1
|
Huang D, Li X, Pan M, Liu Y, Qin G, Chen Z, Yu X, Mai K, Zhang W. Comprehensive analysis of the xbp1 gene in Pacific abalone Haliotis discus hannai: Structure, expression, and role in heat stress response. Int J Biol Macromol 2025; 298:139771. [PMID: 39800022 DOI: 10.1016/j.ijbiomac.2025.139771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
The present study explores the x-box binding protein 1 (xbp1) gene in Haliotis discus hannai (Pacific abalone), focusing on its structure, expression, and functional role under heat stress. Southern blot revealed two copies of xbp1 in the intestine and mantle, one in the gill and muscle, and no detection in the digestive gland. mRNA expression level of xbp1 was highest in the gill, followed by the mantle, intestine, and muscle, with the digestive gland showing the lowest expression. Actinomycin D treatment demonstrated that xbp1 mRNA stability varied among tissues, with slower degradation in the gill and mantle, while rapid degradation was observed in the digestive gland. Heat stress caused a 20 bp fragment removal from xbp1 mRNA, producing spliced xbp1 (xbp1s), with a conserved inositol-requiring enzyme 1α (IRE1α) cleavage motif (5'- CAGCACCUGCUGAUCCUCUG -3'). Genome walking was used to obtain the promoter sequences of downstream genes regulated by xbp1s. Through sequence conservation analysis, the binding sites of xbp1s on these promoters were identified in Pacific abalone. Yeast one-hybrid (Y1H) assays confirmed xbp1s binding to these sites, and morpholino oligonucleotides (MO) treatment effectively suppressed xbp1s production. Western blot analysis demonstrated that heat stress induced the expression of HDEL-related proteins, while MO injection significantly reduced their expression under both basal and heat stress conditions. Immunofluorescence analysis revealed decreased endoplasmic reticulum (ER) chaperone glucose-regulated protein 78 (GRP78) levels and increased apoptosis in MO-treated abalone under heat stress, suggesting a compromised ER stress response. These findings underscore XBP1's crucial role in regulating ER stress management and apoptotic processes, providing new insights into the functional significance of xbp1 in abalone's response to thermal stress.
Collapse
Affiliation(s)
- Dong Huang
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Xinxin Li
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Mingzhu Pan
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yue Liu
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Gaochan Qin
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Zhichu Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaojun Yu
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Li M, Zhao B, Wang J, Zhang H, Yang Y, Song S, Psifidi A, Wu W, Loor JJ, Xu C. Caveolin 1 in bovine liver is associated with fatty acid-induced lipid accumulation and the endoplasmic reticulum unfolded protein response: Role in fatty liver development. J Dairy Sci 2025; 108:1007-1021. [PMID: 39343220 DOI: 10.3168/jds.2024-25349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
Disruption of endoplasmic reticulum (ER) homeostasis (i.e., ER stress) is intrinsically linked with lipid metabolism disorders in dairy cows. Caveolin 1 (CAV1) is a ubiquitously expressed membrane-associated scaffolding protein involved in regulating the secretory pathway within the ER. Whether inhibiting the activity of CAV1 affects the ER and its potential role in hepatic lipid deposition in dairy cows is unknown. Biopsies of liver tissue from Holstein cows (median DIM = 13 d, range = 5-21 d) diagnosed as healthy (n = 6; hepatic triacylglycerol (TAG) levels <1%; median milk production = 38.9 kg/d, interquartile range = 38.0-40.8 kg/d) or suffering from fatty liver (n = 6; hepatic TAG levels >5%; median milk production = 36.6 kg/d, interquartile range = 35.7-38.1 kg/d) revealed that fatty liver was associated with lower abundance of the CAV1 gene and protein, higher phosphorylation (p) levels of PERK and IRE1α, and increased abundance of the ATF6, GRP78, and CHOP proteins, and several unfolded protein response (UPR) genes (ATF4, sXBP1, and GRP78). Proteins related to de novo fatty acid synthesis, including ACC1, SREBP-1c, PPARγ, and downstream targets genes of SREBP1 (ACACA and FASN) also had greater abundance. This in vivo analysis highlighted a mechanistic link between CAV1 protein abundance, ER stress, and lipid metabolism in fatty liver. A mechanistic study was then performed in vitro with primary hepatocytes isolated from 5 healthy calves (weight = 40-45 kg; 1 d old). Initially, hepatocytes were treated with free fatty acid (FFA; 1.2 mM) for 1, 3, 6, or 12 h. Treatment with FFA reduced CAV1 protein abundance linearly while reducing abundance of ER stress-related proteins, phosphorylated [p-] IRE1α, p-PERK, GRP78, ATF6, and CHOP. Proteins related to de novo fatty acid synthesis (ACC1, SREBP-1c, PPARγ) also increased linearly, and lipid droplets accumulated progressively over time following FFA treatment. Subsequently, to assess the role of CAV1 in FFA-induced ER stress and de novo fatty acid synthesis, hepatocytes were transfected with pCMV-CAV1 (cattle)-3 × FLAG-Neo (plasmid construct [pc-]CAV1) plasmid to overexpress CAV1 or with siRNA to silence CAV1 (siCAV1) transcription. Overexpression of CAV1 alleviated ER stress by reducing levels of p-PERK and p-IRE1α, as well as protein abundance of ATF6, GRP78, CHOP, and several UPR genes (GRP78, ATF4, and sXBP1). Similarly, CAV1 overexpression decreased protein abundance of ACC1, SREBP-1c, PPARγ, and downstream targets genes of SREBP1 (ACACA and FASN). Conversely, silencing CAV1 exacerbated FFA-induced ER stress and de novo fatty acid synthesis. Considering the negative role of FFA-induced ER stress on lipid accumulation in hepatocytes, a second in vitro experiment involved hepatocytes treated with 0.5 μg/mL tunicamycin (TM; a typical ER stress inducer) for 24 h with or without overexpressing CAV1 (pc-CAV1). Overexpressing CAV1 reversed TM-induced increases in mRNA and protein associated with ER stress and de novo fatty acid synthesis. Furthermore, use of hepatocytes transfected with pc-CAV1 for 48 h and subjected to co-immunoprecipitation revealed that CAV1 interacts with IRE1α and ATF6. Overall, the data suggest that CAV1 may help reduce hepatic ER stress and mitigate fatty acid synthesis by binding to and inhibiting IRE1α and ATF6 signaling.
Collapse
Affiliation(s)
- Ming Li
- College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Bichen Zhao
- College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Jingyi Wang
- College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Huijing Zhang
- College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Yue Yang
- College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Shihao Song
- College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Androniki Psifidi
- Department of Clinical Science and Services, Royal Veterinary College, North Mymms, Hertfordshire, AL9 7TA, United Kingdom
| | - Wenda Wu
- School of Food and Biological Engineering, University of Technology, Hefei 230009, China
| | - Juan J Loor
- Mammalian NutriPhysio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China.
| |
Collapse
|
3
|
Zhang H, Zhang L, Zhao X, Ma Y, Sun D, Bai Y, Liu W, Liang X, Liang H. Folic Acid Prevents High-Fat Diet-Induced Postpartum Weight Retention in Rats, Which Is Associated with a Reduction in Endoplasmic Reticulum Stress-Mediated Hepatic Lipogenesis. Nutrients 2024; 16:4377. [PMID: 39770997 PMCID: PMC11676124 DOI: 10.3390/nu16244377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Proactively preventing postpartum weight retention (PPWR) is one of the effective intervention strategies to reduce the occurrence of obesity in women. Population studies have shown that serum folate levels are closely related to body weight. The regulation of folic acid on lipid metabolism has been fully confirmed in both in vivo and in vitro studies. For many years, folic acid supplementation has been widely used in periconceptional women due to its role in preventing fetal neural tube defects. However, whether folic acid supplementation prior to and throughout pregnancy exerts preventive effects on PPWR remains uncertain. This study aims to investigate the preventive effect of folic acid on PPWR in rats and further explore the underlying mechanisms. METHODS In this study, pregnant rats were administered one of the dietary schedules: control diet (CON), high-fat diet (HF), control diet combined with folic acid (FA) and high-fat diet combined with folic acid (HF + FA). RESULTS We discovered that folic acid supplementation inhibited high-fat diet-induced elevations in body weight, visceral fat weight, liver weight, hepatic lipid levels and serum lipid levels at 1 week post-weaning (PW). Western blot analysis showed that folic acid supplementation inhibited the expression of endoplasmic reticulum (ER) stress-specific proteins including GRP78, PERK, eIF2α, IRE1α, XBP1 and ATF6, subsequently decreasing the expression of proteins related to lipid synthesis including SREBP-1c, ACC1 and FAS. CONCLUSIONS In conclusion, folic acid supplementation prior to and throughout pregnancy exerts preventive effects on high-fat diet-induced PPWR in rats, and the mechanism is associated with the inhibition of ER stress-mediated lipogenesis signaling pathways in the liver. Folic acid supplementation may serve as a potential strategy for preventing PPWR. In the future, the effectiveness of folic acid in PPWR prevention can be further verified by population studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.Z.); (L.Z.); (X.Z.); (Y.M.); (D.S.); (Y.B.); (W.L.); (X.L.)
| |
Collapse
|
4
|
Splichal RC, Chen K, Walton SP, Chan C. The Role of Endoplasmic Reticulum Stress on Reducing Recombinant Protein Production in Mammalian Cells. Biochem Eng J 2024; 210:109434. [PMID: 39220803 PMCID: PMC11360842 DOI: 10.1016/j.bej.2024.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Therapeutic recombinant protein production relies on industrial scale culture of mammalian cells to produce active proteins in quantities sufficient for clinical use. The combination of stresses from industrial cell culture environment and recombinant protein production can overwhelm the protein synthesis machinery in the endoplasmic reticulum (ER). This leads to a buildup of improperly folded proteins which induces ER stress. Cells respond to ER stress by activating the Unfolded Protein Response (UPR). To restore proteostasis, ER sensor proteins reduce global protein synthesis and increase chaperone protein synthesis, and if that is insufficient the proteins are degraded. If proteostasis is still not restored, apoptosis is initiated. Increasing evidence suggests crosstalk between ER proteostasis and DNA damage repair (DDR) pathways. External factors (e.g., metabolites) from the cellular environment as well as internal factors (e.g., transgene copy number) can impact genome stability. Failure to maintain genome integrity reduces cell viability and in turn protein production. This review focuses on the association between ER stress and processes that affect protein production and secretion. The processes mediated by ER stress, including inhibition of global protein translation, chaperone protein production, degradation of misfolded proteins, DNA repair, and protein secretion, impact recombinant protein production. Recombinant protein production can be reduced by ER stress through increased autophagy and protein degradation, reduced protein secretion, and reduced DDR response.
Collapse
Affiliation(s)
- R. Chauncey Splichal
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Kevin Chen
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - S. Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI, USA
- Department of Computer Science and Engineering, Michigan State University, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Medical Devices, Michigan State University, MI, USA
| |
Collapse
|
5
|
Kim G, Yoon KS, Ha J, Kang I, Choe W. The PPIase Activity of CypB Is Essential for the Activation of Both AKT/mTOR and XBP1s Signaling Pathways during the Differentiation of 3T3-L1 Preadipocytes. Nutrients 2024; 16:2465. [PMID: 39125345 PMCID: PMC11313753 DOI: 10.3390/nu16152465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, we undertook an extensive investigation to determine how CypB PPIase activity affects preadipocyte differentiation and lipid metabolism. Our findings revealed that inhibition of CypB's PPIase activity suppressed the expression of crucial proteins involved in adipocyte differentiation and induced changes in proteins regulating the cell cycle. Furthermore, we clarified the impact of CypB's PPIase activity on lipid metabolism via the AKT/mTOR signaling pathway. Additionally, we demonstrated the involvement of CypB's PPIase activity in lipid metabolism through the XBP1s pathway. These discoveries offer invaluable insights for devising innovative therapeutic strategies aimed at treating and averting obesity and its related health complications. Targeting CypB's PPIase activity may emerge as a promising avenue for addressing obesity-related conditions. Furthermore, our research opens up opportunities for creating new therapeutic strategies by enhancing our comprehension of the processes involved in cellular endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (K.-S.Y.); (J.H.); (I.K.)
| | - Kyung-Sik Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Qian Q, Li M, Zhang Z, Davis SW, Rahmouni K, Norris AW, Cao H, Ding WX, Hotamisligil GS, Yang L. Obesity disrupts the pituitary-hepatic UPR communication leading to NAFLD progression. Cell Metab 2024; 36:1550-1565.e9. [PMID: 38718793 PMCID: PMC11222033 DOI: 10.1016/j.cmet.2024.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/05/2024] [Accepted: 04/17/2024] [Indexed: 07/05/2024]
Abstract
Obesity alters levels of pituitary hormones that govern hepatic immune-metabolic homeostasis, dysregulation of which leads to nonalcoholic fatty liver disease (NAFLD). However, the impact of obesity on intra-pituitary homeostasis is largely unknown. Here, we uncovered a blunted unfolded protein response (UPR) but elevated inflammatory signatures in pituitary glands of obese mice and humans. Furthermore, we found that obesity inflames the pituitary gland, leading to impaired pituitary inositol-requiring enzyme 1α (IRE1α)-X-box-binding protein 1 (XBP1) UPR branch, which is essential for protecting against pituitary endocrine defects and NAFLD progression. Intriguingly, pituitary IRE1-deletion resulted in hypothyroidism and suppressed the thyroid hormone receptor B (THRB)-mediated activation of Xbp1 in the liver. Conversely, activation of the hepatic THRB-XBP1 axis improved NAFLD in mice with pituitary UPR defect. Our study provides the first evidence and mechanism of obesity-induced intra-pituitary cellular defects and the pathophysiological role of pituitary-liver UPR communication in NAFLD progression.
