1
|
Yue M, Qin Z, Hu L, Ji H. Understanding cachexia and its impact on lung cancer and beyond. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:95-105. [PMID: 39169934 PMCID: PMC11332896 DOI: 10.1016/j.pccm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 08/23/2024]
Abstract
Cancer cachexia is a multifactorial syndrome characterized by loss of body weight secondary to skeletal muscle atrophy and adipose tissue wasting. It not only has a significant impact on patients' quality of life but also reduces the effectiveness and tolerability of anticancer therapy, leading to poor clinical outcomes. Lung cancer is a prominent global health concern, and the prevalence of cachexia is high among patients with lung cancer. In this review, we integrate findings from studies of lung cancer and other types of cancer to provide an overview of recent advances in cancer cachexia. Our focus includes topics such as the clinical criteria for diagnosis and staging, the function and mechanism of selected mediators, and potential therapeutic strategies for clinical application. A comprehensive summary of current studies will improve our understanding of the mechanisms underlying cachexia and contribute to the identification of high-risk patients, the development of effective treatment strategies, and the design of appropriate therapeutic regimens for patients at different disease stages.
Collapse
Affiliation(s)
- Meiting Yue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Qin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
2
|
Castro M, Valero MS, López-Tofiño Y, López-Gómez L, Girón R, Martín-Fontelles MI, Uranga JA, Abalo R. Radiographic and histopathological study of gastrointestinal dysmotility in lipopolysaccharide-induced sepsis in the rat. Neurogastroenterol Motil 2023; 35:e14639. [PMID: 37417393 DOI: 10.1111/nmo.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 05/03/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Sepsis is a highly incident condition in which a cascade of proinflammatory cytokines is involved. One of its most frequent consequences is ileus, which can increase mortality. Animal models such as that induced by systemic administration of lipopolysaccharide (LPS) are useful to deeply evaluate this condition. The effects of sepsis on the gastrointestinal (GI) tract have been explored but, to our knowledge, in vivo studies showing the motor and histopathological consequences of endotoxemia in an integrated way are lacking. Our aim was to study in rats the effects of sepsis on GI motility, using radiographic methods, and to assess histological damage in several organs. METHODS Male rats were intraperitoneally injected with saline or E. coli LPS at 0.1, 1, or 5 mg kg-1 . Barium sulfate was intragastrically administered, and X-rays were performed 0-24 h afterwards. Several organs were collected for organography, histopathology, and immunohistochemistry studies. KEY RESULTS All LPS doses caused gastroparesia, whereas changes in intestinal motility were dose-and time-dependent, with an initial phase of hypermotility followed by paralytic ileus. Lung, liver, stomach, ileum, and colon (but not spleen or kidneys) were damaged, and density of neutrophils and activated M2 macrophages and expression of cyclooxygenase 2 were increased in the colon 24 h after LPS 5 mg kg-1 . CONCLUSIONS AND INFERENCES Using radiographic, noninvasive methods for the first time, we show that systemic LPS causes dose-, time-, and organ-dependent GI motor effects. Sepsis-induced GI dysmotility is a complex condition whose management needs to take its time-dependent changes into account.
Collapse
Affiliation(s)
- Marta Castro
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Marta Sofía Valero
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Yolanda López-Tofiño
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain
- High-Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), Alcorcón, Spain
| | - Laura López-Gómez
- High-Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), Alcorcón, Spain
- Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain
| | - Rocío Girón
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain
- High-Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), Alcorcón, Spain
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María Isabel Martín-Fontelles
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| | - José A Uranga
- High-Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), Alcorcón, Spain
- Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain
- High-Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), Alcorcón, Spain
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
- Grupo de Trabajo de Cannabinoides de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
3
|
Hosoi T, Yamawaki Y, Kimura H, Honda S, Ozawa K. Possible Involvement of MyD88 in Regulating Stress Response in Mice. Front Neurosci 2021; 15:621446. [PMID: 33790733 PMCID: PMC8006405 DOI: 10.3389/fnins.2021.621446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/22/2021] [Indexed: 01/26/2023] Open
Abstract
Myeloid differentiation primary response 88 (MyD88) is an adapter protein of the toll-like receptor (TLR) family that regulates innate immune function. Here, we identified a novel role of MyD88 in regulating stress response. MyD88 deficiency decreased immobility time in the forced swim test without affecting locomotor activity in mice. Immobilization stress-induced production of serum corticosterone was also completely inhibited by MyD88 deficiency. Stress induced decrease in glucocorticoid receptor in the hippocampus. On the other hand, stress exposure in MyD88 deficient mice did not cause decrease in its level in the hippocampus. Furthermore, immobilization stress-induced reduction of brain-derived neurotrophic factor (BDNF) levels in the hippocampus was ameliorated by MyD88 deficiency. These results suggest that MyD88 deficiency attenuates depression-like behavior by regulating corticosterone and BDNF levels. Overall, these results indicate the key role of MyD88 in regulating stress response in mice.
Collapse
Affiliation(s)
- Toru Hosoi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Yosuke Yamawaki
- Department of Cellular and Molecular Pharmacology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Laboratory of Advanced Pharmacology, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Hitomi Kimura
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shoko Honda
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koichiro Ozawa
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
Hariyanto TI, Kurniawan A. Appetite problem in cancer patients: Pathophysiology, diagnosis, and treatment. Cancer Treat Res Commun 2021; 27:100336. [PMID: 33607591 DOI: 10.1016/j.ctarc.2021.100336] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 01/02/2023]
Abstract
AIM This study aims to review the current evidence regarding appetite problem in cancer patients, mainly focusing on pathophysiology, diagnosis, and treatment. INTRODUCTION Anorexia is the common symptom of malnutrition in cancer patients. Recently, the understanding of the pathophysiological mechanism of the appetite problem in cancer patients has been increasing that give impact to rigorous research to find the therapies for improving appetite in cancer patients. DISCUSSION The development of anorexia in cancer patients is a complex process that involves many cytokines, receptors, chemical mediators/substances, hormones, and peptides. Growth and differentiation factor-15 (GDF-15) and toll-like receptor (TLR-4) have recently been found to be implicated in the pathogenesis of anorexia. To help diagnose the appetite problem in cancer patients, several questionnaires can be used, starting from well-known questionnaires such as Functional Assessment of Anorexia Cachexia Therapy (FAACT), Visual Analog Scale (VAS), European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC-QLQ30). Several drugs with different mechanisms of action have been studied to help in improving appetite in cancer patients. New repurposed agents such as anamorelin, mirtazapine, thalidomide, and eicosapentaenoic acid (EPA) have shown a beneficial effect in improving appetite and quality of life in cancer patients, however more phase 3 clinical trial studies is still needed. CONCLUSION The pathophysiology of appetite problems in cancer patients is a complex process that involves many factors. Several drugs that target those factors have been studied, however more phase 3 clinical trial studies are needed to confirm the findings from previous studies.
Collapse
Affiliation(s)
- Timotius Ivan Hariyanto
- Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman street, Karawaci, Tangerang, Banten 15811, Indonesia
| | - Andree Kurniawan
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman street, Karawaci, Tangerang, Banten 15811, , Indonesia.
| |
Collapse
|
5
|
Böttcher M, Müller-Fielitz H, Sundaram SM, Gallet S, Neve V, Shionoya K, Zager A, Quan N, Liu X, Schmidt-Ullrich R, Haenold R, Wenzel J, Blomqvist A, Engblom D, Prevot V, Schwaninger M. NF-κB signaling in tanycytes mediates inflammation-induced anorexia. Mol Metab 2020; 39:101022. [PMID: 32446877 PMCID: PMC7292913 DOI: 10.1016/j.molmet.2020.101022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Infections, cancer, and systemic inflammation elicit anorexia. Despite the medical significance of this phenomenon, the question of how peripheral inflammatory mediators affect the central regulation of food intake is incompletely understood. Therefore, we have investigated the sickness behavior induced by the prototypical inflammatory mediator IL-1β. METHODS IL-1β was injected intravenously. To interfere with IL-1β signaling, we deleted the essential modulator of NF-κB signaling (Nemo) in astrocytes and tanycytes. RESULTS Systemic IL-1β increased the activity of the transcription factor NF-κB in tanycytes of the mediobasal hypothalamus (MBH). By activating NF-κB signaling, IL-1β induced the expression of cyclooxygenase-2 (Cox-2) and stimulated the release of the anorexigenic prostaglandin E2 (PGE2) from tanycytes. When we deleted Nemo in astrocytes and tanycytes, the IL-1β-induced anorexia was alleviated whereas the fever response and lethargy response were unchanged. Similar results were obtained after the selective deletion of Nemo exclusively in tanycytes. CONCLUSIONS Tanycytes form the brain barrier that mediates the anorexic effect of systemic inflammation in the hypothalamus.
Collapse
Affiliation(s)
- Mareike Böttcher
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562, Lübeck, Germany
| | - Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562, Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Sivaraj M Sundaram
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562, Lübeck, Germany
| | - Sarah Gallet
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Lille, France; University of Lille, FHU 1000 days for Health, School of Medicine, U1172, Lille, France
| | - Vanessa Neve
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562, Lübeck, Germany
| | - Kiseko Shionoya
- Department of Clinical and Experimental Medicine, Linköping University, S-581 85, Linköping, Sweden
| | - Adriano Zager
- Department of Clinical and Experimental Medicine, Linköping University, S-581 85, Linköping, Sweden
| | - Ning Quan
- Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Xiaoyu Liu
- Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Ruth Schmidt-Ullrich
- Department of Signal Transduction in Tumor Cells, Max-Delbrück-Center (MDC) for Molecular Medicine, 13125, Berlin, Germany
| | - Ronny Haenold
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), 07745, Jena, Germany; Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Jan Wenzel
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562, Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Anders Blomqvist
- Department of Clinical and Experimental Medicine, Linköping University, S-581 85, Linköping, Sweden
| | - David Engblom
- Department of Clinical and Experimental Medicine, Linköping University, S-581 85, Linköping, Sweden
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Lille, France; University of Lille, FHU 1000 days for Health, School of Medicine, U1172, Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562, Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| |
Collapse
|
6
|
Shepard CR. TLR9 in MAFLD and NASH: At the Intersection of Inflammation and Metabolism. Front Endocrinol (Lausanne) 2020; 11:613639. [PMID: 33584545 PMCID: PMC7880160 DOI: 10.3389/fendo.2020.613639] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Toll-Like Receptor 9 (TLR9) is an ancient receptor integral to the primordial functions of inflammation and metabolism. TLR9 functions to regulate homeostasis in a healthy system under acute stress. The literature supports that overactivation of TLR9 under the chronic stress of obesity is a critical driver of the pathogenesis of NASH and NASH-associated fibrosis. Research has focused on the core contributions of the parenchymal and non-parenchymal cells in the liver, adipose, and gut compartments. TLR9 is activated by endogenous circulating mitochondrial DNA (mtDNA). Chronically elevated circulating levels of mtDNA, caused by the stress of overnutrition, are observed in obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), and NASH. Clinical evidence is supportive of TLR9 overactivation as a driver of disease. The role of TLR9 in metabolism and energy regulation may have an underappreciated contribution in the pathogenesis of NASH. Antagonism of TLR9 in NASH and NASH-associated fibrosis could be an effective therapeutic strategy to target both the inflammatory and metabolic components of such a complex disease.
