1
|
Guzmán-Acevedo ÁR, Caba-Flores MD, Viveros-Contreras R, Meza-Alvarado JE. Orchiectomy Decreases Locomotor Activity and Delays the Expression of the Clock Protein PER1 in the Suprachiasmatic Nucleus in Rabbits. Animals (Basel) 2024; 14:3570. [PMID: 39765474 PMCID: PMC11672421 DOI: 10.3390/ani14243570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
The suprachiasmatic nucleus (SCN) is the master regulator of the circadian system, modulating the daily timing of physiological and behavioral processes in mammals. While SCN synchronization is primarily driven by environmental light signals, sex hormones, particularly androgens, have a crucial role in regulating behavioral and reproductive processes to align with daily or seasonal cycles. SCN cell populations express receptors for sex steroid hormones, contributing to circadian synchronization mechanisms. Specifically, the activation of androgen receptors in the SCN has been shown to modulate clock gene expression and influence circadian rhythms. Rabbits, widely used in experimental research, exhibit unique behavioral patterns, including plasticity in circadian typology and seasonal variations in testosterone secretion. In this study, we explored, in male rabbits, the effect of castration on the daily pattern of locomotor activity and the expression of the clock protein PERIOD 1 (PER1) in the SCN. Our results show that castration significantly reduces daily locomotor activity and PER1 expression in the SCN. Moreover, a 4 h delay in the acrophase of PER1 expression was observed. We conclude that androgens have an important role in SCN synchronization mechanisms, contributing to the organization of physiological and behavioral events in this species.
Collapse
Affiliation(s)
| | - Mario Daniel Caba-Flores
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 64460, Nuevo León, Mexico;
| | - Rubi Viveros-Contreras
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa 91090, Veracruz, Mexico;
| | | |
Collapse
|
2
|
Deng Q, Li Y, Sun Z, Gao X, Zhou J, Ma G, Qu WM, Li R. Sleep disturbance in rodent models and its sex-specific implications. Neurosci Biobehav Rev 2024; 164:105810. [PMID: 39009293 DOI: 10.1016/j.neubiorev.2024.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Sleep disturbances, encompassing altered sleep physiology or disorders like insomnia and sleep apnea, profoundly impact physiological functions and elevate disease risk. Despite extensive research, the underlying mechanisms and sex-specific differences in sleep disorders remain elusive. While polysomnography serves as a cornerstone for human sleep studies, animal models provide invaluable insights into sleep mechanisms. However, the availability of animal models of sleep disorders is limited, with each model often representing a specific sleep issue or mechanism. Therefore, selecting appropriate animal models for sleep research is critical. Given the significant sex differences in sleep patterns and disorders, incorporating both male and female subjects in studies is essential for uncovering sex-specific mechanisms with clinical relevance. This review provides a comprehensive overview of various rodent models of sleep disturbance, including sleep deprivation, sleep fragmentation, and circadian rhythm dysfunction. We evaluate the advantages and disadvantages of each model and discuss sex differences in sleep and sleep disorders, along with potential mechanisms. We aim to advance our understanding of sleep disorders and facilitate sex-specific interventions.
Collapse
Affiliation(s)
- Qi Deng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuhong Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiang Gao
- Shanxi Bethune Hospital, Shanxi, China
| | | | - Guangwei Ma
- Peking University Sixth Hospital, Beijing, China
| | - Wei-Min Qu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China; Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Pastrick A, Diaz M, Adaya G, Montinola V, Arzbecker M, Joye DAM, Evans JA. Biological Sex Influences Daily Locomotor Rhythms in Mice Held Under Different Housing Conditions. J Biol Rhythms 2024; 39:351-364. [PMID: 38845380 PMCID: PMC11322640 DOI: 10.1177/07487304241256004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Daily rhythms are programmed by a central circadian clock that is modulated by photoperiod. Here, we recorded locomotor activity rhythms in C57Bl/6 or mPer2Luc mice of both sexes held under different housing conditions. First, we confirm that the structure of locomotor activity rhythms differs between male and female mice in both genetic backgrounds. Male mice exhibit a nightly "siesta," whereas female mice fluctuate between nights with and without a nightly siesta, which corresponds with changes in locomotor activity levels, circadian period, and vaginal cytology. The nightly siesta is modulated by the presence of a running wheel in both sexes but is not required for the infradian patterning of locomotor rhythms in females. Finally, photoperiodic changes in locomotor rhythms differed by sex, and females displayed phase-jumping responses earlier than males under a parametric photoentrainment assay simulating increasing day length. Collectively, these results highlight that sex and sex hormones influence daily locomotor rhythms under a variety of different environmental conditions.
Collapse
Affiliation(s)
| | | | | | - Victoria Montinola
- Department of Biomedical Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Madeline Arzbecker
- Department of Biomedical Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Deborah A. M. Joye
- Department of Biomedical Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Jennifer A. Evans
- Department of Biomedical Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
4
|
Tamura N, Okamura K. Longitudinal course and outcome of social jetlag in adolescents: A 1-year follow-up study of the adolescent sleep health epidemiological cohorts. J Sleep Res 2024; 33:e14042. [PMID: 37697814 DOI: 10.1111/jsr.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
The discrepancy in sleep timing between weekdays and weekends - social jetlag (SJL) - is known to negatively affect student quality of life (QOL). However, the association between social jetlag and physical/mental QOL among adolescents and the precise effect of social jetlag on depressive symptoms and daytime sleepiness remains unknown. This study investigated the longitudinal course, risk factors, and effects of social jetlag, a circadian misalignment, in a school-based cohort. The participants were 427 students (13.3 ± 0.6 years, 45.2% girls) from five junior high schools. We performed a baseline survey in 2019 and a 1-year follow-up survey in 2020. Depressive symptoms, QOL, and daytime sleepiness were assessed using the Birleson Depression Self-Rating Scale for Children, Paediatric Quality of Life Inventory, and Paediatric Daytime Sleepiness Scale. In the baseline survey, 49.6% of the students reported SJL ≥1 h, and 17.1% reported SJL ≥2 h. Among them, 37.2% and 6.8% reported persistent SJL at follow-up, respectively. New incidences of SJL ≥1 h were associated with older age, non-attainment of menarche or voice changes, and longer duration of smartphone use, whereas its persistence was associated with a later chronotype. Persistence of SJL ≥1 h and ≥2 h predicted depressive symptoms and daytime sleepiness at follow-up, whereas new incidences of SJL ≥2 h predicted lower QOL. In conclusion, social jetlag has a persistent course, and daytime functioning can deteriorate as social jetlag becomes chronic. Our findings suggest the need for intensive interventions for social jetlag among adolescents.
Collapse
Affiliation(s)
- Norihisa Tamura
- Department of Psychology, Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
- Centre for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Kayoko Okamura
- Osaka Municipal Nanko Kita Junior High School, Osaka, Japan
- Department of Clinical Psychology, Graduate School of Education, Hyogo University of Teacher Education, Hyogo, Japan
| |
Collapse
|
5
|
Ono D, Weaver DR, Hastings MH, Honma KI, Honma S, Silver R. The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward. J Biol Rhythms 2024; 39:135-165. [PMID: 38366616 PMCID: PMC7615910 DOI: 10.1177/07487304231225706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
It has been 50 years since the suprachiasmatic nucleus (SCN) was first identified as the central circadian clock and 25 years since the last overview of developments in the field was published in the Journal of Biological Rhythms. Here, we explore new mechanisms and concepts that have emerged in the subsequent 25 years. Since 1997, methodological developments, such as luminescent and fluorescent reporter techniques, have revealed intricate relationships between cellular and network-level mechanisms. In particular, specific neuropeptides such as arginine vasopressin, vasoactive intestinal peptide, and gastrin-releasing peptide have been identified as key players in the synchronization of cellular circadian rhythms within the SCN. The discovery of multiple oscillators governing behavioral and physiological rhythms has significantly advanced our understanding of the circadian clock. The interaction between neurons and glial cells has been found to play a crucial role in regulating these circadian rhythms within the SCN. Furthermore, the properties of the SCN network vary across ontogenetic stages. The application of cell type-specific genetic manipulations has revealed components of the functional input-output system of the SCN and their correlation with physiological functions. This review concludes with the high-risk effort of identifying open questions and challenges that lie ahead.
