1
|
van Balkum M, Schreurs MW, Visser WE, Peeters RP, Dik WA. Comparison of two different TSH-receptor antibody assays: A clinical practice study. Heliyon 2023; 9:e22468. [PMID: 38107298 PMCID: PMC10724564 DOI: 10.1016/j.heliyon.2023.e22468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Background Graves' disease (GD) is caused by the production of TSH-receptor (TSHR) stimulating auto-antibodies. Over the years various TSHR-antibody (TRAb) detection assays have been developed. Most clinical laboratories use competitive TSH-binding inhibitory immunoglobulin (TBII) assays, which measure the total amount of stimulating and blocking auto-antibodies. Selective detection of TSHR stimulating auto-antibodies (TSI) was previously only possible with functional cell-based bioassays. However, more recently an automated bridge-based binding assay to more specifically measure TSI has become available. The aim of our study was to compare the third-generation automated competitive immunoassay (TBII) with the automated bridge immunoassay (TSI) in clinical practice in an academic thyroid expert center. Methods A retrospective study in 356 patients with Graves' disease, Graves orbitopathy (GO), and other (thyroid) disease treated in an academic thyroid center was performed. All samples were analyzed for TBII and TSI. For both assays, sensitivity, specificity, positive predictive value (PVV), negative predictive value (NPV) and diagnostic odds ratios were calculated using different cut-offs for negativity. Results Using the provided cut-off, the overall sensitivity appeared similar between TBII and TSI, but TSI showed higher overall specificity, PPV, NPV and diagnostic odds ratio. Using two or three times the cut-off for negativity resulted in a decrease in sensitivity, but an increase in specificity and PPV, which was most pronounced for the TBII-assay. Analysis in a subgroup of newly diagnosed treatment naïve GD/GO patients also revealed overall favorable results for the TSI-assay. Increasing the cut-off for negativity resulted in increased specificity for both assays, with similar results using two or three times the cut-off. Most patients with concordant positive results for TBII and TSI suffered from GD or GD + GO (n = 110, 95.6 %), while patients negative for both TBII and TSI mostly suffered from other (thyroid) disease (n = 143, 77.3 %). From patients with positive TBII but negative TSI only 42.1 % had GD/GO (n = 16), whereas 57.9 % (n = 22) had other (thyroid) disease. In contrast, 88.9 % of patients with positive TSI but negative TBII had GD/GO (n = 16), whereas 11.1 % (n = 2) had other (thyroid) disease. Conclusion In our academic thyroid center, the diagnostic performance of the TSI-assay outperformed the TBII-assay. Using a higher cut-off value for negativity can be helpful in assessing clinical relevance.
Collapse
Affiliation(s)
- Mathé van Balkum
- Department of Internal Medicine, the Netherlands
- Academic Center for Thyroid Diseases, Dr. Molewaterplein 40, 3015 CE, Rotterdam, the Netherlands
| | - Marco W.J. Schreurs
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - W. Edward Visser
- Department of Internal Medicine, the Netherlands
- Academic Center for Thyroid Diseases, Dr. Molewaterplein 40, 3015 CE, Rotterdam, the Netherlands
| | - Robin P. Peeters
- Department of Internal Medicine, the Netherlands
- Academic Center for Thyroid Diseases, Dr. Molewaterplein 40, 3015 CE, Rotterdam, the Netherlands
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Academic Center for Thyroid Diseases, Dr. Molewaterplein 40, 3015 CE, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Shpakov AO. Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands. Int J Mol Sci 2023; 24:6187. [PMID: 37047169 PMCID: PMC10094638 DOI: 10.3390/ijms24076187] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Allosteric regulation is critical for the functioning of G protein-coupled receptors (GPCRs) and their signaling pathways. Endogenous allosteric regulators of GPCRs are simple ions, various biomolecules, and protein components of GPCR signaling (G proteins and β-arrestins). The stability and functional activity of GPCR complexes is also due to multicenter allosteric interactions between protomers. The complexity of allosteric effects caused by numerous regulators differing in structure, availability, and mechanisms of action predetermines the multiplicity and different topology of allosteric sites in GPCRs. These sites can be localized in extracellular loops; inside the transmembrane tunnel and in its upper and lower vestibules; in cytoplasmic loops; and on the outer, membrane-contacting surface of the transmembrane domain. They are involved in the regulation of basal and orthosteric agonist-stimulated receptor activity, biased agonism, GPCR-complex formation, and endocytosis. They are targets for a large number of synthetic allosteric regulators and modulators, including those constructed using molecular docking. The review is devoted to the principles and mechanisms of GPCRs allosteric regulation, the multiplicity of allosteric sites and their topology, and the endogenous and synthetic allosteric regulators, including autoantibodies and pepducins. The allosteric regulation of chemokine receptors, proteinase-activated receptors, thyroid-stimulating and luteinizing hormone receptors, and beta-adrenergic receptors are described in more detail.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
3
|
Morshed S, Latif R, Davies TF. Signal responses to neutral TSH receptor antibody - A cycle of damage in the pathophysiology of Graves' disease. J Autoimmun 2023; 136:103012. [PMID: 36898184 DOI: 10.1016/j.jaut.2023.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 02/17/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Graves' disease is associated with TSH receptor (TSHR) antibodies of variable bioactivity including "neutral" antibodies (N-TSHR-Ab) that bind to the hinge region of the TSHR ectodomain. We have previously found that such antibodies induced thyroid cell apoptosis via excessive mitochondrial and ER stress with elevated reactive oxygen species (ROS). However, the detailed mechanisms by which excess ROS was induced remained unclear. OBJECTIVES To determine how ROS is induced by N-TSHR-monoclonal antibodies (mAb, MC1) mediated signaling and to measure stress in polyorganelles. METHODS Total ROS and mitochondrial ROS was measured by fluorometry of live rat thyrocytes. Live-cell imaging of labelled organelles was carried out using red or green fluorescent dyes. Proteins were detected by Li-Cor Western immunoblots and immunocytochemistry. RESULTS Endocytosis of N-TSHR-mAb induced ROS, disturbed vesicular trafficking, damaged organelles and failed to induce lysosomal degradation and autophagy. We found that the endocytosis triggered signaling cascades involving Gα13 and PKC-δ leading to intrinsic thyroid cell apoptosis. CONCLUSIONS These studies define the mechanism of ROS induction in thyroid cells following the endocytosis of N-TSHR-Ab/TSHR complexes. We suggest that a viscous cycle of stress initiated by cellular ROS and induced by N-TSHR-mAbs may orchestrate overt intra-thyroidal, retro-orbital, and intra-dermal inflammatory autoimmune reactions in patients with Graves' disease.