Collapse
|
7
|
Ringseis R, Gessner DK, Eder K. The Gut-Liver Axis in the Control of Energy Metabolism and Food Intake in Animals. Annu Rev Anim Biosci 2019; 8:295-319. [PMID: 31689373 DOI: 10.1146/annurev-animal-021419-083852] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent research has convincingly demonstrated a bidirectional communication axis between the gut and liver that enables the gut microbiota to strongly affect animals' feeding behavior and energy metabolism. As such, the gut-liver axis enables the host to control and shape the gut microbiota and to protect the intestinal barrier. Gut microbiota-host communication is based on several gut-derived compounds, such as short-chain fatty acids, bile acids, methylamines, amino acid-derived metabolites, and microbial-associated molecular patterns, which act as communication signals, and multiple host receptors, which sense the signals, thereby stimulating signaling and metabolic pathways in all key tissues of energy metabolism and food intake regulation. Disturbance in the microbial ecosystem balance, or microbial dysbiosis, causes profound derangements in the regulation of appetite and satiety in the hypothalamic centers of the brain and in key metabolic pathways in peripheral tissues owing to intestinal barrier disruption and subsequent induction of hepatic and hypothalamic inflammation.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| | - Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| |
Collapse
|
8
|
Yamawaki Y, Shirawachi S, Mizokami A, Nozaki K, Ito H, Asano S, Oue K, Aizawa H, Yamawaki S, Hirata M, Kanematsu T. Phospholipase C-related catalytically inactive protein regulates lipopolysaccharide-induced hypothalamic inflammation-mediated anorexia in mice. Neurochem Int 2019; 131:104563. [PMID: 31589911 DOI: 10.1016/j.neuint.2019.104563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 11/29/2022]
Abstract
Peripheral lipopolysaccharide (LPS) injection induces systemic inflammation through the activation of the inhibitor of nuclear factor kappa B (NF-κB) kinase (IKK)/NF-κB signaling pathway, which promotes brain dysfunction resulting in conditions including anorexia. LPS-mediated reduction of food intake is associated with activation of NF-κB signaling and phosphorylation of the transcription factor signal transducer and activator of transcription 3 (STAT3) in the hypothalamus. We recently reported phospholipase C-related catalytically inactive protein (PRIP) as a new negative regulator of phosphatidylinositol 3-kinase/AKT signaling. AKT regulates the IKK/NF-κB signaling pathway; therefore, this study aimed to investigate the role of PRIP/AKT signaling in LPS-mediated neuroinflammation-induced anorexia. PRIP gene (Prip1 and Prip2) knockout (Prip-KO) mice intraperitoneally (ip) administered with LPS exhibited increased anorexia responses compared with wild-type (WT) controls. Although few differences were observed between WT and Prip-KO mice in LPS-elicited plasma pro-inflammatory cytokine elevation, hypothalamic pro-inflammatory cytokines were significantly upregulated in Prip-KO rather than WT mice. Hypothalamic AKT and IKK phosphorylation and IκB degradation were significantly increased in Prip-KO rather than WT mice, indicating further promotion of AKT-mediated NF-κB signaling. Consistently, hypothalamic STAT3 was further phosphorylated in Prip-KO rather than WT mice. Furthermore, suppressor of cytokine signaling 3 (Socs3), a negative feedback regulator for STAT3 signaling, and cyclooxogenase-2 (Cox2), a candidate molecule in LPS-induced anorexigenic responses, were upregulated in the hypothalamus in Prip-KO rather than WT mice. Pro-inflammatory cytokines were upregulated in hypothalamic microglia isolated from Prip-KO rather than WT mice. Together, these findings indicate that PRIP negatively regulates LPS-induced anorexia caused by pro-inflammatory cytokine expression in the hypothalamus, which is mediated by AKT-activated NF-κB signaling. Importantly, hypothalamic microglia participate in this PRIP-mediated process. Elucidation of PRIP-mediated neuroinflammatory responses may provide novel insights into the pathophysiology of many brain dysfunctions.
Collapse
Affiliation(s)
- Yosuke Yamawaki
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Laboratory of Advanced Pharmacology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| | - Satomi Shirawachi
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Akiko Mizokami
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kanako Nozaki
- Department of Neurobiology, Division of Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hikaru Ito
- Department of Neurobiology, Division of Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan; Center for Experimental Animals, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kana Oue
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Department of Dental Anesthesiology, Division of Applied Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Hidenori Aizawa
- Department of Neurobiology, Division of Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shigeto Yamawaki
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masato Hirata
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Takashi Kanematsu
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Department of Cell Biology and Pharmacology, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
9
|
Kose D, Cadirci E, Halici Z, Sirin B, Dincer B. The investigation of possible roles of central 5-HT 7 receptors in antipyretic effect mechanism of paracetamol in LPS-induced hyperthermia model of mice. Inflammopharmacology 2019; 27:1169-1178. [PMID: 31309486 DOI: 10.1007/s10787-019-00617-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/21/2019] [Indexed: 01/01/2023]
Abstract
AIM This study aimed to investigate the role of the 5-HT7 receptor in fever mechanisms and its possible effect on the antipyretic mechanism of paracetamol. MATERIALS AND METHODS The study consisted of eight experimental groups and one control group. Group I: healthy, II: LPS, III: LPS + PARA, IV: LPS + AGO, V: LPS + ANTA, VI: LPS + AGO + ANTA, VII: LPS + AGO + PARA, VIII: LPS + ANTA + PARA, and IX: LPS + AGO + ANTA + PARA. Rectal temperatures were measured with a rectal thermometer. At the end of the experiment, tissues were examined molecularly. Real-time PCR mRNA expression analyses were performed for the 5-HT7 receptor, IL-6, and TNF-α in hypothalamus tissue. RESULTS The mean differences in rectal temperature increased in the LPS, LPS + ANTA, and LPS + AGO + ANTA groups when compared to the healthy group and decreased in the LPS + PARA, LPS + AGO, LPS + AGO + PARA, and LPS + AGO + ANTA + PARA groups when compared to the healthy group. The IL-6 and TNF-α mRNA expression increased in the LPS, LPS + ANTA, and LPS + AGO + ANTA groups when compared to the healthy group in the 2nd and 4th hours. The IL-6 and TNF-α expression decreased in the LPS + PARA, LPS + AGO, LPS + AGO + PARA, and LPS + AGO + ANTA + PARA groups when compared to the LPS group in the 2nd and 4th hours. The 5-HT7 receptor mRNA expression increased in the LPS group when compared to the healthy group in the 2nd hour. The 5-HT7 receptor mRNA expression decreased in the LPS + AGO and LPS + AGO + PARA groups when compared to the LPS group in the 2nd hour. The 5-HT7 receptor mRNA expression increased the in LPS + ANTA and LPS + ANTA + PARA groups when compared to the LPS group in the 2nd hour. CONCLUSION The 5-HT7 receptor is a potential defense mechanism in stopping fever and the antipyretic property of paracetamol is not due to the 5-HT7 receptor.
Collapse
Affiliation(s)
- Duygu Kose
- Department of Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Elif Cadirci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Zekai Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey.
| | - Busra Sirin
- Department of Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Binali Yıldırım University, 24100, Erzincan, Turkey
| |
Collapse
|
10
|
Zhu X, Burfeind KG, Michaelis KA, Braun TP, Olson B, Pelz KR, Morgan TK, Marks DL. MyD88 signalling is critical in the development of pancreatic cancer cachexia. J Cachexia Sarcopenia Muscle 2019; 10:378-390. [PMID: 30666818 PMCID: PMC6463469 DOI: 10.1002/jcsm.12377] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/08/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Up to 80% of pancreatic cancer patients suffer from cachexia, a devastating condition that exacerbates underlying disease, reduces quality of life, and increases treatment complications and mortality. Tumour-induced inflammation is linked to this multifactorial wasting syndrome, but mechanisms and effective treatments remain elusive. Myeloid differentiation factor (MyD88), a key component of the innate immune system, plays a pivotal role in directing the inflammatory response to various insults. In this study, we tested whether MyD88 signalling is essential in the development of pancreatic cancer cachexia using a robust mouse tumour model. METHODS Sex, age, and body weight-matched wide type (WT) and MyD88 knockout (MyD88 KO) mice were orthotopically or intraperitoneally implanted with a pancreatic tumour cell line from a syngeneic C57BL/6 KRASG12D/+ P53R172H/+ Pdx-Cre (KPC) mouse. We observed the effects of MyD88 signalling during pancreatic ductal adenocarcinoma progression and the cachexia development through behavioural, histological, molecular, and survival aspects. RESULTS Blocking MyD88 signalling greatly ameliorated pancreatic ductal adenocarcinoma-associated anorexia and fatigue, attenuated lean mass loss, reduced muscle catabolism and atrophy, diminished systemic and central nervous system inflammation, and ultimately improved survival. Our data demonstrate that MyD88 signalling plays a critical role in mediating pancreatic cancer-induced inflammation that triggers cachexia development and therefore represents a promising therapeutic target. CONCLUSIONS MyD88-dependent inflammation is crucial in the pathophysiology of pancreatic cancer progression and contributes to high mortality. Our findings implicate the importance of innate immune signalling pathways in pancreatic cancer cachexia and a novel therapeutic target.
Collapse
Affiliation(s)
- Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kevin G Burfeind
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239, USA.,Medical Scientist Training Program, Oregon Health & Science University, Portland, USA
| | - Katherine A Michaelis
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239, USA.,Medical Scientist Training Program, Oregon Health & Science University, Portland, USA
| | - Theodore P Braun
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Brennan Olson
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239, USA.,Medical Scientist Training Program, Oregon Health & Science University, Portland, USA
| | - Katherine R Pelz
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Terry K Morgan
- Department of Pathology, Oregon Health & Science University, Portland, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, 97239, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| |
Collapse
|
11
|
Grossberg AJ, Vichaya EG, Christian DL, Molkentine JM, Vermeer DW, Gross PS, Vermeer PD, Lee JH, Dantzer R. Tumor-Associated Fatigue in Cancer Patients Develops Independently of IL1 Signaling. Cancer Res 2017; 78:695-705. [PMID: 29217760 DOI: 10.1158/0008-5472.can-17-2168] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/20/2017] [Accepted: 11/27/2017] [Indexed: 12/19/2022]
Abstract
Fatigue is the most common symptom of cancer at diagnosis, yet causes and effective treatments remain elusive. As tumors can be highly inflammatory, it is generally accepted that inflammation mediates cancer-related fatigue. However, evidence to support this assertion is mostly correlational. In this study, we directly tested the hypothesis that fatigue results from propagation of tumor-induced inflammation to the brain and activation of the central proinflammatory cytokine, IL1. The heterotopic syngeneic murine head and neck cancer model (mEER) caused systemic inflammation and increased expression of Il1b in the brain while inducing fatigue-like behaviors characterized by decreased voluntary wheel running and exploratory activity. Expression of Il1b in the brain was not associated with any alterations in motivation, measured by responding in a progressive ratio schedule of food reinforcement, depression-like behaviors, or energy balance. Decreased wheel running occurred prior to Il1b detection in the brain, when systemic inflammation was minimal. Furthermore, mice null for two components of IL1β signaling, the type 1 IL1 receptor or the receptor adapter protein MyD88, were not protected from tumor-induced decreases in wheel running, despite attenuated cytokine action and expression. Behavioral and inflammatory analysis of four additional syngeneic tumor models revealed that tumors can induce fatigue regardless of their systemic or central nervous system inflammatory potential. Together, our results show that brain IL1 signaling is not necessary for tumor-related fatigue, dissociating this type of cancer sequela from systemic cytokine expression.Significance: These findings challenge the current understanding of fatigue in cancer patients, the most common and debilitating sequela associated with malignancy. Cancer Res; 78(3); 695-705. ©2017 AACR.
