1
|
Wang Y, Yang T, Mo H, Yao M, Song Q, Yu H, Du Y, Li Y, Yu J, Wang L. Identification and functional analysis of six melanocortin-4-receptor-like (MC4R-like) mutations in goldfish (Carassius auratus). Gen Comp Endocrinol 2025; 360:114639. [PMID: 39536983 DOI: 10.1016/j.ygcen.2024.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Melanocortin receptor-4 (MC4R) belongs to the G protein-coupled receptor family, characterized by a classical structure of seven transmembrane domains (7TMD). They play an important role in food intake and weight regulation. In the present study, we identified melanocortin-4-receptor-like (caMC4RL) mutants of goldfish from the Qian River in the Qin Ling region and characterized their functional properties, including the constitutive activities of the mutants, ligand-induced cAMP and ERK1/2 accumulation, and AMPK activation. The results show that six caMC4RL mutants were identified in goldfish from the Qian River in the Qin Ling region, and are located in the conserved position of the Cyprinidae MC4Rs. The mutations (E57K, P296S, and R302T/K) result in the loss of Gs signaling function. The mutations (P296 and R302T/K) exhibited biased signaling in response to ACTH stimulation in the MAPK/ERK pathway. In addition, the E57K mutant may play a role in weight regulation and could serve as molecular markers for molecular breeding. These data will provide fundamental information for functional studies of teleost GPCR mutants and MC4R isoforms.
Collapse
Affiliation(s)
- Ying Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianze Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haolin Mo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxing Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingchuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huixia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyou Du
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiajia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lixin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Miller CL. The Epigenetics of Psychosis: A Structured Review with Representative Loci. Biomedicines 2022; 10:561. [PMID: 35327363 PMCID: PMC8945330 DOI: 10.3390/biomedicines10030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
The evidence for an environmental component in chronic psychotic disorders is strong and research on the epigenetic manifestations of these environmental impacts has commenced in earnest. In reviewing this research, the focus is on three genes as models for differential methylation, MCHR1, AKT1 and TDO2, each of which have been investigated for genetic association with psychotic disorders. Environmental factors associated with psychotic disorders, and which interact with these model genes, are explored in depth. The location of transcription factor motifs relative to key methylation sites is evaluated for predicted gene expression results, and for other sites, evidence is presented for methylation directing alternative splicing. Experimental results from key studies show differential methylation: for MCHR1, in psychosis cases versus controls; for AKT1, as a pre-existing methylation pattern influencing brain activation following acute administration of a psychosis-eliciting environmental stimulus; and for TDO2, in a pattern associated with a developmental factor of risk for psychosis, in all cases the predicted expression impact being highly dependent on location. Methylation induced by smoking, a confounding variable, exhibits an intriguing pattern for all three genes. Finally, how differential methylation meshes with Darwinian principles is examined, in particular as it relates to the "flexible stem" theory of evolution.
Collapse
|
3
|
Liu T, Ji RL, Tao YX. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharmacol Ther 2021; 234:108044. [PMID: 34822948 DOI: 10.1016/j.pharmthera.2021.108044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors involved in the regulation of almost all known physiological processes. Dysfunctions of GPCR-mediated signaling have been shown to cause various diseases. The prevalence of obesity and type 2 diabetes mellitus (T2DM), two strongly associated disorders, is increasing worldwide, with tremendous economical and health burden. New safer and more efficacious drugs are required for successful weight reduction and T2DM treatment. Multiple GPCRs are involved in the regulation of energy and glucose homeostasis. Mutations in these GPCRs contribute to the development and progression of obesity and T2DM. Therefore, these receptors can be therapeutic targets for obesity and T2DM. Indeed some of these receptors, such as melanocortin-4 receptor and glucagon-like peptide 1 receptor, have provided important new drugs for treating obesity and T2DM. This review will focus on the naturally occurring mutations of several GPCRs associated with obesity and T2DM, especially incorporating recent large genomic data and insights from structure-function studies, providing leads for future investigations.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States.
| |
Collapse
|
4
|
Liu Y, Shao YT, Ward R, Ma L, Gui HX, Hao Q, Mu X, Yang Y, An S, Guo XX, Xu TR. The C-terminal of the α1b-adreneroceptor is a key determinant for its structure integrity and biological functions. Biosci Biotechnol Biochem 2021; 85:1128-1139. [PMID: 33693487 DOI: 10.1093/bbb/zbab034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
The C-terminal of G protein-coupled receptors is now recognized as being important for G protein activation and signaling function. To detect the role of C-terminal tail in receptor activation, we used the α1b-AR, which has a long C-terminal of 164 amino acids. We constructed the intramolecular FRET sensors, in which the C-terminal was truncated to 10 (∆C-10), 20 (∆C-20), 30 (∆C-30), 50 (∆C-50), 70 (∆C-70), or 90 (∆C-90). The truncated mutants of ∆C-10, ∆C-20, or ∆C-30 cannot induce FRET signal changes and downstream ERK1/2 phosphorylation. However, the truncated mutants of ∆C-50, ∆C-70, or ∆C-90 induce significant FRET signal changes and downstream ERK1/2 phosphorylation, especially ∆C-90. This is particularly true in the case of the ∆C-90, ∆C-70, or ∆C-50 which retained the potential phosphorylation sites (Ser401, Ser404, Ser408, or Ser410). The ∆C-90 showed an increase in agonist-induced FRET signal changes and ERK1/2 phosphorylation in PKC- or endocytosis-dependent and EGFR-, src-, or β-arrestin2-independent.
Collapse
Affiliation(s)
- Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China.,Institute of Life Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yu-Ting Shao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Richard Ward
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Li Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hao-Xin Gui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qian Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xi Mu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Xi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
5
|
Kotthoff M, Bauer J, Haag F, Krautwurst D. Conserved C-terminal motifs in odorant receptors instruct their cell surface expression and cAMP signaling. FASEB J 2021; 35:e21274. [PMID: 33464692 DOI: 10.1096/fj.202000182rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 11/11/2022]
Abstract
The highly individual plasma membrane expression and cAMP signaling of odorant receptors have hampered their ligand assignment and functional characterization in test cell systems. Chaperones have been identified to support the cell surface expression of only a portion of odorant receptors, with mechanisms remaining unclear. The presence of amino acid motifs that might be responsible for odorant receptors' individual intracellular retention or cell surface expression, and thus, for cAMP signaling, is under debate: so far, no such protein motifs have been suggested. Here, we demonstrate the existence of highly conserved C-terminal amino acid motifs, which discriminate at least between class-I and class-II odorant receptors, with their numbers of motifs increasing during evolution, by comparing C-terminal protein sequences from 4808 receptors across eight species. Truncation experiments and mutation analysis of C-terminal motifs, largely overlapping with helix 8, revealed single amino acids and their combinations to have differential impact on the cell surface expression and on stimulus-dependent cAMP signaling of odorant receptors in NxG 108CC15 cells. Our results demonstrate class-specific and individual C-terminal motif equipment of odorant receptors, which instruct their functional expression in a test cell system, and in situ may regulate their individual cell surface expression and intracellular cAMP signaling.
Collapse
Affiliation(s)
| | - Julia Bauer
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Franziska Haag
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
Galeb HA, Wilkinson EL, Stowell AF, Lin H, Murphy ST, Martin‐Hirsch PL, Mort RL, Taylor AM, Hardy JG. Melanins as Sustainable Resources for Advanced Biotechnological Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000102. [PMID: 33552556 PMCID: PMC7857133 DOI: 10.1002/gch2.202000102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Indexed: 05/17/2023]
Abstract
Melanins are a class of biopolymers that are widespread in nature and have diverse origins, chemical compositions, and functions. Their chemical, electrical, optical, and paramagnetic properties offer opportunities for applications in materials science, particularly for medical and technical uses. This review focuses on the application of analytical techniques to study melanins in multidisciplinary contexts with a view to their use as sustainable resources for advanced biotechnological applications, and how these may facilitate the achievement of the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Hanaa A. Galeb
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Department of ChemistryScience and Arts CollegeRabigh CampusKing Abdulaziz UniversityJeddah21577Saudi Arabia
| | - Emma L. Wilkinson
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Alison F. Stowell
- Department of Organisation, Work and TechnologyLancaster University Management SchoolLancaster UniversityLancasterLA1 4YXUK
| | - Hungyen Lin
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
| | - Samuel T. Murphy
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| | - Pierre L. Martin‐Hirsch
- Lancashire Teaching Hospitals NHS TrustRoyal Preston HospitalSharoe Green LanePrestonPR2 9HTUK
| | - Richard L. Mort
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Adam M. Taylor
- Lancaster Medical SchoolLancaster UniversityLancasterLA1 4YWUK
| | - John G. Hardy
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| |
Collapse
|
7
|
Kobayashi Y, Hamamoto A, Saito Y. Analysis of ciliary status via G-protein-coupled receptors localized on primary cilia. Microscopy (Oxf) 2020; 69:277-285. [PMID: 32627821 DOI: 10.1093/jmicro/dfaa035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 11/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) comprise the largest and most diverse cell surface receptor family, with more than 800 known GPCRs identified in the human genome. Binding of an extracellular cue to a GPCR results in intracellular G protein activation, after which a sequence of events, can be amplified and optimized by selective binding partners and downstream effectors in spatially discrete cellular environments. Because GPCRs are widely expressed in the body, they help to regulate an incredible range of physiological processes from sensation to growth to hormone responses. Indeed, it is estimated that ∼ 30% of all clinically approved drugs act by binding to GPCRs. The primary cilium is a sensory organelle composed of a microtubule axoneme that extends from the basal body. The ciliary membrane is highly enriched in specific signaling components, allowing the primary cilium to efficiently convey signaling cascades in a highly ordered microenvironment. Recent data demonstrated that a limited number of non-olfactory GPCRs, including somatostatin receptor 3 and melanin-concentrating hormone receptor 1 (MCHR1), are selectively localized to cilia on several mammalian cell types including neuronal cells. Utilizing cilia-specific cell biological and molecular biological approaches, evidence has accumulated to support the biological importance of ciliary GPCR signaling followed by cilia structural changes. Thus, cilia are now considered a unique sensory platform for integration of GPCR signaling toward juxtaposed cytoplasmic structures. Herein, we review ciliary GPCRs and focus on a novel role of MCHR1 in ciliary length control that will impact ciliary signaling capacity and neuronal function.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akie Hamamoto
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, Gifu 502-0857, Japan
| | - Yumiko Saito
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
8
|
Morvaridzadeh M, Sadeghi E, Agah S, Nachvak SM, Fazelian S, Moradi F, Persad E, Heshmati J. Effect of melatonin supplementation on oxidative stress parameters: A systematic review and meta-analysis. Pharmacol Res 2020; 161:105210. [PMID: 33007423 DOI: 10.1016/j.phrs.2020.105210] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Oxidative stress, defined as an imbalance between pro-oxidants and neutralizing antioxidants within the body, is a growing public health concern. Oxidative stress is involved in the progression of nearly all chronic diseases. Melatonin has been suggested to reduce oxidative stress by its potential radical scavenging properties. OBJECTIVE To determine the efficacy and safety of melatonin as a therapy for the improvement of oxidative stress parameters in randomized controlled trials. METHODS A systematic database search using Scopus, PubMed/Medline, EMBASE, Web of Science, the Cochrane Controlled Register of Trials and clinicaltrials.gov (https://clinicaltrials.gov) for studies published up to July 2020 was conducted. We included studies which investigated the effect of supplemental melatonin compared to placebo on oxidative stress parameters in unhealthy patients. Quantitative data synthesis was conducted using a random-effects model with standard mean difference (SMD) and 95 % confidence intervals (CI). Cochrane's Q and I2 values were used to evaluate heterogeneity. RESULTS A total of 12 randomized controlled trials (RCTs) were eligible. The meta-analysis indicated an association between melatonin intake and a significant increase in total antioxidant capacity (TAC) (SMD: 0.76; 95 % CI: 0.30, 1.21; I2 = 80.1 %), glutathione (GSH) levels (SMD: 0.57; 95 % CI: 0.32, 0.83; I2 = 15.1 %), superoxide dismutase (SOD) (SMD: 1.38; 95 % CI: 0.13, 2.62; I2 = 86.9 %), glutathione peroxidase (GPx) (SMD: 1.36; 95 % CI: 0.46, 2.30; I2 = 89.3 %), glutathione reductase (GR) (SMD: 1.21; 95 % CI: 0.65, 1.77; I2 = 00.0 %) activities, and a significant reduction in malondialdehyde (MDA) levels (SMD: -0.79; 95 % CI: -1.19, -0.39; I2 = 73.1 %). Melatonin intake was not shown to significantly affect nitric oxide (NO) levels (SMD: -0.24; 95 % CI: -0.61, 0.14; I2 = 00.0 %) or catalase (CAT) activity (SMD: -1.38; 95 % CI: -1.42, 4.18; I2 = 96.6 %). CONCLUSION Melatonin intake was shown to have a significant impact on improving Oxidative stress parameters. However, future research through large, well-designed randomized controlled trials are required to determine the effect of melatonin on oxidative stress parameters in different age groups and different disease types.
