1
|
Faure MC, Corona R, Roomans C, Lenfant F, Foidart JM, Cornil CA. Role of Membrane Estrogen Receptor Alpha on the Positive Feedback of Estrogens on Kisspeptin and GnRH Neurons. eNeuro 2024; 11:ENEURO.0271-23.2024. [PMID: 39375032 PMCID: PMC11520851 DOI: 10.1523/eneuro.0271-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 06/14/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Estrogens act through nuclear and membrane-initiated signaling. Estrogen receptor alpha (ERα) is critical for reproduction, but the relative contribution of its nuclear and membrane signaling to the central regulation of reproduction is unclear. To address this question, two complementary approaches were used: estetrol (E4) a natural estrogen acting as an agonist of nuclear ERs, but as an antagonist of their membrane fraction, and the C451A-ERα mouse lacking mERα. E4 dose- dependently blocks ovulation in female rats, but the central mechanism underlying this effect is unknown. To determine whether E4 acts centrally to control ovulation, its effect was tested on the positive feedback of estradiol (E2) on neural circuits underlying luteinizing hormone (LH) secretion. In ovariectomized females chronically exposed to a low dose of E2, estradiol benzoate (EB) alone or combined with progesterone (P) induced an increase in the number of kisspeptin (Kp) and gonadotropin-releasing hormone (GnRH) neurons coexpressing Fos, a marker of neuronal activation. E4 blocked these effects of EB, but not when combined to P. These results indicate that E4 blocked the central induction of the positive feedback in the absence of P, suggesting an antagonistic effect of E4 on mERα in the brain as shown in peripheral tissues. In parallel, as opposed to wild-type females, C451A-ERα females did not show the activation of Kp and GnRH neurons in response to EB unless they are treated with P. Together these effects support a role for membrane-initiated estrogen signaling in the activation of the circuit mediating the LH surge.
Collapse
Affiliation(s)
- Mélanie C. Faure
- Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Rebeca Corona
- Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Céline Roomans
- Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Françoise Lenfant
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297-UPS, CHU, Toulouse 31432, France
| | - Jean-Michel Foidart
- Department of Obstetrics and Gynecology, University of Liège, Liège, Belgium
- Estetra SRL, Légiapark, Boulevard Patience et Beaujonc 3, 4000 Liège, Belgium
| | - Charlotte A. Cornil
- Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Garcia-Segura LM, Méndez P, Arevalo MA, Azcoitia I. Neuroestradiol and neuronal development: Not an exclusive male tale anymore. Front Neuroendocrinol 2023; 71:101102. [PMID: 37689249 DOI: 10.1016/j.yfrne.2023.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The brain synthesizes a variety of neurosteroids, including neuroestradiol. Inhibition of neuroestradiol synthesis results in alterations in basic neurodevelopmental processes, such as neurogenesis, neuroblast migration, neuritogenesis and synaptogenesis. Although the neurodevelopmental actions of neuroestradiol are exerted in both sexes, some of them are sex-specific, such as the well characterized effects of neuroestradiol derived from the metabolism of testicular testosterone during critical periods of male brain development. In addition, recent findings have shown sex-specific actions of neuroestradiol on neuroblast migration, neuritic growth and synaptogenesis in females. Among other factors, the epigenetic regulation exerted by X linked genes, such as Kdm6a/Utx, may determine sex-specific actions of neuroestradiol in the female brain. This review evidences the impact of neuroestradiol on brain formation in both sexes and highlights the interaction of neural steriodogenesis, hormones and sex chromosomes in sex-specific brain development.
Collapse
Affiliation(s)
- Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain.
| | - Pablo Méndez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain
| | - M Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain.
| | - Iñigo Azcoitia
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain; Department of Cell Biology, Universidad Complutense de Madrid, C José Antonio Nováis 12, 28040 Madrid, Spain
| |
Collapse
|
3
|
Sheep as a model for neuroendocrinology research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:1-34. [PMID: 35595346 DOI: 10.1016/bs.pmbts.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animal models remain essential to understand the fundamental mechanisms of physiology and pathology. Particularly, the complex and dynamic nature of neuroendocrine cells of the hypothalamus make them difficult to study. The neuroendocrine systems of the hypothalamus are critical for survival and reproduction, and are highly conserved throughout vertebrate evolution. Their roles in controlling body metabolism, growth and body composition, stress, electrolyte balance, and reproduction, have been intensively studied, and have yielded groundbreaking discoveries. Many of these discoveries would not have been feasible without the use of the domestic sheep (Ovis aries). The sheep has been used for decades to study the neuroendocrine systems of the hypothalamus and has become a model for human neuroendocrinology. The aim of this chapter is to review some of the profound biomedical discoveries made possible by the use of sheep. The advantages and limitations of sheep as a neuroendocrine model will be discussed. While no animal model can perfectly recapitulate a human disease or condition, sheep are invaluable for enabling manipulations not possible in human subjects and isolating physiologic variables to garner insight into neuroendocrinology and associated pathologies.
Collapse
|
4
|
Tian H, Ren P, Liu K, Qiu C, Fan L, Li J, Hou J. Transcriptomic comparison of ovarian granulosa cells between adult sheep and prepubertal lambs. BMC Genomics 2022; 23:151. [PMID: 35189817 PMCID: PMC8862527 DOI: 10.1186/s12864-022-08379-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The oocyte development ability of prepubertal animals is significantly lower than that of adult animals. Granulosa cells (GCs) have an important function on regulation of follicular and oocyte development. Therefore, analysis of GC characteristics can be used to explore the developmental mechanism of follicles and oocytes. RESULTS In order to understand the possible reasons for the differences in follicle and oocyte development between lambs and adult sheep, we utilized high-throughput sequencing technique to analyze the transcriptome of GCs from follicle-stimulating hormone (FSH) superstimulated adult ewes and prepubertal lambs. Adult ewes were treated with FSH for 3 days (group A) and lambs were FSH-treated for 2 days (group B) or 3 days (group C). Transcriptome analysis of GCs showed that there were 405 and 159 differentially expressed genes from A vs. B and A vs. C, respectively. The results indicated that prolonging the FSH-treatment of lambs made the GC state of lambs more similar to the adult ewes, but there were still a large number of differentially expressed genes between adult ewes and lambs. Further analysis showed that many differently expressed genes were implicated in cell proliferation and apoptosis, oocyte development and follicular ovulation. Cellular examination demonstrated that fatty acid binding protein 4 (FABP4), which was highly expressed in lamb GCs, had a potential of promoting cell apoptosis. Cytoplasmic phospholipase A2 (PLA2G4A), which was expressed lowly in lamb GCs, may be responsible for reduced synthesis of prostaglandins in cells and impaired follicle/oocyte development. In contrast, glutathione S-transferase β-1 (GSTT2B) and forkhead boxO6 (FOXO6) had no apparent effect on the proliferation and apoptosis of GCs. CONCLUSIONS Our study found dramatic transcriptomic differences in GCs between lambs and adult sheep, which may explain the possible reasons for the defects of follicle and oocyte development in lambs compared to adult sheep. Our data provides important information for further understanding the mechanism of follicular development in prepubertal animals and improving their oocyte developmental competence.
Collapse
Affiliation(s)
- Hao Tian
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Panyu Ren
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Kailing Liu
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Chunjuan Qiu
- Inner Mongolia, Sino Sheep Breeding Co. Ltd, Wulanchabu, Inner Mongolia, China
| | - Lihong Fan
- Inner Mongolia, Sino Sheep Breeding Co. Ltd, Wulanchabu, Inner Mongolia, China
| | - Junlong Li
- Inner Mongolia, Sino Sheep Breeding Co. Ltd, Wulanchabu, Inner Mongolia, China
| | - Jian Hou
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Murali P, Radhika J, Alwin D. Effect of thymectomy on the female reproductive cycle in neonatal guinea pigs. Clin Exp Reprod Med 2020; 47:12-19. [PMID: 32146772 PMCID: PMC7127903 DOI: 10.5653/cerm.2019.02999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/24/2019] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE The appropriate function of the hypothalamic-pituitary-gonadal axis is essential for maintaining proper reproductive function. In female mammals, the hypothalamic-pituitary-gonadal axis regulates reproductive changes that take place in the estrus cycle and are necessary for successful reproduction. This study was conducted to investigate the effect of thymectomy on the estrus cycle in neonatally thymectomized guinea pigs. METHODS In this study, 12 female guinea pigs, six thymectomized and six sham-operated, were studied. The effects of neonatal thymectomy at 5-7 days of age on parameters of the reproductive axis were examined in female guinea pigs. Gonadotropin and 17β-estradiol levels were assessed at regular intervals (days 0, 3, 6, 9, 12, and 15) of the estrus cycle, and the time of vaginal opening in the thymectomized and shamoperated guinea pigs was determined. RESULTS Significant reductions in gonadotropins and 17β-estradiol levels during estrus cycle were found in neonatally thymectomized female guinea pigs compared to sham-operated guinea pigs. CONCLUSION The results of this study underscore the importance of the thymus in the neonatal period for normal female reproductive function.
Collapse
Affiliation(s)
- P Murali
- Department of Anatomy, SRM Medical College Hospital and Research Centre, Kattankulathur, India
| | - J Radhika
- SRM Medical College Hospital and Research Centre, Kattankulathur, India
| | - D Alwin
- Central Animal House, SRM Medical College Hospital and Research Centre, Kattankulathur, India
| |
Collapse
|
6
|
Risvanli A, Ocal H, Timurkaan N, Ipek P, Seker I, Karabulut B. Expression of the anti-Mullerian hormone, kisspeptin 1, and kisspeptin 1 receptor in polycystic ovary syndrome and controlled ovarian stimulation rat models. Bosn J Basic Med Sci 2020; 20:37-43. [PMID: 31782699 PMCID: PMC7029206 DOI: 10.17305/bjbms.2019.4281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022] Open
Abstract
Polycystic ovary syndrome represents a significant cause of female infertility. The aim of this study was to investigate the expression of anti-Mul-lerian hormone (AMH), kisspeptin 1 (KISS-1), and kisspeptin 1 receptor (KISS1r) in rat models of polycystic ovary syndrome (PCOS) and controlled ovarian stimulation (COS). For this purpose, 28 rats were assigned into four groups. Estrus and Diestrus groups consisted of rats in estrus and diestrus phases, respectively, while COS and PCOS groups consisted of rats with induced COS and PCOS, respectively. The serum AMH, KISS-1, and estradiol levels, and ovarian KISS1r levels were analyzed by enzyme-linked immunosorbent assay. Furthermore, histopathological analysis of the ovary tissue was done and ovarian KISS-1 expression was determined by immunohistochemical assay. The results revealed that ovarian KISS1r levels were higher in the Estrus (1271.43±51.98 pg/mL) and COS (1191.43±85.67 pg/mL) groups, compared to Diestrus and PCOS groups. The highest level of AMH was found in the Estrus group (16.91±2.12 ng/mL). The results indicate that AMH had no effect on the development of COS and PCOS, while KISS-1 was found to affect the development of COS in rats.
