in the hypothalamus is one of the most powerful orexigenic agents known. Of the five known Y receptors, hypothalamic Y1 and Y5 have been most strongly implicated in mediating hyperphagic effects. However, knockout of individual Y1 or Y5 receptors induces late-onset obesity – and Y5 receptor knockout also induces hyperphagia, possibly due to redundancy in functions of these genes. Here we show that food intake in mice requires the combined actions of both Y1 and Y5 receptors. Germline Y1Y5 ablation in Y1Y5−/− mice results in hypophagia, an effect that is at least partially mediated by the hypothalamus, since mice with adult-onset Y1Y5 receptor dual ablation targeted to the paraventricular nucleus (PVN) of the hypothalamus (Y1Y5Hyp/Hyp) also exhibit reduced spontaneous or fasting-induced food intake when fed a high fat diet. Interestingly, despite hypophagia, mice with germline or hypothalamus-specific Y1Y5 deficiency exhibited increased body weight and/or increased adiposity, possibly due to compensatory responses to gene deletion, such as the decreased energy expenditure observed in male Y1Y5−/− animals relative to wildtype values. While Y1 and Y5 receptors expressed in other hypothalamic areas besides the PVN – such as the dorsomedial nucleus and the ventromedial hypothalamus – cannot be excluded from having a role in the regulation of food intake, these studies demonstrate the pivotal, combined role of both Y1 and Y5 receptors in the mediation of food intake.
Collapse
Affiliation(s)
- Amy D. Nguyen
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Natalie F. Mitchell
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Shu Lin
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Laurence Macia
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Ernie Yulyaningsih
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Paul A. Baldock
- Bone and Mineral Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Ronaldo F. Enriquez
- Bone and Mineral Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Lei Zhang
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Serge Zolotukhin
- Division of Cell and Molecular Therapy, University of Florida, Gainesville, Florida, United States of America
| | - Herbert Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Kensington, Sydney, New South Wales, Australia
| | - Amanda Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Kensington, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
11
|
Kiyokawa M, Matsuzaki T, Iwasa T, Ogata R, Murakami M, Kinouchi R, Yoshida S, Kuwahara A, Yasui T, Irahara M. Neuropeptide Y mediates orexin A-mediated suppression of pulsatile gonadotropin-releasing hormone secretion in ovariectomized rats. THE JOURNAL OF MEDICAL INVESTIGATION 2011; 58:11-8. [PMID: 21372482 DOI: 10.2152/jmi.58.11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVES Reproductive functions are influenced by various feeding regulators. Orexin, which is one of orexinergic peptides, suppresses the pulsatile secretion of luteinizing hormone (LH) in bilaterally ovariectomized (OVX) rats. However, the mechanism of this effect is still not clear. To investigate whether neuropeptide Y (NPY) is involved in the orexin A-mediated suppression of pulsatile LH secretion, we evaluated the effects of NPY antibody on the suppressive effect of orexin A. METHODS Orexin A was administered intracerebroventricularly (icv) and NPY antibody (NPY-Ab) was injected before icv administration of orexin A in OVX rats. Pulsatile LH secretion was analyzed by measuring serum LH concentrations in the next 2 h in blood samples drawn at 6-min intervals by radioimmunoassay. RESULTS Administration of orexin A significantly reduced the mean LH concentration and LH pulse frequency. Co-administration of NPY antibody with orexin A significantly restored the suppressive effect of orexin A on the mean LH concentration and LH pulse frequency. CONCLUSION NPY mediated the suppressive effect of intracerebroventricularly injected orexin A on pulsatile LH secretion, suggesting that hypothalamic orexin suppressed pulsatile gonadotropin-releasing hormone (GnRH) secretion via NPY in the hypothalamus of female rats.