Collapse
Affiliation(s)
- Qingwen Qian
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Mark Li
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zeyuan Zhang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Shannon W Davis
- Department of Biological Sciences, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andrew W Norris
- Division of Endocrinology and Diabetes, Department of Pediatrics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Huojun Cao
- Iowa Institute for Oral Health Research, Division of Biostatistics and Computational Biology, Department of Endodontics, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Gökhan S Hotamisligil
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Ling Yang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
7
|
Hsu HT, Lin YM, Hsing MT, Yeh KT, Lu JW, Yang SF. Correlation Between Low Cytoplasmic Expression of XBP1 and the Likelihood of Surviving Hepatocellular Carcinoma. In Vivo 2024; 38:1316-1324. [PMID: 38688649 PMCID: PMC11059868 DOI: 10.21873/invivo.13571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND/AIM Our objectives in this study were to (i) evaluate the clinical significance of X-box-binding protein 1 (XBP1) expression in cases of hepatocellular carcinoma (HCC) and (ii) assess the potential of XBP1 to be used as a prognostic biomarker. PATIENTS AND METHODS The expression of XBP1 protein in 267 HCC tissue specimens was measured using immunohistochemistry in order to characterize the associations among XBP1 expression, clinicopathological factors and survival outcomes. Survival analysis using follow-up data was used to assess the prognostic value of XBP1 in cases of HCC. Immunohistochemistry revealed a significant decrease in cytoplasmic XBP1 protein expression in HCC tumor tissue. RESULTS Immunoreactivity results showed that low cytoplasmic XBP1 expression was significantly associated with vascular invasion, as well as poor 5-year overall survival and long-term disease-specific (DSS) and disease-free (DFS) survival rates. Kaplan-Meier survival curves further confirmed a significant association between low cytoplasmic XBP1 protein expression and poor DSS and DFS. Univariate and multivariate analyses revealed that XBP1 expression, tumor differentiation, vascular invasion, tumor stage, and the rate of recurrence were linked to DSS, while low cytoplasmic XBP1 expression remained an independent predictor of poor DSS. Our analysis also revealed that XBP1 expression, tumor differentiation, vascular invasion, and T classification were linked to DFS, while low cytoplasmic XBP1 expression remained an independent predictor of poor DFS. CONCLUSION Low cytoplasmic XBP1 protein expression may play an important role in the pathogenesis of HCC, which suggests that XBP1 could potentially be targeted to benefit therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Hui-Ting Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
- School of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Ming-Tai Hsing
- Department of Neurosurgery, Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Jeng-Wei Lu
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark;
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
| |
Collapse
|
8
|
Sun Y, Zhang Y, Zhang J, Chen YE, Jin JP, Zhang K, Mou H, Liang X, Xu J. XBP1-mediated transcriptional regulation of SLC5A1 in human epithelial cells in disease conditions. Cell Biosci 2024; 14:27. [PMID: 38388523 PMCID: PMC10885492 DOI: 10.1186/s13578-024-01203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Sodium-Glucose cotransporter 1 and 2 (SGLT1/2) belong to the family of glucose transporters, encoded by SLC5A1 and SLC5A2, respectively. SGLT2 is almost exclusively expressed in the renal proximal convoluted tubule cells. SGLT1 is expressed in the kidneys but also in other organs throughout the body. Many SGLT inhibitor drugs have been developed based on the mechanism of blocking glucose (re)absorption mediated by SGLT1/2, and several have gained major regulatory agencies' approval for treating diabetes. Intriguingly these drugs are also effective in treating diseases beyond diabetes, for example heart failure and chronic kidney disease. We recently discovered that SGLT1 is upregulated in the airway epithelial cells derived from patients of cystic fibrosis (CF), a devastating genetic disease affecting greater than 70,000 worldwide. RESULTS In the present work, we show that the SGLT1 upregulation is coupled with elevated endoplasmic reticulum (ER) stress response, indicated by activation of the primary ER stress senor inositol-requiring protein 1α (IRE1α) and the ER stress-induced transcription factor X-box binding protein 1 (XBP1), in CF epithelial cells, and in epithelial cells of other stress conditions. Through biochemistry experiments, we demonstrated that the spliced form of XBP1 (XBP1s) acts as a transcription factor for SLC5A1 by directly binding to its promoter region. Targeting this ER stress → SLC5A1 axis by either the ER stress inhibitor Rapamycin or the SGLT1 inhibitor Sotagliflozin was effective in attenuating the ER stress response and reducing the SGLT1 level in these cellular model systems. CONCLUSIONS The present work establishes a causal relationship between ER stress and SGLT1 upregulation and provides a mechanistic explanation why SGLT inhibitor drugs benefit diseases beyond diabetes.
Collapse
Affiliation(s)
- Yifei Sun
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yihan Zhang
- The Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Jackson, 1402, Boston, MA, 02114, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jian-Ping Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hongmei Mou
- The Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Jackson, 1402, Boston, MA, 02114, USA.
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Xiao Y, Xie X, Chen Z, Yin G, Kong W, Zhou J. Advances in the roles of ATF4 in osteoporosis. Biomed Pharmacother 2023; 169:115864. [PMID: 37948991 DOI: 10.1016/j.biopha.2023.115864] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Osteoporosis (OP) is characterized by reduced bone mass, decreased strength, and enhanced bone fragility fracture risk. Activating transcription factor 4 (ATF4) plays a role in cell differentiation, proliferation, apoptosis, redox balance, amino acid uptake, and glycolipid metabolism. ATF4 induces the differentiation of bone marrow mesenchymal stem cells (BM-MSCs) into osteoblasts, increases osteoblast activity, and inhibits osteoclast formation, promoting bone formation and remodeling. In addition, ATF4 mediates the energy metabolism in osteoblasts and promotes angiogenesis. ATF4 is also involved in the mediation of adipogenesis. ATF4 can selectively accumulate in osteoblasts. ATF4 can directly interact with RUNT-related transcription factor 2 (RUNX2) and up-regulate the expression of osteocalcin (OCN) and osterix (Osx). Several upstream factors, such as Wnt/β-catenin and BMP2/Smad signaling pathways, have been involved in ATF4-mediated osteoblast differentiation. ATF4 promotes osteoclastogenesis by mediating the receptor activator of nuclear factor κ-B (NF-κB) ligand (RANKL) signaling. Several agents, such as parathyroid (PTH), melatonin, and natural compounds, have been reported to regulate ATF4 expression and mediate bone metabolism. In this review, we comprehensively discuss the biological activities of ATF4 in maintaining bone homeostasis and inhibiting OP development. ATF4 has become a therapeutic target for OP treatment.
Collapse
Affiliation(s)
- Yaosheng Xiao
- Department of Orthopaetics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Zhixi Chen
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Guoqiang Yin
- Ganzhou Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
10
|
Wang W, Tan J, Liu X, Guo W, Li M, Liu X, Liu Y, Dai W, Hu L, Wang Y, Lu Q, Lee WX, Tang HW, Zhou Q. Cytoplasmic Endonuclease G promotes nonalcoholic fatty liver disease via mTORC2-AKT-ACLY and endoplasmic reticulum stress. Nat Commun 2023; 14:6201. [PMID: 37794041 PMCID: PMC10550995 DOI: 10.1038/s41467-023-41757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
Endonuclease G (ENDOG), a nuclear-encoded mitochondrial intermembrane space protein, is well known to be translocated into the nucleus during apoptosis. Recent studies have shown that ENDOG might enter the mitochondrial matrix to regulate mitochondrial genome cleavage and replication. However, little is known about the role of ENDOG in the cytosol. Our previous work showed that cytoplasmic ENDOG competitively binds with 14-3-3γ, which released TSC2 to repress mTORC1 signaling and induce autophagy. Here, we demonstrate that cytoplasmic ENDOG could also release Rictor from 14-3-3γ to activate the mTORC2-AKT-ACLY axis, resulting in acetyl-CoA production. Importantly, we observe that ENDOG could translocate to the ER, bind with Bip, and release IRE1a/PERK to activate the endoplasmic reticulum stress response, promoting lipid synthesis. Taken together, we demonstrate that loss of ENDOG suppresses acetyl-CoA production and lipid synthesis, along with reducing endoplasmic reticulum stress, which eventually alleviates high-fat diet-induced nonalcoholic fatty liver disease in female mice.
Collapse
Affiliation(s)
- Wenjun Wang
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China.
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Junyang Tan
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiaomin Liu
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wenqi Guo
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Mengmeng Li
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xinjie Liu
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yanyan Liu
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wenyu Dai
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Liubing Hu
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yimin Wang
- GeneMind Biosciences Company Limited, No. 116, Qingshuihe 1st Road, Luohu District, Shenzhen, Guangdong, 518000, China
| | - Qiuxia Lu
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Qinghua Zhou
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China.
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China.
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
11
|
Dellaqua TT, Franchi FF, Dos Santos PH, Giroto AB, Nunes SG, de Lima VAV, Guilherme VB, Fontes PK, Sudano MJ, de Souza Castilho AC. Molecular phenotypes of bovine blastocyst derived from in vitro-matured oocyte supplemented with PAPP-A. Vet Res Commun 2023; 47:1263-1272. [PMID: 36653723 DOI: 10.1007/s11259-023-10072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
Insulin-like growth factor-1 (IGF-1) regulates cellular lipid content, whereas pregnancy-associated plasma protein-A (PAPP-A) increases IGF-1 bioavailability. Using in vitro-matured cumulus-oocyte complexes, we aimed to evaluate the impact of PAPP-A on the blastocyst lipid content, embryo cryotolerance and embryonic transcriptional profile. We determined that PAPP-A did not affect the lipid content of oocytes, blastocysts, or blastocyst yield (P > 0.05). However, PAPP-A modulated the embryo transcriptional profiles by downregulating PPARGC1A and AKR1B1, which are related to lipid metabolism; CASP9, a pro-apoptotic gene; and IFN-τ, a marker of embryo quality (P < 0.05). Furthermore, the use of PAPP-A improved blastocyst re-expansion in the first 3 h of culture after vitrification (P < 0.05). Although PAPP-A did not affect the blastocyst lipid content or embryo production, we suggest that embryonic transcriptional modulation could contribute to maintain the balance in embryo lipid metabolism. Furthermore, PAPP-A's approach seems to control key intracellular pathways that improve post-cryopreservation development of blastocysts.
Collapse
Affiliation(s)
- Thaisy Tino Dellaqua
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Fernanda Fagali Franchi
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Science, University of Milan, Milan, Italy
| | - Priscila Helena Dos Santos
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | | | - Sarah Gomes Nunes
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | | | | | - Patrícia Kubo Fontes
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Mateus José Sudano
- Center of Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil
- Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Anthony César de Souza Castilho
- University of Western São Paulo, Presidente Prudente, SP, Brazil.