Collapse
Affiliation(s)
- Daisuke Ono
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - David R Weaver
- Department of Neurobiology and NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ken-Ichi Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Center for Sleep and Circadian Rhythm Disorders, Sapporo Hanazono Hospital, Sapporo, Japan
| | - Sato Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Center for Sleep and Circadian Rhythm Disorders, Sapporo Hanazono Hospital, Sapporo, Japan
| | - Rae Silver
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neuroscience & Behavior, Barnard College and Department of Psychology, Columbia University, New York City, New York, USA
| |
Collapse
|
6
|
Naveed M, Chao OY, Hill JW, Yang YM, Huston JP, Cao R. Circadian neurogenetics and its implications in neurophysiology, behavior, and chronomedicine. Neurosci Biobehav Rev 2024; 157:105523. [PMID: 38142983 PMCID: PMC10872425 DOI: 10.1016/j.neubiorev.2023.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
The circadian rhythm affects multiple physiological processes, and disruption of the circadian system can be involved in a range of disease-related pathways. The genetic underpinnings of the circadian rhythm have been well-studied in model organisms. Significant progress has been made in understanding how clock genes affect the physiological functions of the nervous system. In addition, circadian timing is becoming a key factor in improving drug efficacy and reducing drug toxicity. The circadian biology of the target cell determines how the organ responds to the drug at a specific time of day, thus regulating pharmacodynamics. The current review brings together recent advances that have begun to unravel the molecular mechanisms of how the circadian clock affects neurophysiological and behavioral processes associated with human brain diseases. We start with a brief description of how the ubiquitous circadian rhythms are regulated at the genetic, cellular, and neural circuit levels, based on knowledge derived from extensive research on model organisms. We then summarize the latest findings from genetic studies of human brain disorders, focusing on the role of human clock gene variants in these diseases. Lastly, we discuss the impact of common dietary factors and medications on human circadian rhythms and advocate for a broader application of the concept of chronomedicine.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Ruifeng Cao
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
7
|
Boyd HM, Frick KM, Kwapis JL. Connecting the Dots: Potential Interactions Between Sex Hormones and the Circadian System During Memory Consolidation. J Biol Rhythms 2023; 38:537-555. [PMID: 37464775 PMCID: PMC10615791 DOI: 10.1177/07487304231184761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Both the circadian clock and sex hormone signaling can strongly influence brain function, yet little is known about how these 2 powerful modulatory systems might interact during complex neural processes like memory consolidation. Individually, the molecular components and action of each of these systems have been fairly well-characterized, but there is a fundamental lack of information about how these systems cooperate. In the circadian system, clock genes function as timekeeping molecules that convey time-of-day information on a well-stereotyped cycle that is governed by the suprachiasmatic nucleus. Keeping time is particularly important to synchronize various physiological processes across the brain and body, including those that regulate memory consolidation. Similarly, sex hormones are powerful modulators of memory, with androgens, estrogens, and progestins, all influencing memory consolidation within memory-relevant brain regions like the hippocampus. Despite clear evidence that each system can influence memory individually, exactly how the circadian and hormonal systems might interact to impact memory consolidation remains unclear. Research investigating either sex hormone action or circadian gene function within memory-relevant brain regions has unveiled several notable places in which the two systems could interact to control memory. Here, we bring attention to known interactions between the circadian clock and sex hormone signaling. We then review sex hormone-mediated control of memory consolidation, highlighting potential nodes through which the circadian system might interact during memory formation. We suggest that the bidirectional relationship between these two systems is essential for proper control of memory formation based on an animal's hormonal and circadian state.
Collapse
Affiliation(s)
- Hannah M. Boyd
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania
| | - Karyn M. Frick
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
| | - Janine L. Kwapis
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
8
|
Luengo-Mateos M, González-Vila A, Vicente Dragano NR, Ohinska N, Silveira-Loureiro M, González-Domínguez M, Estévez-Salguero Á, Novelle-Rodríguez P, López M, Barca-Mayo O. Hypothalamic astrocytic-BMAL1 regulates energy homeostasis in a sex-dependent manner. Cell Rep 2023; 42:112949. [PMID: 37542717 DOI: 10.1016/j.celrep.2023.112949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 06/12/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023] Open
Abstract
Here, we demonstrate that hypothalamic astrocytic BMAL1 computes cyclic metabolic information to optimize energetic resources in a sexually dimorphic manner. Knockdown of BMAL1 in female astrocytes leads to negative energy balance and alters basal metabolic cycles without affecting circadian locomotor activity. Thus, astrocytic BMAL1 contributes to the control of energy balance through the modulation of the metabolic rate, hepatic and white adipose tissue lipogenesis, and the activity of brown adipose tissue. Importantly, most of these alterations are specific to hypothalamic astrocytic BMAL1. Moreover, female mice with BMAL1 knockdown in astrocytes exhibited a "male-like" metabolic obese phenotype when fed a high-fat diet. Overall, our results suggest a sexually dimorphic effect of astrocytic BMAL1 on the regulation of energy homeostasis, which may be of interest in the physiopathology of obesity and related comorbidities.
Collapse
Affiliation(s)
- María Luengo-Mateos
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antía González-Vila
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Nathalia Romanelli Vicente Dragano
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Nataliia Ohinska
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - María Silveira-Loureiro
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marco González-Domínguez
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ánxela Estévez-Salguero
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Paula Novelle-Rodríguez
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel López
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain.
| | - Olga Barca-Mayo
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Furtado A, Costa D, Lemos MC, Cavaco JE, Santos CRA, Quintela T. The impact of biological clock and sex hormones on the risk of disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:39-81. [PMID: 37709381 DOI: 10.1016/bs.apcsb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Molecular clocks are responsible for defining 24-h cycles of behaviour and physiology that are called circadian rhythms. Several structures and tissues are responsible for generating these circadian rhythms and are named circadian clocks. The suprachiasmatic nucleus of the hypothalamus is believed to be the master circadian clock receiving light input via the optic nerve and aligning internal rhythms with environmental cues. Studies using both in vivo and in vitro methodologies have reported the relationship between the molecular clock and sex hormones. The circadian system is directly responsible for controlling the synthesis of sex hormones and this synthesis varies according to the time of day and phase of the estrous cycle. Sex hormones also directly interact with the circadian system to regulate circadian gene expression, adjust biological processes, and even adjust their own synthesis. Several diseases have been linked with alterations in either the sex hormone background or the molecular clock. So, in this chapter we aim to summarize the current understanding of the relationship between the circadian system and sex hormones and their combined role in the onset of several related diseases.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Diana Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Manuel C Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - J Eduardo Cavaco
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Cecília R A Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal; UDI-IPG, Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal.
| |
Collapse
|
10
|
Morphofunctional State and Circadian Rhythms of the Liver of Female Rats under the Influence of Chronic Alcohol Intoxication and Constant Lighting. Int J Mol Sci 2022; 23:ijms231810744. [PMID: 36142658 PMCID: PMC9502101 DOI: 10.3390/ijms231810744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
A separate and combined effect of constant illumination and chronic alcohol intoxication (CAI) on diurnal dynamics of micromorphometric parameters of hepatocytes in female Wistar rats and p53, Ki-67, PER2, BMAL1, and ADH5 expression in these cells were studied. The increase in apoptotic activity and proliferation in all animals under the action of chronodestructors is shown. All experimental animals showed a decrease in BMAL1 expression and increase in PER2 expression; ADH5 is overexpressed under the influence of ethanol. Circadian rhythms (CRs) of BMAL1, PER2, p53, and Ki-67 expression persist in all groups, except combined action of chronodestructors, and ADH5 CRs persist in all groups—thus, these rhythms in females are quite stable. CRs of the hepatocyte nuclei area are preserved in all the studied groups, although they undergo a significant shift. At the same time, the CRs of the hepatocyte area are destroyed under the action of light, both independently and in combination with CAI, and the CR of the nuclear-cytoplasmic ratio (NCR) is destroyed by exposure to CAI. It can be assumed that CRs of the hepatocyte area are significantly affected by dark deprivation and NCR rhythm is sensitive to ethanol consumption, while the stability of studied genes’ expression rhythms at separate influences of studied chronodestructors is maintained by yet unknown adaptation mechanisms. It is necessary to note that, according to our previous studies of male rats, rat females show significantly greater stability of the studied CRs.
Collapse
|
11
|
Moeller JS, Bever SR, Finn SL, Phumsatitpong C, Browne MF, Kriegsfeld LJ. Circadian Regulation of Hormonal Timing and the Pathophysiology of Circadian Dysregulation. Compr Physiol 2022; 12:4185-4214. [PMID: 36073751 DOI: 10.1002/cphy.c220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are endogenously generated, daily patterns of behavior and physiology that are essential for optimal health and disease prevention. Disruptions to circadian timing are associated with a host of maladies, including metabolic disease and obesity, diabetes, heart disease, cancer, and mental health disturbances. The circadian timing system is hierarchically organized, with a master circadian clock located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks throughout the CNS and periphery. The SCN receives light information via a direct retinal pathway, synchronizing the master clock to environmental time. At the cellular level, circadian rhythms are ubiquitous, with rhythms generated by interlocking, autoregulatory transcription-translation feedback loops. At the level of the SCN, tight cellular coupling maintains rhythms even in the absence of environmental input. The SCN, in turn, communicates timing information via the autonomic nervous system and hormonal signaling. This signaling couples individual cellular oscillators at the tissue level in extra-SCN brain loci and the periphery and synchronizes subordinate clocks to external time. In the modern world, circadian disruption is widespread due to limited exposure to sunlight during the day, exposure to artificial light at night, and widespread use of light-emitting electronic devices, likely contributing to an increase in the prevalence, and the progression, of a host of disease states. The present overview focuses on the circadian control of endocrine secretions, the significance of rhythms within key endocrine axes for typical, homeostatic functioning, and implications for health and disease when dysregulated. © 2022 American Physiological Society. Compr Physiol 12: 1-30, 2022.
Collapse
Affiliation(s)
- Jacob S Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA
| | - Savannah R Bever
- Department of Psychology, University of California, Berkeley, California, USA
| | - Samantha L Finn
- Department of Psychology, University of California, Berkeley, California, USA
| | | | - Madison F Browne
- Department of Psychology, University of California, Berkeley, California, USA
| | - Lance J Kriegsfeld
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA.,Department of Psychology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA.,The Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
12
|
Grant AD, Wilbrecht L, Kriegsfeld LJ. Sex Differences in Pubertal Circadian and Ultradian Rhythmic Development Under Semi-naturalistic Conditions. J Biol Rhythms 2022; 37:442-454. [PMID: 35502708 PMCID: PMC9329191 DOI: 10.1177/07487304221092715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Biological rhythms in core body temperature (CBT) provide informative markers of adolescent development under controlled laboratory conditions. However, it is unknown whether these markers are preserved under more variable, semi-naturalistic conditions, and whether CBT may therefore prove useful in a real-world setting. To evaluate this possibility, we examined fecal steroid concentrations and CBT rhythms from pre-adolescence (p26) through early adulthood (p76) in intact male and female Wistar rats under natural light and climate at the Stephen Glickman Field Station for the Study of Behavior, Ecology and Reproduction. Despite greater environmental variability, CBT markers of pubertal onset and its rhythmic progression were comparable with those previously reported in laboratory conditions in female rats and extend actigraphy-based findings in males. Specifically, sex differences emerged in CBT circadian rhythm (CR) power and amplitude prior to pubertal onset and persisted into early adulthood, with females exhibiting elevated CBT and decreased CR power compared with males. Within-day (ultradian rhythm [UR]) patterns also exhibited a pronounced sex difference associated with estrous cyclicity. Pubertal onset, defined by vaginal opening, preputial separation, and sex steroid concentrations, occurred later than previously reported under lab conditions for both sexes. Vaginal opening and increased fecal estradiol concentrations were closely tied to the commencement of 4-day oscillations in CBT and UR power. By contrast, preputial separation and the first rise in testosterone concentration were not associated with adolescent changes to CBT rhythms in male rats. Together, males and females exhibited unique temporal patterning of CBT and sex steroids across pubertal development, with tractable associations between hormonal concentrations, external development, and temporal structure in females. The preservation of these features outside the laboratory supports CBT as a strong candidate for translational pubertal monitoring under semi-naturalistic conditions in females.