Collapse
Affiliation(s)
- Machiko Kiyokawa
- Department of Obstetrics and Gynecology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu XY, Shi JH, DU WH, Fan YP, Hu XL, Zhang CC, Xu HB, Miao YJ, Zhou HY, Xiang P, Chen FL. Glucocorticoids decrease body weight and food intake and inhibit appetite regulatory peptide expression in the hypothalamus of rats. Exp Ther Med 2011; 2:977-984. [PMID: 22977608 DOI: 10.3892/etm.2011.292] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/09/2011] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effects of glucocorticoids (GCs) on appetite and gene expression of the hypothalamic appetite regulatory peptides, neuropeptide Y (NPY), agouti-related protein (AGRP) and cocaine and amphetamine-regulated transcript (CART), in non-obese and obese rats. Both non-obese and obese rats were randomly assigned to three groups: normal saline, low- and high-dose GC groups (NSG, LDG and HDG, respectively), which received an intraperitoneal injection with normal saline (0.2 ml/100 g) or hydrocortisone sodium succinate at 5 and 15 mg/kg, respectively, for 20 days. The expression levels of NPY, AGRP and CART mRNA in the hypothalamus were measured by real-time quantitative PCR. Non-obese and obese rats were found to undergo weight loss after GC injection, and a higher degree of weight loss was observed in the HDG rats. The average and cumulative food intakes in the obese and non-obese rats injected with high-dose GC were lower compared to that in the NSG (p<0.05). mRNA expression levels of the orexigenic neuropeptides, NPY and AGRP, and the anorexigenic neuropeptide, CART, were significantly lower in the HDG than levels in the NSG for both the obese and non-obese rats (p<0.05). GC treatment decreased appetite and body weight, induced apparent glucolipid metabolic disturbances and hyperinsulinemia, while down-regulated mRNA expression levels of the orexigenic neuropeptides, NPY and AGRP, and anorexigenic neuropeptide, CART, in the hypothalamus in the rats. The mechanism which induces this neuropeptide expression requires further study.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- Department of Endocrinology, No. 3 People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 201900
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Both overexpression of agouti-related peptide or neuropeptide Y in the paraventricular nucleus or lateral hypothalamus induce obesity in a neuropeptide- and nucleus specific manner. Eur J Pharmacol 2011; 660:148-55. [DOI: 10.1016/j.ejphar.2010.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/18/2010] [Accepted: 12/11/2010] [Indexed: 10/18/2022]
|
14
|
Currie PJ, Coiro CD, Duenas R, Guss JL, Mirza A, Tal N. Urocortin I inhibits the effects of ghrelin and neuropeptide Y on feeding and energy substrate utilization. Brain Res 2011; 1385:127-34. [PMID: 21303672 PMCID: PMC3167471 DOI: 10.1016/j.brainres.2011.01.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/29/2011] [Accepted: 01/31/2011] [Indexed: 02/02/2023]
Abstract
The corticotropin releasing hormone-related ligand, urocortin-I (UcnI), suppresses food intake when injected into multiple hypothalamic and extrahypothalamic areas. UcnI also alters energy substrate utilization, specifically via enhanced fat oxidation as reflected in reductions in respiratory quotient (RQ). In the present study we compared the feeding and metabolic effects of ghrelin and NPY following pretreatment with UcnI. Direct PVN injections of NPY (50 pmol) and ghrelin (50 pmol) were orexigenic while UcnI (10-40 pmol) reliably suppressed food intake. Both ghrelin and NPY increased RQ, indicating enhanced utilization of carbohydrates and the preservation of fat stores. UcnI alone suppressed RQ responses. PVN UcnI attenuated the effects of both ghrelin and NPY on food intake and energy substrate utilization. While ghrelin (5 pmol) potentiated the effect of NPY (25 pmol) on RQ and food intake, these responses were inhibited by pretreatment with UcnI (10 pmol). In conclusion, PVN NPY and ghrelin stimulate eating and promote carbohydrate oxidation while inhibiting fat utilization. These effects are blocked by UcnI which alone suppresses appetite and promotes fat oxidation. Overall these findings are consistent with a possible interactive role of PVN NPY, ghrelin and urocortin in the modulation of appetite and energy metabolism.
Collapse
Affiliation(s)
- Paul J Currie
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Painsipp E, Sperk G, Herzog H, Holzer P. Delayed stress-induced differences in locomotor and depression-related behaviour in female neuropeptide-Y Y1 receptor knockout mice. J Psychopharmacol 2010; 24:1541-9. [PMID: 19351805 PMCID: PMC4359898 DOI: 10.1177/0269881109104851] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neuropeptide-Y acting through Y1 receptors reduces anxiety and stress sensitivity in rodents. In Y1 receptor knockout (Y1⁻/⁻) mice, however, anxiety-related behaviour is altered only in a context-dependent manner. Here, we investigated whether stress causes a delayed change in the emotional-affective behaviour of female Y1⁻/⁻ mice. Locomotor and anxiety-related behaviour was assessed with the elevated plus-maze (EPM) test and depression-like behaviour with the forced swim test (FST). These behavioural tests were also used as experimental stress paradigms. Locomotion and anxiety-like behaviour did not differ between naïve control and Y1⁻/⁻ mice. One week after the FST, locomotion was reduced in control animals but unchanged in Y1⁻/⁻ mice, whereas anxiety-like behaviour remained unaltered in both genotypes. Depression-like behaviour (immobility) was identical in naïve control and Y1⁻/⁻ mice but, 1 week after the EPM test, was attenuated in Y1⁻/⁻ mice relative to control animals. Our data show that naïve female Y1⁻/⁻ mice do not grossly differ from female control animals in their locomotor and depression-like behaviour. Exposure to the stress associated with behavioural testing, however, leads to delayed genotype-dependent differences in locomotion and depression-like behaviour. These findings attest to a role of Y1 receptor signalling in the control of stress coping and/or adaptation.