Collapse
Affiliation(s)
- Aaron J Grossberg
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas. .,Department of Symptom Research, MD Anderson Cancer Center, Houston, Texas
| | | | - Diana L Christian
- Department of Symptom Research, MD Anderson Cancer Center, Houston, Texas
| | - Jessica M Molkentine
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Daniel W Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Phillip S Gross
- Department of Symptom Research, MD Anderson Cancer Center, Houston, Texas
| | - Paola D Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota
| | - John H Lee
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Robert Dantzer
- Department of Symptom Research, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
12
|
Krasnow SM, Knoll JG, Verghese SC, Levasseur PR, Marks DL. Amplification and propagation of interleukin-1β signaling by murine brain endothelial and glial cells. J Neuroinflammation 2017; 14:133. [PMID: 28668091 PMCID: PMC5494131 DOI: 10.1186/s12974-017-0908-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/25/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND During acute infections and chronic illnesses, the pro-inflammatory cytokine interleukin-1β (IL-1β) acts within the brain to elicit metabolic derangements and sickness behaviors. It is unknown which cells in the brain are the proximal targets for IL-1β with respect to the generation of these illness responses. We performed a series of in vitro experiments to (1) investigate which brain cell populations exhibit inflammatory responses to IL-1β and (2) examine the interactions between different IL-1β-responsive cell types in various co-culture combinations. METHODS We treated primary cultures of murine brain microvessel endothelial cells (BMEC), astrocytes, and microglia with PBS or IL-1β, and then performed qPCR to measure inflammatory gene expression or immunocytochemistry to evaluate nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. To evaluate whether astrocytes and/or BMEC propagate inflammatory signals to microglia, we exposed microglia to astrocyte-conditioned media and co-cultured endothelial cells and glia in transwells. Treatment groups were compared by Student's t tests or by ANOVA followed by Bonferroni-corrected t tests. RESULTS IL-1β increased inflammatory gene expression and NF-κB activation in primary murine-mixed glia, enriched astrocyte, and BMEC cultures. Although IL-1β elicited minimal changes in inflammatory gene expression and did not induce the nuclear translocation of NF-κB in isolated microglia, these cells were more robustly activated by IL-1β when co-cultured with astrocytes and/or BMEC. We observed a polarized endothelial response to IL-1β, because the application of IL-1β to the abluminal endothelial surface produced a more complex microglial inflammatory response than that which occurred following luminal IL-1β exposure. CONCLUSIONS Inflammatory signals are detected, amplified, and propagated through the CNS via a sequential and reverberating signaling cascade involving communication between brain endothelial cells and glia. We propose that the brain's innate immune response differs depending upon which side of the blood-brain barrier the inflammatory stimulus arises, thus allowing the brain to respond differently to central vs. peripheral inflammatory insults.
Collapse
Affiliation(s)
- Stephanie M Krasnow
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - J Gabriel Knoll
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Santhosh Chakkaramakkil Verghese
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Peter R Levasseur
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Daniel L Marks
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA. .,Oregon Health & Science University, Mail Code L481, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA.
| |
Collapse
|
13
|
Le Thuc O, Rovère C. [Hypothalamic inflammation and energy balance deregulations: focus on chemokines.]. Biol Aujourdhui 2017; 210:211-225. [PMID: 28327280 DOI: 10.1051/jbio/2016026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Indexed: 02/01/2023]
Abstract
The hypothalamus is a key brain region in the regulation of energy balance. It especially controls food intake and both energy storage and expenditure through integration of humoral, neural and nutrient-related signals and cues. Hypothalamic neurons and glial cells act jointly to orchestrate, both spatially and temporally, regulated metabolic functions of the hypothalamus. Thus, the existence of a causal link between hypothalamic inflammation and deregulations of feeding behavior, such as involuntary weight-loss or obesity, has been suggested. Among the inflammatory mediators that could induce deregulations of hypothalamic control of the energy balance, chemokines represent interesting candidates. Indeed, chemokines, primarily known for their chemoattractant role of immune cells to the inflamed site, have also been suggested capable of neuromodulation. Thus, chemokines could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators that are involved in the maintenance of energy balance. Here, we relate, on one hand, recent results showing the primary role of the central chemokinergic signaling CCL2/CCR2 for metabolic and behavioral adaptation to high-grade inflammation, especially loss of appetite and weight, through its activity on hypothalamic neurons producing the orexigenic peptide Melanin-Concentrating Hormone (MCH) and, on the other hand, results that suggest that chemokines could also deregulate hypothalamic neuropeptidergic circuits to induce an opposite phenotype and eventually participate in the onset/development of obesity. In more details, we will emphasize a study recently showing, in a model of high-grade acute inflammation of LPS injection in mice, that central CCL2/CCR2 signaling is of primary importance for several aspects explaining weight loss associated with inflammation: after LPS injection, animals lose weight, reduce their food intake, increase their fat oxidation (thus energy consumption from fat storage)...These inflammation-induced metabolic and behavioral changes are reduced when central CCR2 signaling is disrupted either pharmacologically (by a specific inhibitor of CCR2) or genetically (in mice deficient for CCR2). This underlines the importance of this signaling in inflammation-related weight loss. We further determined that the LPS-induced and CCR2-mediated weight loss depends on the direct effect of CCR2 activation on MCH neurons activity. Indeed, the MCH neurons express CCR2, and the application of CCL2 on brain slices revealed that activation of CCR2 actually depolarizes MCH neurons and induces delays and/or failures of action potential emission. Furthermore, CCL2 is able to reduce KCl-evoked MCH secretion from hypothalamic explants. Taken together, these results demonstrate the role of the central CCL2/CCR2 signaling in metabolic and behavioral adaptation to inflammation. On the other hand, this first description of how the chemokinergic system can actually modulate the activity of the hypothalamic regulation of energy balance, but also some less advanced studies and some unpublished data, suggest that some other chemokines, such as CCL5, could participate in the development of the opposite phenotype, that is to say obesity.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France - Helmholtz Diabetes Center (HDC) & German Center for Diabetes Research (DZD), Helmholtz Zentrum München & Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Carole Rovère
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| |
Collapse
|
14
|
Taksande BG, Gawande DY, Chopde CT, Umekar MJ, Kotagale NR. Agmatine ameliorates adjuvant induced arthritis and inflammatory cachexia in rats. Biomed Pharmacother 2017; 86:271-278. [DOI: 10.1016/j.biopha.2016.12.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/28/2016] [Accepted: 12/09/2016] [Indexed: 02/08/2023] Open
|
15
|
Le Thuc O, Stobbe K, Cansell C, Nahon JL, Blondeau N, Rovère C. Hypothalamic Inflammation and Energy Balance Disruptions: Spotlight on Chemokines. Front Endocrinol (Lausanne) 2017; 8:197. [PMID: 28855891 PMCID: PMC5557773 DOI: 10.3389/fendo.2017.00197] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022] Open
Abstract
The hypothalamus is a key brain region in the regulation of energy balance as it controls food intake and both energy storage and expenditure through integration of humoral, neural, and nutrient-related signals and cues. Many years of research have focused on the regulation of energy balance by hypothalamic neurons, but the most recent findings suggest that neurons and glial cells, such as microglia and astrocytes, in the hypothalamus actually orchestrate together several metabolic functions. Because glial cells have been described as mediators of inflammatory processes in the brain, the existence of a causal link between hypothalamic inflammation and the deregulations of feeding behavior, leading to involuntary weight loss or obesity for example, has been suggested. Several inflammatory pathways that could impair the hypothalamic control of energy balance have been studied over the years such as, among others, toll-like receptors and canonical cytokines. Yet, less studied so far, chemokines also represent interesting candidates that could link the aforementioned pathways and the activity of hypothalamic neurons. Indeed, chemokines, in addition to their role in attracting immune cells to the inflamed site, have been suggested to be capable of neuromodulation. Thus, they could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators involved in the maintenance of energy balance. This review discusses the different inflammatory pathways that have been identified so far in the hypothalamus in the context of feeding behavior and body weight control impairments, with a particular focus on chemokines signaling that opens a new avenue in the understanding of the major role played by inflammation in obesity.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
- Helmholtz Diabetes Center (HDC), German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Katharina Stobbe
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Céline Cansell
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Jean-Louis Nahon
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Nicolas Blondeau
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Carole Rovère
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
- *Correspondence: Carole Rovère,
| |
Collapse
|
16
|
Le Thuc O, Cansell C, Bourourou M, Denis RG, Stobbe K, Devaux N, Guyon A, Cazareth J, Heurteaux C, Rostène W, Luquet S, Blondeau N, Nahon JL, Rovère C. Central CCL2 signaling onto MCH neurons mediates metabolic and behavioral adaptation to inflammation. EMBO Rep 2016; 17:1738-1752. [PMID: 27733491 DOI: 10.15252/embr.201541499] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022] Open
Abstract
Sickness behavior defines the endocrine, autonomic, behavioral, and metabolic responses associated with infection. While inflammatory responses were suggested to be instrumental in the loss of appetite and body weight, the molecular underpinning remains unknown. Here, we show that systemic or central lipopolysaccharide (LPS) injection results in specific hypothalamic changes characterized by a precocious increase in the chemokine ligand 2 (CCL2) followed by an increase in pro-inflammatory cytokines and a decrease in the orexigenic neuropeptide melanin-concentrating hormone (MCH). We therefore hypothesized that CCL2 could be the central relay for the loss in body weight induced by the inflammatory signal LPS. We find that central delivery of CCL2 promotes neuroinflammation and the decrease in MCH and body weight. MCH neurons express CCL2 receptor and respond to CCL2 by decreasing both electrical activity and MCH release. Pharmacological or genetic inhibition of CCL2 signaling opposes the response to LPS at both molecular and physiologic levels. We conclude that CCL2 signaling onto MCH neurons represents a core mechanism that relays peripheral inflammation to sickness behavior.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Céline Cansell
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Miled Bourourou
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Raphaël Gp Denis
- Univ Paris Diderot Sorbonne Paris Cité Unité de Biologie Fonctionnelle et Adaptative CNRS UMR 8251, Paris, France
| | - Katharina Stobbe
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Nadège Devaux
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Alice Guyon
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Julie Cazareth
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | | | - William Rostène
- Institut de la Vision UMRS 968-Université Pierre et Marie Curie, Paris, France
| | - Serge Luquet
- Univ Paris Diderot Sorbonne Paris Cité Unité de Biologie Fonctionnelle et Adaptative CNRS UMR 8251, Paris, France
| | - Nicolas Blondeau
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Jean-Louis Nahon
- Université Côte d'Azur, Nice, France .,CNRS, IPMC, Sophia Antipolis, France.,Station de Primatologie UPS846 CNRS, Rousset-sur-Arc, France
| | - Carole Rovère
- Université Côte d'Azur, Nice, France .,CNRS, IPMC, Sophia Antipolis, France
| |
Collapse
|
17
|
Immobilization stress-induced anorexia is mediated independent of MyD88. Neuroreport 2016; 27:974-7. [PMID: 27391428 DOI: 10.1097/wnr.0000000000000641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MyD88 is an adaptor protein for the toll-like receptor, which is involved in regulating innate immune function. Lipopolysaccharide-induced activation of toll-like receptor 4 signaling induces hypothalamic signal transducer and activator of transcription 3 (STAT3) phosphorylation and anorexia through MyD88. In the present study, we investigated the possible role of MyD88 in psychological stress-induced anorexia. We found that immobilization stress inhibited food intake in both wild-type mice and MyD88-deficient mice. Immobilization stress slightly increased STAT3 phosphorylation in the hypothalamus, but it was weaker than the lipopolysaccharide-induced increase in STAT3 phosphorylation. These observations suggest that the mechanisms involved in psychological stress-induced anorexia may be regulated differently from those involved in anorexia that is induced by infection.
Collapse
|
18
|
Karimi K, Lindgren TH, Koch CA, Brodell RT. Obesity as a risk factor for malignant melanoma and non-melanoma skin cancer. Rev Endocr Metab Disord 2016; 17:389-403. [PMID: 27832418 DOI: 10.1007/s11154-016-9393-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dramatic increases in incidence of both obesity and many cancers including skin cancer emphasize the need to better understand the pathophysiology of both conditions and their connections. Melanoma is considered the fastest growing cancer and rates of non-melanoma skin cancer have also increased over the last decade. The molecular mechanisms underlying the association between obesity and skin cancer are not clearly understood but emerging evidence points to changes in the tumor microenvironment including aberrant cell signaling and genomic instability in the chronic inflammatory state many obese individuals experience. This article reviews the literature linking obesity to melanoma and non-melanoma skin cancer.
