1
|
Long BY, Liao X, Liang X. The Hypothalamus and Pituitary Gland Regulate Reproduction and Are Involved in the Development of Polycystic Ovary Syndrome. Neuroendocrinology 2025; 115:315-334. [PMID: 39894018 DOI: 10.1159/000543877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex condition with unclear mechanisms, posing a challenge for prevention and treatment of PCOS. The role of the hypothalamus and pituitary gland in regulating female reproduction is critical. Abnormalities in the hypothalamus and pituitary can impair reproductive function. It is important to study hypothalamic and pituitary changes in patients with PCOS. SUMMARY This article reviews articles on the hypothalamus and PCOS with the goal of summarizing what abnormalities of the hypothalamic-pituitary-ovarian axis are present in patients with PCOS and to clarify the pathogenesis of PCOS. We find that the mechanisms by which the hypothalamus and pituitary regulate reproduction in girls are complex and are associated with altered sex hormone levels, obesity, and insulin resistance. Different animal models of PCOS are characterized by different alterations in the hypothalamus and pituitary and respond differently to different treatments, which correspond to the complex pathogenesis of patients with PCOS. KEY MESSAGES Arcuate nucleus (ARC) is associated with luteinizing hormone (LH) surges. Suprachiasmatic nucleus, ARC, and RP3V are associated with LH surges. Animal models of PCOS have different characteristics.
Collapse
Affiliation(s)
- Bin-Yang Long
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xipeng Liao
- Tianjin University of Technology, Tianjin, China
| | - Xin Liang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Liang C, Li X, Song G, Schmidt SF, Sun L, Chen J, Pan X, Zhao H, Yan Y. Adipose Kiss1 controls aerobic exercise-related adaptive responses in adipose tissue energy homeostasis. FASEB J 2024; 38:e23743. [PMID: 38877852 DOI: 10.1096/fj.202302598rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
Kisspeptin signaling regulates energy homeostasis. Adiposity is the principal source and receiver of peripheral Kisspeptin, and adipose Kiss1 metastasis suppressor (Kiss1) gene expression is stimulated by exercise. However, whether the adipose Kiss1 gene regulates energy homeostasis and plays a role in adaptive alterations during prolonged exercise remains unknown. Here, we investigated the role of Kiss1 role in mice and adipose tissues and the adaptive changes it induces after exercise, using adipose-specific Kiss1 knockout (Kiss1adipoq-/-) and adeno-associated virus-induced adipose tissue Kiss1-overexpressing (Kiss1adipoq over) mice. We found that adipose-derived kisspeptin signal regulates lipid and glucose homeostasis to maintain systemic energy homeostasis, but in a sex-dependent manner, with more pronounced metabolic changes in female mice. Kiss1 regulated adaptive alterations of genes and proteins in tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OxPhos) pathways in female gWAT following prolonged aerobic exercise. We could further show that adipose Kiss1 deficiency leads to reduced peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α) protein content of soleus muscle and maximum oxygen uptake (VO2 max) of female mice after prolonged exercise. Therefore, adipose Kisspeptin may be a novel adipokine that increases organ sensitivity to glucose, lipids, and oxygen following exercise.
Collapse
Affiliation(s)
- Chunyu Liang
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
- Department of Biochemistry and Molecular Biology, Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark (SDU), Odense, Denmark
- School of Physical Education, Guangxi University (GXU), Nanning, China
| | - Xuehan Li
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Ge Song
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Søren Fisker Schmidt
- Department of Biochemistry and Molecular Biology, Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark (SDU), Odense, Denmark
| | - Lingyu Sun
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Jianhao Chen
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Xinliang Pan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Haotian Zhao
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Yi Yan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| |
Collapse
|
3
|
Liu X, Porteous R, Herbison AE. Robust GABAergic Regulation of the GnRH Neuron Distal Dendron. Endocrinology 2022; 164:6862923. [PMID: 36458869 PMCID: PMC9749702 DOI: 10.1210/endocr/bqac194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
The amino acid transmitter γ-aminobutyric acid (GABA) is suspected to play an important role in regulating the activity of the gonadotropin-releasing hormone (GnRH) neurons controlling fertility. Rodent GnRH neurons have a novel dendritic compartment termed the "distal dendron" through which action potentials pass to the axon terminals and where inputs from the kisspeptin pulse generator drive pulsatile GnRH secretion. Combining Gnrh1-Cre mice with the Cre-dependent calcium sensor GCaMP6 and confocal imaging of acute brain slices, we examined whether GABA regulated intracellular calcium concentrations ([Ca2+]) in the GnRH neuron distal dendron. Short puffs of GABA on the dendron evoked either a monophasic sustained suppression of [Ca2+] or a biphasic acute elevation in [Ca2+] followed by the sustained suppression. Application of muscimol to the dendron replicated the acute elevation in [Ca2+] while baclofen generated the sustained suppression. Robust GABAB receptor-mediated inhibition was observed in 80% to 100% of dendrons recorded from females across the estrous cycle and from approximately 70% of dendrons in males. In contrast, the GABAA receptor-mediated excitation was rare in males and varied across the estrous cycle, being most prominent at proestrus. The activation of GABAB receptors potently suppressed the stimulatory effect of kisspeptin on the dendron. These observations demonstrate that the great majority of GnRH neuron distal dendrons are regulated by GABAergic inputs in a sex- and estrous cycle-dependent manner, with robust GABAB receptor-mediated inhibition being the primary mode of signaling. This provides a new, kisspeptin-independent, pathway for the regulation of pulsatile and surge modes of GnRH secretion in the rodent.
Collapse
Affiliation(s)
- Xinhuai Liu
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin 9054, New Zealand
| | - Robert Porteous
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin 9054, New Zealand
| | - Allan E Herbison
- Correspondence: Allan E. Herbison, PhD, Department of Physiology, Development and Neuroscience, Downing Site, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
4
|
Constantin S, Moenter SM, Piet R. The electrophysiologic properties of gonadotropin-releasing hormone neurons. J Neuroendocrinol 2022; 34:e13073. [PMID: 34939256 PMCID: PMC9163209 DOI: 10.1111/jne.13073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022]
Abstract
For about two decades, recordings of identified gonadotropin-releasing hormone (GnRH) neurons have provided a wealth of information on their properties. We describe areas of consensus and debate the intrinsic electrophysiologic properties of these cells, their response to fast synaptic and neuromodulatory input, Ca2+ imaging correlates of action potential firing, and signaling pathways regulating these aspects. How steroid feedback and development change these properties, functions of GnRH neuron subcompartments and local networks, as revealed by chemo- and optogenetic approaches, are also considered.
Collapse
Affiliation(s)
- Stephanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892-3703, USA
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Suzanne M Moenter
- Departments of Molecular & Integrative Physiology, Internal Medicine, Obstetrics & Gynecology, and the Reproductive Sciences Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard Piet
- Brain Health Research Institute & Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
5
|
Silva MSB, Campbell RE. Polycystic Ovary Syndrome and the Neuroendocrine Consequences of Androgen Excess. Compr Physiol 2022; 12:3347-3369. [PMID: 35578968 DOI: 10.1002/cphy.c210025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a major endocrine disorder strongly associated with androgen excess and frequently leading to female infertility. Although classically considered an ovarian disease, altered neuroendocrine control of gonadotropin-releasing hormone (GnRH) neurons in the brain and abnormal gonadotropin secretion may underpin PCOS presentation. Defective regulation of GnRH pulse generation in PCOS promotes high luteinizing hormone (LH) pulsatile secretion, which in turn overstimulates ovarian androgen production. Early and emerging evidence from preclinical models suggests that maternal androgen excess programs abnormalities in developing neuroendocrine circuits that are associated with PCOS pathology, and that these abnormalities are sustained by postpubertal elevation of endogenous androgen levels. This article will discuss experimental evidence, from the clinic and in preclinical animal models, that has significantly contributed to our understanding of how androgen excess influences the assembly and maintenance of neuroendocrine impairments in the female brain. Abnormal central gamma-aminobutyric acid (GABA) signaling has been identified in both patients and preclinical models as a possible link between androgen excess and elevated GnRH/LH secretion. Enhanced GABAergic innervation and drive to GnRH neurons is suspected to contribute to the pathogenesis and early manifestation of neuroendocrine derangement in PCOS. Accordingly, this article also provides an overview of GABA regulation of GnRH neuron function from prenatal development to adulthood to discuss possible avenues for future discovery research and therapeutic interventions. © 2022 American Physiological Society. Compr Physiol 12:3347-3369, 2022.
Collapse
Affiliation(s)
- Mauro S B Silva
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rebecca E Campbell
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Khonacha SE, Mirbehbahani SH, Rahdar M, Davoudi S, Borjkhani M, Khodaghli F, Motamedi F, Janahmadia M. Kisspeptin-13 prevented the electrophysiological alterations induced by Amyloid-Beta pathology in rat: Possible involvement of stromal interaction molecules and pCREB. Brain Res Bull 2022; 184:13-23. [PMID: 35272006 DOI: 10.1016/j.brainresbull.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurological disease that slowly causing memory impairments with no effective treatment. We have recently reported that kisspeptin-13 (KP-13) ameliorates Aβ toxicity-induced memory deficit in rats. Here, the possible cellular impact of kisspeptin receptor activation in a rat model of the early stage AD was assessed using whole-cell patch-clamp recording from CA1 pyramidal neurons and molecular approaches. Compared to neurons from the control group, cells from the Aβ-treated group displayed spontaneous and evoked hyperexcitability with lower spike frequency adaptation. These cells had also a lower sag ratio in response to hyperpolarizing prepulse current delivered before a depolarizing current injection. Neurons from the Aβ-treated group exhibited short spike onset latency, lower rheobase and short utilization time compared with those in the control group. Furthermore, phase plot analysis of action potential showed that Aβ treatment affected the action potential features. These electrophysiological changes induced by Aβ were associated with increased expression of stromal interaction molecules (STIMs), particularly (STIM2) and decreased pCREB/CREB ratio. Treatment with KP-13 following Aβ injection into the entorhinal cortex, however, prevented the excitatory effect of Aβ on spontaneous and evoked neuronal activity, increased the latency of onset, enhanced the sag ratio, increased the rheobase and utilization time, and prevented the changes induced Aβ on spike parameters. In addition, the KP-13 application after Aβ treatment reduced the expression of STIMs and increased the pCREB/CREB ratio compared to those receiving Aβ treatment alone. In summary, these results provide evidence that activation of kisspeptin receptor may be effective against pathology of Aβ.