Collapse
Affiliation(s)
- Azure D. Grant
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, United States
| | - Linda Wilbrecht
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, United States
- Department of Psychology, University of California, Berkeley, CA, 94720, United States
| | - Lance J. Kriegsfeld
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, United States
- Department of Psychology, University of California, Berkeley, CA, 94720, United States
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, United States
- Graduate Group in Endocrinology, University of California, Berkeley, CA, 94720, United States
| |
Collapse
|
13
|
Mogavero F, van Zwieten K, Buitelaar JK, Glennon JC, Henckens MJAG. Deviant circadian rhythmicity, corticosterone variability and trait testosterone levels in aggressive mice. Eur J Neurosci 2022; 55:1492-1503. [PMID: 35229387 PMCID: PMC9313802 DOI: 10.1111/ejn.15632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/30/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
Although aggression has been linked to disturbances of circadian rhythm, insight into the neural substrate of this association is currently lacking. The suprachiasmatic nucleus (SCN) of the hypothalamus, the master circadian clock, is regulated by clock genes and known to influence the secretion of cortisosterone and testosterone, important hormones implicated in aggression. Here, we investigated deviations in the regulation of the locomotor circadian rhythm and hormonal levels in a mouse model of abnormal aggression. We tested aggressive BALB/cJ and control BALB/cByJ mice in the resident–intruder paradigm and compared them on their locomotor circadian rhythm during a 12 h light/12 h dark cycle and constant darkness. State (serum) corticosterone and trait (hair) corticosterone and testosterone levels were determined, and immunohistochemistry was performed to assess the expression of important clock proteins, PER1 and PER2, in the core and shell of the SCN at the start of their active phase. Compared with BALB/cByJ mice, aggressive BALB/cJ mice displayed: (1) a shorter free‐running period in constant darkness; (2) reduced state corticosterone variability between circadian peak and trough but no differences in corticosterone trait levels; (3) lower testosterone trait levels; (4) higher PER1 expression in the SCN shell with no changes in PER2 in either SCN subregion during the early dark phase. Together, these results suggest that aggressive BALB/cJ mice have disturbances in different components encompassing the circadian and hormonal cycle, emphasizing their value for future investigation of the causal relationship between SCN function, circadian clocks and aggression.
Collapse
Affiliation(s)
- F Mogavero
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - K van Zwieten
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - J K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - J C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - M J A G Henckens
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Zhang S, Feng X. Effect of 17β-trenbolone exposure during adolescence on the circadian rhythm in male mice. CHEMOSPHERE 2022; 288:132496. [PMID: 34627821 DOI: 10.1016/j.chemosphere.2021.132496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The suprachiasmatic nucleus (SCN) is the main control area of the clock rhythm in the mammalian brain. It drives daily behaviours and rhythms by synchronizing or suppressing the oscillations of clock genes in peripheral tissue. It is an important brain tissue structure that affects rhythm stability. SCN has high plasticity and is easily affected by the external environment. In this experiment, we found that exposure to the endocrine disruptor 17β-trenbolone (17β-TBOH) affects the rhythmic function of SCN in the brains of adolescent male balb/c mice. Behavioural results showed that exposure to 17β-TBOH disrupted daily activity-rest rhythms, reduced the robustness of endogenous rhythms, altered sleep-wake-related behaviours, and increased the stress to light stimulation. At the cellular level, exposure to 17β-TBOH decreased the c-fos immune response of SCN neurons to the large phase shift, indicating that it affected the coupling ability of SCN neurons. At the molecular level, exposure to 17β-TBOH interfered with the daily expression of hormones, changed the expression levels of the core clock genes and cell communication genes in the SCN, and affected the expression of wake-up genes in the hypothalamus. Finally, we observed the effect of exposure to 17β-TBOH on energy metabolism. The results showed that 17β-TBOH reduced the metabolic response and affected the metabolic function of the liver. This study revealed the influence of environmental endocrine disrupting chemicals (EDCs) on rhythms and metabolic disorders, and provides references for follow-up research.
Collapse
Affiliation(s)
- Shaozhi Zhang
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China; Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Xizeng Feng
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
15
|
Warfield AE, Prather JF, Todd WD. Systems and Circuits Linking Chronic Pain and Circadian Rhythms. Front Neurosci 2021; 15:705173. [PMID: 34276301 PMCID: PMC8284721 DOI: 10.3389/fnins.2021.705173] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Research over the last 20 years regarding the link between circadian rhythms and chronic pain pathology has suggested interconnected mechanisms that are not fully understood. Strong evidence for a bidirectional relationship between circadian function and pain has been revealed through inflammatory and immune studies as well as neuropathic ones. However, one limitation of many of these studies is a focus on only a few molecules or cell types, often within only one region of the brain or spinal cord, rather than systems-level interactions. To address this, our review will examine the circadian system as a whole, from the intracellular genetic machinery that controls its timing mechanism to its input and output circuits, and how chronic pain, whether inflammatory or neuropathic, may mediate or be driven by changes in these processes. We will investigate how rhythms of circadian clock gene expression and behavior, immune cells, cytokines, chemokines, intracellular signaling, and glial cells affect and are affected by chronic pain in animal models and human pathologies. We will also discuss key areas in both circadian rhythms and chronic pain that are sexually dimorphic. Understanding the overlapping mechanisms and complex interplay between pain and circadian mediators, the various nuclei they affect, and how they differ between sexes, will be crucial to move forward in developing treatments for chronic pain and for determining how and when they will achieve their maximum efficacy.
Collapse
Affiliation(s)
| | | | - William D. Todd
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
16
|
Dib R, Gervais NJ, Mongrain V. A review of the current state of knowledge on sex differences in sleep and circadian phenotypes in rodents. Neurobiol Sleep Circadian Rhythms 2021; 11:100068. [PMID: 34195482 PMCID: PMC8240025 DOI: 10.1016/j.nbscr.2021.100068] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022] Open
Abstract
Sleep is a vital part of our lives as it is required to maintain health and optimal cognition. In humans, sex differences are relatively well-established for many sleep phenotypes. However, precise differences in sleep phenotypes between male and female rodents are less documented. The main goal of this article is to review sex differences in sleep architecture and electroencephalographic (EEG) activity during wakefulness and sleep in rodents. The effects of acute sleep deprivation on sleep duration and EEG activity in male and female rodents will also be covered, in addition to sex differences in specific circadian phenotypes. When possible, the contribution of the female estrous cycle to the observed differences between males and females will be described. In general, male rodents spend more time in non-rapid eye movement sleep (NREMS) in comparison to females, while other differences between sexes in sleep phenotypes are species- and estrous cycle phase-dependent. Altogether, the review illustrates the need for a sex-based perspective in basic sleep and circadian research, including the consideration of sex chromosomes and gonadal hormones in sleep and circadian phenotypes. In rodents, males spend less time awake, and more time in NREMS than females. The recovery from sleep deprivation is also dependent on biological sex. Gonadal hormones modulate sleep and circadian phenotypes in rodents. A more systematic comparison of sex in basic sleep/circadian research is needed.
Collapse
Affiliation(s)
- Rama Dib
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada.,Center for Advanced Research in Sleep Medicine, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Montréal, QC, Canada
| | - Nicole J Gervais
- Rotman Research Institute - Baycrest Centre, North York, ON, Canada
| | - Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada.,Center for Advanced Research in Sleep Medicine, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Montréal, QC, Canada
| |
Collapse
|
17
|
Joye DAM, Evans JA. Sex differences in daily timekeeping and circadian clock circuits. Semin Cell Dev Biol 2021; 126:45-55. [PMID: 33994299 DOI: 10.1016/j.semcdb.2021.04.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
The circadian system regulates behavior and physiology in many ways important for health. Circadian rhythms are expressed by nearly every cell in the body, and this large system is coordinated by a central clock in the suprachiasmatic nucleus (SCN). Sex differences in daily rhythms are evident in humans and understanding how circadian function is modulated by biological sex is an important goal. This review highlights work examining effects of sex and gonadal hormones on daily rhythms, with a focus on behavior and SCN circuitry in animal models commonly used in pre-clinical studies. Many questions remain in this area of the field, which would benefit from further work investigating this topic.
