1
|
Iwamoto H, Sanada J, Kimura T, Shimoda M, Iwamoto Y, Dan K, Fushimi Y, Katakura Y, Nogami Y, Shirakiya Y, Yamasaki Y, Nakanishi S, Mune T, Kaku K, Kaneto H. Blocking mineralocorticoid signaling with esaxerenone reduces atherosclerosis in hyperglycemic ApoE KO mice without affecting blood pressure and glycolipid metabolism. Sci Rep 2025; 15:10887. [PMID: 40157997 PMCID: PMC11954868 DOI: 10.1038/s41598-025-95324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
Endothelial damage mediated by mineralocorticoid receptor (MR) is an important factor in the development of atherosclerosis. Esaxerenone is a highly selective drug that can specifically block MR activity. The aim of this study is to examine whether specific blocking of mineralocorticoid signaling with esaxerenone exerts favorable effects on the progression of atherosclerosis. ApoE KO mice were used as a model of atherosclerosis. In addition to a non-diabetic model, we created a diabetic model using streptozotocin. These were divided into a control group and an esaxerenone group. Esaxerenone-containing diet was provided for 8 weeks starting at 10 weeks of age. Various metabolic markers and abdominal aortic mRNA expression were evaluated, and histological examination of the aortic arch and thoracic aorta was performed. We also used human aortic smooth muscle cells (HASMCs) to investigate the possible direct effects of esaxerenone on vascular smooth muscle cells. In diabetic mice, plaque area in the aortic arch was significantly smaller in esaxerenone group compared to control group, although there were no differences in blood pressure, serum lipid levels between the two groups. Inflammation-related genes, macrophage marker, cell adhesion factors and oxidative stress marker were all significantly lower in esaxerenone group. The studies using HASMCs have confirmed that esaxerenone has anti-inflammatory effects on vascular smooth muscle cells. Specific blocking of mineralocorticoid signaling with esaxerenone exerts favorable effects on the progression of atherosclerosis without influencing blood pressure and glycolipid metabolism.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/drug therapy
- Atherosclerosis/pathology
- Mice
- Glycolipids/pharmacology
- Glycolipids/metabolism
- Blood Pressure/drug effects
- Humans
- Signal Transduction/drug effects
- Sulfones/pharmacology
- Male
- Pyrroles/pharmacology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Mineralocorticoids/metabolism
- Mice, Knockout, ApoE
- Hyperglycemia/drug therapy
- Hyperglycemia/metabolism
- Disease Models, Animal
- Mineralocorticoid Receptor Antagonists/pharmacology
- Receptors, Mineralocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Mice, Knockout
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Hideyuki Iwamoto
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Junpei Sanada
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Tomohiko Kimura
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan.
| | - Masashi Shimoda
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Yuichiro Iwamoto
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Kazunori Dan
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Yoshiro Fushimi
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Yukino Katakura
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Yuka Nogami
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Yoshiko Shirakiya
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Yuki Yamasaki
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Shuhei Nakanishi
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Tomoatsu Mune
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Kohei Kaku
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Hideaki Kaneto
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| |
Collapse
|
2
|
Associations between primary aldosteronism and diabetes, poor bone health, and sleep apnea-what do we know so far? J Hum Hypertens 2019; 34:5-15. [PMID: 31822780 DOI: 10.1038/s41371-019-0294-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/12/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022]
Abstract
Primary aldosteronism (PA), the most common cause of secondary hypertension, is a well-recognized condition that can lead to cardiovascular and renal complications. PA is frequently left undiagnosed and untreated, leading to aldosterone-specific morbidity and mortality. In this review we highlight the evidence linking PA with other conditions such as (i) diabetes mellitus, (ii) obstructive sleep apnea, and (iii) bone health, along with clinical implications and proposed underlying mechanisms.
Collapse
|
3
|
Xiao B, Liu F, Lu JC, Chen F, Pei WN, Yang XC. IGF-1 deletion affects renal sympathetic nerve activity, left ventricular dysfunction, and renal function in DOCA-salt hypertensive mice. Physiol Res 2019; 68:209-217. [PMID: 30628826 DOI: 10.33549/physiolres.933918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To determine the influence of IGF-1 deletion on renal sympathetic nerve activity (RSNA), left ventricular dysfunction, and renal function in deoxycorticosterone acetate (DOCA)-salt hypertensive mice. The DOCA-salt hypertensive mice models were constructed and the experiment was classified into WT (Wild-type mice) +sham, LID (Liver-specific IGF-1 deficient mice) + sham, WT + DOCA, and LID+ DOCA groups. Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum IGF-1 levels in mice. The plasma norepinephrine (NE), urine protein, urea nitrogen and creatinine, as well as RSNA were measured. Echocardiography was performed to assess left ventricular dysfunction, and HE staining to observe the pathological changes in renal tissue of mice. DOCA-salt induction time-dependently increased the systolic blood pressure (SBP) of mice, especially in DOCA-salt LID mice. Besides, the serum IGF-1 levels in WT mice were decreased after DOCA-salt induction. In addition, the plasma NE concentration and NE spillover, urinary protein, urea nitrogen, creatinine and RSNA were remarkably elevated with severe left ventricular dysfunction, but the creatinine clearance was reduced in DOCA-salt mice, and these similar changes were obvious in DOCA-salt mice with IGF-1 deletion. Moreover, the DOCA-salt mice had tubular ectasia, glomerular fibrosis, interstitial cell infiltration, and increased arterial wall thickness, and the DOCA-salt LID mice were more serious in those aspects. Deletion of IGF-1 may lead to enhanced RSNA in DOCA-salt hypertensive mice, thereby further aggravating left ventricular dysfunction and renal damage.
Collapse
Affiliation(s)
- Bing Xiao
- Department of Cardiology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China.