Collapse
Affiliation(s)
- Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Sadeghi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mostafa Nachvak
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Fazelian
- Clinical Research Development Unit, Ayatollah Kashani Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Moradi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Emma Persad
- Department for Evidence-based Medicine and Evaluation, Danube University Krems, Krems, Austria
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Pandey A, LeBlanc DM, Parmar HB, Phạm TTT, Sarker M, Xu L, Duncan R, Liu XQ, Rainey JK. Structure, amphipathy, and topology of the membrane-proximal helix 8 influence apelin receptor plasma membrane localization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183036. [PMID: 31394100 DOI: 10.1016/j.bbamem.2019.183036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/08/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022]
Abstract
G-protein coupled receptors (GPCRs) typically have an amphipathic helix ("helix 8") immediately C-terminal to the transmembrane helical bundle. To date, a number of functional roles have been associated with GPCR helix 8 segments, but structure-function analysis for this region remains limited. Here, we examine helix 8 of the apelin receptor (AR or APJ), a class A GPCR with wide physiological and pathophysiological relevance. The 71 residue C-terminal tail of the AR is primarily intrinsically disordered, with a detergent micelle-induced increase in helical character. This helicity was localized to the helix 8 region, in good agreement with the recent AR crystal structure. A series of helix 8 mutants were made to reduce helicity, remove amphipathy, or flip the hydrophobic and hydrophilic faces. Each mutant AR was tested both biophysically, in the isolated C-terminal tail, and functionally in HEK 293 T cells, for full-length AR. In all instances, micelle interactions were maintained, and steady-state AR expression was efficient. However, removal of amphipathy or helical character led to a significant decrease in cell surface localization. Flipping of helix 8 amphipathic topology restored cell surface localization to some degree, but still was significantly reduced relative to wild-type. Structural integrity, amphipathy to drive membrane association, and correct topology of helix 8 membrane association all thus appear important for cell surface localization of the AR. This behavior correlates well to GPCR C-terminal tail sequence motifs, implying that these serve to specify key topological features of helix 8 and its proximity to the transmembrane domain.
Collapse
Affiliation(s)
- Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Danielle M LeBlanc
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Hirendrasinh B Parmar
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Trần Thanh Tâm Phạm
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Muzaddid Sarker
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Lingling Xu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Roy Duncan
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
10
|
Wang C, Xu C, Liu M, Pan Y, Bai B, Chen J. C-terminus of OX2R significantly affects downstream signaling pathways. Mol Med Rep 2017; 16:159-166. [PMID: 28487995 PMCID: PMC5482145 DOI: 10.3892/mmr.2017.6557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/30/2017] [Indexed: 12/11/2022] Open
Abstract
The human orexin 2 receptor (OX2R) is a G-protein‑coupled receptor (GPCR) that has been implicated in a number of diverse physiological functions. Recent studies have identified a number of functions of the C‑termini of GPCRs. However, the importance of the OX2R C‑terminus in regulating signaling and surface expression remains unclear. In the present study, the function of the OX2R C‑terminus was investigated using three C‑terminal mutants, which were truncated at residues 368, 384 and 414, respectively, and the wild‑type control, which expressed the full‑length OX2R. HEK‑293 cells were transfected with the mutated and control OX2R constructs. ELISA, western blot analysis and calcium assays were used to investigate the effects of the mutations on OX2R function. The present results demonstrated that residues 385‑414 and 415‑444 exhibited a cumulative effect on the surface expression of OX2R. Residues 369‑384 exhibited a significant influence on inositol phosphate production and extracellular signal‑regulated kinase 1/2 phosphorylation. Residues 385‑414 significantly influenced agonist‑induced internalization, whereas residues 369‑384 and 385‑414 significantly influenced Ca2+ release. The results of the present study suggest that the C‑terminus of OX2R is important for its role in various physiological and pathological processes, and may therefore be associated with such disorders as depression and anorexia.
Collapse
Affiliation(s)
- Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Chao Xu
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Minghui Liu
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yanyou Pan
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
11
|
Sato T, Kawasaki T, Mine S, Matsumura H. Functional Role of the C-Terminal Amphipathic Helix 8 of Olfactory Receptors and Other G Protein-Coupled Receptors. Int J Mol Sci 2016; 17:ijms17111930. [PMID: 27869740 PMCID: PMC5133925 DOI: 10.3390/ijms17111930] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 11/23/2022] Open
Abstract
G protein-coupled receptors (GPCRs) transduce various extracellular signals, such as neurotransmitters, hormones, light, and odorous chemicals, into intracellular signals via G protein activation during neurological, cardiovascular, sensory and reproductive signaling. Common and unique features of interactions between GPCRs and specific G proteins are important for structure-based design of drugs in order to treat GPCR-related diseases. Atomic resolution structures of GPCR complexes with G proteins have revealed shared and extensive interactions between the conserved DRY motif and other residues in transmembrane domains 3 (TM3), 5 and 6, and the target G protein C-terminal region. However, the initial interactions formed between GPCRs and their specific G proteins remain unclear. Alanine scanning mutagenesis of the murine olfactory receptor S6 (mOR-S6) indicated that the N-terminal acidic residue of helix 8 of mOR-S6 is responsible for initial transient and specific interactions with chimeric Gα15_olf, resulting in a response that is 2.2-fold more rapid and 1.7-fold more robust than the interaction with Gα15. Our mutagenesis analysis indicates that the hydrophobic core buried between helix 8 and TM1–2 of mOR-S6 is important for the activation of both Gα15_olf and Gα15. This review focuses on the functional role of the C-terminal amphipathic helix 8 based on several recent GPCR studies.
Collapse
Affiliation(s)
- Takaaki Sato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan.
| | - Takashi Kawasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan.
| | - Shouhei Mine
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan.
| | - Hiroyoshi Matsumura
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
12
|
Kobayashi Y, Hamamoto A, Takahashi A, Saito Y. Dimerization of melanocortin receptor 1 (MC1R) and MC5R creates a ligand-dependent signal modulation: Potential participation in physiological color change in the flounder. Gen Comp Endocrinol 2016; 230-231:103-9. [PMID: 27080548 DOI: 10.1016/j.ygcen.2016.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/31/2016] [Accepted: 04/09/2016] [Indexed: 01/21/2023]
Abstract
Vertebrates produce α-melanocyte-stimulating hormone (α-MSH), which contains an N-terminal acetyl group, and desacetyl-α-MSH, which does not contain an N-terminal acetyl group. In teleosts and amphibians, α-MSH-related peptides stimulate pigment dispersion via melanocortin receptors 1-5 (MC1R-MC5R), which are members of the G-protein-coupled receptor (GPCR) family. We previously reported an interesting phenomenon associated with physiological color changes in the skin of a flatfish, barfin flounder (bf). Specifically, pigments in xanthophores expressing only the bfMC5R gene were dispersed by both α-MSH and desacetyl-α-MSH, whereas those in melanophores expressing both the bfMC1R and bfMC5R genes were dispersed by desacetyl-α-MSH, but not by α-MSH. In this study, we examined whether heterodimers of bfMC1R and bfMC5R can act as significant inhibitory receptors for the N-terminal acetylation of α-MSH in mammalian Chinese hamster ovary cells. Immunofluorescence analyses showed that bfMC1R and bfMC5R were localized together at the plasma membrane when expressed in the same cells. Indeed, after coexpression of Flag-bfMC1R and HA-bfMC5R, immunoprecipitation with anti-Flag antibodies resulted in the presence of anti-HA immunoreactivity in the precipitate, and vice versa. Importantly, cyclic AMP assays showed that cotransfection of bfMC1R with bfMC5R inhibited the cyclic AMP accumulation induced by α-MSH to a greater extent than that observed after transfection of bfMC1R alone. Of note, this inhibitory response was not caused by desacetyl-α-MSH. Thus, we show a ligand-dependent signaling through functional heterodimerization of MC1R and MC5R in mammalian cells. The ligand-selective receptor complex also provide the first mechanistic implication that may play a role in the control of color change in teleosts.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Akie Hamamoto
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
13
|
Hamamoto A, Yamato S, Katoh Y, Nakayama K, Yoshimura K, Takeda S, Kobayashi Y, Saito Y. Modulation of primary cilia length by melanin-concentrating hormone receptor 1. Cell Signal 2016; 28:572-84. [PMID: 26946173 DOI: 10.1016/j.cellsig.2016.02.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
Melanin-concentrating hormone (MCH) receptor 1 (MCHR1) is a class A G-protein-coupled receptor (GPCR). The MCH-MCHR1 system has been implicated in the regulation of feeding, emotional processing, and sleep in rodents. Recent work revealed that MCHR1 is selectively expressed in neuronal primary cilia of the central nervous system. Cilia have various chemosensory functions in many types of cell, and ciliary dysfunction is associated with ciliopathies such as polycystic kidney disease and obesity. Although dynamic modulation of neuronal cilia length is observed in obese mice, the functional interaction of neuronal ciliary GPCR and its endogenous ligand has not yet been elucidated. We report here that MCH treatment significantly reduced cilia length in hTERT-RPE1 cells (hRPE1 cells) transfected with MCHR1. Quantitative analyses indicated that MCH-induced cilia shortening progressed in a dose-dependent manner with an EC50 lower than 1nM when cells were treated for 6h. Although the assembly and disassembly of primary cilia are tightly coupled to the cell cycle, cell cycle reentry was not a determinant of MCH-induced cilia shortening. We confirmed that MCH elicited receptor internalization, Ca(2+) mobilization, ERK and Akt phosphorylation, and inhibition of cyclic AMP accumulation in MCHR1-expressing hRPE1 cells. Among these diverse pathways, we revealed that Gi/o-dependent Akt phosphorylation was an important component in the initial stage of MCH-induced cilia length shortening. Furthermore, induction of fewer cilia by Kif3A siRNA treatment significantly decreased the MCH-mediated phosphorylation of Akt, indicating the functional importance of the MCHR1-Akt pathway in primary cilia. Taken together, the present data suggest that the MCH-MCHR1 axis may modulate the sensitivity of cells to external environments by controlling the cilia length. Therefore, further characterization of MCHR1 as a ciliary GPCR will provide a potential molecular mechanism to link cilia length control with obesity.