Collapse
Affiliation(s)
- Ali Risvanli
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkey
| | - Halis Ocal
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkey
| | - Necati Timurkaan
- Department of Pathology, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkey
| | - Pinar Ipek
- Yesilhisar Health Vocational School, Univerity of Erciyes, Kayseri, Turkey
| | - Ibrahim Seker
- Department of Zootechny, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkey
| | - Burak Karabulut
- Department of Pathology, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkey.
| |
Collapse
|
7
|
Khbouz B, de Bournonville C, Court L, Taziaux M, Corona R, Arnal JF, Lenfant F, Cornil CA. Role for the membrane estrogen receptor alpha in the sexual differentiation of the brain. Eur J Neurosci 2019; 52:2627-2645. [PMID: 31833601 DOI: 10.1111/ejn.14646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/30/2019] [Accepted: 12/05/2019] [Indexed: 12/25/2022]
Abstract
Estrogens exert pleiotropic effects on multiple physiological and behavioral responses. Male and female sexual behavior in rodents constitutes some of the best-characterized responses activated by estrogens in adulthood and largely depend on ERα. Evidence exists that nucleus- and membrane-initiated estrogen signaling cooperate to orchestrate the activation of these behaviors both in short- and long-term. However, questions remain regarding the mechanism(s) and receptor(s) involved in the early brain programming during development to organize the circuits underlying sexually differentiated responses. Taking advantage of a mouse model harboring a mutation of the ERα palmitoylation site, which prevents membrane ERα signaling (mERα; ERα-C451A), this study investigated the role of mERα on the expression of male and female sexual behavior and neuronal populations that differ between sexes. The results revealed no genotype effect on the expression of female sexual behavior, while male sexual behavior was significantly reduced, but not abolished, in males homozygous for the mutation. Similarly, the number of kisspeptin- (Kp-ir) and calbindin-immunoreactive (Cb-ir) neurons in the anteroventral periventricular nucleus (AVPv) and the sexually dimorphic nucleus of the preoptic area (SDN-POA), respectively, were not different between genotypes in females. In contrast, homozygous males showed increased numbers of Kp-ir and decreased numbers of Cb-ir neurons compared to wild-types, thus leading to an intermediate phenotype between females and wild-type males. Importantly, females neonatally treated with estrogens exhibited the same neurochemical phenotype as their corresponding genotype among males. Together, these data provide evidence that mERα is involved in the perinatal programming of the male brain.
Collapse
Affiliation(s)
- Badr Khbouz
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | | | - Lucas Court
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | | | - Rebeca Corona
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Jean-François Arnal
- INSERM/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Françoise Lenfant
- INSERM/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | | |
Collapse
|
8
|
Di Giorgio NP, Bizzozzero Hiriart M, Surkin PN, López PV, Bourguignon NS, Dorfman VB, Bettler B, Libertun C, Lux-Lantos V. Multiple failures in the lutenising hormone surge generating system in GABAB1KO female mice. J Neuroendocrinol 2019; 31:e12765. [PMID: 31269532 DOI: 10.1111/jne.12765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Female mice lacking GABAB receptors, GABAB1KO, show disrupted oestrous cycles, reduced pregnancies and increased hypothalamic Gnrh1 mRNA expression, whereas anteroventral periventricular/periventricular preoptic nucleus (AVPV/PeN) Kiss1 mRNA was not affected. In the present study, we characterise the important components of the gonadotrophic preovulatory surge, aiming to unravel the origin of this reproductive impairment. In GABAB1KO and wild-type (WT) females, we determined: (i) hypothalamic oestrogen receptor (ER)α and β and aromatase mRNA and protein expression; (ii) ovulation index and oestrus serum follicle-stimulating hormone (FSH) and pituitary Gnrh1r expression; (iii) in ovariectomised-oestradiol valerate-treated mice, we evaluated ex vivo hypothalamic gonadotrophin-releasing hormone (GnRH) pulsatility in the presence/absence of kisspeptin (Kiss-10, constant or pulsatile) and oestradiol (constant); and (iv) in ovariectomised-oestradiol silastic capsule-treated mice (proestrous-like environment), we evaluated morning and evening kisspeptin neurone activation (c-Fos+) and serum luteinising homrone (LH). In the medial basal hypothalamus of oestrus GABAB1KOs, aromatase and ERα mRNA and protein were increased, whereas ERβ was decreased. In GABAB1KOs, the ovulation index was decreased together with decreased first oestrus serum FSH and increased pituitary Gnrh1r mRNA. Under constant Kiss-10 stimulation, hypothalamic GnRH pulse frequency did not vary, although GnRH mass/pulse was increased in GABAB1KOs. In WTs, pulsatile Kiss-10 together with constant oestradiol significantly increased GnRH pulsatility, whereas, in GABAB1KOs, oestradiol alone increased GnRH pulsatility and this was reversed by pulsatile Kiss-10 addition. In GABAB1KOs AVPV/PeN kisspeptin neurones were similarly activated (c-Fos+) in the morning and evening, whereas WTs showed the expected, marked evening stimulation. LH correlated with activated kisspeptin cells in WT mice, whereas GABAB1KO mice showed high, similar LH levels both in the morning and evening. Taken together, all of these alterations point to impairment in the trigger of the preovulatory GnRH surge that entails the reproductive alterations described.
Collapse
Affiliation(s)
- Noelia P Di Giorgio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | - Pablo N Surkin
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Paula V López
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Nadia S Bourguignon
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | | | - Carlos Libertun
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
9
|
Ikeda Y, Kato-Inui T, Tagami A, Maekawa M. Expression of progesterone receptor, estrogen receptors α and β, and kisspeptin in the hypothalamus during perinatal development of gonad-lacking steroidogenic factor-1 knockout mice. Brain Res 2019; 1712:167-179. [PMID: 30776325 DOI: 10.1016/j.brainres.2019.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/25/2019] [Accepted: 02/12/2019] [Indexed: 11/30/2022]
Abstract
Gonadal hormones contribute to brain sexual differentiation. We analyzed expression of progesterone receptor (PR), estrogen receptor-α (ERα), ERβ, and kisspeptin, in the preoptic area (POA) and/or the arcuate nucleus (ARC), in gonad-lacking steroidogenic factor-1 knockout (KO) mice during perinatal development. At postnatal-day (P) 0-P7, POA PR levels were higher in wild-type (WT) males compared with WT females, while those in KO males were lower than in WT males and similar to those in WT and KO females. At P14-P21, PR levels in all groups increased similarly. POA ERα levels were similar in all groups at embryonic-day (E) 15.5-P14. Those in WT but not KO males reduced during postnatal development to be significantly lower compared with females at P21. POA ERβ levels were higher in WT males than in WT females, while those in KO males were lower than in WT males and similar to those in WT and KO females at P0-P21. POA kisspeptin expression was female-biased in WT mice, while levels in KO females were lower compared with WT females and similar to those in WT and KO males. ARC kisspeptin levels were equivalent among groups at E15.5-P0. At P7-P21, ARC levels in WT but not KO males became lower compared with WT females. Diethylstilbestrol exposure during P0-P6 and P7-P13 increased POA PR and ERβ, and decreased POA ERα and ARC kisspeptin levels at P7 and/or P14 in both sexes of KO mice. These data further understanding of gonadal hormone action on neuronal marker expression during brain sexual development.
Collapse
Affiliation(s)
- Yayoi Ikeda
- Department of Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.
| | - Tomoko Kato-Inui
- Koeki Zaidan Hojin Tokyo-to Igaku Sogo Kenkyujo, Regenerative Medicine Project 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Ayako Tagami
- Department of Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| | - Mamiko Maekawa
- Department of Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| |
Collapse
|
10
|
Glucocorticoids stimulate hypothalamic dynorphin expression accounting for stress-induced impairment of GnRH secretion during preovulatory period. Psychoneuroendocrinology 2019; 99:47-56. [PMID: 30176377 DOI: 10.1016/j.psyneuen.2018.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/03/2018] [Accepted: 08/27/2018] [Indexed: 11/24/2022]
Abstract
Stress-induced reproductive dysfunction is frequently associated with increased glucocorticoid (GC) levels responsible for suppressed GnRH/LH secretion and impaired ovulation. Besides the major role of the hypothalamic kisspeptin system, other key regulators may be involved in such regulatory mechanisms. Herein, we identify dynorphin as a novel transcriptional target of GC. We demonstrate that only priming with high estrogen (E2) concentrations prevailing during the late prooestrus phase enables stress-like GC concentrations to specifically stimulate Pdyn (prodynorphin) expression both in vitro (GT1-7 mouse hypothalamic cell line) and ex vivo (ovariectomized E2-supplemented mouse brains). Our results indicate that stress-induced GC levels up-regulate dynorphin expression within a specific kisspeptin neuron-containing hypothalamic region (antero-ventral periventricular nucleus), thus lowering kisspeptin secretion and preventing preovulatory GnRH/LH surge at the end of the prooestrus phase. To further characterize the molecular mechanisms of E2 and GC crosstalk, chromatin immunoprecipitation experiments and luciferase reporter gene assays driven by the proximal promoter of Pdyn show that glucocorticoid receptors bind specific response elements located within the Pdyn promoter, exclusively in presence of E2. Altogether, our work provides novel understanding on how stress affects hypothalamic-pituitary-gonadal axis and underscores the role of dynorphin in mediating GC inhibitory actions on the preovulatory GnRH/LH surge to block ovulation.
Collapse
|
11
|
Filippou P, Homburg R. Is foetal hyperexposure to androgens a cause of PCOS? Hum Reprod Update 2017; 23:421-432. [PMID: 28531286 DOI: 10.1093/humupd/dmx013] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/04/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting reproductive-aged women. The pathophysiology of this syndrome is still not completely understood but recent evidence suggests that the intra-uterine environment may be a key factor in the pathogenesis of PCOS, in particular, hyperexposure of the foetus to androgens. High concentrations of maternal serum testosterone during pregnancy have been shown to influence behaviour during childhood, the prevalence of autism disorders and anti-Mullerian hormone (AMH) concentrations in adolescence. They are also thought to re-programme the female reproductive axis to induce the features of PCOS in later life: oligo/anovulation, polycystic ovaries, hyperandrogenism and insulin resistance (IR). Support for this developmental theory for the aetiology of PCOS is gathering momentum, following results from first animal studies and now human data, which lend credence to many aspects of this hypothesis. OBJECTIVE AND RATIONALE In this review the recent available evidence is presented to support the hypothesis that hyperandrogenic changes in the intra-uterine environment could play a major part in the aetiological basis of PCOS. SEARCH METHODS An extensive PubMED and MEDline database search was conducted. Relevant studies were identified using a combination of search terms: 'polycystic ovary syndrome', 'PCOS', 'aetiology', 'anti-Mullerian hormone', 'AMH', 'pathogenesis', 'kisspeptin', 'hyperandrogenism', 'insulin resistance', 'metabolic factors', 'placenta', 'developmental hypothesis', 'genetic and epigenetic origins'. OUTCOMES A total of 82 studies were finally included in this review. There is robust evidence that a hyperandrogenic intra-uterine environment 'programmes' the genes concerned with ovarian steroidogenesis, insulin metabolism, gonadotrophin secretion and ovarian follicle development resulting in the development of PCOS in adult life. WIDER IMPLICATIONS Once the evidence supporting this hypothesis has been expanded by additional studies, the door would be open to find innovative treatments and preventative measures for this very prevalent condition. Such measures could considerably ease the human and economic burden that PCOS creates.