Collapse
Affiliation(s)
- Deborah A M Joye
- Marquette University, Department of Biomedical Sciences, Milwaukee, WI, USA
| | - Jennifer A Evans
- Marquette University, Department of Biomedical Sciences, Milwaukee, WI, USA.
| |
Collapse
|
18
|
Chakir I, Tournier BB, Touati H, Poirel VJ, Challet E, Pevet P, Ouarour A, Vuillez P. Pinealectomy and gonadectomy modulate amplitude, but not photoperiodic modulation of Clock gene expression in the Syrian hamster suprachiasmatic nuclei. Eur J Neurosci 2021; 53:3612-3620. [PMID: 33840135 DOI: 10.1111/ejn.15228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/23/2021] [Accepted: 04/04/2021] [Indexed: 12/01/2022]
Abstract
The duration of daytime light phase (photoperiod) controls reproduction in seasonal mammals. Syrian hamsters are sexually active when exposed to long photoperiod, while gonadal atrophy is observed after exposure to short photoperiod. The photorefractory period, or photorefractoriness, is a particular state of spontaneous recrudescence of sexual activity that occurs after a long-term exposure to short photoperiod. Expression of core clock genes in the master circadian clock contained in the suprachiasmatic nuclei depends on photoperiodic conditions. Interestingly, the expression of the Clock gene is also modified in photorefractory Syrian hamsters. Since melatonin and testosterone levels in seasonal species are dependent on photoperiod, photoperiodic variations of Clock mRNA levels in the suprachiasmatic clock could be a consequence of these hormonal changes. To test this hypothesis, we analysed the effects of pinealectomy on Clock mRNA changes due to long to short photoperiod transition and of gonadectomy on Clock mRNA levels in photorefractory period. Our data show that the suprachiasmatic integration of the short photoperiod (assessed by a rhythmic expression profile of Clock) is independent of the presence of melatonin. Furthermore, constitutively low expression of Clock observed during the photorefractory period does not require the presence of either melatonin or testosterone. However, we show that both hormones provide positive feedback on average levels of Clock expression. Thus, our data support the hypothesis that daily variations of Clock levels in the suprachiasmatic nuclei are influenced by photoperiodic changes and the time spent in short photoperiod, independently of seasonal modifications of melatonin or testosterone levels.
Collapse
Affiliation(s)
- Ibtissam Chakir
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, Strasbourg, France.,Multidisciplinary faculty, LPRD, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Hanane Touati
- USTHB, Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology Team, Algiers, Algeria
| | - Vincent-Joseph Poirel
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, Strasbourg, France
| | - Etienne Challet
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, Strasbourg, France
| | - Paul Pevet
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, Strasbourg, France
| | - Ali Ouarour
- Faculty of Science, Laboratory of Biology and Health, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Patrick Vuillez
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, Strasbourg, France
| |
Collapse
|
19
|
Chen CV, Jordan CL, Breedlove SM. Testosterone works through androgen receptors to modulate neuronal response to anxiogenic stimuli. Neurosci Lett 2021; 753:135852. [PMID: 33785380 DOI: 10.1016/j.neulet.2021.135852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 11/28/2022]
Abstract
Testosterone (T) exerts anxiolytic effects through functional androgen receptors (ARs) in rodents. T treatment of castrated mice reduces anxiety-like behavior in wild-type (WT) males, but not males with a spontaneous mutation that renders AR dysfunctional (testicular feminization mutation, Tfm). Using Cre-LoxP technology we created males carrying induced dysfunctional AR allele (induced TFM; iTfm) to determine the brain regions responsible for T-induced anxiolysis. Adult WT and iTfm mice were castrated and T treated. Castrated WTs given a blank capsule (WT + B) served as additional controls. Mice were later exposed to the anxiogenic light/dark box, sacrificed and their brains processed for immediate early gene cFos immunoreactivity. Analyses revealed that T treatment increased cFos-expressing neurons in the basolateral amygdala (blAMY) of WT males, but not in iTfm males, which did not differ from WT + B mice. In contrast, WT + T males displayed fewer cFos + cells than iTfm + T or WT + B groups in the suprachiasmatic nucleus of the hypothalamus (SCN). No effects of genotype or hormone were seen in cFos expression in the hippocampus, medial prefrontal cortex, paraventricular nucleus of the hypothalamus, oval and anterodorsal bed nucleus of the stria terminalis, or dorsal periaqueductal grey. AR immunohistochemistry indicated that ∼65 % of cells in the blAMY and SCN were AR + in WT males, so AR could act directly within neurons in these regions to modulate the animals' response to anxiogenic stimuli. Because absence of a functional AR did not affect cFos response to mild stress in the other brain regions, they are unlikely to mediate androgen's anxiolytic effects.
Collapse
Affiliation(s)
- Chieh V Chen
- Texas A&M University, Psychiatry Department, Clinical Building 1 Suite 1100, 8441 Riverside Parkway, Bryan, TX 77807, United States; Michigan State University, United States.
| | - Cynthia L Jordan
- Psychology Department, 293 Farm Lane, Giltner Room 108, East Lansing, MI 48824, United States; Neuroscience Program, 293 Farm Lane, Giltner Room 108, East Lansing, MI 48824, United States
| | - S Marc Breedlove
- Psychology Department, 293 Farm Lane, Giltner Room 108, East Lansing, MI 48824, United States; Neuroscience Program, 293 Farm Lane, Giltner Room 108, East Lansing, MI 48824, United States
| |
Collapse
|
20
|
Bottalico LN, Weljie AM. Cross-species physiological interactions of endocrine disrupting chemicals with the circadian clock. Gen Comp Endocrinol 2021; 301:113650. [PMID: 33166531 PMCID: PMC7993548 DOI: 10.1016/j.ygcen.2020.113650] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 10/09/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are endocrine-active chemical pollutants that disrupt reproductive, neuroendocrine, cardiovascular and metabolic health across species. The circadian clock is a transcriptional oscillator responsible for entraining 24-hour rhythms of physiology, behavior and metabolism. Extensive bidirectional cross talk exists between circadian and endocrine systems and circadian rhythmicity is present at all levels of endocrine control, from synthesis and release of hormones, to sensitivity of target tissues to hormone action. In mammals, a range of hormones directly alter clock gene expression and circadian physiology via nuclear receptor (NR) binding and subsequent genomic action, modulating physiological processes such as nutrient and energy metabolism, stress response, reproductive physiology and circadian behavioral rhythms. The potential for EDCs to perturb circadian clocks or circadian-driven physiology is not well characterized. For this reason, we explore evidence for parallel endocrine and circadian disruption following EDC exposure across species. In the reviewed studies, EDCs dysregulated core clock and circadian rhythm network gene expression in brain and peripheral organs, and altered circadian reproductive, behavioral and metabolic rhythms. Circadian impacts occurred in parallel to endocrine and metabolic alterations such as impaired fertility and dysregulated metabolic and energetic homeostasis. Further research is warranted to understand the nature of interaction between circadian and endocrine systems in mediating physiological effects of EDC exposure at environmental levels.
Collapse
Affiliation(s)
- Lisa N Bottalico
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Rohr KE, Telega A, Savaglio A, Evans JA. Vasopressin regulates daily rhythms and circadian clock circuits in a manner influenced by sex. Horm Behav 2021; 127:104888. [PMID: 33202247 PMCID: PMC7855892 DOI: 10.1016/j.yhbeh.2020.104888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/30/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Arginine vasopressin (AVP) is a neurohormone that alters cellular physiology through both endocrine and synaptic signaling. Circadian rhythms in AVP release and other biological processes are driven by the suprachiasmatic nucleus (SCN) of the anterior hypothalamus. Loss of vasopressin signaling alters circadian behavior, but the basis of these effects remains unclear. Here we investigate the role of AVP signaling in circadian timekeeping by analyzing behavior and SCN function in a novel AVP-deficient mouse model. Consistent with previous work, loss of AVP signaling increases water consumption and accelerates recovery to simulated jetlag. We expand on these results to show that loss of AVP increases period, imprecision and plasticity of behavioral rhythms under constant darkness. Interestingly, the effect of AVP deficiency on circadian period was influenced by sex, with loss of AVP lengthening period in females but not males. Examining SCN function directly with ex vivo bioluminescence imaging of clock protein expression, we demonstrate that loss of AVP signaling modulates the period, precision, and phase relationships of SCN neurons in both sexes. This pattern of results suggests that there are likely sex differences in downstream targets of the SCN. Collectively, this work indicates that AVP signaling modulates circadian circuits in a manner influenced by sex, which provides new insight into sexual dimorphisms in the regulation of daily rhythms.
Collapse
Affiliation(s)
- Kayla E Rohr
- Marquette University, Department of Biomedical Sciences, United States of America
| | - Adam Telega
- Marquette University, Department of Biomedical Sciences, United States of America
| | - Alexandra Savaglio
- Marquette University, Department of Biomedical Sciences, United States of America
| | - Jennifer A Evans
- Marquette University, Department of Biomedical Sciences, United States of America.
| |
Collapse
|
22
|
Affiliation(s)
- Seán T. Anderson
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations. Nat Commun 2020; 11:4410. [PMID: 32879310 PMCID: PMC7468160 DOI: 10.1038/s41467-020-17197-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 06/12/2020] [Indexed: 12/02/2022] Open
Abstract
The hypothalamic suprachiasmatic (SCN) clock contains several neurochemically defined cell groups that contribute to the genesis of circadian rhythms. Using cell-specific and genetically targeted approaches we have confirmed an indispensable role for vasoactive intestinal polypeptide-expressing SCN (SCNVIP) neurons, including their molecular clock, in generating the mammalian locomotor activity (LMA) circadian rhythm. Optogenetic-assisted circuit mapping revealed functional, di-synaptic connectivity between SCNVIP neurons and dorsomedial hypothalamic neurons, providing a circuit substrate by which SCNVIP neurons may regulate LMA rhythms. In vivo photometry revealed that while SCNVIP neurons are acutely responsive to light, their activity is otherwise behavioral state invariant. Single-nuclei RNA-sequencing revealed that SCNVIP neurons comprise two transcriptionally distinct subtypes, including putative pacemaker and non-pacemaker populations. Altogether, our work establishes necessity of SCNVIP neurons for the LMA circadian rhythm, elucidates organization of circadian outflow from and modulatory input to SCNVIP cells, and demonstrates a subpopulation-level molecular heterogeneity that suggests distinct functions for specific SCNVIP subtypes. Cell groups in the hypothalamic suprachiasmatic clock contribute to the genesis of circadian rhythms. The authors identified two populations of vasoactive intestinal polypeptide-expressing neurons in the suprachiasmatic nucleus which regulate locomotor circadian rhythm in mice.