Collapse
Affiliation(s)
- Shima Ebrahimi Khonacha
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mona Rahdar
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Davoudi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Borjkhani
- Department of Electrical Engineering, Urmia University of Technology, Urmia, Iran
| | - Fariba Khodaghli
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadia
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Watanabe Y, Prescott M, Campbell RE, Jasoni CL. Prenatal androgenization causes expression changes of progesterone and androgen receptor mRNAs in the arcuate nucleus of female mice across development. J Neuroendocrinol 2021; 33:e13058. [PMID: 34748236 DOI: 10.1111/jne.13058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022]
Abstract
Prenatal exposure to excess androgens is associated with the development of polycystic ovary syndrome (PCOS). In prenatally androgenised (PNA) mice, a model of PCOS, progesterone receptor (PR) protein expression is reduced in arcuate nucleus (ARC) GABA neurons. This suggests a mechanism for PCOS-related impaired steroid hormone feedback and implicates androgen excess with respect to inducing transcriptional repression of the PR-encoding gene Pgr in the ARC. However, the androgen sensitivity of ARC neurons and the relative gene expression of PRs over development and following prenatal androgen exposure remain unknown. Here, we used a quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) of microdissected ARC to determine the relative androgen receptor (Ar) and progesterone receptor (Pgr) gene expression in PNA and control mice at five developmental timepoints. In a two-way analysis of variance, none of the genes examined showed expression changes with a statistically significant interaction between treatment and age, although PgrA showed a borderline interaction. For all genes, there was a statistically significant main effect of age on expression levels, reflecting a general increase in expression with increasing age, regardless of treatment. For PgrB and Ar, there was a statistically significant main effect of treatment, indicating a change in expression following PNA (increased for PgrB and decreased for Ar), regardless of age. For PgrA, there was a borderline main effect of treatment, suggesting a possible change in expression following PNA, regardless of age. PgrAB gene expression changes showed no significant main effect of treatment. We additionally examined androgen and progesterone responsiveness specifically in P60 ARC GABA neurons using RNAScope® (Advanced Cell Diagnostics, Inc.) in situ hybridization. This analysis revealed that Pgr and Ar were expressed in the majority of ARC GABA neurons in normal adult females. However, our RNAScope® analysis did not show significant changes in Pgr or Ar expression within ARC GABA neurons following PNA. Lastly, because GABA drive to gonadotropin-releasing hormone neurons is increased in PNA, we hypothesised that PNA mice would show increased expression of glutamic acid decarboxylase (GAD), the rate-limiting enzyme in GABA production. However, the RT-qPCR showed that the expression of GAD encoding genes (Gad1 and Gad2) was unchanged in adult PNA mice compared to controls. Our findings indicate that PNA treatment can impact Pgr and Ar mRNA expression in adulthood. This may reflect altered circulating steroid hormones in PNA mice or PNA-induced epigenetic changes in the regulation of Pgr and Ar gene expression in ARC neurons.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Arcuate Nucleus of Hypothalamus/growth & development
- Arcuate Nucleus of Hypothalamus/metabolism
- Embryo, Mammalian
- Female
- Gene Expression Regulation, Developmental
- Growth and Development/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Pregnancy
- Prenatal Exposure Delayed Effects/genetics
- Prenatal Exposure Delayed Effects/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Virilism/embryology
- Virilism/genetics
- Virilism/metabolism
Collapse
Affiliation(s)
- Yugo Watanabe
- Department of Anatomy, Centre for Neuroendocrinology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Melanie Prescott
- Department of Physiology, Centre for Neuroendocrinology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Rebecca E Campbell
- Department of Physiology, Centre for Neuroendocrinology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Christine L Jasoni
- Department of Anatomy, Centre for Neuroendocrinology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| |
Collapse
|
8
|
Involvement of Kisspeptin in androgen-induced hypothalamic endoplasmic reticulum stress and its rescuing effect in PCOS rats. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166242. [PMID: 34389474 DOI: 10.1016/j.bbadis.2021.166242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022]
Abstract
Endoplasmic reticulum (ER) stress, with adaptive unfolded protein response (UPR), is a key link between obesity, insulin resistance and type 2 diabetes, all of which are often present in the most common endocrine-metabolic disorder in women of reproductive age, polycystic ovary syndrome (PCOS), which is characterized with hyperandrogenism. However, the link between excess androgen and Endoplasmic reticulum (ER) stress/insulin resistance in patients with polycystic ovary syndrome (PCOS) is unknown. An unexpected role of kisspeptin was reported in the regulation of UPR pathways and its involvement in the androgen-induced ER stress in hypothalamic neuronal cells. To evaluate the relationship of kisspeptin and ER stress, we detected Kisspeptin and other factors in blood plasm of PCOS patients, rat models and hypothalamic neuronal cells. We detected higher testosterone and lower kisspeptin levels in the plasma of PCOS than that in non-PCOS women. We established a PCOS rat model by dihydrotestosterone (DHT) chronic exposure, and observed significantly downregulated kisspeptin expression and activated UPR pathways in PCOS rat hypothalamus compared to that in controls. Inhibition or knockdown of kisspeptin completely mimicked the enhancing effect of DHT on UPR pathways in a hypothalamic neuronal cell line, GT1-7. Kp10, the most potent peptide of kisspeptin, effectively reversed or suppressed the activated UPR pathways induced by DHT or thapsigargin, an ER stress activator, in GT1-7 cells, as well as in the hypothalamus in PCOS rats. Similarly, Kisspeptin attenuated thapsigargin-induced Ca2+ response and the DHT- induced insulin resistance in GT1-7 cells. Collectively, the present study has revealed an unexpected protective role of kisspeptin against ER stress and insulin resistance in the hypothalamus and provided a new treatment strategy targeting hypothalamic ER stress and insulin resistance with kisspeptin as a potential therapeutic agent.
Collapse
|
9
|
Delli V, Silva MSB, Prévot V, Chachlaki K. The KiNG of reproduction: Kisspeptin/ nNOS interactions shaping hypothalamic GnRH release. Mol Cell Endocrinol 2021; 532:111302. [PMID: 33964320 DOI: 10.1016/j.mce.2021.111302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the master regulator of the hypothalamic-pituitary-gonadal (HPG) axis, and therefore of fertility and reproduction. The release pattern of GnRH by the hypothalamus includes both pulses and surges. However, despite a considerable body of evidence in support of a determinant role for kisspeptin, the mechanisms regulating a GnRH pulse and surge remain a topic of debate. In this review we challenge the view of kisspeptin as an absolute "monarch", and instead present the idea of a Kisspeptin-nNOS-GnRH or "KiNG" network that is responsible for generating the "GnRH pulse" and "GnRH surge". In particular, the neuromodulator nitric oxide (NO) has opposite effects to kisspeptin on GnRH secretion in many respects, acting as the Yin to kisspeptin's Yang and creating a dynamic system in which kisspeptin provides the "ON" signal, promoting GnRH release, while NO mediates the "OFF" signal, acting as a tonic brake on GnRH secretion. This interplay between an activator and an inhibitor, which is in turn fine-tuned by the gonadal steroid environment, thus leads to the generation of GnRH pulses and surges and is crucial for the proper development and function of the reproductive axis.
Collapse
Affiliation(s)
- Virginia Delli
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Mauro S B Silva
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France; University Research Institute of Child Health and Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
| |
Collapse
|
10
|
Lopez-Rodriguez D, Franssen D, Bakker J, Lomniczi A, Parent AS. Cellular and molecular features of EDC exposure: consequences for the GnRH network. Nat Rev Endocrinol 2021; 17:83-96. [PMID: 33288917 DOI: 10.1038/s41574-020-00436-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
The onset of puberty and the female ovulatory cycle are important developmental milestones of the reproductive system. These processes are controlled by a tightly organized network of neurotransmitters and neuropeptides, as well as genetic, epigenetic and hormonal factors, which ultimately drive the pulsatile secretion of gonadotropin-releasing hormone. They also strongly depend on organizational processes that take place during fetal and early postnatal life. Therefore, exposure to environmental pollutants such as endocrine-disrupting chemicals (EDCs) during critical periods of development can result in altered brain development, delayed or advanced puberty and long-term reproductive consequences, such as impaired fertility. The gonads and peripheral organs are targets of EDCs, and research from the past few years suggests that the organization of the neuroendocrine control of reproduction is also sensitive to environmental cues and disruption. Among other mechanisms, EDCs interfere with the action of steroidal and non-steroidal receptors, and alter enzymatic, metabolic and epigenetic pathways during development. In this Review, we discuss the cellular and molecular consequences of perinatal exposure (mostly in rodents) to representative EDCs with a focus on the neuroendocrine control of reproduction, pubertal timing and the female ovulatory cycle.
Collapse
Affiliation(s)
| | - Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Julie Bakker
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center (ONPRC), OHSU, OR, USA
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium.
- Department of Pediatrics, University Hospital Liège, Liège, Belgium.
| |
Collapse
|
11
|
Abstract
Patients and clinicians alike want to know if stress causes infertility. Stress could impair with reproductive function by a variety of mechanisms, including compromise of ovarian function, spermatogenesis, fertilization, endometrial development, implantation, and placentation. Herein we focus on the pathogenesis and treatment of stress-induced anovulation, which is often termed functional hypothalamic amenorrhea (FHA), with the objective of summarizing the actual knowledge as a clinical guide. FHA is a reversible form of anovulation due to slowing of gonadotropin-releasing hormone pulse frequency that results in insufficient pituitary secretion of gonadotropins to support full folliculogenesis. Importantly, FHA heralds a constellation of neuroendocrine alterations with health concomitants. The activity of the hypothalamic-pituitary-adrenal axis is increased in women with FHA and this observation supports the notion that stress is the cause. The extent of reproductive suppression relates to individual endocrinological and physiological sensitivity to stressors, both metabolic and psychogenic, and chronicity.
Collapse
|
12
|
Di Giorgio NP, Bizzozzero-Hiriart M, Libertun C, Lux-Lantos V. Unraveling the connection between GABA and kisspeptin in the control of reproduction. Reproduction 2020; 157:R225-R233. [PMID: 30844750 DOI: 10.1530/rep-18-0527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
Neuroendocrine control of reproduction involves the interplay of various factors that become active at some point along development. GnRH is the main neurohormone controlling reproduction and among the most important inputs modulating GnRH synthesis/secretion are GABA and kisspeptins. These interactions of GABA and kisspeptin in the control of GnRH secretion can take place by the presence of the receptors of both factors on the GnRH neuron or alternatively by the actions of GABA on kisspeptin neurons and/or the actions of kisspeptin on GABA neurons. Kisspeptin acts on the Kiss1R, a seven transmembrane domain, Gαq/11-coupled receptor that activates phospholipase C, although some Gαq/11-independent pathways in mediating part of the effects of Kiss1R activation have also been proposed. GABA acts through two kinds of receptors, ionotropic GABAA/C receptors involving a chloride channel and associated with fast inhibitory/stimulatory conductance and metabotropic GABAB receptors (GABABR) that are Gi/0 protein linked inducing late slow hyperpolarization. In this review, we aim to summarize the different ways in which these two actors, kisspeptin and GABA, interact to modulate GnRH secretion across the reproductive lifespan.
Collapse
Affiliation(s)
- Noelia P Di Giorgio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | - Carlos Libertun
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.,Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
13
|
Hozumi A, Matsunobu S, Mita K, Treen N, Sugihara T, Horie T, Sakuma T, Yamamoto T, Shiraishi A, Hamada M, Satoh N, Sakurai K, Satake H, Sasakura Y. GABA-Induced GnRH Release Triggers Chordate Metamorphosis. Curr Biol 2020; 30:1555-1561.e4. [PMID: 32220316 DOI: 10.1016/j.cub.2020.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/14/2019] [Accepted: 02/03/2020] [Indexed: 01/13/2023]
Abstract
Metamorphosis, a widespread life history strategy in metazoans, allows dispersal and use of different ecological niches through a dramatic body change from a larval stage [1, 2]. Despite its conservation and importance, the molecular mechanisms underlying its initiation and progression have been characterized in only a few animal models. In this study, through pharmacological and gene functional analyses, we identified neurotransmitters responsible for metamorphosis of the ascidian Ciona. Ciona metamorphosis converts swimming tadpole larvae into vase-like, sessile adults. Here, we show that the neurotransmitter GABA is a key regulator of metamorphosis. We found that gonadotropin-releasing hormone (GnRH) is a downstream neuropeptide of GABA. Although GABA is generally thought of as an inhibitory neurotransmitter, we found that it positively regulates secretion of GnRH through the metabotropic GABA receptor during Ciona metamorphosis. GnRH is necessary for reproductive maturation in vertebrates, and GABA is an important excitatory regulator of GnRH in the hypothalamus during puberty [3, 4]. Our findings reveal another role of the GABA-GnRH axis in the regulation of post-embryonic development in chordates.
Collapse
Affiliation(s)
- Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka 415-0025, Japan
| | - Shohei Matsunobu
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka 415-0025, Japan
| | - Kaoru Mita
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka 415-0025, Japan
| | - Nicholas Treen
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka 415-0025, Japan
| | - Takaho Sugihara
- Department of Biology, Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Takeo Horie
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka 415-0025, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto 619-0284, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute, Okayama University, Okayama 701-4303, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Keisuke Sakurai
- Department of Biology, Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto 619-0284, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka 415-0025, Japan.
| |
Collapse
|
14
|
Arrieta-Cruz I, Librado-Osorio R, Flores A, Mendoza-Garcés L, Chavira R, Cárdenas M, Gutiérrez-Juárez R, Domínguez R, Cruz ME. Estrogen Receptors Alpha and Beta in POA-AHA Region Regulate Asymmetrically Ovulation. Cell Mol Neurobiol 2019; 39:1139-1149. [PMID: 31250245 PMCID: PMC11452221 DOI: 10.1007/s10571-019-00708-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/18/2019] [Indexed: 11/24/2022]
Abstract
We examined the role of the estrogen receptors alpha (ERα) and beta (ERβ) in of the preoptic-anterior hypothalamic area (POA-AHA) in the regulation of ovulation in rats. The number of ERα- and ERβ-immunoreactive (-ir) cells was determined at 09:00, 13:00, and 17:00 h of each stage of the estrous cycle in intact rats. Additionally, the effects of blocking ERα and ERβ on ovulation rate at 09:00 h on diestrus-2 or proestrus day through the microinjection of methyl-piperidino-pyrazole (MPP) or cyclofenil in either side of POA-AHA were evaluated. The number of ERα-ir and ERβ-ir cells in POA-AHA varied in each phase of estrous cycle. Either MPP or cyclofenil in the right side of POA-AHA on diestrus-2 day reduced the ovulation rate, while at proestrus day it was decreased in rats treated in either side with MPP, and in those treated with cyclofenil in the left side. MPP or cyclofenil produced a decrease in the surge of luteinizing hormone levels (LH) and an increase in progesterone and follicle stimulating hormone (FSH). Replacement with synthetic luteinizing hormone-releasing hormone in non-ovulating rats treated with MPP or cyclofenil restored ovulation. These results suggest that activation of estrogen receptors on the morning of diestrus-2 and proestrus day asymmetrically regulates ovulation and appropriately regulates the secretion of FSH and progesterone in the morning and afternoon of proestrus day. This ensures that both, the preovulatory secretion of LH and ovulation, occur at the right time.