Collapse
Affiliation(s)
- Panagiota Filippou
- Homerton Fertility Centre, Homerton University Hospital, London E9 6SR, UK
| | | |
Collapse
|
12
|
Evans NP, Bellingham M, Robinson JE. Prenatal programming of neuroendocrine reproductive function. Theriogenology 2016; 86:340-8. [PMID: 27142489 DOI: 10.1016/j.theriogenology.2016.04.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/24/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
It is now well recognized that the gestational environment can have long-lasting effects not only on the life span and health span of an individual but also, through potential epigenetic changes, on future generations. This article reviews the "prenatal programming" of the neuroendocrine systems that regulate reproduction, with a specific focus on the lessons learned using ovine models. The review examines the critical roles played by steroids in normal reproductive development before considering the effects of prenatal exposure to exogenous steroid hormones including androgens and estrogens, the effects of maternal nutrition and stress during gestation, and the effects of exogenous chemicals such as alcohol and environment chemicals. In so doing, it becomes evident that, to maximize fitness, the regulation of reproduction has evolved to be responsive to many different internal and external cues and that the GnRH neurosecretory system expresses a degree of plasticity throughout life. During fetal life, however, the system is particularly sensitive to change and at this time, the GnRH neurosecretory system can be "shaped" both to achieve normal sexually differentiated function but also in ways that may adversely affect or even prevent "normal function". The exact mechanisms through which these programmed changes are brought about remain largely uncharacterized but are likely to differ depending on the factor, the timing of exposure to that factor, and the species. It would appear, however, that some afferent systems to the GnRH neurons such as kisspeptin, may be critical in this regard as it would appear to be sensitive to a wide variety of factors that can program reproductive function. Finally, it has been noted that the prenatal programming of neuroendocrine reproductive function can be associated with epigenetic changes, which would suggest that in addition to direct effects on the exposed offspring, prenatal programming could have transgenerational effects on reproductive potential.
Collapse
Affiliation(s)
- Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Michelle Bellingham
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jane E Robinson
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Forger NG, Strahan JA, Castillo-Ruiz A. Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system. Front Neuroendocrinol 2016; 40:67-86. [PMID: 26790970 PMCID: PMC4897775 DOI: 10.1016/j.yfrne.2016.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/31/2015] [Accepted: 01/09/2016] [Indexed: 01/16/2023]
Abstract
Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to re-think often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain.
Collapse
Affiliation(s)
- Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | - J Alex Strahan
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | | |
Collapse
|
14
|
Abstract
This review provides an outline of how our understanding of the neuroendocrine control of the hypothalamo-pituitary-gonadal axis has evolved since the publication of Geoffrey Harris' renowned monograph in 1955. Particular attention is directed to the neurobiology underlying pulsatile GnRH release from the hypothalamus, the neuroendocrine control of ovarian cycles, puberty and seasonality of gonadal function, and to ideas that have emerged as a result of examining the relationship between growth and the reproductive axis. The review closes with i) a brief discussion of how knowledge gained as a result of pursuing the early hypotheses of Harris has led to major clinical and therapeutic applications, and ii) a personal glimpse into the future of research in this fascinating area of biology.
Collapse
Affiliation(s)
- Tony M Plant
- Department of ObstetricsGynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Room B311, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
15
|
Taziaux M, Bakker J. Absence of Female-Typical Pheromone-Induced Hypothalamic Neural Responses and Kisspeptin Neuronal Activity in α-Fetoprotein Knockout Female Mice. Endocrinology 2015; 156:2595-607. [PMID: 25860032 DOI: 10.1210/en.2015-1062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pheromones induce sexually dimorphic neuroendocrine responses, such as LH secretion. However, the neuronal network by which pheromones are converted into signals that will initiate and modulate endocrine changes remains unclear. We asked whether 2 sexually dimorphic populations in the anteroventral periventricular and periventricular nuclei that express kisspeptin and tyrosine hydroxylase (TH) are potential candidates that will transduce the olfactory signal to the neuroendocrine system. Furthermore, we assessed whether this transduction is sensitive to perinatal actions of estradiol by using female mice deficient in α-fetoprotein (AfpKO), which lack the protective actions of Afp against maternal estradiol. Wild-type (WT) and AfpKO male and female mice were exposed to same- versus opposite-sex odors and the expression of Fos (the protein product of the immediate early gene c-Fos) was analyzed along the olfactory projection pathways as well as whether kisspeptin, TH, and GnRH neurons are responsive to opposite-sex odors. Male odors induced a female-typical Fos expression in target forebrain sites of olfactory inputs involved in reproduction in WT, but not in AfpKO females, whereas female odors induced a male-typical Fos expression in males of both genotypes. In WT females, opposite-sex odors induced Fos in kisspeptin and TH neurons, whereas in AfpKO females and WT males, only a lower, but still significant, Fos expression was observed in TH but not in kisspeptin neurons. Finally, opposite-sex odors did not induce any significant Fos expression in GnRH neurons of both sexes or genotypes. Our results strongly suggest a role for fetal estrogen in the sexual differentiation of neural responses to sex-related olfactory cues.
Collapse
Affiliation(s)
- Melanie Taziaux
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences (M.T., J.B.), University of Liège, 4000 Liège, Belgium; and Netherlands Institute for Neuroscience (J.B.), Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Julie Bakker
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences (M.T., J.B.), University of Liège, 4000 Liège, Belgium; and Netherlands Institute for Neuroscience (J.B.), Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| |
Collapse
|
16
|
Beymer M, Negrón AL, Yu G, Wu S, Mayer C, Lin RZ, Boehm U, Acosta-Martínez M. Kisspeptin cell-specific PI3K signaling regulates hypothalamic kisspeptin expression and participates in the regulation of female fertility. Am J Physiol Endocrinol Metab 2014; 307:E969-82. [PMID: 25269483 PMCID: PMC4254985 DOI: 10.1152/ajpendo.00385.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypothalamic kisspeptin neurons integrate and translate cues from the internal and external environments that regulate gonadotropin-releasing hormone (GnRH) secretion and maintain fertility in mammals. However, the intracellular signaling pathways utilized to translate such information into changes in kisspeptin expression, release, and ultimately activation of the kisspeptin-receptive GnRH network have not yet been identified. PI3K is an important signaling node common to many peripheral factors known to regulate kisspeptin expression and GnRH release. We investigated whether PI3K signaling regulates hypothalamic kisspeptin expression, pubertal development, and adult fertility in mice. We generated mice with a kisspeptin cell-specific deletion of the PI3K catalytic subunits p110α and p110β (kiss-p110α/β-KO). Using in situ hybridization, we examined Kiss1 mRNA expression in gonad-intact, gonadectomized (Gdx), and Gdx + steroid-replaced mice. Kiss1 cell number in the anteroventral periventricular hypothalamus (AVPV) was significantly reduced in intact females but not in males. In contrast, compared with WT and regardless of steroid hormone status, Kiss1 cell number was lower in the arcuate (ARC) of kiss-p110α/β-KO males, but it was unaffected in females. Both intact Kiss-p110α/β-KO males and females had reduced ARC kisspeptin-immunoreactive (IR) fibers compared with WT animals. Adult kiss-p110α/β-KO males had significantly lower circulating luteinizing hormone (LH) levels, whereas pubertal development and fertility were unaffected in males. Kiss-p110α/β-KO females exhibited a reduction in fertility despite normal pubertal development, LH levels, and estrous cyclicity. Our data show that PI3K signaling is important for the regulation of hypothalamic kisspeptin expression and contributes to normal fertility in females.
Collapse
Affiliation(s)
- Matthew Beymer
- Department of Physiology and Biophysics, Stony Brook University Medical Center, Stony Brook, New York; Graduate Program in Genetics, Stony Brook University, Stony Brook, New York
| | - Ariel L Negrón
- Department of Physiology and Biophysics, Stony Brook University Medical Center, Stony Brook, New York; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, New York
| | - Guiqin Yu
- Department of Physiology and Biophysics, Stony Brook University Medical Center, Stony Brook, New York
| | - Samuel Wu
- Department of Physiology and Biophysics, Stony Brook University Medical Center, Stony Brook, New York
| | - Christian Mayer
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Germany
| | - Richard Z Lin
- Department of Physiology and Biophysics, Stony Brook University Medical Center, Stony Brook, New York; Institute of Molecular Cardiology, Stony Brook, New York; and Veterans Affairs Medical Center, Northport, New York
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Germany
| | - Maricedes Acosta-Martínez
- Department of Physiology and Biophysics, Stony Brook University Medical Center, Stony Brook, New York;
| |
Collapse
|
17
|
Naulé L, Picot M, Martini M, Parmentier C, Hardin-Pouzet H, Keller M, Franceschini I, Mhaouty-Kodja S. Neuroendocrine and behavioral effects of maternal exposure to oral bisphenol A in female mice. J Endocrinol 2014; 220:375-88. [PMID: 24403293 DOI: 10.1530/joe-13-0607] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bisphenol A (BPA) is a widespread estrogenic compound. We investigated the effects of maternal exposure to BPA at reference doses on sexual behavior and neuroendocrine functions of female offspring in C57BL/6J mice. The dams were orally exposed to vehicle alone or vehicle-containing BPA at doses equivalent to the no observed adverse effect level (5 mg/kg body weight per day) and tolerable daily intake (TDI, 0.05 mg/kg body weight per day) level from gestational day 15 until weaning. Developmental exposure to BPA increased the lordosis quotient in naive females exposed to BPA at the TDI dose only. BPA exposure had no effect on olfactory preference, ability to express masculine behaviors or number of calbindin-positive cells, a sexually dimorphic population of the preoptic area. BPA at both doses selectively increased kisspeptin cell number in the preoptic periventricular nucleus of the rostral periventricular area of the third ventricle in adult females. It did not affect the number of GNRH-positive cells or percentage of kisspeptin appositions on GNRH neurons in the preoptic area. These changes were associated with higher levels of estradiol (E2) at the TDI dose while levels of LH, estrus cyclicity, ovarian and uterine weights, and fertility remained unaffected. Delay in the time of vaginal opening was observed during the postnatal period at TDI dose, without any alteration in body growth. This shows that developmental exposure to BPA at reference doses did not masculinize and defeminize the neural circuitry underlying sexual behavior in female mice. The TDI dose specifically exacerbated responses normally induced by ovarian E2, through estrogen receptor α, during the postnatal/prepubertal period.