- University of Western São Paulo (UNOESTE) - Campus II, Rodovia Raposo Tavares, km 572, Presidente Prudente, SP, Brasil.
| |
Collapse
|
12
|
Liu X, Wang K, Wang L, Kong L, Hou S, Wan Y, Ma C, Chen J, Xing X, Xing C, Jiang Q, Zhao Q, Cui B, Huang Z, Li P. Hepatocyte leukotriene B4 receptor 1 promotes NAFLD development in obesity. Hepatology 2023; 78:562-577. [PMID: 35931467 DOI: 10.1002/hep.32708] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS NAFLD is the most prevalent chronic liver disease worldwide and has emerged as a serious public health issue with no approved treatment. The development of NAFLD is strongly associated with hepatic lipid content, and patients with NAFLD have significantly higher rates of hepatic de novo lipogenesis (DNL) than lean individuals. Leukotriene B4 (LTB4), a metabolite of arachidonic acid, is dramatically increased in obesity and plays important role in proinflammatory cytokine production and insulin resistance. But the role of liver LTB4/LTB4 receptor 1 (Ltb4r1) in lipid metabolism is unclear. APPROACH AND RESULTS Hepatocyte-specific knockout (HKO) of Ltb4r1 improved hepatic steatosis and systemic insulin resistance in both diet-induced and genetically induced obese mice. The mRNA level of key enzymes involved in DNL and fatty acid esterification decreased in Ltb4r1 HKO obese mice. LTB4/Ltb4r1 directly promoted lipogenesis in HepG2 cells and primary hepatocytes. Mechanically, LTB4/Ltb4r1 promoted lipogenesis by activating the cAMP-protein kinase A (PKA)-inositol-requiring enzyme 1α (IRE1α)-spliced X-box-binding protein 1 (XBP1s) axis in hepatocytes, which in turn promoted the expression of lipogenesis genes regulated by XBP1s. In addition, Ltb4r1 suppression through the Ltb4r1 inhibitor or lentivirus-short hairpin RNA delivery alleviated the fatty liver phenotype in obese mice. CONCLUSIONS LTB4/Ltb4r1 promotes hepatocyte lipogenesis directly by activating PKA-IRE1α-XBP1s to promote lipogenic gene expression. Inhibition of hepatocyte Ltb4r1 improved hepatic steatosis and insulin resistance. Ltb4r1 is a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Xingfeng Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Kai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Luhai Wang
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Lijuan Kong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Shaocong Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Yanjun Wan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Chunxiao Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Jingwen Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Xiaowei Xing
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Caiyi Xing
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Qian Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Qijin Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Bing Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Zhifeng Huang
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| |
Collapse
|
13
|
Qin D, Yu F, Wu D, Han C, Yao X, Yang L, Yang X, Wang Q, He D, Zhao B. The underlying molecular mechanisms and biomarkers between periodontitis and COVID-19. BMC Oral Health 2023; 23:524. [PMID: 37495990 PMCID: PMC10369766 DOI: 10.1186/s12903-023-03150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
OBJECTIVE Emerging evidence shows the clinical consequences of patient with COVID-19 and periodontitis are not promising, and periodontitis is a risk factor. Periodontitis and COVID-19 probably have a relationship. Hence, this study aimed to identify the common molecular mechanism that may help to devise potential therapeutic strategies in the future. MATERIAL AND METHODS We analyzed two RNA-seq datasets for differential expressed genes, enrichment of biological processes, transcription factors (TFs) and deconvolution-based immune cell types in periodontitis, COVID-19 and healthy controls. Relationships between TFs and mRNA were established by Pearson correlation analysis, and the common TFs-mRNA regulatory network and nine co-upregulated TFs of the two diseases was obtained. The RT-PCR detected the TFs. RESULTS A total of 1616 and 10201 differentially expressed gene (DEGs) from periodontitis and COVID-19 are found. Moreover, nine shared TFs and common biological processes associated with lymphocyte activation involved in immune response were identified across periodontitis and COVID-19. The cell type enrichment revealed elevated plasma cells among two diseases. The RT-PCR further confirmed the nine TFs up-regulation in periodontitis. CONCLUSION The pathogenesis of periodontitis and COVID-19 is closely related to the expression of TFs and lymphocyte activation, which can provide potential targets for treatment.
Collapse
Affiliation(s)
- Danlei Qin
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Feiyan Yu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Dongchao Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Chong Han
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Xuemin Yao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Lulu Yang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Xi Yang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Qianqian Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Dongning He
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China.
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
14
|
Sun Y, Zhang Y, Zhang J, Chen YE, Jin JP, Zhang K, Mou H, Liang X, Xu J. XBP1-mediated transcriptional regulation of SLC5A1 in human epithelial cells in disease conditions. RESEARCH SQUARE 2023:rs.3.rs-3112506. [PMID: 37502997 PMCID: PMC10371076 DOI: 10.21203/rs.3.rs-3112506/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background sodium-dependent glucose cotransporter 1 and 2 (SGLT1/2) belong to the family of glucose transporters, encoded by SLC5A1 and SLC5A2, respectively. SGLT-2 is almost exclusively expressed in the renal proximal convoluted tubule cells. SGLT-1 is expressed in the kidneys but also in other organs throughout the body. Many SGLT inhibitor drugs have been developed based on the mechanism of blocking glucose (re)absorption mediated by SGLT1/2, and several have gained major regulatory agencies' approval for treating diabetes. Intriguingly these drugs are also effective in treating diseases beyond diabetes, for example heart failure and chronic kidney disease. We recently discovered that SGLT-1 is upregulated in the airway epithelial cells derived from patients of cystic fibrosis (CF), a devastating genetic disease affecting greater than 70,000 worldwide. Results in the present work, we show that the SGLT-1 upregulation is coupled with elevated endoplasmic reticulum (ER) stress response, indicated by activation of the primary ER stress senor inositol-requiring protein 1a (IRE1a) and the ER stress-induced transcription factor X-box binding protein 1 (XBP1), in CF epithelial cells, and in epithelial cells of other stress conditions. Through biochemistry experiments, we demonstrated that XBP1 acts as a transcription factor for SLC5A1 by directly binding to its promoter region. Targeting this ER stress → SLC5A1 axis by either the ER stress inhibitor Rapamycin or the SGLT-1 inhibitor Sotagliflozin was effective in attenuating the ER stress response and reducing the SGLT-1 levels in these cellular model systems. Conclusions the present work establishes a causal relationship between ER stress and SGLT-1 upregulation and provides a mechanistic explanation why SGLT inhibitor drugs benefit diseases beyond diabetes.
Collapse
Affiliation(s)
- Yifei Sun
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yihan Zhang
- The Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Jackson 1402, Boston, MA 02114, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Y. Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jian-Ping Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hongmei Mou
- The Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Jackson 1402, Boston, MA 02114, USA
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
16
|
Huang Z, Ma Y, Xie Y, Zhao D, Li C. Carrageenan in meat: improvement in lipid metabolism due to Sirtuin1-mediated fatty acid oxidation and inhibited lipid bioavailability. Food Funct 2023. [PMID: 37219362 DOI: 10.1039/d3fo00906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Kappa-carrageenan (κ-CGN) is widely used in the meat industry. However, its impact on the host metabolism is less revealed. The current study investigated the effect of κ-CGN in pork-based diets on the lipid metabolism of male C57BL/6J mice. The κ-CGN supplement significantly suppressed the increase in body weight by 6.79 g on an average. Supplement of κ-CGN in high-fat diets significantly upregulated the genes and protein expression of Sirtuin1, which was accompanied by the increased gene expression of downstream fatty acids oxidation (Cpt1a and Acadl). The sirtuin1-mediated improvement of lipid metabolism was negatively associated with the levels of bile acids, especially for deoxycholic acid, 3β-cholic acid, glycodeoxycholic acid and glycolithocholic acid. Moreover, κ-CGN in high-fat diets inhibited lipid digestion and absorption, being associated with the decrease in lipid accumulation and improved serum lipid profile. These results highlighted the role of κ-CGN in alleviating diet-induced adiposity by promoting energy expenditure and suppressing the bioavailability of ingested lipids.
Collapse
Affiliation(s)
- Zhiji Huang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095, P.R. China.
| | - Yafang Ma
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095, P.R. China.
| | - Yunting Xie
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095, P.R. China.
| | - Di Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095, P.R. China.
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095, P.R. China.
| |
Collapse
|
17
|
Ramatchandirin B, Pearah A, He L. Regulation of Liver Glucose and Lipid Metabolism by Transcriptional Factors and Coactivators. Life (Basel) 2023; 13:life13020515. [PMID: 36836874 PMCID: PMC9962321 DOI: 10.3390/life13020515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) worldwide is on the rise and NAFLD is becoming the most common cause of chronic liver disease. In the USA, NAFLD affects over 30% of the population, with similar occurrence rates reported from Europe and Asia. This is due to the global increase in obesity and type 2 diabetes mellitus (T2DM) because patients with obesity and T2DM commonly have NAFLD, and patients with NAFLD are often obese and have T2DM with insulin resistance and dyslipidemia as well as hypertriglyceridemia. Excessive accumulation of triglycerides is a hallmark of NAFLD and NAFLD is now recognized as the liver disease component of metabolic syndrome. Liver glucose and lipid metabolisms are intertwined and carbon flux can be used to generate glucose or lipids; therefore, in this review we discuss the important transcription factors and coactivators that regulate glucose and lipid metabolism.
Collapse
Affiliation(s)
| | - Alexia Pearah
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ling He
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD 21287, USA
- Correspondence: ; Tel.: +1-410-502-5765; Fax: +1-410-502-5779
| |
Collapse
|
18
|
Tian H, Fang Y, Liu W, Wang J, Zhao J, Tang H, Yin Y, Hu Y, Peng J. Inhibition on XBP1s-driven lipogenesis by Qushi Huayu Decoction contributes to amelioration of hepatic steatosis induced by fructose. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115806. [PMID: 36216198 DOI: 10.1016/j.jep.2022.115806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qushi Huayu Decoction (QHD) is a traditional Chinese medicine formula consisting of five herbs, which has been used for non-alcoholic fatty liver disease (NAFLD) treatment in clinic for decades in China and validated in several NAFLD animal models. The hepatic de novo lipogenesis (DNL) is enhanced greatly to contribute to steatosis in NAFLD. The spliced form of X-box binding protein 1 (XBP1s) initiates DNL independently of sterol regulatory element-binding protein (SREBP) and carbohydrate-responsive element-binding protein (ChREBP). AIM OF THE STUDY To disclose the mechanism of inhibition on hepatic DNL by QHD and the responsible compounds. METHODS The effects of QHD on hepatic DNL were evaluated in mice induced by high-fructose diet (HFru). The effects of the serum-absorbed compounds of QHD on XBP1s were evaluated in HepG2 cells induced by tunicamycin. Hepatic histology, triglyceride (TG) and nonesterified fatty acids were observed. Hepatic apolipoprotein B100 and very low-density lipoprotein were measured to reflect lipid out-transport. The mRNA expression of XBP1s and its target genes were detected by real-time polymerase chain reaction. The protein expression of TG synthetases and DNL enzymes, and inositol requirement enzyme 1 alpha (IRE1α), phosphorylated IRE1α and XBP1s were detected in liver tissue and HepG2 cells by western-blot. The binding activity of SREBP1, protein expression of ChREBP and XBP1s were detected in the nuclear extracts of liver tissue. RESULTS Dynamical observing suggested feeding with HFru for 2 weeks was sufficient to induce hepatic lipogenesis and XBP1s. QHD ameliorated liver steatosis without enhancing out-transport of lipids, accompanied with more inhibitory effects on DNL enzymes than TG synthetases. QHD inhibits the nuclear XBP1s without affecting ChREBP and SREBP1. In QHD, chlorogenic acid, geniposide and polydatin inhibit lipogenesis initiated by XPB1s. CONCLUSION QHD probably decreases hepatic DNL by inhibiting XBP1s independent of SREBP1 and ChREBP. Chlorogenic acid, geniposide and polydatin are the potential responsible compounds.