Collapse
Affiliation(s)
- Akie Hamamoto
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Shogo Yamato
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Yuki Kobayashi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan.
| |
Collapse
|
14
|
A GIPC1-Palmitate Switch Modulates Dopamine Drd3 Receptor Trafficking and Signaling. Mol Cell Biol 2016; 36:1019-31. [PMID: 26787837 DOI: 10.1128/mcb.00916-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/06/2016] [Indexed: 12/27/2022] Open
Abstract
Palmitoylation is involved in several neuropsychiatric and movement disorders for which a dysfunctional signaling of the dopamine D3 receptor (Drd3) is hypothesized. Computational modeling of Drd3's homologue, Drd2, has shed some light on the putative role of palmitoylation as a reversible switch for dopaminergic receptor signaling. Drd3 is presumed to be palmitoylated, based on sequence homology with Drd2, but the functional attributes afforded by Drd3 palmitoylation have not been studied. Since these receptors are major targets of antipsychotic and anti-Parkinsonian drugs, a better characterization of Drd3 signaling and posttranslational modifications, like palmitoylation, may improve the prospects for drug development. Using molecular dynamics simulations, we evaluated in silico how Drd3 palmitoylation could elicit significant remodeling of the C-terminal cytoplasmic domain to expose docking sites for signaling proteins. We tested this model in cellulo by using the interaction of Drd3 with the G-alpha interacting protein (GAIP) C terminus 1 (GIPC1) as a template. From a series of biochemical studies, live imaging, and analyses of mutant proteins, we propose that Drd3 palmitoylation acts as a molecular switch for Drd3-biased signaling via a GIPC1-dependent route, which is likely to affect the mode of action of antipsychotic drugs.
Collapse
|
15
|
Abstract
The melanocortin-3 receptor (MC3R) is a member of the family A G protein-coupled receptors (GPCRs). The MC3R remains the most enigmatic of the melanocortin receptors with regard to its physiological functions, especially its role in energy homeostasis. The N/DPxxY motif and the eighth helix (helix 8) in the carboxyl terminus of GPCRs have been identified to be important for receptor expression, ligand binding, signal transduction and internalization. To gain a better understanding of the structure-function relationship of MC3R, we performed a systematic study of all 20 residues in this domain using alanine-scanning mutagenesis. We showed that although all mutants were expressed normally on the cell surface, eleven residues were important for ligand binding and one was indispensable for downstream cAMP generation. F347A showed constitutive activity in cAMP signaling while all the other mutants had normal basal activities. We studied the signaling capacity of nine mutants in the ERK1/2 signaling pathway. All of these mutants showed normal basal ERK1/2 phosphorylation levels. The pERK1/2 levels of six binding- or signaling-defective mutants were enhanced upon agonist stimulation. The unbalanced cAMP and pERK1/2 signaling pathways suggested the existence of biased signaling in MC3R mutants. In summary, we showed that the DPLIY motif and helix 8 was important for MC3R activation and signal transduction. Our data led to a better understanding of the structure-function relationship of MC3R.
Collapse
Affiliation(s)
- Zhao Yang
- Department of AnatomyPhysiology and Pharmacology, College of Veterinary Medicine, Auburn University, 212 Greene Hall, Auburn, Alabama 36849, USASchool of Applied Chemistry and Biological TechnologyShenzhen Polytechnic, Shenzhen 518055, China
| | - Zhi-Li Huang
- Department of AnatomyPhysiology and Pharmacology, College of Veterinary Medicine, Auburn University, 212 Greene Hall, Auburn, Alabama 36849, USASchool of Applied Chemistry and Biological TechnologyShenzhen Polytechnic, Shenzhen 518055, China Department of AnatomyPhysiology and Pharmacology, College of Veterinary Medicine, Auburn University, 212 Greene Hall, Auburn, Alabama 36849, USASchool of Applied Chemistry and Biological TechnologyShenzhen Polytechnic, Shenzhen 518055, China
| | - Ya-Xiong Tao
- Department of AnatomyPhysiology and Pharmacology, College of Veterinary Medicine, Auburn University, 212 Greene Hall, Auburn, Alabama 36849, USASchool of Applied Chemistry and Biological TechnologyShenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
16
|
Zhu S, Zhang M, Davis JE, Wu WH, Surrao K, Wang H, Wu G. A single mutation in helix 8 enhances the angiotensin II type 1a receptor transport and signaling. Cell Signal 2015; 27:2371-9. [PMID: 26342563 DOI: 10.1016/j.cellsig.2015.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/30/2015] [Indexed: 01/01/2023]
Abstract
The amphipathic helix 8 in the membrane-proximal C-terminus is a structurally conserved feature of class A seven transmembrane-spanning G protein-coupled receptors (GPCRs). Mutations of this helical motif often cause receptor misfolding, defective cell surface transport and dysfunction. Surprisingly, we demonstrated here that a single point mutation at Lys308 in helix 8 markedly enhanced the steady-state surface density of the angiotensin II type 1a receptor (AT1aR). Consistent with the enhanced cell surface expression, Lys308 mutation significantly augmented AT1aR-mediated mitogen-activated protein kinase ERK1/2 activation, inositol phosphate production, and vascular smooth muscle cell migration. This mutation also increased the overall expression of AT1aR without altering receptor degradation. More interestingly, Lys308 mutation abolished AT1aR interaction with β-COP, a component of COPI transport vesicles, and impaired AT1aR responsiveness to the inhibition of Rab6 GTPase involved in the Golgi-to-ER retrograde pathway. Furthermore, these functions of Lys308 were largely dependent on its positively charged property. These data reveal previously unappreciated functions of helix 8 and novel mechanisms governing the cell surface transport and function of AT1aR.
Collapse
Affiliation(s)
- Shu Zhu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta GA 30912, United States
| | - Maoxiang Zhang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta GA 30912, United States
| | - Jason E Davis
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta GA 30912, United States
| | - William H Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta GA 30912, United States
| | - Kristen Surrao
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta GA 30912, United States
| | - Hong Wang
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, China
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta GA 30912, United States.
| |
Collapse
|
17
|
Upadhyaya J, Singh N, Bhullar RP, Chelikani P. The structure–function role of C-terminus in human bitter taste receptor T2R4 signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1502-8. [DOI: 10.1016/j.bbamem.2015.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/10/2015] [Accepted: 03/31/2015] [Indexed: 11/15/2022]
|
18
|
Kawasaki T, Saka T, Mine S, Mizohata E, Inoue T, Matsumura H, Sato T. The N-terminal acidic residue of the cytosolic helix 8 of an odorant receptor is responsible for different response dynamics via G-protein. FEBS Lett 2015; 589:1136-42. [DOI: 10.1016/j.febslet.2015.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
|
19
|
Regulation of GPCR Anterograde Trafficking by Molecular Chaperones and Motifs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:289-305. [PMID: 26055064 DOI: 10.1016/bs.pmbts.2015.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) make up a superfamily of integral membrane proteins that respond to a wide variety of extracellular stimuli, giving them an important role in cell function and survival. They have also proven to be valuable targets in the fight against various diseases. As such, GPCR signal regulation has received considerable attention over the last few decades. With the amplitude of signaling being determined in large part by receptor density at the plasma membrane, several endogenous mechanisms for modulating GPCR expression at the cell surface have come to light. It has been shown that cell surface expression is determined by both exocytic and endocytic processes. However, the body of knowledge surrounding GPCR trafficking from the endoplasmic reticulum to the plasma membrane, commonly known as anterograde trafficking, has considerable room for growth. We focus here on the current paradigms of anterograde GPCR trafficking. We will discuss the regulatory role of both the general and "nonclassical private" chaperone systems in GPCR trafficking as well as conserved motifs that serve as modulators of GPCR export from the endoplasmic reticulum and Golgi apparatus. Together, these topics summarize some of the known mechanisms by which the cell regulates anterograde GPCR trafficking.