| | | | | | | | | | | |
Collapse
|
4
|
Meng L, Liu X, Teng X, Gu H, Yuan W, Meng J, Li J, Zheng Z, Wei Y, Hu S. Osteopontin plays important roles in pulmonary arterial hypertension induced by systemic-to-pulmonary shunt. FASEB J 2019; 33:7236-7251. [PMID: 30893567 DOI: 10.1096/fj.201802121rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent studies indicated that osteopontin (OPN) was involved in the genesis and progression of pulmonary arterial hypertension (PAH); however, its role in congenital heart disease-associated PAH (CHD/PAH) remains unknown. Our results showed that OPN was increased in lungs and plasma of patients with Eisenmenger syndrome; moreover, OPN and αVβ3-integrin expression levels were augmented in rat lungs exposed to systemic-to-pulmonary shunt. Cell culture assay demonstrated that distal pulmonary arterial smooth muscle cells (PASMCs) from rat lungs suffering from volume and pressure overload exhibited enhanced proliferation compared with those from healthy rats. Mechanical stretch (20% at 1 Hz) increased OPN expression and activated ERK1/2 and protein kinase B (Akt) signal pathway in distal PASMCs from healthy rats. Interestingly, OPN enhanced the proliferation and migration of PASMCs while blocking αVβ3-integrin with neutralizing antibody LM609 or Arg-Gly-Asp peptidomimetic antagonist cyclo(Ala-Arg-Gly-Asp-3-aminomethylbenzoyl) (XJ735), rectified the proliferative and migratory effects of OPN, which were partially mediated via ERK1/2 and Akt signaling pathways. Furthermore, surgical correction of systemic-to-pulmonary shunt, particularly XJ735 supplementation after surgical correction of systemic-to-pulmonary shunt, significantly alleviated the pulmonary hypertensive status in terms of pulmonary hemodynamic indices, pulmonary vasculopathy, and right ventricular hypertrophy. In summary, OPN alteration in lungs exposed to systemic-to-pulmonary shunt exerts a deteriorative role in pulmonary vascular remodeling through modulating the proliferation and migration of PASMCs, at least in part, via ανβ3-ERK1/2 and ανβ3-Akt signaling pathways. Antagonizing OPN receptor ανβ3-integrin accelerated the regression of pulmonary vasculopathy after surgical correction of systemic-to-pulmonary shunt, indicating a potential therapeutic strategy for patients with CHD/PAH.-Meng, L., Liu, X., Teng, X., Gu, H., Yuan, W., Meng, J., Li, J., Zheng, Z., Wei, Y., Hu, S. Osteopontin plays important roles in pulmonary arterial hypertension induced by systemic-to-pulmonary shunt.
Collapse
Affiliation(s)
- Liukun Meng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease-Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, China
| | - Xiaoyan Liu
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; and
| | - Xiao Teng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease-Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, China
| | - Haiyong Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wen Yuan
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jian Meng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease-Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, China
| | - Jun Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease-Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, China
| | - Zhe Zheng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease-Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, China
| | - Yingjie Wei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease-Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease-Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Ripoll JG, Blackshear JL, Díaz-Gómez JL. Acute Cardiac Complications in Critical Brain Disease. Neurosurg Clin N Am 2018; 29:281-297. [PMID: 29502718 DOI: 10.1016/j.nec.2017.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute cardiac complications in critical brain disease should be understood as a clinical condition representing an intense brain-heart crosstalk and might mimic ischemic heart disease. Two main entities (neurogenic stunned myocardium [NSM] and stress cardiomyopathy) have been better characterized in the neurocritically ill patients and they portend worse clinical outcomes in these cases. The pathophysiology of NSM remains elusive. However, significant progress has been made on the early identification of neurocardiac compromise following acute critical brain disease. Effective prevention and treatment interventions are yet to be determined.
Collapse
Affiliation(s)
- Juan G Ripoll
- Department of Critical Care Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Joseph L Blackshear
- Department of Cardiology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - José L Díaz-Gómez
- Departments of Critical Care Medicine, Anesthesiology and Neurologic Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
6
|
Ripoll JG, Blackshear JL, Díaz-Gómez JL. Acute Cardiac Complications in Critical Brain Disease. Neurol Clin 2018; 35:761-783. [PMID: 28962813 DOI: 10.1016/j.ncl.2017.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Acute cardiac complications in critical brain disease should be understood as a clinical condition representing an intense brain-heart crosstalk and might mimic ischemic heart disease. Two main entities (neurogenic stunned myocardium [NSM] and stress cardiomyopathy) have been better characterized in the neurocritically ill patients and they portend worse clinical outcomes in these cases. The pathophysiology of NSM remains elusive. However, significant progress has been made on the early identification of neurocardiac compromise following acute critical brain disease. Effective prevention and treatment interventions are yet to be determined.
Collapse
Affiliation(s)
- Juan G Ripoll
- Department of Critical Care Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Joseph L Blackshear
- Department of Cardiology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - José L Díaz-Gómez
- Departments of Critical Care Medicine, Anesthesiology and Neurologic Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
7
|
Neves MF, Cunha AR, Cunha MR, Gismondi RA, Oigman W. The Role of Renin-Angiotensin-Aldosterone System and Its New Components in Arterial Stiffness and Vascular Aging. High Blood Press Cardiovasc Prev 2018; 25:137-145. [PMID: 29476451 DOI: 10.1007/s40292-018-0252-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/12/2018] [Indexed: 01/13/2023] Open
Abstract
Many cardiovascular diseases present renin-angiotensin-aldosterone system (RAAS) hyperactivity as an important pathophysiological mechanism to be target in the therapeutic approaches. Moreover, arterial stiffness is currently considered as a new independent risk factor for cardiovascular disease in different clinical conditions, including hypertension and chronic kidney disease. In fact, excessive stimulation of angiotensin type 1 (AT1) receptors, as well as mineralocorticoid receptors, results in cellular growth, oxidative stress and vascular inflammation, which may lead to arterial stiffness and accelerate the process of vascular aging. In the last decades, a vasoprotective axis of the RAAS has been discovered, and now it is well established that new components with antioxidant and anti-inflammatory properties play important roles promoting vasodilation, natriuresis and reducing collagen deposition, thus attenuating arterial stiffness and improving endothelial function. In this review, we will focus on these pathophysiological mechanisms and the relevance of RAAS inhibition by different strategies to increase arterial compliance and to decelerate vascular aging.
Collapse
Affiliation(s)
- Mario Fritsch Neves
- Departamento de Clinica Medica, Universidade do Estado do Rio de Janeiro, Ave. 28 de Setembro, 77 sala 329, Rio De Janeiro, 20551-030, Brazil.