Collapse
Affiliation(s)
- Lydie Naulé
- Sorbonne Universités, UPMC University Paris 06, UMR 7224Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 952 and Centre National de la Recherche Scientifique (CNRS) UMR 7224, Physiopathologie des Maladies du Système Nerveux Central (PMSNC), Université Pierre et Marie Curie,
9 Quai St Bernard Bât B 2ème Étage, F75005 Paris, France Institut National de la Recherche Agronomique (INRA) UMR85, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37000 Tours, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kim J, Tolson KP, Dhamija S, Kauffman AS. Developmental GnRH signaling is not required for sexual differentiation of kisspeptin neurons but is needed for maximal Kiss1 gene expression in adult females. Endocrinology 2013; 154:3273-83. [PMID: 23825121 PMCID: PMC3749477 DOI: 10.1210/en.2013-1271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kisspeptin, encoded by Kiss1, stimulates reproduction. In rodents, one Kiss1 population resides in the hypothalamic anterior ventral periventricular nucleus and neighboring rostral periventricular nucleus (AVPV/PeN). AVPV/PeN Kiss1 neurons are sexually dimorphic (greater in females), yet the mechanisms regulating their development and sexual differentiation remain poorly understood. Neonatal estradiol (E₂) normally defeminizes AVPV/PeN kisspeptin neurons, but emerging evidence suggests that developmental E₂ may also influence feminization of kisspeptin, although exactly when in development this process occurs is unknown. In addition, the obligatory role of GnRH signaling in governing sexual differentiation of Kiss1 or other sexually dimorphic traits remains untested. Here, we assessed whether AVPV/PeN Kiss1 expression is permanently impaired in adult hpg (no GnRH or E₂) or C57BL6 mice under different E₂ removal or replacement paradigms. We determined that 1) despite lacking GnRH signaling in development, marked sexual differentiation of Kiss1 still occurs in hpg mice; 2) adult hpg females, who lack lifetime GnRH and E₂ exposure, have reduced AVPV/PeN Kiss1 expression compared to wild-type females, even after chronic adulthood E₂ treatment; 3) E₂ exposure to hpg females during the pubertal period does not rescue their submaximal adult Kiss1 levels; and 4) in C57BL6 females, removal of ovarian E2 before the pubertal or juvenile periods does not impair feminization and maximal adult AVPV/PeN Kiss1 expression nor the ability to generate LH surges, indicating that puberty is not a critical period for Kiss1 development. Thus, sexual differentiation still occurs without GnRH, but GnRH or downstream E₂ signaling is needed sometime before juvenile development for complete feminization and maximal Kiss1 expression in adult females.
Collapse
Affiliation(s)
- Joshua Kim
- Department of Reproductive Medicine, University of California, San Diego, Leichtag Building 3A-15, 9500 Gilman Drive, No. 0674, LA Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
19
|
Brock O, Bakker J. The two kisspeptin neuronal populations are differentially organized and activated by estradiol in mice. Endocrinology 2013; 154:2739-49. [PMID: 23744640 DOI: 10.1210/en.2013-1120] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In rodents, kisspeptin-expressing neurons are localized in 2 hypothalamic brain nuclei (anteroventral periventricular nucleus/periventricular nucleus continuum [AVPv/PeN] and arcuate nucleus [ARC]) and modulated by sex steroids. By using wild-type (WT) and aromatase knockout (ArKO) mice (which cannot convert testosterone into estradiol) and immunohistochemistry, we observed that WT females showed a continuous increase in kisspeptin peptide expression in the ARC across postnatal ages (postnatal day 5 [P5] to P25), whereas WT males did not show any expression before P25. Kisspeptin peptide expression was also present in ArKO females but did not increase over this early postnatal period, suggesting that kisspeptin peptide expression in the ARC is organized by estradiol-dependent and -independent mechanisms. We also compared kisspeptin peptide expression between groups of adult male and female mice that were left gonadally intact or gonadectomized and treated or not with estradiol (E(2)) or DHT. In the ARC, kisspeptin peptide expression decreased after gonadectomy but was completely rescued by either E(2) or DHT treatment in each sex/genotype. However, kisspeptin peptide expression was lower in ArKO compared with WT subjects. In the AVPv/PeN, ArKO females showed a male-typical kisspeptin peptide expression, and adult E(2) treatment partially restored kisspeptin peptide expression. Finally, we showed that, after E2 treatment of WT and ArKO mice between either P5 and P15 or P15 and P25, AVPv/PeN kisspeptin peptide expression could be still masculinized at P5, but was feminized from P15 onward. In conclusion, the 2 kisspeptin neuronal populations (AVPv/PeN vs ARC) seem to be differentially organized and activated by E(2).
Collapse
Affiliation(s)
- Olivier Brock
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands.
| | | |
Collapse
|
20
|
Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1215-67. [PMID: 23904103 DOI: 10.1152/ajpregu.00446.2012] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypothalamic-pituitary-gonadal (HPG) axis function fundamentally affects the physiology of eating. We review sex differences in the physiological and pathophysiological controls of amounts eaten in rats, mice, monkeys, and humans. These controls result from interactions among genetic effects, organizational effects of reproductive hormones (i.e., permanent early developmental effects), and activational effects of these hormones (i.e., effects dependent on hormone levels). Male-female sex differences in the physiology of eating involve both organizational and activational effects of androgens and estrogens. An activational effect of estrogens decreases eating 1) during the periovulatory period of the ovarian cycle in rats, mice, monkeys, and women and 2) tonically between puberty and reproductive senescence or ovariectomy in rats and monkeys, sometimes in mice, and possibly in women. Estrogens acting on estrogen receptor-α (ERα) in the caudal medial nucleus of the solitary tract appear to mediate these effects in rats. Androgens, prolactin, and other reproductive hormones also affect eating in rats. Sex differences in eating are mediated by alterations in orosensory capacity and hedonics, gastric mechanoreception, ghrelin, CCK, glucagon-like peptide-1 (GLP-1), glucagon, insulin, amylin, apolipoprotein A-IV, fatty-acid oxidation, and leptin. The control of eating by central neurochemical signaling via serotonin, MSH, neuropeptide Y, Agouti-related peptide (AgRP), melanin-concentrating hormone, and dopamine is modulated by HPG function. Finally, sex differences in the physiology of eating may contribute to human obesity, anorexia nervosa, and binge eating. The variety and physiological importance of what has been learned so far warrant intensifying basic, translational, and clinical research on sex differences in eating.
Collapse
Affiliation(s)
- Lori Asarian
- Institute of Veterinary Physiology and Center for Integrated Human Physiology, University of Zurich, Zurich, Switzerland; and
| | | |
Collapse
|
21
|
Witchel SF, Tena-Sempere M. The Kiss1 system and polycystic ovary syndrome: lessons from physiology and putative pathophysiologic implications. Fertil Steril 2013; 100:12-22. [DOI: 10.1016/j.fertnstert.2013.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 01/02/2023]
|
22
|
Lehman MN, Hileman SM, Goodman RL. Neuroanatomy of the kisspeptin signaling system in mammals: comparative and developmental aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:27-62. [PMID: 23550001 DOI: 10.1007/978-1-4614-6199-9_3] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Our understanding of kisspeptin and its actions depends, in part, on a detailed knowledge of the neuroanatomy of the kisspeptin signaling system in the brain. In this chapter, we will review our current knowledge of the distribution of kisspeptin cells, fibers, and receptors in the mammalian brain, including the development, phenotype, and projections of different kisspeptin subpopulations. A fairly consistent picture emerges from this analysis. There are two major groups of kisspeptin cell bodies: a large number in the arcuate nucleus (ARC) and a smaller collection in the rostral periventricular area of the third ventricle (RP3V) of rodents and preoptic area (POA) of non-rodents. Both sets of neurons project to GnRH cell bodies, which contain Kiss1r, and the ARC kisspeptin population also projects to GnRH axons in the median eminence. ARC kisspeptin neurons contain neurokinin B and dynorphin, while a variable percentage of those cells in the RP3V of rodents contain galanin and/or dopamine. Neurokinin B and dynorphin have been postulated to contribute to the control of GnRH pulses and sex steroid negative feedback, while the role of galanin and dopamine in rostral kisspeptin neurons is not entirely clear. Kisspeptin neurons, fibers, and Kiss1r are found in other areas, including widespread areas outside the hypothalamus, but their physiological role(s) in these regions remains to be determined.
Collapse
Affiliation(s)
- Michael N Lehman
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.
| | | | | |
Collapse
|
23
|
|
24
|
Franceschini I, Desroziers E. Development and Aging of the Kisspeptin-GPR54 System in the Mammalian Brain: What are the Impacts on Female Reproductive Function? Front Endocrinol (Lausanne) 2013; 4:22. [PMID: 23543285 PMCID: PMC3610010 DOI: 10.3389/fendo.2013.00022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/22/2013] [Indexed: 11/13/2022] Open
Abstract
The prominent role of the G protein coupled receptor GPR54 and its peptide ligand kisspeptin in the progression of puberty has been extensively documented in many mammalian species including humans. Kisspeptins are very potent gonadotropin-releasing hormone secretagogues produced by two main populations of neurons located in two ventral forebrain regions, the preoptic area and the arcuate nucleus. Within the last 2 years a substantial amount of data has accumulated concerning the development of these neuronal populations and their timely regulation by central and peripheral factors during fetal, neonatal, and peripubertal stages of development. This review focuses on the development of the kisspeptin-GPR54 system in the brain of female mice, rats, sheep, monkeys, and humans. We will also discuss the notion that this system represents a major target through which signals from the environment early in life can reprogram reproductive function.
Collapse
Affiliation(s)
- Isabelle Franceschini
- UMR85 Physiologie de la Reproduction et des Comportements, Institut National de Recherche AgronomiqueNouzilly, France
- UMR7247, Centre National de la Recherche ScientifiqueNouzilly, France
- Université François Rabelais de ToursTours, France
- Institut Français du Cheval et de l’EquitationNouzilly, France
- *Correspondence: Isabelle Franceschini, Centre INRA de Tours, Unité de Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Univ. Tours/IFCE, 37380 Nouzilly, France. e-mail:
| | - Elodie Desroziers
- UMR85 Physiologie de la Reproduction et des Comportements, Institut National de Recherche AgronomiqueNouzilly, France
- UMR7247, Centre National de la Recherche ScientifiqueNouzilly, France
- Université François Rabelais de ToursTours, France
- Institut Français du Cheval et de l’EquitationNouzilly, France
| |
Collapse
|
25
|
Poling MC, Kauffman AS. Organizational and activational effects of sex steroids on kisspeptin neuron development. Front Neuroendocrinol 2013; 34:3-17. [PMID: 22728025 PMCID: PMC3725275 DOI: 10.1016/j.yfrne.2012.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/17/2012] [Accepted: 06/07/2012] [Indexed: 11/29/2022]
Abstract
Kisspeptin, encoded by the Kiss1 gene, is a neuropeptide required for puberty and adult reproductive function. Understanding the regulation and development of the kisspeptin system provides valuable knowledge about the physiology of puberty and adult fertility, and may provide insights into human pubertal or reproductive disorders. Recent studies, particularly in rodent models, have assessed how kisspeptin neurons develop and how hormonal and non-hormonal factors regulate this developmental process. Exposure to sex steroids (testosterone and estradiol) during critical periods of development can induce organizational (permanent) effects on kisspeptin neuron development, with respect to both sexually dimorphic and non-sexually dimorphic aspects of kisspeptin biology. In addition, sex steroids can also impart activational (temporary) effects on kisspeptin neurons and Kiss1 gene expression at various times during neonatal and peripubertal development, as they do in adulthood. Here, we discuss the current knowledge--and in some cases, lack thereof--of the influence of hormones and other factors on kisspeptin neuronal development.