Collapse
Affiliation(s)
- Evelin Painsipp
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Günther Sperk
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Herzog
- Neurobiology Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
16
|
Sukumaran S, Xue B, Jusko WJ, Dubois DC, Almon RR. Circadian variations in gene expression in rat abdominal adipose tissue and relationship to physiology. Physiol Genomics 2010; 42A:141-52. [PMID: 20682845 DOI: 10.1152/physiolgenomics.00106.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circadian rhythms occur in all levels of organization from expression of genes to complex physiological processes. Although much is known about the mechanism of the central clock in the suprachiasmatic nucleus, the regulation of clocks present in peripheral tissues as well as the genes regulated by those clocks is still unclear. In this study, the circadian regulation of gene expression was examined in rat adipose tissue. A rich time series involving 54 animals euthanized at 18 time points within the 24-h cycle (12:12 h light-dark) was performed. mRNA expression was examined with Affymetrix gene array chips and quantitative real-time PCR, along with selected physiological measurements. Transcription factors involved in the regulation of central rhythms were examined, and 13 showed circadian oscillations. Mining of microarray data identified 190 probe sets that showed robust circadian oscillations. Circadian regulated probe sets were further parsed into seven distinct temporal clusters, with >70% of the genes showing maximum expression during the active/dark period. These genes were grouped into eight functional categories, which were examined within the context of their temporal expression. Circadian oscillations were also observed in plasma leptin, corticosterone, insulin, glucose, triglycerides, free fatty acids, and LDL cholesterol. Circadian oscillation in these physiological measurements along with the functional categorization of these genes suggests an important role for circadian rhythms in controlling various functions in white adipose tissue including adipogenesis, energy metabolism, and immune regulation.
Collapse
Affiliation(s)
- Siddharth Sukumaran
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | |
Collapse
|
17
|
Arnett DK, Devereux RB, Rao DC, Li N, Tang W, Kraemer R, Claas SA, Leon JM, Broeckel U. Novel genetic variants contributing to left ventricular hypertrophy: the HyperGEN study. J Hypertens 2009; 27:1585-93. [PMID: 19593212 PMCID: PMC2868312 DOI: 10.1097/hjh.0b013e32832be612] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To identify genes contributing to variation in echocardiographic left ventricular mass and related traits using linkage and linkage disequilibrium analysis in sibships ascertained on hypertension. METHODS The Hypertension Genetic Epidemiology Network (HyperGEN) Study of left ventricular hypertrophy characterized left ventricular mass, relative wall thickness (RWT), and aortic root diameter (ARD) with echocardiograms collected using a standardized protocol at four HyperGEN field centers. A high-throughput scanning fluorescence detector system genotyped 387 polymorphisms distributed throughout the genome. Linkage analyses were conducted once genotyping results became available for 885 siblings from 382 sibships. RESULTS Although single logarithm of the odds (LOD) score peaks of 1.2 or more were found on chromosomes 1, 4, 5, 6, 7, 8, 9, 10, 12, 14, 17, and 21, we observed a broad band of peaks in both ethnic groups (white and black) on chromosome 4 and selected candidate genes (NPY1R, NPY2R, NPY5R, SFRP2, CPE, IL15, and EDNRA) from this region. Using cases and controls from extremes of the left ventricular mass index, RWT, and ARD distributions, we assessed associations with these phenotypes and haplotype-tagging single-nucleotide polymorphisms (SNPs) in the candidates. Among blacks, SNPs in IL15, NPY2R, and NPY5R showed strong evidence for association (P < 0.005); all candidates except EDNRA showed suggestive association (P < 0.05). In whites, NPY2R, NPY5R, and SFRP2 SNPs offered suggestive evidence of association with one or more traits (P < 0.05). CONCLUSION Genetic variation in NPY1R, NPY2R, NPY5R, CPE, IL15, and SFRP2, detected using linkage analysis in hypertensive siblings, was associated with left ventricular phenotypes in blacks and/or whites.
Collapse
Affiliation(s)
- Donna K Arnett
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, 1665 University Boulevard, Birmingham, AL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mühlhäusler BS, Adam CL, McMillen IC. Maternal nutrition and the programming of obesity: The brain. Organogenesis 2008; 4:144-52. [PMID: 19279726 PMCID: PMC2634588 DOI: 10.4161/org.4.3.6503] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 05/13/2008] [Indexed: 12/16/2022] Open
Abstract
The increasing incidence of obesity in the developed and developing world in the last decade has led to a need to define our understanding of the physiological mechanisms which can predispose individuals to weight gain in infancy, childhood and adulthood. There is now a considerable body of evidence which has shown that the pathway to obesity may begin very early in life, and that exposure to an inappropriate level of nutrition during prenatal and/or early postnatal development can predispose individuals to obesity in later life The brain is at the heart of the regulation of appetite and food preferences, and it is increasingly being recognized that the development of central appetitive structures is acutely sensitive to the nutritional environment both before and immediately after birth. This review will summarize the body of work which has highlighted the critical role of the brain in the early origins of obesity and presents some perspectives as to the potential application of these research findings in the clinical setting.
Collapse
Affiliation(s)
- Beverly Sara Mühlhäusler
- Early Origins of Adult Health Research Group; Sansom Institute; University of South Australia; Adelaide Australia
| | | | | |
Collapse
|
19
|
Abstract
Obesity is a serious public health problem throughout the world, affecting both developed societies and developing countries. The central nervous system has developed a meticulously interconnected circuitry in order to keep us fed and in an adequate nutritional state. One of these consequences is that an energy-dense environment favors the development of obesity. Neuropeptide Y (NPY) is one of the most abundant and widely distributed peptides in the central nervous system of both rodents and humans and has been implicated in a variety of physiological actions. Within the hypothalamus, NPY plays an essential role in the control of food intake and body weight. Centrally administered NPY causes robust increases in food intake and body weight and, with chronic administration, can eventually produce obesity. NPY activates a population of at least six G protein-coupled Y receptors. NPY analogs exhibit varying degrees of affinity and specificity for these Y receptors. There has been renewed speculation that ligands for Y receptors may be of benefit for the treatment of obesity. This review highlights the therapeutic potential of Y(1), Y(2), Y(4), and Y(5) receptor agonists and antagonists as additional intervention to treat human obesity.