| | - Ana Rosa Cunha
- Departamento de Clinica Medica, Universidade do Estado do Rio de Janeiro, Ave. 28 de Setembro, 77 sala 329, Rio De Janeiro, 20551-030, Brazil
| | - Michelle Rabello Cunha
- Departamento de Clinica Medica, Universidade do Estado do Rio de Janeiro, Ave. 28 de Setembro, 77 sala 329, Rio De Janeiro, 20551-030, Brazil
| | - Ronaldo Altenburg Gismondi
- Centro de Ciências Médicas, Universidade Federal Fluminense, Hospital Universitário Antônio Pedro, Niterói, RJ, 24033-900, Brazil
| | - Wille Oigman
- Departamento de Clinica Medica, Universidade do Estado do Rio de Janeiro, Ave. 28 de Setembro, 77 sala 329, Rio De Janeiro, 20551-030, Brazil
| |
Collapse
|
8
|
Dutzmann J, Bauersachs J, Sedding DG. Evidence for the use of mineralocorticoid receptor antagonists in the treatment of coronary artery disease and post-angioplasty restenosis. Vascul Pharmacol 2017; 107:S1537-1891(17)30281-1. [PMID: 29274772 DOI: 10.1016/j.vph.2017.12.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/05/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
Mineralocorticoid receptor antagonists (MRAs), such as spironolactone and eplerenone have an established role in the treatment of heart failure. However, many experimental and clinical studies have shown that aldosterone also plays a pivotal role in a variety of other pathophysiological conditions within the cardiovascular system. Aldosterone has been suggested to promote inflammation, endothelial dysfunction and smooth muscle cell hyperplasia during the development of atherosclerosis, thereby promoting the development of coronary artery disease (CAD). Since CAD and subsequent ischemic cardiomyopathy are the major causes of heart failure, it is of major interest, whether pharmacological therapy with MRAs among heart failure patients will also affect the common underlying conditions, namely, atherosclerosis and subsequent coronary vessel narrowing/rarefication. Therefore, in this article, we reviewed and discussed the preclinical and clinical evidence of MRAs for the treatment of acute or chronic vascular remodeling processes, such as atherosclerosis and post-angioplasty restenosis, which determine the progression of CAD and subsequent ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Jochen Dutzmann
- Dept. of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Johann Bauersachs
- Dept. of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Daniel G Sedding
- Dept. of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
9
|
Diaz-Otero JM, Fisher C, Downs K, Moss ME, Jaffe IZ, Jackson WF, Dorrance AM. Endothelial Mineralocorticoid Receptor Mediates Parenchymal Arteriole and Posterior Cerebral Artery Remodeling During Angiotensin II-Induced Hypertension. Hypertension 2017; 70:1113-1121. [PMID: 28974571 DOI: 10.1161/hypertensionaha.117.09598] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/07/2017] [Accepted: 09/11/2017] [Indexed: 01/01/2023]
Abstract
The brain is highly susceptible to injury caused by hypertension because the increased blood pressure causes artery remodeling that can limit cerebral perfusion. Mineralocorticoid receptor (MR) antagonism prevents hypertensive cerebral artery remodeling, but the vascular cell types involved have not been defined. In the periphery, the endothelial MR mediates hypertension-induced vascular injury, but cerebral and peripheral arteries are anatomically distinct; thus, these findings cannot be extrapolated to the brain. The parenchymal arterioles determine cerebrovascular resistance. Determining the effects of hypertension and MR signaling on these arterioles could lead to a better understanding of cerebral small vessel disease. We hypothesized that endothelial MR signaling mediates inward cerebral artery remodeling and reduced cerebral perfusion during angiotensin II (AngII) hypertension. The biomechanics of the parenchymal arterioles and posterior cerebral arteries were studied in male C57Bl/6 and endothelial cell-specific MR knockout mice and their appropriate controls using pressure myography. AngII increased plasma aldosterone and decreased cerebral perfusion in C57Bl/6 and MR-intact littermates. Endothelial cell MR deletion improved cerebral perfusion in AngII-treated mice. AngII hypertension resulted in inward hypotrophic remodeling; this was prevented by MR antagonism and endothelial MR deletion. Our studies suggest that endothelial cell MR mediates hypertensive remodeling in the cerebral microcirculation and large pial arteries. AngII-induced inward remodeling of cerebral arteries and arterioles was associated with a reduction in cerebral perfusion that could worsen the outcome of stroke or contribute to vascular dementia.
Collapse
Affiliation(s)
- Janice M Diaz-Otero
- From the Department of Pharmacology and Toxicology, Michigan State University, East Lansing (J.M.D.-O., C.F., K.D., W.F.J., A.M.D.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., I.Z.J.).
| | - Courtney Fisher
- From the Department of Pharmacology and Toxicology, Michigan State University, East Lansing (J.M.D.-O., C.F., K.D., W.F.J., A.M.D.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., I.Z.J.)
| | - Kelsey Downs
- From the Department of Pharmacology and Toxicology, Michigan State University, East Lansing (J.M.D.-O., C.F., K.D., W.F.J., A.M.D.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., I.Z.J.)
| | - M Elizabeth Moss
- From the Department of Pharmacology and Toxicology, Michigan State University, East Lansing (J.M.D.-O., C.F., K.D., W.F.J., A.M.D.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., I.Z.J.)
| | - Iris Z Jaffe
- From the Department of Pharmacology and Toxicology, Michigan State University, East Lansing (J.M.D.-O., C.F., K.D., W.F.J., A.M.D.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., I.Z.J.)
| | - William F Jackson
- From the Department of Pharmacology and Toxicology, Michigan State University, East Lansing (J.M.D.-O., C.F., K.D., W.F.J., A.M.D.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., I.Z.J.)
| | - Anne M Dorrance
- From the Department of Pharmacology and Toxicology, Michigan State University, East Lansing (J.M.D.-O., C.F., K.D., W.F.J., A.M.D.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., I.Z.J.)
| |
Collapse
|
10
|
Ruhs S, Nolze A, Hübschmann R, Grossmann C. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Nongenomic effects via the mineralocorticoid receptor. J Endocrinol 2017; 234:T107-T124. [PMID: 28348113 DOI: 10.1530/joe-16-0659] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
The mineralocorticoid receptor (MR) belongs to the steroid hormone receptor family and classically functions as a ligand-dependent transcription factor. It is involved in water-electrolyte homeostasis and blood pressure regulation but independent from these effects also furthers inflammation, fibrosis, hypertrophy and remodeling in cardiovascular tissues. Next to genomic effects, aldosterone elicits very rapid actions within minutes that do not require transcription or translation and that occur not only in classical MR epithelial target organs like kidney and colon but also in nonepithelial tissues like heart, vasculature and adipose tissue. Most of these effects can be mediated by classical MR and its crosstalk with different signaling cascades. Near the plasma membrane, the MR seems to be associated with caveolin and striatin as well as with receptor tyrosine kinases like EGFR, PDGFR and IGF1R and G protein-coupled receptors like AT1 and GPER1, which then mediate nongenomic aldosterone effects. GPER1 has also been named a putative novel MR. There is a close interaction and functional synergism between the genomic and the nongenomic signaling so that nongenomic signaling can lead to long-term effects and support genomic actions. Therefore, understanding nongenomic aldosterone/MR effects is of potential relevance for modulating genomic aldosterone effects and may provide additional targets for intervention.