Collapse
Affiliation(s)
- K Karimi
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - T H Lindgren
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - C A Koch
- Division of Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, USA
| | - Robert T Brodell
- Department of Dermatology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
19
|
Swaroop S, Sengupta N, Suryawanshi AR, Adlakha YK, Basu A. HSP60 plays a regulatory role in IL-1β-induced microglial inflammation via TLR4-p38 MAPK axis. J Neuroinflammation 2016; 13:27. [PMID: 26838598 PMCID: PMC4736186 DOI: 10.1186/s12974-016-0486-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/19/2016] [Indexed: 01/08/2023] Open
Abstract
Background IL-1β, also known as “the master regulator of inflammation”, is a potent pro-inflammatory cytokine secreted by activated microglia in response to pathogenic invasions or neurodegeneration. It initiates a vicious cycle of inflammation and orchestrates various molecular mechanisms involved in neuroinflammation. The role of IL-1β has been extensively studied in neurodegenerative disorders; however, molecular mechanisms underlying inflammation induced by IL-1β are still poorly understood. The objective of our study is the comprehensive identification of molecular circuitry involved in IL-1β-induced inflammation in microglia through protein profiling. Methods To achieve our aim, we performed the proteomic analysis of N9 microglial cells with and without IL-1β treatment at different time points. Expression of HSP60 in response to IL-1β administration was checked by quantitative real-time PCR, immunoblotting, and immunofluorescence. Interaction of HSP60 with TLR4 was determined by co-immunoprecipitation. Inhibition of TLR4 was done using TLR4 inhibitor to reveal its effect on IL-1β-induced inflammation. Further, effect of HSP60 knockdown and overexpression were assessed on the inflammation in microglia. Specific MAPK inhibitors were used to reveal the downstream MAPK exclusively involved in HSP60-induced inflammation in microglia. Results Total 21 proteins were found to be differentially expressed in response to IL-1β treatment in N9 microglial cells. In silico analysis of these proteins revealed unfolded protein response as one of the most significant molecular functions, and HSP60 turned out to be a key hub molecule. IL-1β induced the expression as well as secretion of HSP60 in extracellular milieu during inflammation of N9 cells. Secreted HSP60 binds to TLR4 and inhibition of TLR4 suppressed IL-1β-induced inflammation to a significant extent. Our knockdown and overexpression studies demonstrated that HSP60 increases the phosphorylation of ERK, JNK, and p38 MAPKs in N9 cells during inflammation. Specific inhibition of p38 by inhibitors suppressed HSP60-induced inflammation, thus pointed towards the major role of p38 MAPK rather than ERK1/2 and JNK in HSP60-induced inflammation. Furthermore, silencing of upstream modulator of p38, i.e., MEK3/6 also reduced HSP60-induced inflammation. Conclusions IL-1β induces expression of HSP60 in N9 microglial cells that further augments inflammation via TLR4-p38 MAPK axis. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0486-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shalini Swaroop
- National Brain Research Centre, Manesar, Haryana, 122051, India
| | | | | | - Yogita K Adlakha
- National Brain Research Centre, Manesar, Haryana, 122051, India.
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, 122051, India.
| |
Collapse
|
20
|
Honig G, Mader S, Chen H, Porat A, Ochani M, Wang P, Volpe BT, Diamond B. Blood-Brain Barrier Deterioration and Hippocampal Gene Expression in Polymicrobial Sepsis: An Evaluation of Endothelial MyD88 and the Vagus Nerve. PLoS One 2016; 11:e0144215. [PMID: 26790027 PMCID: PMC4720404 DOI: 10.1371/journal.pone.0144215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/16/2015] [Indexed: 12/29/2022] Open
Abstract
Systemic infection can initiate or exacerbate central nervous system (CNS) pathology, even in the absence of overt invasion of bacteria into the CNS. Recent epidemiological studies have demonstrated that human survivors of sepsis have an increased risk of long-term neurocognitive decline. There is thus a need for improved understanding of the physiological mechanisms whereby acute sepsis affects the CNS. In particular, MyD88-dependent activation of brain microvascular endothelial cells and a resulting loss of blood-brain barrier integrity have been proposed to play an important role in the effects of systemic inflammation on the CNS. Signaling through the vagus nerve has also been considered to be an important component of CNS responses to systemic infection. Here, we demonstrate that blood-brain barrier permeabilization and hippocampal transcriptional responses during polymicrobial sepsis occur even in the absence of MyD88-dependent signaling in cerebrovascular endothelial cells. We further demonstrate that these transcriptional responses can occur without vagus nerve input. These results suggest that redundant signals mediate CNS responses in sepsis. Either endothelial or vagus nerve activation may be individually sufficient to transmit systemic inflammation to the central nervous system. Transcriptional activation in the forebrain in sepsis may be mediated by MyD88-independent endothelial mechanisms or by non-vagal neuronal pathways.
Collapse
Affiliation(s)
- Gerard Honig
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Simone Mader
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Huiyi Chen
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Amit Porat
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Mahendar Ochani
- Center for Translational Research, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ping Wang
- Center for Translational Research, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Bruce T. Volpe
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Betty Diamond
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- * E-mail:
| |
Collapse
|
21
|
Momeni M, Ghorban K, Dadmanesh M, Khodadadi H, Bidaki R, Kazemi Arababadi M, Kennedy D. ASC provides a potential link between depression and inflammatory disorders: A clinical study of depressed Iranian medical students. Nord J Psychiatry 2016; 70:280-4. [PMID: 26750863 DOI: 10.3109/08039488.2015.1100328] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background and aims AIM2 is a component of inflammasomes which can activate caspase-1 via an adaptor protein (ASC) after pathogen-associated molecular pattern (PAMP) or danger-associated molecular pattern (DAMP) recognition. Activation of caspase-1 is a trigger for the induction of IL-1 and IL-18 which are important pro-inflammatory cytokines. Furthermore, IL-1β, which can regulate inflammatory responses, has also been associated with depression. Previous studies revealed that patients suffering from depression may also have altered immune responses, but the mechanisms underlying this correlation are unclear. Thus, the aim of this study was to determine the mRNA levels of AIM2 and ASC in the peripheral blood mononuclear cells (PBMCs) isolated from Iranian medical students suffering from depression. Materials and methods The participants used for the study included 38 Iranian medical students diagnosed with depression and 43 non-depressed students as a control group. The mRNA levels of AIM2 and ASC were evaluated by quantitative real-time polymerase chain reaction (PCR) using β-actin as a housekeeping gene for the normalization of expression. Results The results showed that mRNA levels of AIM2 were similar in both groups. However, ASC levels were significantly increased in PBMCs isolated from individuals with elevated depressive symptoms when compared to non-depressed participants. Conclusions Based on the current results, it appears that ASC transcript expression may be a surrogate marker for depression and may represent a link between depression and the altered immune responses observed in these categories of individuals with elevated depressive symptoms.
Collapse
Affiliation(s)
- Mohammad Momeni
- a Immunology of Infectious Diseases Research Center , Rafsanjan University of Medical Sciences , Rafsanjan , Iran
| | - Khodayar Ghorban
- b Department of Immunology, Medical School , AJA University of Medical Sciences , Tehran , Iran
| | - Maryam Dadmanesh
- c Department of Infectious Diseases, Medical School , AJA University of Medical Sciences , Tehran , Iran
| | - Hassan Khodadadi
- d Geriatric Care Research Center , Rafsanjan University of Medical Sciences , Rafsanjan , Iran
| | - Reza Bidaki
- e Department of Psychiatry, Research Center of Addiction and Behavioral Sciences , Shahid Sadoughi University of Medical Sciences , Yazd , Iran
| | - Mohammad Kazemi Arababadi
- a Immunology of Infectious Diseases Research Center , Rafsanjan University of Medical Sciences , Rafsanjan , Iran
| | - Derek Kennedy
- f School of Natural Sciences, Eskitis Institute for Drug Discovery , Griffith University , Nathan , Queensland , Australia
| |
Collapse
|
22
|
Burfeind KG, Michaelis KA, Marks DL. The central role of hypothalamic inflammation in the acute illness response and cachexia. Semin Cell Dev Biol 2015; 54:42-52. [PMID: 26541482 DOI: 10.1016/j.semcdb.2015.10.038] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/26/2015] [Indexed: 12/19/2022]
Abstract
When challenged with a variety of inflammatory threats, multiple systems across the body undergo physiological responses to promote defense and survival. The constellation of fever, anorexia, and fatigue is known as the acute illness response, and represents an adaptive behavioral and physiological reaction to stimuli such as infection. On the other end of the spectrum, cachexia is a deadly and clinically challenging syndrome involving anorexia, fatigue, and muscle wasting. Both of these processes are governed by inflammatory mediators including cytokines, chemokines, and immune cells. Though the effects of cachexia can be partially explained by direct effects of disease processes on wasting tissues, a growing body of evidence shows the central nervous system (CNS) also plays an essential mechanistic role in cachexia. In the context of inflammatory stress, the hypothalamus integrates signals from peripheral systems, which it translates into neuroendocrine perturbations, altered neuronal signaling, and global metabolic derangements. Therefore, we will discuss how hypothalamic inflammation is an essential driver of both the acute illness response and cachexia, and why this organ is uniquely equipped to generate and maintain chronic inflammation. First, we will focus on the role of the hypothalamus in acute responses to dietary and infectious stimuli. Next, we will discuss the role of cytokines in driving homeostatic disequilibrium, resulting in muscle wasting, anorexia, and weight loss. Finally, we will address mechanisms and mediators of chronic hypothalamic inflammation, including endothelial cells, chemokines, and peripheral leukocytes.
Collapse
Affiliation(s)
- Kevin G Burfeind
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
- MD/PhD Program, Oregon Health & Science University, Portland, OR, USA
| | - Katherine A Michaelis
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
- MD/PhD Program, Oregon Health & Science University, Portland, OR, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
23
|
Yue Y, Wang Y, Li D, Song Z, Jiao H, Lin H. A central role for the mammalian target of rapamycin in LPS-induced anorexia in mice. J Endocrinol 2015; 224:37-47. [PMID: 25349249 DOI: 10.1530/joe-14-0523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacterial lipopolysaccharide (LPS), also known as endotoxin, induces profound anorexia. However, the LPS-provoked pro-inflammatory signaling cascades and the neural mechanisms underlying the development of anorexia are not clear. Mammalian target of rapamycin (mTOR) is a key regulator of metabolism, cell growth, and protein synthesis. This study aimed to determine whether the mTOR pathway is involved in LPS-induced anorexia. Effects of LPS on hypothalamic gene/protein expression in mice were measured by RT-PCR or western blotting analysis. To determine whether inhibition of mTOR signaling could attenuate LPS-induced anorexia, we administered an i.c.v. injection of rapamycin, an mTOR inhibitor, on LPS-treated male mice. In this study, we showed that LPS stimulates the mTOR signaling pathway through the enhanced phosphorylation of mTOR(Ser2448) and p70S6K(Thr389). We also showed that LPS administration increased the phosphorylation of FOXO1(Ser256), the p65 subunit of nuclear factor kappa B (P<0.05), and FOXO1/3a(Thr) (24) (/) (32) (P<0.01). Blocking the mTOR pathway significantly attenuated the LPS-induced anorexia by decreasing the phosphorylation of p70S6K(Thr389), FOXO1(Ser256), and FOXO1/3a(Thr) (24) (/) (32). These results suggest promising approaches for the prevention and treatment of LPS-induced anorexia.