Collapse
Affiliation(s)
- Syed Morshed
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J, Peters VA Medical Center, New York, NY, USA.
| | - Rauf Latif
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J, Peters VA Medical Center, New York, NY, USA
| | - Terry F Davies
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J, Peters VA Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Tagami T, Moriyama K. Characterization of apparently paradoxical thyrotropin binding inhibitory immunoglobulins with neutral bioactivity. J Endocr Soc 2022; 6:bvac070. [PMID: 35611323 PMCID: PMC9123305 DOI: 10.1210/jendso/bvac070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Context The thyrotropin (TSH) receptor (TSH-R) autoantibody activity is clinically measured by inhibition of labeled ligand (TSH or M22) binding to the TSH-R (TSH-binding inhibitory immunoglobulin [TBII]) or by stimulation (TSH-R stimulating antibody [TSAb]) or inhibition (TSH-R blocking antibody [TSBAb]) of 3′,5′-cyclic adenosine 5′-monophosphate (cAMP) production in isolated cells. Objective We experienced a patient with hypothyroid Graves disease (GD) having strong positive TBII but with almost neutral bioactivities on the TSH-R. The aim of this study is the characterization of this apparently paradoxical TBII (serum sample S). Methods We first compared the TBII, TSAb, and TSBAb activities of serum sample S with mixtures of stimulating (S-mAb) and blocking monoclonal Ab (B-mAb). Next, we serially measured cAMPs stimulated by various serum samples in the presence or absence of TSH. Results Mixtures of S-mAb and B-mAb did not reproduce the characteristics of serum sample S. Instead, serum sample S had a unique feature that blocked the TSH-stimulated cAMP initially but disappeared the blocking activity thereafter to reach the control level. Conclusion We present here the TBIIs with neutral bioactivities found in the patient with autoimmune thyroid disease, which strongly inhibit TSH binding to the TSH-R but exerts neither TSAb nor TSBAb activity. Differences in the methods of detecting TRAb between TBII in vitro and bioassay may cause the discrepancy. Although serum sample S may be an extreme example, a variety of TRAb that not only stimulates or blocks but also interferes with TSH-R binding for only a short time may exist in the serum samples of GD patients.
Collapse
Affiliation(s)
- Tetsuya Tagami
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Kenji Moriyama
- Department of Medicine and Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo, Japan
| |
Collapse
|
5
|
Rescue of thyroid cells from antibody induced cell death via induction of autophagy. J Autoimmun 2021; 126:102746. [PMID: 34801870 DOI: 10.1016/j.jaut.2021.102746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Graves' disease (GD) is associated with thyroid stimulating hormone (TSH) receptor (TSHR) antibodies of variable bioactivity. We have previously characterized "neutral" TSHR antibodies (N-TSHR-Abs) that bind to the hinge region of the TSHR ectodomain. We showed that an N-TSHR monoclonal antibody (mAb) failed to induce any G proteins to sustain survival signaling and lead to excessive stress and apoptosis. Furthermore, the addition of TSH, or the antioxidant N-acetyl-l-cysteine (NAC), rescued N-TSHR-mAb-induced apoptotic death. However, the detailed mechanisms of this rescue remained unclear. METHODS Autophagy is activated in response to diverse stress related stimuli so we have, therefore, studied the autophagy response in rat thyroid cells (FRTL-5) during N-TSHR-mAb induced thyrocyte stress and apoptosis using the In Cell Western technique for quantitation along with immunocytochemistry. RESULTS Under starvation conditions with N-TSHR-mAb the addition of TSH or NAC prevented thyroid cell death by enhancing autophagy. This was evidenced by elevated levels of autophagy related proteins including beclin 1, LC3A, LC3B, ULK1, p62, and also activated pink and perkin mitophagy related proteins. The phenomenon was further confirmed by image analyses using Cyto-ID and Mito-ID autophagy detection systems. We also found that either TSH or NAC enhanced PKA, Akt, mTORC, AMPK, Sirtuins, PGC1α, NRF-2, mitofusin-2, TFAM and catalase in the N-TSHR-mAb stressed cells. Thus TSH or NAC restored cell survival signaling which reduced cell stress and enhanced mitochondrial biogenesis. The N-TSHR-mAb also activated cytochrome-C, Bax, caspase-9, caspase-3A, and had less effect on FADD or caspase-8 indicating activation of the intrinsic pathway for apoptosis. CONCLUSIONS These findings indicated that TSH or antioxidant can rescue thyroid cells from N-TSHR-mAb induced apoptosis via enhanced autophagy. These observations signify that N-TSHR-mAb in GD under low TSH conditions caused by the hyperthyroidism could be detrimental for thyrocyte survival which would be another factor able to precipitate ongoing autoinflammation.