Collapse
Affiliation(s)
- Isabel Arrieta-Cruz
- Department of Basic Research, National Institute of Geriatrics. Ministry of Health, Periférico Sur no. 2767, Col. San Jerónimo Lídice, La Magdalena Contreras, C.P. 10200, Ciudad De México, Mexico.
| | - Raúl Librado-Osorio
- Department of Basic Research, National Institute of Geriatrics. Ministry of Health, Periférico Sur no. 2767, Col. San Jerónimo Lídice, La Magdalena Contreras, C.P. 10200, Ciudad De México, Mexico
| | - Angélica Flores
- Reproductive Biology Research Unit, Neuroendocrinology Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, Col. Ejército de Oriente, Campus II, Batalla 5 de mayo s/n esquina, Iztapalapa, Fuerte De Loreto, C.P 09230, Mexico
| | - Luciano Mendoza-Garcés
- Department of Basic Research, National Institute of Geriatrics. Ministry of Health, Periférico Sur no. 2767, Col. San Jerónimo Lídice, La Magdalena Contreras, C.P. 10200, Ciudad De México, Mexico
| | - Roberto Chavira
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Ministry of Health, Mexico City, Mexico
| | - Mario Cárdenas
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Ministry of Health, Mexico City, Mexico
| | - Roger Gutiérrez-Juárez
- Department of Biomedical Sciences, School of Medicine, Facultad de Estudios Superiores Zaragoza, UNAM, Mexico City, Mexico
| | - Roberto Domínguez
- Reproductive Biology Research Unit, Neuroendocrinology Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, Col. Ejército de Oriente, Campus II, Batalla 5 de mayo s/n esquina, Iztapalapa, Fuerte De Loreto, C.P 09230, Mexico
| | - María-Esther Cruz
- Reproductive Biology Research Unit, Neuroendocrinology Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, Col. Ejército de Oriente, Campus II, Batalla 5 de mayo s/n esquina, Iztapalapa, Fuerte De Loreto, C.P 09230, Mexico.
| |
Collapse
|
15
|
Di Giorgio NP, Bizzozzero Hiriart M, Surkin PN, López PV, Bourguignon NS, Dorfman VB, Bettler B, Libertun C, Lux-Lantos V. Multiple failures in the lutenising hormone surge generating system in GABAB1KO female mice. J Neuroendocrinol 2019; 31:e12765. [PMID: 31269532 DOI: 10.1111/jne.12765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Female mice lacking GABAB receptors, GABAB1KO, show disrupted oestrous cycles, reduced pregnancies and increased hypothalamic Gnrh1 mRNA expression, whereas anteroventral periventricular/periventricular preoptic nucleus (AVPV/PeN) Kiss1 mRNA was not affected. In the present study, we characterise the important components of the gonadotrophic preovulatory surge, aiming to unravel the origin of this reproductive impairment. In GABAB1KO and wild-type (WT) females, we determined: (i) hypothalamic oestrogen receptor (ER)α and β and aromatase mRNA and protein expression; (ii) ovulation index and oestrus serum follicle-stimulating hormone (FSH) and pituitary Gnrh1r expression; (iii) in ovariectomised-oestradiol valerate-treated mice, we evaluated ex vivo hypothalamic gonadotrophin-releasing hormone (GnRH) pulsatility in the presence/absence of kisspeptin (Kiss-10, constant or pulsatile) and oestradiol (constant); and (iv) in ovariectomised-oestradiol silastic capsule-treated mice (proestrous-like environment), we evaluated morning and evening kisspeptin neurone activation (c-Fos+) and serum luteinising homrone (LH). In the medial basal hypothalamus of oestrus GABAB1KOs, aromatase and ERα mRNA and protein were increased, whereas ERβ was decreased. In GABAB1KOs, the ovulation index was decreased together with decreased first oestrus serum FSH and increased pituitary Gnrh1r mRNA. Under constant Kiss-10 stimulation, hypothalamic GnRH pulse frequency did not vary, although GnRH mass/pulse was increased in GABAB1KOs. In WTs, pulsatile Kiss-10 together with constant oestradiol significantly increased GnRH pulsatility, whereas, in GABAB1KOs, oestradiol alone increased GnRH pulsatility and this was reversed by pulsatile Kiss-10 addition. In GABAB1KOs AVPV/PeN kisspeptin neurones were similarly activated (c-Fos+) in the morning and evening, whereas WTs showed the expected, marked evening stimulation. LH correlated with activated kisspeptin cells in WT mice, whereas GABAB1KO mice showed high, similar LH levels both in the morning and evening. Taken together, all of these alterations point to impairment in the trigger of the preovulatory GnRH surge that entails the reproductive alterations described.
Collapse
Affiliation(s)
- Noelia P Di Giorgio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | - Pablo N Surkin
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Paula V López
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Nadia S Bourguignon
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | | | - Carlos Libertun
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
16
|
Does kisspeptin participate in GABA-mediated modulation of GnRH and GnRH receptor biosynthesis in the hypothalamic-pituitary unit of follicular-phase ewes? Pharmacol Rep 2019; 71:636-643. [PMID: 31176893 DOI: 10.1016/j.pharep.2019.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND The inverse relationship between GnRH transcript level and GABA neurons activity has suggested that GABA at the hypothalamic level may exert a suppressive effect on subsequent steps of the GnRH biosynthesis. In the present study, we analyzed the effects of GABA type A receptor agonist (muscimol) or antagonist (bicuculline) on molecular mechanisms governing GnRH/LH secretion in follicular-phase sheep. METHODS ELISA technique was used to investigate the effects of muscimol and/or bicuculline on levels of post-translational products of genes encoding GnRH ligand and GnRH receptor (GnRHR) in the preoptic area (POA), anterior (AH) and ventromedial (VMH) hypothalamus, stalk/median eminence (SME), and GnRHR in the anterior pituitary (AP). Real-time PCR was chosen for determination of the effect of drugs on kisspeptin (Kiss 1) mRNA level in POA and VMH including arcuate nucleus (VMH/ARC), and on Kiss1 receptor (Kiss1r) mRNA abundance in POA-hypothalamic structures. These analyses were supplemented by RIA method for measurement of plasma LH concentration. RESULTS The study demonstrated that muscimol and bicuculline significantly decreased or increased GnRH biosynthesis in all analyzed structures, respectively, and led to analogous changes in plasma LH concentration. Similar muscimol- and bicuculline-related alterations were observed in levels of GnRHR. However, the expression of Kiss 1 and Kiss1r mRNAs in selected POA-hypothalamic areas of either muscimol- and bicuculline-treated animals remained unaltered. CONCLUSIONS Our data suggest that GABAergic neurotransmission is involved in the regulatory pathways of GnRH/GnRHR biosynthesis and then GnRH/LH release in follicular-phase sheep conceivably via indirect mechanisms that exclude involvement of Kiss 1 neurons.
Collapse
|
17
|
Spergel DJ. Modulation of Gonadotropin-Releasing Hormone Neuron Activity and Secretion in Mice by Non-peptide Neurotransmitters, Gasotransmitters, and Gliotransmitters. Front Endocrinol (Lausanne) 2019; 10:329. [PMID: 31178828 PMCID: PMC6538683 DOI: 10.3389/fendo.2019.00329] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neuron activity and GnRH secretion are essential for fertility in mammals. Here, I review findings from mouse studies on the direct modulation of GnRH neuron activity and GnRH secretion by non-peptide neurotransmitters (GABA, glutamate, dopamine, serotonin, norepinephrine, epinephrine, histamine, ATP, adenosine, and acetylcholine), gasotransmitters (nitric oxide and carbon monoxide), and gliotransmitters (prostaglandin E2 and possibly GABA, glutamate, and ATP). These neurotransmitters, gasotransmitters, and gliotransmitters have been shown to directly modulate activity and/or GnRH secretion in GnRH neurons in vivo or ex vivo (brain slices), from postnatal through adult mice, or in embryonic or immortalized mouse GnRH neurons. However, except for GABA, nitric oxide, and prostaglandin E2, which appear to be essential for normal GnRH neuron activity, GnRH secretion, and fertility in males and/or females, the biological significance of their direct modulation of GnRH neuron activity and/or GnRH secretion in the central regulation of reproduction remains largely unknown and requires further exploration.
Collapse
|
18
|
Aggarwal S, Tang C, Sing K, Kim HW, Millar RP, Tello JA. Medial Amygdala Kiss1 Neurons Mediate Female Pheromone Stimulation of Luteinizing Hormone in Male Mice. Neuroendocrinology 2019; 108:172-189. [PMID: 30537700 PMCID: PMC6518874 DOI: 10.1159/000496106] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/07/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND/AIMS The medial amygdala (MeA) responds to olfactory stimuli and alters reproductive physiology. However, the neuronal circuit that relays signals from the MeA to the reproductive axis remains poorly defined. This study aimed to test whether MeA kisspeptin (MeAKiss) neurons in male mice are sensitive to sexually relevant olfactory stimuli and transmit signals to alter reproductive physiology. We also investigated whether MeAKiss neurons have the capacity to elaborate glutamate and GABA neurotransmitters and potentially contribute to reproductive axis regulation. METHODS Using female urine as a pheromone stimulus, MeAKiss neuronal activity was analysed and serum luteinizing hormone (LH) was measured in male mice. Next, using a chemogenetic approach, MeAKiss neurons were bi-directionally modulated to measure the effect on serum LH and evaluate the activation of the preoptic area. Lastly, using in situ hybridization, we identified the proportion of MeAKiss neurons that express markers for GABAergic (Vgat) and glutamatergic (Vglut2) neurotransmission. RESULTS Male mice exposed to female urine showed a two-fold increase in the number of c-Fos-positive MeAKiss neurons concomitant with raised LH. Chemogenetic activation of MeAKiss neurons significantly increased LH in the absence of urine exposure, whereas inhibition of MeAKiss neurons did not alter LH. In situ hybridization revealed that MeAKiss neurons are a mixed neuronal population in which 71% express Vgat mRNA, 29% express Vglut2 mRNA, and 6% express both. CONCLUSIONS Our results uncover, for the first time, that MeAKiss neurons process sexually relevant olfactory signals to influence reproductive hormone levels in male mice, likely through a complex interplay of neuropeptide and neurotransmitter signalling.