Collapse
Affiliation(s)
- Stefanie Ruhs
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexander Nolze
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| | - Ralf Hübschmann
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Grossmann
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
11
|
Ong GSY, Young MJ. Mineralocorticoid regulation of cell function: the role of rapid signalling and gene transcription pathways. J Mol Endocrinol 2017; 58:R33-R57. [PMID: 27821439 DOI: 10.1530/jme-15-0318] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/06/2016] [Indexed: 12/22/2022]
Abstract
The mineralocorticoid receptor (MR) and mineralocorticoids regulate epithelial handling of electrolytes, and induces diverse effects on other tissues. Traditionally, the effects of MR were ascribed to ligand-receptor binding and activation of gene transcription. However, the MR also utilises a number of intracellular signalling cascades, often by transactivating unrelated receptors, to change cell function more rapidly. Although aldosterone is the physiological mineralocorticoid, it is not the sole ligand for MR. Tissue-selective and mineralocorticoid-specific effects are conferred through the enzyme 11β-hydroxysteroid dehydrogenase 2, cellular redox status and properties of the MR itself. Furthermore, not all aldosterone effects are mediated via MR, with implication of the involvement of other membrane-bound receptors such as GPER. This review will describe the ligands, receptors and intracellular mechanisms available for mineralocorticoid hormone and receptor signalling and illustrate their complex interactions in physiology and disease.
Collapse
Affiliation(s)
- Gregory S Y Ong
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of MedicineSchool of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Morag J Young
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of PhysiologySchool of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
12
|
Mansley MK, Watt GB, Francis SL, Walker DJ, Land SC, Bailey MA, Wilson SM. Dexamethasone and insulin activate serum and glucocorticoid-inducible kinase 1 (SGK1) via different molecular mechanisms in cortical collecting duct cells. Physiol Rep 2016; 4:4/10/e12792. [PMID: 27225626 PMCID: PMC4886164 DOI: 10.14814/phy2.12792] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 01/12/2023] Open
Abstract
Serum and glucocorticoid-inducible kinase 1 (SGK1) is a protein kinase that contributes to the hormonal control of renal Na(+) retention by regulating the abundance of epithelial Na(+) channels (ENaC) at the apical surface of the principal cells of the cortical collecting duct (CCD). Although glucocorticoids and insulin stimulate Na(+) transport by activating SGK1, the responses follow different time courses suggesting that these hormones act by different mechanisms. We therefore explored the signaling pathways that allow dexamethasone and insulin to stimulate Na(+) transport in mouse CCD cells (mpkCCDcl4). Dexamethasone evoked a progressive augmentation of electrogenic Na(+) transport that became apparent after ~45 min latency and was associated with increases in SGK1 activity and abundance and with increased expression of SGK1 mRNA Although the catalytic activity of SGK1 is maintained by phosphatidylinositol-OH-3-kinase (PI3K), dexamethasone had no effect upon PI3K activity. Insulin also stimulated Na(+) transport but this response occurred with no discernible latency. Moreover, although insulin also activated SGK1, it had no effect upon SGK1 protein or mRNA abundance. Insulin did, however, evoke a clear increase in cellular PI3K activity. Our data are consistent with earlier work, which shows that glucocorticoids regulate Na(+) retention by inducing sgk1 gene expression, and also establish that this occurs independently of increased PI3K activity. Insulin, on the other hand, stimulates Na(+) transport via a mechanism independent of sgk1 gene expression that involves PI3K activation. Although both hormones act via SGK1, our data show that they activate this kinase by distinct physiological mechanisms.
Collapse
Affiliation(s)
- Morag K Mansley
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, UK
| | - Gordon B Watt
- Medical Research Institute, College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Sarah L Francis
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, UK
| | - David J Walker
- Medical Research Institute, College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Stephen C Land
- Medical Research Institute, College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Matthew A Bailey
- The British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Stuart M Wilson
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, UK
| |
Collapse
|
13
|
Bieth B, Bornkamp B, Toutain C, Garcia R, Mochel JP. Multiple comparison procedure and modeling: a versatile tool for evaluating dose-response relationships in veterinary pharmacology - a case study with furosemide. J Vet Pharmacol Ther 2016; 39:539-546. [PMID: 27166146 DOI: 10.1111/jvp.12313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/21/2016] [Indexed: 12/22/2022]
Abstract
Congestive heart failure (CHF) is a leading cause of mortality with an increasing prevalence in human and canine populations. While furosemide is a loop diuretic prescribed for the majority of CHF patients to reduce fluid retention, it also activates the renin-angiotensin aldosterone system (RAAS) which further contributes to the accelerated progression of heart failure. Our objective was to quantify the effect of furosemide on diuresis, renin activity (RA), and aldosterone (AL) in dogs, using a combined multiple comparisons and model-based approach (MCP-Mod). Twenty-four healthy beagle dogs were allocated to four treatment groups (saline vs. furosemide 1, 2, and 4 mg/kg i.m., q12 h for 5 days). Data from RA and AL values at furosemide trough concentrations, as well as 24-h Diuresis, were analyzed using the MCP-Mod procedure. A combination of Emax models adequately described the dose-response relationships of furosemide for the various endpoints. The dose-response curves of RA and AL were found to be well in agreement, with an apparent shallower slope compared with 24-h Diuresis. The research presented herein constitutes the first application of MCP-Mod in Veterinary Medicine. Our data show that furosemide produces a submaximal effect on diuresis at doses lower than those identified to activate the circulating RAAS.
Collapse
Affiliation(s)
- B Bieth
- Department of Pharmacometrics, Biostatistical Sciences & Pharmacometrics, Novartis Pharma AG, Basel, Switzerland.
| | - B Bornkamp
- Statistical Methodology, Biostatistical Sciences & Pharmacometrics, Novartis Pharma AG, Basel, Switzerland
| | - C Toutain
- Companion Animal Development, Novartis Animal Health, Basel, Switzerland
| | - R Garcia
- New Product Development, Novartis Animal Health US, Inc., Greensboro, NC, USA
| | - J P Mochel
- Department of Pharmacometrics, Biostatistical Sciences & Pharmacometrics, Novartis Pharma AG, Basel, Switzerland.,Department of Pharmacology, Leiden-Academic Centre for Drug Research, Leiden, The Netherlands
| |
Collapse
|
14
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Vascular smooth muscle cell in atherosclerosis. Acta Physiol (Oxf) 2015; 214:33-50. [PMID: 25677529 DOI: 10.1111/apha.12466] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 12/30/2022]
Abstract
Vascular smooth muscle cells (VSMCs) exhibit phenotypic and functional plasticity in order to respond to vascular injury. In case of the vessel damage, VSMCs are able to switch from the quiescent 'contractile' phenotype to the 'proinflammatory' phenotype. This change is accompanied by decrease in expression of smooth muscle (SM)-specific markers responsible for SM contraction and production of proinflammatory mediators that modulate induction of proliferation and chemotaxis. Indeed, activated VSMCs could efficiently proliferate and migrate contributing to the vascular wall repair. However, in chronic inflammation that occurs in atherosclerosis, arterial VSMCs become aberrantly regulated and this leads to increased VSMC dedifferentiation and extracellular matrix formation in plaque areas. Proatherosclerotic switch in VSMC phenotype is a complex and multistep mechanism that may be induced by a variety of proinflammatory stimuli and hemodynamic alterations. Disturbances in hemodynamic forces could initiate the proinflammatory switch in VSMC phenotype even in pre-clinical stages of atherosclerosis. Proinflammatory signals play a crucial role in further dedifferentiation of VSMCs in affected vessels and propagation of pathological vascular remodelling.