Collapse
Affiliation(s)
- M M Kamiji
- Department of Gastroenterology, Faculty of Medicine, University of Sao Paulo, Ribeirão Preto Campus 14048-900, Ribeirão Preto-SP, Brazil
| | | |
Collapse
|
20
|
Gehlert DR, Schober DA, Morin M, Berglund MM. Co-expression of neuropeptide Y Y1 and Y5 receptors results in heterodimerization and altered functional properties. Biochem Pharmacol 2007; 74:1652-64. [PMID: 17897631 DOI: 10.1016/j.bcp.2007.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/09/2007] [Accepted: 08/10/2007] [Indexed: 12/01/2022]
Abstract
Centrally administered neuropeptide Y (NPY) produces anxiolytic and orexigenic effects by interacting with Y1 and Y5 receptors that are colocalized in many brain regions. Therefore, we tested the hypothesis that co-expression of Y1 and Y5 receptors results in heterodimerization, altered pharmacological properties and altered desensitization. To accomplish this, the carboxyl-termini of Y1 and Y5 receptors were fused with Renilla luciferase and green fluorescent protein and the proximity of the tagged receptors assessed using bioluminescent resonance energy transfer. Under basal conditions, cotransfection of tagged Y1 receptor and Y5 produced a substantial dimerization signal that was unaffected by the endogenous, nonselective agonists, NPY and peptide YY (PYY). Selective Y5 agonists produced an increase in the dimerization signal while Y5 antagonists also produced a slight but significant increase. In the absence of agonists, selective antagonists decreased dimerization. In functional studies, Y5 agonists produced a greater inhibition of adenylyl cyclase activity in Y1/Y5 cells than cells expressing Y5 alone while NPY and PYY exhibited no difference. With PYY stimulation, the Y1 antagonist became inactive and the Y5 antagonist exhibited uncompetitive kinetics in the Y1/Y5 cell line. In confocal microscopy studies, Y1/Y5 co-expression resulted in increased Y5 signaling following PYY stimulation. Addition of both Y1 and Y5 receptor antagonists was required to significantly decrease PYY-induced internalization. Therefore, Y1/Y5 co-expression results in heterodimerization, altered agonist and antagonist responses and reduced internalization rate. These results may account for the complex pharmacology observed when assessing the responses to NPY and analogs in vivo.
Collapse
Affiliation(s)
- Donald R Gehlert
- Lilly Neuroscience, Lilly Research Laboratories, Eli Lilly and Co., Lilly Corporate Center, Indianapolis, IN 46285, United States.
| | | | | | | |
Collapse
|
21
|
Abstract
The neuropeptide Y system - comprising neuropeptide Y, peptide YY, pancreatic polypeptide and the Y receptors through which they act (Y1, Y2, Y4, Y5 and y6) - has been at the center of attention with regards to regulation of feeding behavior and its possible involvement in obesity. In the past, research has focused mainly on the orexigenic and obesogenic action of this system, with Y1 and Y5 receptors being prime candidates as mediators of neuropeptide Y-induced hyperphagia and obesity. However, in recent years, the role of other members of the neuropeptide Y family, peptide YY, pancreatic polypeptide and the Y2 and Y4 receptors through which they predominantly act, have commanded increasing attention on account of their effects to mediate satiety and promote weight loss via actions in key brain structures, such as the arcuate nucleus of the hypothalamus and the brain stem. This review focuses on the role of peptide YY- and pancreatic polypeptide-like compounds as possible antiobesity drugs, taking into account their effects, not only on energy balance, but also in the regulation of bone formation, and highlights potential benefits of using Y2 and/or Y4 antagonists (as opposed to agonists such as peptide YY or pancreatic polypeptide) in the treatment of obesity.
Collapse
Affiliation(s)
- En-Ju D Lin
- a Research Officer, The Garvan Institute of Medical Research, Neuroscience Research Program, 384 Victoria Street, Darlinghurst NSW 2010, Sydney, Australia.
| | - Lei Zhang
- b Research Officer, The Garvan Institute of Medical Research, Neuroscience Research Program, 384 Victoria Street, Darlinghurst NSW 2010, Sydney, Australia.
| | - Amanda Sainsbury
- c Research Fellow, The Garvan Institute of Medical Research, Neuroscience Research Program, 384 Victoria Street, Darlinghurst NSW 2010, Sydney, Australia.
| | - Herbert Herzog
- d Director of Neuroscience Research Program, The Garvan Institute of Medical Research, Neuroscience Research Program, 384 Victoria Street, Darlinghurst NSW 2010, Sydney, Australia.