Collapse
Affiliation(s)
- Sanya Aggarwal
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | - Celion Tang
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | - Kristen Sing
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | - Hyun Wook Kim
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | - Robert P Millar
- Centre for Neuroendocrinology, Department of Physiology and Department of Immunology, University of Pretoria, Pretoria, South Africa
- Department of Integrative Biomedical Sciences, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Javier A Tello
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom,
| |
Collapse
|
19
|
Constantin S, Wray S. Nociceptin/Orphanin-FQ Inhibits Gonadotropin-Releasing Hormone Neurons via G-Protein-Gated Inwardly Rectifying Potassium Channels. eNeuro 2018; 5:ENEURO.0161-18.2018. [PMID: 30627649 PMCID: PMC6325553 DOI: 10.1523/eneuro.0161-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
The pulsatile release of gonadotropin-releasing hormone (GnRH) is a key feature of the hypothalamic-pituitary-gonadal axis. Kisspeptin neurons in the arcuate nucleus (ARC) trigger GnRH neuronal activity, but how GnRH neurons return to baseline electrical activity is unknown. Nociceptin/orphanin-FQ (OFQ) is an inhibitory neuromodulator. ARC proopiomelanocortin (POMC) neurons, known to receive inputs from ARC kisspeptin neurons, contact GnRH neurons and coexpress OFQ in the rat. In the present study, the effect of OFQ(1-13) on GnRH neurons was determined in the mouse. We identified transcripts for the OFQ receptor [opioid receptor like 1 (ORL1)] in GnRH neurons, and, using two-model systems (explants and slices), we found that OFQ exerted a potent inhibition on GnRH neurons, with or without excitatory inputs. We confirmed that the inhibition was mediated by ORL1 via Gi/o-protein coupling. The inhibition, occurring independently of levels of intracellular cyclic adenosine monophosphate, was sensitive to inwardly rectifying potassium channels. The only specific blocker of Gi/o-protein-coupled inwardly rectifying potassium (GIRK) channels, tertiapin-Q (TPNQ), was ineffective in the inhibition of OFQ. Two GIRK activators, one sharing the binding site of TPNQ and one active only on GIRK1-containing GIRK channels, failed to trigger an inhibition. In contrast, protein kinase C phosphorylation activation, known to inhibit GIRK2-mediated currents, prevented the OFQ inhibition. These results indicate a specific combination of GIRK subunits, GIRK2/3 in GnRH neurons. In vivo, double-labeled OFQ/POMC fibers were found in the vicinity of GnRH neurons, and OFQ fibers apposed GnRH neurons. Together, this study brings to light a potent neuromodulator of GnRH neurons.
Collapse
Affiliation(s)
- Stephanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland 20892-3703
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland 20892-3703
| |
Collapse
|
20
|
Chaudhari N, Dawalbhakta M, Nampoothiri L. GnRH dysregulation in polycystic ovarian syndrome (PCOS) is a manifestation of an altered neurotransmitter profile. Reprod Biol Endocrinol 2018; 16:37. [PMID: 29642911 PMCID: PMC5896071 DOI: 10.1186/s12958-018-0354-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/02/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND GnRH is the master molecule of reproduction that is influenced by several intrinsic and extrinsic factors such as neurotransmitters and neuropeptides. Any alteration in these regulatory loops may result in reproductive-endocrine dysfunction such as the polycystic ovarian syndrome (PCOS). Although low dopaminergic tone has been associated with PCOS, the role of neurotransmitters in PCOS remains unknown. The present study was therefore aimed at understanding the status of GnRH regulatory neurotransmitters to decipher the neuroendocrine pathology in PCOS. METHODS PCOS was induced in rats by oral administration of letrozole (aromatase inhibitor). Following PCOS validation, animals were assessed for gonadotropin levels and their mRNA expression. Neurotrasnmitter status was evaluated by estimating their levels, their metabolism and their receptor expression in hypothalamus, pituitary, hippocampus and frontal cortex of PCOS rat model. RESULTS We demonstrate that GnRH and LH inhibitory neurotransmitters - serotonin, dopamine, GABA and acetylcholine - are reduced while glutamate, a major stimulator of GnRH and LH release, is increased in the PCOS condition. Concomitant changes were observed for neurotransmitter metabolising enzymes and their receptors as well. CONCLUSION Our results reveal that increased GnRH and LH pulsatility in PCOS condition likely result from the cumulative effect of altered GnRH stimulatory and inhibitory neurotransmitters in hypothalamic-pituitary centre. This, we hypothesise, is responsible for the depression and anxiety-like mood disorders commonly seen in PCOS women.
Collapse
Affiliation(s)
- Nirja Chaudhari
- 0000 0001 2154 7601grid.411494.dReproductive-Neuro-Endocrinology Lab, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India
| | - Mitali Dawalbhakta
- 0000 0001 2154 7601grid.411494.dReproductive-Neuro-Endocrinology Lab, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India
| | - Laxmipriya Nampoothiri
- 0000 0001 2154 7601grid.411494.dReproductive-Neuro-Endocrinology Lab, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India
| |
Collapse
|
21
|
Burger LL, Vanacker C, Phumsatitpong C, Wagenmaker ER, Wang L, Olson DP, Moenter SM. Identification of Genes Enriched in GnRH Neurons by Translating Ribosome Affinity Purification and RNAseq in Mice. Endocrinology 2018; 159. [PMID: 29522155 PMCID: PMC6287592 DOI: 10.1210/en.2018-00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are a nexus of fertility regulation. We used translating ribosome affinity purification coupled with RNA sequencing to examine messenger RNAs of GnRH neurons in adult intact and gonadectomized (GDX) male and female mice. GnRH neuron ribosomes were tagged with green fluorescent protein (GFP) and GFP-labeled polysomes isolated by immunoprecipitation, producing one RNA fraction enhanced for GnRH neuron transcripts and one RNA fraction depleted. Complementary DNA libraries were created from each fraction and 50-base, paired-end sequencing done and differential expression (enhanced fraction/depleted fraction) determined with a threshold of >1.5- or <0.66-fold (false discovery rate P ≤ 0.05). A core of ∼840 genes was differentially expressed in GnRH neurons in all treatments, including enrichment for Gnrh1 (∼40-fold), and genes critical for GnRH neuron and/or gonadotrope development. In contrast, non-neuronal transcripts were not enriched or were de-enriched. Several epithelial markers were also enriched, consistent with the olfactory epithelial origins of GnRH neurons. Interestingly, many synaptic transmission pathways were de-enriched, in accordance with relatively low innervation of GnRH neurons. The most striking difference between intact and GDX mice of both sexes was a marked downregulation of genes associated with oxidative phosphorylation and upregulation of glucose transporters in GnRH neurons from GDX mice. This may suggest that GnRH neurons switch to an alternate fuel to increase adenosine triphosphate production in the absence of negative feedback when GnRH release is elevated. Knowledge of the GnRH neuron translatome and its regulation can guide functional studies and can be extended to disease states, such as polycystic ovary syndrome.
Collapse
Affiliation(s)
- Laura L Burger
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | - Charlotte Vanacker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | | | - Elizabeth R Wagenmaker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | - Luhong Wang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | - David P Olson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
- Department of Internal Medicine, University of Michigan, Ann Arbor,
Michigan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor,
Michigan
- Correspondence: Laura L. Burger, PhD, University of Michigan, 7725 Med Sci II, 1137 E. Catherine
Street, Ann Arbor, Michigan 48109-5622. E-mail:
| |
Collapse
|
22
|
γ-Aminobutyric Acid (GABA): Biosynthesis, Role, Commercial Production, and Applications. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64057-4.00013-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Dynamics of GnRH Neuron Ionotropic GABA and Glutamate Synaptic Receptors Are Unchanged during Estrogen Positive and Negative Feedback in Female Mice. eNeuro 2017; 4:eN-FTR-0259-17. [PMID: 29109970 PMCID: PMC5672547 DOI: 10.1523/eneuro.0259-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/27/2017] [Accepted: 10/22/2017] [Indexed: 11/21/2022] Open
Abstract
Inputs from GABAergic and glutamatergic neurons are suspected to play an important role in regulating the activity of the gonadotropin-releasing hormone (GnRH) neurons. The GnRH neurons exhibit marked plasticity to control the ovarian cycle with circulating estradiol concentrations having profound "feedback" effects on their activity. This includes "negative feedback" responsible for suppressing GnRH neuron activity and "positive feedback" that occurs at mid-cycle to activate the GnRH neurons to generate the preovulatory luteinizing hormone surge. In the present study, we employed brain slice electrophysiology to question whether synaptic ionotropic GABA and glutamate receptor signaling at the GnRH neuron changed at times of negative and positive feedback. We used a well characterized estradiol (E)-treated ovariectomized (OVX) mouse model to replicate negative and positive feedback. Miniature and spontaneous postsynaptic currents (mPSCs and sPSCs) attributable to GABAA and glutamatergic receptor signaling were recorded from GnRH neurons obtained from intact diestrous, OVX, OVX + E (negative feedback), and OVX + E+E (positive feedback) female mice. Approximately 90% of GnRH neurons exhibited spontaneous GABAA-mPSCs in all groups but no significant differences in the frequency or kinetics of mPSCs were found at the times of negative or positive feedback. Approximately 50% of GnRH neurons exhibited spontaneous glutamate mPSCs but again no differences were detected. The same was true for spontaneous PSCs in all cases. These observations indicate that the kinetics of ionotropic GABA and glutamate receptor synaptic transmission to GnRH neurons remain stable across the different estrogen feedback states.
Collapse
|
24
|
Adekunbi DA, Li XF, Li S, Adegoke OA, Iranloye BO, Morakinyo AO, Lightman SL, Taylor PD, Poston L, O’Byrne KT. Role of amygdala kisspeptin in pubertal timing in female rats. PLoS One 2017; 12:e0183596. [PMID: 28846730 PMCID: PMC5573137 DOI: 10.1371/journal.pone.0183596] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/07/2017] [Indexed: 01/27/2023] Open
Abstract
To investigate the mechanism by which maternal obesity disrupts reproductive function in offspring, we examined Kiss1 expression in the hypothalamic arcuate (ARC) and anteroventral periventricular (AVPV) nuclei, and posterodorsal medial amygdala (MePD) of pre-pubertal and young adult offspring. Sprague-Dawley rats were fed either a standard or energy-dense diet for six weeks prior to mating and throughout pregnancy and lactation. Male and female offspring were weaned onto normal diet on postnatal day (pnd) 21. Brains were collected on pnd 30 or 100 for qRT-PCR to determine Kiss1 mRNA levels. Maternal obesity increased Kiss1 mRNA expression in the MePD of pre-pubertal male and female offspring, whereas Kiss1 expression was not affected in the ARC or AVPV at this age. Maternal obesity reduced Kiss1 expression in all three brain regions of 3 month old female offspring, but only in MePD of males. The role of MePD kisspeptin on puberty, estrous cyclicity and preovulatory LH surges was assessed directly in a separate group of post-weanling and young adult female rats exposed to a normal diet throughout their life course. Bilateral intra-MePD cannulae connected to osmotic mini-pumps for delivery of kisspeptin receptor antagonist (Peptide 234 for 14 days) were chronically implanted on pnd 21 or 100. Antagonism of MePD kisspeptin delayed puberty onset, disrupted estrous cyclicity and reduced the incidence of LH surges. These data show that the MePD plays a key role in pubertal timing and ovulation and that maternal obesity may act via amygdala kisspeptin signaling to influence reproductive function in the offspring.
Collapse
Affiliation(s)
- Daniel A. Adekunbi
- Division of Women’s Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Department of Physiology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Xiao Feng Li
- Division of Women’s Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Shengyun Li
- Division of Women’s Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Olufeyi A. Adegoke
- Department of Physiology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Bolanle O. Iranloye
- Department of Physiology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Ayodele O. Morakinyo
- Department of Physiology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Stafford L. Lightman
- Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Paul D. Taylor
- Division of Women’s Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Lucilla Poston
- Division of Women’s Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Kevin T. O’Byrne
- Division of Women’s Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
25
|
Song Y, Tao B, Chen J, Jia S, Zhu Z, Trudeau VL, Hu W. GABAergic Neurons and Their Modulatory Effects on GnRH3 in Zebrafish. Endocrinology 2017; 158:874-886. [PMID: 28324056 DOI: 10.1210/en.2016-1776] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/17/2017] [Indexed: 01/11/2023]
Abstract
γ-Aminobutyric acid (GABA) is a major amino acid neurotransmitter in the vertebrate brain. To provide detailed information on the distribution of the GABA in zebrafish (Danio rerio), neurons were labeled with mCherry driven by the glutamic acid decarboxylase 67 (gad67) promoter. In the transgenic line Tg(gad67:mCherry), mCherry-positive gad67 cell bodies were predominantly localized to the olfactory bulb, pallial zones, subpallium zones, parvocellular preoptic nucleus, periventricular gray zone of optic tectum, torus semicircularis, posterior tuberculum, medial longitudinal fascicle, caudal zone of periventricular hypothalamus, and oculomotor nucleus. mCherry-positive fibers were widely distributed in the olfactory bulbs, subpallium, thalamus, ventral hypothalamic zone, tectum opticum, mesencephalon, and rhombencephalon. mCherry-positive neurons were also observed in the retina and the spinal cord. The anatomical relationships between GABAergic and gonadotrophin-releasing hormone 3 (GnRH3) neurons were investigated by crossing Tg(gad67:mCherry) fish with the previously established Tg(gnrh3:EGFP) transgenic line. GnRH3 cell bodies and fibers were contacted by GABAergic fibers directly in the ventral telencephalon and anterior tuberal nucleus. A subpopulation of GnRH3 neurons in the ventral telencephalic area was also labeled with mCherry, so some GnRH3 neurons are also GABAergic. GABAB receptor agonist (baclofen) and antagonist (CGP55845) treatments indicated that GABAB receptor signaling inhibited gnrh3 expression in larval fish but was stimulatory in adult fish. The expression of pituitary lhβ and fshβ was stimulated by intraperitoneal injection of baclofen in adult fish. We conclude that GABA via GABAB receptors regulates GnRH3 neurons in a developmentally dependent manner in zebrafish.