Collapse
Affiliation(s)
- D. A. Chistiakov
- Research Center for Children's Health; Moscow Russia
- The Mount Sinai Community Clinical Oncology Program; Mount Sinai Comprehensive Cancer Center; Mount Sinai Medical Center; Miami Beach FL USA
| | - A. N. Orekhov
- Institute for Atherosclerosis; Skolkovo Innovative Center; Moscow Russia
- Laboratory of Angiopathology; Institute of General Pathology and Pathophysiology; Russian Academy of Sciences; Moscow Russia
- Department of Biophysics; Biological Faculty; Moscow State University; Moscow Russia
| | - Y. V. Bobryshev
- Institute for Atherosclerosis; Skolkovo Innovative Center; Moscow Russia
- Faculty of Medicine; School of Medical Sciences; University of New South Wales; Kensington Sydney NSW Australia
- School of Medicine; University of Western Sydney; Campbelltown NSW Australia
| |
Collapse
|
15
|
Chronobiology and Pharmacologic Modulation of the Renin–Angiotensin–Aldosterone System in Dogs: What Have We Learned? Rev Physiol Biochem Pharmacol 2015; 169:43-69. [DOI: 10.1007/112_2015_27] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Luther JM. Effects of aldosterone on insulin sensitivity and secretion. Steroids 2014; 91:54-60. [PMID: 25194457 PMCID: PMC4252580 DOI: 10.1016/j.steroids.2014.08.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/25/2014] [Accepted: 08/17/2014] [Indexed: 12/19/2022]
Abstract
Dr. Conn originally reported an increased risk of diabetes in patients with hyperaldosteronism in the 1950s, although the mechanism remains unclear. Aldosterone-induced hypokalemia was initially described to impair glucose tolerance by impairing insulin secretion. Correction of hypokalemia by potassium supplementation only partially restored insulin secretion and glucose tolerance, however. Aldosterone also impairs glucose-stimulated insulin secretion in isolated pancreatic islets via reactive oxygen species in a mineralocorticoid receptor-independent manner. Aldosterone-induced mineralocorticoid receptor activation also impairs insulin sensitivity in adipocytes and skeletal muscle. Aldosterone may produce insulin resistance secondarily by altering potassium, increasing inflammatory cytokines, and reducing beneficial adipokines such as adiponectin. Renin-angiotensin system antagonists reduce circulating aldosterone concentrations and also the risk of type 2 diabetes in clinical trials. These data suggest that primary and secondary hyperaldosteronism may contribute to worsening glucose tolerance by impairing insulin sensitivity or insulin secretion in humans. Future studies should define the effects of MR antagonists and aldosterone on insulin secretion and sensitivity in humans.
Collapse
Affiliation(s)
- James M Luther
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
17
|
Meinel S, Gekle M, Grossmann C. Mineralocorticoid receptor signaling: crosstalk with membrane receptors and other modulators. Steroids 2014; 91:3-10. [PMID: 24928729 DOI: 10.1016/j.steroids.2014.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/16/2014] [Accepted: 05/28/2014] [Indexed: 12/30/2022]
Abstract
The mineralocorticoid receptor (MR) belongs to the steroid receptor superfamily. Classically, it acts as a ligand-bound transcription factor in epithelial tissues, where it regulates water and electrolyte homeostasis and controls blood pressure. Additionally, the MR has been shown to elicit pathophysiological effects including inflammation, fibrosis and remodeling processes in the cardiovascular system and the kidneys and MR antagonists have proven beneficial for patients with certain cardiovascular and renal disease. The underlying molecular mechanisms that mediate MR effects have not been fully elucidated but very likely rely on interactions with other signaling pathways in addition to genomic actions at hormone response elements. In this review we will focus on interactions of MR signaling with different membrane receptors, namely receptor tyrosine kinases and the angiotensin II receptor because of their potential relevance for disease. In addition, GPR30 is discussed as a new aldosterone receptor. To gain insights into the problem why the MR only seems to mediate pathophysiological effects in the presence of additional permissive factors we will also briefly discuss factors that lead to modulation of MR activity as well. Overall, MR signaling is part of an intricate network that still needs to be investigated further.
Collapse
Affiliation(s)
- S Meinel
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Germany
| | - M Gekle
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Germany
| | - C Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
18
|
Bruder-Nascimento T, da Silva MAB, Tostes RC. The involvement of aldosterone on vascular insulin resistance: implications in obesity and type 2 diabetes. Diabetol Metab Syndr 2014; 6:90. [PMID: 25352918 PMCID: PMC4210491 DOI: 10.1186/1758-5996-6-90] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/02/2014] [Indexed: 12/31/2022] Open
Abstract
Aldosterone, a mineralocorticoid hormone produced at the adrenal glands, controls corporal hydroelectrolytic balance and, consequently, has a key role in blood pressure adjustments. Aldosterone also has direct effects in many organs, including the vasculature, leading to many cellular events that influence proliferation, migration, inflammation, redox balance and apoptosis. Aldosterone effects depend on its binding to mineralocorticoid receptors (MR). Aldosterone binding to MR triggers two pathways, the genomic pathway and the non-genomic pathway. In the vasculature e.g., activation of the non-genomic pathway by aldosterone induces rapid effects that involve activation of kinases, phosphatases, transcriptional factors and NAD(P)H oxidases. Aldosterone also plays a crucial role on systemic and vascular insulin resistance, i.e. the inability of a tissue to respond to insulin. Insulin has a critical role on cell function and vascular insulin resistance is considered an early contributor to vascular damage. Accordingly, aldosterone impairs insulin receptor (IR) signaling by altering the phosphatidylinositol 3-kinase (PI3K)/nitric oxide (NO) pathway and by inducing oxidative stress and crosstalk between the IR and the insulin-like growth factor-1 receptor (IGF-1R). This mini-review focuses on the relationship between aldosterone and vascular insulin resistance. Evidence indicating MR antagonists as therapeutic tools to minimize vascular injury associated with obesity and diabetes type 2 is also discussed.