Collapse
Affiliation(s)
- Huajie Tian
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yi Fang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Wei Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Jun Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Jianan Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Hao Tang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yixiao Yin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yiyang Hu
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China.
| | - Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China.
| |
Collapse
|
19
|
Lou K, Sun P, Zhang C, Jiang Q, Pang S. X-box binding protein 1: A new metabolic mediator and drug target of metformin? Front Pharmacol 2022; 13:1013218. [PMID: 36438823 PMCID: PMC9691898 DOI: 10.3389/fphar.2022.1013218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence has demonstrated that metformin improved hypertriglyceridemia. The present study aim to investigate the molecular mechanism by which metformin improves hypertriglyceridemia via regulation of diacylglycerol O-acyltransferase 2 (DGAT2) and X-box binding protein 1 (XBP1) in the liver and whether AMP-activated protein kinase (AMPK) is involved. Mice were fed a high-fat diet (HFD) or high-fat diet with metformin for 5 weeks to evaluate the effect of metformin on triglyceride (TG) levels and expression of DGAT2 and XBP1 in the liver. In vitro HepG2 cells or XBP1 knockout AML12 hepatocytes were stimulated with metformin, palmitic acid or small interfering RNA inducing XBP1 knockdown, or dominant-negative mutant AMPK plasmid. Metformin treatment reduced hepatic TG levels in the liver of HFD-fed mice. Expression of nuclear and cytoplasmic XBP1 protein and its downstream target gene DGAT2 decreased in the liver of HFD-fed mice and HepG2 cells after metformin treatment. AMPK inactivation or overexpression of XBP1 attenuates this effect. Our preliminary results demonstrate that metformin activates AMPK to reduce TG synthesis by inhibiting the XBP1-mediated DGAT2 pathway, at least in part, suggesting that XBP1 is a new metabolic mediator for metformin treatment of hypertriglyceridemia and associated metabolic disease.
Collapse
Affiliation(s)
- Kai Lou
- Department of Endocrinology, Jinan Central Hospital, Shandong University, Jinan, China
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pei Sun
- Department of Endocrinology, Jinan Central Hospital, Shandong University, Jinan, China
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chunxue Zhang
- Department of Nuclear Medicine, Jinan Central Hospital, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Jiang
- Department of Endocrinology, Jinan Central Hospital, Shandong University, Jinan, China
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuguang Pang
- Department of Endocrinology, Jinan Central Hospital, Shandong University, Jinan, China
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Shuguang Pang,
| |
Collapse
|
20
|
Li W, Jin K, Luo J, Xu W, Wu Y, Zhou J, Wang Y, Xu R, Jiao L, Wang T, Yang G. NF-κB and its crosstalk with endoplasmic reticulum stress in atherosclerosis. Front Cardiovasc Med 2022; 9:988266. [PMID: 36204587 PMCID: PMC9530249 DOI: 10.3389/fcvm.2022.988266] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis (AS) is a common cardiovascular disease with complex pathogenesis, in which multiple pathways and their interweaving regulatory mechanism remain unclear. The primary transcription factor NF-κB plays a critical role in AS via modulating the expression of a series of inflammatory mediators under various stimuli such as cytokines, microbial antigens, and intracellular stresses. Endoplasmic reticulum (ER) stress, caused by the disrupted synthesis and secretion of protein, links inflammation, metabolic signals, and other cellular processes via the unfolded protein response (UPR). Both NF-κB and ER stress share the intersection regarding their molecular regulation and function and are regarded as critical individual contributors to AS. In this review, we summarize the multiple interactions between NF-κB and ER stress activation, including the UPR, NLRP3 inflammasome, and reactive oxygen species (ROS) generation, which have been ignored in the pathogenesis of AS. Given the multiple links between NF-κB and ER stress, we speculate that the integrated network contributes to the understanding of molecular mechanisms of AS. This review aims to provide an insight into these interactions and their underlying roles in the progression of AS, highlighting potential pharmacological targets against the atherosclerotic inflammatory process.
Collapse
Affiliation(s)
- Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenlong Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jia Zhou
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Liqun Jiao,
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Tao Wang,
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Tao Wang,
| |
Collapse
|
21
|
Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:298. [PMID: 36031641 PMCID: PMC9420733 DOI: 10.1038/s41392-022-01149-x] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Collapse
|
22
|
How CM, Hsiu-Chuan Liao V. Chronic exposure to environmentally relevant levels of di(2-ethylhexyl) phthalate (DEHP) disrupts lipid metabolism associated with SBP-1/SREBP and ER stress in C. elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119579. [PMID: 35671893 DOI: 10.1016/j.envpol.2022.119579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
DEHP is commonly found in the environment, biota, food, and humans, raising significant health concerns. Whether developmental stage and exposure duration modify the obesogenic effects of DEHP is unclear, especially the underlying mechanisms by which chronic exposure to DEHP as well as its metabolites remain largely unknown. This study investigated the obesogenic effects of chronic DEHP exposure, with levels below environmentally-relevant amounts and provide the mechanism in Caenorhabditis elegans. We show that early-life DEHP exposure resulted in an increased lipid and triglyceride (TG) accumulation mainly attributed to DEHP itself, not its metabolite mono-2-ethylhexyl phthalate (MEHP). In addition, developmental stage and exposure timing influence DEHP-induced TG accumulation and chronic DEHP exposure resulted in the most significant effect. Analysis of fatty acid composition shows that chronic DEHP exposure altered fatty acid composition and TG, resulting in an increased ω-6/ω-3 ratio. The increased TG content by chronic DEHP exposure required lipogenic genes fat-6, fat-7, pod-2, fasn-1, and sbp-1. Moreover, chronic DEHP exposure induced XBP-1-mediated endoplasmic reticulum (ER) stress which might lead to up-regulation of sbp-1. This study suggests the possible involvement of ER stress and SBP-1/SREBP-mediated lipogenesis in chronic DEHP-induced obesogenic effects. Results from this study implies that chronic exposure to DEHP disrupts lipid metabolism, which is likely conserved across species due to evolutionary conservation of molecular mechanisms, raising concerns in ecological and human health.
Collapse
Affiliation(s)
- Chun Ming How
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
23
|
Eo H, Valentine RJ. Saturated Fatty Acid-Induced Endoplasmic Reticulum Stress and Insulin Resistance Are Prevented by Imoxin in C2C12 Myotubes. Front Physiol 2022; 13:842819. [PMID: 35936891 PMCID: PMC9355746 DOI: 10.3389/fphys.2022.842819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
In obesity, plasma free fatty acids (FFAs) levels are elevated due to enlarged adipose tissue mass. Saturated fatty acids can induce prolonged ER stress and insulin resistance. Double-stranded RNA-dependent Protein Kinase (PKR) is activated under stress conditions in skeletal muscle. The current study aimed to investigate the effect of imoxin (IMX), a selective PKR inhibitor, on palmitate-induced ER stress and insulin resistance in C2C12 myotubes. Cells were treated with 5 μM imoxin and exposed to 0.5 mM bovine serum albumin (BSA)-conjugated PA for 24 h. A subset of cells was stimulated with 50 nM insulin for the last 15 min. Glucose uptake was monitored and protein levels involved in ER stress and insulin signaling were measured by Western blotting. Palmitate stimulated PKR phosphorylation, which was prevented by imoxin. Moreover, imoxin reduced protein levels of ER stress-related markers including glucose-regulating protein 78 (GRP78), CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6) and spliced X-box binding protein 1 (XBP-1s) which were induced by palmitate. Furthermore, imoxin ameliorated palmitate-induced suppression of phospho-insulin receptor beta (p-IRβ) and Akt phosphorylation in myotubes. In addition, imoxin promoted glucose uptake in response to insulin under palmitate exposure. Furthermore, imoxin reduced phospho-c-Jun N-terminal kinase (p-JNK) induced by palmitate treatment. These findings suggest that imoxin may protect against saturated fatty acid-induced ER stress and insulin resistance in skeletal muscle, which are potentially mediated by PKR.
Collapse
Affiliation(s)
- Hyeyoon Eo
- Department of Kinesiology, Iowa State University, Ames, IA, United States
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States
| | - Rudy J Valentine
- Department of Kinesiology, Iowa State University, Ames, IA, United States
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States
- *Correspondence: Rudy J Valentine,
| |
Collapse
|
24
|
Peng J, Qin C, Ramatchandirin B, Pearah A, Guo S, Hussain M, Yu L, Wondisford FE, He L. Activation of the canonical ER Stress IRE1-XBP1 Pathway by Insulin Regulates Glucose and Lipid Metabolism. J Biol Chem 2022; 298:102283. [PMID: 35863429 PMCID: PMC9396404 DOI: 10.1016/j.jbc.2022.102283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Knockout of the transcription factor X-box binding protein (XBP1) is known to decrease liver glucose production and lipogenesis. However, whether insulin can regulate gluconeogenesis and lipogenesis through XBP1 and how insulin activates the inositol-requiring enzyme-XBP1 ER stress pathway remains unexplored. Here, we report that in the fed state, insulin-activated kinase AKT directly phosphorylates inositol-requiring enzyme 1 at S724, which in turn mediates the splicing of XBP1u mRNA, thus favoring the generation of the spliced form, XBP1s, in the liver of mice. Subsequently, XBP1s stimulate the expression of lipogenic genes and upregulates liver lipogenesis as previously reported. Intriguingly, we find that fasting leads to an increase in XBP1u along with a drastic decrease in XBP1s in the liver of mice, and XBP1u, not XBP1s, significantly increases PKA-stimulated CRE reporter activity in cultured hepatocytes. Furthermore, we demonstrate that overexpression of XBP1u significantly increases cAMP-stimulated expression of rate-limiting gluconeogenic genes, G6pc and Pck1, and glucose production in primary hepatocytes. Reexpression of XBP1u in the liver of mice with XBP1 depletion significantly increases fasting blood glucose levels and gluconeogenic gene expression. These data support an important role of XBP1u in upregulating gluconeogenesis in the fasted state. Taken together, we reveal that insulin signaling via AKT controls the expression of XBP1 isoforms and that XBP1u and XBP1s function in different nutritional states to regulate liver gluconeogenesis and lipogenesis, respectively.
Collapse
Affiliation(s)
- Jinghua Peng
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Caolitao Qin
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Alexia Pearah
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shaodong Guo
- Department of Nutrition, Texas A&M University, TX 77843
| | - Mehboob Hussain
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Liqing Yu
- Division of Metabolism, Endocrinology and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Ling He
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Departments of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
25
|
Spliced or Unspliced, That Is the Question: The Biological Roles of XBP1 Isoforms in Pathophysiology. Int J Mol Sci 2022; 23:ijms23052746. [PMID: 35269888 PMCID: PMC8910952 DOI: 10.3390/ijms23052746] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023] Open
Abstract
X-box binding protein 1 (XBP1) is a member of the CREB/ATF basic region leucine zipper family transcribed as the unspliced isoform (XBP1-u), which, upon exposure to endoplasmic reticulum stress, is spliced into its spliced isoform (XBP1-s). XBP1-s interacts with the cAMP response element of major histocompatibility complex class II gene and plays critical role in unfolded protein response (UPR) by regulating the transcriptional activity of genes involved in UPR. XBP1-s is also involved in other physiological pathways, including lipid metabolism, insulin metabolism, and differentiation of immune cells. Its aberrant expression is closely related to inflammation, neurodegenerative disease, viral infection, and is crucial for promoting tumor progression and drug resistance. Meanwhile, recent studies reported that the function of XBP1-u has been underestimated, as it is not merely a precursor of XBP1-s. Instead, XBP-1u is a critical factor involved in various biological pathways including autophagy and tumorigenesis through post-translational regulation. Herein, we summarize recent research on the biological functions of both XBP1-u and XBP1-s, as well as their relation to diseases.