Collapse
|
6
|
Sun S, Summachiwakij S, Schneck O, Morshed SA, Ma R, Latif R, Davies TF. Antigenic "Hot- Spots" on the TSH Receptor Hinge Region. Front Endocrinol (Lausanne) 2019; 9:765. [PMID: 30666231 PMCID: PMC6330735 DOI: 10.3389/fendo.2018.00765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022] Open
Abstract
The TSH receptor (TSHR) hinge region was previously considered an inert scaffold connecting the leucine-rich ectodomain to the transmembrane region of the receptor. However, mutation studies have established the hinge region to be an extended hormone-binding site in addition to containing a region which is cleaved thus dividing the receptor intoα | ' (A) and β (B) subunits. Furthermore, we have shown in-vitro that monoclonal antibodies directed to the cleaved part of the hinge region (often termed "neutral" antibodies) can induce thyroid cell apoptosis in the absence of cyclic AMP signaling. The demonstration of neutral antibodies in patients with Graves' disease suggests their potential involvement in disease pathology thus making the hinge a potentially important antigenic target. Here we examine the evolution of the antibody immune response to the entire TSHR hinge region (aa280-410) after intense immunization with full-length TSHR cDNA in a mouse (BALB/c) model in order to examine the immunogenicity of this critical receptor structure. We found that TSHR hinge region antibodies were detected in 95% of the immunized mice. The antibody responses were largely restricted to residues 352-410 covering three major epitopes and not merely confined to the cleaved portion. These data indicated the presence of novel antigenic "hotspots" within the carboxyl terminus of the hinge region and demonstrate that the hinge region of the TSHR contains an immunogenic pocket that is involved in the highly heterogeneous immune response to the TSHR. The presence of such TSHR antibodies suggests that they may play an active role in the immune repertoire marshaled against the TSHR and may influence the Graves' disease phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | - Rauf Latif
- Thyroid Research Unit, Department of Medicine, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | |
Collapse
|
7
|
Shpakov AO, Zharova OA, Derkach KV. Antibodies to extracellular regions of G protein-coupled receptors and receptor tyrosine kinases as one of the causes of autoimmune diseases. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s1234567817020021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Rapoport B, McLachlan SM. TSH Receptor Cleavage Into Subunits and Shedding of the A-Subunit; A Molecular and Clinical Perspective. Endocr Rev 2016; 37:114-34. [PMID: 26799472 PMCID: PMC4823380 DOI: 10.1210/er.2015-1098] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/14/2016] [Indexed: 02/07/2023]
Abstract
The TSH receptor (TSHR) on the surface of thyrocytes is unique among the glycoprotein hormone receptors in comprising two subunits: an extracellular A-subunit, and a largely transmembrane and cytosolic B-subunit. Unlike its ligand TSH, whose subunits are encoded by two genes, the TSHR is expressed as a single polypeptide that subsequently undergoes intramolecular cleavage into disulfide-linked subunits. Cleavage is associated with removal of a C-peptide region, a mechanism similar in some respects to insulin cleavage into disulfide linked A- and B-subunits with loss of a C-peptide region. The potential pathophysiological importance of TSHR cleavage into A- and B-subunits is that some A-subunits are shed from the cell surface. Considerable experimental evidence supports the concept that A-subunit shedding in genetically susceptible individuals is a factor contributing to the induction and/or affinity maturation of pathogenic thyroid-stimulating autoantibodies, the direct cause of Graves' disease. The noncleaving gonadotropin receptors are not associated with autoantibodies that induce a "Graves' disease of the gonads." We also review herein current information on the location of the cleavage sites, the enzyme(s) responsible for cleavage, the mechanism by which A-subunits are shed, and the effects of cleavage on receptor signaling.
Collapse
Affiliation(s)
- Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| | - Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| |
Collapse
|
9
|
Rapoport B, McLachlan SM. Withdrawn: TSH Receptor Cleavage Into Subunits and Shedding of the A-Subunit; A Molecular and Clinical Perspective. Endocr Rev 2016; 2016:23-42. [PMID: 27454362 PMCID: PMC6958993 DOI: 10.1210/er.2015-1098.2016.1.test] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/14/2016] [Indexed: 12/29/2022]
Abstract
The TSH receptor (TSHR) on the surface of thyrocytes is unique among the glycoprotein hormone receptors in comprising two subunits: an extracellular A-subunit, and a largely transmembrane and cytosolic B-subunit. Unlike its ligand TSH, whose subunits are encoded by two genes, the TSHR is expressed as a single polypeptide that subsequently undergoes intramolecular cleavage into disulfide-linked subunits. Cleavage is associated with removal of a C-peptide region, a mechanism similar in some respects to insulin cleavage into disulfide linked A- and B-subunits with lossofaC-peptideregion. The potential pathophysiological importance of TSHR cleavage into A-and B-subunits is that some A-subunits are shed from the cell surface. Considerable experimental evidence supports the concept that A-subunit shedding in genetically susceptible individuals is a factor contributing to the induction and/or affinity maturation of pathogenic thyroid-stimulating autoantibodies, the direct cause of Graves' disease. The noncleaving gonadotropin receptors are not associated with autoantibodies that induce a "Graves' disease of the gonads." We also review herein current information on the location of the cleavage sites, the enzyme(s) responsible for cleavage, the mechanism by which A-subunits are shed, and the effects of cleavage on receptor signaling. (Endocrine Reviews 37: 114-134, 2016).