Collapse
Affiliation(s)
- Yanlong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shaoting Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
26
|
Chand N, Muhammad S, Khan RU, Alhidary IA, Rehman ZU. Ameliorative effect of synthetic γ-aminobutyric acid (GABA) on performance traits, antioxidant status and immune response in broiler exposed to cyclic heat stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23930-23935. [PMID: 27628921 DOI: 10.1007/s11356-016-7604-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to find the effect of synthetic γ-aminobutyric acid (GABA) on the performance, antioxidant status, and immune response in broiler exposed to summer stress. A total of 400-day-old male broiler chickens (Ross 308) was randomly distributed into five treatments (5 replicates). One group served as a control (basal diet only) while the others were supplemented with GABA at the rate of 25 (GABA-25), 50 (GABA 50), 75 (GABA-75), and 100 (GABA-100) mg/kg feed. The experiment was continued for 35 days. Feed intake during the third week was significantly higher (P < 0.05) in GABA-75 and GABA-100, however, it increased significantly (P < 0.05) in GABA-100 during the fourth and fifth week. Overall mean feed intake was significantly (P < 0.05) high in GABA-75 and GABA-100. From the results, we found that body weight improved significantly (P < 0.05) in GABA-50 in week-3. During the fourth, fifth, and overall, body weight increased significantly (P < 0.05) in GABA-100. Significantly, high (P < 0.05) feed conversion ratio (FCR) was found in GABA-100 during the third, fourth, fifth, and on an overall basis. Mean Malondialdehyde (MDA) decreased significantly (P < 0.05) in GABA-100 while Paraoxonase (PON1) and Newcastle disease (ND) titer increased significantly (P < 0.05) in the same group. We concluded that performance traits, antioxidant status, and immune response improved in broiler supplemented 100 mg/kg GABA, exposed to cyclic heat stress.
Collapse
Affiliation(s)
- Naila Chand
- Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Sher Muhammad
- Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Rifat Ullah Khan
- Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan.
- Department of Animal production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| | - Ibrahim Abdullah Alhidary
- Department of Animal production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Zia Ur Rehman
- Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
27
|
Vastagh C, Rodolosse A, Solymosi N, Liposits Z. Altered Expression of Genes Encoding Neurotransmitter Receptors in GnRH Neurons of Proestrous Mice. Front Cell Neurosci 2016; 10:230. [PMID: 27774052 PMCID: PMC5054603 DOI: 10.3389/fncel.2016.00230] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/22/2016] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons play a key role in the central regulation of reproduction. In proestrous female mice, estradiol triggers the pre-ovulatory GnRH surge, however, its impact on the expression of neurotransmitter receptor genes in GnRH neurons has not been explored yet. We hypothesized that proestrus is accompanied by substantial changes in the expression profile of genes coding for neurotransmitter receptors in GnRH neurons. We compared the transcriptome of GnRH neurons obtained from intact, proestrous, and metestrous female GnRH-GFP transgenic mice, respectively. About 1500 individual GnRH neurons were sampled from both groups and their transcriptome was analyzed using microarray hybridization and real-time PCR. In this study, changes in mRNA expression of genes involved in neurotransmitter signaling were investigated. Differential gene expression was most apparent in GABA-ergic (Gabbr1, Gabra3, Gabrb3, Gabrb2, Gabrg2), glutamatergic (Gria1, Gria2, Grin1, Grin3a, Grm1, Slc17a6), cholinergic (Chrnb2, Chrm4) and dopaminergic (Drd3, Drd4), adrenergic (Adra1b, Adra2a, Adra2c), adenosinergic (Adora2a, Adora2b), glycinergic (Glra), purinergic (P2rx7), and serotonergic (Htr1b) receptors. In concert with these events, expression of genes in the signaling pathways downstream to the receptors, i.e., G-proteins (Gnai1, Gnai2, Gnas), adenylate-cyclases (Adcy3, Adcy5), protein kinase A (Prkaca, Prkacb) protein kinase C (Prkca) and certain transporters (Slc1a4, Slc17a6, Slc6a17) were also changed. The marked differences found in the expression of genes involved in neurotransmitter signaling of GnRH neurons at pro- and metestrous stages of the ovarian cycle indicate the differential contribution of these neurotransmitter systems to the induction of the pre-ovulatory GnRH surge, the known prerequisite of the subsequent hormonal cascade inducing ovulation.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
| | - Annie Rodolosse
- Functional Genomics Core, Institute for Research in Biomedicine (IRB Barcelona)Barcelona, Spain
| | - Norbert Solymosi
- Department of Animal Hygiene, Herd-Health and Veterinary Ethology, University of Veterinary MedicineBudapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
- Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| |
Collapse
|
28
|
Quillet R, Ayachi S, Bihel F, Elhabazi K, Ilien B, Simonin F. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. Pharmacol Ther 2016; 160:84-132. [PMID: 26896564 DOI: 10.1016/j.pharmthera.2016.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed.
Collapse
Affiliation(s)
- Raphaëlle Quillet
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Safia Ayachi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Bihel
- Laboratoire Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Illkirch, France
| | - Khadija Elhabazi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Brigitte Ilien
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
29
|
Expression of ESR1 in Glutamatergic and GABAergic Neurons Is Essential for Normal Puberty Onset, Estrogen Feedback, and Fertility in Female Mice. J Neurosci 2016; 35:14533-43. [PMID: 26511244 DOI: 10.1523/jneurosci.1776-15.2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Circulating estradiol exerts a profound influence on the activity of the gonadotropin-releasing hormone (GnRH) neuronal network controlling fertility. Using genetic strategies enabling neuron-specific deletion of estrogen receptor α (Esr1), we examine here whether estradiol-modulated GABA and glutamate transmission are critical for the functioning of the GnRH neuron network in the female mouse. Using Vgat- and Vglut2-ires-Cre knock-in mice and ESR1 immunohistochemistry, we demonstrate that subpopulations of GABA and glutamate neurons throughout the limbic forebrain express ESR1, with ESR1-GABAergic neurons being more widespread and numerous than ESR1-glutamatergic neurons. We crossed Vgat- and Vglut2-ires-Cre mice with an Esr1(lox/lox) line to generate animals with GABA-neuron-specific or glutamate-neuron-specific deletion of Esr1. Vgat-ires-Cre;Esr1(lox/lox) mice were infertile, with abnormal estrous cycles, and exhibited a complete failure of the estrogen positive feedback mechanism responsible for the preovulatory GnRH surge. However, puberty onset and estrogen negative feedback were normal. Vglut2-ires-Cre;Esr1(lox/lox) mice were also infertile but displayed a wider range of deficits, including advanced puberty onset, abnormal negative feedback, and abolished positive feedback. Whereas <25% of preoptic kisspeptin neurons expressed Cre in Vgat- and Vglut2-ires-Cre lines, ∼70% of arcuate kisspeptin neurons were targeted in Vglut2-ires-Cre;Esr1(lox/lox) mice, possibly contributing to their advanced puberty phenotype. These observations show that, unexpectedly, ESR1-GABA neurons are only essential for the positive feedback mechanism. In contrast, we reveal the key importance of ESR1 in glutamatergic neurons for multiple estrogen feedback loops within the GnRH neuronal network required for fertility in the female mouse.
Collapse
|
30
|
Chen Z, Meng Z, Wang S, Zhu L, Tian Z. Effects of Nourishing “Yin”-Removing “Fire” Chinese Herb Mixture on the Expression of GABAB Receptors in Hypothalamus of Precocious Puberty Female Rats. Chin Med 2016. [DOI: 10.4236/cm.2016.72008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Zhu J, Xu XH, Knight GE, He C, Burnstock G, Xiang Z. A subpopulation of gonadotropin-releasing hormone neurons in the adult mouse forebrain is γ-Aminobutyric acidergic. J Neurosci Res 2015; 93:1611-21. [DOI: 10.1002/jnr.23610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Jiao Zhu
- Department of Neurobiology; Key Laboratory of Molecular Neurobiology; Ministry of Education; Second Military Medical University; Shanghai People's Republic of China
| | - Xiao-hui Xu
- School of Life Science; Shanghai University; Shanghai People's Republic of China
| | - Gillian E. Knight
- Autonomic Neuroscience Centre; University College Medical School; London United Kingdom
| | - Cheng He
- Department of Neurobiology; Key Laboratory of Molecular Neurobiology; Ministry of Education; Second Military Medical University; Shanghai People's Republic of China
| | - Geoffrey Burnstock
- Autonomic Neuroscience Centre; University College Medical School; London United Kingdom
- Department of Pharmacology and Therapeutics; The University of Melbourne; Melbourne Australia
| | - Zhenghua Xiang
- Department of Neurobiology; Key Laboratory of Molecular Neurobiology; Ministry of Education; Second Military Medical University; Shanghai People's Republic of China
| |
Collapse
|
32
|
Comninos AN, Anastasovska J, Sahuri-Arisoylu M, Li X, Li S, Hu M, Jayasena CN, Ghatei MA, Bloom SR, Matthews PM, O'Byrne KT, Bell JD, Dhillo WS. Kisspeptin signaling in the amygdala modulates reproductive hormone secretion. Brain Struct Funct 2015; 221:2035-47. [PMID: 25758403 PMCID: PMC4853463 DOI: 10.1007/s00429-015-1024-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/02/2015] [Indexed: 12/27/2022]
Abstract
Kisspeptin (encoded by KISS1) is a crucial activator of reproductive function. The role of kisspeptin has been studied extensively within the hypothalamus but little is known about its significance in other areas of the brain. KISS1 and its cognate receptor are expressed in the amygdala, a key limbic brain structure with inhibitory projections to hypothalamic centers involved in gonadotropin secretion. We therefore hypothesized that kisspeptin has effects on neuronal activation and reproductive pathways beyond the hypothalamus and particularly within the amygdala. To test this, we mapped brain neuronal activity (using manganese-enhanced MRI) associated with peripheral kisspeptin administration in rodents. We also investigated functional relevance by measuring the gonadotropin response to direct intra-medial amygdala (MeA) administration of kisspeptin and kisspeptin antagonist. Peripheral kisspeptin administration resulted in a marked decrease in signal intensity in the amygdala compared to vehicle alone. This was associated with an increase in luteinizing hormone (LH) secretion. In addition, intra-MeA administration of kisspeptin resulted in increased LH secretion, while blocking endogenous kisspeptin signaling within the amygdala by administering intra-MeA kisspeptin antagonist decreased both LH secretion and LH pulse frequency. We provide evidence for the first time that neuronal activity within the amygdala is decreased by peripheral kisspeptin administration and that kisspeptin signaling within the amygdala contributes to the modulation of gonadotropin release and pulsatility. Our data suggest that kisspeptin is a 'master regulator' of reproductive physiology, integrating limbic circuits with the regulation of gonadotropin-releasing hormone neurons and reproductive hormone secretion.