Collapse
|
26
|
Wang T, Zhou J, Zhang X, Wu Y, Jin K, Wang Y, Xu R, Yang G, Li W, Jiao L. X-box Binding Protein 1: An Adaptor in the Pathogenesis of Atherosclerosis. Aging Dis 2022; 14:350-369. [PMID: 37008067 PMCID: PMC10017146 DOI: 10.14336/ad.2022.0824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis (AS), the formation of fibrofatty lesions in the vessel wall, is the primary cause of heart disease and stroke and is closely associated with aging. Disrupted metabolic homeostasis is a primary feature of AS and leads to endoplasmic reticulum (ER) stress, which is an abnormal accumulation of unfolded proteins. By orchestrating signaling cascades of the unfolded protein response (UPR), ER stress functions as a double-edged sword in AS, where adaptive UPR triggers synthetic metabolic processes to restore homeostasis, whereas the maladaptive response programs the cell to the apoptotic pathway. However, little is known regarding their precise coordination. Herein, an advanced understanding of the role of UPR in the pathological process of AS is reviewed. In particular, we focused on a critical mediator of the UPR, X-box binding protein 1 (XBP1), and its important role in balancing adaptive and maladaptive responses. The XBP1 mRNA is processed from the unspliced isoform (XBP1u) to the spliced isoform of XBP1 (XBP1s). Compared with XBP1u, XBP1s predominantly functions downstream of inositol-requiring enzyme-1α (IRE1α) and transcript genes involved in protein quality control, inflammation, lipid metabolism, carbohydrate metabolism, and calcification, which are critical for the pathogenesis of AS. Thus, the IRE1α/XBP1 axis is a promising pharmaceutical candidate against AS.
Collapse
Affiliation(s)
- Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Jia Zhou
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| | - Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| |
Collapse
|
27
|
Zhang X, Huo Z, Luan H, Huang Y, Shen Y, Sheng L, Liang J, Wu F. Scutellarin ameliorates hepatic lipid accumulation by enhancing autophagy and suppressing IRE1α/XBP1 pathway. Phytother Res 2021; 36:433-447. [PMID: 34859513 DOI: 10.1002/ptr.7344] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022]
Abstract
Nonalcoholic fatty liver disease is the most prevalent liver disease characterized by excessive lipid accumulation in hepatocytes. Endoplasmic reticulum (ER) stress and autophagy play an important role in lipid accumulation. In this study, scutellarin (Scu) was examined in palmitic acid-treated HepG2 cells and C57/BL6 mice fed a high-fat diet (HFD). Scu reduced intracellular lipid content and inhibited sterol regulatory element binding protein-1c (SREBP-1c)-mediated lipid synthesis and fatty acid translocase-mediated lipid uptake in HepG2 cells. Additionally, Scu restored impaired autophagy and inhibited excessive activation of ER stress in vivo and in vitro. Moreover, Scu upregulated forkhead box O transcription factor 1-mediated autophagy by inhibiting inositol-requiring enzyme 1α (IRE1α)/X-box-binding protein 1 (XBP1) branch activation, while XBP1s overexpression exacerbated the lipid accumulation and impaired autophagy in HepG2 cells and also weakened the positive effects of Scu. Furthermore, Scu attenuated ER stress by activating autophagy, ultimately downregulating SREBP-1c-mediated lipid synthesis, and autophagy inhibitors offset these beneficial effects. Scu inhibited the crosstalk between autophagy and ER stress and downregulated saturated fatty acid-induced lipid accumulation in hepatocytes. These findings demonstrate that Scu ameliorates hepatic lipid accumulation by enhancing autophagy and suppressing ER stress via the IRE1α/XBP1 pathway.
Collapse
Affiliation(s)
- Xueying Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhaojiong Huo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Huiling Luan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yihai Huang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanhui Shen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liang Sheng
- School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jiangyu Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Feihua Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
28
|
Ogino N, Miyagawa K, Nagaoka K, Sumida K, Kusanaga M, Oe S, Honma Y, Shibata M, Harada M, Suganuma N, Ogino K. Airborne fine particulate matter in Japan induces lipid synthesis and inhibits autophagy in HepG2 cells. Int J Biochem Cell Biol 2021; 141:106099. [PMID: 34673217 DOI: 10.1016/j.biocel.2021.106099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 11/15/2022]
Abstract
Inhalation of particulate matter with a diameter less than 2.5 µm has been reported to exacerbates fatty liver disease. However, the components and mechanisms of particulate matter involved in hepatic lipid metabolism and autophagy have not been fully elucidated. We found that atmospheric particulate matter in Japan stimulated lipogenesis in hepatocytes even when its lipid component was removed. Furthermore, we demonstrated that particulate matter did not promote autophagosome formation but inhibited autophagic degradation in hepatocytes. In previous toxicity experiments, particulate matter collected from atmosphere often contained contaminants originating from filters. In this study, we exposed the powdery particulate matter with less contaminants collected using a cyclone and impactor system to HepG2 cells, human hepatocyte. This particulate matter induced lipogenesis and endoplasmic reticulum stress in HepG2 cells as well as previous reports of particulate matter in the USA and China. On the other hand, when autophagic flux were examined in detail, the particulate matter did not promote autophagosome formation, but inhibited autophagic degradation. Since these effects were similar to those of palmitate, a fatty acid, we prepared particulate matter in which lipid component was removed by acetone and compared the effects on HepG2 cells with those of untreated one. The particulate matter without lipid component induced lipid droplets as well as did the untreated one although it induced less endoplasmic reticulum stress. These results suggest that hepatic lipid synthesis is stimulated not only by the uptake of lipid but also by other components in the particulate matter.
Collapse
Affiliation(s)
- Noriyoshi Ogino
- Department of Environmental Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku City, Kochi 783-8505, Japan; Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Iseigaoka 1-1, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | - Koichiro Miyagawa
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Iseigaoka 1-1, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kenjiro Nagaoka
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan.
| | - Kazuhiro Sumida
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Iseigaoka 1-1, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Masashi Kusanaga
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Iseigaoka 1-1, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Shinji Oe
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Iseigaoka 1-1, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yuichi Honma
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Iseigaoka 1-1, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Michihiko Shibata
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Iseigaoka 1-1, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Iseigaoka 1-1, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku City, Kochi 783-8505, Japan
| | - Keiki Ogino
- Department of Environmental Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku City, Kochi 783-8505, Japan.
| |
Collapse
|
29
|
Park SM, Kang TI, So JS. Roles of XBP1s in Transcriptional Regulation of Target Genes. Biomedicines 2021; 9:biomedicines9070791. [PMID: 34356855 PMCID: PMC8301375 DOI: 10.3390/biomedicines9070791] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
The spliced form of X-box binding protein 1 (XBP1s) is an active transcription factor that plays a vital role in the unfolded protein response (UPR). Under endoplasmic reticulum (ER) stress, unspliced Xbp1 mRNA is cleaved by the activated stress sensor IRE1α and converted to the mature form encoding spliced XBP1 (XBP1s). Translated XBP1s migrates to the nucleus and regulates the transcriptional programs of UPR target genes encoding ER molecular chaperones, folding enzymes, and ER-associated protein degradation (ERAD) components to decrease ER stress. Moreover, studies have shown that XBP1s regulates the transcription of diverse genes that are involved in lipid and glucose metabolism and immune responses. Therefore, XBP1s has been considered an important therapeutic target in studying various diseases, including cancer, diabetes, and autoimmune and inflammatory diseases. XBP1s is involved in several unique mechanisms to regulate the transcription of different target genes by interacting with other proteins to modulate their activity. Although recent studies discovered numerous target genes of XBP1s via genome-wide analyses, how XBP1s regulates their transcription remains unclear. This review discusses the roles of XBP1s in target genes transcriptional regulation. More in-depth knowledge of XBP1s target genes and transcriptional regulatory mechanisms in the future will help develop new therapeutic targets for each disease.
Collapse
|
30
|
Liu C, Zhou B, Meng M, Zhao W, Wang D, Yuan Y, Zheng Y, Qiu J, Li Y, Li G, Xiong X, Bian H, Zhang H, Wang H, Ma X, Hu C, Xu L, Lu Y. FOXA3 induction under endoplasmic reticulum stress contributes to non-alcoholic fatty liver disease. J Hepatol 2021; 75:150-162. [PMID: 33548387 DOI: 10.1016/j.jhep.2021.01.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Chronic endoplasmic reticulum (ER) stress in the liver has been shown to play a causative role in non-alcoholic fatty liver disease (NAFLD) progression, yet the underlying molecular mechanisms remain to be elucidated. Forkhead box A3 (FOXA3), a member of the FOX family, plays critical roles in metabolic homeostasis, although its possible functions in ER stress and fatty liver progression are unknown. METHODS Adenoviral delivery, siRNA delivery, and genetic knockout mice were used to crease FOXA3 gain- or loss-of-function models. Tunicamycin (TM) and a high-fat diet (HFD) were used to induce acute or chronic ER stress in mice. Chromatin immunoprecipiation (ChIP)-seq, luciferase assay, and adenoviral-mediated downstream gene manipulations were performed to reveal the transcriptional axis involved. Key axis protein levels in livers from healthy donors and patients with NAFLD were assessed via immunohistochemical staining. RESULTS FOXA3 transcription is specifically induced by XBP1s upon ER stress. FOXA3 exacerbates the excessive lipid accumulation caused by the acute ER-inducer TM, whereas FOXA3 deficiency in hepatocytes and mice alleviates it. Importantly, FOXA3 deficiency in mice reduced diet-induced chronic ER stress, fatty liver, and insulin resistance. In addition, FOXA3 suppression via siRNA or adeno-associated virus delivery ameliorated the fatty liver phenotype in HFD-fed and db/db mice. Mechanistically, ChIP-Seq analysis revealed that FOXA3 directly regulates Period1 (Per1) transcription, which in turn promotes the expression of lipogenic genes, including Srebp1c, thus enhancing lipid synthesis. Of pathophysiological significance, FOXA3, PER1, and SREBP1c levels were increased in livers of obese mice and patients with NAFLD. CONCLUSION The present study identified FOXA3 as the bridging molecule that links ER stress and NAFLD progression. Our results highlighted the role of the XBP1s-FOXA3-PER1/Srebp1c transcriptional axis in the development of NAFLD and identified FOXA3 as a potential therapeutic target for fatty liver disease. LAY SUMMARY The molecular mechanisms linking endoplasmic reticulum stress to non-alcoholic fatty liver disease (NAFLD) progression remain undefined. Herein, via in vitro and in vivo analysis, we identified Forkhead box A3 (FOXA3) as a key bridging molecule. Of pathophysiological significance, FOXA3 protein levels were increased in livers of obese mice and patients with NAFLD, indicating that FOXA3 could be a potential therapeutic target in fatty liver disease.
Collapse
Affiliation(s)
- Caizhi Liu
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Zhou
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenjun Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Youwen Yuan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Guoqiang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xuelian Xiong
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hua Bian
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xinran Ma
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Cheng Hu
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Yan Lu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
Li M, Yang W, Wen J, Loor JJ, Aboragah A, Wang J, Wang S, Li M, Yu L, Hou X, Xu C, Zhang B. Intracellular Ca2+ signaling and ORAI calcium release-activated calcium modulator 1 are associated with hepatic lipidosis in dairy cattle. J Anim Sci 2021; 99:skab184. [PMID: 34100951 PMCID: PMC8280943 DOI: 10.1093/jas/skab184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty liver is a common metabolic disorder afflicting dairy cows during the periparturient period and is closely associated with endoplasmic reticulum (ER) stress. The onset of ER stress in humans and mice alters hepatic lipid metabolism, but it is unknown if such event contributes to fatty liver in dairy cows soon after parturition. ORAI calcium release-activated calcium modulator 1 (ORAI1) is a key component of the store-operated Ca2+ entry mechanism regulating cellular Ca2+ balance. The purpose of this study was to investigate the role of ORAI1 on hepatic lipidosis via ER stress in dairy cows. Liver tissue biopsies were collected from Holstein cows diagnosed as healthy (n = 6) or with hepatic lipidosis (n = 6). Protein and mRNA abundance of ER stress-related targets, lipogenic targets, or the transcription regulator SREBP1 and ORAI1 were greater in cows with lipidosis. In vitro, hepatocytes were isolated from four healthy female calves and used for culture with a 1.2 mM mixture of fatty acids (oleic, linoleic, palmitic, stearic, and palmitoleic acid) for various times (0, 3, 6, 9, or 12 h). As incubation time progressed, increases in concentration of Ca2+ and abundance of protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1α (IRE1α), and activating transcription factor-6 (ATF6) protein in response to exogenous fatty acids underscored a mechanistic link among Ca2+, fatty acids, and ER stress. In a subsequent study, hepatocytes were transfected with small interfering RNA (siORAI1) or the ORAI1 inhibitor BTP2 for 48 h or 2 h followed by a challenge with the 1.2 mM mixture of fatty acids for 6 h. Compared with control group, silencing or inhibition of ORAI1 led to decreased abundance of fatty acid synthesis (FASN, SREBP1, and ACACA) and ER stress-related proteins in bovine hepatocytes. Overall, data suggested that NEFA through ORAI1 regulate intracellular Ca2+ signaling, induce ER stress, and lead to lipidosis in isolated hepatocytes.