Collapse
|
20
|
Hamamoto A, Kobayashi Y, Saito Y. Identification of amino acids that are selectively involved in Gi/o activation by rat melanin-concentrating hormone receptor 1. Cell Signal 2015; 27:818-27. [PMID: 25617691 DOI: 10.1016/j.cellsig.2015.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/30/2014] [Accepted: 01/14/2015] [Indexed: 02/01/2023]
Abstract
Many G-protein-coupled receptors (GPCRs) are known to functionally couple to multiple G-protein subfamily members. Although promiscuous G-protein coupling enables GPCRs to mediate diverse signals, only a few GPCRs have been identified with differential determinants for coupling to distinct Gα proteins. Mammalian melanin-concentrating hormone receptor 1 (MCHR1) couples to dual G-protein subfamilies. However, the selectivity mechanisms between MCHR1 and different subtypes of Gα proteins are unclear. Our previous studies demonstrated that mammalian MCHR1 couples to both Gi/o and Gq, whereas goldfish MCHR1 exclusively couples to Gq. In this study, we analyzed multiple sequence alignments between rat and goldfish MCHR1s, and designed three multisubstituted mutants of rat MCHR1 by replacing corresponding residues with those in goldfish MCHR1, focusing on regions around the cytosolic intracellular loops. By measurement of intracellular Ca(2+) mobilization, we found that two MCHR1 mutants, i2_6sub and i3_6sub, which contained six simultaneously substituted residues in the second intracellular loop or a combination of substituted residues in the third intracellular loop and fifth transmembrane domain, respectively, significantly reduced Gi/o-sensitive pertussis toxin responsiveness without altering Gq-mediated activity. Analyses of 10 other substitutions revealed that the multiple substitutions in i2_6sub and i3_6sub were necessary for Gi/o-selective responses. As judged by Gi/o-dependent GTPγS binding and cyclic AMP assays, i2_6sub and i3_6sub elicited phenotypes for impaired Gi/o-mediated signaling. We also monitored the dynamic mass redistribution (DMR) in living cells, which reveals receptor activity as an optical trace containing activation of all GPCR coupling classes. Cells transfected with i2_6sub or i3_6sub exhibited reduced Gi/o-mediated DMR responses compared with those transfected with MCHR1. These data suggest that two different regions independently affect the Gi/o-protein preference, and that multiple residues comprise a conformation favoring Gi/o-protein coupling and subsequently result in Gi/o-selective signaling.
Collapse
Affiliation(s)
- Akie Hamamoto
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Kobayashi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
21
|
Karpinsky-Semper D, Tayou J, Levay K, Schuchardt BJ, Bhat V, Volmar CH, Farooq A, Slepak VZ. Helix 8 and the i3 loop of the muscarinic M3 receptor are crucial sites for its regulation by the Gβ5-RGS7 complex. Biochemistry 2015; 54:1077-88. [PMID: 25551629 PMCID: PMC4318586 DOI: 10.1021/bi500980d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
The muscarinic M3 receptor (M3R)
is a Gq-coupled receptor and is
known to interact with many intracellular regulatory proteins. One
of these molecules is Gβ5-RGS7, the permanently associated heterodimer
of G protein β-subunit Gβ5 and RGS7, a regulator of G
protein signaling. Gβ5-RGS7 can attenuate M3R-stimulated release
of Ca2+ from intracellular stores or enhance the influx
of Ca2+ across the plasma membrane. Here we show that deletion
of amino acids 304–345 from the central portion of the i3 loop
renders M3R insensitive to regulation by Gβ5-RGS7. In addition
to the i3 loop, interaction of M3R with Gβ5-RGS7 requires helix
8. According to circular dichroism spectroscopy, the peptide corresponding
to amino acids 548–567 in the C-terminus of M3R assumes an
α-helical conformation. Substitution of Thr553 and Leu558 with
Pro residues disrupts this α-helix and abolished binding to
Gβ5-RGS7. Introduction of the double Pro substitution into full-length
M3R (M3RTP/LP) prevents trafficking of the receptor to
the cell surface. Using atropine or other antagonists as pharmacologic
chaperones, we were able to increase the level of surface expression
of the TP/LP mutant to levels comparable to that of wild-type M3R.
However, M3R-stimulated calcium signaling is still severely compromised.
These results show that the interaction of M3R with Gβ5-RGS7
requires helix 8 and the central portion of the i3 loop.
Collapse
Affiliation(s)
- Darla Karpinsky-Semper
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine , 1600 NW 10th Avenue, RMSB6024A, Miami, Florida 33136, United States
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sensoy O, Weinstein H. A mechanistic role of Helix 8 in GPCRs: Computational modeling of the dopamine D2 receptor interaction with the GIPC1-PDZ-domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:976-83. [PMID: 25592838 DOI: 10.1016/j.bbamem.2014.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/15/2014] [Accepted: 12/02/2014] [Indexed: 01/18/2023]
Abstract
Helix-8 (Hx8) is a structurally conserved amphipathic helical motif in class-A GPCRs, adjacent to the C-terminal sequence that is responsible for PDZ-domain-recognition. The Hx8 segment in the dopamine D2 receptor (D2R) constitutes the C-terminal segment and we investigate its role in the function of D2R by studying the interaction with the PDZ-containing GIPC1 using homology models based on the X-ray structures of very closely related analogs: the D3R for the D2R model, and the PDZ domain of GIPC2 for GIPC1-PDZ. The mechanism of this interaction was investigated with all-atom unbiased molecular dynamics (MD) simulations that reveal the role of the membrane in maintaining the helical fold of Hx8, and with biased MD simulations to elucidate the energy drive for the interaction with the GIPC1-PDZ. We found that it becomes more favorable energetically for Hx8 to adopt the extended conformation observed in all PDZ-ligand complexes when it moves away from the membrane, and that C-terminus palmitoylation of D2R enhanced membrane penetration by the Hx8 backbone. De-palmitoylation enables Hx8 to move out into the aqueous environment for interaction with the PDZ domain. All-atom unbiased MD simulations of the full D2R-GIPC1-PDZ complex in sphingolipid/cholesterol membranes show that the D2R carboxyl C-terminus samples the region of the conserved GFGL motif located on the carboxylate-binding loop of the GIPC1-PDZ, and the entire complex distances itself from the membrane interface. Together, these results outline a likely mechanism of Hx8 involvement in the interaction of the GPCR with PDZ-domains in the course of signaling.
Collapse
Affiliation(s)
- Ozge Sensoy
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
23
|
Saito Y, Hamamoto A, Kobayashi Y. Regulated Control of Melanin-Concentrating Hormone Receptor 1 through Posttranslational Modifications. Front Endocrinol (Lausanne) 2013; 4:154. [PMID: 24155742 PMCID: PMC3800845 DOI: 10.3389/fendo.2013.00154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 10/07/2013] [Indexed: 12/19/2022] Open
Abstract
Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that plays an important role in feeding behavior. It activates two G-protein-coupled receptors, MCHR1 and MCHR2, of which MCHR1 is the primary regulator of food intake and energy homeostasis in rodents. In mammalian cells transfected with MCHR1, MCH is able to activate multiple signaling pathways including calcium mobilization, extracellular signal-regulated kinase activation, and inhibition of cyclic AMP generation through Gi/o- and Gq-coupled pathways. Further evidence suggests that MCHR1 is regulated through posttranslational modifications, which control its intracellular localization and provide appropriate cellular responses involving G-protein signaling. This review summarizes the current data on the control of MCHR1 function through glycosylation and phosphorylation, as related to cell function. Especially, a series of mutagenesis study highlights the importance of complete glycosylation of MCHR1 for efficient trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
- *Correspondence: Yumiko Saito, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan e-mail:
| | - Akie Hamamoto
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Kobayashi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
24
|
Nagata A, Hamamoto A, Horikawa M, Yoshimura K, Takeda S, Saito Y. Characterization of ciliary targeting sequence of rat melanin-concentrating hormone receptor 1. Gen Comp Endocrinol 2013; 188:159-65. [PMID: 23467069 DOI: 10.1016/j.ygcen.2013.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/14/2013] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
Melanin-concentrating hormone (MCH) is the natural peptide ligand for MCHR1 and MCHR2, which belong to the G protein-coupled receptor (GPCR) superfamily. The MCH-MCHR1 system is involved in the regulation of feeding, energy homeostasis and emotional processing in rodents. Recently, MCHR1 expression was discovered in neuronal immotile primary cilia of the central nervous system in mice. The cilium has an important chemosensory function in many types of cell and ciliary dysfunction is associated with cliopathies such as polycystic kidney disease, retinal dystrophy, and obesity. The targeting sequence of ciliary membrane proteins is thought to be unique. Although these sequences have been predicted in the cytoplasmic third loop and/or C-terminus of GPCRs, little is known about the characteristics of MCHR1. We thus explored the molecular mechanisms of MCHR1 targeting by transiently expressing a series of MCHR1 mutants into ciliated hRPE1 cells and evaluated the effects of these mutations on the ciliary localization of the heterologous receptor. This approach demonstrated that an Ala-to-Gly mutation (A242G) within the third intracellular loop induced a significant reduction in ciliary localization of the receptor without affecting the ciliogenesis. In contrast, no C-terminal truncation mutant had any effect on ciliary localization or cilia length. This study provides a potential molecular link between defective cilia and clinical manifestations such as obesity.
Collapse
Affiliation(s)
- Asami Nagata
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Kagamiyama, Hiroshima 739-8521, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Okamoto Y, Bernstein JD, Shikano S. Role of C-terminal membrane-proximal basic residues in cell surface trafficking of HIV coreceptor GPR15 protein. J Biol Chem 2013; 288:9189-99. [PMID: 23430259 DOI: 10.1074/jbc.m112.445817] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell surface density of G protein-coupled receptors (GPCRs) is controlled by dynamic molecular interactions that often involve recognition of the distinct sequence signals on the cargo receptors. We reported previously that the RXR-type dibasic motif in the distal C-terminal tail of an HIV coreceptor GPR15 negatively regulates the cell surface expression by mediating the coatomer protein I complex-dependent retrograde transport to the endoplasmic reticulum (ER). Here we demonstrate that another pair of basic residues (Arg(310)-Arg(311)) in the membrane-proximal region of the C-terminal tail plays a pivotal role in mediating the anterograde trafficking of GPR15. The Ala mutation of the C-terminal membrane-proximal basic residues (MPBRs) (R310/311A) abolished the O-glycosylation and cell surface expression of GPR15. The subcellular fractionation and immunocytochemistry assays indicated that the R310/311A mutant was more localized in the ER but much less in the trans-Golgi when compared with the wild-type GPR15, suggesting the positive role of Arg(310)-Arg(311) in the ER-to-Golgi transport of GPR15. Sequence analysis on human GPCRs showed that the basic residues are frequent in the membrane-proximal region of the C-terminal tail. Similar to GPR15, mutation of the C-terminal MPBRs resulted in a marked reduction of the cell surface expression in multiple different GPCRs. Our results suggest that the C-terminal MPBRs are critically involved in mediating the anterograde trafficking of a broad range of membrane proteins, including GPCRs.