Collapse
Affiliation(s)
- Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| | - Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| |
Collapse
|
10
|
Giuliani C, Saji M, Bucci I, Napolitano G. Bioassays for TSH Receptor Autoantibodies, from FRTL-5 Cells to TSH Receptor-LH/CG Receptor Chimeras: The Contribution of Leonard D. Kohn. Front Endocrinol (Lausanne) 2016; 7:103. [PMID: 27504107 PMCID: PMC4958915 DOI: 10.3389/fendo.2016.00103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/12/2016] [Indexed: 12/16/2022] Open
Abstract
Since the discovery 60 years ago of the "long-acting thyroid stimulator" by Adams and Purves, great progress has been made in the detection of thyroid-stimulating hormone (TSH) receptor (TSHR) autoantibodies (TRAbs) in Graves' disease. Today, commercial assays are available that can detect TRAbs with high accuracy and provide diagnostic and prognostic evaluation of patients with Graves' disease. The present review focuses on the development of TRAbs bioassays, and particularly on the role that Leonard D. Kohn had in this. Indeed, 30 years ago, the Kohn group developed a bioassay based on the use of FRTL-5 cells that was characterized by high reproducibility, feasibility, and diagnostic accuracy. Using this FRTL-5 bioassay, Kohn and his colleagues were the first to develop monoclonal antibodies (moAbs) against the TSHR. Furthermore, they demonstrated the multifaceted functional nature of TRAbs in patients with Graves' disease, with the identification of stimulating and blocking TRAbs, and even antibodies that activated pathways other than cAMP. After the cloning of the TSHR, the Kohn laboratory constructed human TSHR-rat luteinizing hormone/chorionic gonadotropin receptor chimeras. This paved the way to a new bioassay based on the use of non-thyroid cells transfected with the Mc4 chimera. The new Mc4 bioassay is characterized by high diagnostic and prognostic accuracy, greater than for other assays. The availability of a commercial kit based on the Mc4 chimera is spreading the use of this assay worldwide, indicating its benefits for these patients with Graves' disease. This review also describes the main contributions made by other researchers in TSHR molecular biology and TRAbs assay, especially with the development of highly potent moAbs. A comparison of the diagnostic accuracies of the main TRAbs assays, as both immunoassays and bioassays, is also provided.
Collapse
Affiliation(s)
- Cesidio Giuliani
- Unit of Endocrinology, Department of Medicine and Sciences of Aging, Ce.S.I.-Me.T., University of Chieti–Pescara, Chieti, Italy
- *Correspondence: Cesidio Giuliani,
| | - Motoyasu Saji
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, OH, USA
| | - Ines Bucci
- Unit of Endocrinology, Department of Medicine and Sciences of Aging, Ce.S.I.-Me.T., University of Chieti–Pescara, Chieti, Italy
| | - Giorgio Napolitano
- Unit of Endocrinology, Department of Medicine and Sciences of Aging, Ce.S.I.-Me.T., University of Chieti–Pescara, Chieti, Italy
| |
Collapse
|
11
|
Morshed SA, Davies TF. Graves' Disease Mechanisms: The Role of Stimulating, Blocking, and Cleavage Region TSH Receptor Antibodies. Horm Metab Res 2015; 47:727-34. [PMID: 26361259 PMCID: PMC5047290 DOI: 10.1055/s-0035-1559633] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The immunologic processes involved in Graves' disease (GD) have one unique characteristic--the autoantibodies to the TSH receptor (TSHR)--which have both linear and conformational epitopes. Three types of TSHR antibodies (stimulating, blocking, and cleavage) with different functional capabilities have been described in GD patients, which induce different signaling effects varying from thyroid cell proliferation to thyroid cell death. The establishment of animal models of GD by TSHR antibody transfer or by immunization with TSHR antigen has confirmed its pathogenic role and, therefore, GD is the result of a breakdown in TSHR tolerance. Here we review some of the characteristics of TSHR antibodies with a special emphasis on new developments in our understanding of what were previously called "neutral" antibodies and which we now characterize as autoantibodies to the "cleavage" region of the TSHR ectodomain.
Collapse
Affiliation(s)
- S A Morshed
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, James J. Peters VA Medical Center, New York, USA
| | - T F Davies
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, James J. Peters VA Medical Center, New York, USA
| |
Collapse
|
12
|
Monoclonal antibody binding-site diversity assessment with a cell-based clustering assay. J Immunol Methods 2014; 405:1-14. [DOI: 10.1016/j.jim.2013.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 12/11/2022]
|
13
|
Morshed SA, Latif R, Davies TF. Delineating the autoimmune mechanisms in Graves' disease. Immunol Res 2013; 54:191-203. [PMID: 22434518 DOI: 10.1007/s12026-012-8312-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The immunologic processes involved in autoimmune thyroid disease (AITD), particularly Graves' disease (GD), are similar to other autoimmune diseases with the emphasis on the antibodies as the most unique aspect. These characteristics include a lymphocytic infiltrate at the target organs, the presence of antigen-reactive T and B cells and antibodies, and the establishment of animal models of GD by antibody transfer or immunization with antigen. Similar to other autoimmune diseases, risk factors for GD include the presence of multiple susceptibility genes, including certain HLA alleles, and the TSHR gene itself. In addition, a variety of known risk factors and precipitators have been characterized including the influence of sex and sex hormones, pregnancy, stress, infection, iodine and other potential environmental factors. The pathogenesis of GD is likely the result of a breakdown in the tolerance mechanisms, both at central and peripheral levels. Different subsets of T and B cells together with their regulatory populations play important roles in the propagation and maintenance of the disease process. Understanding different mechanistic in the complex system biology interplay will help to identify unique factors contributing to the AITD pathogenesis.
Collapse
Affiliation(s)
- Syed A Morshed
- Thyroid Research Unit, Mount Sinai School of Medicine, James J. Peters VA Medical Center, 130 West Kingsbridge Rd, Bronx, New York, NY 10468, USA.
