1
|
Li Z, Liu X, Tang X, Yang Y. Analysis of gonadal transcriptome reveals core long non-coding RNA-mRNA regulatory network in sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101396. [PMID: 39667089 DOI: 10.1016/j.cbd.2024.101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Apostichopus japonicus is a representative temperate sea cucumber species, that mainly inhabits in coastal zone of the continental shelf. With high nutritional value and important medical value, A. japonicus become an important commercial aquaculture species and produce significant economic value in recent years. A. japonicus has no sexual dimorphism that can be used to distinguish female and male individuals by external appearance and morphology. The phenotype sex can be only detected by dissecting and observing gonad tissue, thus the breeding efficiency could be greatly reduced. This limitation has hindered the advancement of selective breeding programs and sea cucumber industry. To investigate the genetic basis of reproductive biology in A. japonicus, advanced sequencing techniques, such as next- and third-generation sequencing, have been employed to explore the roles of non-coding RNAs and other genetic factors, offering new insights into sex determination mechanisms. To further gain a deeper understanding of the knowledge underlying lncRNAs in gonadal differentiation, we conducted a comparative transcriptome sequencing analysis of gonadal tissues from both sexes. In our research, a total of 3990 novel lncRNAs and 1441 differentially expressed lncRNAs were identified between female and male gonads. Additionally, a molecular regulatory network indicating lncRNA-mRNA interactions was constructed based on transcriptional profiles, which provide insights into the potential cis- and trans- target genes of lncRNAs. The gonadal transcriptome analysis identified a number of novel long non-coding RNAs involved in female and male reproduction process. Both cis- and trans-acting regulatory networks indicating lncRNA-mRNA interaction were constructed based on transcriptional profiles. These findings provide new insights into the lncRNA-mediated regulation of reproductive biology in marine invertebrates, indicating the crucial roles of long non-coding sequences in regulating expression profiles. Further, the GO and KEGG enrichment analyses of cis- and trans- targeted mRNA for differentially expressed lncRNA indicated that sexual reproduction (GO:0019953), germ cell development (GO:0007281), and negative regulation of hormone secretion (GO:0046888) are potentially involved in gonadal differentiation through the regulation of long non-coding sequences. Notably, besides the classical reproduction related signaling pathway like Gonadotropin-releasing hormone (GnRH) secretion (ko04929), several regulatory pathways, such as Epidermal growth factor receptor (ErbB) signaling pathway (ko04012), TGF-beta signaling pathway (ko04350), and neurotrophin signaling pathway (ko04722) were also enriched and potentially involved in sex differentiation and gonadal development.
Collapse
Affiliation(s)
- Ziming Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xinghai Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xinyue Tang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yujia Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
2
|
Barelle PY, Sicardi A, Schaller F, Buron J, Becquet D, Omnes F, Watrin F, Alifrangis MS, Santos C, Menuet C, François-Bellan AM, Caron E, Klucznik J, Prevot V, Bouret SG, Muscatelli F. Investigation of a mouse model of Prader-Willi Syndrome with combined disruption of Necdin and Magel2. JCI Insight 2025; 10:e185159. [PMID: 40048253 PMCID: PMC12016932 DOI: 10.1172/jci.insight.185159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Abstract
Prader-Willi syndrome (PWS) is a multigenic disorder caused by the loss of 7 contiguous paternally expressed genes. Mouse models with inactivation of all PWS genes are lethal. KO mouse models for each candidate gene have been generated, but they lack the functional interactions between PWS genes. Here, we revealed an interplay between Necdin and Magel2 PWS genes and generated a mouse model (named Del Ndn-Magel2 mice) with a deletion including both genes. A subset of Del Ndn-Magel2 mice showed neonatal lethality. Behaviorally, surviving mutant mice exhibited sensory delays during infancy and alterations in social exploration at adulthood. Del Ndn-Magel2 mice had a lower body weight before weaning, persisting after weaning in males only, with reduced fat mass and improved glucose tolerance as well as altered puberty. Adult mutant mice displayed increased ventilation and a persistent increase in apneas following a hypercapnic challenge. Transcriptomics analyses revealed a dysregulation of key circadian genes and alterations of genes associated with axonal function similar to patients with PWS. At neuroanatomical levels, Del Ndn-Magel2 mice had an impaired maturation of oxytocin neurons and a disrupted development of melanocortin circuits. Together, these data indicate that the Del Ndn-Magel2 mouse is a pertinent and genetically relevant model of PWS.
Collapse
Affiliation(s)
- Pierre-Yves Barelle
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Alicia Sicardi
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Fabienne Schaller
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | - Julie Buron
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | - Denis Becquet
- University of Aix-Marseille, Inst Neurophysiopathol, Marseille, France
| | - Felix Omnes
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | - Françoise Watrin
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | - Marie-Sophie Alifrangis
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | | | - Clément Menuet
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | | | - Emilie Caron
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Jessica Klucznik
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Vincent Prevot
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Sebastien G. Bouret
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Françoise Muscatelli
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| |
Collapse
|
3
|
Phillips CD, DeFazio RA, Moenter SM. Sex and Time of Day Alter the Interactions Between Hypothalamic Glia and the Neural Circuits Controlling Reproduction. Endocrinology 2025; 166:bqaf057. [PMID: 40111184 PMCID: PMC11968336 DOI: 10.1210/endocr/bqaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
An upstream network, including glia and arcuate nucleus (ARC) kisspeptin neurons, controls hormone secretion from preoptic area (POA) gonadotropin-releasing hormone (GnRH) neurons, which form the final common pathway for the central control of fertility. In males, chemogenetic activation of Gq-mediated signaling in POA glia activated GnRH neurons and downstream luteinizing hormone (LH) release, while chemogenetic activation of ARC glia had no effect on ARC kisspeptin neurons. We characterized sex differences and time-of-day effects in these critical circuits to understand their effects on reproduction. Chemogenetic activation of glial fibrillary acidic protein (GFAP)-expressing cells increased intracellular calcium concentrations regardless of sex, brain region, or time of day. Activation of POA glia or treatment with the gliotransmitter analog dimethyl prostaglandin E2 (dmPGE2) increased GnRH neuron firing rate, and these responses were dependent upon sex and time of day. In contrast, ARC kisspeptin neuron firing rate was unresponsive to ARC glia activation or dmPGE2 regardless of sex or time of day. POA glial activation increased LH levels in males and females but the response in males was more rapid. ARC glia activation had no effect on LH in females and the response in males was delayed compared to POA glia activation. A similar LH response persisted after ARC kisspeptin neuron ablation, suggesting it is not mediated by those neurons. GnRH neurons, rather than arcuate kisspeptin neurons, are thus the main target of glial regulation of reproductive neuroendocrine output and this regulation is dependent on sex and time of day.
Collapse
Affiliation(s)
- Chrystian D Phillips
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - R Anthony DeFazio
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Suzanne M Moenter
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Analysis on the desert adaptability of indigenous sheep in the southern edge of Taklimakan Desert. Sci Rep 2022; 12:12264. [PMID: 35851076 PMCID: PMC9293982 DOI: 10.1038/s41598-022-15986-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
The southern margin of the Taklimakan Desert is characterized by low rainfall, heavy sandstorms, sparse vegetation and harsh ecological environment. The indigenous sheep in this area are rich in resources, with the advantages of perennial estrus and good resistance to stress in most sheep. Exploring the molecular markers of livestock adaptability in this environment will provide the molecular basis for breeding research to cope with extreme future changes in the desert environment. In this study, we analyzed the population genetic structure and linkage imbalance of five sheep breeds with three different agricultural geographic characteristics using four complementary genomic selection signals: fixation index (FST), cross-population extended haplotype homozygosity (xp-EHH), Rsb (extended haplotype homozygosity between-populations) and iHS (integrated haplotype homozygosity score). We used Illumina Ovine SNP 50K Genotyping BeadChip Array, and gene annotation and enrichment analysis were performed on selected regions of the obtained genome. The ovary of Qira Black sheep (Follicular phase, Luteal phase, 30th day of pregnancy, 45th day of pregnancy) was collected, and the differentially expressed genes were screened by transcriptomic sequencing. Genome-wide selective sweep results and transcriptome data were combined for association analysis to obtain candidate genes associated with perennial estrus and stable reproduction. In order to verify the significance of the results, 15 resulting genes were randomly selected for fluorescence quantitative analysis. The results showed that Dolang sheep and Qira Black sheep evolved from Kazak sheep. Linkage disequilibrium analysis showed that the decay rate of sheep breeds in the Taklimakan Desert was higher than that in Yili grassland. The signals of FST, xp-EHH, Rsb and iHS detected 526, 332, 308 and 408 genes, respectively, under the threshold of 1% and 17 overlapping genes under the threshold of 5%. A total of 29 genes were detected in association analysis of whole-genome and transcriptome data. This study reveals the genetic mechanism of perennial estrus and environmental adaptability of indigenous sheep breeds in the Taklimakan Desert. It provides a theoretical basis for the conservation and exploitation of genetic resources of indigenous sheep breeds in extreme desert environment. This provides a new perspective for the quick adaptation of sheep and other mammals to extreme environments and future climate changes.
Collapse
|
5
|
Wang W, Tan S, Yang Y, Zhou T, Xing D, Su B, Wang J, Li S, Shang M, Gao D, Dunham R, Liu Z. Feminization of channel catfish with 17β-oestradiol involves methylation and expression of a specific set of genes independent of the sex determination region. Epigenetics 2022; 17:1820-1837. [PMID: 35703353 DOI: 10.1080/15592294.2022.2086725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Exogenous oestrogen 17β-oestradiol (E2) has been shown to effectively induce feminization in teleosts. However, the molecular mechanisms underlying the process remain unclear. Here, we determined global DNA methylation and gene expression profiles of channel catfish (Ictalurus punctatus) during early sex differentiation after E2 treatment. Overall, the levels of global DNA methylation after E2 treatment were not significantly different from those of controls. However, a specific set of genes were differentially methylated, which included many sex differentiation-related pathways, such as MARK signalling, adrenergic signalling, Wnt signalling, GnRH signalling, ErbB signalling, and ECM-receptor interactions. Many genes involved in these pathways were also differentially expressed after E2 treatment. Specifically, E2 treatments resulted in upregulation of female-related genes and downregulation of male-related genes in genetic males during sex reversal. However, E2-induced sex reversal did not cause sex-specific changes in methylation profiles or gene expression within the sex determination region (SDR) on chromosome 4, suggesting that E2-induced sex reversal was a downstream process independent of the sex determination process that was regulated by sex-specific methylation within the SDR.