Collapse
Affiliation(s)
- Yukari Okamoto
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
26
|
van Rijn RM, Harvey JH, Brissett DI, DeFriel JN, Whistler JL. Novel screening assay for the selective detection of G-protein-coupled receptor heteromer signaling. J Pharmacol Exp Ther 2013; 344:179-88. [PMID: 23097213 PMCID: PMC3533407 DOI: 10.1124/jpet.112.198655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/24/2012] [Indexed: 12/22/2022] Open
Abstract
Drugs targeting G-protein-coupled receptors (GPCRs) make up more than 25% of all prescribed medicines. The ability of GPCRs to form heteromers with unique signaling properties suggests an entirely new and unexplored pool of drug targets. However, current in vitro assays are ill equipped to detect heteromer-selective compounds. We have successfully adapted an approach, using fusion proteins of GPCRs and chimeric G proteins, to create an in vitro screening assay (in human embryonic kidney cells) in which only activated heteromers are detectable. Here we show that this assay can demonstrate heteromer-selective G-protein bias as well as measure transinhibition. Using this assay, we reveal that the δ-opioid receptor agonist ADL5859, which is currently in clinical trials, has a 10-fold higher potency against δ-opioid receptor homomers than δ/μ-opioid receptor heteromers (pEC(50) = 6.7 ± 0.1 versus 5.8 ± 0.2). The assay enables the screening of large compound libraries to identify heteromer-selective compounds that could then be used in vivo to determine the functional role of heteromers and develop potential therapeutic agents.
Collapse
MESH Headings
- Amino Acid Sequence
- Benzamides/pharmacology
- Calcium/metabolism
- Calcium Signaling
- Cloning, Molecular
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- Enkephalin, Leucine/pharmacology
- Enzyme-Linked Immunosorbent Assay
- GTP-Binding Protein alpha Subunits, Gi-Go/drug effects
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gs/drug effects
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- HEK293 Cells
- Humans
- Microscopy, Fluorescence
- Molecular Sequence Data
- Mutant Chimeric Proteins/chemistry
- Mutant Chimeric Proteins/genetics
- Piperazines/pharmacology
- Polymerase Chain Reaction
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/genetics
- Recombinant Fusion Proteins
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Richard M van Rijn
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA.
| | | | | | | | | |
Collapse
|
27
|
Anterograde trafficking of nascent α(2B)-adrenergic receptor: structural basis, roles of small GTPases. CURRENT TOPICS IN MEMBRANES 2012; 67:79-100. [PMID: 21771486 DOI: 10.1016/b978-0-12-384921-2.00004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
28
|
Lee JM, Hull JJ, Kawai T, Tsuneizumi K, Kurihara M, Tanokura M, Nagata K, Nagasawa H, Matsumoto S. Establishment of Sf9 Transformants Constitutively Expressing PBAN Receptor Variants: Application to Functional Evaluation. Front Endocrinol (Lausanne) 2012; 3:56. [PMID: 22654874 PMCID: PMC3356112 DOI: 10.3389/fendo.2012.00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/01/2012] [Indexed: 12/15/2022] Open
Abstract
To facilitate further evaluation of pheromone biosynthesis activating neuropeptide receptor (PBANR) functionality and regulation, we generated cultured insect cell lines constitutively expressing green fluorescent protein chimeras of the recently identified Bombyx mori PBANR (BommoPBANR) and Pseudaletia separata PBANR (PsesePBANR) variants. Fluorescent chimeras included the BommoPBANR-A, -B, and -C variants and the PsesePBANR-B and -C variants. Cell lines expressing non-chimeric BommoPBANR-B and -C variants were also generated. Functional evaluation of these transformed cell lines using confocal laser microscopy revealed that a Rhodamine Red-labeled PBAN derivative (RR-C10PBAN(R2K)) specifically co-localized with all of the respective PBANR variants at the plasma membrane. Near complete internalization of the fluorescent RR-C10PBAN(R2K) ligand 30 min after binding was observed in all cell lines except those expressing the BommoPBANR-A variant, in which the ligand/receptor complex remained at the plasma membrane. Fluorescent Ca(2+) imaging further showed that the BommoPBANR-A cell line exhibited drastically different Ca(2+) mobilization kinetics at a number of RR-C10PBAN(R2K) concentrations including 10 μM. These observations demonstrate a clear functional difference between the BommoPBANR-A variant and the BommoPBANR-B and -C variants in terms of receptor regulation and activation of downstream effector molecules. We also found that, contrary to previous reports, ligand-induced internalization of BommoPBANR-B and BommoPBANR-C in cell lines stably expressing these variants occurred in the absence of extracellular Ca(2+).
Collapse
Affiliation(s)
- Jae Min Lee
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
| | - J. Joe Hull
- USDA-ARS Arid Land Agricultural Research CenterMaricopa, AZ, USA
- *Correspondence: J. Joe Hull, USDA-ARS Arid Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138, USA. e-mail: ; Shogo Matsumoto, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. e-mail:
| | - Takeshi Kawai
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Kazuhide Tsuneizumi
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
| | - Masaaki Kurihara
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Shogo Matsumoto
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
- *Correspondence: J. Joe Hull, USDA-ARS Arid Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138, USA. e-mail: ; Shogo Matsumoto, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. e-mail:
| |
Collapse
|
29
|
Hamamoto A, Horikawa M, Saho T, Saito Y. Mutation of Phe318 within the NPxxY(x)(5,6)F motif in melanin-concentrating hormone receptor 1 results in an efficient signaling activity. Front Endocrinol (Lausanne) 2012; 3:147. [PMID: 23233849 PMCID: PMC3515998 DOI: 10.3389/fendo.2012.00147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/08/2012] [Indexed: 11/13/2022] Open
Abstract
Melanin-concentrating hormone receptor 1 (MCHR1) is a G-protein-coupled receptor (GPCR) that plays an important role in feeding by coupling to Gα(q)- and Gα(i)-mediated signal transduction pathways. To interrogate the molecular basis for MCHR1 activation, we analyzed the effect of a series of site-directed mutations on rat MCHR1 function. In the highly conserved NPxxY(x)(5,6)F domain of GPCRs, the phenylalanine residue is involved in structural constraints; replacement with alanine generally leads to impaired/lost GPCR function. However, Phe-to-Ala (F318A) mutation in MCHR1 had no significant effect on the level of cell surface expression and receptor signaling. By analyzing a further series of mutants, we found that Phe-to-Lys substitution (F318K) caused the most significant reduction in the EC(50) value of MCH for calcium mobilization without affecting receptor expression at the cell surface. Interestingly, GTPγS-binding, which monitors Gα(i) activation, was not modulated by F318K. Our results, combined with computer modeling, provide new insight into the role of Phe in the NPxxY(x)(5,6)F motif as a structurally critical site for receptor dynamics and a determinant of Gα protein interaction.
Collapse
Affiliation(s)
- Akie Hamamoto
- Graduate School of Integrated Arts and Sciences, Hiroshima UniversityHiroshima, Japan
| | - Manabu Horikawa
- Bioorganic Research Institute, Suntory Foundation for Life SciencesOsaka, Japan
| | - Tomoko Saho
- Graduate School of Integrated Arts and Sciences, Hiroshima UniversityHiroshima, Japan
| | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima UniversityHiroshima, Japan
- *Correspondence: Yumiko Saito, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan. e-mail:
| |
Collapse
|
30
|
Feierler J, Wirth M, Welte B, Schüssler S, Jochum M, Faussner A. Helix 8 plays a crucial role in bradykinin B(2) receptor trafficking and signaling. J Biol Chem 2011; 286:43282-93. [PMID: 22016392 DOI: 10.1074/jbc.m111.256909] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon activation the human bradykinin B(2) receptor (B(2)R) acts as guanine nucleotide exchange factor for the G proteins G(q/11) and G(i). Thereafter, it gets phosphorylated by G protein-coupled receptor kinases (GRKs) and recruits β-arrestins, which block further G protein activation and promote B(2)R internalization via clathrin-coated pits. As for most G protein-coupled receptors of family A, an intracellular helix 8 after transmembrane domain 7 is also predicted for the B(2)R. We show here that disruption of helix 8 in the B(2)R by either C-terminal truncation or just by mutation of a central amino acid (Lys-315) to a helix-breaking proline resulted in strong reduction of surface expression. Interestingly, this malfunction could be overcome by the addition of the membrane-permeable B(2)R antagonist JSM10292, suggesting that helix 8 has a general role for conformational stabilization that can be accounted for by an appropriate antagonist. Intriguingly, an intact helix 8, but not the C terminus with its phosphorylation sites, was indispensable for receptor sequestration and for interaction of the B(2)R with GRK2/3 and β-arrestin2 as shown by co-immunoprecipitation. Recruitment of β-arrestin1, however, required the presence of the C terminus. Taken together, our results demonstrate that helix 8 of the B(2)R plays a crucial role not only in efficient trafficking to the plasma membrane or the activation of G proteins but also for the interaction of the B(2)R with GRK2/3 and β-arrestins. Additional data obtained with chimera of B(2)R with other G protein-coupled receptors of family A suggest that helix 8 might have similar functions in other GPCRs as well.
Collapse
Affiliation(s)
- Jens Feierler
- Abteilung für Klinische Chemie und Klinische Biochemie, Ludwig-Maximilians-Universität, Nussbaumstrasse 20, D-80336 München, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Kuramasu A, Sukegawa J, Sato T, Sakurai E, Watanabe T, Yanagisawa T, Yanai K. The hydrophobic amino acids in putative helix 8 in carboxy-terminus of histamine H(3) receptor are involved in receptor-G-protein coupling. Cell Signal 2011; 23:1843-9. [PMID: 21749919 DOI: 10.1016/j.cellsig.2011.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 06/13/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
Abstract
Functional roles of putative helix 8 in the carboxy-terminal tail of the human histamine H(3) receptor were investigated using deleted and alanine-substituted mutant receptors. While the deletion of the carboxy-terminal tail did not decrease the total expression level, surface expression, or ligand binding affinity, the agonist-stimulated cAMP response, [((35))S] GTPγS binding, and MAPK activation were totally abolished. The receptor lacking the carboxy-terminal tail also failed to respond to an inverse agonist, thioperamide, suggesting that the carboxy-terminal tail is involved in the regulation of receptor activity by changing G-protein coupling with the receptor. Site-directed mutagenesis revealed that hydrophobic amino acids in the putative helix 8 such as phenylalanines at position 419 (F7.60) and 423 (F7.64) or leucines at 426 (L7.67) and 427 (L7.68) were important for the agonist-induced activation of H(3) receptor. Substitution of F7.60 also resulted in a receptor that was less responsive to inactivation by the inverse agonist, implying the existence of an intermediate conformation that can be either activated or inactivated. Our results suggest that hydrophobic interface of putative helix 8 is important for the regulation of H(3) receptor activity, presumably by stabilizing the helix to the plasma membrane.