Collapse
|
24
|
Pandey A, Motro U, Bloch G. Juvenile hormone affects the development and strength of circadian rhythms in young bumble bee (Bombus terrestris) workers. Neurobiol Sleep Circadian Rhythms 2020; 9:100056. [PMID: 33364524 PMCID: PMC7752729 DOI: 10.1016/j.nbscr.2020.100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
The circadian and endocrine systems influence many physiological processes in animals, but little is known on the ways they interact in insects. We tested the hypothesis that juvenile hormone (JH) influences circadian rhythms in the social bumble bee Bombus terrestris. JH is the major gonadotropin in this species coordinating processes such as vitellogenesis, oogenesis, wax production, and behaviors associated with reproduction. It is unknown however, whether it also influences circadian processes. We topically treated newly-emerged bees with the allatoxin Precocene-I (P-I) to reduce circulating JH titers and applied the natural JH (JH-III) for replacement therapy. We repeated this experiment in three trials, each with bees from different source colonies. Measurements of ovarian activity suggest that our JH manipulations were effective; bees treated with P-I had inactive ovaries, and this effect was fully recovered by subsequent JH treatment. We found that JH augments the strength of circadian rhythms and the pace of rhythm development in individually isolated newly emerged worker bees. JH manipulation did not affect the free-running circadian period, overall level of locomotor activity, sleep amount, or sleep structure. Given that acute manipulation at an early age produced relatively long-lasting effects, we propose that JH effects on circadian rhythms are mostly organizational, accelerating the development or integration of the circadian system.
Collapse
Affiliation(s)
- Atul Pandey
- Department of Ecology, Evolution, and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Uzi Motro
- Department of Ecology, Evolution, and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
25
|
Gamble KL, Silver R. Circadian rhythmicity and the community of clockworkers. Eur J Neurosci 2019; 51:2314-2328. [PMID: 31814204 DOI: 10.1111/ejn.14626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/17/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rae Silver
- Department of Neuroscience, Barnard College, New York, NY, USA.,Department of Psychology, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University Health Sciences, New York, NY, USA
| |
Collapse
|
26
|
Hashimoto A, Fujiki S, Nakamura W, Nakamura TJ. Effects of testosterone on circadian rhythmicity in old mice. J Physiol Sci 2019; 69:791-798. [PMID: 31301005 PMCID: PMC10717400 DOI: 10.1007/s12576-019-00695-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/06/2019] [Indexed: 11/26/2022]
Abstract
Serum testosterone concentration decreases with age in humans and rodents. Accordingly, old male mice show changes in locomotor activity rhythms: a lengthened free-running period and decreased activity levels among others. To investigate whether testosterone replacement improves the age-related decline in circadian rhythmicity, we examined the effects of testosterone on the circadian rhythms of wheel running activity in old male mice. Intact male C57BL/6J mice (18-22 months old) were subcutaneously implanted with silicone tubes packed with testosterone propionate (TP) or cholesterol. TP treatment significantly decreased the daily wheel running revolutions in a normal light/dark (LD) cycle and in constant darkness (DD), but did not affect the free-running period. The same experiment performed on young male gonadectomized mice (3-5 months old) demonstrated that TP treatment significantly increased activity levels in both LD and DD. These results suggest that testosterone replacement exacerbates the age-related decline in circadian rhythmicity.
Collapse
Affiliation(s)
- Atsuyoshi Hashimoto
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, 1-1-1 Hgashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Shingo Fujiki
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, 1-1-1 Hgashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Wataru Nakamura
- Department of Oral-Chrono Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, 1-1-1 Hgashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
27
|
Stone JE, Aubert XL, Maass H, Phillips AJK, Magee M, Howard ME, Lockley SW, Rajaratnam SMW, Sletten TL. Application of a Limit-Cycle Oscillator Model for Prediction of Circadian Phase in Rotating Night Shift Workers. Sci Rep 2019; 9:11032. [PMID: 31363110 PMCID: PMC6667480 DOI: 10.1038/s41598-019-47290-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
Practical alternatives to gold-standard measures of circadian timing in shift workers are needed. We assessed the feasibility of applying a limit-cycle oscillator model of the human circadian pacemaker to estimate circadian phase in 25 nursing and medical staff in a field setting during a transition from day/evening shifts (diurnal schedule) to 3-5 consecutive night shifts (night schedule). Ambulatory measurements of light and activity recorded with wrist actigraphs were used as inputs into the model. Model estimations were compared to urinary 6-sulphatoxymelatonin (aMT6s) acrophase measured on the diurnal schedule and last consecutive night shift. The model predicted aMT6s acrophase with an absolute mean error of 0.69 h on the diurnal schedule (SD = 0.94 h, 80% within ±1 hour), and 0.95 h on the night schedule (SD = 1.24 h, 68% within ±1 hour). The aMT6s phase shift from diurnal to night schedule was predicted to within ±1 hour in 56% of individuals. Our findings indicate the model can be generalized to a shift work setting, although prediction of inter-individual variability in circadian phase shift during night shifts was limited. This study provides the basis for further adaptation and validation of models for predicting circadian phase in rotating shift workers.
Collapse
Affiliation(s)
- Julia E Stone
- CRC for Alertness, Safety and Productivity, Melbourne, Victoria, Australia
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia
| | | | | | - Andrew J K Phillips
- CRC for Alertness, Safety and Productivity, Melbourne, Victoria, Australia
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Michelle Magee
- CRC for Alertness, Safety and Productivity, Melbourne, Victoria, Australia
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Mark E Howard
- CRC for Alertness, Safety and Productivity, Melbourne, Victoria, Australia
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia
- Institute for Breathing and Sleep, Austin Health, Victoria, Australia
| | - Steven W Lockley
- CRC for Alertness, Safety and Productivity, Melbourne, Victoria, Australia
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Shantha M W Rajaratnam
- CRC for Alertness, Safety and Productivity, Melbourne, Victoria, Australia
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Tracey L Sletten
- CRC for Alertness, Safety and Productivity, Melbourne, Victoria, Australia.
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
28
|
Sleep Timing in Patients with Precocious and Delayed Pubertal Development. Clocks Sleep 2019; 1:140-150. [PMID: 33089160 PMCID: PMC7509672 DOI: 10.3390/clockssleep1010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
Previous studies have reported a shift in the timing of sleep during adolescence toward a later time. To date, it is unclear whether hormonal changes during puberty might contribute to this change in sleeping behavior. We systematically assessed pubertal development and sleep timing in a cross-sectional case-control study in girls with precocious (n = 42) and boys with delayed pubertal development (n = 19). We used the Munich ChronoType Questionnaire and the Children’s ChronoType Questionnaire to assess sleep timing in patients and age- and sex-matched controls (n = 309) and used the midpoint of sleep on free days, corrected for potential sleep debt accumulated during the school week, as a marker for sleep timing. Compared to the controls, girls with central precocious puberty showed a delay in sleep timing of 54 min, and girls with premature pubarche slept on average 30 min later. Male adolescents with delayed pubertal development showed an average sleep midpoint that was 40 min earlier compared to the control group. The results of this pilot study suggest an association between pubertal onset and shifts in sleep timing, which is a novel finding in human sleep behavior. Prospective studies in larger cohorts will be needed to examine the robustness and generalizability of the findings.
Collapse
|
29
|
Abstract
Sleep is a phenomenon in animal behavior as enigmatic as it is ubiquitous, and one deeply tied to endocrine function. Though there are still many unanswered questions about the neurochemical basis of sleep and its functions, extensive interactions have been identified between sleep and the endocrine system, in both the endocrine system's effect on sleep and sleep's effect on the endocrine system. Unfortunately, until recent years, much research on sleep behavior largely disregarded its connections with the endocrine system. Use of both clinical studies and rodent models to investigate interactions between neuroendocrine function, including biological sex, and sleep therefore presents a promising area of further exploration. Further investigation of the neurobiological and neuroendocrine basis of sleep could have wide impact on a number of clinical and basic science fields. In this review, we summarize the state of basic sleep biology and its connections to the field of neuroendocrine biology, as well as suggest key future directions for the neuroendocrine regulation of sleep that may significantly impact new therapies for sleep disorders in women and men.
Collapse
Affiliation(s)
- Philip C Smith
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Jessica A Mong
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Foley JE, Ram N, Susman EJ, Weinraub M. Changes to sleep-wake behaviors are associated with trajectories of pubertal timing and tempo of secondary sex characteristics. J Adolesc 2018; 68:171-186. [DOI: 10.1016/j.adolescence.2018.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 11/24/2022]
|
31
|
Santi D, Spaggiari G, Gilioli L, Potì F, Simoni M, Casarini L. Molecular basis of androgen action on human sexual desire. Mol Cell Endocrinol 2018; 467:31-41. [PMID: 28893567 DOI: 10.1016/j.mce.2017.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022]
Abstract
Reproduction is a fundamental process for the species maintenance and the propagation of genetic information. The energy expenditure for mating is overtaken by motivational stimuli, such as orgasm, finely regulated by steroid hormones, gonadotropins, neurotransmitters and molecules acting in the brain and peripheral organs. These functions are often investigated using animal models and translated to humans, where the androgens action is mediated by nuclear and membrane receptors converging in the regulation of both long-term genomic and rapid non-genomic signals. In both sexes, testosterone is a central player of this game and is involved in the regulation of sexual desire and arousal, and, finally, in reproduction through cognitive and peripheral physiological mechanisms which may decline with aging and circadian disruption. Finally, genetic variations impact on reproductive behaviours, resulting in sex-specific effect and different reproductive strategies. In this review, androgen actions on sexual desire are evaluated, focusing on the molecular levels of interaction.