Collapse
Affiliation(s)
- Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Suxu Tan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Yujia Yang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Tao Zhou
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
6
|
Prevot V, Sharif A. The polygamous GnRH neuron: Astrocytic and tanycytic communication with a neuroendocrine neuronal population. J Neuroendocrinol 2022; 34:e13104. [PMID: 35233849 DOI: 10.1111/jne.13104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/28/2022]
Abstract
To ensure the survival of the species, hypothalamic neuroendocrine circuits controlling fertility, which converge onto neurons producing gonadotropin-releasing hormone (GnRH), must respond to fluctuating physiological conditions by undergoing rapid and reversible structural and functional changes. However, GnRH neurons do not act alone, but through reciprocal interactions with multiple hypothalamic cell populations, including several glial and endothelial cell types. For instance, it has long been known that in the hypothalamic median eminence, where GnRH axons terminate and release their neurohormone into the pituitary portal blood circulation, morphological plasticity displayed by distal processes of tanycytes modifies their relationship with adjacent neurons as well as the spatial properties of the neurohemal junction. These alterations not only regulate the capacity of GnRH neurons to release their neurohormone, but also the activation of discrete non-neuronal pathways that mediate feedback by peripheral hormones onto the hypothalamus. Additionally, a recent breakthrough has demonstrated that GnRH neurons themselves orchestrate the establishment of their neuroendocrine circuitry during postnatal development by recruiting an entourage of newborn astrocytes that escort them into adulthood and, via signalling through gliotransmitters such as prostaglandin E2, modulate their activity and GnRH release. Intriguingly, several environmental and behavioural toxins perturb these neuron-glia interactions and consequently, reproductive maturation and fertility. Deciphering the communication between GnRH neurons and other neural cell types constituting hypothalamic neuroendocrine circuits is thus critical both to understanding physiological processes such as puberty, oestrous cyclicity and aging, and to developing novel therapeutic strategies for dysfunctions of these processes, including the effects of endocrine disruptors.
Collapse
Affiliation(s)
- Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| | - Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| |
Collapse
|
7
|
Yan X, Gong X, Lin T, Lin M, Qin P, Ye J, Li H, Hong Q, Li M, Liu Y, Li Y, Wang X, Zhang Y, Ling Y, Cao H, Zhang X, Fang F. Analysis of protein phosphorylation sites in the hypothalamus tissues of pubescent goats. J Proteomics 2022; 260:104574. [DOI: 10.1016/j.jprot.2022.104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
8
|
Tian H, Ren P, Liu K, Qiu C, Fan L, Li J, Hou J. Transcriptomic comparison of ovarian granulosa cells between adult sheep and prepubertal lambs. BMC Genomics 2022; 23:151. [PMID: 35189817 PMCID: PMC8862527 DOI: 10.1186/s12864-022-08379-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The oocyte development ability of prepubertal animals is significantly lower than that of adult animals. Granulosa cells (GCs) have an important function on regulation of follicular and oocyte development. Therefore, analysis of GC characteristics can be used to explore the developmental mechanism of follicles and oocytes. RESULTS In order to understand the possible reasons for the differences in follicle and oocyte development between lambs and adult sheep, we utilized high-throughput sequencing technique to analyze the transcriptome of GCs from follicle-stimulating hormone (FSH) superstimulated adult ewes and prepubertal lambs. Adult ewes were treated with FSH for 3 days (group A) and lambs were FSH-treated for 2 days (group B) or 3 days (group C). Transcriptome analysis of GCs showed that there were 405 and 159 differentially expressed genes from A vs. B and A vs. C, respectively. The results indicated that prolonging the FSH-treatment of lambs made the GC state of lambs more similar to the adult ewes, but there were still a large number of differentially expressed genes between adult ewes and lambs. Further analysis showed that many differently expressed genes were implicated in cell proliferation and apoptosis, oocyte development and follicular ovulation. Cellular examination demonstrated that fatty acid binding protein 4 (FABP4), which was highly expressed in lamb GCs, had a potential of promoting cell apoptosis. Cytoplasmic phospholipase A2 (PLA2G4A), which was expressed lowly in lamb GCs, may be responsible for reduced synthesis of prostaglandins in cells and impaired follicle/oocyte development. In contrast, glutathione S-transferase β-1 (GSTT2B) and forkhead boxO6 (FOXO6) had no apparent effect on the proliferation and apoptosis of GCs. CONCLUSIONS Our study found dramatic transcriptomic differences in GCs between lambs and adult sheep, which may explain the possible reasons for the defects of follicle and oocyte development in lambs compared to adult sheep. Our data provides important information for further understanding the mechanism of follicular development in prepubertal animals and improving their oocyte developmental competence.
Collapse
Affiliation(s)
- Hao Tian
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Panyu Ren
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Kailing Liu
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Chunjuan Qiu
- Inner Mongolia, Sino Sheep Breeding Co. Ltd, Wulanchabu, Inner Mongolia, China
| | - Lihong Fan
- Inner Mongolia, Sino Sheep Breeding Co. Ltd, Wulanchabu, Inner Mongolia, China
| | - Junlong Li
- Inner Mongolia, Sino Sheep Breeding Co. Ltd, Wulanchabu, Inner Mongolia, China
| | - Jian Hou
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China.
| |
Collapse
|
9
|
Vanacker C, Defazio RA, Sykes CM, Moenter SM. A role for glial fibrillary acidic protein (GFAP)-expressing cells in the regulation of gonadotropin-releasing hormone (GnRH) but not arcuate kisspeptin neuron output in male mice. eLife 2021; 10:68205. [PMID: 34292152 PMCID: PMC8337074 DOI: 10.7554/elife.68205] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/21/2021] [Indexed: 01/05/2023] Open
Abstract
GnRH neurons are the final central neural output regulating fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (KNDy neurons) are considered the main regulator of GnRH output. GnRH and KNDy neurons are surrounded by astrocytes, which can modulate neuronal activity and communicate over distances. Prostaglandin E2 (PGE2), synthesized primarily by astrocytes, increases GnRH neuron activity and downstream pituitary release of luteinizing hormone (LH). We hypothesized that glial fibrillary acidic protein (GFAP)-expressing astrocytes play a role in regulating GnRH and/or KNDy neuron activity and LH release. We used adeno-associated viruses to target designer receptors exclusively activated by designer drugs (DREADDs) to GFAP-expressing cells to activate Gq- or Gi-mediated signaling. Activating Gq signaling in the preoptic area, near GnRH neurons, but not in the arcuate, increases LH release in vivo and GnRH firing in vitro via a mechanism in part dependent upon PGE2. These data suggest that astrocytes can activate GnRH/LH release in a manner independent of KNDy neurons.
Collapse
Affiliation(s)
- Charlotte Vanacker
- Departments of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - R Anthony Defazio
- Departments of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Charlene M Sykes
- Departments of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Suzanne M Moenter
- Departments of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, United States.,Internal Medicine, University of Michigan, Ann Arbor, United States.,Obstetrics & Gynecology, University of Michigan, Ann Arbor, United States.,Reproductive Sciences Program, University of Michigan, Ann Arbor, United States
| |
Collapse
|
10
|
Naulé L, Maione L, Kaiser UB. Puberty, A Sensitive Window of Hypothalamic Development and Plasticity. Endocrinology 2021; 162:bqaa209. [PMID: 33175140 PMCID: PMC7733306 DOI: 10.1210/endocr/bqaa209] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Puberty is a developmental period characterized by a broad range of physiologic changes necessary for the acquisition of adult sexual and reproductive maturity. These changes mirror complex modifications within the central nervous system, including within the hypothalamus. These modifications result in the maturation of a fully active hypothalamic-pituitary-gonadal (HPG) axis, the neuroendocrine cascade ensuring gonadal activation, sex steroid secretion, and gametogenesis. A complex and finely regulated neural network overseeing the HPG axis, particularly the pubertal reactivation of gonadotropin-releasing hormone (GnRH) secretion, has been progressively unveiled in the last 3 decades. This network includes kisspeptin, neurokinin B, GABAergic, and glutamatergic neurons as well as glial cells. In addition to substantial modifications in the expression of key targets, several changes in neuronal morphology, neural connections, and synapse organization occur to establish mature and coordinated neurohormonal secretion, leading to puberty initiation. The aim of this review is to outline the current knowledge of the major changes that neurons secreting GnRH and their neuronal and glial partners undergo before and after puberty. Emerging mediators upstream of GnRH, uncovered in recent years, are also addressed herein. In addition, the effects of sex steroids, particularly estradiol, on changes in hypothalamic neurodevelopment and plasticity are discussed.
Collapse
Affiliation(s)
- Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Luigi Maione
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Paris Saclay University, Assistance Publique-Hôpitaux de Paris, Department Endocrinology and Reproductive Diseases, Bicêtre Hospital, Paris, France
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Smedlund KB, Hill JW. The role of non-neuronal cells in hypogonadotropic hypogonadism. Mol Cell Endocrinol 2020; 518:110996. [PMID: 32860862 DOI: 10.1016/j.mce.2020.110996] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/01/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022]
Abstract
The hypothalamic-pituitary-gonadal axis is controlled by gonadotropin-releasing hormone (GnRH) released by the hypothalamus. Disruption of this system leads to impaired reproductive maturation and function, a condition known as hypogonadotropic hypogonadism (HH). Most studies to date have focused on genetic causes of HH that impact neuronal development and function. However, variants may also impact the functioning of non-neuronal cells known as glia. Glial cells make up 50% of brain cells of humans, primates, and rodents. They include radial glial cells, microglia, astrocytes, tanycytes, oligodendrocytes, and oligodendrocyte precursor cells. Many of these cells influence the hypothalamic neuroendocrine system controlling fertility. Indeed, glia regulate GnRH neuronal activity and secretion, acting both at their cell bodies and their nerve endings. Recent work has also made clear that these interactions are an essential aspect of how the HPG axis integrates endocrine, metabolic, and environmental signals to control fertility. Recognition of the clinical importance of interactions between glia and the GnRH network may pave the way for the development of new treatment strategies for dysfunctions of puberty and adult fertility.
Collapse
Affiliation(s)
- Kathryn B Smedlund
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
12
|
Spergel DJ. Modulation of Gonadotropin-Releasing Hormone Neuron Activity and Secretion in Mice by Non-peptide Neurotransmitters, Gasotransmitters, and Gliotransmitters. Front Endocrinol (Lausanne) 2019; 10:329. [PMID: 31178828 PMCID: PMC6538683 DOI: 10.3389/fendo.2019.00329] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neuron activity and GnRH secretion are essential for fertility in mammals. Here, I review findings from mouse studies on the direct modulation of GnRH neuron activity and GnRH secretion by non-peptide neurotransmitters (GABA, glutamate, dopamine, serotonin, norepinephrine, epinephrine, histamine, ATP, adenosine, and acetylcholine), gasotransmitters (nitric oxide and carbon monoxide), and gliotransmitters (prostaglandin E2 and possibly GABA, glutamate, and ATP). These neurotransmitters, gasotransmitters, and gliotransmitters have been shown to directly modulate activity and/or GnRH secretion in GnRH neurons in vivo or ex vivo (brain slices), from postnatal through adult mice, or in embryonic or immortalized mouse GnRH neurons. However, except for GABA, nitric oxide, and prostaglandin E2, which appear to be essential for normal GnRH neuron activity, GnRH secretion, and fertility in males and/or females, the biological significance of their direct modulation of GnRH neuron activity and/or GnRH secretion in the central regulation of reproduction remains largely unknown and requires further exploration.