Collapse
Affiliation(s)
- Matthew C Poling
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
26
|
Abstract
The discovery that kisspeptin was critical for normal fertility in humans ushered in a new chapter in our understanding of the control of GnRH secretion. In this paper, we will review recent data on the similarities and differences across several mammalian species in the role of kisspeptin in reproductive neuroendocrinology. In all mammals examined to date, there is strong evidence that kisspeptin plays a key role in the onset of puberty and is necessary for both tonic and surge secretion of GnRH in adults, although kisspeptin-independent systems are also apparent in these studies. Similarly, two groups of kisspeptin neurons, one in the arcuate nucleus (ARC) and the other more rostrally, have been identified in all mammals, although the latter is concentrated in a limited area in rodents and more scattered in other species. Estrogen has divergent actions on kisspeptin expression in these two regions across these species, stimulating it the latter and inhibiting expression in the former. There is also strong evidence that the rostral population participates in the GnRH surge, whereas the ARC population contributes to steroid-negative feedback. There may be species differences in the role of these two populations in puberty, with the ARC cells important in rats, sheep, and monkeys, whereas both have been implicated in mice. ARC kisspeptin neurons also appear to participate in the GnRH surge in sheep and guinea pigs, whereas the data on this possibility in rodents are contradictory. Similarly, both populations are sexually dimorphic in sheep and humans, whereas most data in rodents indicate that this occurs only in the rostral population. The functional consequences of these species differences remain to be fully elucidated but are likely to have significance for understanding normal neuroendocrine control of reproduction as well as for use of kisspeptin agonists/antagonists as a therapeutic tool.
Collapse
Affiliation(s)
- Robert L Goodman
- Department of Physiology, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
27
|
Szymanski L, Bakker J. Aromatase knockout mice show normal steroid-induced activation of gonadotrophin-releasing hormone neurones and luteinising hormone surges with a reduced population of kisspeptin neurones in the rostral hypothalamus. J Neuroendocrinol 2012; 24:1222-33. [PMID: 22577852 DOI: 10.1111/j.1365-2826.2012.02334.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We recently reported that female aromatase knockout (ArKO) mice show deficits in sexual behaviour and a decreased population of kisspeptin-immunoreactive neurones in the rostral periventricular area of the third ventricle (RP3V), resurrecting the question of whether oestradiol actively contributes to female-typical sexual differentiation. To further address this question, we assessed the capacity of ArKO mice to generate a steroid-induced luteinising hormone (LH) surge. Adult, gonadectomised wild-type (WT) and ArKO mice were given silastic oestradiol implants s.c. and, 1 week later, received s.c. injections of either oestradiol benzoate (EB) followed by progesterone, EB alone, or no additional steroids to activate gonadotrophin-releasing hormone (GnRH) neurones and generate an LH surge. Treatment with EB and progesterone induced significant Fos/GnRH double-labelling and, consequently, an LH surge in female WT and in ArKO mice of both sexes but not in male WT mice. ArKO mice of both sexes had fewer cells expressing Kiss-1 mRNA in the RP3V compared to female WT mice but had more Kiss-1 mRNA-expressing cells compared to WT males, reflecting an incomplete sexual differentiation of this system. To determine the number of cells expressing kisspeptin, the same experimental design was repeated in Experiment 2 with the addition of groups of WT and ArKO mice that were given EB + progesterone and sacrificed 2 h before the expected LH surge. No differences were observed in the number of kisspeptin-immunoreactive cells 2 h before and at the time of the LH surge. The finding that ArKO mice of both sexes have a competent LH surge system suggests that oestradiol has predominantly defeminising actions on the GnRH/LH surge system in males and that the steroid-induced LH surge can occur in females even with a greatly reduced population of kisspeptin neurones in the RP3V.
Collapse
Affiliation(s)
- L Szymanski
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | | |
Collapse
|
28
|
Desroziers E, Mikkelsen JD, Duittoz A, Franceschini I. Kisspeptin-immunoreactivity changes in a sex- and hypothalamic-region-specific manner across rat postnatal development. J Neuroendocrinol 2012; 24:1154-65. [PMID: 22458373 DOI: 10.1111/j.1365-2826.2012.02317.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kisspeptins are potent secretagogues of gonadotrophin-releasing hormone, playing a key role in puberty onset. These peptides are produced by distinct neuronal populations of the hypothalamus located in the rostral periventricular area of the third ventricle (RP3V) and arcuate nucleus (ARC). The present immunohistochemical study aimed to determine the spatiotemporal onset of kisspeptin-immunoreactivity (-IR) in the neonatal hypothalamus of male and female rats and to evaluate changes in kisspeptin-IR around puberty. Kisspeptin-IR cells and fibres could be detected from the day of birth in the ARC of both males and females. At this stage, only females displayed some kisspeptin-IR fibres in the RP3V. From postnatal day 7 to adulthood, males displayed lower levels of kisspeptin-IR than females in both regions. During infancy, kisspeptin-IR fibre density in the female decreased in the ARC, whereas it increased in the RP3V. A sex-independent decline in RP3V kisspeptin-IR fibre density was observed in the juvenile, followed by a peripubertal increase in RP3V and ARC kisspeptin-IR. These peripubertal increases in kisspeptin-IR occurred at different timings dependent on sex and region. In females specifically, the increase in kisspeptin-IR fibre density occurred first in the ARC and later in the RP3V under constant levels of circulating oestradiol. In conclusion, the present study highlights the expression of hypothalamic kisspeptins soon after birth, as well as the neonatal establishment of a strong and persisting sex difference in ARC kisspeptin-IR in rats. Moreover, a female-specific desynchronisation of the ARC and RP3V was observed with respect to the increase in kisspeptin-IR fibre density around puberty, which was not related to peripubertal variations in circulating oestradiol.
Collapse
Affiliation(s)
- E Desroziers
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | | | | |
Collapse
|
29
|
Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and Reproduction: Physiological Roles and Regulatory Mechanisms. Physiol Rev 2012; 92:1235-316. [DOI: 10.1152/physrev.00037.2010] [Citation(s) in RCA: 529] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Procreation is essential for survival of species. Not surprisingly, complex neuronal networks have evolved to mediate the diverse internal and external environmental inputs that regulate reproduction in vertebrates. Ultimately, these regulatory factors impinge, directly or indirectly, on a final common pathway, the neurons producing the gonadotropin-releasing hormone (GnRH), which stimulates pituitary gonadotropin secretion and thereby gonadal function. Compelling evidence, accumulated in the last few years, has revealed that kisspeptins, a family of neuropeptides encoded by the Kiss1 gene and produced mainly by neuronal clusters at discrete hypothalamic nuclei, are pivotal upstream regulators of GnRH neurons. As such, kisspeptins have emerged as important gatekeepers of key aspects of reproductive maturation and function, from sexual differentiation of the brain and puberty onset to adult regulation of gonadotropin secretion and the metabolic control of fertility. This review aims to provide a comprehensive account of the state-of-the-art in the field of kisspeptin physiology by covering in-depth the consensus knowledge on the major molecular features, biological effects, and mechanisms of action of kisspeptins in mammals and, to a lesser extent, in nonmammalian vertebrates. This review will also address unsolved and contentious issues to set the scene for future research challenges in the area. By doing so, we aim to endow the reader with a critical and updated view of the physiological roles and potential translational relevance of kisspeptins in the integral control of reproductive function.
Collapse
Affiliation(s)
- Leonor Pinilla
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Enrique Aguilar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Dieguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert P. Millar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Female mice deficient in alpha-fetoprotein show female-typical neural responses to conspecific-derived pheromones. PLoS One 2012; 7:e39204. [PMID: 22720075 PMCID: PMC3376129 DOI: 10.1371/journal.pone.0039204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/21/2012] [Indexed: 02/03/2023] Open
Abstract
The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO) and which lack the protective actions of AFP against maternal estradiol, that exposure to prenatal estradiol completely defeminized the potential to show lordosis behavior in adulthood. Furthermore, AFP-KO females failed to show any male-directed mate preferences following treatment with estradiol and progesterone, indicating a reduced sexual motivation to seek out the male. In the present study, we asked whether neural responses to male- and female-derived odors are also affected in AFP-KO female mice. Therefore, we compared patterns of Fos, the protein product of the immediate early gene, c-fos, commonly used as a marker of neuronal activation, between wild-type (WT) and AFP-KO female mice following exposure to male or estrous female urine. We also tested WT males to confirm the previously observed sex differences in neural responses to male urinary odors. Interestingly, AFP-KO females showed normal, female-like Fos responses, i.e. exposure to urinary odors from male but not estrous female mice induced equivalent levels of Fos protein in the accessory olfactory pathways (e.g. the medial part of the preoptic nucleus, the bed nucleus of the stria terminalis, the amygdala, and the lateral part of the ventromedial hypothalamic nucleus) as well as in the main olfactory pathways (e.g. the piriform cortex and the anterior cortical amygdaloid nucleus), as WT females. By contrast, WT males did not show any significant induction of Fos protein in these brain areas upon exposure to either male or estrous female urinary odors. These results thus suggest that prenatal estradiol is not involved in the sexual differentiation of neural Fos responses to male-derived odors.
Collapse
|
31
|
Dudich E, Dudich I, Semenkova L, Benevolensky S, Morozkina E, Marchenko A, Zatcepin S, Dudich D, Soboleva G, Khromikh L, Roslovtceva O, Tatulov E. Engineering of the Saccharomyces cerevisiae yeast strain with multiple chromosome-integrated genes of human alpha-fetoprotein and its high-yield secretory production, purification, structural and functional characterization. Protein Expr Purif 2012; 84:94-107. [PMID: 22561245 DOI: 10.1016/j.pep.2012.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/11/2012] [Accepted: 04/14/2012] [Indexed: 11/20/2022]
Abstract
Alpha-fetoprotein (AFP) is a biological drug candidate of high medicinal potential in the treatment of autoimmune diseases, cancer, and regenerative medicine. Large-scale production of recombinant human alpha-fetoprotein (rhAFP) is desirable for structural and functional studies and applied research. In this study we cloned and expressed in the secreted form wild-type glycosylated human rhAFP and non-glycosylated mutant rhAFP(0) (N233S) in the yeast strain Saccharomyces cerevisiae with multiple chromosome-integrated synthetic human AFP genes. RhAFP and rhAFP(0) were successfully produced and purified from the culture liquids active naturally folded proteins. Elimination of the glycosylation by mutation reduced rhAFP(0) secretion about threefold as compared to the wild-type protein showing critical role of the N-linked glycan for heterologous protein folding and secretion. Structural similarity of rhAFP and rhAFP(0) with natural embryonic eAFP was confirmed by circular dichroism technique. Functional tests demonstrated similar type of tumor suppressive and immunosuppressive activity for both recombinant species rhAFP and rhAFP(0) as compared to natural eAFP. It was documented that both types of biological activities attributed to rhAFP and rhAFP(0) are due to the fast induction of apoptosis in tumor cells and mitogen-activated lymphocytes. Despite the fact that rhAFP and rhAFP(0) demonstrated slightly less effective tumor suppressive activity as compared to eAFP but rhAFP(0) had produced statistically notable increase in its ability to induce inhibition of in vitro lymphocyte proliferation as compared to the glycosylated rhAFP and eAFP. We conclude that N-linked glycosylation of rhAFP is required for efficient folding and secretion. However the presence of N-linked sugar moiety was shown to be unimportant for tumor suppressive activity but was critically important for its immunoregulative activity which demonstrates that different molecular mechanisms are involved in these two types of biological functional activities attributed to AFP.