Collapse
Affiliation(s)
- Thiago Bruder-Nascimento
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900 Brazil
| | - Marcondes AB da Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900 Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900 Brazil
| |
Collapse
|
19
|
Maron BA, Leopold JA. The role of the renin-angiotensin-aldosterone system in the pathobiology of pulmonary arterial hypertension (2013 Grover Conference series). Pulm Circ 2014; 4:200-10. [PMID: 25006439 PMCID: PMC4070776 DOI: 10.1086/675984] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/17/2014] [Indexed: 12/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is associated with aberrant pulmonary vascular remodeling that leads to increased pulmonary artery pressure, pulmonary vascular resistance, and right ventricular dysfunction. There is now accumulating evidence that the renin-angiotensin-aldosterone system is activated and contributes to cardiopulmonary remodeling that occurs in PAH. Increased plasma and lung tissue levels of angiotensin and aldosterone have been detected in experimental models of PAH and shown to correlate with cardiopulmonary hemodynamics and pulmonary vascular remodeling. These processes are abrogated by treatment with angiotensin receptor or mineralocorticoid receptor antagonists. At a cellular level, angiotensin and aldosterone activate oxidant stress signaling pathways that decrease levels of bioavailable nitric oxide, increase inflammation, and promote cell proliferation, migration, extracellular matrix remodeling, and fibrosis. Clinically, enhanced renin-angiotensin activity and elevated levels of aldosterone have been detected in patients with PAH, which suggests a role for angiotensin and mineralocorticoid receptor antagonists in the treatment of PAH. This review will examine the current evidence linking renin-angiotensin-aldosterone system activation to PAH with an emphasis on the cellular and molecular mechanisms that are modulated by aldosterone and may be of importance for the pathobiology of PAH.
Collapse
Affiliation(s)
- Bradley A. Maron
- Brigham and Women’s Hospital, Division of Cardiovascular Medicine, Boston, Massachusetts, USA
- Veterans Affairs Boston Healthcare System, Department of Cardiology, 1400 VFW Parkway, Boston, Massachusetts, USA
| | - Jane A. Leopold
- Brigham and Women’s Hospital, Division of Cardiovascular Medicine, Boston, Massachusetts, USA
| |
Collapse
|
20
|
The Renin-Angiotensin-aldosterone system in vascular inflammation and remodeling. Int J Inflam 2014; 2014:689360. [PMID: 24804145 PMCID: PMC3997861 DOI: 10.1155/2014/689360] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 12/31/2022] Open
Abstract
The RAAS through its physiological effectors plays a key role in promoting and maintaining inflammation. Inflammation is an important mechanism in the development and progression of CVD such as hypertension and atherosclerosis. In addition to its main role in regulating blood pressure and its role in hypertension, RAAS has proinflammatory and profibrotic effects at cellular and molecular levels. Blocking RAAS provides beneficial effects for the treatment of cardiovascular and renal diseases. Evidence shows that inhibition of RAAS positively influences vascular remodeling thus improving CVD outcomes. The beneficial vascular effects of RAAS inhibition are likely due to decreasing vascular inflammation, oxidative stress, endothelial dysfunction, and positive effects on regeneration of endothelial progenitor cells. Inflammatory factors such as ICAM-1, VCAM-1, TNFα, IL-6, and CRP have key roles in mediating vascular inflammation and blocking RAAS negatively modulates the levels of these inflammatory molecules. Some of these inflammatory markers are clinically associated with CVD events. More studies are required to establish long-term effects of RAAS inhibition on vascular inflammation, vascular cells regeneration, and CVD clinical outcomes. This review presents important information on RAAS's role on vascular inflammation, vascular cells responses to RAAS, and inhibition of RAAS signaling in the context of vascular inflammation, vascular remodeling, and vascular inflammation-associated CVD. Nevertheless, the review also equates the need to rethink and rediscover new RAAS inhibitors.
Collapse
|
21
|
Fazal L, Azibani F, Bihry N, Coutance G, Polidano E, Merval R, Vodovar N, Launay J, Delcayre C, Samuel J. Akt‐mediated cardioprotective effects of aldosterone in type 2 diabetic mice. FASEB J 2014; 28:2430-40. [DOI: 10.1096/fj.13-239822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Loubina Fazal
- Unité Mixte de Recherche en Santé (UMR‐S) 942Institut National de la Santé et de la Recherche Médicale (INSERM)Biochemistry DepartmentLariboisiere HospitalParisFrance
- Paris Diderot UniversityParisFrance
| | - Feriel Azibani
- Unité Mixte de Recherche en Santé (UMR‐S) 942Institut National de la Santé et de la Recherche Médicale (INSERM)Biochemistry DepartmentLariboisiere HospitalParisFrance
| | - Nicolas Bihry
- Unité Mixte de Recherche en Santé (UMR‐S) 942Institut National de la Santé et de la Recherche Médicale (INSERM)Biochemistry DepartmentLariboisiere HospitalParisFrance
- Assistance Publique–Hôpitaux de Paris (AP‐HP)Biochemistry DepartmentLariboisiere HospitalParisFrance
| | - Guillaume Coutance
- Unité Mixte de Recherche en Santé (UMR‐S) 942Institut National de la Santé et de la Recherche Médicale (INSERM)Biochemistry DepartmentLariboisiere HospitalParisFrance
- Paris Diderot UniversityParisFrance
| | - Evelyne Polidano
- Unité Mixte de Recherche en Santé (UMR‐S) 942Institut National de la Santé et de la Recherche Médicale (INSERM)Biochemistry DepartmentLariboisiere HospitalParisFrance
| | - Régine Merval
- Unité Mixte de Recherche en Santé (UMR‐S) 942Institut National de la Santé et de la Recherche Médicale (INSERM)Biochemistry DepartmentLariboisiere HospitalParisFrance
| | - Nicolas Vodovar
- Unité Mixte de Recherche en Santé (UMR‐S) 942Institut National de la Santé et de la Recherche Médicale (INSERM)Biochemistry DepartmentLariboisiere HospitalParisFrance
| | - Jean‐Marie Launay
- Unité Mixte de Recherche en Santé (UMR‐S) 942Institut National de la Santé et de la Recherche Médicale (INSERM)Biochemistry DepartmentLariboisiere HospitalParisFrance
- Assistance Publique–Hôpitaux de Paris (AP‐HP)Biochemistry DepartmentLariboisiere HospitalParisFrance
- Paris Descartes UniversityParisFrance
| | - Claude Delcayre
- Unité Mixte de Recherche en Santé (UMR‐S) 942Institut National de la Santé et de la Recherche Médicale (INSERM)Biochemistry DepartmentLariboisiere HospitalParisFrance
- Paris Diderot UniversityParisFrance
| | - Jane‐Lise Samuel
- Unité Mixte de Recherche en Santé (UMR‐S) 942Institut National de la Santé et de la Recherche Médicale (INSERM)Biochemistry DepartmentLariboisiere HospitalParisFrance
- Assistance Publique–Hôpitaux de Paris (AP‐HP)Biochemistry DepartmentLariboisiere HospitalParisFrance
- Paris Diderot UniversityParisFrance
| |
Collapse
|
22
|
Petrovich E, Asher C, Garty H. Induction of FKBP51 by aldosterone in intestinal epithelium. J Steroid Biochem Mol Biol 2014; 139:78-87. [PMID: 24139875 DOI: 10.1016/j.jsbmb.2013.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/10/2013] [Accepted: 10/06/2013] [Indexed: 11/15/2022]
Abstract
Screening female rat distal colon preparations for aldosterone-induced genes identified the Hsp90-binding immunophilin FKBP51 as a major aldosterone-induced mRNA and protein. Limited induction of FKBP51 was observed also in other aldosterone-responsive tissues such as kidney medulla and heart. Ex vivo measurements in colonic tissue have characterized time course, dose response and receptor specificity of the induction of FKBP51. FKBP51 mRNA and protein were strongly up regulated by physiological concentrations of aldosterone in a late (greater than 2.5h) response to the hormone. Maximal increase in FKBP51 mRNA requires aldosterone concentrations that are higher than those needed to fully occupy the mineralocorticoid receptor (MR). Yet, the response is fully inhibited by the MR antagonist spironolactone and not inhibited and even stimulated by the glucocorticoid receptor (GR) antagonist RU486. These and related findings cannot be explained by a simple activation and dimerization of either MR or GR but are in agreement with response mediated by an MR-GR heterodimer. Overexpression or silencing FKBP51 in the kidney collecting duct cell line M1 had little or no effect on the aldosterone-induced increase in transepithelial Na(+) transport.