Collapse
|
13
|
Moeller-Gnangra H, Ernst J, Pfeifer M, Heger S. ErbB4 point mutation in CU3 inbred rats affects gonadotropin-releasing-hormone neuronal function via compromised neuregulin-stimulated prostaglandin E2 release from astrocytes. Glia 2018; 67:309-320. [PMID: 30485552 DOI: 10.1002/glia.23541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/26/2018] [Accepted: 09/14/2018] [Indexed: 11/05/2022]
Abstract
Gonadotropin releasing hormone (GnRH)-secretion is not only regulated by neuronal factors but also by astroglia cells via growth factors and ErbB receptors of the epidermal growth factor family. Studies in transgenic mice carrying mutations in the ErbB receptor system experience impaired reproductive capacity. In addition, some of these animals show a typical skin phenotype with wavy hair and curly whiskers. The rat strain SPRD-CU3 (CU3), examined in this study, displays a similar skin phenotype and a significant impairment of the timing of puberty onset and reproductive performance, suggesting a disruption in the astrocytic to GnRH neuronal communication. To address this issue, we analyzed astrocytic prostaglandin E2 (PGE2 ) release from primary hypothalamic astrocytic cell cultures after stimulation with transforming growth factor α (TGFα), ligand for ErbB1/ErbB2, or Neuregulin 1 beta 2 (NRG1ß2 ), ligand for ErbB4/ErbB2 signaling pathway. Compared to cultures from wild type animals, astrocytic cultures from CU3 rats were unable to respond to NRG stimulation, suggesting a disruption of the ErbB4/ErbB2 signaling pathway. This is confirmed by mutational analysis of ErbB4 that revealed a single point mutation at 3125 bp resulting in an amino acid change from proline to glutamine located at the carboxy-terminal region. As a consequence, substantial conformational changes occur in the transmembrane and intracellular domain of the protein, affecting the ability to form a receptor dimer with a partner and the ability to function as a transcriptional regulator. Thus, astroglia to GnRH neuronal signaling via ErbB4 is essential of timely onset of puberty and reproductive function.
Collapse
Affiliation(s)
| | - Johanna Ernst
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Manuel Pfeifer
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Sabine Heger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.,Children's Hospital "Auf der Bult", Department of Pediatrics, Hannover, Germany
| |
Collapse
|
14
|
Clasadonte J, Prevot V. The special relationship: glia-neuron interactions in the neuroendocrine hypothalamus. Nat Rev Endocrinol 2018; 14:25-44. [PMID: 29076504 DOI: 10.1038/nrendo.2017.124] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural fluctuations in physiological conditions require adaptive responses involving rapid and reversible structural and functional changes in the hypothalamic neuroendocrine circuits that control homeostasis. Here, we discuss the data that implicate hypothalamic glia in the control of hypothalamic neuroendocrine circuits, specifically neuron-glia interactions in the regulation of neurosecretion as well as neuronal excitability. Mechanistically, the morphological plasticity displayed by distal processes of astrocytes, pituicytes and tanycytes modifies the geometry and diffusion properties of the extracellular space. These changes alter the relationship between glial cells of the hypothalamus and adjacent neuronal elements, especially at specialized intersections such as synapses and neurohaemal junctions. The structural alterations in turn lead to functional plasticity that alters the release and spread of neurotransmitters, neuromodulators and gliotransmitters, as well as the activity of discrete glial signalling pathways that mediate feedback by peripheral signals to the hypothalamus. An understanding of the contributions of these and other non-neuronal cell types to hypothalamic neuroendocrine function is thus critical both to understand physiological processes such as puberty, the maintenance of bodily homeostasis and ageing and to develop novel therapeutic strategies for dysfunctions of these processes, such as infertility and metabolic disorders.
Collapse
Affiliation(s)
- Jerome Clasadonte
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Bâtiment Biserte, 1 Place de Verdun, 59045, Lille, Cedex, France
- University of Lille, FHU 1000 days for Health, School of Medicine, Lille 59000, France
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Bâtiment Biserte, 1 Place de Verdun, 59045, Lille, Cedex, France
- University of Lille, FHU 1000 days for Health, School of Medicine, Lille 59000, France
| |
Collapse
|
15
|
Bentaib A, De Tullio P, Chneiweiss H, Hermans E, Junier MP, Leprince P. Data in support of metabolic reprogramming in transformed mouse cortical astrocytes: A proteomic study. Data Brief 2015. [PMID: 26217695 PMCID: PMC4459766 DOI: 10.1016/j.dib.2014.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
2D-DIGE analysis coupled with mass spectrometry is a global, without a priori, comparative proteomic approach particularly suited to identify and quantify enzymes isoforms and structural proteins, thus making it an efficient tool for the characterization of the changes in cell phenotypes that occur in physiological and pathological conditions. In this data article in support of the research article entitled “Metabolic reprogramming in transformed mouse cortical astrocytes: a proteomic study” [1] we illustrate the changes in protein profile that occur during the metabolic reprogramming undergone by cultured mouse astrocytes in a model of in-vitro cancerous transformation [2].
Collapse
Affiliation(s)
| | - Pascal De Tullio
- Pharmaceutical Chemistry, Department of Pharmacy, University of Liège, Liège, Belgium
| | - Hervé Chneiweiss
- Glial Plasticity and Cerebral Tumors, UMR8246 CNRS/U1130 Inserm/ UMCR18, Université Pierre et Marie Curie, Paris, France
| | - Emmanuel Hermans
- Institute of Neurosciences, Group of Neuropharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Pierre Junier
- Glial Plasticity and Cerebral Tumors, UMR8246 CNRS/U1130 Inserm/ UMCR18, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
16
|
Bentaib A, De Tullio P, Chneiweiss H, Hermans E, Junier MP, Leprince P. Metabolic reprogramming in transformed mouse cortical astrocytes: A proteomic study. J Proteomics 2014; 113:292-314. [PMID: 25305589 DOI: 10.1016/j.jprot.2014.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 09/02/2014] [Accepted: 09/22/2014] [Indexed: 11/29/2022]
Abstract
Metabolic reprogramming is thought to play a key role in sustaining the survival and proliferation of cancer cells. These changes facilitate for example the uptake and release of nutrients required for nucleotide, protein and lipid synthesis necessary for macromolecule assembly and tumor growth. We applied a 2D-DIGE (two-dimensional differential in-gel electrophoresis) quantitative proteomic analysis to characterize the proteomes of mouse astrocytes that underwent in vitro cancerous transformation, and of their normal counterparts. Metabolic reprogramming effects on enzymatic and structural protein expression as well as associated metabolites abundance were quantified. Using enzymatic activity measurements and zymography, we documented and confirmed several changes in abundance and activity of various isoenzymes likely to participate in metabolic reprogramming. We found that after transformation, the cells increase their expression of glycolytic enzymes, thus augmenting their ability to use aerobic glycolysis (Warburg effect). An increased capacity to dispose of reducing equivalents through lactate production was also documented. Major effects on carbohydrates, amino acids and nucleotides metabolic enzymes were also observed. Conversely, the transformed cells reduced their enzymatic capacity for reactions of tricarboxylic acid oxidation, for neurotransmitter (glutamate) metabolism, for oxidative stress defense and their expression of astroglial markers. BIOLOGICAL SIGNIFICANCE The use of a global approach based on a 2D DIGE analysis allows obtaining a comprehensive view of the metabolic reprogramming undergone by astrocytes upon cancerous transformation. Indeed, except for a few enzymes such as pyruvate carboxylase and glutaminase that were not detected in our initial analysis, pertinent information on the abundance of most enzymes belonging to pathways relevant to metabolic reprogramming was directly obtained. In this in vitro model, transformation causes major losses of astrocyte-specific proteins and functions and the acquisition of metabolic adaptations that favor intermediate metabolites production for increased macromolecule biosynthesis. Thus our approach appears to be readily applicable for the investigation of changes in protein abundance that determine various transformed cell phenotypes. It could similarly be applied to the evaluation of the effects of treatments aimed at correcting the consequences of cell transformation.
Collapse
Affiliation(s)
| | - Pascal De Tullio
- Pharmaceutical chemistry, Department of Pharmacy, University of Liège, Liège, Belgium
| | - Hervé Chneiweiss
- Glial Plasticity and Cerebral Tumors, UMR8246 CNRS/U1130 Inserm/ UMCR18, Université Pierre et Marie Curie, Paris, France
| | - Emmanuel Hermans
- Institute of Neurosciences, Group of Neuropharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Pierre Junier
- Glial Plasticity and Cerebral Tumors, UMR8246 CNRS/U1130 Inserm/ UMCR18, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
17
|
Cheng P, Alberts I, Li X. The role of ERK1/2 in the regulation of proliferation and differentiation of astrocytes in developing brain. Int J Dev Neurosci 2013; 31:783-9. [DOI: 10.1016/j.ijdevneu.2013.09.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022] Open
Affiliation(s)
- Peipei Cheng
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ian Alberts
- Department of Natural Sciences, LaGuardia CCCity University of New YorkNY11101USA
| | - Xiaohong Li
- Department of NeurochemistryNY State Institute for Basic Research in Developmental DisabilitiesNew YorkNY10314USA
| |
Collapse
|
18
|
Zscheppang K, Giese U, Hoenzke S, Wiegel D, Dammann CEL. ErbB4 is an upstream regulator of TTF-1 fetal mouse lung type II cell development in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2690-2702. [PMID: 23845988 DOI: 10.1016/j.bbamcr.2013.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 02/07/2023]
Abstract
TTF-1 is an important transcription factor in lung development and lung disease and is essential for lung cell differentiation, specifically surfactant protein (Sftp) expression. The molecular mechanisms that drive the expression and transcriptional control of TTF-1 are not fully understood. In the fetal lung, ErbB4 functions as a transcriptional co-factor and regulates the timely onset of fetal Sftp expression. We speculate that ErbB4 is an upstream regulator of TTF-1 and regulates Sftpb expression via this pathway in alveolar type II cells. Neuregulin-induced ErbB4 and TTF-1 signaling interactions were studied by co-immunoprecipitation and confocal microscopy. Overexpression of ErbB4 and TTF-1 was analyzed in its effect on cell viability, Sftpb expression, TTF-1 expression, and Sftpb and TTF-1 promoter activity. The effect of ErbB4 deletion and ErbB4 nuclear translocation on TTF-1 expression was studied in primary fetal type II epithelial cells, isolated from transgenic HER4(heart(-/-)) mice. ErbB4 ligand neuregulin induces ErbB4 and TTF-1 co-precipitation and nuclear colocalization. Combined ErbB4 and TTF-1 overexpression inhibits cell viability, while promoting Sftpb expression more than single overexpression of each protein. NRG stimulates TTF-1 expression in ErbB4-overexpressing epithelial cells, while this effect is absent in ErbB4-depleted cells. In primary fetal type II cells, ErbB4 nuclear translocation is critical for its regulation of TTF-1-induced Sftpb upregulation. TTF-1 overexpression did not overcome this important requirement. We conclude that ErbB4 is a critical upstream regulator of TTF-1 in type II epithelial cells and that this interaction is important for Sftpb regulation.