Collapse
Affiliation(s)
- Alexander N Comninos
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Jelena Anastasovska
- Metabolic and Molecular Imaging Group, MRC Clinical Science Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Meliz Sahuri-Arisoylu
- Metabolic and Molecular Imaging Group, MRC Clinical Science Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Xiaofeng Li
- Division of Women's Health, School of Medicine, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Shengyun Li
- Division of Women's Health, School of Medicine, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Minghan Hu
- Division of Women's Health, School of Medicine, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Channa N Jayasena
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Mohammad A Ghatei
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Stephen R Bloom
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Paul M Matthews
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Kevin T O'Byrne
- Division of Women's Health, School of Medicine, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Jimmy D Bell
- Metabolic and Molecular Imaging Group, MRC Clinical Science Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Waljit S Dhillo
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
33
|
Zhang C, Bosch MA, Qiu J, Rønnekleiv OK, Kelly MJ. 17β-Estradiol increases persistent Na(+) current and excitability of AVPV/PeN Kiss1 neurons in female mice. Mol Endocrinol 2015; 29:518-27. [PMID: 25734516 DOI: 10.1210/me.2014-1392] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In vitro slice studies have revealed that there are significant differences in the spontaneous firing activity between anteroventral periventricular/periventricular preoptic nucleus (AVPV/PeN) and arcuate nucleus (ARC) kisspeptin (Kiss1) neurons in females. Although both populations express similar endogenous conductances, we have discovered that AVPV/PeN Kiss1 neurons express a subthreshold, persistent sodium current (INaP) that dramatically alters their firing activity. Based on whole-cell recording of Kiss1-Cre-green fluorescent protein (GFP) neurons, INaP was 4-fold greater in AVPV/PeN vs ARC Kiss1 neurons. An LH surge-producing dose of 17β-estradiol (E2) that increased Kiss1 mRNA expression in the AVPV/PeN, also augmented INaP in AVPV/PeN neurons by 2-fold. Because the activation threshold for INaP was close to the resting membrane potential (RMP) of AVPV/PeN Kiss1 neurons (-54 mV), it rendered them much more excitable and spontaneously active vs ARC Kiss1 neurons (RMP = -66 mV). Single-cell RT-PCR revealed that AVPV/PeN Kiss1 neurons expressed the requisite sodium channel α-subunit transcripts, NaV1.1, NaV1.2, and NaV1.6 and β subunits, β2 and β4. Importantly, NaV1.1α and -β2 transcripts in AVPV/PeN, but not ARC, were up-regulated 2- to 3-fold by a surge-producing dose of E2, similar to the transient calcium current channel subunit Cav3.1. The transient calcium current collaborates with INaP to generate burst firing, and selective blockade of INaP by riluzole significantly attenuated rebound burst firing and spontaneous activity. Therefore, INaP appears to play a prominent role in AVPV/PeN Kiss1 neurons to generate spontaneous, repetitive burst firing, which is required for the high-frequency-stimulated release of kisspeptin for exciting GnRH neurons and potentially generating the GnRH surge.
Collapse
Affiliation(s)
- Chunguang Zhang
- Department of Physiology and Pharmacology (C.Z., M.A.B., J.Q., O.K.R., M.J.K.), Oregon Health and Science University, Portland, Oregon 97239; and Division of Neuroscience (O.K.R., M.J.K.), Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006
| | | | | | | | | |
Collapse
|
34
|
Rønnekleiv OK, Zhang C, Bosch MA, Kelly MJ. Kisspeptin and Gonadotropin-Releasing Hormone Neuronal Excitability: Molecular Mechanisms Driven by 17β-Estradiol. Neuroendocrinology 2014; 102:184-93. [PMID: 25612870 PMCID: PMC4459938 DOI: 10.1159/000370311] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022]
Abstract
Kisspeptin is a neuropeptide that signals via a Gαq-coupled receptor, GPR54, in gonadotropin-releasing hormone (GnRH) neurons and is essential for pubertal maturation and fertility. Kisspeptin depolarizes and excites GnRH neurons primarily through the activation of canonical transient receptor potential (TRPC) channels and the inhibition of K+ channels. The gonadal steroid 17β-estradiol (E2) upregulates not only kisspeptin (Kiss1) mRNA but also increases the excitability of the rostral forebrain Kiss1 neurons. In addition, a primary postsynaptic action of E2 on GnRH neurons is to upregulate the expression of channel transcripts that orchestrate the downstream signaling of kisspeptin in GnRH neurons. These include not only TRPC4 channels but also low-voltage-activated T-type calcium channels and high-voltage-activated L-, N- and R-type calcium channel transcripts. Moreover, E2 has direct membrane-initiated actions to alter the excitability of GnRH neurons by enhancing ATP-sensitive potassium channel activity, which is critical for maintaining GnRH neurons in a hyperpolarized state for the recruitment of T-type calcium channels that are important for burst firing. Therefore, E2 modulates the excitability of GnRH neurons as well as of Kiss1 neurons by altering the expression and/or function of ion channels; moreover, kisspeptin provides critical excitatory input to GnRH neurons to facilitate burst firing activity and peptide release.
Collapse
Affiliation(s)
- Oline K. Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Chunguang Zhang
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
| | - Martha A. Bosch
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
| | - Martin J. Kelly
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
| |
Collapse
|
35
|
Watanabe M, Fukuda A, Nabekura J. The role of GABA in the regulation of GnRH neurons. Front Neurosci 2014; 8:387. [PMID: 25506316 PMCID: PMC4246667 DOI: 10.3389/fnins.2014.00387] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/12/2014] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons form the final common pathway for the central regulation of reproduction. Gamma-amino butyric acid (GABA) has long been implicated as one of the major players in the regulation of GnRH neurons. Although GABA is typically an inhibitory neurotransmitter in the mature adult central nervous system, most mature GnRH neurons show the unusual characteristic of being excited by GABA. While many reports have provided much insight into the contribution of GABA to the activity of GnRH neurons, the precise physiological role of the excitatory action of GABA on GnRH neurons remains elusive. This brief review presents the current knowledge of the role of GABA signaling in GnRH neuronal activity. We also discuss the modulation of GABA signaling by neurotransmitters and neuromodulators and the functional consequence of GABAergic inputs to GnRH neurons in both the physiology and pathology of reproduction.
Collapse
Affiliation(s)
- Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Japan
| | - Junichi Nabekura
- Department of Developmental Physiology, National Institute for Physiological Sciences Okazaki, Japan ; Core Research for Evolutionary Science and Technology, Japan Science and Technology Corporation Saitama, Japan ; Department of Physiological Sciences, The Graduate School for Advanced Study Hayama, Japan
| |
Collapse
|
36
|
Harayama N, Kayano T, Moriya T, Kitamura N, Shibuya I, Tanaka-Yamamoto K, Uezono Y, Ueta Y, Sata T. Analysis of G-protein-activated inward rectifying K(+) (GIRK) channel currents upon GABAB receptor activation in rat supraoptic neurons. Brain Res 2014; 1591:1-13. [PMID: 25451091 DOI: 10.1016/j.brainres.2014.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/03/2014] [Accepted: 10/13/2014] [Indexed: 01/06/2023]
Abstract
While magnocellular neurons in the supraoptic nucleus (SON) possess rich Gi/o-mediated mechanisms, molecular and cellular properties of G-protein-activated inwardly rectifying K(+) (GIRK) channels have been controversial. Here, properties of GIRK channels are examined by RT-PCR and whole-cell patch-clamp techniques in rat SON neurons. Patch clamp experiments showed that the selective GABAB agonist, baclofen, enhanced currents in a high K(+) condition. The baclofen-enhanced currents exhibited evident inward rectification and were blocked by the selective GABAB antagonist, CGP55845A, the IRK channel blocker, Ba(2+), and the selective GIRK channel blocker, tertiapin, indicating that baclofen activates GIRK channels via GABAB receptors. The GIRK currents were abolished by N-ethylmaleimide pretreatment, and prolonged by GTPγS inclusion in the patch pipette, suggesting that Gi/o proteins are involved. RT-PCR analysis revealed mRNAs for all four GIRK 1-4 channels and for both GABABR1 and GABABR2 receptors in rat SON. However, the concentration-dependency of the baclofen-induced activation of GIRK currents had an EC50 of 110 µM, which is about 100 times higher than that of baclofen-induced inhibition of voltage-dependent Ca(2+) channels. Moreover, baclofen caused no significant changes in the membrane potential and the firing rate. These results suggest that although GIRK channels can be activated by GABAB receptors via the Gi/o pathway, this occurs at high agonist concentrations, and thus may not be a physiological mechanism regulating the function of SON neurons. This property that the membrane potential receives little influence from GIRK currents seems to be uncommon for CNS neurons possessing rich Gi/o-coupled receptors, and could be a special feature of rat SON neurons.
Collapse
Affiliation(s)
- Nobuya Harayama
- Critical Care Medicine, University Hospital, University of Occupational and Environmental Health, Kitakyushu 807-8556, Japan
| | - Tomohiko Kayano
- Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Taiki Moriya
- Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Naoki Kitamura
- Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Izumi Shibuya
- Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Keiko Tanaka-Yamamoto
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Yasuhito Uezono
- Division of cancer pathophysiology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Takeyoshi Sata
- Department of Anesthesiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| |
Collapse
|
37
|
Di Giorgio NP, Semaan SJ, Kim J, López PV, Bettler B, Libertun C, Lux-Lantos VA, Kauffman AS. Impaired GABAB receptor signaling dramatically up-regulates Kiss1 expression selectively in nonhypothalamic brain regions of adult but not prepubertal mice. Endocrinology 2014; 155:1033-44. [PMID: 24424047 PMCID: PMC3929734 DOI: 10.1210/en.2013-1573] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kisspeptin, encoded by Kiss1, stimulates reproduction and is synthesized in the hypothalamic anteroventral periventricular and arcuate nuclei. Kiss1 is also expressed at lower levels in the medial amygdala (MeA) and bed nucleus of the stria terminalis (BNST), but the regulation and function of Kiss1 there is poorly understood. γ-Aminobutyric acid (GABA) also regulates reproduction, and female GABAB1 receptor knockout (KO) mice have compromised fertility. However, the interaction between GABAB receptors and Kiss1 neurons is unknown. Here, using double-label in situ hybridization, we first demonstrated that a majority of hypothalamic Kiss1 neurons coexpress GABAB1 subunit, a finding also confirmed for most MeA Kiss1 neurons. Yet, despite known reproductive impairments in GABAB1KO mice, Kiss1 expression in the anteroventral periventricular and arcuate nuclei, assessed by both in situ hybridization and real-time PCR, was identical between adult wild-type and GABAB1KO mice. Surprisingly, however, Kiss1 levels in the BNST and MeA, as well as the lateral septum (a region normally lacking Kiss1 expression), were dramatically increased in both GABAB1KO males and females. The increased Kiss1 levels in extrahypothalamic regions were not caused by elevated sex steroids (which can increase Kiss1 expression), because circulating estradiol and testosterone were equivalent between genotypes. Interestingly, increased Kiss1 expression was not detected in the MeA or BNST in prepubertal KO mice of either sex, indicating that the enhancements in extrahypothalamic Kiss1 levels initiate during/after puberty. These findings suggest that GABAB signaling may normally directly or indirectly inhibit Kiss1 expression, particularly in the BNST and MeA, and highlight the importance of studying kisspeptin populations outside the hypothalamus.
Collapse
Affiliation(s)
- Noelia P Di Giorgio
- Institute of Biology and Experimental Medicine-CONICET (N.P.D.G., P.V.L., C.L., V.A.L-L.), Buenos Aires, Argentina; Department of Reproductive Medicine (S.J.S., J.K., A.S.K.), University of California San Diego, La Jolla, California; Department of Biomedicine (B.B.), University of Basel, Basel, Switzerland; and Department of Physiology (C.L.), University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Beltramo M, Dardente H, Cayla X, Caraty A. Cellular mechanisms and integrative timing of neuroendocrine control of GnRH secretion by kisspeptin. Mol Cell Endocrinol 2014; 382:387-399. [PMID: 24145132 DOI: 10.1016/j.mce.2013.10.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 01/11/2023]
Abstract
The hypothalamus integrates endogenous and exogenous inputs to control the pituitary-gonadal axis. The ultimate hypothalamic influence on reproductive activity is mediated through timely secretion of GnRH in the portal blood, which modulates the release of gonadotropins from the pituitary. In this context neurons expressing the RF-amide neuropeptide kisspeptin present required features to fulfill the role of the long sought-after hypothalamic integrative centre governing the stimulation of GnRH neurons. Here we focus on the intracellular signaling pathways triggered by kisspeptin through its cognate receptor KISS1R and on the potential role of proteins interacting with this receptor. We then review evidence implicating both kisspeptin and RFRP3--another RF-amide neuropeptide--in the temporal orchestration of both the pre-ovulatory LH surge in female rodents and the organization of seasonal breeding in photoperiodic species.