Collapse
Affiliation(s)
- Ekaterina Petrovich
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
23
|
Bender SB, McGraw AP, Jaffe IZ, Sowers JR. Mineralocorticoid receptor-mediated vascular insulin resistance: an early contributor to diabetes-related vascular disease? Diabetes 2013; 62:313-9. [PMID: 23349535 PMCID: PMC3554383 DOI: 10.2337/db12-0905] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two-thirds of adults in the U.S. are overweight or obese, and another 26 million have type 2 diabetes (T2D). Patients with diabetes and/or the metabolic syndrome have a significantly increased risk of heart attack and stroke compared with people with normal insulin sensitivity. Decreased insulin sensitivity in cardiovascular tissues as well as in traditional targets of insulin metabolic signaling, such as skeletal muscle, is an underlying abnormality in obesity, hypertension, and T2D. In the vasculature, insulin signaling plays a critical role in normal vascular function via endothelial cell nitric oxide production and modulation of Ca(2+) handling and sensitivity in vascular smooth muscle cells. Available evidence suggests that impaired vascular insulin sensitivity may be an early, perhaps principal, defect of vascular function and contributor to the pathogenesis of vascular disease in persons with obesity, hypertension, and T2D. In the overweight and obese individual, as well as in persons with hypertension, systemic and vascular insulin resistance often occur in concert with elevations in plasma aldosterone. Indeed, basic and clinical studies have demonstrated that elevated plasma aldosterone levels predict the development of insulin resistance and that aldosterone directly interferes with insulin signaling in vascular tissues. Furthermore, elevated plasma aldosterone levels are associated with increased heart attack and stroke risk. Conversely, renin-angiotensin-aldosterone system and mineralocorticoid receptor (MR) antagonism reduces cardiovascular risk in these patient populations. Recent and accumulating evidence in this area has implicated excessive Ser phosphorylation and proteosomal degradation of the docking protein, insulin receptor substrate, and enhanced signaling through hybrid insulin/IGF-1 receptor as important mechanisms underlying aldosterone-mediated interruption of downstream vascular insulin signaling. Prevention or restoration of these changes via blockade of aldosterone action in the vascular wall with MR antagonists (i.e., spironolactone, eplerenone) may therefore account for the clinical benefit of these compounds in obese and diabetic patients with cardiovascular disease. This review will highlight recent evidence supporting the hypothesis that aldosterone and MR signaling represent an ideal candidate pathway linking early promoters of diabetes, especially overnutrition and obesity, to vascular insulin resistance, dysfunction, and disease.
Collapse
Affiliation(s)
- Shawn B Bender
- Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA.
| | | | | | | |
Collapse
|
24
|
Fu GX, Xu CC, Zhong Y, Zhu DL, Gao PJ. Aldosterone-induced osteopontin expression in vascular smooth muscle cells involves MR, ERK, and p38 MAPK. Endocrine 2012; 42:676-83. [PMID: 22588951 DOI: 10.1007/s12020-012-9675-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/06/2012] [Indexed: 01/19/2023]
Abstract
Osteopontin (OPN) is known to be one of the cytokines that is involved in the vascular inflammation caused by aldosterone (Ald). Previous reports have shown that Ald increases OPN expression, and the mechanisms for this remain to be clarified. In this study, we investigated how Ald increases OPN expression in the vascular smooth muscle cells (VSMCs) of rats. Ald increased OPN expression time dependently as well as dose dependently. This increase was diminished by spironolactone, a mineralocorticoid receptor (MR) antagonist. PD98059, an inhibitor of p42/44 MAPK pathway, and SB203580, an inhibitor of p38 MAPK pathway, suppressed Ald-induced OPN expression and secretion in VSMCs. VSMCs migration stimulated by aldosterone required OPN expression. In conclusion, these data suggest that Ald-induced OPN expression in VSMC is mediated by MR and signaling cascades involving ERK and p38 MAPK. These molecules may represent therapeutic targets for the prevention of pathological vascular remodeling.
Collapse
MESH Headings
- Aldosterone/pharmacology
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Blotting, Western
- Carotid Artery Injuries/metabolism
- Cell Movement/drug effects
- Cells, Cultured
- Enzyme-Linked Immunosorbent Assay
- Immunohistochemistry
- Luciferases/metabolism
- MAP Kinase Signaling System/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Neointima/pathology
- Oligonucleotides, Antisense/pharmacology
- Osteopontin/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptors, Mineralocorticoid/metabolism
- Transfection
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Guo-Xiang Fu
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
Chao JT, Davis MJ. The roles of integrins in mediating the effects of mechanical force and growth factors on blood vessels in hypertension. Curr Hypertens Rep 2012; 13:421-9. [PMID: 21879361 DOI: 10.1007/s11906-011-0227-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hypertension is characterized by a sustained increase in vasoconstriction and attenuated vasodilation in the face of elevated mechanical stress in the blood vessel wall. To adapt to the increased stress, the vascular smooth muscle cell and its surrounding environment undergo structural and functional changes known as vascular remodeling. Multiple mechanisms underlie the remodeling process, including increased expression of humoral factors and their receptors as well as adhesion molecules and their receptors, all of which appear to collaborate and interact in the response to pressure elevation. In this review, we focus on the interactions between integrin signaling pathways and the activation of growth factor receptors in the response to the increased mechanical stress experienced by blood vessels in hypertension.