Collapse
Affiliation(s)
- Katja Zscheppang
- Department of Pediatrics, Hannover Medical School, Hannover 30625, Germany; Division of Newborn Medicine, Floating Hospital for Children at Tufts Medical Center, Boston, MA 02111, USA
| | - Ulrike Giese
- Department of Pediatrics, Hannover Medical School, Hannover 30625, Germany
| | - Stefan Hoenzke
- Division of Newborn Medicine, Floating Hospital for Children at Tufts Medical Center, Boston, MA 02111, USA
| | - Dorothea Wiegel
- Department of Pediatrics, Hannover Medical School, Hannover 30625, Germany; Division of Newborn Medicine, Floating Hospital for Children at Tufts Medical Center, Boston, MA 02111, USA
| | - Christiane E L Dammann
- Department of Pediatrics, Hannover Medical School, Hannover 30625, Germany; Division of Newborn Medicine, Floating Hospital for Children at Tufts Medical Center, Boston, MA 02111, USA; Sackler School for Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
19
|
Suppression of β1-integrin in gonadotropin-releasing hormone cells disrupts migration and axonal extension resulting in severe reproductive alterations. J Neurosci 2013; 32:16992-7002. [PMID: 23175850 DOI: 10.1523/jneurosci.3057-12.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reproduction in mammals is dependent on the function of hypothalamic neurons whose axons project to the hypothalamic median eminence (ME) where they release gonadotropin-releasing hormone (GnRH) into a specialized capillary network for delivery to the anterior pituitary. These neurons originate prenatally in the nasal placode and migrate into the forebrain along the olfactory-vomeronasal nerves. The complex developmental events leading to the correct establishment of the GnRH system are tightly regulated by the specific spatiotemporal expression patterns of guidance cues and extracellular matrix molecules, the functions of which, in part, are mediated by their binding to β1-subunit-containing integrins. To determine the biological role of these cell-surface proteins in reproduction, Cre/LoxP technology was used to generate GnRH neuron-specific β1-integrin conditional KO (GnRH-Itgb1(-/-)) mice. Loss of β1-integrin signaling impaired migration of GnRH neurons, their axonal extension to the ME, timing of pubertal onset, and fertility in these mice. These results identify β1-integrin as a gene involved in normal development of the GnRH system and demonstrate a fundamental role for this protein in acquisition of normal reproductive competence in female mice.
Collapse
|
20
|
Sharif A, Baroncini M, Prevot V. Role of glia in the regulation of gonadotropin-releasing hormone neuronal activity and secretion. Neuroendocrinology 2013; 98:1-15. [PMID: 23735672 DOI: 10.1159/000351867] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/08/2013] [Indexed: 11/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are the final common pathway for the central control of reproduction. The coordinated and timely activation of these hypothalamic neurons, which determines sexual development and adult reproductive function, lies under the tight control of a complex array of excitatory and inhibitory transsynaptic inputs. In addition, research conducted over the past 20 years has unveiled the major contribution of glial cells to the control of GnRH neurons. Glia use a variety of molecular and cellular strategies to modulate GnRH neuronal function both at the level of their cell bodies and at their nerve terminals. These mechanisms include the secretion of bioactive molecules that exert paracrine effects on GnRH neurons, juxtacrine interactions between glial cells and GnRH neurons via adhesive molecules and the morphological plasticity of the glial coverage of GnRH neurons. It now appears that glial cells are integral components, along with upstream neuronal networks, of the central control of GnRH neuronal function. This review attempts to summarize our current knowledge of the mechanisms used by glial cells to control GnRH neuronal activity and secretion.
Collapse
Affiliation(s)
- Ariane Sharif
- INSERM, Jean-Pierre Aubert Research Center, Development and Plasticity of the Postnatal Brain, Unit 837, and UDSL, School of Medicine, Lille, France.
| | | | | |
Collapse
|
21
|
Alteration in neonatal nutrition causes perturbations in hypothalamic neural circuits controlling reproductive function. J Neurosci 2012; 32:11486-94. [PMID: 22895731 DOI: 10.1523/jneurosci.6074-11.2012] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is increasingly accepted that alterations of the early life environment may have lasting impacts on physiological functions. In particular, epidemiological and animal studies have indicated that changes in growth and nutrition during childhood and adolescence can impair reproductive function. However, the precise biological mechanisms that underlie these programming effects of neonatal nutrition on reproduction are still poorly understood. Here, we used a mouse model of divergent litter size to investigate the effects of early postnatal overnutrition and undernutrition on the maturation of hypothalamic circuits involved in reproductive function. Neonatally undernourished females display attenuated postnatal growth associated with delayed puberty and defective development of axonal projections from the arcuate nucleus to the preoptic region. These alterations persist into adulthood and specifically affect the organization of neural projections containing kisspeptin, a key neuropeptide involved in pubertal activation and fertility. Neonatal overfeeding also perturbs the development of neural projections from the arcuate nucleus to the preoptic region, but it does not result in alterations in kisspeptin projections. These studies indicate that alterations in the early nutritional environment cause lasting and deleterious effects on the organization of neural circuits involved in the control of reproduction, and that these changes are associated with lifelong functional perturbations.
Collapse
|
22
|
Tolson KP, Chappell PE. The Changes They are A-Timed: Metabolism, Endogenous Clocks, and the Timing of Puberty. Front Endocrinol (Lausanne) 2012; 3:45. [PMID: 22645521 PMCID: PMC3355854 DOI: 10.3389/fendo.2012.00045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/08/2012] [Indexed: 11/16/2022] Open
Abstract
Childhood obesity has increased dramatically over the last several decades, particularly in industrialized countries, often accompanied by acceleration of pubertal progression and associated reproductive abnormalities (Biro et al., 2006; Rosenfield et al., 2009). The timing of pubertal initiation and progression in mammals is likely influenced by nutritional and metabolic state, leading to the hypothesis that deviations from normal metabolic rate, such as those seen in obesity, may contribute to observed alterations in the rate of pubertal progression. While several recent reviews have addressed the effects of metabolic disorders on reproductive function in general, this review will explore previous and current models of pubertal timing, outlining a potential role of endogenous timing mechanisms such as cellular circadian clocks in the initiation of puberty, and how these clocks might be altered by metabolic factors. Additionally, we will examine recently elucidated neuroendocrine regulators of pubertal progression such as kisspeptin, explore models detailing how the mammalian reproductive axis is silenced during the juvenile period and reactivated at appropriate developmental times, and emphasize how metabolic dysfunction such as childhood obesity may alter timing cues that advance or delay pubertal progression, resulting in diminished reproductive capacity.
Collapse
Affiliation(s)
- Kristen P. Tolson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State UniversityCorvallis, OR, USA
| | - Patrick E. Chappell
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State UniversityCorvallis, OR, USA
- *Correspondence: Patrick E. Chappell, Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA. e-mail:
| |
Collapse
|
23
|
Prostaglandin E2 release from astrocytes triggers gonadotropin-releasing hormone (GnRH) neuron firing via EP2 receptor activation. Proc Natl Acad Sci U S A 2011; 108:16104-9. [PMID: 21896757 DOI: 10.1073/pnas.1107533108] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Astrocytes in the hypothalamus release prostaglandin E(2) (PGE(2)) in response to cell-cell signaling initiated by neurons and glial cells. Upon release, PGE(2) stimulates the secretion of gonadotropin-releasing hormone (GnRH), the neuropeptide that controls reproduction, from hypothalamic neuroendocrine neurons. Whether this effect on GnRH secretion is accompanied by changes in the firing behavior of these neurons is unknown. Using patch-clamp recording we demonstrate that PGE(2) exerts a dose-dependent postsynaptic excitatory effect on GnRH neurons. These effects are mimicked by an EP2 receptor agonist and attenuated by protein kinase A (PKA) inhibitors. The acute blockade of prostaglandin synthesis by indomethacin (INDO) or the selective inhibition of astrocyte metabolism by fluoroacetate (FA) suppresses the spontaneous firing activity of GnRH neurons in brain slices. Similarly, GnRH neuronal activity is reduced in mice with impaired astrocytic PGE(2) release due to defective erbB signaling in astrocytes. These results indicate that astrocyte-to-neuron communication in the hypothalamus is essential for the activity of GnRH neurons and suggest that PGE(2) acts as a gliotransmitter within the GnRH neurosecretory system.
Collapse
|
24
|
Estrogen-induced upregulation of Sftpb requires transcriptional control of neuregulin receptor ErbB4 in mouse lung type II epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1717-27. [PMID: 21777626 DOI: 10.1016/j.bbamcr.2011.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 01/24/2023]
Abstract
Estrogen is known for its positive stimulatory effects on surfactant proteins. ErbB4 receptor and its ligand neuregulin (NRG) positively stimulate lung development. ErbB receptors interact with nuclear receptors and ErbB4 co-regulates estrogen receptor (ER)α expression in breast cells. ERβ is highly expressed in pneumocytes and its deletion leads to fewer alveoli and reduced elastic recoil. A similar picture was seen in ErbB4-deleted lungs. We hypothesized that estrogen signals its effect on surfactant protein B (Sftpb) expression through interactions of ERβ and ErbB4. Estrogen and NRG treatment decreased cell numbers and stimulated Sftpb expression in type II cells. Estrogen and NRG both stimulated phosphorylation of ERβ and co-localization of both receptors. Overexpression of ERβ increased the cell number and Sftpb expression, which was further augmented by estrogen and NRG. Finally, estrogen and NRG stimulated ERβ and ErbB4 binding to the Sftpb promoter. Overexpression of these receptors stimulated Sftpb promoter activation, which was further enhanced by estrogen and NRG. The stimulatory effect of estrogen and NRG was abolished in ErbB4 deletion and reconstituted by re-expression of full-length ErbB4 in fetal ErbB4-deleted type II cells. Estrogen-induced nuclear translocation of ErbB4 required the intact γ-secretase cleavage site but not the nuclear localization sequence of the ErbB4 receptor, suggesting that ERβ might function as a nuclear chaperone for ErbB4. These studies demonstrate that estrogen effects on Sftpb expression require an interaction of ERβ and ErbB4. We speculate that the stimulatory effects of estrogen on Sftpb are under transcriptional control of ErbB4.
Collapse
|
25
|
Hsieh M, Thao K, Conti M. Genetic dissection of epidermal growth factor receptor signaling during luteinizing hormone-induced oocyte maturation. PLoS One 2011; 6:e21574. [PMID: 21738714 PMCID: PMC3128061 DOI: 10.1371/journal.pone.0021574] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/02/2011] [Indexed: 01/09/2023] Open
Abstract
Recent evidence that luteinizing hormone (LH) stimulation of ovulatory follicles causes transactivation of the epidermal growth factor receptor (EGFR) has provided insights into the mechanisms of ovulation. However, the complete array of signals that promote oocyte reentry into the meiotic cell cycle in the follicle are still incompletely understood. To elucidate the signaling downstream of EGFR involved in oocyte maturation, we have investigated the LH responses in granulosa cells with targeted ablation of EGFR. Oocyte maturation and ovulation is disrupted when EGFR expression is progressively reduced. In granulosa cells from mice with either global or granulosa cell-specific disruption of EGFR signaling, LH-induced phosphorylation of MAPK3/1, p38MAPK, and connexin-43 is impaired. Although the LH-induced decrease in cGMP is EGFR-dependent in wild type follicles, LH still induces a decrease in cGMP in Egfrdelta/f Cyp19-Cre follicles. Thus compensatory mechanisms appear activated in the mutant. Spatial propagation of the LH signal in the follicle also is dependent on the EGF network, and likely is important for the control of signaling to the oocyte. Thus, multiple signals and redundant pathways contribute to regulating oocyte reentry into the cell cycle.