Collapse
Affiliation(s)
- Ming Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Jianan Wen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Juan J Loor
- Mammalian NutriPhysio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Ahmad Aboragah
- Mammalian NutriPhysio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Jingjing Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Shuang Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Mingyang Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Liyun Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Xilin Hou
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| |
Collapse
|
32
|
Aqueous Extract of Pepino Leaves Ameliorates Palmitic Acid-Induced Hepatocellular Lipotoxicity via Inhibition of Endoplasmic Reticulum Stress and Apoptosis. Antioxidants (Basel) 2021; 10:antiox10060903. [PMID: 34204987 PMCID: PMC8227507 DOI: 10.3390/antiox10060903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 11/17/2022] Open
Abstract
Saturated fatty acid is one of the important nutrients, but contributes to lipotoxicity in the liver, causing hepatic steatosis. Aqueous pepino leaf extract (AEPL) in the previous study revealed alleviated liver lipid accumulation in metabolic syndrome mice. The study aimed to investigate the mechanism of AEPL on saturated long-chain fatty acid-induced lipotoxicity in HepG2 cells. Moreover, the phytochemical composition of AEPL was identified in the present study. HepG2 cells treated with palmitic acid (PA) were used for exploring the effect of AEPL on lipid accumulation, apoptosis, ER stress, and antioxidant response. The chemical composition of AEPL was analyzed by HPLC-ESI-MS/MS. AEPL treatment reduced PA-induced ROS production and lipid accumulation. Further molecular results revealed that AEPL restored cytochrome c in mitochondria and decreased caspase 3 activity to cease apoptosis. In addition, AEPL in PA-stressed HepG2 cells significantly reduced the ER stress and suppressed SREBP-1 activation for decreasing lipogenesis. For defending PA-induced oxidative stress, AEPL promoted Nrf2 expression and its target genes, SOD1 and GPX3, expressions. The present study suggested that AEPL protected from PA-induced lipotoxicity through reducing ER stress, increasing antioxidant ability, and inhibiting apoptosis. The efficacy of AEPL on lipotoxicity was probably concerned with kaempferol and isorhamnetin derived compounds.
Collapse
|
33
|
Impact of Gut Microbiome Manipulation in 5xFAD Mice on Alzheimer's Disease-Like Pathology. Microorganisms 2021; 9:microorganisms9040815. [PMID: 33924322 PMCID: PMC8069338 DOI: 10.3390/microorganisms9040815] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
The gut brain axis seems to modulate various psychiatric and neurological disorders such as Alzheimer's disease (AD). Growing evidence has led to the assumption that the gut microbiome might contribute to or even present the nucleus of origin for these diseases. In this regard, modifiers of the microbial composition might provide attractive new therapeutics. Aim of our study was to elucidate the effect of a rigorously changed gut microbiome on pathological hallmarks of AD. 5xFAD model mice were treated by antibiotics or probiotics (L. acidophilus and L. rhamnosus) for 14 weeks. Pathogenesis was measured by nest building capability and plaque deposition. The gut microbiome was affected as expected: antibiotics significantly reduced viable commensals, while probiotics transiently increased Lactobacillaceae. Nesting score, however, was only improved in antibiotics-treated mice. These animals additionally displayed reduced plaque load in the hippocampus. While various physiological parameters were not affected, blood sugar was reduced and serum glucagon level significantly elevated in the antibiotics-treated animals together with a reduction in the receptor for advanced glycation end products RAGE-the inward transporter of Aβ peptides of the brain. Assumedly, the beneficial effect of the antibiotics was based on their anti-diabetic potential.
Collapse
|
34
|
Kornicka-Garbowska K, Bourebaba L, Röcken M, Marycz K. Sex Hormone Binding Globulin (SHBG) Mitigates ER Stress in Hepatocytes In Vitro and Ex Vivo. Cells 2021; 10:755. [PMID: 33808055 PMCID: PMC8066020 DOI: 10.3390/cells10040755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Despite multiple research studies regarding metabolic syndrome and diabetes, the full picture of their molecular background and pathogenies remains elusive. The latest studies revealed that sex hormone-binding globulin (SHBG)-a serum protein released mainly by the liver-may participate in metabolic dysregulation, as its low serum level correlates with a risk for obesity, metabolic syndrome, and diabetes. Yet, the molecular phenomenon linking SHBG with these disorders remains unclear. In the presented study, we investigate how exogenous SHBG affects metabolically impaired hepatocytes with special attention to endoplasmic reticulum stress (ER stress) and lipid metabolism both in vitro and ex vivo. For that reason, palmitate-treated HepG2 cells and liver tissue samples collected post mortem were cultured in the presence of 50 nM and 100 nM SHBG. We found that SHBG protects against ER stress development and its progression. We have found that SHBG decreased the expression levels of inositol-requiring enzyme 1 (IRE1α), activating transcription factor 6 (ATF6), DNA damage-inducible transcript 3 (CHOP), and immunoglobulin heavy chain-binding protein (BIP). Furthermore, we have shown that it regulates lipolytic gene expression ex vivo. Additionally, herein, we deliver a novel large-animal model to study SHBG in translational research. Our data provide new insights into the cellular and molecular mechanisms by which SHBG modulates hepatocyte metabolism and offer a new experimental approach to study SHBG in human diseases.
Collapse
Affiliation(s)
- Katarzyna Kornicka-Garbowska
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B Street, A7 Building, 50-375 Wrocław, Poland; (K.K.-G.); (L.B.)
- International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B Street, A7 Building, 50-375 Wrocław, Poland; (K.K.-G.); (L.B.)
| | - Michael Röcken
- Faculty of Veterinary Medicine, Equine Clinic—Equine Surgery, Justus-Liebig-University, 35392 Gießen, Germany;
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B Street, A7 Building, 50-375 Wrocław, Poland; (K.K.-G.); (L.B.)
- International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland
| |
Collapse
|
35
|
Li L, Zeng X, Liu Z, Chen X, Li L, Luo R, Liu X, Zhang J, Liu J, Lu Y, Cheng J, Chen Y. Mesenchymal stromal cells protect hepatocytes from lipotoxicity through alleviation of endoplasmic reticulum stress by restoring SERCA activity. J Cell Mol Med 2021; 25:2976-2993. [PMID: 33591626 PMCID: PMC7957164 DOI: 10.1111/jcmm.16338] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to investigate how mesenchymal stromal cells (MSCs) modulate metabolic balance and attenuate hepatic lipotoxicity in the context of non-alcoholic fatty liver disease (NAFLD). In vivo, male SD rats were fed with high-fat diet (HFD) to develop NAFLD; then, they were treated twice by intravenous injections of rat bone marrow MSCs. In vitro, HepG2 cells were cocultured with MSCs by transwell and exposed to palmitic acid (PA) for 24 hours. The endoplasmic reticulum (ER) stressor thapsigargin and sarco/ER Ca2+ -ATPase (SERCA2)-specific siRNA were used to explore the regulation of ER stress by MSCs. We found that MSC administration improved hepatic steatosis, restored systemic hepatic lipid and glucose homeostasis, and inhibited hepatic ER stress in HFD-fed rats. In hepatocytes, MSCs effectively alleviated the cellular lipotoxicity. Particularly, MSCs remarkably ameliorated the ER stress and intracellular calcium homeostasis induced by either PA or thapsigargin in HepG2 cells. Additionally, long-term HFD or PA stimulation would activate pyroptosis in hepatocytes, which may contribute to the cell death and liver dysfunction during the process of NAFLD, and MSC treatment effectively ameliorates these deleterious effects. SERCA2 silencing obviously abolished the ability of MSCs against the PA-induced lipotoxicity. Conclusively, our study demonstrated that MSCs were able to ameliorate liver lipotoxicity and metabolic disturbance in the context of NAFLD, in which the regulation of ER stress and the calcium homeostasis via SERCA has played a key role.
Collapse
Affiliation(s)
- Linzhao Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.,Medical College, Guizhou University, Guiyang, China
| | - Xin Zeng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenzhen Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Xuanming Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruixi Luo
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohong Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Peng C, Stewart AG, Woodman OL, Ritchie RH, Qin CX. Non-Alcoholic Steatohepatitis: A Review of Its Mechanism, Models and Medical Treatments. Front Pharmacol 2020; 11:603926. [PMID: 33343375 PMCID: PMC7745178 DOI: 10.3389/fphar.2020.603926] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) develops from non-alcoholic fatty liver disease (NAFLD). Currently, around 25% of the population is estimated to have NAFLD, and 25% of NAFLD patients are estimated to have NASH. NASH is typically characterized by liver steatosis inflammation, and fibrosis driven by metabolic disruptions such as obesity, diabetes, and dyslipidemia. NASH patients with significant fibrosis have increased risk of developing cirrhosis and liver failure. Currently, NASH is the second leading cause for liver transplant in the United States. More importantly, the risk of developing hepatocellular carcinoma from NASH has also been highlighted in recent studies. Patients may have NAFLD for years before progressing into NASH. Although the pathogenesis of NASH is not completely understood, the current “multiple-hits” hypothesis suggests that in addition to fat accumulation, elevated oxidative and ER stress may also drive liver inflammation and fibrosis. The development of clinically relevant animal models and pharmacological treatments for NASH have been hampered by the limited understanding of the disease mechanism and a lack of sensitive, non-invasive diagnostic tools. Currently, most pre-clinical animal models are divided into three main groups which includes: genetic models, diet-induced, and toxin + diet-induced animal models. Although dietary models mimic the natural course of NASH in humans, the models often only induce mild liver injury. Many genetic and toxin + diet-induced models rapidly induce the development of metabolic disruption and serious liver injury, but not without their own shortcomings. This review provides an overview of the “multiple-hits” hypothesis and an evaluation of the currently existing animal models of NASH. This review also provides an update on the available interventions for managing NASH as well as pharmacological agents that are currently undergoing clinical trials for the treatment of NASH.
Collapse
Affiliation(s)
- Cheng Peng
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia.,Australian Research Council, Centre for Personalised Therapeutics Technologies, Lancaster, CBR, Australia
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
37
|
Zhou X, Fouda S, Li D, Zhang K, Ye JM. Involvement of the Autophagy-ER Stress Axis in High Fat/Carbohydrate Diet-Induced Nonalcoholic Fatty Liver Disease. Nutrients 2020; 12:nu12092626. [PMID: 32872238 PMCID: PMC7551457 DOI: 10.3390/nu12092626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease that can progress from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH), and even further to liver cirrhosis or liver cancer. Overconsumption of high fat and/or carbohydrate are among the most common lifestyle factors that drive the development and progression of NAFLD. This review evaluates recent reports on the involvement of autophagy and endoplasmic reticulum (ER) stress in the pathogenesis of NAFLD. Here, we reveal a mechanism of an intrinsically linked axis of impaired autophagy and unresolved ER stress that mediates the development and progression of NAFLD resulting from the overconsumption of high fat and/or carbohydrate.
Collapse
Affiliation(s)
- Xiu Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (X.Z.); (D.L.); (K.Z.)
- International Healthcare Innovation Institute, Jiangmen 529040, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia;
| | - Sherouk Fouda
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia;
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (X.Z.); (D.L.); (K.Z.)
- International Healthcare Innovation Institute, Jiangmen 529040, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (X.Z.); (D.L.); (K.Z.)
- International Healthcare Innovation Institute, Jiangmen 529040, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Ji-Ming Ye
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (X.Z.); (D.L.); (K.Z.)
- International Healthcare Innovation Institute, Jiangmen 529040, China
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia;
- Correspondence: ; Tel.: +61-3-9925-7419; Fax: +61-3-9925-7178
| |
Collapse
|
38
|
Lachkar F, Papaioannou A, Ferré P, Foufelle F. [ER stress and NAFLD]. Biol Aujourdhui 2020; 214:15-23. [PMID: 32773026 DOI: 10.1051/jbio/2020007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent pathology associated with obesity. It encompasses a spectrum of hepatic disorders ranging from steatosis to non-alcoholic steatohepatitis (NASH), which may lead to cirrhosis and hepatocellular carcinoma (HCC). Endoplasmic reticulum (ER) stress has been widely involved to drive in NAFLD progression through the activation of the unfolded protein response (UPR). While transient UPR activation can boost hepatic ER functions, its continuous activation upon a chronic ER stress contributes to lipid accumulation, inflammation and hepatocyte death, which are determinant factors for the progression to more severe stages. The aim of this review is to describe the mechanisms through which the UPR can take part in the transition from a healthy to a diseased liver and to report on possible ways of pharmacological manipulation against these pathological mechanisms.