| |
Collapse
|
22
|
Lin EJD, Sainsbury A, Lee NJ, Boey D, Couzens M, Enriquez R, Slack K, Bland R, During MJ, Herzog H. Combined deletion of Y1, Y2, and Y4 receptors prevents hypothalamic neuropeptide Y overexpression-induced hyperinsulinemia despite persistence of hyperphagia and obesity. Endocrinology 2006; 147:5094-101. [PMID: 16873543 DOI: 10.1210/en.2006-0097] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuropeptide Y (NPY) is a key regulator of energy homeostasis and is implicated in the development of obesity and type 2 diabetes. Whereas it is known that hypothalamic administration of exogenous NPY peptides leads to increased body weight gain, hyperphagia, and many hormonal and metabolic changes characteristic of an obesity syndrome, the Y receptor(s) mediating these effects is disputed and unclear. To investigate the role of different Y receptors in the NPY-induced obesity syndrome, we used recombinant adeno-associated viral vector to overexpress NPY in mice deficient of selective single or multiple Y receptors (including Y1, Y2, and Y4). Results from this study demonstrated that long-term hypothalamic overexpression of NPY lead to marked hyperphagia, hypogonadism, body weight gain, enhanced adipose tissue accumulation, hyperinsulinemia, and other hormonal changes characteristic of an obesity syndrome. NPY-induced hyperphagia, hypogonadism, and obesity syndrome persisted in all genotypes studied (Y1(-/-), Y2(-/-), Y2Y4(-/-), and Y1Y2Y4(-/-) mice). However, triple deletion of Y1, Y2, and Y4 receptors prevented NPY-induced hyperinsulinemia. These findings suggest that Y1, Y2, and Y4 receptors under this condition are not crucially involved in NPY's hyperphagic, hypogonadal, and obesogenic effects, but they are responsible for the central regulation of circulating insulin levels by NPY.
Collapse
Affiliation(s)
- En-Ju D Lin
- Neuroscience Research Program, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Primeaux SD, York DA, Bray GA. Neuropeptide Y administration into the amygdala alters high fat food intake. Peptides 2006; 27:1644-51. [PMID: 16426702 DOI: 10.1016/j.peptides.2005.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 12/15/2005] [Accepted: 12/15/2005] [Indexed: 11/21/2022]
Abstract
The orexigenic effects of neuropeptide Y (NPY) are mediated through the hypothalamus, while the anxiolytic effects of NPY appear to be mediated through the amygdala. We hypothesized that intra-amygdalar administration of NPY might alter food preference without changing total food intake. Neuropeptide Y was administered into the central nucleus of the amygdala in both satiated and overnight-fasted rats, and intake and preference for a high fat diet (56%)/low carbohydrate (20%) diet or a low fat (10%)/high carbohydrate (66%) diet were measured. Intra-amygdalar NPY administration in satiated rats did not change total caloric intake, but it did produce a dose-dependent decrease in intake of and preference for high fat diet relative to low fat diet over 24 h. In overnight-fasted rats, intra-amygdalar NPY also decreased the intake and preference for a high fat diet relative to low fat diet over 24 h, without altering total caloric intake. Intra-amygdalar NPY administration did not produce conditioned taste aversions to a novel saccharin solution. These results suggest that amygdalar NPY may have a role in macronutrient selection, without altering total caloric intake.
Collapse
Affiliation(s)
- Stefany D Primeaux
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | | | |
Collapse
|
24
|
Kakui N, Tanaka J, Tabata Y, Asai K, Masuda N, Miyara T, Nakatani Y, Ohsawa F, Nishikawa N, Sugai M, Suzuki M, Aoki K, Kitaguchi H. Pharmacological characterization and feeding-suppressive property of FMS586 [3-(5,6,7,8-tetrahydro-9-isopropyl-carbazol-3-yl)-1-methyl-1-(2-pyridin-4-yl-ethyl)-urea hydrochloride], a novel, selective, and orally active antagonist for neuropeptide Y Y5 receptor. J Pharmacol Exp Ther 2006; 317:562-70. [PMID: 16436501 DOI: 10.1124/jpet.105.099705] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We evaluated the pharmacological profiles of FMS586 [3-(5,6,7,8-tetrahydro-9-isopropyl-carbazol-3-yl)-1-methyl-1-(2-pyridin-4-yl-ethyl)-urea hydrochloride], a novel tetrahydrocarbazole derivative as a neuropeptide Y (NPY) Y5 receptor antagonist. This compound showed a highly selective in vitro affinity for Y5 (IC(50) = 4.3 +/- 0.4 nM) relative to other NPY receptor subtypes like Y1 or Y2. Its binding to Y5 was found to be fully antagonistic from cyclic AMP accumulation assays in human embryonic kidney 293 cells. Pharmacokinetic analysis revealed sufficient oral availability and brain permeability of this compound accompanied with clear dose relation. We attempted to assess the selectivity of FMS586 and, thereby, to infer the physiological role of Y5 in the following feeding experiments in normal rats. An intracerebroventricular injection of NPY and Y5-selective agonist peptide induced acute and robust feeding responses in satiated rats, and prior administration of FMS586 at the doses from 25 to 100 mg/kg clearly inhibited these responses by approximately 55 and 90%, respectively. This compound also showed dose-dependent but transient suppression in natural feeding models of both overnight fasting-induced hyperphagia and spontaneous daily intake. FMS586 did not modulate food intake induced by the topical injection of norepinephrine, galanin, or gamma-aminobutyric acid receptor agonist muscimol to the paraventricular nucleus. In addition, we confirmed the Y5-specific activity profile of FMS586 by immunohistochemical analysis. Taken together, we propose not only that our compound potentially expresses specific blockade of central Y5 signals but also that Y5 receptor would certainly contribute to physiological regulation of food intake in normal rats, as suggested from its origin.