Collapse
Affiliation(s)
- Minnie Hsieh
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Kao Thao
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Marco Conti
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Pierce A, Xu M, Bliesner B, Liu Z, Richards J, Tobet S, Wierman ME. Hypothalamic but not pituitary or ovarian defects underlie the reproductive abnormalities in Axl/Tyro3 null mice. Mol Cell Endocrinol 2011; 339:151-8. [PMID: 21539887 PMCID: PMC3124083 DOI: 10.1016/j.mce.2011.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/09/2011] [Accepted: 04/13/2011] [Indexed: 11/25/2022]
Abstract
AXL and TYRO3, members of the TYRO3, AXL and MER (TAM) family of tyrosine kinase receptors, modulate GnRH neuronal cell migration, survival and gene expression. Axl/Tyro3 null mice exhibit a selective loss of GnRH neurons, delayed sexual maturation and irregular estrous cycles. Here we determined whether the defects were due to direct ovarian defects, altered pituitary sensitivity to GnRH and/or an impaired LH surge mechanism. Ovarian histology and markers of folliculogenesis and atresia as well as corpora luteal development and ovarian response to superovulation were not impaired. Axl/Tryo3 null mice exhibited a robust LH response to exogenous GnRH, suggesting no altered pituitary sensitivity. Ovariectomized Axl/Tyro3 null mice, however, demonstrated an impaired ability to mount a steroid-induced LH surge. Loss of GnRH neurons in Axl/Tyro3 null mice impairs the sex hormone-induced gonadotropin surge resulting in estrous cycle abnormalities confirming that TAM family members contribute to normal female reproductive function.
Collapse
Affiliation(s)
- Angela Pierce
- Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Sandau US, Mungenast AE, Alderman Z, Sardi SP, Fogel AI, Taylor B, Parent AS, Biederer T, Corfas G, Ojeda SR. SynCAM1, a synaptic adhesion molecule, is expressed in astrocytes and contributes to erbB4 receptor-mediated control of female sexual development. Endocrinology 2011; 152:2364-76. [PMID: 21486934 PMCID: PMC3100629 DOI: 10.1210/en.2010-1435] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Female sexual maturation requires erythroblastosis B (erbB)4 signaling in hypothalamic astrocytes; however, the mechanisms by which erbB4 contributes to this process are incompletely understood. Here we show that SynCAM1, a synaptic adhesion molecule with signaling capabilities, is not only expressed highly in neurons, but also in hypothalamic astrocytes and is functionally associated with erbB4 receptor activity. Whereas SynCAM1 expression is diminished in astrocytes with impaired erbB4 signaling, ligand-dependent activation of astroglial erbB4 receptors results in rapid association of erbB4 with SynCAM1 and activation of SynCAM1 gene transcription. To determine whether astrocytic SynCAM1-dependent intracellular signaling is required for normal female reproductive function, we generated transgenic mice that express in an astrocyte-specific manner a dominant-negative form of SynCAM1 lacking the intracellular domain. The mutant protein was correctly targeted to the cell membrane and was functionally viable as shown by its ability to block intracellular calcium/calmodulin-dependent serine protein kinase redistribution, a major SynCAM1-mediated event. Dominant-negative-SynCAM1 female mice had a delayed onset of puberty, disrupted estrous cyclicity, and reduced fecundity. These deficits were associated with a reduced capacity of neuregulin-dependent erbB4 receptor activation to elicit prostaglandin E2 release from astrocytes and GnRH release from the hypothalamus. We conclude that one of the mechanisms underlying erbB4 receptor-mediated facilitation of glial-neuronal interactions in the neuroendocrine brain involves SynCAM1-dependent signaling and that this interaction is required for normal female reproductive function.
Collapse
Affiliation(s)
- Ursula S Sandau
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zscheppang K, Dörk T, Schmiedl A, Jones FE, Dammann CEL. Neuregulin receptor ErbB4 functions as a transcriptional cofactor for the expression of surfactant protein B in the fetal lung. Am J Respir Cell Mol Biol 2011; 45:761-7. [PMID: 21317380 DOI: 10.1165/rcmb.2010-0179oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sufficient pulmonary surfactant production is required for the fetal-neonatal transition, especially in preterm infants. Neuregulin (NRG) and its transmembrane receptor ErbB4 positively regulate the onset of fetal surfactant synthesis. Details of this signaling process remain to be elucidated. ErbB4 is known to regulate gene expression in the mammary gland, where the receptor associates with the signal transducer and activator of transcription Stat5a to transactivate the β-casein gene promoter. We hypothesized that in the fetal lung, ErbB4 functions as a transcriptional regulator for surfactant protein B (Sftpb), the most critical surfactant protein gene. Re-expressing full-length ErbB4 in primary fetal ErbB4-depleted Type II epithelial cells led to an increased expression of Sftpb mRNA. This stimulatory effect required the nuclear translocation of ErbB4 and association with Stat5a, with the resultant binding to and activation of the Sftpb promoter. We conclude that ErbB4 directly regulates important aspects of fetal lung maturation that help prepare for the fetal-neonatal transition.
Collapse
Affiliation(s)
- Katja Zscheppang
- Department of Pediatrics, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
29
|
Clasadonte J, Sharif A, Baroncini M, Prevot V. Gliotransmission by prostaglandin e(2): a prerequisite for GnRH neuronal function? Front Endocrinol (Lausanne) 2011; 2:91. [PMID: 22649391 PMCID: PMC3355930 DOI: 10.3389/fendo.2011.00091] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/17/2011] [Indexed: 02/06/2023] Open
Abstract
Over the past four decades it has become clear that prostaglandin E(2) (PGE(2)), a phospholipid-derived signaling molecule, plays a fundamental role in modulating the gonadotropin-releasing hormone (GnRH) neuroendocrine system and in shaping the hypothalamus. In this review, after a brief historical overview, we highlight studies revealing that PGE(2) released by glial cells such as astrocytes and tanycytes is intimately involved in the active control of GnRH neuronal activity and neurosecretion. Recent evidence suggests that hypothalamic astrocytes surrounding GnRH neuronal cell bodies may respond to neuronal activity with an activation of the erbB receptor tyrosine kinase signaling, triggering the release of PGE(2) as a chemical transmitter from the glia themselves, and, in turn, leading to the feedback regulation of GnRH neuronal activity. At the GnRH neurohemal junction, in the median eminence of the hypothalamus, PGE(2) is released by tanycytes in response to cell-cell signaling initiated by glial cells and vascular endothelial cells. Upon its release, PGE(2) causes the retraction of the tanycyte end-feet enwrapping the GnRH nerve terminals, enabling them to approach the adjacent pericapillary space and thus likely facilitating neurohormone diffusion from these nerve terminals into the pituitary portal blood. In view of these new insights, we suggest that synaptically associated astrocytes and perijunctional tanycytes are integral modulatory elements of GnRH neuronal function at the cell soma/dendrite and nerve terminal levels, respectively.
Collapse
Affiliation(s)
- Jerome Clasadonte
- Jean-Pierre Aubert Research Center, Inserm, U837, F-59000Lille, France
- Laboratory of Anatomy, Université Lille Nord de FranceLille, France
- School of Medicine, UDSLLille, France
| | - Ariane Sharif
- Jean-Pierre Aubert Research Center, Inserm, U837, F-59000Lille, France
- Laboratory of Anatomy, Université Lille Nord de FranceLille, France
- School of Medicine, UDSLLille, France
| | - Marc Baroncini
- Jean-Pierre Aubert Research Center, Inserm, U837, F-59000Lille, France
- Laboratory of Anatomy, Université Lille Nord de FranceLille, France
- School of Medicine, UDSLLille, France
- Department of Neurosurgery, CHULilleLille, France
| | - Vincent Prevot
- Jean-Pierre Aubert Research Center, Inserm, U837, F-59000Lille, France
- Laboratory of Anatomy, Université Lille Nord de FranceLille, France
- School of Medicine, UDSLLille, France
- *Correspondence: Vincent Prevot, INSERM U837, Bâtiment Biserte, Place de Verdun, 59045 Lille Cedex, France. e-mail:
| |
Collapse
|
30
|
Moenter SM. Identified GnRH neuron electrophysiology: a decade of study. Brain Res 2010; 1364:10-24. [PMID: 20920482 PMCID: PMC2992586 DOI: 10.1016/j.brainres.2010.09.066] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/15/2010] [Accepted: 09/17/2010] [Indexed: 12/27/2022]
Abstract
Over the past decade, the existence of transgenic mouse models in which reporter genes are expressed under the control of the gonadotropin-releasing hormone (GnRH) promoter has made possible the electrophysiological study of these cells. Here, we review the intrinsic and synaptic properties of these cells that have been revealed by these approaches, with a particular regard to burst generation. Advances in our understanding of neuromodulation of GnRH neurons and synchronization of this network are also discussed.
Collapse
Affiliation(s)
- Suzanne M Moenter
- Department of Molecular and Integrative Physiology, 7725 Med Sci II, 1301 E Catherine St., Ann Arbor, MI 48109-5622, USA.
| |
Collapse
|
31
|
Ojeda SR, Lomniczi A, Sandau U. Contribution of glial-neuronal interactions to the neuroendocrine control of female puberty. Eur J Neurosci 2010; 32:2003-10. [PMID: 21143655 PMCID: PMC3058235 DOI: 10.1111/j.1460-9568.2010.07515.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mammalian puberty is initiated by an increased pulsatile release of the neuropeptide gonadotropin-releasing hormone (GnRH) from hypothalamic neuroendocrine neurons. Although this increase is primarily set in motion by neuronal networks synaptically connected to GnRH neurons, glial cells contribute to the process via at least two mechanisms. One involves production of growth factors acting via receptors endowed with either serine-threonine kinase or tyrosine kinase activity. The other involves plastic rearrangements of glia-GnRH neuron adhesiveness. Growth factors of the epidermal growth factor family acting via erbB receptors play a major role in glia-to-GnRH neuron communication. In turn, neurons facilitate astrocytic erbB signaling via glutamate-dependent cleavage of erbB ligand precursors. The genetic disruption of erbB receptors delays female sexual development due to impaired erbB ligand-induced glial prostaglandin E(2) release. The adhesiveness of glial cells to GnRH neurons involves at least two different cell-cell communication systems endowed with both adhesive and intracellular signaling capabilities. One is provided by synaptic cell adhesion molecule (SynCAM1), which establishes astrocyte-GnRH neuron adhesiveness via homophilic interactions and the other involves the heterophilic interaction of neuronal contactin with glial receptor-like protein tyrosine phosphatase-β. These findings indicate that the interaction of glial cells with GnRH neurons involves not only secreted bioactive molecules, but also cell-surface adhesive proteins able to set in motion intracellular signaling cascades.
Collapse
Affiliation(s)
- Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health Sciences University, 505 N.W., 185th Avenue, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
32
|
Colledge WH, Mei H, d'Anglemont de Tassigny X. Mouse models to study the central regulation of puberty. Mol Cell Endocrinol 2010; 324:12-20. [PMID: 20083157 DOI: 10.1016/j.mce.2010.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 01/08/2023]
Abstract
At puberty, the mammalian reproductive axis is activated by neuroendocrine events within the hypothalamus that initiate pulsatile secretion of gonadotropin releasing hormone (GnRH) to activate the pituitary/gonadal axis. Thus, puberty is critically dependent on the integrity of GnRH neuronal activity. Defects in the migration of GnRH neurons into the forebrain during development or in GnRH synthesis or release prevent pubertal maturation of the reproductive axis. Both naturally occurring and genetically modified mutant mice have provided valuable information about the cellular and molecular events required for normal pubertal development. This review focuses specifically on the molecules that have been identified from studies in mutant mice that act centrally to control entry into puberty.