Collapse
Affiliation(s)
- Floriane Lachkar
- Centre de recherches des Cordeliers, UMRS1128 Inserm, Sorbonne Université, 15 rue de l'École de Médecine, 75270 Paris cedex 06, France
| | - Alexandra Papaioannou
- Centre de recherches des Cordeliers, UMRS1128 Inserm, Sorbonne Université, 15 rue de l'École de Médecine, 75270 Paris cedex 06, France
| | - Pascal Ferré
- Centre de recherches des Cordeliers, UMRS1128 Inserm, Sorbonne Université, 15 rue de l'École de Médecine, 75270 Paris cedex 06, France
| | - Fabienne Foufelle
- Centre de recherches des Cordeliers, UMRS1128 Inserm, Sorbonne Université, 15 rue de l'École de Médecine, 75270 Paris cedex 06, France
| |
Collapse
|
39
|
Wang J, He W, Tsai PJ, Chen PH, Ye M, Guo J, Su Z. Mutual interaction between endoplasmic reticulum and mitochondria in nonalcoholic fatty liver disease. Lipids Health Dis 2020; 19:72. [PMID: 32284046 PMCID: PMC7155254 DOI: 10.1186/s12944-020-01210-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common metabolic syndrome. Imbalances between liver lipid output and input are the direct causes of NAFLD, and hepatic steatosis is the pathological premise and basis for NAFLD progression. Mutual interaction between endoplasmic reticulum stress (ERS) and oxidative stress play important roles in NAFLD pathogenesis. Notably, mitochondria-associated membranes (MAMs) act as a structural bridges for functional clustering of molecules, particularly for Ca2+, lipids, and reactive oxygen species (ROS) exchange. Previous studies have examined the crucial roles of ERS and ROS in NAFLD and have shown that MAM structural and functional integrity determines normal ER- mitochondria communication. Upon disruption of MAM integrity, miscommunication directly or indirectly causes imbalances in Ca2+ homeostasis and increases ERS and oxidative stress. Here, we emphasize the involvement of MAMs in glucose and lipid metabolism, chronic inflammation and insulin resistance in NAFLD and summarize MAM-targeting drugs and compounds, most of which achieve their therapeutic or ameliorative effects on NAFLD by improving MAM integrity. Therefore, targeting MAMs may be a viable strategy for NAFLD treatment. This review provides new ideas and key points for basic NAFLD research and drug development centred on mitochondria and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Jin Wang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wanping He
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ping-Ju Tsai
- King-Prebiotics Biotechnology (TW) Co., LTD, 2F.-1, No. 250, Zhongshan Rd., Linkou Dist, New Taipei City, 24446, Taiwan
| | - Pei-Hsuan Chen
- King-Prebiotics Biotechnology (TW) Co., LTD, 2F.-1, No. 250, Zhongshan Rd., Linkou Dist, New Taipei City, 24446, Taiwan
| | - Manxiang Ye
- New Francisco (Yunfu City) Biotechnology Co, Ltd Swan-kan-chiau Ind. Dist., Kaofong Village, Yunfu City, Guangdong, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
40
|
Turpin-Nolan SM, Brüning JC. The role of ceramides in metabolic disorders: when size and localization matters. Nat Rev Endocrinol 2020; 16:224-233. [PMID: 32060415 DOI: 10.1038/s41574-020-0320-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 01/21/2023]
Abstract
Ceramide accumulation is a hallmark in the manifestation of numerous obesity-related diseases, such as type 2 diabetes mellitus and atherosclerosis. Until the early 2000s, ceramides were viewed as a homogenous class of sphingolipids. However, it has now become clear that ceramides exert fundamentally different effects depending on the specific fatty acyl chain lengths, which are integrated into ceramides by a group of enzymes known as dihydroceramide synthases. In addition, alterations in ceramide synthesis, trafficking and metabolism in specific cellular compartments exert distinct consequences on metabolic homeostasis. Here, we examine the emerging concept of how the intracellular localization of ceramides with distinct acyl chain lengths can regulate glucose metabolism, thus emphasizing their potential as targets in the development of novel and specific therapies for obesity and obesity-associated diseases.
Collapse
Affiliation(s)
- Sarah M Turpin-Nolan
- Max Planck Institute for Metabolism Research, Köln, Germany
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Köln, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Köln, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Köln, Germany.
- Centre for Molecular Medicine Cologne (CMMC), Köln, Germany.
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Köln, Germany.
| |
Collapse
|
41
|
Li A, Song NJ, Riesenberg BP, Li Z. The Emerging Roles of Endoplasmic Reticulum Stress in Balancing Immunity and Tolerance in Health and Diseases: Mechanisms and Opportunities. Front Immunol 2020; 10:3154. [PMID: 32117210 PMCID: PMC7026265 DOI: 10.3389/fimmu.2019.03154] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is an organelle equipped with mechanisms for proper protein folding, trafficking, and degradation to maintain protein homeostasis in the secretory pathway. As a defense mechanism, perturbation of ER proteostasis by ER stress agents activates a cascade of signaling pathways from the ER to the nucleus known as unfolded protein response (UPR). The primary goal of UPR is to induce transcriptional and translational programs to restore ER homeostasis for cell survival. As such, defects in UPR signaling have been implicated as a key contributor to multiple diseases including metabolic diseases, degenerative diseases, inflammatory disorders, and cancer. Growing evidence support the critical role of ER stress in regulating the fate as well as the magnitude of the immune response. Moreover, the availability of multiple UPR pharmacological inhibitors raises the hope that targeting UPR can be a new strategy for immune modulation and immunotherapy of diseases. This paper reviews the principal mechanisms by which ER stress affects immune cell biology and function, with a focus of discussion on UPR-associated immunopathology and the development of potential ER stress-targeted therapeutics.
Collapse
Affiliation(s)
- Anqi Li
- College of Medicine, The Ohio State University, Columbus, OH, United States.,The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - No-Joon Song
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Brian P Riesenberg
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Zihai Li
- College of Medicine, The Ohio State University, Columbus, OH, United States.,The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States.,Division of Medical Oncology, Department of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
42
|
Casali C, Malvicini R, Erjavec L, Parra L, Artuch A, Fernández Tome MC. X-box binding protein 1 (XBP1): A key protein for renal osmotic adaptation. Its role in lipogenic program regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158616. [PMID: 31927142 DOI: 10.1016/j.bbalip.2020.158616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 01/21/2023]
Abstract
In renal cells, hyperosmolarity can induce cellular stress or differentiation. Both processes require active endoplasmic reticulum (ER)-associated protein synthesis. Lipid biosynthesis also occurs at ER surface. We showed that hyperosmolarity upregulates glycerophospholipid (GP) and triacylglycerol (GL-TG) de novo synthesis. Considering that massive synthesis of proteins and/or lipids may drive to ER stress, herein we evaluated whether hyperosmolar environment induces ER stress and the participation of inositol-requiring enzyme 1α (IRE1α)-XBP1 in hyperosmotic-induced lipid synthesis. Treatment of Madin-Darby canine kidney (MDCK) cells with hyperosmolar medium triggered ER stress-associated unfolded protein response (UPR). Hyperosmolarity significantly increased xbp1 mRNA and protein as function of time; 24 h of treatment raised the spliced form of XBP1 protein (XBP1s) and induced its translocation to nuclear compartment where it can act as a transcription factor. XBP1 silencing or IRE1α ribonuclease (RNAse) inhibition impeded the expression of lipin1, lipin2 and diacylglycerol acyl transferase-1 (DGAT1) enzymes which yielded decreased GL-TG synthesis. The lack of XBP1s also decreased sterol regulatory element binding protein (SREBP) 1 and 2. Together our data demonstrate that hyperosmolarity induces IRE1α → XBP1s activation; XBP1s drives the expression of SREBP1 and SREBP2 which in turn regulates the expression of the lipogenic enzymes lipin1 (LPIN1) and 2 (LPIN2) and DGAT1. We also demonstrated for the first time that tonicity-responsive enhancer binding protein (TonEBP), the master regulator of osmoprotective response, regulates XBP1 expression. Thus, XBP1 acts as an osmoprotective protein since it is activated by high osmolarity and upregulates lipid metabolism, membranes generation and the restoration of ER homeostasis.
Collapse
Affiliation(s)
- Cecilia Casali
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Ricardo Malvicini
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - Luciana Erjavec
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Leandro Parra
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Ayelen Artuch
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - María C Fernández Tome
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
43
|
Inhibition of the Low Molecular Weight Protein Tyrosine Phosphatase (LMPTP) as a Potential Therapeutic Strategy for Hepatic Progenitor Cells Lipotoxicity-Short Communication. Int J Mol Sci 2019; 20:ijms20235873. [PMID: 31771123 PMCID: PMC6928870 DOI: 10.3390/ijms20235873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
Equine metabolic syndrome (EMS) is a cluster of metabolic disorders, such as obesity, hyperinsulinemia, and hyperleptinemia, as well as insulin resistance (IR). In accordance with the theory linking obesity and IR, excessive accumulation of lipids in insulin-sensitive tissues (lipotoxicity), like liver, alters several cellular functions, including insulin signaling. Therefore, the purpose of the study was to isolate equine hepatic progenitor-like cells (HPCs) and assess whether inhibition of low molecular weight protein tyrosine phosphatase (LMPTP) affects the expression of genes involved in macroautophagy, chaperone-mediated autophagy (CMA), endoplasmic reticulum stress, and mitochondrial dynamics in a palmitate-induced IR model. We demonstrated that LMPTP inhibition significantly enhanced expression of heat shock cognate 70 kDa protein (HSC70), lysosome-associated membrane protein 2 (LAMP2), and parkin (PRKN), all master regulators of selective autophagy. We also observed downregulation of C/EBP homologous protein (CHOP), activating transcription factor 6 (ATF6) and binding immunoglobulin protein encoded by the HSPA gene. Moreover, LMPTP inhibition increased alternative splicing of X-box binding protein 1 (XBP1), suggesting high endonuclease activity of inositol-requiring enzyme 1 alpha (IRE1α). Taken together, our data provide convincing evidence that LMPTP inhibition reverses palmitate-induced insulin resistance and lipotoxicity. In conclusion, this study highlights the role of LMPTP in the regulation of CMA, mitophagy, and ER stress, and provides a new in vitro model for studying HPC lipotoxicity in pre-clinical research.
Collapse
|
44
|
Huang S, Xing Y, Liu Y. Emerging roles for the ER stress sensor IRE1α in metabolic regulation and disease. J Biol Chem 2019; 294:18726-18741. [PMID: 31666338 DOI: 10.1074/jbc.rev119.007036] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inositol-requiring enzyme 1 (IRE1) is an endoplasmic reticulum (ER)-resident transmembrane protein that senses ER stress and is evolutionarily conserved from yeast to humans. IRE1 possesses both Ser/Thr protein kinase and endoribonuclease (RNase) activities within its cytoplasmic domain and is activated through autophosphorylation and dimerization/oligomerization. It mediates a critical arm of the unfolded protein response to manage ER stress provoked by lumenal overload of unfolded/misfolded proteins. Emerging lines of evidence have revealed that in mammals, IRE1α functions as a multifunctional signal transducer that responds to metabolic cues and nutrient stress conditions, exerting profound and broad effects on metabolic homeostasis. In this review, we cover recent advances in our understanding of how IRE1α integrates a variety of metabolic and stress signals and highlight its tissue-specific or context-dependent metabolic activities. We also discuss how dysregulation of this metabolic stress sensor during handling of excessive nutrients in cells contributes to the progression of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Shijia Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yuying Xing
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
45
|
ER Stress Activates the NLRP3 Inflammasome: A Novel Mechanism of Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3462530. [PMID: 31687078 PMCID: PMC6800950 DOI: 10.1155/2019/3462530] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/21/2019] [Accepted: 08/31/2019] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is an important organelle that regulates several fundamental cellular processes, and ER dysfunction has implications for many intracellular events. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is an intracellularly produced macromolecular complex that can trigger pyroptosis and inflammation, and its activation is induced by a variety of signals. ER stress has been found to affect NLRP3 inflammasome activation through multiple effects including the unfolded protein response (UPR), calcium or lipid metabolism, and reactive oxygen species (ROS) generation. Intriguingly, the role of ER stress in inflammasome activation has not attracted a great deal of attention. In addition, increasing evidence highlights that both ER stress and NLRP3 inflammasome activation contribute to atherosclerosis (AS). AS is a common cardiovascular disease with complex pathogenesis, and the precise mechanisms behind its pathogenesis remain to be determined. Both ER stress and the NLRP3 inflammasome have emerged as critical individual contributors of AS, and owing to the multiple associations between these two events, we speculate that they contribute to the mechanisms of pathogenesis in AS. In this review, we aim to summarize the molecular mechanisms of ER stress, NLRP3 inflammasome activation, and the cross talk between these two pathways in AS in the hopes of providing new pharmacological targets for AS treatment.