| | | | | |
Collapse
|
14
|
Antibody protection reveals extended epitopes on the human TSH receptor. PLoS One 2012; 7:e44669. [PMID: 22957097 PMCID: PMC3434159 DOI: 10.1371/journal.pone.0044669] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/06/2012] [Indexed: 11/19/2022] Open
Abstract
Stimulating, and some blocking, antibodies to the TSH receptor (TSHR) have conformation-dependent epitopes reported to involve primarily the leucine rich repeat region of the ectodomain (LRD). However, successful crystallization of TSHR residues 22-260 has omitted important extracellular non-LRD residues including the hinge region which connects the TSHR ectodomain to the transmembrane domain and which is involved in ligand induced signal transduction. The aim of the present study, therefore, was to determine if TSHR antibodies (TSHR-Abs) have non-LRD binding sites outside the LRD. To obtain this information we employed the method of epitope protection in which we first protected TSHR residues 1-412 with intact TSHR antibodies and then enzymatically digested the unprotected residues. Those peptides remaining were subsequently delineated by mass spectrometry. Fourteen out of 23 of the reported stimulating monoclonal TSHR-Ab crystal contact residues were protected by this technique which may reflect the higher binding energies of certain residues detected in this approach. Comparing the protected epitopes of two stimulating TSHR-Abs we found both similarities and differences but both antibodies also contacted the hinge region and the amino terminus of the TSHR following the signal peptide and encompassing cysteine box 1 which has previously been shown to be important for TSH binding and activation. A monoclonal blocking TSHR antibody revealed a similar pattern of binding regions but the residues that it contacted on the LRD were again distinct. These data demonstrated that conformationally dependent TSHR-Abs had epitopes not confined to the LRDs but also incorporated epitopes not revealed in the available crystal structure. Furthermore, the data also indicated that in addition to overlapping contact regions within the LRD, there are unique epitope patterns for each of the antibodies which may contribute to their functional heterogeneity.
Collapse
|
15
|
Majumdar R, Dighe RR. The hinge region of human thyroid-stimulating hormone (TSH) receptor operates as a tunable switch between hormone binding and receptor activation. PLoS One 2012; 7:e40291. [PMID: 22792265 PMCID: PMC3391290 DOI: 10.1371/journal.pone.0040291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 06/05/2012] [Indexed: 01/12/2023] Open
Abstract
The mechanism by which the hinge regions of glycoprotein hormone receptors couple hormone binding to activation of downstream effecters is not clearly understood. In the present study, agonistic (311.62) and antagonistic (311.87) monoclonal antibodies (MAbs) directed against the TSH receptor extracellular domain were used to elucidate role of the hinge region in receptor activation. MAb 311.62 which identifies the LRR/Cb-2 junction (aa 265–275), increased the affinity of TSHR for the hormone while concomitantly decreasing its efficacy, whereas MAb 311.87 recognizing LRR 7–9 (aa 201–259) acted as a non-competitive inhibitor of Thyroid stimulating hormone (TSH) binding. Binding of MAbs was sensitive to the conformational changes caused by the activating and inactivating mutations and exhibited differential effects on hormone binding and response of these mutants. By studying the effects of these MAbs on truncation and chimeric mutants of thyroid stimulating hormone receptor (TSHR), this study confirms the tethered inverse agonistic role played by the hinge region and maps the interactions between TSHR hinge region and exoloops responsible for maintenance of the receptor in its basal state. Mechanistic studies on the antibody-receptor interactions suggest that MAb 311.87 is an allosteric insurmountable antagonist and inhibits initiation of the hormone induced conformational changes in the hinge region, whereas MAb 311.62 acts as a partial agonist that recognizes a conformational epitope critical for coupling of hormone binding to receptor activation. The hinge region, probably in close proximity with the α-subunit in the hormone-receptor complex, acts as a tunable switch between hormone binding and receptor activation.
Collapse
MESH Headings
- Algorithms
- Allosteric Regulation
- Amino Acid Motifs
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- Binding, Competitive
- Cattle
- Cell Surface Display Techniques
- Cyclic AMP/metabolism
- Epitope Mapping
- HEK293 Cells
- Humans
- Mutagenesis, Site-Directed
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Thyrotropin/chemistry
- Receptors, Thyrotropin/genetics
- Receptors, Thyrotropin/immunology
- Receptors, Thyrotropin/metabolism
- Second Messenger Systems
- Thyrotropin/metabolism
- Thyrotropin/physiology
Collapse
Affiliation(s)
- Ritankar Majumdar
- Department of Molecular Reproduction, Development and Genetics,Indian Institute of Science, Bangalore, Karnataka, India
| | - Rajan R. Dighe
- Department of Molecular Reproduction, Development and Genetics,Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
16
|
Miller PL, Wolfert RL, Diedrich G. Epitope binning of murine monoclonal antibodies by a multiplexed pairing assay. J Immunol Methods 2011; 365:118-25. [DOI: 10.1016/j.jim.2010.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 09/28/2010] [Accepted: 12/14/2010] [Indexed: 11/29/2022]
|
17
|
Morshed SA, Ando T, Latif R, Davies TF. Neutral antibodies to the TSH receptor are present in Graves' disease and regulate selective signaling cascades. Endocrinology 2010; 151:5537-49. [PMID: 20844004 PMCID: PMC2954721 DOI: 10.1210/en.2010-0424] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TSH receptor (TSHR) antibodies (Abs) may be stimulating, blocking, or neutral in their functional influences and are found in patients with autoimmune thyroid disease, especially Graves' disease (GD). Stimulators are known to activate the thyroid epithelial cells via both Gs- and Gq-coupled signaling pathways, whereas blockers inhibit the action of TSH and may act as weak agonists. However, TSHR neutral Abs do not block TSH binding and are unable to induce cAMP via Gsα. The importance of such neutral Abs in GD remains unclear because their functional consequence has been assumed to be zero. We hypothesized that: 1) neutral TSHR Abs are more common to GD than generally recognized; 2) they may induce distinct signaling imprints at the TSHR not seen with TSH itself; and 3) these signaling events may alter cellular function. To evaluate these hypotheses, we first confirmed the presence of neutral TSHR Abs in sera from patients with GD and then, using mouse and hamster neutral TSHR monoclonal Abs (N-mAbs) performed detailed signaling studies, including a proteomic Ab array, with rat thyrocytes (FRTL-5) as targets. This allowed us to examine a battery of signaling cascades and their downstream effectors. Neutral TSHR Abs were indeed frequently present in sera from patients with GD. Sixteen of 27 patients (59%) had detectable neutral TSHR Abs by competition assay with N-mAbs. On examining signaling cascades, we found that N-mAbs induced signal transduction, primarily via the protein kinase A II cascade. In addition to the activation of phosphatidylinositol 3K/Akt, N-mAbs, unlike TSH, had the ability to exclusively activate the mammalian target of rapamycin/p70 S6K, nuclear factor-κB, and MAPK-ERK1/2/p38α signaling cascades and their downstream effectors p90 ribosomal kinase/MAPK-interacting kinase-1/mitogen and stress-activated kinase-1 and N-mAbs activated all forms of protein kinase C isozymes. To define the downstream effector mechanisms produced by these signaling cascades, cytokine production, proliferation, and apoptosis in thyrocytes were investigated. Although N-mAbs produced less cytokines and proliferation compared with TSH, they had the distinction of inducing thyroid cell apoptosis under the experimental conditions used. When dissecting out possible mechanisms of apoptosis, we found that activation of multiple oxidative stress markers was the primary mechanism orchestrating the death signals. Therefore, using oxidative stress-induced apoptosis, N-mAbs may be capable of exacerbating the autoimmune response in GD via apoptotic cells inducing antigen-driven mechanisms. This may help explain the inflammatory nature of this common disorder.