Collapse
Affiliation(s)
- Elena Dudich
- Institute of Immunological Engineering, Lyubuchany, Moscow Region, Chekhov District 142380, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bianco SDC. A potential mechanism for the sexual dimorphism in the onset of puberty and incidence of idiopathic central precocious puberty in children: sex-specific kisspeptin as an integrator of puberty signals. Front Endocrinol (Lausanne) 2012; 3:149. [PMID: 23248615 PMCID: PMC3521239 DOI: 10.3389/fendo.2012.00149] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/12/2012] [Indexed: 11/13/2022] Open
Abstract
The major determinants of the variability in pubertal maturation are reported to be genetic and inherited. Nonetheless, nutritional status contributes significantly to this variability. Malnutrition delays puberty whereas obesity has been associated to a rise in Idiopathic Central Precocious Puberty (ICPP) in girls. However, epidemiology data indicate that contribution of obesity to early puberty varies significantly among ethnic groups, and that obesity-independent inheritable genetic factors are the strongest predictors of early puberty in any ethnic group. In fact, two human mutations with confirmed association to ICPP have been identified in children with no history of obesity. These mutations are in kisspeptin and kisspeptin receptor, a ligand/receptor pair with a major role on the onset of puberty and female cyclicity after puberty. Progressive increases in kisspeptin expression in hypothalamic nuclei known to regulate reproductive function has been associated to the onset of puberty, and hypothalamic expression of kisspeptin is reported to be sexually dimorphic in many species, which include humans. The hypothalamus of females is programmed to express significantly higher levels of kisspeptin than their male counterparts. Interestingly, incidence of ICPP and delayed puberty in children is markedly sexually dimorphic, such that ICPP is at least 10-fold more frequent in females, whereas prevalence of delayed puberty is about 5-fold higher in males. These observations are consistent with a possible involvement of sexually dimorphic kisspeptin signaling in the sexual dimorphism of normal puberty and of pubertal disorders in children of all ethnicities. This review discusses the likelihood of such associations, as well as a potential role of kisspeptin as the converging target of environmental, metabolic, and hormonal signals, which would be integrated in order to optimize reproductive function.
Collapse
Affiliation(s)
- Suzy D. C. Bianco
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiami, FL, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Miami Miller School of MedicineMiami, FL, USA
- *Correspondence: Suzy D. C. Bianco, Department of Molecular and Cellular Pharmacology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, BCRI, Suite 607, 1580 NW 10th Avenue, Miami, FL 33136, USA. e-mail:
| |
Collapse
|
33
|
Tolson KP, Chappell PE. The Changes They are A-Timed: Metabolism, Endogenous Clocks, and the Timing of Puberty. Front Endocrinol (Lausanne) 2012; 3:45. [PMID: 22645521 PMCID: PMC3355854 DOI: 10.3389/fendo.2012.00045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/08/2012] [Indexed: 11/16/2022] Open
Abstract
Childhood obesity has increased dramatically over the last several decades, particularly in industrialized countries, often accompanied by acceleration of pubertal progression and associated reproductive abnormalities (Biro et al., 2006; Rosenfield et al., 2009). The timing of pubertal initiation and progression in mammals is likely influenced by nutritional and metabolic state, leading to the hypothesis that deviations from normal metabolic rate, such as those seen in obesity, may contribute to observed alterations in the rate of pubertal progression. While several recent reviews have addressed the effects of metabolic disorders on reproductive function in general, this review will explore previous and current models of pubertal timing, outlining a potential role of endogenous timing mechanisms such as cellular circadian clocks in the initiation of puberty, and how these clocks might be altered by metabolic factors. Additionally, we will examine recently elucidated neuroendocrine regulators of pubertal progression such as kisspeptin, explore models detailing how the mammalian reproductive axis is silenced during the juvenile period and reactivated at appropriate developmental times, and emphasize how metabolic dysfunction such as childhood obesity may alter timing cues that advance or delay pubertal progression, resulting in diminished reproductive capacity.
Collapse
Affiliation(s)
- Kristen P. Tolson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State UniversityCorvallis, OR, USA
| | - Patrick E. Chappell
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State UniversityCorvallis, OR, USA
- *Correspondence: Patrick E. Chappell, Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA. e-mail:
| |
Collapse
|
34
|
Abstract
Sex hormone-binding globulin (SHBG) transports androgens and estrogens in blood and regulates their access to target tissues. Hepatic production of SHBG fluctuates throughout the life cycle and is influenced primarily by metabolic and hormonal factors. Genetic differences also contribute to interindividual variations in plasma SHBG levels. In addition to controlling the plasma distribution, metabolic clearance, and bioavailability of sex steroids, SHBG accumulates in the extravascular compartments of some tissues and in the cytoplasm of specific epithelial cells, where it exerts novel effects on androgen and estrogen action. In mammals, the gene-encoding SHBG is expressed primarily in the liver but also at low levels in other tissues, including the testis. In subprimate species, Shbg expression in Sertoli cells is under the control of follicle-stimulating hormone and produces the androgen-binding protein that influences androgen actions in the seminiferous tubules and epididymis. In humans, the SHBG gene is not expressed in Sertoli cells, but its expression in germ cells produces an SHBG isoform that accumulates in the acrosome. In fish, Shbg is produced by the liver but has a unique function in the gill as a portal for natural steroids and xenobiotics, including synthetic steroids. However, salmon have retained a second, poorly conserved Shbg gene that is expressed only in ovary, muscle, and gill and that likely exerts specialized functions in these tissues. The present review compares the production and functions of SHBG in different species and its diverse effects on reproduction.
Collapse
Affiliation(s)
- Geoffrey L Hammond
- Child & Family Research Institute and Department of Obstetrics & Gynecology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
35
|
Clarkson J, Herbison AE. Dual phenotype kisspeptin-dopamine neurones of the rostral periventricular area of the third ventricle project to gonadotrophin-releasing hormone neurones. J Neuroendocrinol 2011; 23:293-301. [PMID: 21219482 DOI: 10.1111/j.1365-2826.2011.02107.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The neuropeptide kisspeptin and its G-protein-coupled receptor, Gpr54, are critical regulators of fertility. Two major populations of kisspeptin neurones exist in the rodent: one in the rostral periventricular area of the third ventricle (RP3V) and another in the arcuate nucleus. The RP3V population of kisspeptin neurones is crucial for the generation of the luteinising hormone surge that drives ovulation in females. The RP3V kisspeptin neurones are sexually dimorphic, with many more neurones in females than males, and they project to gonadotrophin-releasing hormone (GnRH) neurones. Tyrosine hydroxylase (TH) expressing neurones in the RP3V are also sexually dimorphic and are assumed to project to GnRH neurones. In the present study, we examined the coexpression of kisspeptin and TH peptides in the RP3V of dioestrous and pro-oestrous female mice. We also investigated whether kisspeptin and TH peptides colocalised in terminal appositions with GnRH neurones in the rostral preoptic area (rPOA). Approximately half of the kisspeptin neurones in the RP3V were found to also express TH and vice versa, although there was no difference between mice in dioestrus or pro-oestrus. The majority (95%) of GnRH neurones in the rPOA exhibited a close apposition from a kisspeptin fibre, whereas only one quarter exhibited a close apposition from a TH fibre. Many of the TH close appositions with GnRH neurones coexpressed kisspeptin (62-86%), although these dual-labelled appositions comprised <20% of all kisspeptin appositions on GnRH neurones. The percentage of GnRH neurones with kisspeptin, TH and double-labelled appositions did not differ between dioestrous and pro-oestrous mice. These findings indicate that a subpopulation of kisspeptin neurones expressing dopamine innervate GnRH neurones in the rPOA.
Collapse
Affiliation(s)
- J Clarkson
- Centre for Neuroendocrinology, Department of Physiology, School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
36
|
Brock O, Bakker J. Potential contribution of prenatal estrogens to the sexual differentiation of mate preferences in mice. Horm Behav 2011; 59:83-9. [PMID: 21029737 PMCID: PMC3022080 DOI: 10.1016/j.yhbeh.2010.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/14/2010] [Accepted: 10/18/2010] [Indexed: 02/07/2023]
Abstract
The neural mechanisms controlling sexual behavior are sexually differentiated by perinatal actions of gonadal hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO) and which lack the protective actions of AFP against maternal estrogens, that exposure to prenatal estrogens completely defeminized their potential to show lordosis behavior in adulthood. Therefore, we determined here whether mate preferences were also affected in female AFP-KO mice. We observed a robust preference for an estrous female over an intact male in female AFP-KO mice, which were ovariectomized in adulthood and subsequently treated with estradiol and progesterone, whereas similarly treated WT females preferred the intact male over the estrous female. Gonadally intact WT males preferred the estrous female over the male, but only when visual cues were blocked by placing stimulus animals behind opaque partitions. Furthermore, when given the choice between an intact male and a castrated male, WT females preferred the intact male, whereas AFP-KO females showed no preference. Finally when given the choice between an estrous female and an ovariectomized female, WT males preferred the estrous female whereas AFP-KO females preferred the ovariectomized female or showed no preference depending on whether they could see the stimulus animals or not. Taken together, when AFP-KO females are tested under estrous conditions, they do not show any male-directed preferences, indicating a reduced sexual motivation to seek out the male in these females. However, they do not completely resemble males in their mate preferences suggesting that the male-typical pattern of mate preferences is not solely organized by prenatal estrogens.
Collapse
Affiliation(s)
- Olivier Brock
- GIGA-Neurosciences, University of Liege, Avenue de l'Hôpital 1 (B36), 4000 Liege, Belgium
| | | |
Collapse
|
37
|
d'Anglemont de Tassigny X, Colledge WH. The role of kisspeptin signaling in reproduction. Physiology (Bethesda) 2010; 25:207-17. [PMID: 20699467 DOI: 10.1152/physiol.00009.2010] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kisspeptins are a group of peptides that stimulate GnRH release and are required for puberty and maintenance of normal reproductive function. This review focuses on our understanding of the way in which kisspeptin signaling regulates mammalian fertility and how they act as central integrators of different hormonal and physiological signals.