Collapse
Affiliation(s)
- William H Colledge
- Reproductive Physiology Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | | | |
Collapse
|
33
|
Prevot V, Bellefontaine N, Baroncini M, Sharif A, Hanchate NK, Parkash J, Campagne C, de Seranno S. Gonadotrophin-releasing hormone nerve terminals, tanycytes and neurohaemal junction remodelling in the adult median eminence: functional consequences for reproduction and dynamic role of vascular endothelial cells. J Neuroendocrinol 2010; 22:639-49. [PMID: 20492366 PMCID: PMC3168864 DOI: 10.1111/j.1365-2826.2010.02033.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although coordinated actions of several areas within the hypothalamus are involved in the secretion of gonadotrophin-releasing hormone (GnRH), the median eminence of the hypothalamus, where the nerve terminals are located, plays a particularly critical role in the release of GnRH. In adult females, prior to the preovulatory surge of GnRH, the retraction of specialised ependymoglial cells lining the floor of the third ventricle named tanycytes allows for the juxtaposition of GnRH nerve terminals with the adjacent pericapillary space of the pituitary portal vasculature, thus forming direct neurohaemal junctions. These morphological changes occur within a few hours and are reversible. Such remodelling may promote physiological conditions to enhance the central release of GnRH and potentiate oestrogen-activated GnRH release. This plasticity involves dynamic cell interactions that bring into play tanycytes, astrocytes, vascular endothelial cells and GnRH neurones themselves. The underlying signalling pathways responsible for these structural changes are comprised of highly diffusible gaseous molecules, such as endothelial nitric oxide, and paracrine communication processes involving receptors of the erbB tyrosine kinase family, transforming growth factor beta 1 and eicosanoids, such as prostaglandin E(2). Some of these molecules, as a result of their ability to diffuse within the median eminence, may also serve as synchronizing cues allowing for the occurrence of functionally meaningful episodes of GnRH secretion by coordinating GnRH release from the GnRH neuroendocrine terminals.
Collapse
Affiliation(s)
- V Prevot
- Inserm, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the Postnatal Brain, Lille, France.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Prevot V, Hanchate NK, Bellefontaine N, Sharif A, Parkash J, Estrella C, Allet C, de Seranno S, Campagne C, de Tassigny XD, Baroncini M. Function-related structural plasticity of the GnRH system: a role for neuronal-glial-endothelial interactions. Front Neuroendocrinol 2010; 31:241-58. [PMID: 20546773 DOI: 10.1016/j.yfrne.2010.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 12/18/2022]
Abstract
As the final common pathway for the central control of gonadotropin secretion, GnRH neurons are subjected to numerous regulatory homeostatic and external factors to achieve levels of fertility appropriate to the organism. The GnRH system thus provides an excellent model in which to investigate the complex relationships between neurosecretion, morphological plasticity and the expression of a physiological function. Throughout the reproductive cycle beginning from postnatal sexual development and the onset of puberty to reproductive senescence, and even within the ovarian cycle itself, all levels of the GnRH system undergo morphological plasticity. This structural plasticity within the GnRH system appears crucial to the timely control of reproductive competence within the individual, and as such must have coordinated actions of multiple signals secreted from glial cells, endothelial cells, and GnRH neurons. Thus, the GnRH system must be viewed as a complete neuro-glial-vascular unit that works in concert to maintain the reproductive axis.
Collapse
Affiliation(s)
- Vincent Prevot
- Inserm, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the Postnatal Brain, F-59000 Lille, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sharif A, Prevot V. ErbB receptor signaling in astrocytes: a mediator of neuron-glia communication in the mature central nervous system. Neurochem Int 2010; 57:344-58. [PMID: 20685225 DOI: 10.1016/j.neuint.2010.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/29/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
Astrocytes are now recognized as active players in the developing and mature central nervous system. Each astrocyte contacts vascular structures and thousands of synapses within discrete territories. These cells receive a myriad of inputs and generate appropriate responses to regulate the function of brain microdomains. Emerging evidence has implicated receptors of the ErbB tyrosine kinase family in the integration and processing of neuronal inputs by astrocytes: ErbB receptors can be activated by a wide range of neuronal stimuli; they control critical steps of glutamate-glutamine metabolism; and they regulate the biosynthesis and release of various glial-derived neurotrophic factors, gliomediators and gliotransmitters. These key properties of astrocytic ErbB signaling in neuron-glia interactions have significance for the physiology of the mature central nervous system, as exemplified by the central control of reproduction within the hypothalamus, and are also likely to contribute to pathological situations, since both dysregulation of ErbB signaling and glial dysfunction occur in many neurological disorders.
Collapse
Affiliation(s)
- Ariane Sharif
- Inserm, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the postnatal Brain, Lille, France.
| | | |
Collapse
|
36
|
de Seranno S, d'Anglemont de Tassigny X, Estrella C, Loyens A, Kasparov S, Leroy D, Ojeda SR, Beauvillain JC, Prevot V. Role of estradiol in the dynamic control of tanycyte plasticity mediated by vascular endothelial cells in the median eminence. Endocrinology 2010; 151:1760-72. [PMID: 20133455 PMCID: PMC2850227 DOI: 10.1210/en.2009-0870] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the ever-changing physiological context of the neuroendocrine brain, the mechanisms by which cellular events involving neurons, astroglia, and vascular cells are coordinated to bring forth the appropriate neuronal signaling is not yet known but is amenable to examination. In the median eminence of the hypothalamus, endothelial cells are key players in the plasticity of tanycytes (specialized astroglia) and neuroendocrine synapse efficacy. Here we report that estradiol acts on both purified endothelial cells and isolated tanycytes to trigger endothelial-to-glial communication that leads to a sudden and massive retraction of tanycyte processes. The blockade of endothelial nitric oxide synthase by in vitro adenoviral-mediated gene transfer of a dominant-negative form of endothelial nitric oxide synthase abrogates the estradiol-induced tanycyte plasticity mediated by endothelial cells. In parallel, increases in prostaglandin-E(2) (PGE(2)) due to changes in cyclooxygenase (COX)-1 and COX-2 expression induced by the exposure of tanycytes to estradiol promote acute tanycyte plasticity. We also demonstrate by electron microscopy that the administration of PGE(2) to median eminence explants induces rapid neuroglial plasticity at the neurovascular junction of neurons that release GnRH (the neuropeptide controlling reproduction). Conversely, preventing local PGE(2) synthesis in the median eminence of adult female rats with the COX inhibitor indomethacin impairs the ovarian cycle, a process that requires a pulsatile, coordinated delivery of GnRH into the hypothalamo-hypophyseal portal system. Taken together, our findings show that estradiol controls the dialog between endothelial cells and astroglia to regulate neuroglial plasticity in the neuroendocrine brain.
Collapse
Affiliation(s)
- Sandrine de Seranno
- Institut National de la Santé et de la Recherche Médicale Unité 837, Bâtiment, Biserte, Place de Verdun, 59045 Lille Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dufour C, Cadusseau J, Varlet P, Surena AL, de Faria GP, Dias-Morais A, Auger N, Léonard N, Daudigeos E, Dantas-Barbosa C, Grill J, Lazar V, Dessen P, Vassal G, Prevot V, Sharif A, Chneiweiss H, Junier MP. Astrocytes reverted to a neural progenitor-like state with transforming growth factor alpha are sensitized to cancerous transformation. Stem Cells 2010; 27:2373-82. [PMID: 19544474 DOI: 10.1002/stem.155] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Gliomas, the most frequent primitive central nervous system tumors, have been suggested to originate from astrocytes or from neural progenitors/stem cells. However, the precise identity of the cells at the origin of gliomas remains a matter of debate because no pre-neoplastic state has been yet identified. Transforming growth factor (TGF)-alpha, an epidermal growth factor family member, is frequently overexpressed in the early stages of glioma progression. We previously demonstrated that prolonged exposure of astrocytes to TGF-alpha is sufficient to trigger their reversion to a neural progenitor-like state. To determine whether TGF-alpha dedifferentiating effects are associated with cancerous transforming effects, we grafted intracerebrally dedifferentiated astrocytes. We show that these cells had the same cytogenomic profile as astrocytes, survived in vivo, and did not give birth to tumors. When astrocytes dedifferentiated with TGF-alpha were submitted to oncogenic stress using gamma irradiation, they acquired cancerous properties: they were immortalized, showed cytogenomic abnormalities, and formed high-grade glioma-like tumors after brain grafting. In contrast, irradiation did not modify the lifespan of astrocytes cultivated in serum-free medium. Addition of TGF-alpha after irradiation did not promote their transformation but decreased their lifespan. These results demonstrate that reversion of mature astrocytes to an embryonic state without genomic manipulation is sufficient to sensitize them to oncogenic stress.
Collapse
Affiliation(s)
- Christelle Dufour
- Inserm UMR894, Team Glial Plasticity, University Paris, Descartes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kuo J, Hariri OR, Micevych P. An interaction of oxytocin receptors with metabotropic glutamate receptors in hypothalamic astrocytes. J Neuroendocrinol 2009; 21:1001-6. [PMID: 19807846 PMCID: PMC2804744 DOI: 10.1111/j.1365-2826.2009.01922.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hypothalamic astrocytes play a critical role in the regulation and support of many different neuroendocrine events, and are affected by oestradiol. Both nuclear and membrane oestrogen receptors (ERs) are expressed in astrocytes. Upon oestradiol activation, membrane-associated ER signals through the type 1a metabotropic glutamate receptor (mGluR1a) to induce an increase of free cytoplasmic calcium concentration ([Ca(2+)](i)). Because the expression of oxytocin receptors (OTRs) is modulated by oestradiol, we tested whether oestradiol also influences oxytocin signalling. Oxytocin at 1, 10, and 100 nm induced a [Ca(2+)](i) flux measured as a change in relative fluorescence [DeltaF Ca(2+) = 330 +/- 17 relative fluorescent units (RFU), DeltaF Ca(2+) = 331 +/- 22 RFU, and DeltaF Ca(2+) = 347 +/- 13 RFU, respectively] in primary cultures of female post-pubertal hypothalamic astrocytes. Interestingly, OTRs interacted with mGluRs. The mGluR1a antagonist, LY 367385 (20 nm), blocked the oxytocin (1 nm)-induced [Ca(2+)](i) flux (DeltaF Ca(2+) = 344 +/- 19 versus 127 +/- 11 RFU, P < 0.001). Conversely, the mGluR1a receptor agonist, (RS)-3,5-dihydroxyphenyl-glycine (100 nm), increased the oxytocin (1 nm)-induced [Ca(2+)](i) response (DeltaF Ca(2+) = 670 +/- 31 RFU) compared to either compound alone (P < 0.001). Because both oxytocin and oestradiol rapidly signal through the mGluR1a, we treated hypothalamic astrocytes sequentially with oxytocin and oestradiol to determine whether stimulation with one hormone affected the subsequent [Ca(2+)](i) response to the second hormone. Oestradiol treatment did not change the subsequent [Ca(2+)](i) flux to oxytocin (P > 0.05) and previous oxytocin exposure did not affect the [Ca(2+)](i) response to oestradiol (P > 0.05). Furthermore, simultaneous oestradiol and oxytocin stimulation failed to yield a synergistic [Ca(2+)](i) response. These results suggest that the OTR signals through the mGluR1a to release Ca(2+) from intracellular stores and rapid, nongenomic oestradiol stimulation does not influence OTR signalling in astrocytes.