Collapse
Affiliation(s)
- Nobukazu Kakui
- Pharmaceutical Research Department, Meiji Seika Kaisha, Ltd., 760, Moro-oka-cho, Kohoku-ku, Yokohama 222-8567, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wultsch T, Painsipp E, Donner S, Sperk G, Herzog H, Peskar BA, Holzer P. Selective increase of dark phase water intake in neuropeptide-Y Y2 and Y4 receptor knockout mice. Behav Brain Res 2006; 168:255-60. [PMID: 16364461 PMCID: PMC4370833 DOI: 10.1016/j.bbr.2005.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 11/13/2005] [Accepted: 11/14/2005] [Indexed: 10/25/2022]
Abstract
Neuropeptide-Y (NPY) is involved in the regulation of ingestive behaviour and energy homeostasis. Since deletion of the NPY Y2 and Y4 receptor gene increases and decreases food intake, respectively, we examined whether water intake during the light and dark phases is altered in Y2 and Y4 receptor knockout mice. The water consumption of mice staying in their home cages was measured by weighing the water bottles at the beginning and end of the light phase during 4 consecutive days. Control, Y2 and Y4 receptor knockout mice did not differ in their water intake during the light phase. However, during the dark phase Y2 and Y4 receptor knockout mice drank significantly more (46-63%, P<0.05) water than the control mice. The total daily water intake over 24 h was also enhanced. The enhanced water intake during the dark phase was not altered by the beta-adrenoceptor antagonist propranolol or the angiotensin AT1 receptor antagonist telmisartan (each injected intraperitoneally at 10 mg/kg). These data indicate that NPY acting via Y2 and Y4 receptors plays a distinctive role in the regulation of nocturnal water consumption. While beta-adrenoceptors and angiotensin AT1 receptors do not seem to be involved, water intake in Y2 and Y4 receptor knockout mice may be enhanced because presynaptic autoinhibition of NPY release and inhibition of orexin neurons in the central nervous system are prevented.
Collapse
Affiliation(s)
- Thomas Wultsch
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Evelin Painsipp
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Sabine Donner
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Günther Sperk
- Department of Pharmacology, Medical University of Innsbruck, Austria
| | - Herbert Herzog
- Neurobiology Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - Bernhard A. Peskar
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Peter Holzer
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| |
Collapse
|
26
|
MacNeil DJ, Kanatani A. NPY and energy homeostasis: an opportunity for novel anti-obesity therapies. EXS 2006:143-56. [PMID: 16383004 DOI: 10.1007/3-7643-7417-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Douglas J MacNeil
- Metabolic Disorders, Merck Research Laboratories, Rahway, NJ 07090, USA.
| | | |
Collapse
|
27
|
Ste Marie L, Luquet S, Cole TB, Palmiter RD. Modulation of neuropeptide Y expression in adult mice does not affect feeding. Proc Natl Acad Sci U S A 2005; 102:18632-7. [PMID: 16339312 PMCID: PMC1309050 DOI: 10.1073/pnas.0509240102] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite numerous experiments showing that administration of neuropeptide Y (NPY) to rodents stimulates feeding and obesity, whereas acute interference with NPY signaling disrupts feeding and promotes weight loss, NPY-null mice have essentially normal body weight regulation. These conflicting observations suggest that chronic lack of NPY during development may lead to compensatory changes that normalize regulation of food intake and energy expenditure in the absence of NPY. To test this idea, we used gene targeting to introduce a doxycycline (Dox)-regulated cassette into the Npy locus, such that NPY would be expressed until the mice were given Dox, which blocks transcription. Compared with wild-type mice, adult mice bearing this construct expressed approximately 4-fold more Npy mRNA, which fell to approximately 20% of control values within 3 days after treatment with Dox. NPY protein also fell approximately 20-fold, but the half-life of approximately 5 days was surprisingly long. The biological effectiveness of these manipulations was demonstrated by showing that overexpression of NPY protected against kainate-induced seizures. Mice chronically overexpressing NPY had normal body weight, and administration of Dox to these mice did not suppress feeding. Furthermore, the refeeding response of these mice after a fast was normal. We conclude that, if there is compensation for changes in NPY levels, then it occurs within the time it takes for Dox treatment to deplete NPY levels. These observations suggest that pharmacological inhibition of NPY signaling is unlikely to have long-lasting effects on body weight.