Collapse
Affiliation(s)
- Atsuo Kuramasu
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Hamamoto A, Mizusawa K, Takahashi A, Saito Y. Signalling pathway of goldfish melanin-concentrating hormone receptors 1 and 2. ACTA ACUST UNITED AC 2011; 169:6-12. [PMID: 21539863 DOI: 10.1016/j.regpep.2011.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
Abstract
Melanin-concentrating hormone (MCH) is the natural ligand for the MCH-1 receptor (MCHR1) and MCH-2 receptor (MCHR2). The MCH-MCHR1 system plays a central role in energy metabolism in rodents. Recently, we identified MCHR1 and MCHR2 orthologues in goldfish, designated gfMCHR1 and gfMCHR2. In a mammalian cell-based assay, calcium mobilization was evoked by gfMCHR2 via both Gαi/o and Gαq, while the gfMCHR1-mediated response was exclusively dependent on Gαq. This coupling capacity to G proteins is in contrast to human MCHR1 and MCHR2. Here, we extended our previous characterization of the two gfMCHRs by examining their different signalling pathway. We found that MCH caused activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) via both gfMCHR1 and gfMCHR2 in dose-dependent manners. Unlike the case for gfMCHR2, gfMCHR1 signalling was not sensitive to pertussis toxin, suggesting Gαq coupling of gfMCHR1 in the ERK1/2 pathway as well as a calcium mobilization system. Cyclic AMP assays revealed that gfMCHR2 was efficiently coupled to Gαi/o, while gfMCHR1 was weakly coupled to Gαs. Finally, we investigated the transduction features stimulated by two mammalian MCH analogues. As expected, Compound 15, which is a full agonist of human MCHR1, was a potent gfMCHR1 agonist in multiple signalling pathways. On the other hand, Compound 30, which is a human MCHR1-selective antagonist with negligible agonist potency, unexpectedly acted as a selective agonist of gfMCHR1. These results are the first to demonstrate that gfMCHR1 and gfMCHR2 have quite different signalling properties from human MCHRs.
Collapse
Affiliation(s)
- Akie Hamamoto
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | | | | | | |
Collapse
|
33
|
Duvernay MT, Wang H, Dong C, Guidry JJ, Sackett DL, Wu G. Alpha2B-adrenergic receptor interaction with tubulin controls its transport from the endoplasmic reticulum to the cell surface. J Biol Chem 2011; 286:14080-9. [PMID: 21357695 PMCID: PMC3077609 DOI: 10.1074/jbc.m111.222323] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 02/21/2011] [Indexed: 01/07/2023] Open
Abstract
It is well recognized that the C terminus (CT) plays a crucial role in modulating G protein-coupled receptor (GPCR) transport from the endoplasmic reticulum (ER) to the cell surface. However the molecular mechanisms that govern CT-dependent ER export remain elusive. To address this issue, we used α(2B)-adrenergic receptor (α(2B)-AR) as a model GPCR to search for proteins interacting with the CT. By using peptide-conjugated affinity matrix combined with proteomics and glutathione S-transferase fusion protein pull-down assays, we identified tubulin directly interacting with the α(2B)-AR CT. The interaction domains were mapped to the acidic CT of tubulin and the basic Arg residues in the α(2B)-AR CT, particularly Arg-437, Arg-441, and Arg-446. More importantly, mutation of these Arg residues to disrupt tubulin interaction markedly inhibited α(2B)-AR transport to the cell surface and strongly arrested the receptor in the ER. These data provide the first evidence indicating that the α(2B)-AR C-terminal Arg cluster mediates its association with tubulin to coordinate its ER-to-cell surface traffic and suggest a novel mechanism of GPCR export through physical contact with microtubules.
Collapse
Affiliation(s)
- Matthew T. Duvernay
- From the Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Hong Wang
- From the Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
- the School of Life Sciences and Technology, Tongji University, Shanghai, China 200092
| | - Chunmin Dong
- From the Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Jesse J. Guidry
- From the Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Dan L. Sackett
- the Laboratory of Integrative and Medical Biophysics, Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Guangyu Wu
- From the Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
- the Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, Georgia 30912
| |
Collapse
|
34
|
Donnellan PD, Kimbembe CC, Reid HM, Kinsella BT. Identification of a novel endoplasmic reticulum export motif within the eighth α-helical domain (α-H8) of the human prostacyclin receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1202-18. [PMID: 21223948 DOI: 10.1016/j.bbamem.2011.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/20/2010] [Accepted: 01/03/2011] [Indexed: 01/20/2023]
Abstract
The human prostacyclin receptor (hIP) undergoes agonist-dependent trafficking involving a direct interaction with Rab11a GTPase. The region of interaction was localised to a 14 residue Rab11a binding domain (RBD) within the proximal carboxyl-terminal (C)-tail domain of the hIP, consisting of Val(299)-Val(307) within the eighth helical domain (α-H8) adjacent to the palmitoylated residues at Cys(308)-Cys(311). However, the factors determining the anterograde transport of the newly synthesised hIP from the endoplasmic reticulum (ER) to the plasma membrane (PM) have not been identified. The aim of the current study was to identify the major ER export motif(s) within the hIP initially by investigating the role of Lys residues in its maturation and processing. Through site-directed and Ala-scanning mutational studies in combination with analyses of protein expression and maturation, functional analyses of ligand binding, agonist-induced intracellular signalling and confocal image analyses, it was determined that Lys(297), Arg(302) and Lys(304) located within α-H8 represent the critical determinants of a novel ER export motif of the hIP. Furthermore, while substitution of those critical residues significantly impaired maturation and processing of the hIP, replacement of the positively charged Lys with Arg residues, and vice versa, was functionally permissible. Hence, this study has identified a novel 8 residue ER export motif within the functionally important α-H8 of the hIP. This ER export motif, defined by "K/R(X)(4)K/R(X)K/R," has a strict requirement for positively charged, basic Lys/Arg residues at the 1st, 6th and 8th positions and appears to be evolutionarily conserved within IP sequences from mouse to man.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Arginine/chemistry
- Arginine/genetics
- Arginine/metabolism
- Binding Sites
- Blotting, Western
- Calcium/metabolism
- Calnexin/metabolism
- Computational Biology
- Endoplasmic Reticulum/metabolism
- HEK293 Cells
- Humans
- Lysine/chemistry
- Lysine/genetics
- Lysine/metabolism
- Microscopy, Confocal
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein Transport
- Radioligand Assay
- Receptors, Epoprostenol/chemistry
- Receptors, Epoprostenol/genetics
- Receptors, Epoprostenol/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Peter D Donnellan
- School of Biomeolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
35
|
Kuwasako K, Kitamura K, Nagata S, Hikosaka T, Kato J. Structure-function analysis of helix 8 of human calcitonin receptor-like receptor within the adrenomedullin 1 receptor. Peptides 2011; 32:144-9. [PMID: 20946927 DOI: 10.1016/j.peptides.2010.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 01/12/2023]
Abstract
Adrenomedullin 1 (AM(1)) receptor is a heterodimer composed of calcitonin receptor-like receptor (CLR) - a family B G protein-coupled receptor (GPCR) - and receptor activity-modifying protein 2 (RAMP2). Both family A and family B GPCRs possess an eighth helix (helix 8) in the proximal portion of their C-terminal tails; however, little is known about the function of helix 8 in family B GPCRs. We therefore investigated the structure-function relationship of human (h)CLR helix 8, which extends from Glu430 to Trp439, by separately transfecting nine point mutants into HEK-293 cells stably expressing hRAMP2. Glu430, Val431, Arg437 and Trp439 are all conserved among family B GPCRs. Flow cytometric analysis revealed that Arg437Ala or Trp438Ala mutation significantly reduced cell surface expression of the receptor complex, leading to a ∼20% reduction in specific (125)I-AM binding but little change in their IC(50) values. Both mutants showed 6-8-fold higher EC(50) values for AM-induced cAMP production and ∼50% reductions in their maximum responses. Glu430Ala mutation also reduced AM signaling by ∼45%, but surface expression and (125)I-AM binding were nearly the same as with wild-type CLR. Surprisingly, Glu430Ala and Val431Ala mutations significantly enhanced AM-induced internalization of the mutant receptor complexes. Taken together, these findings suggest that within hCLR helix 8, Glu430 is crucial for Gs coupling, and Arg437 and Trp439 are involved in both cell surface expression of the hAM(1) receptor and Gs coupling. Moreover, the Glu430-Val431 sequence may participate in the negative regulation of hAM(1) receptor internalization, which is not dependent on Gs coupling.
Collapse
Affiliation(s)
- Kenji Kuwasako
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | | | | | | | | |
Collapse
|
36
|
Eberle AN, Mild G, Zumsteg U. Cellular models for the study of the pharmacology and signaling of melanin-concentrating hormone receptors. J Recept Signal Transduct Res 2010; 30:385-402. [PMID: 21083507 DOI: 10.3109/10799893.2010.524223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular models for the study of the neuropeptide melanin-concentrating hormone (MCH) have become indispensable tools for pharmacological profiling and signaling analysis of MCH and its synthetic analogues. Although expression of MCH receptors is most abundant in the brain, MCH-R(1) is also found in different peripheral tissues. Therefore, not only cell lines derived from nervous tissue but also from peripheral tissues that naturally express MCH receptors have been used to study receptor signaling and regulation. For screening of novel compounds, however, heterologous expression of MCH-R(1) or MCH-R(2) genes in HEK293, Chinese hamster ovary, COS-7, or 3T3-L1 cells, or amplified MCH-R(1) expression/signaling in IRM23 cells transfected with the G(q) protein gene are the preferred tools because of more distinct pharmacological effects induced by MCH, which include inhibition of cAMP formation, stimulation of inositol triphosphate production, increase in intracellular free Ca(2+) and/or activation of mitogen-activated protein kinases. Most of the published data originate from this type of model system, whereas data based on studies with cell lines endogenously expressing MCH receptors are more limited. This review presents an update on the different cellular models currently used for the analysis of MCH receptor interaction and signaling.