Collapse
Affiliation(s)
- Syed A Morshed
- Thyroid Research Unit, Mount Sinai School of Medicine, James J. Peters Veterans Affairs Medical Center, New York, New York 10468, USA.
| | | | | | | |
Collapse
|
18
|
Zöphel K, Roggenbuck D, Schott M. Clinical review about TRAb assay's history. Autoimmun Rev 2010; 9:695-700. [PMID: 20594972 DOI: 10.1016/j.autrev.2010.05.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 05/27/2010] [Indexed: 11/19/2022]
Abstract
Commercial assays to measure thyroid stimulating hormone (TSH) receptor (TSHR) autoantibodies (TRAb) have been available for the serological diagnosis of autoimmune thyroid diseases (AITD) for several years. The widespread assessment of this parameter has identified Graves' disease (GD) as a common organ-specific autoimmune disease. Within the present article we aim to review immunobiological and epidemiological aspects as well as diagnostic methods available for the detection of TRAb. Over the last decade, TRAb detection in GD became more sensitive since TRAb assays were being largely improved by named research groups. Therefore, functional assay (fas) and diagnostic sensitivity of current TRAb assays will be discussed. Within the second part of this review we will focus on clinical applications of TRAb measurement for outcome prediction of GD as well as the importance of this method to distinguish GD from other AITD.
Collapse
Affiliation(s)
- Klaus Zöphel
- Department of Nuclear Medicine, University of Technology Dresden, Germany.
| | | | | |
Collapse
|
19
|
|
20
|
Latif R, Morshed SA, Zaidi M, Davies TF. The thyroid-stimulating hormone receptor: impact of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on multimerization, cleavage, and signaling. Endocrinol Metab Clin North Am 2009; 38:319-41, viii. [PMID: 19328414 DOI: 10.1016/j.ecl.2009.01.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The thyroid-stimulating hormone receptor (TSHR) has a central role in thyrocyte function and is also one of the major autoantigens for the autoimmune thyroid diseases. We review the post-translational processing, multimerization, and intramolecular cleavage of TSHR, all of which may modulate its signal transduction. The recent characterization of monoclonal antibodies to the TSHR, including stimulating, blocking, and neutral antibodies, have also revealed unique biologic insights into receptor activation and the variety of these TSHR antibodies may help explain the multiple clinical phenotypes seen in autoimmune thyroid diseases. Knowledge of the structure/function relationship of the TSHR is beginning to provide a greater understanding of thyroid physiology and thyroid autoimmunity.
Collapse
Affiliation(s)
- Rauf Latif
- Thyroid Research Unit, Mount Sinai School of Medicine and the James J. Peters VA Medical Center, New York, NY 10468, USA.
| | | | | | | |
Collapse
|
21
|
Michalek K, Morshed SA, Latif R, Davies TF. TSH receptor autoantibodies. Autoimmun Rev 2009; 9:113-6. [PMID: 19332151 DOI: 10.1016/j.autrev.2009.03.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 03/24/2009] [Indexed: 11/30/2022]
Abstract
Thyrotropin receptor autoantibodies (TSHR-Abs) of the stimulating variety are the hallmark of Graves' disease. The presence of immune defects leading to synthesis of TSHR-Abs causes hyperthyroidism and is associated with other extrathyroidal manifestations. Further characterization of these antibodies has now been made possible by the generation of monoclonal antibodies with this unique stimulating capacity as well as similar TSHR-Abs not associated with hyperthyroidism. Their present classification divides TSHR-Abs into stimulating, blocking (competing with TSH binding) and neutral (no signaling). Recent studies using monoclonal TSHR-Abs has revealed that stimulating and blocking antibodies bind to the receptor using mostly conformational epitopes, whilst neutral antibodies utilize exclusively linear peptides. Subtle differences in epitopes for stimulating and blocking antibodies account for the diversity of their biological actions. Recently non-classical signaling elicited by neutral antibodies has also been described, raising the need for a new classification of TSHR-Abs.
Collapse
Affiliation(s)
- Krzysztof Michalek
- Thyroid Research Unit, Mount Sinai School of Medicine, James J. Peters VA Medical Center, New York, NY 10468, USA
| | | | | | | |
Collapse
|
22
|
Abstract
The TSH receptor (TSHR) is constitutively active and is further enhanced by TSH ligand binding or by stimulating TSHR antibodies (TSHR-Abs) as seen in Graves' disease. TSH is known to activate the thyroid epithelial cell via both Galphas-cAMP/protein kinase A/ERK and Galphaq-Akt/protein kinase C coupled signaling networks. The recent development of monoclonal antibodies to the TSHR has enabled us to investigate the hypothesis that different TSHR-Abs may have unique signaling imprints that differ from TSH ligand itself. We have, therefore, performed sequential studies, using rat thyrocytes (FRTL-5, passages 5-20) as targets, to examine the signaling pathways activated by a series of monoclonal TSHR-Abs in comparison with TSH itself. Activation of key signaling molecules was estimated by specific immunoblots and/or enzyme immunoassays. Continuing constitutive TSHR activity in thyroid cells, deprived of TSH and serum for 48 h, was demonstrated by pathway-specific chemical inhibition. Under our experimental conditions, TSH ligand and TSHR-stimulating antibodies activated both Galphas and Galphaq effectors. Importantly, some TSHR-blocking and TSHR-neutral antibodies were also able to generate signals, influencing primarily the Galphaq effectors and induced cell proliferation. Most strikingly, antibodies that used the Galphaq cascades used c-Raf-ERK-p90RSK as a unique signaling cascade not activated by TSH. Our study demonstrated that individual TSHR-Abs had unique molecular signatures which resulted in sequential preferences. Because downstream thyroid cell signaling by the TSHR is both ligand dependent and independent, this may explain why TSHR-Abs are able to have variable influences on thyroid cell biology.