Collapse
Affiliation(s)
- Linda Ste Marie
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
28
|
Boggiano MM, Chandler PC, Oswald KD, Rodgers RJ, Blundell JE, Ishii Y, Beattie AH, Holch P, Allison DB, Schindler M, Arndt K, Rudolf K, Mark M, Schoelch C, Joost HG, Klaus S, Thöne-Reineke C, Benoit SC, Seeley RJ, Beck-Sickinger AG, Koglin N, Raun K, Madsen K, Wulff BS, Stidsen CE, Birringer M, Kreuzer OJ, Deng XY, Whitcomb DC, Halem H, Taylor J, Dong J, Datta R, Culler M, Ortmann S, Castañeda TR, Tschöp M. PYY3-36 as an anti-obesity drug target. Obes Rev 2005; 6:307-22. [PMID: 16246216 DOI: 10.1111/j.1467-789x.2005.00218.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neuropeptide Y (NPY)/peptide YY (PYY) system has been implicated in the physiology of obesity for several decades. More recently ignited enormous interest in PYY3-36, an endogenous Y2-receptor agonist, as a promising anti-obesity compound. Despite this interest, there have been remarkably few subsequent reports reproducing or extending the initial findings, while at the same time studies finding no anti-obesity effects have surfaced. Out of 41 different rodent studies conducted (in 16 independent labs worldwide), 33 (83%) were unable to reproduce the reported effects and obtained no change or sometimes increased food intake, despite use of the same experimental conditions (i.e. adaptation protocols, routes of drug administration and doses, rodent strains, diets, drug vendors, light cycles, room temperatures). Among studies by authors in the original study, procedural caveats are reported under which positive effects may be obtained. Currently, data speak against a sustained decrease in food intake, body fat, or body weight gain following PYY3-36 administration and make the previously suggested role of the hypothalamic melanocortin system unlikely as is the existence of PYY deficiency in human obesity. We review the studies that are in the public domain which support or challenge PYY3-36 as a potential anti-obesity target.
Collapse
Affiliation(s)
- M M Boggiano
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Our knowledge of the physiological systems controlling energy homeostasis has increased dramatically over the last decade. The roles of peripheral signals from adipose tissue, pancreas, and the gastrointestinal tract reflecting short- and long-term nutritional status are now being described. Such signals influence central circuits in the hypothalamus, brain stem, and limbic system to modulate neuropeptide release and hence food intake and energy expenditure. This review discusses the peripheral hormones and central neuronal pathways that contribute to control of appetite.
Collapse
Affiliation(s)
- Sarah Stanley
- Endocrine Unit, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | | | |
Collapse
|
30
|
Woods SC, Seeley RJ. Hormonal mediation of energy homeostasis in obesity, diabetes and related disorders. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.ddmec.2005.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Porte D, Baskin DG, Schwartz MW. Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes 2005; 54:1264-76. [PMID: 15855309 DOI: 10.2337/diabetes.54.5.1264] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin and its signaling systems are implicated in both central and peripheral mechanisms governing the ingestion, distribution, metabolism, and storage of nutrients in organisms ranging from worms to humans. Input from the environment regarding the availability and type of nutrients is sensed and integrated with humoral information (provided in part by insulin) regarding the sufficiency of body fat stores. In response to these afferent inputs, neuronal pathways are activated that influence energy flux and nutrient metabolism in the body and ensure reproductive competency. Growing evidence supports the hypothesis that reduced central nervous system insulin signaling from either defective secretion or action contributes to the pathogenesis of common metabolic disorders, including diabetes and obesity, and may therefore help to explain the close association between these two disorders. These considerations implicate insulin action in the brain, an organ previously considered to be insulin independent, as a key determinant of both glucose and energy homeostasis.
Collapse
Affiliation(s)
- Daniel Porte
- Division of Metabolism, Diabetes, and Endocrinology, University of California San Diego, USA.
| | | | | |
Collapse
|
32
|
Lindén J, Korkalainen M, Lensu S, Tuomisto J, Pohjanvirta R. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and leptin on hypothalamic mRNA expression of factors participating in food intake regulation in a TCDD-sensitive and a TCDD-resistant rat strain. J Biochem Mol Toxicol 2005; 19:139-48. [PMID: 15977195 DOI: 10.1002/jbt.20065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An acutely toxic dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) leads to a drastically and permanently reduced feed intake and wasting by an unknown mechanism. We focused on the possible interference of TCDD with hypothalamic factors known to take part in the regulation of eating and metabolism, utilizing the over 1000-fold TCDD-sensitivity difference between Long-Evans (Turku/AB; L-E) and Han/Wistar (Kuopio) rats. The mRNA expression of 18 hypothalamic factors (including NPY, AgRP, and CART) was measured by quantitative RT-PCR at 6, 24 and 96 h after TCDD administration. The effects of TCDD were compared with those of leptin and with feed restriction employing a TCDD dose that elicited a severe reduction of feed intake in L-E rats. TCDD mainly modified expression of orexigenic factors causing an initial suppression followed by reversal to enhanced expression by 96 h. The latter was also seen in feed-restricted controls. In contrast, leptin altered both orexigenic and anorexigenic factor mRNAs in a more even manner and its effects were clustered at 6 h. The transient nature of feeding-promoting factor suppression does not strongly support a key role for this phenomenon in TCDD-induced wasting syndrome. However, the fact that TCDD mainly affected orexigenic factors and the temporal differences in response found between the rat strains warrant further research.