Collapse
Affiliation(s)
- Jun-Tzu Chao
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, 1 Hospital Drive, Columbia, MO 65212, USA
| | | |
Collapse
|
26
|
Sherajee SJ, Fujita Y, Rafiq K, Nakano D, Mori H, Masaki T, Hara T, Kohno M, Nishiyama A, Hitomi H. Aldosterone induces vascular insulin resistance by increasing insulin-like growth factor-1 receptor and hybrid receptor. Arterioscler Thromb Vasc Biol 2011; 32:257-63. [PMID: 22173225 DOI: 10.1161/atvbaha.111.240697] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE We previously showed that aldosterone induces insulin resistance in rat vascular smooth muscle cells (VSMCs). Because insulin-like growth factor-1 receptor (IGF1R) affects insulin signaling, we hypothesized that aldosterone induces vascular insulin resistance and remodeling via upregulation of IGF1R and its hybrid insulin/insulin-like growth factor-1 receptor. METHODS AND RESULTS Hybrid receptor expression was measured by immunoprecipitation. Hypertrophy of VSMCs was evaluated by (3)H-labeled leucine incorporation. Aldosterone (10 nmol/L) significantly increased protein and mRNA expression of IGF1R and hybrid receptor in VSMCs but did not affect insulin receptor expression. Mineralocorticoid receptor blockade with eplerenone inhibited aldosterone-induced increases in IGF1R and hybrid receptor. Aldosterone augmented insulin (100 nmol/L)-induced extracellular signal-regulated kinase 1/2 phosphorylation. Insulin-induced leucine incorporation and α-smooth muscle actin expression were also augmented by aldosterone in VSMCs. These aldosterone-induced changes were significantly attenuated by eplerenone or picropodophyllin, an IGF1R inhibitor. Chronic infusion of aldosterone (0.75 μg/hour) increased blood pressure and aggravated glucose metabolism in rats. Expression of hybrid receptor, azan-positive area, and oxidative stress in aorta was increased in aldosterone-infused rats. Spironolactone and tempol prevented these aldosterone-induced changes. CONCLUSIONS Aldosterone induces vascular remodeling through IGF1R- and hybrid receptor-dependent vascular insulin resistance. Mineralocorticoid receptor blockade may attenuate angiopathy in hypertensive patients with hyperinsulinemia.
Collapse
Affiliation(s)
- Shamshad J Sherajee
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nguyen Dinh Cat A, Briones AM, Callera GE, Yogi A, He Y, Montezano AC, Touyz RM. Adipocyte-Derived Factors Regulate Vascular Smooth Muscle Cells Through Mineralocorticoid and Glucocorticoid Receptors. Hypertension 2011; 58:479-88. [DOI: 10.1161/hypertensionaha.110.168872] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adipose tissue influences vascular function through adipocyte-derived factors, including components of the renin-angiotensin-aldosterone system. Molecular mechanisms underlying these phenomena are elusive. We investigated the role of adipocyte-derived factors on mitogen-activated protein kinases (MAPKs), proinflammatory status, apoptosis, and mitogenic signaling in vascular smooth muscle cells (VSMCs) and questioned whether these effects involve mineralocorticoid receptor (MR), glucocorticoid receptor (GR), and angiotensin II type 1 receptor (AT
1
R). Cultured mouse VSMCs were exposed to adipocyte-conditioned medium (ACM) from differentiated 3T3-L1 adipocytes. ACM induced phosphorylation of stress-activated protein kinase/c-Jun N-terminal kinase, p38MAPK, and extracellular signal–regulated kinase 1/2 and increased expression of proinflammatory and proliferative markers in VSMCs. Eplerenone (MR antagonist), mifepristone (GR antagonist), and candesartan (AT
1
R antagonist) inhibited ACM-induced effects on extracellular signal–regulated kinase 1/2, p38MAPK, and proliferating cell nuclear antigen, without influencing apoptosis (Bax, Bcl, and caspase 3). Stress-activated protein kinase/c-Jun N-terminal kinase phosphorylation was inhibited by mifepristone and candesartan but not by eplerenone. ACM-induced increase of fibronectin, vascular cell adhesion molecule 1, and plasminogen activator inhibitor 1 expression was blocked by MR and AT
1
R antagonism but not by GR inhibition. ACM has no effect on GR, MR, and AT
1
R expression. Our data show that adipocyte-derived factors influence MAPK signaling, leading to VSMC proinflammatory and profibrotic responses through distinct pathways. Although ACM stimulates p38MAPK and extracellular signal–regulated kinase 1/2 phosphorylation through MR, GR, and AT
1
R, activation of stress-activated protein kinase/c-Jun N-terminal kinase involves GR and AT
1
R. These findings suggest that adipocyte-derived factors regulate VSMC function through specific MAPKs linked to MR, GR, and AT
1
R, a posttranslational phenomenon, because ACM did not influence receptor expression. Such cross-talk between adipocytes and VSMCs may provide a potential molecular mechanism linking renin-angiotensin-aldosterone system, adipocytes, and vascular function.
Collapse
Affiliation(s)
- Aurelie Nguyen Dinh Cat
- From the Ottawa Hospital Research Institute/University of Ottawa, Ottawa, Ontario, Canada; Current address (A.M.B.): Dpto Farmacología y Terapéutica, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Ana M. Briones
- From the Ottawa Hospital Research Institute/University of Ottawa, Ottawa, Ontario, Canada; Current address (A.M.B.): Dpto Farmacología y Terapéutica, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Glaucia E. Callera
- From the Ottawa Hospital Research Institute/University of Ottawa, Ottawa, Ontario, Canada; Current address (A.M.B.): Dpto Farmacología y Terapéutica, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Alvaro Yogi
- From the Ottawa Hospital Research Institute/University of Ottawa, Ottawa, Ontario, Canada; Current address (A.M.B.): Dpto Farmacología y Terapéutica, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Ying He
- From the Ottawa Hospital Research Institute/University of Ottawa, Ottawa, Ontario, Canada; Current address (A.M.B.): Dpto Farmacología y Terapéutica, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Augusto C. Montezano
- From the Ottawa Hospital Research Institute/University of Ottawa, Ottawa, Ontario, Canada; Current address (A.M.B.): Dpto Farmacología y Terapéutica, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Rhian M. Touyz
- From the Ottawa Hospital Research Institute/University of Ottawa, Ottawa, Ontario, Canada; Current address (A.M.B.): Dpto Farmacología y Terapéutica, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|