Collapse
Affiliation(s)
- Alex N Eberle
- Laboratory of Endocrinology, Department of Biomedicine, University Hospital and University Children's Hospital, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
37
|
Re M, Pampillo M, Savard M, Dubuc C, McArdle CA, Millar RP, Conn PM, Gobeil F, Bhattacharya M, Babwah AV. The human gonadotropin releasing hormone type I receptor is a functional intracellular GPCR expressed on the nuclear membrane. PLoS One 2010; 5:e11489. [PMID: 20628612 PMCID: PMC2900216 DOI: 10.1371/journal.pone.0011489] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 06/11/2010] [Indexed: 12/02/2022] Open
Abstract
The mammalian type I gonadotropin releasing hormone receptor (GnRH-R) is a structurally unique G protein-coupled receptor (GPCR) that lacks cytoplasmic tail sequences and displays inefficient plasma membrane expression (PME). Compared to its murine counterparts, the primate type I receptor is inefficiently folded and retained in the endoplasmic reticulum (ER) leading to a further reduction in PME. The decrease in PME and concomitant increase in intracellular localization of the mammalian GnRH-RI led us to characterize the spatial distribution of the human and mouse GnRH receptors in two human cell lines, HEK 293 and HTR-8/SVneo. In both human cell lines we found the receptors were expressed in the cytoplasm and were associated with the ER and nuclear membrane. A molecular analysis of the receptor protein sequence led us to identify a putative monopartite nuclear localization sequence (NLS) in the first intracellular loop of GnRH-RI. Surprisingly, however, neither the deletion of the NLS nor the addition of the Xenopus GnRH-R cytoplasmic tail sequences to the human receptor altered its spatial distribution. Finally, we demonstrate that GnRH treatment of nuclei isolated from HEK 293 cells expressing exogenous GnRH-RI triggers a significant increase in the acetylation and phosphorylation of histone H3, thereby revealing that the nuclear-localized receptor is functional. Based on our findings, we conclude that the mammalian GnRH-RI is an intracellular GPCR that is expressed on the nuclear membrane. This major and novel discovery causes us to reassess the signaling potential of this physiologically and clinically important receptor.
Collapse
Affiliation(s)
- Michelle Re
- The Children's Health Research Institute, London, Canada
- Lawson Health Research Institute, London, Canada
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Canada
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada
| | - Macarena Pampillo
- The Children's Health Research Institute, London, Canada
- Lawson Health Research Institute, London, Canada
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Canada
| | - Martin Savard
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Canada
| | - Céléna Dubuc
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Canada
| | - Craig A. McArdle
- Laboratories for Integrated Neuroscience and Endocrinology, Department of Clinical Sciences at South Bristol, University of Bristol, Bristol, United Kingdom
| | - Robert P. Millar
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - P. Michael Conn
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Fernand Gobeil
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Canada
| | - Moshmi Bhattacharya
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada
| | - Andy V. Babwah
- The Children's Health Research Institute, London, Canada
- Lawson Health Research Institute, London, Canada
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Canada
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada
| |
Collapse
|
38
|
Miyamoto-Matsubara M, Chung S, Saito Y. Functional interaction of regulator of G protein signaling-2 with melanin-concentrating hormone receptor 1. Ann N Y Acad Sci 2010; 1200:112-9. [DOI: 10.1111/j.1749-6632.2010.05507.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Ahn KH, Nishiyama A, Mierke DF, Kendall DA. Hydrophobic residues in helix 8 of cannabinoid receptor 1 are critical for structural and functional properties. Biochemistry 2010; 49:502-11. [PMID: 20025243 DOI: 10.1021/bi901619r] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In addition to the heptahelical transmembrane domain shared by all G protein-coupled receptors (GPCRs), many class A GPCRs adopt a helical domain, termed helix 8, in the membrane-proximal region of the C terminus. We investigated the role of residues in the hydrophobic and hydrophilic faces of amphiphilic helix 8 of human cannabinoid receptor 1 (CB1). To differentiate between a role for specific residues and global features, we made two key mutants: one involving replacement of the highly hydrophobic groups, Leu404, Phe408, and Phe412, all with alanine and the second involving substitution of the basic residues, Lys402, Arg405, and Arg409, all with the neutral glutamine. The former showed a very low B(max) based on binding isotherms, a minimal E(max) based on GTPgammaS binding analysis, and defective localization relative to the wild-type CB1 receptor as revealed by confocal microscopy. However, the latter mutant and the wild-type receptors were indistinguishable. Circular dichroism spectroscopy of purified peptides with corresponding sequences indicated that the highly hydrophobic residues are critical for maintaining a strong helical structure in detergent, whereas the positively charged residues are not. Further investigation of mutant receptors revealed that CB1 localization requires a threshold level of hydrophobicity but not specific amino acids. Moreover, mutant receptors carrying two- to six-residue insertions amino-terminal to helix 8 revealed a graded decrease in B(max) values. Our results identify the key helix 8 components (including hydrophobicity of specific residues, structure, and location relative to TM7) determinant for receptor localization leading to robust ligand binding and G protein activation.
Collapse
Affiliation(s)
- Kwang H Ahn
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | |
Collapse
|
40
|
Kuwasako K, Kitamura K, Nagata S, Hikosaka T, Kato J. Function of the cytoplasmic tail of human calcitonin receptor-like receptor in complex with receptor activity-modifying protein 2. Biochem Biophys Res Commun 2010; 392:380-5. [PMID: 20074556 DOI: 10.1016/j.bbrc.2010.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 01/08/2010] [Indexed: 01/08/2023]
Abstract
Receptor activity-modifying protein 2 (RAMP2) enables calcitonin receptor-like receptor (CRLR) to form an adrenomedullin (AM)-specific receptor. Here we investigated the function of the cytoplasmic C-terminal tail (C-tail) of human (h)CRLR by co-transfecting its C-terminal mutants into HEK-293 cells stably expressing hRAMP2. Deleting the C-tail from CRLR disrupted AM-evoked cAMP production or receptor internalization, but did not affect [(125)I]AM binding. We found that CRLR residues 428-439 are required for AM-evoked cAMP production, though deleting this region had little effect on receptor internalization. Moreover, pretreatment with pertussis toxin (100ng/mL) led to significant increases in AM-induced cAMP production via wild-type CRLR/RAMP2 complexes. This effect was canceled by deleting CRLR residues 454-457, suggesting Gi couples to this region. Flow cytometric analysis revealed that CRLR truncation mutants lacking residues in the Ser/Thr-rich region extending from Ser(449) to Ser(467) were unable to undergo AM-induced receptor internalization and, in contrast to the effect on wild-type CRLR, overexpression of GPCR kinases-2, -3 and -4 failed to promote internalization of CRLR mutants lacking residues 449-467. Thus, the hCRLR C-tail is crucial for AM-evoked cAMP production and internalization of the CRLR/RAMP2, while the receptor internalization is dependent on the aforementioned GPCR kinases, but not Gs coupling.
Collapse
Affiliation(s)
- Kenji Kuwasako
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | | | | | | | | |
Collapse
|
41
|
Chung S, Saito Y, Civelli O. MCH receptors/gene structure-in vivo expression. Peptides 2009; 30:1985-9. [PMID: 19647772 PMCID: PMC2764003 DOI: 10.1016/j.peptides.2009.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 11/17/2022]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic peptide which was originally discovered in fish to lighten skin color by affecting melanosomes aggregation. This peptide is highly conserved and also found in rodents whose gene is overexpressed upon fasting. However, the site of MCH action remained obscure until its receptor was discovered in 1999 as a G protein-coupled receptor. After this receptor structure was identified, the functional domains important for MCH-MCHR interaction were revealed. Moreover, the cloning of the MCH receptor led us to identify the in vivo sites of MCH action which suggested potential physiological functions of the MCH system. Furthermore, the MCH receptor identification allow for designing surrogate molecules which can block MCH activity. Studies using these molecules revealed various physiological functions of the MCH system not only in feeding but also in other physiological responses such as stress and emotion. This review will discuss how the MCH receptor was discovered and its impact on many studies investigating the MCH receptor's structure, signaling pathways, and expression pattern.
Collapse
Affiliation(s)
- Shinjae Chung
- Department of Pharmacology, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Yumiko Saito
- Laboratory for Behavioral Neuroscience, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Olivier Civelli
- Department of Pharmacology, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
42
|
Mizusawa K, Saito Y, Wang Z, Kobayashi Y, Matsuda K, Takahashi A. Molecular cloning and expression of two melanin-concentrating hormone receptors in goldfish. Peptides 2009; 30:1990-6. [PMID: 19397943 DOI: 10.1016/j.peptides.2009.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 02/04/2023]
Abstract
Melanin-concentrating hormone (MCH) is a neurohypophysial hormone and induces melanin aggregation in the skin in teleosts. MCH also has multiple roles in the central regulation of food intake in teleosts and mammals. MCH receptors (MCH-R) are among type I G-protein-coupled receptors. Here, we cloned two MCH receptors from goldfish, Carassius auratus. The amino acid sequence of goldfish MCH-R1 had 57-88% homology with fish MCH-R1 and 49-50% homology with mammalian MCH-R1, while the amino acid sequence of goldfish MCH-R2 had 72-92% homology with fish MCH-R2 and 32% homology with human MCH-R2. Phylogenetic analysis showed that these two MCH-Rs are orthologous to the respective mammalian MCH-Rs. The common amino acid residues for ligand binding, signal transduction, and receptor conformation were well conserved in these receptors, although some intracellular basic-amino-acid-rich domains, which have been shown to exist in human MCH-R1 and MCH-R2, were absent in goldfish MCH-R2. When stably expressed in HEK293 cells, both goldfish MCH-R1 and MCH-R2 displayed a strong, dose-dependent, transient elevation of intracellular calcium in response to salmon MCH (EC(50)=0.8nM and 31.8nM, respectively). In contrast to goldfish MCH-R2, goldfish MCH-R1 signaling is not sensitive to pertussis toxin, suggesting an exclusive Galphaq coupling of goldfish MCH-R1 in the mammalian cell-based assay. Reverse transcriptase PCR revealed that both MCH-R1 and MCH-R2 mRNA are distributed in various tissues in goldfish. The various tissues including the brain and skin express both MCH-R1 and MCH-R2. These results suggest that these functional receptors mediate multiple effects of MCH in goldfish.