Collapse
Affiliation(s)
- John Kuo
- Department of Neurobiology, Laboratory of Neuroendocrinology and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Omid R. Hariri
- Department of Neurobiology, Laboratory of Neuroendocrinology and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Paul Micevych
- Department of Neurobiology, Laboratory of Neuroendocrinology and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Corresponding author and reprint requests: Dr. Paul Micevych, Dept. of Neurobiology, David Geffen School of Medicine at UCLA, 10833 LeConte Avenue, 73-078 CHS, Los Angeles, CA 90095-1763, United States of America, Office: (310) 206-8265, Fax: (310) 825-2224,
| |
Collapse
|
39
|
Placental and embryonic growth restriction in mice with reduced function epidermal growth factor receptor alleles. Genetics 2009; 183:207-18. [PMID: 19564486 DOI: 10.1534/genetics.109.104372] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Embryos lacking an epidermal growth factor receptor (EGFR) exhibit strain-specific defects in placental development that can result in mid-gestational embryonic lethality. To determine the level of EGFR signaling required for normal placental development, we characterized congenic strains homozygous for the hypomorphic Egfr(wa2) allele or heterozygous for the antimorphic Egfr(Wa5) allele. Egfr(wa2) homozygous embryos and placentas exhibit strain-dependent growth restriction at 15.5 days post-coitus while Egfr(Wa5) heterozygous placentas are only slightly reduced in size with no effect on embryonic growth. Egfr(wa2) homozygous placentas have a reduced spongiotrophoblast layer in some strains, while spongiotrophoblasts and glycogen cells are almost completely absent in others. Our results demonstrate that more EGFR signaling occurs in Egfr(Wa5) heterozygotes than in Egfr(wa2) homozygotes and suggest that Egfr(wa2) homozygous embryos model EGFR-mediated intrauterine growth restriction in humans. We also consistently observed differences between strains in wild-type placenta and embryo size as well as in the cellular composition and expression of trophoblast cell subtype markers and propose that differential expression in the placenta of Glut3, a glucose transporter essential for normal embryonic growth, may contribute to strain-dependent differences in intrauterine growth restriction caused by reduced EGFR activity.
Collapse
|
40
|
Dackor J, Li M, Threadgill DW. Placental overgrowth and fertility defects in mice with a hypermorphic allele of epidermal growth factor receptor. Mamm Genome 2009; 20:339-49. [PMID: 19466482 DOI: 10.1007/s00335-009-9189-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 04/16/2009] [Indexed: 11/25/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a member of the ERBB family of receptor tyrosine kinases that has been shown to play an important developmental and physiologic role in many aspects of pregnancy. We have previously shown in mice that Egfr(tm1Mag) nullizygous placentas have fewer proliferative trophoblasts than wild-type and exhibit strain-specific defects in the spongiotrophoblast and labyrinth layers. In this study we used mice with the hypermorphic Egfr(Dsk5) allele to study the effects of increased levels of EGFR signaling on placental development. On three genetic backgrounds, heterozygosity for Egfr(Dsk5) resulted in larger placental size with a more prominent spongiotrophoblast layer and increased expression of glycogen cell-specific genes. The C3HeB/FeJ strain showed additional placental enlargement of Egfr(Dsk5) homozygotes with a significant number of homozygous embryos dying prior to 15.5 days post-coitus (dpc). We also observed strain-specific subfertility in Egfr(Dsk5) heterozygous females and pregnancy loss was dependent on maternal factors rather than embryo genotype. Higher levels of phospho-EGFR were detected in the uterus of Egfr(Dsk5) heterozygotes but the structure of Egfr(Dsk5) heterozygous nonpregnant uteri appeared similar to wild-type. Collectively, our results demonstrate that mice with increased levels of EGFR signaling exhibit an extensive level of genetic background-dependent phenotypic variability. In addition, EGFR promotes growth of the placental spongiotrophoblast layer in mice, and EGFR expressed in the uterine stroma may play an underappreciated role in preparation of the uterus for embryo implantation.
Collapse
Affiliation(s)
- Jennifer Dackor
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
41
|
Sharif A, Duhem-Tonnelle V, Allet C, Baroncini M, Loyens A, Kerr-Conte J, Collier F, Blond S, Ojeda SR, Junier MP, Prevot V. Differential erbB signaling in astrocytes from the cerebral cortex and the hypothalamus of the human brain. Glia 2009; 57:362-79. [DOI: 10.1002/glia.20762] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Wright CL, Burks SR, McCarthy MM. Identification of prostaglandin E2 receptors mediating perinatal masculinization of adult sex behavior and neuroanatomical correlates. Dev Neurobiol 2008; 68:1406-19. [PMID: 18726914 PMCID: PMC2725403 DOI: 10.1002/dneu.20665] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Prostaglandin E2 (PGE2) mediates the organization of male rat sexual behavior and medial preoptic area (MPOA) neuroanatomy during a sensitive perinatal window. PGE2 is up-regulated in response to estradiol, and initiates a two-fold increase in dendritic spines densities on neurons. All the four receptors for PGE2 and EP1-4 are present in developing POA, a critical region controlling male sexual behavior. Previous studies explored that EP receptors are involved in PGE2-induction of neonatal levels of spinophilin protein, a surrogate marker for dendritic spine formation, but did not assess behavioral masculinization. Here, we used two approaches, suppression of EP receptor expression with antisense oligonucleotides and activation of EP receptors with selective agonists, to test which receptors are necessary and sufficient, respectively, for the effects of PGE2 on behavior and neuronal morphology. In female rats, neonatal treatment with antisense oligonucleotides against EP2 or EP4 but not EP1 or EP3 completely prevented the expression of adult behavior organized by PGE2 exposure. The effects of ONO-DI-004, ONO-AE-259-01, ONO-AE-248, and ONO-AE1-329 (EP1-4 agonists respectively) were equivalent to PGE2 treatment, which suggests activating any EP receptor neonatally suffices in masculinizing sex behavior. When given alone, not all EP agonists increased neonatal POA spinophilin levels; yet giving each agonist neonatally increased adult levels. Moreover, adult spinophilin levels significantly correlated with two measures of male sexual behavior. The body of evidence suggests that EP2 and EP4 are both necessary and sufficient for PGE2-induced masculinization of sex behavior, whereas EP1 and EP3 provide redundant roles.
Collapse
MESH Headings
- Alprostadil/administration & dosage
- Alprostadil/analogs & derivatives
- Alprostadil/pharmacology
- Animals
- Animals, Newborn
- Blotting, Western
- Dinoprostone/administration & dosage
- Dinoprostone/analogs & derivatives
- Dinoprostone/pharmacology
- Female
- Male
- Methyl Ethers/administration & dosage
- Methyl Ethers/pharmacology
- Microfilament Proteins/analysis
- Microfilament Proteins/metabolism
- Microinjections
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/metabolism
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/pharmacology
- Preoptic Area/drug effects
- Preoptic Area/metabolism
- Preoptic Area/physiology
- Prostaglandin Antagonists/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Prostaglandin E/agonists
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Sex Characteristics
- Sexual Behavior, Animal/drug effects
- Sexual Behavior, Animal/physiology
Collapse
Affiliation(s)
- Christopher L Wright
- Program in Neuroscience, School of Medicine, University of Maryland-Baltimore, MD, USA.
| | | | | |
Collapse
|
43
|
Peper JS, Brouwer RM, Schnack HG, van Baal GCM, van Leeuwen M, van den Berg SM, Delemarre-Van de Waal HA, Janke AL, Collins DL, Evans AC, Boomsma DI, Kahn RS, Hulshoff Pol HE. Cerebral white matter in early puberty is associated with luteinizing hormone concentrations. Psychoneuroendocrinology 2008; 33:909-15. [PMID: 18640784 DOI: 10.1016/j.psyneuen.2008.03.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/27/2008] [Accepted: 03/31/2008] [Indexed: 11/19/2022]
Abstract
Puberty is a period in which cerebral white matter grows considerably, whereas gray matter decreases. The first endocrinological marker of puberty in both boys and girls is an increased secretion of luteinizing hormone (LH). Here we investigated the phenotypic association between LH, global and focal gray and white matter in 104 healthy nine-year-old monozygotic and dizygotic twins. Volumetric MRI and voxel-based morphometry were applied to measure global gray and white matter and to estimate relative concentrations of regional cerebral gray and white matter, respectively. A possible common genetic origin of this association (genetic correlation) was examined. Results showed that higher LH levels are associated with a larger global white matter proportion and with higher regional white matter density. Areas of increased white matter density included the cingulum, middle temporal gyrus and splenium of the corpus callosum. No association between LH and global gray matter proportion or regional gray matter density was found. Our data indicate that a common genetic factor underlies the association between LH level and regional white matter density. We suggest that the increase of white matter growth during puberty reported earlier might be directly or indirectly mediated by LH production. In addition, genes involved in LH production may be promising candidate genes in neuropsychiatric illnesses with an onset in early adolescence.
Collapse
Affiliation(s)
- Jiska S Peper
- Rudolf Magnus Institute of Neuroscience, Department of Psychiatry, University Medical Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schneider MR, Wolf E. The epidermal growth factor receptor and its ligands in female reproduction: Insights from rodent models. Cytokine Growth Factor Rev 2008; 19:173-81. [DOI: 10.1016/j.cytogfr.2008.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Gratao AA, Dahlhoff M, Sinowatz F, Wolf E, Schneider MR. Betacellulin Overexpression in the Mouse Ovary Leads to MAPK3/MAPK1 Hyperactivation and Reduces Litter Size by Impairing Fertilization1. Biol Reprod 2008; 78:43-52. [PMID: 17914071 DOI: 10.1095/biolreprod.107.062588] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) and its ligands are emerging as key molecules in regulating female reproduction. Here, we used a transgenic mouse model to evaluate whether and at which level of the reproduction cascade higher-than-normal levels of the EGFR ligand betacellulin (BTC) in the reproductive organs affect fertility. Western blots and immunohistochemistry revealed increased BTC levels in uterus and ovaries from transgenic females, particularly evident in granulosa cells of antral follicles. Onset of puberty, estrous cyclicity, and the anatomy and histology of reproductive organs at puberty were not altered as compared to control females. Fertility tests revealed a reduction (~50%) in litter size as the major reproductive deficit of transgenic females. Embryo implantation was delayed in transgenic females, but this was not the reason for the reduced litter size. Transgenic females produced a normal number of oocytes after natural ovulation. The in vivo fertilization rate was significantly reduced in untreated transgenic females but returned to normal levels after superovulation. Impaired oocyte fertilization in the absence of superovulation treatment was associated with MAPK3/MAPK1 hyperactivation in BTC transgenic ovaries, whereas similar levels of MAPK3/MAPK1 activation were detected in transgenic and control ovaries after superovulation treatment. Thus, tight regulation of MAPK3/MAPK1 activity appears to be essential for appropriate granulosa cell function during oocyte maturation. Our study identified hitherto unknown effects of BTC overabundance in reproduction and suggests BTC as a novel candidate protein for the modulation of fertility.