Collapse
Affiliation(s)
- Yunshuang Yue
- Shandong Key Lab for Animal Biotechnology and Disease ControlDepartment of Animal Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong 271018, People's Republic of China
| | - Yi Wang
- Shandong Key Lab for Animal Biotechnology and Disease ControlDepartment of Animal Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong 271018, People's Republic of China
| | - Dan Li
- Shandong Key Lab for Animal Biotechnology and Disease ControlDepartment of Animal Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong 271018, People's Republic of China
| | - Zhigang Song
- Shandong Key Lab for Animal Biotechnology and Disease ControlDepartment of Animal Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong 271018, People's Republic of China
| | - Hongchao Jiao
- Shandong Key Lab for Animal Biotechnology and Disease ControlDepartment of Animal Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong 271018, People's Republic of China
| | - Hai Lin
- Shandong Key Lab for Animal Biotechnology and Disease ControlDepartment of Animal Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong 271018, People's Republic of China
| |
Collapse
|
24
|
MacDonald L, Hazi A, Paolini AG, Kent S. Calorie restriction dose-dependently abates lipopolysaccharide-induced fever, sickness behavior, and circulating interleukin-6 while increasing corticosterone. Brain Behav Immun 2014; 40:18-26. [PMID: 24440143 DOI: 10.1016/j.bbi.2014.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/15/2013] [Accepted: 01/08/2014] [Indexed: 01/08/2023] Open
Abstract
In mice a 50% calorie restriction (CR) for 28days attenuates sickness behavior after lipopolysaccharide (LPS) and these mice demonstrate a central anti-inflammatory bias. This study examined the dose-dependent effect of CR on sickness behavior (fever, anorexia, cachexia) and peripheral immune markers post-LPS. Male Sprague-Dawley rats fed ad libitum or CR by 50% for 14, 21, or 28days were injected on day 15, 22, or 29 with 50μg/kg of LPS or saline (1mL/500g). Changes in body temperature (Tb), locomotor activity, body weight, and food intake were determined. A separate cohort of rats was fed ad libitum or CR by 50% for 28days and serum levels of corticosterone (CORT), interleukin 6 (IL-6), and IL-10 were determined at 0, 2, and 4h post-LPS. The rats CR for 28days demonstrated the largest attenuation of sickness behavior: no fever, limited reduction in locomotor activity, no anorexia, and reduced cachexia following LPS. Rats CR for 14 and 21days demonstrated a partial attenuation of sickness behavior. Rats CR for 14days demonstrated a larger increase in Tb, larger reduction in locomotor activity, and larger weight loss compared to rats CR for 21days. Serum CORT was increased at 2h post-LPS in ad libitum and CR groups; however it was two times larger in the CR animals. Levels of IL-6 were significantly attenuated at 2h post-LPS in the CR animals. IL-10 levels were similar post-LPS. CR results in an enhanced anti-inflammatory response in the form of increased CORT and diminished pro-inflammatory signals.
Collapse
Affiliation(s)
- Leah MacDonald
- School of Psychological Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Agnes Hazi
- School of Psychological Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Antonio G Paolini
- School of Psychological Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Stephen Kent
- School of Psychological Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
25
|
Hajebrahimi B, Bagheri M, Hassanshahi G, Nazari M, Bidaki R, Khodadadi H, Arababadi MK, Kennedy D. The adapter proteins of TLRs, TRIF and MYD88, are upregulated in depressed individuals. Int J Psychiatry Clin Pract 2014; 18:41-4. [PMID: 24168294 DOI: 10.3109/13651501.2013.859708] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND AIMS TRIF and MYD88 are intracellular adaptor proteins for TLR signaling, and altered expression of these molecules can lead to defective or unregulated immune responses. Furthermore, previous studies revealed that depression may alter immune responses, but its mechanisms of action are unclear yet. There is a possibility that immunity and depression are linked through molecules such as TRIF and MYD88, thus, the aim of this study was to evaluate the mRNA levels of TRIF and MYD88 in the PBMCs isolated from depressed medical students. MATERIAL AND METHODS The current study examined 38 depressed medical students studying in Iran and 43 healthy students from the same cohort as a control group. The mRNA levels of TRIF and MYD88 were examined in parallel with a housekeeping gene using real-time PCR. RESULTS Our results demonstrated that expression of TRIF and MYD88 were significantly elevated in PBMCs isolated from depressed patients when compared to healthy subjects. CONCLUSIONS Based on the current results, it seems that chronic inflammation in depressed patients correlates to the over expression of TRIF and MYD88 genes. Our results show a possible link between the reported increases of chronic inflammation in depressed individuals with unbalanced expression of genes that regulate immunity.
Collapse
Affiliation(s)
- Batool Hajebrahimi
- Department of Psychology, Faculty of Literature and Humanities, Bahonar University , Kerman , Iran
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Silverman MN, Mukhopadhyay P, Belyavskaya E, Tonelli LH, Revenis BD, Doran JH, Ballard BE, Tam J, Pacher P, Sternberg EM. Glucocorticoid receptor dimerization is required for proper recovery of LPS-induced inflammation, sickness behavior and metabolism in mice. Mol Psychiatry 2013; 18:1006-1017. [PMID: 23089634 DOI: 10.1038/mp.2012.131] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/26/2012] [Accepted: 08/15/2012] [Indexed: 12/23/2022]
Abstract
Endogenous glucocorticoids are essential for mobilizing energy resources, restraining inflammatory responses and coordinating behavior to an immune challenge. Impaired glucocorticoid receptor (GR) function has been associated with impaired metabolic processes, enhanced inflammation and exaggerated sickness and depressive-like behaviors. To discern the molecular mechanisms underlying GR regulation of physiologic and behavioral responses to a systemic immune challenge, GR(dim) mice, in which absent GR dimerization leads to impaired GR-DNA-binding-dependent mechanisms but intact GR protein-protein interactions, were administered low-dose lipopolysaccharide (LPS). GR(dim)-LPS mice exhibited elevated and prolonged levels of plasma corticosterone (CORT), interleukin (IL)-6 and IL-10 (but not plasma tumor necrosis factor-α (TNFα)), enhanced early expression of brain TNFα, IL-1β and IL-6 mRNA levels, and impaired later central TNFα mRNA expression. Exaggerated sickness behavior (lethargy, piloerection, ptosis) in the GR(dim)-LPS mice was associated with increased early brain proinflammatory cytokine expression and late plasma CORT levels, but decreased late brain TNFα expression. GR(dim)-LPS mice also exhibited sustained locomotor impairment in the open field, body weight loss and metabolic alterations measured by indirect calorimetry, as well as impaired thermoregulation. Taken together, these data indicate that GR dimerization-dependent DNA-binding mechanisms differentially regulate systemic and central cytokine expression in a cytokine- and time-specific manner, and are essential for the proper regulation and recovery of multiple physiologic responses to low-dose endotoxin. Moreover, these results support the concept that GR protein-protein interactions are not sufficient for glucocorticoids to exert their full anti-inflammatory effects and suggest that glucocorticoid responses limited to GR monomer-mediated transcriptional effects could predispose individuals to prolonged behavioral and metabolic sequelae of an enhanced inflammatory state.
Collapse
Affiliation(s)
- M N Silverman
- Section on Neuroendocrine Immunology and Behavior, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kaushik DK, Thounaojam MC, Kumawat KL, Gupta M, Basu A. Interleukin-1β orchestrates underlying inflammatory responses in microglia via Krüppel-like factor 4. J Neurochem 2013; 127:233-44. [DOI: 10.1111/jnc.12382] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | - Malvika Gupta
- National Brain Research Centre; Manesar Haryana India
| | - Anirban Basu
- National Brain Research Centre; Manesar Haryana India
| |
Collapse
|
28
|
Hypothalamo-pituitary and immune-dependent adrenal regulation during systemic inflammation. Proc Natl Acad Sci U S A 2013; 110:14801-6. [PMID: 23959899 DOI: 10.1073/pnas.1313945110] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammation-related dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is central to the course of systemic inflammatory response syndrome or sepsis. The underlying mechanisms, however, are not well understood. Initial activation of adrenocortical hormone production during early sepsis depends on the stimulation of hypothalamus and pituitary mediated by cytokines; in late sepsis, there is a shift from neuroendocrine to local immune-adrenal regulation of glucocorticoid production. Therefore, the modulation of the local immune-adrenal cross talk, and not of the neuroendocrine circuits involved in adrenocorticotropic hormone production, may be more promising in the prevention of the adrenal insufficiency associated with prolonged sepsis. In the present work, we investigated the function of the crucial Toll-like receptor (TLR) adaptor protein myeloid differentiation factor 88 (MyD88) in systemic and local activation of adrenal gland inflammation and glucocorticoid production mediated by lipopolysachharides (LPSs). To this end, we used mice with a conditional MyD88 allele. These mice either were interbred with Mx1 Cre mice, resulting in systemic MyD88 deletion, predominantly in the liver and hematopoietic system, or were crossed with Akr1b7 Cre transgenic mice, resulting thereby in deletion of MyD88, which was adrenocortical-specific. Although reduced adrenal inflammation and HPA-axis activation mediated by LPS were found in Mx1(Cre+)-MyD88(fl/fl) mice, adrenocortical-specific MyD88 deletion did not alter the adrenal inflammation or HPA-axis activity under systemic inflammatory response syndrome conditions. Thus, our data suggest an important role of immune cell rather than adrenocortical MyD88 for adrenal inflammation and HPA-axis activation mediated by LPS.
Collapse
|
29
|
Braun TP, Grossberg AJ, Krasnow SM, Levasseur PR, Szumowski M, Zhu XX, Maxson JE, Knoll JG, Barnes AP, Marks DL. Cancer- and endotoxin-induced cachexia require intact glucocorticoid signaling in skeletal muscle. FASEB J 2013; 27:3572-82. [PMID: 23733748 DOI: 10.1096/fj.13-230375] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cachexia is a wasting condition defined by skeletal muscle atrophy in the setting of systemic inflammation. To explore the site at which inflammatory mediators act to produce atrophy in vivo, we utilized mice with a conditional deletion of the inflammatory adaptor protein myeloid differentiation factor 88 (MyD88). Although whole-body MyD88-knockout (wbMyD88KO) mice resist skeletal muscle atrophy in response to LPS, muscle-specific deletion of MyD88 is not protective. Furthermore, selective reexpression of MyD88 in the muscle of wbMyD88KO mice via electroporation fails to restore atrophy gene induction by LPS. To evaluate the role of glucocorticoids as the inflammation-induced mediator of atrophy in vivo, we generated mice with targeted deletion of the glucocorticoid receptor in muscle (mGRKO mice). Muscle-specific deletion of the glucocorticoid receptor affords a 71% protection against LPS-induced atrophy compared to control animals. Furthermore, mGRKO mice exhibit 77% less skeletal muscle atrophy than control animals in response to tumor growth. These data demonstrate that glucocorticoids are a major determinant of inflammation-induced atrophy in vivo and play a critical role in the pathogenesis of endotoxemic and cancer cachexia.
Collapse
Affiliation(s)
- Theodore P Braun
- Papé Family Pediatric Research Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Mail Code L-481, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Exercise training improve leptin sensitivity in peripheral tissue of obese rats. Biochem Biophys Res Commun 2013; 435:454-9. [DOI: 10.1016/j.bbrc.2013.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 11/18/2022]
|
31
|
Poddar D, Basu A, Baldwin WM, Kondratov RV, Barik S, Mazumder B. An extraribosomal function of ribosomal protein L13a in macrophages resolves inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 190:3600-12. [PMID: 23460747 DOI: 10.4049/jimmunol.1201933] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inflammation is an obligatory attempt of the immune system to protect the host from infections. However, unregulated synthesis of proinflammatory products can have detrimental effects. Although mechanisms that lead to inflammation are well appreciated, those that restrain it are not adequately understood. Creating macrophage-specific L13a-knockout mice, we report that depletion of ribosomal protein L13a abrogates the endogenous translation control of several chemokines in macrophages. Upon LPS-induced endotoxemia, these animals displayed symptoms of severe inflammation caused by widespread infiltration of macrophages in major organs causing tissue injury and reduced survival rates. Macrophages from these knockout animals show unregulated expression of several chemokines (e.g., CXCL13, CCL22, CCL8, and CCR3). These macrophages failed to show L13a-dependent RNA binding complex formation on target mRNAs. In addition, increased polyribosomal abundance of these mRNAs shows a defect in translation control in the macrophages. Thus, to our knowledge, our studies provide the first evidence of an essential extraribosomal function of ribosomal protein L13a in resolving physiological inflammation in a mammalian host.