Collapse
Affiliation(s)
- Xavier d'Anglemont de Tassigny
- Department of Physiology, Development and Neuroscience, Reproductive Physiology Group, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
38
|
Desroziers E, Mikkelsen J, Simonneaux V, Keller M, Tillet Y, Caraty A, Franceschini I. Mapping of kisspeptin fibres in the brain of the pro-oestrous rat. J Neuroendocrinol 2010; 22:1101-12. [PMID: 20673302 DOI: 10.1111/j.1365-2826.2010.02053.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kisspeptins are a family of small peptides that play a key role in the neuroendocrine regulation of the reproductive function through neural pathways that have not yet been completely identified. The present study aimed to investigate the distribution of kisspeptin neurone fibres in the female rat brain by comparing precisely the immunoreactive pattern obtained with two antibodies: one specifically directed against kisspeptin-52 (Kp-52), the longest isoform, and the other directed against kisspeptin-10 (Kp-10), whose sequence is common to all putative mature isoforms. With both antibodies, immunoreactive cell bodies were exclusively observed in the arcuate nucleus, and immunoreactive fibres were confined to the septo-preoptico-hypothalamic continuum of the brain. Fibres were observed in the preoptic area, the diagonal band of Broca, the septohypothalamic area, the anteroventral periventricular, suprachiasmatic, supraoptic, paraventricular and periventricular nuclei, the dorsal border of the ventromedian nucleus, the dorsomedial and arcuate nuclei, and the median eminence. In the latter structure, varicose fibres were mainly distributed in the internal layer and were detected to a lesser extent throughout the external layer, including around the deeper part of the infundibular recess. Most regions of immunoreactive cells and fibres matched perfectly for the two antibodies. However, fibres in the dorsolateral septum, anterior fornix, accumbens nucleus and the lateral bed nucleus of the stria terminalis were only recognised by antibody anti-Kp-10, suggesting that anti-Kp-10 may recognise a wider range of kisspeptin isoforms than anti-Kp-52 or cross-react with molecules other than kisspeptin in rat tissue. Overall, these results illustrate the variety of projection sites of kisspeptin neurones in the rat and suggest that these peptides play a role in different functions.
Collapse
Affiliation(s)
- E Desroziers
- UMR 6175 INRA/CNRS/Université de Tours/Haras Nationaux, Nouzilly, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Kauffman AS. Coming of age in the kisspeptin era: sex differences, development, and puberty. Mol Cell Endocrinol 2010; 324:51-63. [PMID: 20083160 PMCID: PMC2902563 DOI: 10.1016/j.mce.2010.01.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/11/2010] [Accepted: 01/11/2010] [Indexed: 01/01/2023]
Abstract
The status of the neuroendocrine reproductive axis differs dramatically during various stages of development, and also differs in several critical ways between the sexes, including its earlier pubertal activation in females than males and the presence of neural circuitry that generates preovulatory hormone surges in females but not males. The reproductive axis is controlled by various hormonal and neural pathways that converge upon forebrain gonadotropin-releasing hormone (GnRH) neurons, and many of the critical age and sex differences in the reproductive axis likely reflect differences in the "upstream" circuits and factors that regulate the GnRH system. Recently, the neural kisspeptin system has been implicated as an important regulator of GnRH neurons. Here I discuss the evidence supporting a critical role of kisspeptin signaling at different stages of life, including early postnatal and pubertal development, as well as in adulthood, focusing primarily on information gleaned from mammalian studies. I also evaluate key aspects of sexual differentiation and development of the brain as it relates to the Kiss1 system, with special emphasis on rodents. In addition to discussing recent advances in the field of kisspeptin biology, this paper will highlight a number of unanswered questions and future challenges for kisspeptin investigators, and will stress the importance of studying the kisspeptin system in both males and females, as well as in multiple species.
Collapse
Affiliation(s)
- Alexander S Kauffman
- University of California, San Diego, Department of Reproductive Medicine, La Jolla, CA 92093, United States.
| |
Collapse
|
40
|
Gill JC, Wang O, Kakar S, Martinelli E, Carroll RS, Kaiser UB. Reproductive hormone-dependent and -independent contributions to developmental changes in kisspeptin in GnRH-deficient hypogonadal mice. PLoS One 2010; 5:e11911. [PMID: 20689830 PMCID: PMC2912854 DOI: 10.1371/journal.pone.0011911] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 07/07/2010] [Indexed: 11/18/2022] Open
Abstract
Kisspeptin is a potent activator of GnRH-induced gonadotropin secretion and is a proposed central regulator of pubertal onset. In mice, there is a neuroanatomical separation of two discrete kisspeptin neuronal populations, which are sexually dimorphic and are believed to make distinct contributions to reproductive physiology. Within these kisspeptin neuron populations, Kiss1 expression is directly regulated by sex hormones, thereby confounding the roles of sex differences and early activational events that drive the establishment of kisspeptin neurons. In order to better understand sex steroid hormone-dependent and -independent effects on the maturation of kisspeptin neurons, hypogonadal (hpg) mice deficient in GnRH and its downstream effectors were used to determine changes in the developmental kisspeptin expression. In hpg mice, sex differences in Kiss1 mRNA levels and kisspeptin immunoreactivity, typically present at 30 days of age, were absent in the anteroventral periventricular nucleus (AVPV). Although immunoreactive kisspeptin increased from 10 to 30 days of age to levels intermediate between wild type (WT) females and males, corresponding increases in Kiss1 mRNA were not detected. In contrast, the hpg arcuate nucleus (ARC) demonstrated a 10-fold increase in Kiss1 mRNA between 10 and 30 days in both females and males, suggesting that the ARC is a significant center for sex steroid-independent pubertal kisspeptin expression. Interestingly, the normal positive feedback response of AVPV kisspeptin neurons to estrogen observed in WT mice was lost in hpg females, suggesting that exposure to reproductive hormones during development may contribute to the establishment of the ovulatory gonadotropin surge mechanism. Overall, these studies suggest that the onset of pubertal kisspeptin expression is not dependent on reproductive hormones, but that gonadal sex steroids critically shape the hypothalamic kisspeptin neuronal subpopulations to make distinct contributions to the activation and control of the reproductive hormone cascade at the time of puberty.
Collapse
Affiliation(s)
- John C Gill
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | |
Collapse
|
41
|
Tsukamura H, Homma T, Tomikawa J, Uenoyama Y, Maeda KI. Sexual differentiation of kisspeptin neurons responsible for sex difference in gonadotropin release in rats. Ann N Y Acad Sci 2010; 1200:95-103. [DOI: 10.1111/j.1749-6632.2010.05645.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Abstract
The brains of males and females differ anatomically and physiologically, including sex differences in neurone size or number, synapse morphology and specific patterns of gene expression. Brain sex differences may underlie critical sex differences in physiology or behaviour, including several aspects of reproduction, such as the timing of sexual maturation (earlier in females than males) and the ability to generate a preovulatory gonadotrophin surge (in females only). The reproductive axis is controlled by afferent pathways that converge upon forebrain gonadotrophin-releasing hormone (GnRH) neurones, but GnRH neurones are not sexually dimorphic. Although most reproductive sex differences probably reflect sex differences in the upstream circuits and factors that regulate GnRH secretion, the key sexually-dimorphic factors that influence reproductive status have remained poorly defined. The recently-identified neuropeptide kisspeptin, encoded by the Kiss1 gene, is an important regulator of GnRH secretion, and Kiss1 neurones in rodents are sexually dimorphic in specific hypothalamic populations, including the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN) and the arcuate nucleus (ARC). In the adult AVPV/PeN, Kiss1 neurones are more abundant in females than males, representing a sex difference that is regulated by oestradiol signalling during critical periods of postnatal and pubertal development. By contrast, Kiss1 neurones in the ARC are not sexually differentiated in adult rodents but, in mice, the regulation of ARC Kiss1 cells by gonadal hormone-independent factors is sexually dimorphic during prepubertal development. These various sex differences in hypothalamic Kiss1 neurones may relate to known sex differences in reproductive physiology, such as puberty onset and positive feedback.
Collapse
Affiliation(s)
- A S Kauffman
- Department of Reproductive Medicine, Center for Chronobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
43
|
Bakker J, Pierman S, González-Martínez D. Effects of aromatase mutation (ArKO) on the sexual differentiation of kisspeptin neuronal numbers and their activation by same versus opposite sex urinary pheromones. Horm Behav 2010; 57:390-5. [PMID: 19945459 DOI: 10.1016/j.yhbeh.2009.11.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 11/28/2022]
Abstract
Pheromones have been shown to induce sexually dimorphic responses in LH secretion. Here we asked whether the sexually dimorphic population of kisspeptin neurons in the rostral periventricular area of the third ventricle (RP3V) could relay sexually dimorphic information from the olfactory systems to the GnRH system. Furthermore, we analyzed the effects of aromatase mutation (ArKO) and thus the role of estradiol on RP3V kisspeptin neuronal numbers and on the response of these kisspeptin neurons to same- versus opposite-sex urinary pheromones. Exposure to male but not female urinary odors induced Fos protein in kisspeptin neurons in the RP3V of female wildtype (WT) mice, suggesting that these kisspeptin neurons may be part of the neural circuitry that relays information from the olfactory brain to the GnRH system in a sexually dimorphic manner. Male pheromones induced Fos in kisspeptin neurons in ArKO females, albeit significantly less compared to WT females. The sexual differentiation of kisspeptin neuronal number was lost in ArKO mice, i.e. the number of kisspeptin-immunoreactive neurons in the RP3V of ArKO females was as low as in male mice, whereas male ArKO mice had somewhat increased numbers of kisspeptin neurons. These results suggest that the sex difference in kisspeptin neuronal number in WT mice reflects an organizational action of estradiol in females. By contrast, the ability of male urinary pheromones to activate kisspeptin neurons in WT females may not depend on the organizational action of estradiol since ArKO females still showed some Fos/kisspeptin co-activation.