Collapse
Affiliation(s)
- Jere Lindén
- Department of Food and Environmental Hygiene, Faculty of Veterinary Medicine, P.O. Box 66, FIN-00014 University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
33
|
Urani A, Chourbaji S, Gass P. Mutant mouse models of depression: Candidate genes and current mouse lines. Neurosci Biobehav Rev 2005; 29:805-28. [PMID: 15925701 DOI: 10.1016/j.neubiorev.2005.03.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Depression is a multifactorial and multigenetic disease. At present, three main theories try to conceptualize its molecular and biochemical mechanisms, namely the monoamine-, the hypothalamus-pituitary-adrenal- (HPA-) system- and the neurotrophin-hypotheses. One way to explore, validate or falsify these hypotheses is to alter the expression of genes that are involved in these systems and study their respective role in animal behavior and neuroendocrinological parameters. Following an introduction in which we briefly describe each hypothesis, we review here the different mouse lines generated to study the respective molecular pathways. Among the many mutant lines generated, only a few can be regarded as genetic depression models or as models of predisposition for a depressive syndrome after stress exposure. However, this is likely to reflect the human situation where depressive syndromes are complex, can vary to a great extent with respect to their symptomatology, and may be influenced by a variety of environmental factors. Mice with mutations of candidate genes showing depression-like features on behavioral or neurochemical levels may help to define a complex molecular framework underlying depressive syndromes. Because it is conceivable that manipulation of one single genetic function may be necessary but not sufficient to cause complex behavioral alterations, strategies for improving genetic modeling of depression-like syndromes in animals possibly require a simultaneous targeted dysregulation of several genes involved in the pathogenesis of depression. This approach would correspond to the new concept of 'endophenotypes' in human depression research trying to identify behavioral traits which are thought to be encoded by a limited set of genes.
Collapse
Affiliation(s)
- Alexandre Urani
- Central Institute of Mental Health Mannheim, University of Heidelberg, J 5, D-68159 Mannheim, Germany
| | | | | |
Collapse
|
34
|
Pedrazzini T. Importance of NPY Y1 receptor-mediated pathways: assessment using NPY Y1 receptor knockouts. Neuropeptides 2004; 38:267-75. [PMID: 15337379 DOI: 10.1016/j.npep.2004.05.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 05/25/2004] [Indexed: 11/19/2022]
Abstract
The peptidic neurotransmitter neuropeptide Y (NPY) has been functionally implicated in feeding behavior, cardiovascular regulation, control of neuroendocrine axes, affective disorders, seizures, and memory retention. At least five different receptors mediate NPY actions. In particular, the Y1 receptor appears to be involved in a variety of NPY-induced pathways. This review summarizes the main findings resulting from the use of mice lacking NPY Y1 receptor expression. Interestingly, the overall phenotype of Y1 knockouts mimics metabolic syndrome, which is characterized by obesity, a prediabetic state, and a susceptibility to develop hypertension.
Collapse
Affiliation(s)
- Thierry Pedrazzini
- Division of Hypertension, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland.
| |
Collapse
|
35
|
Kalra SP, Kalra PS. NPY and cohorts in regulating appetite, obesity and metabolic syndrome: beneficial effects of gene therapy. Neuropeptides 2004; 38:201-11. [PMID: 15337372 DOI: 10.1016/j.npep.2004.06.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 06/04/2004] [Indexed: 11/16/2022]
Abstract
Neuropeptide Y is the most potent physiological appetite transducer known. The NPY network is the conductor of the hypothalamic appetite regulating orchestra in the arcuate nucleus-paraventricular nucleus (ARC-PVN) of the hypothalamus. NPY and cohorts, AgrP, GABA and adrenergic transmitters, initiate appetitive drive directly through Y1, Y5, GABAA and alpha1 receptors, co-expressed in the magnocellular PVN (mPVN) and ARC neurons and by simultaneously repressing anorexigenic melanocortin signaling in the ARC-PVN axis. The circadian and ultradian rhythmicities in NPY secretion imprint the daily circadian and episodic feeding patterns. Although a number of afferent hormonal signals from the periphery can directly modulate NPYergic signaling, the reciprocal circadian and ultradian rhythmicities of anorexigenic leptin from adipocytes and orexigenic ghrelin from stomach, encode a corresponding pattern of NPY discharge for daily meal patterning. Subtle and progressive derangements produced by environmental and genetic factors in this exquisitely intricate temporal relationship between the two opposing humoral signals and the NPY network promote hyperphagia and abnormal rate of weight gain culminating in obesity and attendant metabolic disorders. Newer insights at cellular and molecular levels demonstrate that a breakdown of the integrated circuit due both to high and low abundance of NPY at target sites, underlies hyperphagia and increased adiposity. Consequently, interruption of NPYergic signaling at a single locus with NPY receptor antagonists may not be the most efficacious therapy to suppress hyperphagia and obesity. Central leptin gene therapy in rodents has been shown to subjugate, i.e. bring under homeostatic control, NPYergic signaling and suppress the age-related and dietary obesity for extended periods and thus shows promise as a newer treatment modality to curb the pandemic of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- S P Kalra
- Department of Neuroscience, University of Florida, McKnight Brain Institute, PO Box 100244, Gainesville, FL 32610, USA.
| | | |
Collapse
|