Collapse
Affiliation(s)
- Darshana Poddar
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA
| | | | | | | | | | | |
Collapse
|
32
|
Ruud J, Wilhelms DB, Nilsson A, Eskilsson A, Tang YJ, Ströhle P, Caesar R, Schwaninger M, Wunderlich T, Bäckhed F, Engblom D, Blomqvist A. Inflammation- and tumor-induced anorexia and weight loss require MyD88 in hematopoietic/myeloid cells but not in brain endothelial or neural cells. FASEB J 2013; 27:1973-80. [PMID: 23395911 DOI: 10.1096/fj.12-225433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Loss of appetite is a hallmark of inflammatory diseases. The underlying mechanisms remain undefined, but it is known that myeloid differentiation primary response gene 88 (MyD88), an adaptor protein critical for Toll-like and IL-1 receptor family signaling, is involved. Here we addressed the question of determining in which cells the MyD88 signaling that results in anorexia development occurs by using chimeric mice and animals with cell-specific deletions. We found that MyD88-knockout mice, which are resistant to bacterial lipopolysaccharide (LPS)-induced anorexia, displayed anorexia when transplanted with wild-type bone marrow cells. Furthermore, mice with a targeted deletion of MyD88 in hematopoietic or myeloid cells were largely protected against LPS-induced anorexia and displayed attenuated weight loss, whereas mice with MyD88 deletion in hepatocytes or in neural cells or the cerebrovascular endothelium developed anorexia and weight loss of similar magnitude as wild-type mice. Furthermore, in a model for cancer-induced anorexia-cachexia, deletion of MyD88 in hematopoietic cells attenuated the anorexia and protected against body weight loss. These findings demonstrate that MyD88-dependent signaling within the brain is not required for eliciting inflammation-induced anorexia. Instead, we identify MyD88 signaling in hematopoietic/myeloid cells as a critical component for acute inflammatory-driven anorexia, as well as for chronic anorexia and weight loss associated with malignant disease.
Collapse
Affiliation(s)
- Johan Ruud
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Braun TP, Grossberg AJ, Veleva-Rotse BO, Maxson JE, Szumowski M, Barnes AP, Marks DL. Expression of myeloid differentiation factor 88 in neurons is not requisite for the induction of sickness behavior by interleukin-1β. J Neuroinflammation 2012; 9:229. [PMID: 23031643 PMCID: PMC3488557 DOI: 10.1186/1742-2094-9-229] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/25/2012] [Indexed: 04/09/2023] Open
Abstract
Background Animals respond to inflammation by suppressing normal high-energy activities, including feeding and locomotion, in favor of diverting resources to the immune response. The cytokine interleukin-1 beta (IL-1β) inhibits normal feeding and locomotor activity (LMA) via its actions in the central nervous system (CNS). Behavioral changes in response to IL-1β are mediated by myeloid differentiation factor 88 (MyD88) in non-hematopoietic cells. It is unknown whether IL-1β acts directly on neurons or requires transduction by non-neuronal cells. Methods The Nestin-cre mouse was crossed with MyD88lox mice to delete MyD88 from neurons and glia in the CNS (MyD88ΔCNS). These mice were compared to total body MyD88KO and wild type (WT) mice. Mice had cannulae stereotactically placed in the lateral ventricle and telemetry transponders implanted into the peritoneum. Mice were treated with either intracerebroventricular (i.c.v.) IL-1β (10 ng) or vehicle. Food intake, body weight and LMA were continuously monitored for 24 h after treatment. I.c.v. tumor necrosis factor (TNF), a MyD88-independent cytokine, was used to control for normal immune development. Peripheral inflammation was modeled using intraperitoneal lipopolysaccharide (LPS). Groups were compared using two-way ANOVA with Bonferroni post-test. Efficacy of recombination was evaluated using tdTomato reporter mice crossed with the Nestin-cre mouse. MyD88 deletion was confirmed by Western blot. Results I.c.v. IL-1β treatment caused a significant reduction in feeding, body weight and LMA in WT mice. MyD88KO mice were protected from these changes in response to i.c.v. IL-1β despite having intact behavioral responses to TNF. Cre-mediated recombination was observed in neurons and astrocytes, but not microglia or endothelial cells. In contrast to MyD88KO mice, the behavioral responses of MyD88ΔCNS mice to i.c.v. IL-1β or intraperitoneal (i.p.) LPS were indistinguishable from those of WT mice. Conclusion Sickness behavior is mediated by MyD88 and is dependent on the activity of cytokines within the brain. Our results demonstrate that MyD88 is not required in neurons or astrocytes to induce this behavioral response to IL-1β or LPS. This suggests that a non-Nestin expressing cell population responds to IL-1β in the CNS and transduces the signal to neurons controlling feeding and activity.
Collapse
Affiliation(s)
- Theodore P Braun
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Hardenberg G, Yao Y, Piccirillo CA, Levings MK, Steiner TS. Toll-like receptor 5 deficiency protects from wasting disease in a T cell transfer colitis model in T cell receptor-β-deficient mice. Inflamm Bowel Dis 2012; 18:85-93. [PMID: 22038840 DOI: 10.1002/ibd.21738] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/19/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND Toll-like receptor 5 (TLR5) is implicated in the innate and adaptive immune responses that are associated with inflammatory bowel disease (IBD). In humans TLR5 is expressed on CD4(+) T cells and costimulation with flagellin potentiates effector and regulatory T cell responses. The aim of this study was to determine the role of TLR5 in CD4(+) T cell subsets versus other cells in induction of disease in a model of T cell-dependent colitis. METHODS TLR5 expression on CD4(+) T cells was assessed by real-time reverse-transcriptase polymerase chain reaction (RT-PCR). Wildtype (WT) or TLR5-deficient (5-/-) CD4(+) T conventional cells (Tconv) and T regulatory cells (Treg) were compared for their ability to induce and suppress T cell transfer colitis, respectively. In addition, the role of TLR5 expression in recipient mice was analyzed. RESULTS TLR5 is preferentially expressed on mouse Treg compared to Tconv, although expression levels were low. The colitogenic capacity of WT and 5-/- Tconv was found to be similar and Treg from WT or 5-/- donor animals both prevented T cell transfer colitis in TLR-competent hosts. TLR5 deficiency in recipient mice, however, did affect the disease process, as T cell receptor-β (TCRβ) 5-/- recipients had decreased weight loss compared to TCRβ recipient mice when WT Tconv were used. CONCLUSIONS TLR5 expression on T cells is not required for induction of or protection from T cell-dependent colitis. Expression of TLR5 in non-T cells has a pathogenic role, since TLR5 deficiency in recipient mice protects against weight loss induced by WT T cells.
Collapse
Affiliation(s)
- Gijs Hardenberg
- Department of Surgery, University of British Columbia and Immunity in Health & Disease, Child and Family Research Institute, British Columbia Children's Hospital, Vancouver, Canada
| | | | | | | | | |
Collapse
|
35
|
Braun TP, Zhu X, Szumowski M, Scott GD, Grossberg AJ, Levasseur PR, Graham K, Khan S, Damaraju S, Colmers WF, Baracos VE, Marks DL. Central nervous system inflammation induces muscle atrophy via activation of the hypothalamic-pituitary-adrenal axis. ACTA ACUST UNITED AC 2011; 208:2449-63. [PMID: 22084407 PMCID: PMC3256966 DOI: 10.1084/jem.20111020] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Systemic and CNS-delimited inflammation triggers skeletal muscle catabolism in a manner dependent on glucocorticoid signaling. Skeletal muscle catabolism is a co-morbidity of many chronic diseases and is the result of systemic inflammation. Although direct inflammatory cytokine action on muscle promotes atrophy, nonmuscle sites of action for inflammatory mediators are less well described. We demonstrate that central nervous system (CNS)–delimited interleukin 1β (IL-1β) signaling alone can evoke a catabolic program in muscle, rapidly inducing atrophy. This effect is dependent on hypothalamic–pituitary–adrenal (HPA) axis activation, as CNS IL-1β–induced atrophy is abrogated by adrenalectomy. Furthermore, we identified a glucocorticoid-responsive gene expression pattern conserved in models of acute and chronic inflammatory muscle atrophy. In contrast with studies suggesting that the direct action of inflammatory cytokines on muscle is sufficient to induce catabolism, adrenalectomy also blocks the atrophy program in response to systemic inflammation, demonstrating that glucocorticoids are requisite for this process. Additionally, circulating levels of glucocorticoids equivalent to those produced under inflammatory conditions are sufficient to cause profound muscle wasting. Together, these data suggest that a significant component of inflammation-induced muscle catabolism occurs indirectly via a relay in the CNS.
Collapse
Affiliation(s)
- Theodore P Braun
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Borges BC, Rorato R, Avraham Y, da Silva LECM, Castro M, Vorobiav L, Berry E, Antunes-Rodrigues J, Elias LLK. Leptin resistance and desensitization of hypophagia during prolonged inflammatory challenge. Am J Physiol Endocrinol Metab 2011; 300:E858-69. [PMID: 21343543 DOI: 10.1152/ajpendo.00558.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute exposure to bacterial lipopolysaccharide (LPS) is a potent inducer of immune response as well as hypophagia. Nevertheless, desensitization of responses to LPS occurs during long-term exposure to endotoxin. We induced endotoxin tolerance, injecting repeated (6LPS) LPS doses compared with single (1LPS) treatment. 1LPS, but not 6LPS group, showed decreased food intake and body weight, which was associated with an increased plasma leptin and higher mRNA expression of OB-Rb, MC4R, and SOCS3 in the hypothalamus. Hypophagia induced by 1LPS was associated with lower levels of 2-arachidonoylglycerol (2-AG), increased number of p-STAT3 neurons, and decreased AMP-activated protein kinase (AMPK) activity. Desensitization of hypophagia in the 6LPS group was related to high 2-AG, with no changes in p-STAT3 or increased p-AMPK. Leptin decreased food intake, body weight, 2-AG levels, and AMPK activity and enhanced p-STAT3 in control rats. However, leptin had no effects on 2-AG, p-STAT3, or p-AMPK in the 1LPS and 6LPS groups. Rats treated with HFD to induce leptin resistance showed neither hypophagia nor changes in p-STAT3 after 1LPS, suggesting that leptin and LPS recruit a common signaling pathway in the hypothalamus to modulate food intake reduction. Desensitization of hypophagia in response to repeated exposure to endotoxin is related to an inability of leptin to inhibit AMPK phosphorylation and 2-AG production and activate STAT3. SOCS3 is unlikely to underlie this resistance to leptin signaling in the endotoxin tolerance. The present model of prolonged inflammatory challenge may contribute to further investigations on mechanisms of leptin resistance.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/physiology
- Body Weight/drug effects
- Body Weight/physiology
- Cyclic AMP-Dependent Protein Kinases/physiology
- Diet
- Dietary Fats/pharmacology
- Eating/drug effects
- Eating/physiology
- Endocannabinoids
- Endotoxins/pharmacology
- Gas Chromatography-Mass Spectrometry
- Glycerides/physiology
- Immunohistochemistry
- Inflammation/chemically induced
- Inflammation/physiopathology
- Interleukin-10/biosynthesis
- Interleukin-10/genetics
- Leptin/blood
- Leptin/physiology
- Lipopolysaccharides/pharmacology
- Male
- Phosphorylation
- Rats
- Rats, Wistar
- Receptor, Melanocortin, Type 4/biosynthesis
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/physiology
- Receptors, Interleukin-10/biosynthesis
- Receptors, Interleukin-10/genetics
- Receptors, Leptin/biosynthesis
- Receptors, Leptin/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- STAT3 Transcription Factor/biosynthesis
- STAT3 Transcription Factor/genetics
- Signal Transduction/physiology
- Suppressor of Cytokine Signaling 3 Protein
- Suppressor of Cytokine Signaling Proteins/biosynthesis
- Suppressor of Cytokine Signaling Proteins/genetics
Collapse
Affiliation(s)
- Beatriz C Borges
- Avenida Bandeirantes, 3900, 14049-900, Ribeirao Preto, Sao Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kendall GS, Hristova M, Hirstova M, Horn S, Dafou D, Acosta-Saltos A, Almolda B, Zbarsky V, Rumajogee P, Heuer H, Castellano B, Pfeffer K, Nedospasov SA, Peebles DM, Raivich G. TNF gene cluster deletion abolishes lipopolysaccharide-mediated sensitization of the neonatal brain to hypoxic ischemic insult. J Transl Med 2011; 91:328-41. [PMID: 21135813 DOI: 10.1038/labinvest.2010.192] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the current study, we explored the role of TNF cluster cytokines on the lipopolysaccharide (LPS)-mediated, synergistic increase in brain injury after hypoxic ischemic insult in postnatal day 7 mice. Pretreatment with moderate doses of LPS (0.3 μg/g) resulted in particularly pronounced synergistic injury within 12 h. Systemic application of LPS alone resulted in a strong upregulation of inflammation-associated cytokines TNFα, LTβ, interleukin (IL) 1β, IL6, chemokines, such as CXCL1, and adhesion molecules E-Selectin, P-Selectin and intercellular adhesion molecule-1 (ICAM1), as well as a trend toward increased LTα levels in day 7 mouse forebrain. In addition, it was also associated with strong activation of brain blood vessel endothelia and local microglial cells. Here, deletion of the entire TNF gene cluster, removing TNFα, LTβ and LTα completely abolished endotoxin-mediated increase in the volume of cerebral infarct. Interestingly, the same deletion also prevented endothelial and microglial activation following application of LPS alone, suggesting the involvement of these cell types in bringing about the LPS-mediated sensitization to neonatal brain injury.