Collapse
Affiliation(s)
- Syed A Morshed
- Thyroid Research Unit, Mount Sinai School of Medicine, James J. Peters Veterans Affairs Medical Center, New York, New York 10468, USA.
| | | | | |
Collapse
|
23
|
Chen CR, McLachlan SM, Rapoport B. Identification of key amino acid residues in a thyrotropin receptor monoclonal antibody epitope provides insight into its inverse agonist and antagonist properties. Endocrinology 2008; 149:3427-34. [PMID: 18388191 PMCID: PMC2453077 DOI: 10.1210/en.2008-0207] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 03/26/2008] [Indexed: 11/19/2022]
Abstract
CS-17 is a murine monoclonal antibody to the human TSH receptor (TSHR) with both inverse agonist and antagonist properties. Thus, in the absence of ligand, CS-17 reduces constitutive TSHR cAMP generation and also competes for TSH binding to the receptor. The present data indicate that for both of these functions, the monovalent CS-17 Fab (50 kDa) behaves identically to the intact, divalent IgG molecule (150 kDa). The surprising observation that CS-17 competes for TSH binding to the human but not porcine TSHR enabled identification of a number of amino acids in its epitope. Replacement of only three human TSHR residues (Y195, Q235, and S243) with the homologous porcine TSHR residues totally abolishes CS-17 binding as detected by flow cytometry. TSH binding is unaffected. Of these residues, Y195 is most important, with Q235 and S243 contributing to CS-17 binding to a much lesser degree. The functional effects of CS-17 IgG and Fab on constitutive cAMP generation by porcinized human TSHR confirm the CS-17 binding data. The location of TSHR amino acid residues Y195, Q235, and S243 deduced from the crystal structure of the FSH receptor leucine-rich domain provides valuable insight into the CS-17 and TSH binding sites. Whereas hormone ligands bind primarily to the concave surface of the leucine-rich domains, a major portion of the CS-17 epitope lies on the opposite convex surface with a minor component in close proximity to known TSH binding residues.
Collapse
Affiliation(s)
- Chun-Rong Chen
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
24
|
Abstract
The application of molecular biology to the study of the thyrotropin receptor (TSHR) has led to major advances in our understanding of its structure, function, and relationship to the pathogenesis of Graves' disease. This review summarizes many of these features and also provides a personal perspective, questioning some assumptions and general concepts, as well as describing remaining challenges. Among the issues raised are the limits in our understanding of the spatial orientation of the structural domains of the TSHR, including the enigmatic hinge region. We review the phenomenon of TSHR intramolecular cleavage, the shedding of the A-subunit component of the ectodomain, and the importance of the latter in generating thyroid-stimulating antibodies. The epitopes of thyroid-stimulating and -blocking autoantibodies have been a confusing and controversial subject that requires review and evaluation of available data. Finally, we address the potential physiological or pathophysiological significance of TSHR multimerization in TSHR. Taken together, this review will, hopefully, convey the fascination and excitement that molecular biology has contributed to the study of the TSHR, especially as it relates to the pathogenesis of Graves' disease.
Collapse
Affiliation(s)
- Basil Rapoport
- Autoimmune Disease Unit, Cedars-Sinai Research Institute and UCLA School of Medicine, Los Angeles, California, USA.
| | | |
Collapse
|
25
|
Benvenga S, Santarpia L, Trimarchi F, Guarneri F. Human thyroid autoantigens and proteins of Yersinia and Borrelia share amino acid sequence homology that includes binding motifs to HLA-DR molecules and T-cell receptor. Thyroid 2006; 16:225-36. [PMID: 16571084 DOI: 10.1089/thy.2006.16.225] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We previously reported that the spirochete Borrelia burgdorferi could trigger autoimmune thyroid diseases (AITD). Subsequently, we showed local amino acid sequence homology between all human thyroid autoantigens (human thyrotropin receptor [hTSH-R], human thyroglobulin [hTg], human thyroperoxidase [hTPO], human sodium iodide symporter [hNIS]) and Borrelia proteins (n = 6,606), and between hTSH-R and Yersinia enterocolitica (n = 1,153). We have now updated our search of homology with Borrelia (n = 11,198 proteins) and extended our search on Yersinia to the entire species (n = 40,964 proteins). We also searched the homologous human and microbial sequences for peptide-binding motifs of HLA-DR molecules, because a number of these class II major histocompatibility complex (MHC) molecules (DR3, DR4, DR5, DR8, and DR9) are associated with AITD. Significant homologies were found for only 16 Borrelia proteins (5 with hTSH-R, 2 with hTg, 3 with hTPO, and 6 with hNIS) and only 19 Yersinia proteins (4 with hTSH-R, 2 with hTg, 2 with hTPO, and 11 with hNIS). Noteworthy, segments of thyroid autoantigens homologous to these microbial proteins are known to be autoantigenic. Also, the hTSH-R homologous region of one Borrelia protein (OspA) contains an immunodominant epitope that others have found to be homologous to hLFA-1. This is of interest, as the hLFA-1/ICAM-1 ligand/receptor pair is aberrantly expressed in the follicular cells of thyroids affected by Hashimoto's thyroiditis. A computer-assisted search detected antigenic peptide binding motifs to the DR molecules implicated in AITD. In conclusion, our in silico data do not directly demonstrate that Borrelia and Yersinia proteins trigger AITD but suggest that a restricted number of them might have the potential to, at least in persons with certain HLA-DR alleles.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Sezione di Endocrinologia del Dipartimento Clinico Sperimentale di Medicina e Farmacologia, Università di Messina, Messina, Italy.