Collapse
Affiliation(s)
- Massimiliano Beltramo
- UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85, CNRS, UMR7247, Université François Rabelais Tours, IFCE), F-37380 Nouzilly, France.
| | - Hugues Dardente
- UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85, CNRS, UMR7247, Université François Rabelais Tours, IFCE), F-37380 Nouzilly, France
| | - Xavier Cayla
- UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85, CNRS, UMR7247, Université François Rabelais Tours, IFCE), F-37380 Nouzilly, France
| | - Alain Caraty
- UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85, CNRS, UMR7247, Université François Rabelais Tours, IFCE), F-37380 Nouzilly, France
| |
Collapse
|
39
|
Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function. J Neurosci 2013; 33:17874-83. [PMID: 24198376 DOI: 10.1523/jneurosci.2278-13.2013] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The adipocyte-derived hormone leptin acts in the brain to modulate the central driver of fertility: the gonadotropin releasing hormone (GnRH) neuronal system. This effect is indirect, as GnRH neurons do not express leptin receptors (LEPRs). Here we test whether GABAergic or glutamatergic neurons provide the intermediate pathway between the site of leptin action and the GnRH neurons. Leptin receptors were deleted from GABA and glutamate neurons using Cre-Lox transgenics, and the downstream effects on puberty onset and reproduction were examined. Both mouse lines displayed the expected increase in body weight and region-specific loss of leptin signaling in the hypothalamus. The GABA neuron-specific LEPR knock-out females and males showed significantly delayed puberty onset. Adult fertility observations revealed that these knock-out animals have decreased fecundity. In contrast, glutamate neuron-specific LEPR knock-out mice displayed normal fertility. Assessment of the estrogenic hypothalamic-pituitary-gonadal axis regulation in females showed that leptin action on GABA neurons is not necessary for estradiol-mediated suppression of tonic luteinizing hormone secretion (an indirect measure of GnRH neuron activity) but is required for regulation of a full preovulatory-like luteinizing hormone surge. In conclusion, leptin signaling in GABAergic (but not glutamatergic neurons) plays a critical role in the timing of puberty onset and is involved in fertility regulation throughout adulthood in both sexes. These results form an important step in explaining the role of central leptin signaling in the reproductive system. Limiting the leptin-to-GnRH mediators to GABAergic cells will enable future research to focus on a few specific types of neurons.
Collapse
|
40
|
Schneider JE, Wise JD, Benton NA, Brozek JM, Keen-Rhinehart E. When do we eat? Ingestive behavior, survival, and reproductive success. Horm Behav 2013; 64:702-28. [PMID: 23911282 DOI: 10.1016/j.yhbeh.2013.07.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
Abstract
The neuroendocrinology of ingestive behavior is a topic central to human health, particularly in light of the prevalence of obesity, eating disorders, and diabetes. The study of food intake in laboratory rats and mice has yielded some useful hypotheses, but there are still many gaps in our knowledge. Ingestive behavior is more complex than the consummatory act of eating, and decisions about when and how much to eat usually take place in the context of potential mating partners, competitors, predators, and environmental fluctuations that are not present in the laboratory. We emphasize appetitive behaviors, actions that bring animals in contact with a goal object, precede consummatory behaviors, and provide a window into motivation. Appetitive ingestive behaviors are under the control of neural circuits and neuropeptide systems that control appetitive sex behaviors and differ from those that control consummatory ingestive behaviors. Decreases in the availability of oxidizable metabolic fuels enhance the stimulatory effects of peripheral hormones on appetitive ingestive behavior and the inhibitory effects on appetitive sex behavior, putting a new twist on the notion of leptin, insulin, and ghrelin "resistance." The ratio of hormone concentrations to the availability of oxidizable metabolic fuels may generate a critical signal that schedules conflicting behaviors, e.g., mate searching vs. foraging, food hoarding vs. courtship, and fat accumulation vs. parental care. In species representing every vertebrate taxa and even in some invertebrates, many putative "satiety" or "hunger" hormones function to schedule ingestive behavior in order to optimize reproductive success in environments where energy availability fluctuates.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | | | | | | | | |
Collapse
|
41
|
Smith AW, Bosch MA, Wagner EJ, Rønnekleiv OK, Kelly MJ. The membrane estrogen receptor ligand STX rapidly enhances GABAergic signaling in NPY/AgRP neurons: role in mediating the anorexigenic effects of 17β-estradiol. Am J Physiol Endocrinol Metab 2013; 305:E632-40. [PMID: 23820624 PMCID: PMC3761166 DOI: 10.1152/ajpendo.00281.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Besides its quintessential role in reproduction, 17β-estradiol (E2) is a potent anorexigenic hormone. E2 and the selective Gq-coupled membrane estrogen receptor (Gq-mER) ligand STX rapidly increase membrane excitability in proopiomelanocortin (POMC) neurons by desensitizing the coupling of GABAB receptors to G protein-coupled inwardly rectifying K(+) channels (GIRKs), which upon activation elicit a hyperpolarizing outward current. However, it is unknown whether E2 and STX can modulate GABAB signaling in neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons. We used single-cell RT-PCR and whole cell patch clamping with selective pharmacological reagents to show that NPY/AgRP cells of mice express the GABAB-R1 and -R2 receptors and are hyperpolarized by the GABAB agonist baclofen in an E2-dependent manner. In males, E2 rapidly attenuated the coupling of GABAB receptors to GIRKs, which was blocked by the general PI3K inhibitors wortmannin and LY-294002 or the selective p110β subunit inhibitor TGX-221. The ERα-selective agonist propyl pyrazole triol mimicked the effects of E2. STX, in contrast, enhanced the GABAB response in males, which was abrogated by the estrogen receptor (ER) antagonist ICI 182,780. In gonadectomized mice of both sexes, E2 enhanced or attenuated the GABAB response in different NPY/AgRP cells. Coperfusing wortmannin with E2 or simply applying STX always enhanced the GABAB response. Thus, in NPY/AgRP neurons, activation of the Gq-mER by E2 or STX enhances the GABAergic postsynaptic response, whereas activation of ERα by E2 attenuates it. These findings demonstrate a clear functional dichotomy of rapid E2 membrane-initiated signaling via ERα vs. Gq-mER in a CNS neuron vital for regulating energy homeostasis.
Collapse
Affiliation(s)
- A W Smith
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
| | | | | | | | | |
Collapse
|
42
|
Zhang C, Bosch MA, Rønnekleiv OK, Kelly MJ. Kisspeptin activation of TRPC4 channels in female GnRH neurons requires PIP2 depletion and cSrc kinase activation. Endocrinology 2013; 154:2772-83. [PMID: 23744639 PMCID: PMC3713215 DOI: 10.1210/en.2013-1180] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Kisspeptin signaling via its Gαq-coupled receptor GPR54 plays a crucial role in modulating GnRH neuronal excitability, which controls pituitary gonadotropins secretion and ultimately reproduction. Kisspeptin potently depolarizes GnRH neurons primarily through the activation of canonical transient receptor potential (TRPC) channels, but the intracellular signaling cascade has not been elucidated. Presently, we have established that kisspeptin activation of TRPC channels requires multiple membrane and intracellular signaling molecules. First, phosphatidylinositol-4,5-bisphosphate (PIP(2)) hydrolysis by phospholipase Cβ is required because whole-cell dialysis of Dioctanoylglycerol-PIP(2) (DiC8-PIP(2)) inhibited the kisspeptin activation of TRPC channels, and the phosphatidylinositol 4-kinase inhibitor wortmannin, which attenuates PIP(2) synthesis, prolonged TRPC channel activation. Using single cell RT-PCR, we identified that the mRNA for the PIP(2)-interacting TRPC channel subunit, TRPC4α, is expressed in GnRH neurons. Depletion of intracellular Ca(2+) stores by thapsigargin and inositol 1,4,5-trisphosphate had no effect, indicating that the TRPC channels are not store-operated. Neither removing extracellular Ca(2+) nor buffering intracellular Ca(2+) with EGTA or BAPTA had any effect on the kisspeptin activation of the TRPC channels. However, the Ca(2+) channel blocker Ni(2+) inhibited the kisspeptin-induced inward current. Moreover, inhibition of protein kinase C by bisindolylmaleimide-I or calphostin C had no effect, but activation of protein kinase C by phorbol 12,13-dibutyrate occluded the kisspeptin-activated current. Finally, inhibition of the cytoplasmic tyrosine kinase cSrc by genistein or the pyrazolo-pyrimidine PP2 blocked the activation of TRPC channels by kisspeptin. Therefore, TRPC channels in GnRH neurons are receptor-operated, and kisspeptin activates TRPC channels through PIP(2) depletion and cSrc tyrosine kinase activation, which is a novel signaling pathway for peptidergic excitation of GnRH neurons.
Collapse
Affiliation(s)
- Chunguang Zhang
- Departments of Physiology and Pharmacology, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
43
|
True C, Verma S, Grove KL, Smith MS. Cocaine- and amphetamine-regulated transcript is a potent stimulator of GnRH and kisspeptin cells and may contribute to negative energy balance-induced reproductive inhibition in females. Endocrinology 2013; 154:2821-32. [PMID: 23736294 PMCID: PMC3713223 DOI: 10.1210/en.2013-1156] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is a hypothalamic neuropeptide implicated in both metabolic and reproductive regulation, raising the possibility that CART plays a role in reproductive inhibition during negative metabolic conditions. The current study characterized CART's regulatory influence on GnRH and kisspeptin (Kiss1) cells and determined the sensitivity of different CART populations to negative energy balance. CART fibers made close appositions to 60% of GnRH cells, with the majority of the fibers (>80%) originating from the arcuate nucleus (ARH) CART/pro-opiomelanocortin population. Electrophysiological recordings in GnRH-green fluorescent protein rats demonstrated that CART postsynaptically depolarizes GnRH cells. CART fibers from the ARH were also observed in close contact with Kiss1 cells in the ARH and anteroventral periventricular nucleus (AVPV). Recordings in Kiss1-GFP mice demonstrated CART also postsynaptically depolarizes ARH Kiss1 cells, suggesting CART may act directly and indirectly, via Kiss1 populations, to stimulate GnRH neurons. CART protein and mRNA levels were analyzed in 2 models of negative energy balance: caloric restriction (CR) and lactation. Both CART mRNA levels and the number of CART-immunoreactive cells were suppressed in the ARH during CR but not during lactation. AVPV CART mRNA was suppressed during CR, but not during lactation when there was a dramatic increase in CART-immunoreactive cells. These data suggest differing regulatory signals of CART between the models. In conclusion, both morphological and electrophysiological methods identify CART as a novel and potent stimulator of Kiss1 and GnRH neurons and suppression of CART expression during negative metabolic conditions could contribute to inhibition of the reproductive axis.
Collapse
Affiliation(s)
- Cadence True
- Divisions of Diabetes, Obesity, & Metabolism, and Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | | | | | |
Collapse
|
44
|
Zhang C, Rønnekleiv OK, Kelly MJ. Kisspeptin inhibits a slow afterhyperpolarization current via protein kinase C and reduces spike frequency adaptation in GnRH neurons. Am J Physiol Endocrinol Metab 2013; 304:E1237-44. [PMID: 23548613 PMCID: PMC3680681 DOI: 10.1152/ajpendo.00058.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kisspeptin signaling via its cognate receptor G protein-coupled receptor 54 (GPR54) in gonadotropin-releasing hormone (GnRH) neurons plays a critical role in regulating pituitary secretion of luteinizing hormone and thus reproductive function. GPR54 is G(q)-coupled to activation of phospholipase C and multiple second messenger signaling pathways. Previous studies have shown that kisspeptin potently depolarizes GnRH neurons through the activation of canonical transient receptor potential channels and inhibition of inwardly rectifying K(+) channels to generate sustained firing. Since the initial studies showing that kisspeptin has prolonged effects, the question has been why is there very little spike frequency adaption during sustained firing? Presently, we have discovered that kisspeptin reduces spike frequency adaptation and prolongs firing via the inhibition of a calcium-activated slow afterhyperpolarization current (I(sAHP)). GnRH neurons expressed two distinct I(sAHP), a kisspeptin-sensitive and an apamin-sensitive I(sAHP). Essentially, kisspeptin inhibited 50% of the I(sAHP) and apamin inhibited the other 50% of the current. Furthermore, the kisspeptin-mediated inhibition of I(sAHP) was abrogated by the protein kinase C (PKC) inhibitor calphostin C, and the PKC activator phorbol 12,13-dibutyrate mimicked and occluded any further effects of kisspeptin on I(sAHP). The protein kinase A (PKA) inhibitors H-89 and the Rp diastereomer of adenosine 3',5'-cyclic monophosphorothioate had no effect on the kisspeptin-mediated inhibition but were able to abrogate the inhibitory effects of forskolin on the I(sAHP), suggesting that PKA is not involved. Therefore, in addition to increasing the firing rate through an overt depolarization, kisspeptin can also facilitate sustained firing through inhibiting an apamin-insensitive I(sAHP) in GnRH neurons via a PKC.