Collapse
Affiliation(s)
- Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Unit of Endocrinology, Department of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda OU of Modena, Modena, Italy
| | - Giorgia Spaggiari
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Unit of Endocrinology, Department of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda OU of Modena, Modena, Italy
| | - Lisa Gilioli
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Potì
- Department of Neurosciences, University of Parma, Parma, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Unit of Endocrinology, Department of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda OU of Modena, Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
32
|
Stone JE, Sletten TL, Magee M, Ganesan S, Mulhall MD, Collins A, Howard M, Lockley SW, Rajaratnam SMW. Temporal dynamics of circadian phase shifting response to consecutive night shifts in healthcare workers: role of light-dark exposure. J Physiol 2018; 596:2381-2395. [PMID: 29589871 DOI: 10.1113/jp275589] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/02/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Shift work is highly prevalent and is associated with significant adverse health impacts. There is substantial inter-individual variability in the way the circadian clock responds to changing shift cycles. The mechanisms underlying this variability are not well understood. We tested the hypothesis that light-dark exposure is a significant contributor to this variability; when combined with diurnal preference, the relative timing of light exposure accounted for 71% of individual variability in circadian phase response to night shift work. These results will drive development of personalised approaches to manage circadian disruption among shift workers and other vulnerable populations to potentially reduce the increased risk of disease in these populations. ABSTRACT Night shift workers show highly variable rates of circadian adaptation. This study examined the relationship between light exposure patterns and the magnitude of circadian phase resetting in response to night shift work. In 21 participants (nursing and medical staff in an intensive care unit) circadian phase was measured using 6-sulphatoxymelatonin at baseline (day/evening shifts or days off) and after 3-4 consecutive night shifts. Daily light exposure was examined relative to individual circadian phase to quantify light intensity in the phase delay and phase advance portions of the light phase response curve (PRC). There was substantial inter-individual variability in the direction and magnitude of phase shift after three or four consecutive night shifts (mean phase delay -1:08 ± 1:31 h; range -3:43 h delay to +3:07 h phase advance). The relative difference in the distribution of light relative to the PRC combined with diurnal preference accounted for 71% of the variability in phase shift. Regression analysis incorporating these factors estimated phase shift to within ±60 min in 85% of participants. No participants met criteria for partial adaptation to night work after three or four consecutive night shifts. Our findings provide evidence that the phase resetting that does occur is based on individual light exposure patterns relative to an individual's baseline circadian phase. Thus, a 'one size fits all' approach to promoting adaptation to shift work using light therapy, implemented without knowledge of circadian phase, may not be efficacious for all individuals.
Collapse
Affiliation(s)
- Julia E Stone
- Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Tracey L Sletten
- Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Michelle Magee
- Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Saranea Ganesan
- Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Megan D Mulhall
- Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Allison Collins
- Institute for Breathing and Sleep, Austin Health, Victoria, Australia
| | - Mark Howard
- Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia.,Institute for Breathing and Sleep, Austin Health, Victoria, Australia
| | - Steven W Lockley
- Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia.,Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Shantha M W Rajaratnam
- Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia.,Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Silver R. Cells have sex chromosomes and circadian clocks: Implications for organismal level functions. Physiol Behav 2018; 187:6-12. [DOI: 10.1016/j.physbeh.2017.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/24/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
34
|
Masugi-Tokita M, Yoshida T, Kageyama S, Kawata M, Kawauchi A. Metabotropic glutamate receptor subtype 7 has critical roles in regulation of the endocrine system and social behaviours. J Neuroendocrinol 2018; 30:e12575. [PMID: 29377390 DOI: 10.1111/jne.12575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 01/19/2023]
Abstract
Metabotropic glutamate receptor subtype 7 (mGluR7) is one of the group III mGluRs, which are negatively coupled to adenylate cyclase via Gi/Go proteins and localised to presynaptic active zones of the mammalian central nervous system. We previously reported that mGluR7 is essential for intermale aggression and amygdala-dependent fear learning. To elucidate the role of mGluR7 in the neuroendocrine system, we performed biochemical analyses and found a significant reduction of testosterone levels in mGluR7 knockout (KO) mice. Testosterone replacement restored intermale aggressive behaviour in castrated wild-type mice to the level of gonadally intact wild-type mice. However, given the same dosage of testosterone replacement, mGluR7 KO mice showed almost no aggressive behaviour. These results indicate that reduction of plasma testosterone is unrelated to the deficit in intermale aggression in mGluR7 KO mice. Social investigating behaviour of intact mGluR7 KO mice also differed from that of wild-type mice; e.g. the KO mice showing less frequent anogenital sniffing and more frequent grooming behaviour. Testosterone replacement increased anogenital sniffing and grooming behaviour in castrated mGluR7 KO mice, while the differences were still present between castrated wild-type mice and KO mice after both underwent testosterone replacement. These results imply that reduction of plasma testosterone may partially inhibit social investigating behaviours in intact mGluR7 KO mice. Furthermore, castrated mGluR7 KO mice have smaller seminal vesicles than those of castrated wild-type mice, although seminal vesicle weights were normal in intact mice. These observations suggest that, besides testicular testosterone, some other hormone levels may be dysregulated in mGluR7 KO mice, and indicate a critical role of mGluR7 in the endocrine system. Taken together, our findings demonstrate that mGluR7 is essential for the regulation of the endocrine system, in addition to innate behaviours such as intermale aggression and fear response.
Collapse
Affiliation(s)
- M Masugi-Tokita
- Department of Urology, Shiga University of Medical Science, Otsu, Japan
- World Premier International Research Center Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - T Yoshida
- Department of Urology, Shiga University of Medical Science, Otsu, Japan
| | - S Kageyama
- Department of Urology, Shiga University of Medical Science, Otsu, Japan
| | - M Kawata
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- School of Health Sciences, Bukkyo University, Kyoto, Japan
| | - A Kawauchi
- Department of Urology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
35
|
Aguayo A, Martin CS, Huddy TF, Ogawa-Okada M, Adkins JL, Steele AD. Sex differences in circadian food anticipatory activity are not altered by individual manipulations of sex hormones or sex chromosome copy number in mice. PLoS One 2018; 13:e0191373. [PMID: 29385171 PMCID: PMC5792018 DOI: 10.1371/journal.pone.0191373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/03/2018] [Indexed: 11/19/2022] Open
Abstract
Recent studies in mice have demonstrated a sexual dimorphism in circadian entrainment to scheduled feeding. On a time restricted diet, males tend to develop food anticipatory activity (FAA) sooner than females and with a higher amplitude of activity. The underlying cause of this sex difference remains unknown. One study suggests that sex hormones, both androgens and estrogens, modulate food anticipatory activity in mice. Here we present results suggesting that the sex difference in FAA is unrelated to gonadal sex hormones. While a sex difference between males and females in FAA on a timed, calorie restricted diet was observed there were no differences between intact and gonadectomized mice in the onset or magnitude of FAA. To test other sources of the sex difference in circadian entrainment to scheduled feeding, we used sex chromosome copy number mutants, but there was no difference in FAA when comparing XX, XY-, XY-;Sry Tg, and XX;Sry Tg mice, demonstrating that gene dosage of sex chromosomes does not mediate the sex difference in FAA. Next, we masculinized female mice by treating them with 17-beta estradiol during the neonatal period; yet again, we saw no difference in FAA between control and masculinized females. Finally, we observed that there was no longer a sex difference in FAA for older mice, suggesting that the sex difference in FAA is age-dependent. Thus, our study demonstrates that singular manipulations of gonadal hormones, sex chromosomes, or developmental patterning are not able to explain the difference in FAA between young male and female mice.