Collapse
|
43
|
Parker MS, Parker SL. The fourth intracellular domain of G-protein coupling receptors: helicity, basicity and similarity to opsins. Amino Acids 2009; 38:1-13. [DOI: 10.1007/s00726-009-0316-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 06/15/2009] [Indexed: 11/27/2022]
|
44
|
Aizaki Y, Maruyama K, Nakano-Tetsuka M, Saito Y. Distinct roles of the DRY motif in rat melanin-concentrating hormone receptor 1 in signaling control. Peptides 2009; 30:974-81. [PMID: 19428776 DOI: 10.1016/j.peptides.2009.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 01/17/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
Rhodopsin family (class A) G protein-coupled receptors possess common key residues or motifs that appear to be important for receptor function. To clarify the roles of the highly conserved amino acid triplet Asp(3.49)-Arg(3.50)-Tyr(3.51) (DRY motif), we examined how single-substitution mutations of the amino acids in the motif influenced specific features of rat melanin-concentrating hormone receptor 1 (MCH1R) activity. Substitution of either Asp140(3.49) or Tyr142(3.51) to Ala resulted in nonfunctional receptors, despite the retention of apparent potencies for agonist binding. These loss-of-function phenotypes may be caused by the lack of stimulation for GDP-GTP exchange observed in GTPgammaS-binding assays. On the other hand, substitution of Arg141(3.50) to Ala caused a 4-fold reduction in the agonist binding affinity and, concomitantly, a rightward shift of the dose-dependency curve for calcium mobilization and inhibition of cyclic AMP production. Although many experimental studies have suggested that the DRY motif is involved in maintaining the receptor in its ground state, none of the DRY motif substitutions to Ala in MCH1R led to constitutive activation, in terms of the basal signaling level for ERK1/2 activation or GTPgammaS binding. These data suggest that the major contribution of the DRY motif in MCH1R is to govern receptor conformation and G protein coupling/recognition.
Collapse
Affiliation(s)
- Yoshimi Aizaki
- Department of Pharmacology, Saitama Medical School of Medicine, Iruma-gun, Saitama, Japan
| | | | | | | |
Collapse
|
45
|
Huynh J, Thomas WG, Aguilar MI, Pattenden LK. Role of helix 8 in G protein-coupled receptors based on structure-function studies on the type 1 angiotensin receptor. Mol Cell Endocrinol 2009; 302:118-27. [PMID: 19418628 DOI: 10.1016/j.mce.2009.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane receptors that convert extracellular stimuli to intracellular signals. The type 1 angiotensin II receptor is a widely studied GPCR with roles in blood pressure regulation,water and salt balance and cell growth. The complex molecular and structural changes that underpin receptor activation and signaling are the focus of intense research. Increasingly, there is an appreciation that the plasma membrane participates in receptor function via direct, physical interactions that reciprocally modulate both lipid and receptor and provide microdomains for specialized activities. Reversible protein:lipid interactions are commonly mediated by amphipathic -helices in proteins and one such motif - a short helix, referred to as helix VIII/8 (H8), located at the start of the carboxyl (C)-terminus of GPCRs - is gaining recognition for its importance to GPCR function. Here, we review the identification of H8 in GPCRs and examine its capacity to sense and interact with diverse proteins and lipid environment, most notably with acidic lipids that include phosphatidylinositol phosphates.
Collapse
MESH Headings
- Binding Sites
- Humans
- Lipids/chemistry
- Protein Binding
- Protein Structure, Secondary
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/physiology
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/physiology
- Signal Transduction
Collapse
Affiliation(s)
- John Huynh
- School of Biomedical Sciences, The University of Queensland, Brisbane, St Lucia, Queensland, Australia
| | | | | | | |
Collapse
|
46
|
Miyamoto-Matsubara M, Saitoh O, Maruyama K, Aizaki Y, Saito Y. Regulation of melanin-concentrating hormone receptor 1 signaling by RGS8 with the receptor third intracellular loop. Cell Signal 2008; 20:2084-94. [PMID: 18760349 DOI: 10.1016/j.cellsig.2008.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/27/2008] [Accepted: 07/31/2008] [Indexed: 11/26/2022]
Abstract
Melanin-concentrating hormone (MCH) receptor 1 (MCH1R) belongs to the class A G protein-coupled receptors (GPCRs). The MCH-MCH1R system plays a central role in energy metabolism, and thus the regulation of signaling pathways activated by this receptor is of particular interest. Regulator of G protein signaling (RGS) proteins work by increasing the GTPase activity of G protein alpha subunits and attenuate cellular responses coupled with G proteins. Recent evidence has shown that RGS proteins are not simple G protein regulators but equally inhibit the signaling from various GPCRs. Here, we demonstrate that RGS8, which is highly expressed in the brain, functions as a negative modulator of MCH1R signaling. By using biochemical approaches, RGS8 was found to selectively and directly bind to the third intracellular (i3) loop of MCH1R in vitro. When expressed in HEK293T cells, RGS8 and MCH1R colocalized to the plasma membrane and RGS8 potently inhibited the calcium mobilization induced by MCH. The N-terminal 9 amino acids of RGS8 were required for the optimal capacity to downregulate the receptor signaling. Furthermore, Arg(253) and Arg(256) at the distal end of the i3 loop were found to comprise a structurally important site for the functional interaction with RGS8, since coexpression of RGS8 with R253Q/R256Q mutant receptors resulted in a loss of induction of MCH-stimulated calcium mobilization. This functional association suggests that RGS8 may represent a new therapeutic target for the development of novel pharmaceutical agents.
Collapse
Affiliation(s)
- Mayumi Miyamoto-Matsubara
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Kagamiyama, Hiroshima 739-8521, Japan
| | | | | | | | | |
Collapse
|
47
|
Conner M, Hicks MR, Dafforn T, Knowles TJ, Ludwig C, Staddon S, Overduin M, Günther UL, Thome J, Wheatley M, Poyner DR, Conner AC. Functional and biophysical analysis of the C-terminus of the CGRP-receptor; a family B GPCR. Biochemistry 2008; 47:8434-44. [PMID: 18636754 DOI: 10.1021/bi8004126] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-protein coupled receptors (GPCRs) typically have a functionally important C-terminus which, in the largest subfamily (family A), includes a membrane-parallel eighth helix. Mutations of this region are associated with several diseases. There are few C-terminal studies on the family B GPCRs and no data supporting the existence of a similar eighth helix in this second major subfamily, which has little or no sequence homology to family A GPCRs. Here we show that the C-terminus of a family B GPCR (CLR) has a disparate region from N400 to C436 required for CGRP-mediated internalization, and a proximal region of twelve residues (from G388 to W399), in a similar position to the family A eighth helix, required for receptor localization at the cell surface. A combination of circular and linear dichroism, fluorescence and modified waterLOGSY NMR spectroscopy (SALMON) demonstrated that a peptide mimetic of this domain readily forms a membrane-parallel helix anchored to the liposome by an interfacial tryptophan residue. The study reveals two key functions held within the C-terminus of a family B GPCR and presents support for an eighth helical region with striking topological similarity to the nonhomologous family A receptor. This helix structure appears to be found in most other family B GPCRs.
Collapse
|
48
|
Suvorova ES, Gripentrog JM, Oppermann M, Miettinen HM. Role of the carboxyl terminal di-leucine in phosphorylation and internalization of C5a receptor. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:1261-70. [PMID: 18346468 PMCID: PMC2430410 DOI: 10.1016/j.bbamcr.2008.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/13/2008] [Accepted: 02/04/2008] [Indexed: 01/15/2023]
Abstract
The carboxyl tail of G protein-coupled receptors contains motifs that regulate receptor interactions with intracellular partners. Activation of the human neutrophil complement fragment C5a receptor (C5aR) is terminated by phosphorylation of the carboxyl tail followed by receptor internalization. In this study, we demonstrated that bulky hydrophobic residues in the membrane-proximal region of the C5aR carboxyl tail play an important role in proper structure and function of the receptor: Substitution of leucine 319 with alanine (L319A) resulted in receptor retention in the endoplasmic reticulum, whereas a L318A substitution allowed receptor transport to the cell surface, but showed slow internalization upon activation, presumably due to a defect in phosphorylation by both PKC and GRK. Normal agonist-induced activation of ERK1/2 and intracellular calcium release suggested that the L318A mutation did not affect receptor signaling. Binding of GRK2 and PKCbetaII to intracellular loop 3 of C5aR in vitro indicated that mutagenesis of L318 did not affect kinase binding. Limited proteolysis with trypsin revealed a conformational difference between wild type and mutant receptor. Our studies support a model in which the L318/L319 stabilizes an amphipathic helix (Q305-R320) in the membrane-proximal region of C5aR.
Collapse
Affiliation(s)
- Elena S. Suvorova
- Department of Microbiology, Montana State University, Bozeman, MT 59717 USA
| | | | - Martin Oppermann
- Department of Cellular and Molecular Immunology, Georg-August-University, Göttingen, 37073 Germany
| | - Heini M. Miettinen
- Department of Microbiology, Montana State University, Bozeman, MT 59717 USA
| |
Collapse
|
49
|
Saito Y, Nagasaki H. The melanin-concentrating hormone system and its physiological functions. Results Probl Cell Differ 2008; 46:159-179. [PMID: 18227983 DOI: 10.1007/400_2007_052] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide that was originally isolated from salmon pituitary where it causes pigment aggregation. MCH is also abundantly present in mammalian neurons and expressed in the lateral hypothalamus and zona incerta, brain regions that are known to be at the center of feeding behavior. MCH binds to and activates two G protein-coupled receptors, MCH1R and MCH2R. Although MCH2R is non-functional in rodents, genetic and pharmacological studies have demonstrated that rodent MCH1R is involved in the regulation of feeding behavior and energy balance. Unexpectedly, some antagonists have provided evidence that MCH signaling participates in the regulation of other processes, such as emotion and stress. The discovery of MCH receptors has extensively promoted the progress of MCH studies and may represent an ideal example of how deorphanized receptors can open new directions toward more detailed physiological studies.
Collapse
Affiliation(s)
- Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| | | |
Collapse
|
50
|
Lalueza-Fox C, Römpler H, Caramelli D, Stäubert C, Catalano G, Hughes D, Rohland N, Pilli E, Longo L, Condemi S, de la Rasilla M, Fortea J, Rosas A, Stoneking M, Schöneberg T, Bertranpetit J, Hofreiter M. A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Science 2007; 318:1453-5. [PMID: 17962522 DOI: 10.1126/science.1147417] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The melanocortin 1 receptor (MC1R) regulates pigmentation in humans and other vertebrates. Variants of MC1R with reduced function are associated with pale skin color and red hair in humans of primarily European origin. We amplified and sequenced a fragment of the MC1R gene (mc1r) from two Neanderthal remains. Both specimens have a mutation that was not found in approximately 3700 modern humans analyzed. Functional analyses show that this variant reduces MC1R activity to a level that alters hair and/or skin pigmentation in humans. The impaired activity of this variant suggests that Neanderthals varied in pigmentation levels, potentially on the scale observed in modern humans. Our data suggest that inactive MC1R variants evolved independently in both modern humans and Neanderthals.
Collapse
|