Collapse
Affiliation(s)
- Chunguang Zhang
- Department of Physiology & Pharmacology, Oregon Health and Sciences University, Portland, OR 97239, USA
| | | | | |
Collapse
|
45
|
The effects of kisspeptin on gonadotropin release in non-human mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:63-87. [PMID: 23550002 DOI: 10.1007/978-1-4614-6199-9_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Kiss1 gene encodes a 145-amino acid pre-peptide, kisspeptin, which is cleaved into smaller peptides of 54, 14, 13, and 10 amino acids. This chapter reviews in detail the effects of kisspeptin on gonadotropin secretion in non-human mammals. Studies of kisspeptin's effects have included both acute and chronic administration regimens via a number of administration routes. Acute kisspeptin stimulates gonadotropin secretion in a wide range of species of non-human mammals, including rats, mice, hamsters, sheep, pigs, goats, cows, horses, and monkeys. In general, the stimulatory effect of kisspeptin treatment is more pronounced for LH than FSH secretion. Kisspeptin is thought to exert its stimulatory effects on LH and FSH release via stimulation of GnRH release from the hypothalamus, since pre--administration of a GnRH antagonist prevents kisspeptin's stimulation of gonadotropin secretion. Although the kisspeptin receptor is also expressed on anterior pituitary cells of some species, and incubation of anterior pituitary cells with high concentrations of kisspeptin can stimulate in vitro LH release, the contribution of direct effects of kisspeptin on the pituitary is thought to be negligible in vivo. Continuous kisspeptin administration results in reduced sensitivity to the effects of kisspeptin, in some species. This desensitization is thought to occur at the level of the kisspeptin receptor, since the response of the pituitary gland to exogenous GnRH is maintained. Overall, the findings discussed in this chapter are invaluable to the understanding of the reproductive role of kisspeptin and the potential therapeutic uses of kisspeptin for the treatment of fertility disorders.
Collapse
|
46
|
Rønnekleiv OK, Kelly MJ. Kisspeptin excitation of GnRH neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:113-31. [PMID: 23550004 PMCID: PMC4019505 DOI: 10.1007/978-1-4614-6199-9_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Kisspeptin binding to its cognate G protein-coupled receptor (GPR54, aka Kiss1R) in gonadotropin-releasing hormone (GnRH) neurons stimulates peptide release and activation of the reproductive axis in mammals. Kisspeptin has pronounced pre- and postsynaptic effects, with the latter dominating the excitability of GnRH neurons. Presynaptically, kisspeptin increases the excitatory drive (both GABA-A and glutamate) to GnRH neurons and postsynaptically, kisspeptin inhibits an A-type and inwardly rectifying K(+) (Kir 6.2 and GIRK) currents and activates nonselective cation (TRPC) currents to cause long-lasting depolarization and increased action potential firing. The signaling cascades and the multiple intracellular targets of kisspeptin actions in native GnRH neurons are continuing to be elucidated. This review summarizes our current state of knowledge about kisspeptin signaling in GnRH neurons.
Collapse
Affiliation(s)
- Oline K Rønnekleiv
- Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.
| | | |
Collapse
|
47
|
Di Giorgio NP, Catalano PN, López PV, González B, Semaan SJ, López GC, Kauffman AS, Rulli SB, Somoza GM, Bettler B, Libertun C, Lux-Lantos VA. Lack of functional GABAB receptors alters Kiss1 , Gnrh1 and Gad1 mRNA expression in the medial basal hypothalamus at postnatal day 4. Neuroendocrinology 2013; 98:212-23. [PMID: 24080944 PMCID: PMC3915412 DOI: 10.1159/000355631] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/10/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND/AIMS Adult mice lacking functional GABAB receptors (GABAB1KO) show altered Gnrh1 and Gad1 expressions in the preoptic area-anterior hypothalamus (POA-AH) and females display disruption of cyclicity and fertility. Here we addressed whether sexual differentiation of the brain and the proper wiring of the GnRH and kisspeptin systems were already disturbed in postnatal day 4 (PND4) GABAB1KO mice. METHODS PND4 wild-type (WT) and GABAB1KO mice of both sexes were sacrificed; tissues were collected to determine mRNA expression (qPCR), amino acids (HPLC), and hormones (RIA and/or IHC). RESULTS GnRH neuron number (IHC) did not differ among groups in olfactory bulbs or OVLT-POA. Gnrh1 mRNA (qPCR) in POA-AH was similar among groups. Gnrh1 mRNA in medial basal hypothalamus (MBH) was similar in WTs but was increased in GABAB1KO females compared to GABAB1KO males. Hypothalamic GnRH (RIA) was sexually different in WTs (males > females), but this sex difference was lost in GABAB1KOs; the same pattern was observed when analyzing only the MBH, but not in the POA-AH. Arcuate nucleus Kiss1 mRNA (micropunch-qPCR) was higher in WT females than in WT males and GABAB1KO females. Gad1 mRNA in MBH was increased in GABAB1KO females compared to GABAB1KO males. Serum LH and gonadal estradiol content were also increased in GABAB1KOs. CONCLUSION We demonstrate that GABABRs participate in the sexual differentiation of the ARC/MBH, because sex differences in several reproductive genes, such as Gad1, Kiss1 and Gnrh1, are critically disturbed in GABAB1KO mice at PND4, probably altering the organization and development of neural circuits governing the reproductive axis.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Arcuate Nucleus of Hypothalamus/growth & development
- Arcuate Nucleus of Hypothalamus/metabolism
- Female
- Gene Expression Regulation, Developmental
- Glutamate Decarboxylase/deficiency
- Glutamate Decarboxylase/genetics
- Gonadotropin-Releasing Hormone/deficiency
- Gonadotropin-Releasing Hormone/genetics
- Hypothalamus, Middle/growth & development
- Hypothalamus, Middle/metabolism
- Kisspeptins/deficiency
- Kisspeptins/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Protein Precursors/deficiency
- Protein Precursors/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, GABA-B/deficiency
- Receptors, GABA-B/genetics
- Sex Differentiation/genetics
Collapse
Affiliation(s)
- Noelia P Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
García-Galiano D, Pineda R, Roa J, Ruiz-Pino F, Sánchez-Garrido MA, Castellano JM, Aguilar E, Navarro VM, Pinilla L, Tena-Sempere M. Differential modulation of gonadotropin responses to kisspeptin by aminoacidergic, peptidergic, and nitric oxide neurotransmission. Am J Physiol Endocrinol Metab 2012; 303:E1252-63. [PMID: 23011064 DOI: 10.1152/ajpendo.00250.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Kisspeptins (Kp), products of the Kiss1 gene, have emerged as essential elements in the control of GnRH neurons and gonadotropic secretion. However, despite considerable progress in the field, to date limited attention has been paid to elucidate the potential interactions of Kp with other neurotransmitters known to centrally regulate the gonadotropic axis. We characterize herein the impact of manipulations of key aminoacidergic (glutamate and GABA), peptidergic (NKB, Dyn, and MCH), and gaseous [nitric oxide (NO)] neurotransmission on gonadotropin responses to Kp-10 in male rats. Blockade of ionotropic glutamate receptors (of the NMDA and non-NMDA type) variably decreased LH responses to Kp-10, whereas activation of both ionotropic and metabotropic receptors, which enhanced LH and FSH release per se, failed to further increase gonadotropin responses to Kp-10. In fact, coactivation of metabotropic receptors attenuated LH and FSH responses to Kp-10. Selective activation of GABA(A) receptors decreased Kp-induced gonadotropin secretion, whereas their blockade elicited robust LH and FSH bursts and protracted responses to Kp-10 when combined with GABA(B) receptor inhibition. Blockade of Dyn signaling (at κ-opioid receptors) enhanced LH responses to Kp-10, whereas activation of Dyn and NKB signaling modestly reduced Kp-induced LH and FSH release. Finally, MCH decreased basal LH secretion and modestly reduced FSH responses to Kp-10, whereas LH responses to Kp-10 were protracted after inhibition of NO synthesis. In summary, we present herein evidence for the putative roles of glutamate, GABA, Dyn, NKB, MCH, and NO in modulating gonadotropic responses to Kp in male rats. Our pharmacological data will help to characterize the central interactions and putative hierarchy of key neuroendocrine pathways involved in the control of the gonadotropic axis.
Collapse
Affiliation(s)
- David García-Galiano
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Constantin S, Piet R, Iremonger K, Hwa Yeo S, Clarkson J, Porteous R, Herbison AE. GnRH neuron firing and response to GABA in vitro depend on acute brain slice thickness and orientation. Endocrinology 2012; 153:3758-69. [PMID: 22719049 DOI: 10.1210/en.2012-1126] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The GnRH neurons exhibit long dendrites and project to the median eminence. The aim of the present study was to generate an acute brain slice preparation that enabled recordings to be undertaken from GnRH neurons maintaining the full extent of their dendrites or axons. A thick, horizontal brain slice was developed, in which it was possible to record from the horizontally oriented GnRH neurons located in the anterior hypothalamic area (AHA). In vivo studies showed that the majority of AHA GnRH neurons projected outside the blood-brain barrier and expressed c-Fos at the time of the GnRH surge. On-cell recordings compared AHA GnRH neurons in the horizontal slice (AHAh) with AHA and preoptic area (POA) GnRH neurons in coronal slices [POA coronal (POAc) and AHA coronal (AHAc), respectively]. AHAh GnRH neurons exhibited tighter burst firing compared with other slice orientations. Although α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) excited GnRH neurons in all preparations, γ-aminobutyric acid (GABA) was excitatory in AHAc and POAc but inhibitory in AHAh slices. GABA(A) receptor postsynaptic currents were the same in AHAh and AHAc slices. Intriguingly, direct activation of GABA(A) or GABA(B) receptors respectively stimulated and inhibited GnRH neurons regardless of slice orientation. Subsequent experiments indicated that net GABA effects were determined by differences in the ratio of GABA(A) and GABA(B) receptor-mediated effects in "long" and "short" dendrites of GnRH neurons in the different slice orientations. These studies document a new brain slice preparation for recording from GnRH neurons with their extensive dendrites/axons and highlight the importance of GnRH neuron orientation relative to the angle of brain slicing in studying these neurons in vitro.
Collapse
Affiliation(s)
- Stephanie Constantin
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin 9054, New Zealand
| | | | | | | | | | | | | |
Collapse
|
50
|
Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and Reproduction: Physiological Roles and Regulatory Mechanisms. Physiol Rev 2012; 92:1235-316. [DOI: 10.1152/physrev.00037.2010] [Citation(s) in RCA: 529] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Procreation is essential for survival of species. Not surprisingly, complex neuronal networks have evolved to mediate the diverse internal and external environmental inputs that regulate reproduction in vertebrates. Ultimately, these regulatory factors impinge, directly or indirectly, on a final common pathway, the neurons producing the gonadotropin-releasing hormone (GnRH), which stimulates pituitary gonadotropin secretion and thereby gonadal function. Compelling evidence, accumulated in the last few years, has revealed that kisspeptins, a family of neuropeptides encoded by the Kiss1 gene and produced mainly by neuronal clusters at discrete hypothalamic nuclei, are pivotal upstream regulators of GnRH neurons. As such, kisspeptins have emerged as important gatekeepers of key aspects of reproductive maturation and function, from sexual differentiation of the brain and puberty onset to adult regulation of gonadotropin secretion and the metabolic control of fertility. This review aims to provide a comprehensive account of the state-of-the-art in the field of kisspeptin physiology by covering in-depth the consensus knowledge on the major molecular features, biological effects, and mechanisms of action of kisspeptins in mammals and, to a lesser extent, in nonmammalian vertebrates. This review will also address unsolved and contentious issues to set the scene for future research challenges in the area. By doing so, we aim to endow the reader with a critical and updated view of the physiological roles and potential translational relevance of kisspeptins in the integral control of reproductive function.
Collapse
Affiliation(s)
- Leonor Pinilla
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Enrique Aguilar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Dieguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert P. Millar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|