Collapse
Affiliation(s)
- Giles S Kendall
- Perinatal Brain Repair Group, Centre for Perinatal Brain Protection and Repair, Institute of Women's Health, University College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Braun TP, Marks DL. Pathophysiology and treatment of inflammatory anorexia in chronic disease. J Cachexia Sarcopenia Muscle 2010; 1:135-145. [PMID: 21475703 PMCID: PMC3060655 DOI: 10.1007/s13539-010-0015-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/03/2010] [Indexed: 12/25/2022] Open
Abstract
Decreased appetite and involuntary weight loss are common occurrences in chronic disease and have a negative impact on both quality of life and eventual mortality. Weight loss in chronic disease comes from both fat and lean mass, and is known as cachexia. Both alterations in appetite and body weight loss occur in a wide variety of diseases, including cancer, heart failure, renal failure, chronic obstructive pulmonary disease and HIV. An increase in circulating inflammatory cytokines has been implicated as a uniting pathogenic mechanism of cachexia and associated anorexia. One of the targets of inflammatory mediators is the central nervous system, and in particular feeding centers in the hypothalamus located in the ventral diencephalon. Current research has begun to elucidate the mechanisms by which inflammation reaches the hypothalamus, and the neural substrates underlying inflammatory anorexia. Research into these neural mechanisms has suggested new therapeutic possibilities, which have produced promising results in preclinical and clinical trials. This review will discuss inflammatory signaling in the hypothalamus that mediates anorexia, and the opportunities for therapeutic intervention that these mechanisms present.
Collapse
Affiliation(s)
- Theodore P Braun
- Department of Pediatrics, Oregon Health and Sciences University, L481, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
| | | |
Collapse
|
39
|
Myers MG, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab 2010; 21:643-51. [PMID: 20846876 PMCID: PMC2967652 DOI: 10.1016/j.tem.2010.08.002] [Citation(s) in RCA: 576] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/12/2010] [Accepted: 08/16/2010] [Indexed: 12/12/2022]
Abstract
Because leptin reduces food intake and body weight, the coexistence of elevated leptin levels with obesity is widely interpreted as evidence of 'leptin resistance.' Indeed, obesity promotes a number of cellular processes that attenuate leptin signaling (referred to here as 'cellular leptin resistance') and amplify the extent of weight gain induced by genetic and environmental factors. As commonly used, however, the term 'leptin resistance' embraces a range of phenomena that are distinct in underlying mechanisms and pathophysiological implications. Moreover, the induction of cellular leptin resistance by obesity complicates efforts to distinguish the mechanisms that predispose to weight gain from those that result from it. We suggest a framework for approaching these issues and important avenues for future investigation.
Collapse
Affiliation(s)
- Martin G Myers
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
40
|
Effect of feeding status on adjuvant arthritis severity, cachexia, and insulin sensitivity in male Lewis rats. Mediators Inflamm 2010; 2010. [PMID: 20953376 PMCID: PMC2952917 DOI: 10.1155/2010/398026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 09/09/2010] [Indexed: 12/23/2022] Open
Abstract
We studied the effect of food restriction, overfeeding, and normofeeding on cachexia, inflammatory and metabolic parameters, and insulin sensitivity in chronic adjuvant arthritis (AA) in rats. Food restriction during AA increased circulating ghrelin, corticosterone, decreased leptin, and ameliorated arthrogram score and systemic inflammation compared to normofeeding. Overfeeding worsened arthrogram score and systemic inflammation, and led to lipid accumulation in the liver, but not to alterations of adipokine and ghrelin plasma levels relative to normofeeding. Independently of feeding status, AA induced cachexia, in which modulation of mRNA expressions for appetite-regulating neuropeptides (NPY, AgRP, POMC, CART) in the arcuate nucleus (ARC) does not play a primary role. The overexpression of IL-1β mRNA in the ARC suggests its role in the mechanisms of impaired energy balance during AA under all feeding conditions. Normal HOMA index in all arthritic groups does not indicate the development of insulin resistance by feeding interventions in these rats.
Collapse
|
41
|
Scarlett JM, Bowe DD, Zhu X, Batra AK, Grant WF, Marks DL. Genetic and pharmacologic blockade of central melanocortin signaling attenuates cardiac cachexia in rodent models of heart failure. J Endocrinol 2010; 206:121-30. [PMID: 20371568 PMCID: PMC2887273 DOI: 10.1677/joe-09-0397] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The central melanocortin system plays a key role in the regulation of food intake and energy homeostasis. We investigated whether genetic or pharmacologic blockade of central melanocortin signaling attenuates cardiac cachexia in mice and rats with heart failure. Permanent ligation of the left coronary artery (myocardial infarction (MI)) or sham operation was performed in wild-type (WT) or melanocortin-4 receptor (MC4R) knockout mice. Eight weeks after surgery, WT-Sham mice had significant increases in lean body mass (LBM; P<0.05) and fat mass (P<0.05), whereas WT-MI did not gain significant amounts of LBM or fat mass. Resting basal metabolic rate (BMR) was significantly lower in WT-Sham mice compared to WT-MI mice (P<0.001). In contrast, both MC4-Sham and MC4-MI mice gained significant amounts of LBM (P<0.05) and fat mass (P<0.05) over the study period. There was no significant difference in the BMR between MC4-Sham and MC4-MI mice. In the second experiment, rats received aortic bands or sham operations, and after recovery received i.c.v. injections of either artificial cerebrospinal fluid (aCSF) or the melanocortin antagonist agouti-related protein (AGRP) for 2 weeks. Banded rats receiving AGRP gained significant amount of LBM (P<0.05) and fat mass (P<0.05) over the treatment period, whereas banded rats receiving aCSF did not gain significant amounts of LBM or fat mass. These results demonstrated that genetic and pharmacologic blockade of melanocortin signaling attenuated the metabolic manifestations of cardiac cachexia in murine and rat models of heart failure.
Collapse
MESH Headings
- Agouti-Related Protein/administration & dosage
- Animals
- Aorta
- Basal Metabolism
- Body Composition
- Cachexia/etiology
- Cachexia/prevention & control
- Chronic Disease
- Constriction
- Coronary Vessels/surgery
- Heart Diseases/complications
- Heart Failure/complications
- Heart Failure/etiology
- Injections, Intraventricular
- Ligation
- Male
- Melanocortins/antagonists & inhibitors
- Melanocortins/genetics
- Melanocortins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardial Infarction/complications
- Rats
- Rats, Wistar
- Receptor, Melanocortin, Type 4/deficiency
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/physiology
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
|
42
|
Ruud J, Bäckhed F, Engblom D, Blomqvist A. Deletion of the gene encoding MyD88 protects from anorexia in a mouse tumor model. Brain Behav Immun 2010; 24:554-7. [PMID: 20093176 DOI: 10.1016/j.bbi.2010.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 02/01/2023] Open
Abstract
The anorexia-cachexia syndrome, characterized by a rise in energy expenditure and loss of body weight that paradoxically are associated with loss of appetite and decreased food intake, contributes significantly to the morbidity and mortality in cancer. While the pathophysiology of cancer anorexia-cachexia is poorly understood, evidence indicates that pro-inflammatory cytokines are key mediators of this response. Although inflammation hence is recognized as an important component of cancer anorexia-cachexia, the molecular pathways involved are largely unknown. We addressed this issue in mice carrying a deletion of the gene encoding MyD88, the key intracellular adaptor molecule in Toll-like and interleukin-1 family receptor signaling. Wild-type and MyD88-deficient mice were transplanted subcutaneously with a syngenic methylcholanthrene-induced tumor (MCG 101) and daily food intake and body weight were recorded. Wild-type mice showed progressively reduced food intake from about 5days after tumor transplantation and displayed a slight body weight loss after 10days when the experiment was terminated. In contrast, MyD88-deficient mice did not develop anorexia, and displayed a positive body weight development during the observation period. While the MyD88-deficient mice on average developed somewhat smaller tumors than wild-type mice, this did not explain the absence of anorexia, because anorexia was seen in wild-type mice with similar tumor mass as non-anorexic knock-out mice. These data suggest that MyD88-dependent mechanisms are involved in the metabolic derangement during cancer anorexia-cachexia and that innate immune signaling is important for the development of this syndrome.
Collapse
Affiliation(s)
- Johan Ruud
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | | | | | | |
Collapse
|
43
|
Asarian L, Langhans W. A new look on brain mechanisms of acute illness anorexia. Physiol Behav 2010; 100:464-71. [PMID: 20394763 DOI: 10.1016/j.physbeh.2010.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/25/2010] [Accepted: 04/06/2010] [Indexed: 11/17/2022]
Abstract
Bacterial lipopolysaccharide (LPS) and other microbial substances trigger the organism's acute phase response and cause acute illness anorexia. Pro-inflammatory cytokines are major endogenous mediators of acute illness anorexia, but how LPS or cytokines stimulate the brain to inhibit eating is not fully resolved. One emerging mechanism involves the activation of the enzyme cyclooxygenase-2 (COX-2) in blood-brain barrier endothelial cells and the subsequent release of prostaglandin E2 (PGE2). Serotonin neurons in the midbrain raphe are targets of PGE2, and serotonergic projections from the midbrain raphe to the hypothalamus appear to be crucial for LPS anorexia. That is, raphe projections activate (1) the corticotrophin-releasing hormone neurons in the paraventricular nucleus which then elicit the stress response and (2) the pro-opiomelanocortin neurons in the arcuate nucleus which then release alphaMSH and elicit anorexia. Here we review available data to support a role for this brain mechanism in acute illness anorexia by center staging PGE2 signaling pathways that converge on central neural circuits that control normal eating. In addition, we review interactions between gonadal hormones and immune function that lead to sex differences in acute illness anorexia. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009.