Collapse
Affiliation(s)
- Julie Bakker
- GIGA Neurosciences, University of Liège, B36 (1st floor). Avenue de l'Hopital, 1 4000, Liège, Belgium.
| | | | | |
Collapse
|
44
|
Physiological Roles of the Kisspeptin/GPR54 System in the Neuroendocrine Control of Reproduction. PROGRESS IN BRAIN RESEARCH 2010; 181:55-77. [DOI: 10.1016/s0079-6123(08)81005-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Tena-Sempere M. Kisspeptin/GPR54 system as potential target for endocrine disruption of reproductive development and function. ACTA ACUST UNITED AC 2009; 33:360-8. [PMID: 19906185 DOI: 10.1111/j.1365-2605.2009.01012.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kisspeptins, the products of Kiss1 gene acting via G protein-coupled receptor 54 (also termed Kiss1R), have recently emerged as essential gatekeepers of puberty onset and fertility. Compelling evidence has now documented that expression and function of hypothalamic Kiss1 system is sensitive not only to the activational effects but also to the organizing actions of sex steroids during critical stages of development. Thus, studies in rodents have demonstrated that early exposures to androgens and oestrogens are crucial for proper sexual differentiation of the patterns of Kiss1 mRNA expression, whereas the actions of oestrogen along puberty are essential for the rise of hypothalamic kisspeptins during this period. This physiological substrate provides the basis for potential endocrine disruption of reproductive maturation and function by xeno-steroids acting on the kisspeptin system. Indeed, inappropriate exposures to synthetic oestrogenic compounds during early critical periods in rodents persistently decreased hypothalamic Kiss1 mRNA levels and kisspeptin fibre density in discrete hypothalamic nuclei, along with altered gonadotropin secretion and/or gonadotropin-releasing hormone neuronal activation. The functional relevance of this phenomenon is stressed by the fact that exogenous kisspeptin was able to rescue defective gonadotropin secretion in oestrogenized animals. Furthermore, early exposures to the environmentally-relevant oestrogen, bisphenol-A, altered the hypothalamic expression of Kiss1/kisspeptin in rats and mice. Likewise, maternal exposure to a complex cocktail of endocrine disruptors has been recently shown to disturb foetal hypothalamic Kiss1 mRNA expression in sheep. As a whole, these data document the sensitivity of Kiss1 system to changes in sex steroid milieu during critical periods of sexual maturation, and strongly suggest that alterations of endogenous kisspeptin tone induced by inappropriate (early) exposures to environmental compounds with sex steroid activity might be mechanistically relevant for disruption of puberty onset and gonadotropin secretion later in life. The potential interaction of xeno-hormones with other environmental modulators (e.g., nutritional state) of the Kiss1 system warrants further investigation.
Collapse
Affiliation(s)
- M Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain.
| |
Collapse
|
46
|
Homma T, Sakakibara M, Yamada S, Kinoshita M, Iwata K, Tomikawa J, Kanazawa T, Matsui H, Takatsu Y, Ohtaki T, Matsumoto H, Uenoyama Y, Maeda KI, Tsukamura H. Significance of neonatal testicular sex steroids to defeminize anteroventral periventricular kisspeptin neurons and the GnRH/LH surge system in male rats. Biol Reprod 2009; 81:1216-25. [PMID: 19684332 DOI: 10.1095/biolreprod.109.078311] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The brain mechanism regulating gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release is sexually differentiated in rodents. Kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) have been suggested to be sexually dimorphic and involved in the GnRH/LH surge generation. The present study aimed to determine the significance of neonatal testicular androgen to defeminize AVPV kisspeptin expression and the GnRH/LH surge-generating system. To this end, we tested whether neonatal castration feminizes AVPV kisspeptin neurons and the LH surge-generating system in male rats and whether neonatal estradiol benzoate (EB) treatment suppresses the kisspeptin expression and the LH surge in female rats. Immunohistochemistry, in situ hybridization, and quantitative real-time RT-PCR were performed to investigate kisspeptin and Kiss1 mRNA expressions. Male rats were castrated immediately after birth, and females were treated with EB on postnatal Day 5. Neonatal castration caused an increase in AVPV kisspeptin expression at peptide and mRNA levels in the genetically male rats, and the animals showed surge-like LH release in the presence of the preovulatory level of estradiol (E2) at adulthood. On the other hand, neonatal EB treatment decreased the number of AVPV kisspeptin neurons and caused an absence of E2-induced LH surge in female rats. Semiquantitative RT-PCR analysis showed that neonatal steroidal manipulation affects Kiss1 expression but does not significantly affect gene expressions of neuropeptides (neurotensin and galanin) and enzymes or transporter for neurotransmitters (gamma-aminobutyric acid, glutamate, and dopamine) in the AVPV, suggesting that the manipulation specifically affects Kiss1 expressions. Taken together, our present results provide physiological evidence that neonatal testicular androgen causes the reduction of AVPV kisspeptin expression and failure of LH surge in genetically male rats. Thus, it is plausible that perinatal testicular androgen causes defeminization of the AVPV kisspeptin system, resulting in the loss of the surge system in male rats.
Collapse
Affiliation(s)
- Tamami Homma
- Laboratory of Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Clarkson J, d'Anglemont de Tassigny X, Colledge WH, Caraty A, Herbison AE. Distribution of kisspeptin neurones in the adult female mouse brain. J Neuroendocrinol 2009; 21:673-82. [PMID: 19515163 DOI: 10.1111/j.1365-2826.2009.01892.x] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kisspeptin-GPR54 signalling is essential for normal reproductive functioning. However, the distribution of kisspeptin neuronal cell bodies and their projections is not well established. The present study aimed to provide a detailed account of kisspeptin neuroanatomy in the mouse brain. Using a polyclonal rabbit antibody AC566, directed towards the final ten C-terminal amino acids of murine kisspeptin, three populations of kisspeptin-expressing cell bodies were identified in the adult female mouse brain. One exists as a dense periventricular continuum of cells within the rostral part of the third ventricle, another is found within the arcuate nucleus, and another is identified as a low-density group of scattered cells within the dorsomedial nucleus and posterior hypothalamus. Kisspeptin-immunoreactive fibres were abundant within the ventral aspect of the lateral septum and within the hypothalamus running in periventricular and ventral retrochiasmatic pathways. Notable exclusions from the kisspeptin fibre innervation were the suprachiasmatic and ventromedial nuclei. Outside of the hypothalamus, a small number of kisspeptin fibres were identified in the bed nucleus of the stria terminalis, subfornical organ, medial amygdala, paraventricular thalamus, periaqueductal grey and locus coerulus. All kisspeptin cell body and fibre immunoreactivity was absent in brain tissue from Kiss1 knockout mice. These observations provide a map of kisspeptin neurones in the mouse brain and indicate that a limited number of mostly medial hypothalamic and lateral septal brain regions are innervated by the three hypothalamic kisspeptin cell populations; the functions of these projections remain to be established.
Collapse
Affiliation(s)
- J Clarkson
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
48
|
de Vries GJ, Södersten P. Sex differences in the brain: the relation between structure and function. Horm Behav 2009; 55:589-96. [PMID: 19446075 PMCID: PMC3932614 DOI: 10.1016/j.yhbeh.2009.03.012] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/10/2009] [Accepted: 03/12/2009] [Indexed: 11/24/2022]
Abstract
In the fifty years since the organizational hypothesis was proposed, many sex differences have been found in behavior as well as structure of the brain that depend on the organizational effects of gonadal hormones early in development. Remarkably, in most cases we do not understand how the two are related. This paper makes the case that overstating the magnitude or constancy of sex differences in behavior and too narrowly interpreting the functional consequences of structural differences are significant roadblocks in resolving this issue.
Collapse
Affiliation(s)
- Geert J de Vries
- Department of Psychology and Center for Neuroendocrine Studies, Tobin Hall, University of Massachusetts, Amherst, MA 01003 9333, USA.
| | | |
Collapse
|
49
|
Abstract
Ovulation is central to mammalian fertility, yet the precise mechanism through which oestrogen triggers the gonadotrophin-releasing hormone (GnRH) surge that generates the pre-ovulatory luteinising hormone (LH) surge has remained elusive. The recent discovery that kisspeptin-GPR54 signalling is an essential regulator of the neuroendocrine axis at puberty has led investigators to evaluate the role of kisspeptin in the pre-ovulatory GnRH surge mechanism. Kisspeptin neurones are known to express oestrogen and progesterone receptors and have their cell bodies located in brain regions implicated in the positive-feedback mechanism in several mammalian species. In rodents, kisspeptin neurones located in the rostral periventricular area of the third ventricle (RP3V) are positively regulated by oestrogen and most likely are activated by oestrogen at the time of positive feedback. A similar scenario appears to exist for a sub-population of kisspeptin neurones located in the mediobasal hypothalamus of sheep and primates. The majority of GnRH neurones express GPR54, and kisspeptin causes an intense electrical activation of these cells. In concordance with this, kisspeptin administration in vivo results in an abrupt and prolonged release of LH in all mammalian species examined to date. Functional evidence from immunoneutralisation and knockout studies suggests that RP3V kisspeptin neurones projecting to GnRH neurones are an essential component of the surge mechanism in rodents. Taken together, the studies undertaken to date provide substantial evidence in support of a key role of kisspeptin-GPR54 signalling in the generation of the oestrogen-induced pre-ovulatory surge mechanism in mammals.
Collapse
Affiliation(s)
- J Clarkson
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
50
|
Patisaul HB, Todd KL, Mickens JA, Adewale HB. Impact of neonatal exposure to the ERalpha agonist PPT, bisphenol-A or phytoestrogens on hypothalamic kisspeptin fiber density in male and female rats. Neurotoxicology 2009; 30:350-7. [PMID: 19442818 DOI: 10.1016/j.neuro.2009.02.010] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 02/11/2009] [Accepted: 02/13/2009] [Indexed: 11/16/2022]
Abstract
Neonatal exposure to endocrine disrupting compounds (EDCs) can impair reproductive physiology, but the specific mechanisms by which this occurs remain largely unknown. Growing evidence suggests that kisspeptin (KISS) neurons play a significant role in the regulation of pubertal onset and ovulation, therefore disruption of KISS signaling could be a mechanism by which EDCs impair reproductive maturation and function. We have previously demonstrated that neonatal exposure to phytoestrogens decreases KISS fiber density in the anterior hypothalamus of female rats, an effect which was associated with early persistent estrus and the impaired activation gonadotropin releasing hormone (GnRH) neurons. The goals of the present study were to (1) determine if an ERalpha selective agonist (PPT) or bisphenol-A (BPA) could produce similar effects on hypothalamic KISS content in female rats and (2) to determine if male KISS fiber density was also vulnerable to disruption by EDCs. We first examined the effects of neonatal exposure to PPT, a low (50 microg/kg bw) BPA dose, and a high (50 mg/kg bw) BPA dose on KISS immunoreactivity (-ir) in the anterior ventral periventricular (AVPV) and arcuate (ARC) nuclei of adult female rats, using estradiol benzoate (EB) and a sesame oil vehicle as controls. AVPV KISS-ir, following ovariectomy (OVX) and hormone priming, was significantly lower in the EB and PPT groups but not the BPA groups. ARC KISS-ir levels were significantly diminished in the EB and high dose BPA groups, and there was a nonsignificant trend for lower KISS-ir in the PPT group. We next examined effects of neonatal exposure to a low (50 microg/kg bw) dose of BPA and the phytoestrogens genistein (GEN) and equol (EQ) on KISS-ir in the AVPV and ARC of adult male rats, using OVX females as an additional control group. None of the compounds affected KISS-ir in the male hypothalamus. Our results suggest that the organization of hypothalamic KISS fibers may be vulnerable to disruption by EDC exposure and that females might be more sensitive than males.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biology, North Carolina State University, 127 David Clark Labs, Raleigh, NC 27695, USA.
| | | | | | | |
Collapse
|