Collapse
Affiliation(s)
- Ana A Gratao
- Institute of Molecular Animal Breeding and Biotechnology and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians University, 81377, Munich, Germany
| | | | | | | | | |
Collapse
|
46
|
Panchal H, Wansbury O, Parry S, Ashworth A, Howard B. Neuregulin3 alters cell fate in the epidermis and mammary gland. BMC DEVELOPMENTAL BIOLOGY 2007; 7:105. [PMID: 17880691 PMCID: PMC2110892 DOI: 10.1186/1471-213x-7-105] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 09/19/2007] [Indexed: 01/22/2023]
Abstract
BACKGROUND The Neuregulin family of ligands and their receptors, the Erbb tyrosine kinases, have important roles in epidermal and mammary gland development as well as during carcinogenesis. Previously, we demonstrated that Neuregulin3 (Nrg3) is a specification signal for mammary placode formation in mice. Nrg3 is a growth factor, which binds and activates Erbb4, a receptor tyrosine kinase that regulates cell proliferation and differentiation. To understand the role of Neuregulin3 in epidermal morphogenesis, we have developed a transgenic mouse model that expresses Nrg3 throughout the basal layer (progenitor/stem cell compartment) of mouse epidermis and the outer root sheath of developing hair follicles. RESULTS Transgenic females formed supernumerary nipples and mammary glands along and adjacent to the mammary line providing strong evidence that Nrg3 has a role in the initiation of mammary placodes along the body axis. In addition, alterations in morphogenesis and differentiation of other epidermal appendages were observed, including the hair follicles. The transgenic epidermis is hyperplastic with excessive sebaceous differentiation and shows striking similarities to mouse models in which c-Myc is activated in the basal layer including decreased expression levels of the adhesion receptors, alpha6-integrin and beta1-integrin. CONCLUSION These results indicate that the epidermis is sensitive to Nrg3 signaling, and that this growth factor can regulate cell fate of pluripotent epidermal cell populations including that of the mammary gland. Nrg3 appears to act, in part, by inducing c-Myc, altering the proliferation and adhesion properties of the basal epidermis, and may promote exit from the stem cell compartment. The results we describe provide significant insight into how growth factors, such as Nrg3, regulate epidermal homeostasis by influencing the balance between stem cell renewal, lineage selection and differentiation.
Collapse
Affiliation(s)
- Heena Panchal
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research 237 Fulham Road, London SW3 6JB, UK
| | - Olivia Wansbury
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research 237 Fulham Road, London SW3 6JB, UK
| | - Suzanne Parry
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research 237 Fulham Road, London SW3 6JB, UK
| | - Alan Ashworth
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research 237 Fulham Road, London SW3 6JB, UK
| | - Beatrice Howard
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
47
|
Baroncini M, Allet C, Leroy D, Beauvillain JC, Francke JP, Prevot V. Morphological evidence for direct interaction between gonadotrophin-releasing hormone neurones and astroglial cells in the human hypothalamus. J Neuroendocrinol 2007; 19:691-702. [PMID: 17680884 DOI: 10.1111/j.1365-2826.2007.01576.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In rodents, there is compelling evidence indicating that dynamic cell-to-cell communications involving cross talk between astroglial cells (such as astrocytes and specialised ependymoglial cells known as tanycytes) and neurones are important in regulating the secretion of gonadotrophin-releasing hormone (GnRH), the neurohormone that controls both sexual maturation and adult reproductive function. However, whether such astroglial cell-GnRH neurone interactions occur in the human brain is not known. In the present study, we used immunofluorescence to examine the anatomical relationship between GnRH neurones and glial cells within the hypothalamus of five women. Double-staining experiments demonstrated the ensheathment of GnRH neurone perikarya by glial fibrillary acidic protein (GFAP)-immunoreactive astrocyte processes in the periventricular zone of the tuberal region of the hypothalamus. GFAP immunoreactivity did not overlap that of GnRH at the GnRH neurone's projection site (i.e. the median eminence of the hypothalamus). Rather, human GnRH neuroendocrine fibres were found to be closely associated with vimentin or nestin-immunopositive radial glial processes likely belonging to tanycytes. In line with these light microscopy data, ultrastructural examination of GnRH-immunoreactive neurones showed numerous glial cells in direct apposition to pre-embedding-labelled GnRH cell bodies and/or dendrites in the infundibular nucleus, whereas postembedding immunogold-labelled GnRH nerve terminals were often seen to be enwrapped by glial cell processes in the median eminence. GnRH nerve button were sometimes visualised in close proximity to fenestrated pituitary portal blood capillaries and/or evaginations of the basal lamina that delineate the pericapillary space. In summary, these data demonstrate that GnRH neurones morphologically interact with astrocytes and tanycytes in the human brain and provide evidence that glial cells may contribute physiologically to the process by which the neuroendocrine brain controls the function of GnRH neurones in humans.
Collapse
Affiliation(s)
- M Baroncini
- INSERM U837-Development and Plasticity of the Postnatal Brain, Jean-Pierre Aubert Research Center, Place de Verdun, 59045 Lille, France
| | | | | | | | | | | |
Collapse
|
48
|
Prevot V, Dehouck B, Poulain P, Beauvillain JC, Buée-Scherrer V, Bouret S. Neuronal-glial-endothelial interactions and cell plasticity in the postnatal hypothalamus: implications for the neuroendocrine control of reproduction. Psychoneuroendocrinology 2007; 32 Suppl 1:S46-51. [PMID: 17629628 DOI: 10.1016/j.psyneuen.2007.03.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/06/2007] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
It is becoming increasingly apparent that non-neuronal cells play a critical role in generating and regulating the flow of information within the brain. Among these non-neuronal cells, astroglial cells have been shown to play important roles in the control of both synaptic transmission and neurosecretion. In addition to modulating neuronal activity, astroglial cells interact with endothelial cells throughout the central nervous system to define specific functional domains. In the hypothalamus, neurons that release gonadotropin-releasing hormone (GnRH), the neurohormone that controls both sexual development and adult reproductive function, offer an attractive model system in which to study glial-neuronal-endothelial interactions. Within the median eminence of the hypothalamus, alterations of the anatomical relationship that exists between GnRH axon terminals and ependymoglial cell processes belonging to tanycytes regulate the direct access of GnRH neurosecretory axons to the vascular wall. This cell plasticity presumably modulates the release of GnRH into the portal vasculature during the reproductive cycle. Both structural changes and GnRH secretory activity appear to be modulated, at least in part, by specific cell-cell signalling molecules secreted by astrocytes, tanycytes and endothelial cells. It is becoming increasingly clear that among the different factors that may be involved, glial cells use growth factor members of the epidermal growth factor (EGF) family, acting via receptors endowed with tyrosine kinase activity, to produce morphological changes and release neuroactive substances that directly excite nearby neurons, whereas endothelial cells of the median eminence employ nitric oxide to induce neuroglial plasticity and facilitate GnRH release.
Collapse
Affiliation(s)
- Vincent Prevot
- Inserm, Jean-Pierre Aubert Research Centre, U837, Development and Plasticity of the Postnatal Brain, Place de Verdun, 59045 Lille Cedex, France.
| | | | | | | | | | | |
Collapse
|
49
|
Liu W, Zscheppang K, Murray S, Nielsen HC, Dammann CEL. The ErbB4 receptor in fetal rat lung fibroblasts and epithelial type II cells. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:737-47. [PMID: 17553674 PMCID: PMC2144912 DOI: 10.1016/j.bbadis.2007.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 04/23/2007] [Accepted: 04/24/2007] [Indexed: 02/06/2023]
Abstract
ErbB receptors are important regulators of fetal organ development, including the fetal lung. They exhibit diversity in signaling potential, acting through homo- and heterodimers to cause different biological responses. We hypothesized that ErbB receptors show cell-specific and stimuli-specific activation, heterodimerization, and cellular localization patterns in fetal lung. We investigated this using immunoblotting, co-immunoprecipitation, and confocal microscopy in primary isolated E19 fetal rat lung fibroblasts and epithelial type II cells, stimulated with epidermal growth factor, transforming growth factor alpha, neuregulin 1beta, or treated with conditioned medium (CM) from the respective other cell type. Fetal type II cells expressed significantly more ErbB1, ErbB2, and ErbB3 protein than fibroblasts. ErbB4 was consistently identified by co-immunoprecipitation of all other ErbB receptors in both cell types independent of the treatments. Downregulation of ErbB4 in fibroblasts initiated cell-cell communication that stimulated surfactant phospholipid synthesis in type II cells. Confocal microscopy in type II cells revealed nuclear localization of all receptors, most prominently for ErbB4. Neuregulin treatment resulted in relocation to the extra-nuclear cytoplasmic region, which was distinct from fibroblast CM treatment which led to nuclear localization of ErbB4 and ErbB2, inducing co-localization of both receptors. We speculate that ErbB4 plays a prominent role in fetal lung mesenchyme-epithelial communication.
Collapse
Affiliation(s)
- Washa Liu
- Newborn Medicine, Department of Pediatrics, Floating Hospital for Children, Tufts-New England Medical Center, Boston, MA 02111, USA.
| | | | | | | | | |
Collapse
|
50
|
Fisher MC, Clinton GM, Maihle NJ, Dealy CN. Requirement for ErbB2/ErbB signaling in developing cartilage and bone. Dev Growth Differ 2007; 49:503-13. [PMID: 17555517 DOI: 10.1111/j.1440-169x.2007.00941.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
During endochondral ossification, the skeletal elements of vertebrate limbs form and elongate via coordinated control of chondrocyte and osteoblast differentiation and proliferation. The role of signaling by the ErbB family of receptor tyrosine kinases, which consists of ErbB1 (epidermal growth factor receptor or EGFR), ErbB2, ErbB3 and ErbB4, has been little studied during cartilage and bone development. Signaling by the ErbB network generates a diverse array of cellular responses via formation of ErbB dimers activated by distinct ligands that produce distinct signal outputs. Herstatin is a soluble ErbB2 receptor that acts in a dominant negative fashion to inhibit ErbB signaling by binding to endogenous ErbB receptors, preventing functional dimer formation. Here, we examine the effects of Herstatin on limb skeletal element development in transgenic mice, achieved via Prx1 promoter-driven expression in limb cartilage and bone. The limb skeletal elements of Prx1-Herstatin embryos are shortened, and chondrocyte maturation and osteoblast differentiation are delayed. In addition, proliferation by chondrocytes and periosteal cells of Prx1-Herstatin limb skeletal elements is markedly reduced. Our study identifies requirements for ErbB signaling in the maintenance of chondrocyte and osteoblast proliferation involved in the timely progression of chondrocyte maturation and periosteal osteoblast differentiation.
Collapse
Affiliation(s)
- Melanie C Fisher
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|