Collapse
Affiliation(s)
- Lori Asarian
- Institute of Food, Nutrition and Health, ETH Zurich, 8603, Schwerzenbach, Switzerland
| | | |
Collapse
|
44
|
Yamawaki Y, Kimura H, Hosoi T, Ozawa K. MyD88 plays a key role in LPS-induced Stat3 activation in the hypothalamus. Am J Physiol Regul Integr Comp Physiol 2009; 298:R403-10. [PMID: 19955495 DOI: 10.1152/ajpregu.00395.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Infection causes the production of proinflammatory cytokines, which act on the central nervous system (CNS) and can result in fever, sleep disorders, depression-like behavior, and even anorexia, although precisely how cytokines regulate the functions of the CNS remain unclear. In the present study, we investigated the regulatory-molecular mechanisms by which cytokines affect hypothalamic function in a state of infection. The intraperitoneal administration of lipopolysaccharide (LPS), a ligand of Toll-like receptor 4 (TLR4), time-dependently (2-24 h) increased signal transducer and activator of transcription 3 (STAT3) phosphorylation in the hypothalamus and liver, which corresponded with anorexia observed within 24 h. Interestingly, the pattern of phosphorylation in response to LPS differed between the hypothalamus and liver. In the hypothalamus, LPS increased STAT3 phosphorylation from 2 h, with a peak at 4 h and a decline thereafter, whereas, in the liver, the peak activation of STAT3 persisted from 2 to 8 h. The time course of the LPS-induced expression of suppressor of cytokine signaling 3 (SOCS3), a STAT3-induced negative regulator of the Janus kinase-STAT pathway, was similar to that of STAT3 phosphorylation. Using mice deficient in myeloid differentiation primary-response protein 88 (MyD88), an adapter protein of TLR4, we found that LPS-induced STAT3 phosphorylation and SOCS3 expression in the hypothalamus and liver were predominantly mediated through MyD88. Moreover, we observed that MyD88-deficient mice were resistant to LPS-induced anorexia. Taken together, our findings reveal a novel mechanism, i.e., MyD88 plays a key role in mediating STAT3 phosphorylation and anorexia in the CNS in a state of infection and inflammation.
Collapse
Affiliation(s)
- Yosuke Yamawaki
- Department of Pharmacotherapy, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | |
Collapse
|
45
|
Thaler JP, Choi SJ, Sajan MP, Ogimoto K, Nguyen HT, Matsen M, Benoit SC, Wisse BE, Farese RV, Schwartz MW. Atypical protein kinase C activity in the hypothalamus is required for lipopolysaccharide-mediated sickness responses. Endocrinology 2009; 150:5362-72. [PMID: 19819945 PMCID: PMC2795721 DOI: 10.1210/en.2009-0509] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
By activating the Toll-like receptor 4-nuclear factor-kappaB signal transduction pathway, the bacterial endotoxin lipopolysaccharide (LPS) induces anorexia, weight loss, fever, and other components of the sickness response. By comparison, the hormones leptin and insulin cause anorexia without sickness via a central mechanism involving the phosphatidylinositol-3 kinase signaling pathway. In the current study, we investigated whether a common Toll-like receptor 4 and phosphatidylinositol-3 kinase signaling intermediate, atypical protein kinase Czeta/lambda (aPKC), contributes to changes of energy balance induced by these stimuli. Immunohistochemistry analysis revealed that aPKC is expressed in the arcuate and paraventricular nuclei of the hypothalamus, key sites of leptin, insulin, and LPS action. Although administration of LPS, insulin, and leptin each acutely increased hypothalamic aPKC activity at doses that also reduce food intake, LPS treatment caused over 10-fold greater activation of hypothalamic a PKC signaling than that induced by leptin or insulin. Intracerebroventricular pretreatment with an aPKC inhibitor blocked anorexia induced by LPS but not insulin or leptin. Similarly, LPS-induced hypothalamic inflammation (as judged by induction of proinflammatory cytokine gene expression) and neuronal activation in the paraventricular nucleus (as judged by c-fos induction) were reduced by central aPKC inhibition. Although intracerebroventricular aPKC inhibitor administration also abolished LPS-induced fever, it had no effect on sickness-related hypoactivity or weight loss. We conclude that although hypothalamic aPKC signaling is not required for food intake inhibition by insulin or leptin, it plays a key role in inflammatory anorexia and fever induced by LPS.
Collapse
Affiliation(s)
- Joshua P Thaler
- Division of Metabolism, University of Washington, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shi L, Zhang Z, Fang S, Xu J, Liu J, Shen J, Fang F, Luo L, Yin Z. Heat shock protein 90 (Hsp90) regulates the stability of transforming growth factor beta-activated kinase 1 (TAK1) in interleukin-1beta-induced cell signaling. Mol Immunol 2008; 46:541-50. [PMID: 18950863 DOI: 10.1016/j.molimm.2008.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 07/17/2008] [Accepted: 07/17/2008] [Indexed: 02/04/2023]
Abstract
Heat shock protein 90 (Hsp90) is an abundantly and ubiquitously expressed chaperone with majority of client proteins which act as signal molecules. Transforming growth factor beta-activated kinase 1 (TAK1) is a mitogen-activated protein kinase kinase kinase (MAPKKK), and is essential in interleukin-1beta (IL-1beta) triggered signaling pathways. In the present study, we found that Hsp90 plays an important role in regulating IL-1beta signaling by keeping TAK1 stability. The results showed that the specific inhibitor geldanamycin (GA) of Hsp90 dramatically inhibited IL-1beta stimulated TAK1-MAPKs and TAK1-nuclear factor-kappaB (NF-kappaB) activation, resulting in the decrease of cyclooxygenase-2 (COX-2) protein expression. Silencing Hsp90 expression through RNA interference (RNAi) also down-regulated TAK1, as well as attenuated IL-1beta induced phosphorylation of c-Jun NH(2)-terminal kinase (JNK) and p38 MAPKs, and degradation of IkappaBalpha. The same results were obtained in T6RZC stable cells which initiated IL-1beta-induced cell signaling at the level of the oligomerization and ubquitination of TNF receptor-associated factor 6 (TRAF6). We further found that Hsp90 formed a complex with TAK1 via its N-terminal domain and GA destabilized TAK1 and induced TAK1 degradation through proteasome pathway. Taken together our results demonstrate that Hsp90 regulates IL-1beta-induced signaling by interacting with TAK1 and maintaining the stability of TAK1, suggesting that Hsp90 might act as the chaperone of TAK1 in immune and inflammatory responses related with IL-1 signal cascades.
Collapse
Affiliation(s)
- Lijun Shi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Depke M, Fusch G, Domanska G, Geffers R, Völker U, Schuett C, Kiank C. Hypermetabolic syndrome as a consequence of repeated psychological stress in mice. Endocrinology 2008; 149:2714-23. [PMID: 18325986 DOI: 10.1210/en.2008-0038] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stress is a powerful modulator of neuroendocrine, behavioral, and immunological functions. After 4.5-d repeated combined acoustic and restraint stress as a murine model of chronic psychological stress, severe metabolic dysregulations became detectable in female BALB/c mice. Stress-induced alterations of metabolic processes that were found in a hepatic mRNA expression profiling were verified by in vivo analyses. Repeatedly stressed mice developed a hypermetabolic syndrome with the severe loss of lean body mass, hyperglycemia, dyslipidemia, increased amino acid turnover, and acidosis. This was associated with hypercortisolism, hyperleptinemia, insulin resistance, and hypothyroidism. In contrast, after a single acute stress exposure, changes in expression of metabolic genes were much less pronounced and predominantly confined to gluconeogenesis, probably indicating that metabolic disturbances might be initiated already early but will only manifest in repeatedly stressed mice. Thus, in our murine model, repeated stress caused severe metabolic dysregulations, leading to a drastic reduction of the individual's energy reserves. Under such circumstances stress may further reduce the ability to cope with new stressors such as infection or cancer.
Collapse
Affiliation(s)
- Maren Depke
- Ernst-Moritz-Arndt-University, Interfaculty Institute of Genetics and Functional Genomics, 17487 Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Hayashi T, Cottam HB, Chan M, Jin G, Tawatao RI, Crain B, Ronacher L, Messer K, Carson DA, Corr M. Mast cell-dependent anorexia and hypothermia induced by mucosal activation of Toll-like receptor 7. Am J Physiol Regul Integr Comp Physiol 2008; 295:R123-32. [PMID: 18480244 DOI: 10.1152/ajpregu.00527.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Systemic viral infections produce a highly regulated set of responses in sickness behavior, such as fever, anorexia, and adipsia. Toll-like receptor (TLR)7, activated by viral RNA during infection, potently stimulates the innate and adaptive immune responses that aid in viral clearance. However, the physiological consequences of TLR7 activation have not been thoroughly studied. In these experiments, we used a potent synthetic TLR7 ligand, 9-benzyl-8-hydroxy-2-(2-methoxyethoxy)adenine (SM360320; 1V136), to investigate the consequences of TLR7 activation in genetically defined strains of mice. Administration of the drug by the nasal, intragastric, or intraperitoneal routes caused transient hypophagia, hypodypsia, and hypothermia. Analyses of mutant mouse strains indicated that these effects were dependent on the expression of TLR7, its adaptor protein MyD88, and TNF-alpha, and independent of IL-1beta, IL-6 and cyclo-oxygenase-1 (COX1). Partial roles were also implied for mast cells and COX2. Although plasma TNF-alpha levels were significantly higher after systemic drug delivery, the behavioral effects were maximal when the agent was administered to the mucosa. Tissue and mucosal mast cells are known to express high levels of TLR7 and to rapidly release TNF-alpha upon TLR7 ligation. Mice deficient in tissue mast cells, W/W(v), had significantly less anorexia after TLR7 activation, and this response was restored with mast cell reconstitution. Our results thus suggest that tissue mast cells may play a role in the anorexia induced by mucosal activation of TLR7.
Collapse
Affiliation(s)
- Tomoko Hayashi
- Rebecca and John Moores Cancer Center, University of California, San Diego, La Jolla, California , CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
MyD88 signaling in brain endothelial cells is essential for the neuronal activity and glucocorticoid release during systemic inflammation. Mol Psychiatry 2008; 13:480-97. [PMID: 18180766 DOI: 10.1038/sj.mp.4002122] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Activation of neuronal circuits involved in the control of autonomic responses is critical for the host survival to immune threats. The brain vascular system plays a key role in such immune-CNS communication, but the signaling pathway and exact type of cells within the blood-brain barrier (BBB) mediating these functions have yet to be uncovered. To elucidate this issue we used myeloid differentiation factor 88 (MyD88)-deficient mice, because these animals do not show any responses to the cytokine interleukin-1beta (IL-1beta). We created chimeric mice with competent MyD88 signaling in either the BBB endothelium or perivascular microglia of bone marrow origin and challenged them with IL-1beta. Systemic treatment with the cytokine caused a robust transcriptional activation of genes involved in the prostaglandin E(2) (PGE(2)) production by vascular cells of the brain. Upregulation of these genes is dependent on a functional MyD88 signaling in the endothelium, because MyD88-deficient mice that received bone marrow stem cells from wild-type animals (for example, functional perivascular microglia) exhibited no response to systemic IL-1beta administration. MyD88 competent endothelial cells also mediate neuronal activation and plasma release of glucocorticoids, whereas chimeric mice with MyD88-competent perivascular microglia did not show a significant increase of these functions. Moreover, competent endothelial cells for the gene encoding Toll-like receptor 4 (TLR4) are essential for the release of plasma corticosterone in response to low and high doses of lipopolysaccharide. Therefore, BBB endothelial cells and not perivascular microglia are the main target of circulating inflammatory mediators to activate the brain circuits and key autonomic functions during systemic immune challenges.
Collapse
|
50
|
Ueta Y, Hashimoto H, Onuma E, Takuwa Y, Ogata E. Hypothalamic neuropeptides and appetite response in anorexia-cachexia animal. Endocr J 2007; 54:831-8. [PMID: 17827790 DOI: 10.1507/endocrj.kr-111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | |
Collapse
|