Collapse
Affiliation(s)
- Antonio Aguayo
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| | - Camille S. Martin
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| | - Timothy F. Huddy
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| | - Maya Ogawa-Okada
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| | - Jamie L. Adkins
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| | - Andrew D. Steele
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
- * E-mail:
| |
Collapse
|
36
|
Praktiknjo SD, Picard S, Deschepper CF. Comparisons of chromosome Y-substituted mouse strains reveal that the male-specific chromosome modulates the effects of androgens on cardiac functions. Biol Sex Differ 2016; 7:61. [PMID: 27980711 PMCID: PMC5143463 DOI: 10.1186/s13293-016-0116-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/09/2016] [Indexed: 01/06/2023] Open
Abstract
Background The C57BL/6J.YA/J mouse strain is a chromosome-substituted line where the original male-specific portion of chromosome Y (MSY) from C57BL/6J mice was substituted for that from A/J mice. In hearts from male C57BL/6J.YA/J and C57BL/6J mice, orchidectomy (ORX) affected in a strictly strain-specific fashion the expression a subset of genes showing enrichment for functional categories, including that of circadian rhythms and cardiac contractility. We further tested whether: (1) there were strain-specific differences in cardiac circadian rhythms; (2) strain-dependent differences in the effects of ORX on contractility genes translated into differences in cardiac functions; and (3) differential contractility responses occurred preferentially at times when circadian rhythms also showed strain-specific differences. Methods In hearts from the two above strains, we (1) profiled the expression levels of 15 circadian genes at 4-h intervals across a 24 h period; (2) tested the effects of either ORX or androgen replacement on expression of cardiac contractility genes, and that of ORX on myocardial functional reserve; and (3) verified whether the effects of MSY variants on cardiac contractility-related responses showed synchronicity with differences in circadian rhythms. Results Among the 15 tested circadian genes, a subset of them were affected by strain (and thus the genetic origin of MSY), which interacted with the amplitude of their peak of maximal expression at 2:00 PM. At that same time-point, ORX decreased (and androgen supplementation increased) the expression of three contractility-related genes, and decreased myocardial relaxation reserve in C57BL/6J.YA/J, but not in C57BL/6J mice. These effects were not detected at 10:00 AM, i.e., at another time-point when circadian genes showed no strain-specific differences. Conclusions The results indicate that in mice, androgens have activational effects on cardiac circadian rhythms, contractile gene expression, and myocardial functional reserve. All effects occurred preferentially at the same time of the day, but varied as a function of the genetic origin of MSY. Androgens may therefore be necessary but not sufficient to impart male-specific characteristics to some particular cardiac functions, with genetic material from MSY being one other necessary factor to fully define their range of actions. Electronic supplementary material The online version of this article (doi:10.1186/s13293-016-0116-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samantha D Praktiknjo
- Institut de recherches cliniques de Montréal (IRCM) and Dept of Medicine, Cardiovascular Biology Research Unit, Université de Montréal, 100 Pine Ave West, Montreal, QC H2W 1R7 Canada ; Present address: Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Sylvie Picard
- Institut de recherches cliniques de Montréal (IRCM) and Dept of Medicine, Cardiovascular Biology Research Unit, Université de Montréal, 100 Pine Ave West, Montreal, QC H2W 1R7 Canada
| | - Christian F Deschepper
- Institut de recherches cliniques de Montréal (IRCM) and Dept of Medicine, Cardiovascular Biology Research Unit, Université de Montréal, 100 Pine Ave West, Montreal, QC H2W 1R7 Canada
| |
Collapse
|
37
|
Abstract
The testis provides not just one but several models of temporal organization. The complexity of its rhythmic function arises in part from its compartmentalization and diversity of cell types: not only does the testis produce gametes, but it also serves as the major source of circulating androgens. Within the seminiferous tubules, the germ cells divide and differentiate while in intimate contact with Sertoli cells. The tubule is highly periodic: a spermatogenic wave travels along its length to determine the timing of the commitment of spermatogonia to differentiate, the phases of meiotic division, and the rate of differentiation of the postmeiotic germ cells. Recent evidence indicates that oscillations of retinoic acid play a major role in determining periodicity of the seminiferous epithelium. In the interstitial space, Leydig cells produce the steroid hormones required both for the completion of spermatogenesis and the development and maintenance of male sexual characteristics throughout the body. This endocrine output also oscillates; although the pulse generator lies outside the gonad, the steroidogenic function of Leydig cells is tuned to a regular episodic input. While the oscillations of the intratubular and interstitial cells have multihour (ultradian) and multiday (infradian) periodicities, respectively, the functions of both compartments also display dramatic seasonal rhythms. Furthermore, circadian rhythms are evident in some of the cell types, although their amplitude and pervasiveness are not as great as in many other tissues of the same organism, and their detection may require methods that recognize the heterogeneity of the testis. This review examines the periodicity of testicular function along multiple time scales.
Collapse
Affiliation(s)
- Eric L Bittman
- Department of Biology and Program in Neuroscience, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
38
|
Model Z, Butler MP, LeSauter J, Silver R. Suprachiasmatic nucleus as the site of androgen action on circadian rhythms. Horm Behav 2015; 73:1-7. [PMID: 26012711 PMCID: PMC4546904 DOI: 10.1016/j.yhbeh.2015.05.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/14/2015] [Accepted: 05/16/2015] [Indexed: 12/21/2022]
Abstract
Androgens act widely in the body in both central and peripheral sites. Prior studies indicate that in the mouse, suprachiasmatic nucleus (SCN) cells bear androgen receptors (ARs). The SCN of the hypothalamus in mammals is the locus of a brain clock that regulates circadian rhythms in physiology and behavior. Gonadectomy results in reduced AR expression in the SCN and in marked lengthening of the period of free-running activity rhythms. Both responses are restored by systemic administration of androgens, but the site of action remains unknown. Our goal was to determine whether intracranial androgen implants targeted to the SCN are sufficient to restore the characteristic free-running period in gonadectomized male mice. The results indicate that hypothalamic implants of testosterone propionate in or very near the SCN produce both anatomical and behavioral effects, namely increased AR expression in the SCN and restored period of free-running locomotor activity. The effect of the implant on the period of the free-running locomotor rhythm is positively correlated with the amount of AR expression in the SCN. There is no such correlation of period change with amount of AR expression in other brain regions examined, namely the preoptic area, bed nucleus of the stria terminalis and premammillary nucleus. We conclude that the SCN is the site of action of androgen effects on the period of circadian activity rhythmicity.
Collapse
Affiliation(s)
- Zina Model
- Department of Psychology, Barnard College, New York, NY, USA.
| | - Matthew P Butler
- Department of Psychology, Columbia University, New York, NY, USA.
| | - Joseph LeSauter
- Department of Psychology, Barnard College, New York, NY, USA; Department of Psychology, Columbia University, New York, NY, USA.
| | - Rae Silver
- Department of Psychology, Barnard College, New York, NY, USA; Department of Psychology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
39
|
Hardman JA, Haslam IS, Farjo N, Farjo B, Paus R. Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle. PLoS One 2015; 10:e0121878. [PMID: 25822259 PMCID: PMC4379003 DOI: 10.1371/journal.pone.0121878] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/18/2015] [Indexed: 02/01/2023] Open
Abstract
The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease.
Collapse
Affiliation(s)
- Jonathan A. Hardman
- The Dermatology Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Doctoral Training Centre in Integrative Systems Biology, Manchester Interdisciplinary Bio centre, University of Manchester, Manchester, United Kingdom
| | - Iain S. Haslam
- The Dermatology Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Nilofer Farjo
- The Farjo Hair Institute, Manchester, United Kingdom
| | - Bessam Farjo
- The Farjo Hair Institute, Manchester, United Kingdom
| | - Ralf Paus
- The Dermatology Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Department of Dermatology, University of Muenster, Muenster, Germany
| |
Collapse
|
40
|
Bohacek J, Manuella F, Roszkowski M, Mansuy IM. Hippocampal gene expression induced by cold swim stress depends on sex and handling. Psychoneuroendocrinology 2015; 52:1-12. [PMID: 25459888 DOI: 10.1016/j.psyneuen.2014.10.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/03/2014] [Accepted: 10/31/2014] [Indexed: 01/03/2023]
Abstract
Stress-related disorders such as PTSD and depression are more prevalent in women than men. One reason for such discordance may be that brain regions involved in stress responses are more sensitive to stress in females. Here, we compared the effects of acute stress on gene transcription in the hippocampus of female and male mice, and also examined the involvement of two key stress-related hormones, corticosterone and corticotropin releasing hormone (Crh). Using quantitative reverse transcription polymerase chain reaction (RT-qPCR), we measured gene expression of Fos, Per1 and Sgk1 45 min after exposure to brief cold swim stress. Stress induced a stronger increase in Fos and Per1 expression in females than males. The handling control procedure increased Fos in both sexes, but occluded the effects of stress in males. Further, handling increased Per1 only in males. Sgk1 was insensitive to handling, and increased in response to stress similarly in males and females. The transcriptional changes observed after swim stress were not mimicked by corticosterone injections, and the stress-induced increase in Fos, Per1 and Sgk1 could neither be prevented by pharmacologically blocking glucocorticoid receptor (GR) nor by blocking Crh receptor 1 (Crhr1) before stress exposure. Finally, we demonstrate that the effects are stressor-specific, as the expression of target genes could not be increased by brief restraint stress in either sex. In summary, we find strong effects of acute swim stress on hippocampal gene expression, complex interactions between handling and sex, and a remarkably unique response pattern for each gene. Overall, females respond to a cold swim challenge with stronger hippocampal gene transcription than males, independent of two classic mediators of the stress response, corticosterone and Crh. These findings may have important implications for understanding the higher vulnerability of women to certain stress-related neuropsychiatric diseases.
Collapse
Affiliation(s)
- Johannes Bohacek
- Brain Research Institute, Neuroscience Center Zürich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Francesca Manuella
- Brain Research Institute, Neuroscience Center Zürich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Roszkowski
- Brain Research Institute, Neuroscience Center Zürich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Isabelle M Mansuy
- Brain Research Institute, Neuroscience Center Zürich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
41
|
Jarjisian SG, Butler MP, Paul MJ, Place NJ, Prendergast BJ, Kriegsfeld LJ, Zucker I. Dorsomedial hypothalamic lesions counteract decreases in locomotor activity in male Syrian hamsters transferred from long to short day lengths. J Biol Rhythms 2014; 30:42-52. [PMID: 25512303 DOI: 10.1177/0748730414561546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The dorsomedial nucleus (DMN) of the hypothalamus has been implicated in seasonal control of reproduction. Syrian hamsters with DMN lesions, unlike control hamsters, do not undergo testicular regression after transfer from a long day length (14 h of light per day; LD) to a short day length (8 h of light per day; SD). SDs also markedly reduce hamster locomotor activity (LMA). To assess whether the DMN is a component of the neural circuitry that mediates seasonal variation in LMA, neurologically intact males (controls) and hamsters that had sustained lesions of the DMN (DMNx) were housed in an LD or SD photoperiod for 26 weeks. DMNx that prevented testicular regression counteracted decreases in LMA during 8 to10 weeks of SD treatment; steroid-independent effects of SDs did not override high levels of LMA in DMNx males. As in previous studies, testosterone (T) restoration increased LMA in LD but not SD castrated control males. In the present study, T also failed to increase LMA in SD-DMNx hamsters. The DMN is not necessary to maintain decreased responsiveness of locomotor activity systems to T in SDs, which presumably is mediated by other central nervous system androgen target tissues. Finally, DMNx did not interfere with the spontaneous increase in LMA exhibited by photorefractory hamsters after 26 weeks of SD treatment. We propose that DMN is an essential part of the substrate that mediates seasonal decreases in LMA as day length decreases but is not required to sustain decreased SD responsiveness to T or for development of refractoriness to SDs.