Collapse
|
46
|
Brandt C, Nolte H, Henschke S, Engström Ruud L, Awazawa M, Morgan DA, Gabel P, Sprenger HG, Hess ME, Günther S, Langer T, Rahmouni K, Fenselau H, Krüger M, Brüning JC. Food Perception Primes Hepatic ER Homeostasis via Melanocortin-Dependent Control of mTOR Activation. Cell 2019; 175:1321-1335.e20. [PMID: 30445039 DOI: 10.1016/j.cell.2018.10.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/10/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Adaptation of liver to the postprandial state requires coordinated regulation of protein synthesis and folding aligned with changes in lipid metabolism. Here we demonstrate that sensory food perception is sufficient to elicit early activation of hepatic mTOR signaling, Xbp1 splicing, increased expression of ER-stress genes, and phosphatidylcholine synthesis, which translate into a rapid morphological ER remodeling. These responses overlap with those activated during refeeding, where they are maintained and constantly increased upon nutrient supply. Sensory food perception activates POMC neurons in the hypothalamus, optogenetic activation of POMC neurons activates hepatic mTOR signaling and Xbp1 splicing, whereas lack of MC4R expression attenuates these responses to sensory food perception. Chemogenetic POMC-neuron activation promotes sympathetic nerve activity (SNA) subserving the liver, and norepinephrine evokes the same responses in hepatocytes in vitro and in liver in vivo as observed upon sensory food perception. Collectively, our experiments unravel that sensory food perception coordinately primes postprandial liver ER adaption through a melanocortin-SNA-mTOR-Xbp1s axis. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Claus Brandt
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Hendrik Nolte
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, Cologne 50931, Germany
| | - Sinika Henschke
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Linda Engström Ruud
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Motoharu Awazawa
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Donald A Morgan
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 3181 MERF, 375 Newton Rd., Iowa City, IA 52242, USA
| | - Paula Gabel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | | | - Martin E Hess
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Parkstr. 1, 61231 Bad Nauheim, Germany
| | - Thomas Langer
- Institute for Genetics, University of Cologne, Cologne 50931, Germany; Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Kamal Rahmouni
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 3181 MERF, 375 Newton Rd., Iowa City, IA 52242, USA
| | - Henning Fenselau
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Marcus Krüger
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, Cologne 50931, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
47
|
Zheng Y, Qu H, Xiong X, Wang Y, Liu X, Zhang L, Liao X, Liao Q, Sun Z, Ouyang Q, Yang G, Zhu Z, Xu J, Zheng H. Deficiency of Mitochondrial Glycerol 3-Phosphate Dehydrogenase Contributes to Hepatic Steatosis. Hepatology 2019; 70:84-97. [PMID: 30653687 PMCID: PMC6597300 DOI: 10.1002/hep.30507] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/05/2019] [Indexed: 12/25/2022]
Abstract
Mitochondrial glycerol 3-phosphate dehydrogenase (mGPDH) is an integral component of the respiratory chain, and recent studies have suggested that it plays an important role in hepatic glucose homeostasis. However, its function in hepatic lipid metabolism is unclear. Here, we identified a role for mGPDH in nonalcoholic fatty liver disease (NAFLD). Specifically, mGPDH expression and activity were lower in fatty livers from patients and mice with NAFLD (ob/ob, high-fat diet [HFD] and db/db). Liver-specific depletion of mGPDH in mice or mGPDH knockdown in cultured hepatocytes exacerbated diet-induced triglyceride accumulation and steatosis through enhanced lipogenesis. RNA-sequencing revealed that mGPDH regulated endoplasmic reticulum (ER)-related proteins and processes. mGPDH deletion exacerbated tunicamycin (ER stress inducer)-induced hepatic steatosis, whereas tauroursodeoxycholic acid (ER stress inhibitor) rescued mGPDH depletion-induced steatosis on an HFD. Moreover, ER stress induced by mGPDH depletion could be abrogated by the intracellular Ca2+ chelator 1,2-bis (2-aminophenoxy) ethane N,N,N´,N´-tetraacetic acid acetoxymethyl ester, mitochondrial permeability transition pore (mPTP) inhibitor cyclosporine A, or cyclophilin-D (Cyp-D) knockdown. mGPDH promoting Cyp-D ubiquitination was also observed. Finally, liver-specific mGPDH overexpression attenuated hepatic steatosis in ob/ob and HFD mice. Conclusion: mGPDH is a pivotal regulator of hepatic lipid metabolism. Its deficiency induces ER stress by suppressing Cyp-D ubiquitination, a key regulator of the mitochondrial Ca2+ conductance channel mPTP, and results in hepatic steatosis. mGPDH may be a potential therapeutic target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hua Qu
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xin Xiong
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuren Wang
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiufei Liu
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Linlin Zhang
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyu Liao
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qian Liao
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zheng Sun
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jing Xu
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Correspondence addressed to: Hongting Zheng, M.D., Ph.D., Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China, , Phone: +8602368755709, Fax: +8602368755707
| |
Collapse
|
48
|
Zhu Y, Guan Y, Loor JJ, Sha X, Coleman DN, Zhang C, Du X, Shi Z, Li X, Wang Z, Liu G, Li X. Fatty acid-induced endoplasmic reticulum stress promoted lipid accumulation in calf hepatocytes, and endoplasmic reticulum stress existed in the liver of severe fatty liver cows. J Dairy Sci 2019; 102:7359-7370. [PMID: 31155263 DOI: 10.3168/jds.2018-16015] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/04/2019] [Indexed: 01/22/2023]
Abstract
Disruption of endoplasmic reticulum (ER) homeostasis, often termed ER stress, is intrinsically linked with perturbation of lipid metabolism in humans and mice. Whether ER homeostasis is affected in cows experiencing fatty liver is unknown. The aim of this study was to investigate the potential role of ER stress in hepatic lipid accumulation in calf hepatocytes and ER stress status in dairy cows with severe fatty liver. In vitro experiments were conducted in which hepatocytes were isolated from calves and treated with different concentrations of fatty acids, tauroursodeoxycholic acid (TUDCA; a canonical inhibitor of ER stress), or both. The increase in phosphorylation level of protein kinase RNA-like ER kinase (PERK) and inositol requiring protein-1α (IRE1α) proteins, and the cleavage of activating transcription factor-6 (ATF6) protein in response to increasing doses of fatty acids (which were reversed by TUDCA treatment) in primary hepatocytes underscored a mechanistic link between fatty acids and ER stress. In addition, fatty acid treatment increased the abundance of sterol regulatory element-binding protein 1c, acetyl-CoA carboxylase-α, fatty acid synthase, and diacylglycerol acyltransferase 1, and lipid accumulation in calf primary hepatocytes, whereas inhibition of ER stress by incubating with TUDCA significantly weakened these effects. Overall, results in vitro indicate that inhibition of ER stress in calf hepatocytes alleviates fatty acid-induced lipid accumulation by downregulating the expression of lipogenic genes. In vivo experiments, liver and blood samples were collected from cows diagnosed as healthy (n = 15) or with severe fatty liver (n = 15). The phosphorylation level of PERK and IRE1α, the cleavage of ATF6 protein, and the abundance of several unfolded protein response genes (78 kDa glucose-regulated protein, AMP-dependent transcription factor 4, and spliced X-box binding protein 1) were greater in liver of cows with severe fatty liver. The present in vivo study confirms the occurrence of ER stress in dairy cows with severe fatty liver. Considering the causative role of fatty acid-induced ER stress in hepatic lipid accumulation in calf hepatocytes, the existence of ER stress in the liver of severe fatty liver cows may presage its participation in fatty liver progression in dairy cows. However, the mechanistic relationship between ER stress and fatty liver in dairy cows remain to be determined.
Collapse
Affiliation(s)
- Yiwei Zhu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Yuan Guan
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Xueying Sha
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Danielle N Coleman
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Xiliang Du
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Zhen Shi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Zhe Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Guowen Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xinwei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| |
Collapse
|
49
|
Oleate inhibits hepatic autophagy through p38 mitogen-activated protein kinase (MAPK). Biochem Biophys Res Commun 2019; 514:92-97. [PMID: 31023527 DOI: 10.1016/j.bbrc.2019.04.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022]
Abstract
Hepatic autophagy plays an important role in lipid metabolism, especially in nonalcoholic fatty liver disease. The relationship between Oleate acid and autophagy is not yet clear. In this work, using mouse epithelial cell hepa1c1c7, we investigated the role of Oleate acid on autophagy and explored its potential mechanisms. The exposure of hepatic cells to Oleate acid resulted in a significant reduction of LC3 accumulation together with enhancement of p62 protein expression and the mRNA levels of ATG7 and BECN1 were reduced as well. Mechanistically, the inhibitory effects of Oleate acid on rapamycin-induced autophagy were completely blocked by treatment with dominant negative p38α and p38 inhibitor SB203580. Furthermore, ATF-2, downstream of p38, was activated by Oleate treatment. Oleate treatment also inhibited the ULK1 promoter and decreased the ULK1 mRNA level. Our data therefore suggest that Oleate activated the ATF-2 via p38 kinase which inhibited the ULK1 via binding to ULK1 promoter, and eventually the rapamycin-induced autophagy was suppressed.
Collapse
|
50
|
Pinkham K, Park DJ, Hashemiaghdam A, Kirov AB, Adam I, Rosiak K, da Hora CC, Teng J, Cheah PS, Carvalho L, Ganguli-Indra G, Kelly A, Indra AK, Badr CE. Stearoyl CoA Desaturase Is Essential for Regulation of Endoplasmic Reticulum Homeostasis and Tumor Growth in Glioblastoma Cancer Stem Cells. Stem Cell Reports 2019; 12:712-727. [PMID: 30930246 PMCID: PMC6450460 DOI: 10.1016/j.stemcr.2019.02.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
Inherent plasticity and various survival cues allow glioblastoma stem-like cells (GSCs) to survive and proliferate under intrinsic and extrinsic stress conditions. Here, we report that GSCs depend on the adaptive activation of ER stress and subsequent activation of lipogenesis and particularly stearoyl CoA desaturase (SCD1), which promotes ER homeostasis, cytoprotection, and tumor initiation. Pharmacological targeting of SCD1 is particularly toxic due to the accumulation of saturated fatty acids, which exacerbates ER stress, triggers apoptosis, impairs RAD51-mediated DNA repair, and achieves a remarkable therapeutic outcome with 25%-100% cure rate in xenograft mouse models. Mechanistically, divergent cell fates under varying levels of ER stress are primarily controlled by the ER sensor IRE1, which either promotes SCD1 transcriptional activation or converts to apoptotic signaling when SCD1 activity is impaired. Taken together, the dependence of GSCs on fatty acid desaturation presents an exploitable vulnerability to target glioblastoma.
Collapse
Affiliation(s)
- Kelsey Pinkham
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - David Jaehyun Park
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA; Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Arsalan Hashemiaghdam
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA; Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Aleksandar B Kirov
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Isam Adam
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Kamila Rosiak
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Cintia C da Hora
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA; Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Jian Teng
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA; Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Pike See Cheah
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Selangor 43400, Malaysia
| | - Litia Carvalho
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA; Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Avalon Kelly
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Christian E Badr
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA; Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|