| | | | | | | |
Collapse
|
26
|
Abstract
The most common cause of hyperthyroidism is Graves' disease, which represents a typical example of an organ-specific autoimmune condition. The exact triggers for the disease remain unknown, but are likely to involve a complex interaction between multiple environmental factors in a genetically predisposed individual. The main feature of the condition is the presence of thyroid-stimulating antibodies, which activate the thyroid- stimulating hormone receptor, resulting in hyperthyroidism. These antibodies may also be involved in the extrathyroidal complications of the disease. The recent generation of thyroid-stimulating antibodies in animal models and the isolation of monoclonal thyroid-stimulating antibodies from a patient with Graves' disease should allow the detailed study of thyroid-stimulating antibodies-thyroid-stimulating hormone receptor interactions. This will help to shed more light on disease pathogenesis and may offer new treatment strategies in difficult cases, particularly in patients with extrathyroidal complications.
Collapse
Affiliation(s)
- Ramzi A Ajjan
- a Academic Unit of Molecular and Vascular Medicine, The LIGHT Laboratories, University of Leeds, Leeds LS2 9JT UK
| | - Anthony P Weetman
- b Division of Clinical Sciences, University of Sheffield, Northern General Hospital, Sheffield S5 7AU UK.
| |
Collapse
|
27
|
Abstract
Graves' hyperthyroidism can be induced in mice or hamsters by novel approaches, namely injecting cells expressing the TSH receptor (TSHR) or vaccination with TSHR-DNA in plasmid or adenoviral vectors. These models provide unique insight into several aspects of Graves' disease: 1) manipulating immunity toward Th1 or Th2 cytokines enhances or suppresses hyperthyroidism in different models, perhaps reflecting human disease heterogeneity; 2) the role of TSHR cleavage and A subunit shedding in immunity leading to thyroid-stimulating antibodies (TSAbs); and 3) epitope spreading away from TSAbs and toward TSH-blocking antibodies in association with increased TSHR antibody titers (as in rare hypothyroid patients). Major developments from the models include the isolation of high-affinity monoclonal TSAbs and analysis of antigen presentation, T cells, and immune tolerance to the TSHR. Studies of inbred mouse strains emphasize the contribution of non-MHC vs. MHC genes, as in humans, supporting the relevance of the models to human disease. Moreover, other findings suggest that the development of Graves' disease is affected by environmental factors, including infectious pathogens, regardless of modifications in the Th1/Th2 balance. Finally, developing immunospecific forms of therapy for Graves' disease will require painstaking dissection of immune recognition and responses to the TSHR.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Autoimmune Disease Unit, Cedars-Sinai Medical Center, University of California Los Angeles School of Medicine, CA 90048, USA.
| | | | | |
Collapse
|
28
|
Abstract
The thyrotropin receptor (TSHR) is a seven transmembrane G-protein linked
glycoprotein expressed on the thyroid cell surface and which, under the regulation
of TSH, controls the production and secretion of thyroid hormone from the thyroid
gland. This membrane protein is also a major target antigen in the autoimmune
thyroid diseases. In Graves' disease, autoantibodies to the TSHR (TSHR-Abs)
stimulate the TSHR to produce thyroid hormone excessively. In autoimmune thyroid
failure, some patients exhibit TSHR-Abs which block TSH action on the
receptor. There have been many attempts to generate human stimulating
TSHR-mAbs, but to date, only one pathologically relevant human stimulating
TSHR-mAb has been isolated. Most mAbs to the TSHR have been derived from
rodents immunized with TSHR antigen from bacteria or insect cells. These antigens
lacked the native conformation of the TSHR and the resulting mAbs were exclusively
blocking or neutral TSHR-mAbs. However, mAbs raised against intact native
TSHR antigen have included stimulating mAbs. One such stimulating mAb has
demonstrated a number of differences in its regulation of TSHR post-translational
processing. These
differences are likely to be reflective of TSHR-Abs seen in Graves' disease.
Collapse
Affiliation(s)
- Takao Ando
- Department of Medicine, Mount Sinai School of Medicine, Box 1055, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
29
|
Ando T, Latif R, Davies TF. Thyrotropin receptor antibodies: new insights into their actions and clinical relevance. Best Pract Res Clin Endocrinol Metab 2005; 19:33-52. [PMID: 15826921 DOI: 10.1016/j.beem.2004.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The thyrotropin receptor (TSHR) is a G-protein-coupled receptor with a large ectodomain. TSH, acting via TSHR, regulates thyroid growth and thyroid hormone production and secretion. The TSHR undergoes complex post-translational processing involving dimerization, intramolecular cleavage, and shedding of its ectodomain, and each of these processes may influence the antigenicity of the TSHR. The TSHR is also the major autoantigen in Graves' disease, as well as a leading candidate autoantigen in both Graves' ophthalmopathy and pretibial myxedema. The naturally conformed TSHR is most effectively presented as an autoantigen to the immune system, causing the production of stimulating TSHR-Abs. There are also autoantibodies which block the TSHR from TSH action, and neutral TSHR-Abs which have no influence on TSH action. TSHR-Abs can be detected by competition assays of TSHR-Abs for labeled TSH, or monoclonal TSHR-Ab binding to solubilized TSHRs, or by bioassays using thyroid cells or mammalian cells expressing recombinant TSHRs.
Collapse
Affiliation(s)
- Takao Ando
- Department of Medicine, One Gustave L Levy Place, P.O. Box 1055, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|