Collapse
Affiliation(s)
| | - Matthew P Butler
- Department of Integrative Biology, University of California, Berkeley
| | - Matthew J Paul
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY
| | - Ned J Place
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY
| | | | - Lance J Kriegsfeld
- Department of Psychology, University of California, Berkeley.,The Helen Wills Neuroscience Institute, Berkeley, CA
| | - Irving Zucker
- Department of Psychology, University of California, Berkeley.,Department of Integrative Biology, University of California, Berkeley
| |
Collapse
|
42
|
Jahan MR, Kokubu K, Islam MN, Matsuo C, Yanai A, Wroblewski G, Fujinaga R, Shinoda K. Species differences in androgen receptor expression in the medial preoptic and anterior hypothalamic areas of adult male and female rodents. Neuroscience 2014; 284:943-961. [PMID: 25446364 DOI: 10.1016/j.neuroscience.2014.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 11/25/2022]
Abstract
The medial preoptic and anterior hypothalamic areas (MPO/AH) are important androgen targets regulating homeostasis, neuroendocrinology and circadian rhythm as well as instinctive and sociosexual behaviors. Although species differences between rats and mice have been pointed out in terms of morphology and physiology, detailed distributions of androgen receptor (AR) have never been compared between the two rodents. In the present study, AR distribution was examined immunohistochemically in serial sections of the MPO/AH and compared for adult rats and mice. Western blotting and immunohistochemistry clearly demonstrated that AR expression in the brain was stronger in mice than in rats and was stronger in males than in females. In addition, we found (1) an "obliquely elongated calbindin-ir cell island" in mice medial preoptic nucleus (MPN) expressed AR intensely, as well as the sexually dimorphic nucleus in the MPN (SDN-MPN) in rats, strongly supporting a "putative SDN-MPN" previously proposed in mice; (2) AR expression in the suprachiasmatic nucleus (SCN) was much more prominent in mice than in rats and differed in localization between the two species; (3) a mouse-specific AR-ir cell cluster was newly identified as the "tear drop nucleus (TDN)", with male-dominant sexual dimorphism; and (4) two rat-specific AR-ir cell clusters were also newly identified as the "rostral and caudal nebular islands", with male-dominant sexual dimorphism. The present results may provide basic morphological evidence underlying species differences in androgen-modified psychological, physiological and endocrinergic responses. Above all, the findings of the mouse-specific TDN and differing AR expression in the SCN might explain not only species difference in gonadal modification of circadian rhythm, but also distinct structural bases in the context of transduction of SCN oscillation. The current study could also serve as a caution that data on androgen-sensitive functions obtained from one species should not always be directly applied to others among rodents.
Collapse
Affiliation(s)
- M R Jahan
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - K Kokubu
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Md N Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - C Matsuo
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - A Yanai
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - G Wroblewski
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - R Fujinaga
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - K Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| |
Collapse
|
43
|
Abstract
Rhythmic events in the female reproductive system depend on the coordinated and synchronized activity of multiple neuroendocrine and endocrine tissues. This coordination is facilitated by the timing of gene expression and cellular physiology at each level of the hypothalamo-pituitary-ovarian (HPO) axis, including the basal hypothalamus and forebrain, the pituitary gland, and the ovary. Central to this pathway is the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) that, through its myriad outputs, provides a temporal framework for gonadotropin release and ovulation. The heart of the timing system, a transcription-based oscillator, imparts SCN pacemaker cells and a company of peripheral tissues with the capacity for daily oscillations of gene expression and cellular physiology. Although the SCN sits comfortably at the helm, peripheral oscillators (such as the ovary) have undefined but potentially critical roles. Each cell type of the ovary, including theca cells, granulosa cells, and oocytes, harbor a molecular clock implicated in the processes of follicular growth, steroid hormone synthesis, and ovulation. The ovarian clock is influenced by the reproductive cycle and diseases that perturb the cycle and/or follicular growth can disrupt the timing of clock gene expression in the ovary. Chronodisruption is known to negatively affect reproductive function and fertility in both rodent models and women exposed to shiftwork schedules. Thus, influencing clock function in the HPO axis with chronobiotics may represent a novel avenue for the treatment of common fertility disorders, particularly those resulting from chronic circadian disruption.
Collapse
Affiliation(s)
- Michael T. Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
44
|
Amaral FG, Castrucci AM, Cipolla-Neto J, Poletini MO, Mendez N, Richter HG, Sellix MT. Environmental control of biological rhythms: effects on development, fertility and metabolism. J Neuroendocrinol 2014; 26:603-12. [PMID: 24617798 DOI: 10.1111/jne.12144] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/19/2014] [Accepted: 03/06/2014] [Indexed: 12/21/2022]
Abstract
Internal temporal organisation properly synchronised to the environment is crucial for health maintenance. This organisation is provided at the cellular level by the molecular clock, a macromolecular transcription-based oscillator formed by the clock and the clock-controlled genes that is present in both central and peripheral tissues. In mammals, melanopsin in light-sensitive retinal ganglion cells plays a considerable role in the synchronisation of the circadian timing system to the daily light/dark cycle. Melatonin, a hormone synthesised in the pineal gland exclusively at night and an output of the central clock, has a fundamental role in regulating/timing several physiological functions, including glucose homeostasis, insulin secretion and energy metabolism. As such, metabolism is severely impaired after a reduction in melatonin production. Furthermore, light pollution during the night and shift work schedules can abrogate melatonin synthesis and impair homeostasis. Chronodisruption during pregnancy has deleterious effects on the health of progeny, including metabolic, cardiovascular and cognitive dysfunction. Developmental programming by steroids or steroid-mimetic compounds also produces internal circadian disorganisation that may be a significant factor in the aetiology of fertility disorders such as polycystic ovary syndrome. Thus, both early and late in life, pernicious alterations of the endogenous temporal order by environmental factors can disrupt the homeostatic function of the circadian timing system, leading to pathophysiology and/or disease.
Collapse
Affiliation(s)
- F G Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW This review describes evolving concepts and recent data on the relationship between serum testosterone levels and normal and disordered sleep. RECENT FINDINGS Sex-related differences in circadian rhythms and sleep physiology are in part due to organizational and activational effects of sex steroids. Testosterone affects the organization of circadian rhythms and the timing, but not the duration, of sleep. Increasing testosterone during puberty leads to later bedtimes. The diurnal variation in testosterone depends on sleep rather than circadian rhythm or season. Pubertal onset is heralded, well before virilization, by a luteinizing hormone level at least 3.7 U/l during sleep. Total sleep deprivation lowers testosterone, but sleep restriction only does so if it occurs in the first half of the night. The recovery of testosterone from sleep disruption is impaired in old as compared with young rodents. In men with obstructive sleep apnoea (OSA), low testosterone is related to obesity rather than the OSA itself, and improves with weight loss but inconsistently with continuous positive airway pressure (CPAP). Testosterone treatment only transiently worsens severity of OSA, which need not be considered a contraindication to its use. SUMMARY Testosterone treatment is unlikely to benefit sleep in men with secondary hypogonadism, for example due to obesity or depression, in contrast to the management of the underlying abnormality.
Collapse
Affiliation(s)
- Gary Wittert
- Discipline of Medicine and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
46
|
Krizo JA, Mintz EM. Sex differences in behavioral circadian rhythms in laboratory rodents. Front Endocrinol (Lausanne) 2014; 5:234. [PMID: 25620955 PMCID: PMC4288375 DOI: 10.3389/fendo.2014.00234] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/18/2014] [Indexed: 11/15/2022] Open
Abstract
There is a strong bias in basic research on circadian rhythms toward the use of only male animals in studies. Furthermore, of the studies that use female subjects, many use only females and do not compare results between males and females. This review focuses on behavioral aspects of circadian rhythms that differ between the sexes. Differences exist in the timing of daily onset of activity, responses to both photic and non-photic stimuli, and in changes across the lifespan. These differences may reflect biologically important traits that are ecologically relevant and impact on a variety of responses to behavioral and physiological challenges. Overall, more work needs to be done to investigate differences between males and females as well as differences that are the result of hormonal changes across the lifespan.
Collapse
Affiliation(s)
- Jessica A Krizo
- Department of Biological Sciences, Kent State University , Kent, OH , USA
| | - Eric M Mintz
- Department of Biological Sciences, Kent State University , Kent, OH , USA ; School of Biomedical Sciences, Kent State University , Kent, OH , USA
| |
Collapse
|
47
|
Bailey M, Silver R. Sex differences in circadian timing systems: implications for disease. Front Neuroendocrinol 2014; 35:111-39. [PMID: 24287074 PMCID: PMC4041593 DOI: 10.1016/j.yfrne.2013.11.003] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/13/2013] [Accepted: 11/17/2013] [Indexed: 12/22/2022]
Abstract
Virtually every eukaryotic cell has an endogenous circadian clock and a biological sex. These cell-based clocks have been conceptualized as oscillators whose phase can be reset by internal signals such as hormones, and external cues such as light. The present review highlights the inter-relationship between circadian clocks and sex differences. In mammals, the suprachiasmatic nucleus (SCN) serves as a master clock synchronizing the phase of clocks throughout the body. Gonadal steroid receptors are expressed in almost every site that receives direct SCN input. Here we review sex differences in the circadian timing system in the hypothalamic-pituitary-gonadal axis (HPG), the hypothalamic-adrenal-pituitary (HPA) axis, and sleep-arousal systems. We also point to ways in which disruption of circadian rhythms within these systems differs in the sexes and is associated with dysfunction and disease. Understanding sex differentiated circadian timing systems can lead to improved treatment strategies for these conditions.
Collapse
Affiliation(s)
- Matthew Bailey
- Department of Psychology, Columbia University, United States.
| | - Rae Silver
- Department of Psychology, Columbia University, United States; Department of Psychology, Barnard College, United States; Department of Pathology and Cell Biology, Columbia University Medical Center, United States.
| |
Collapse
|
48
|
Blattner MS, Mahoney MM. Photic Phase-Response Curve in 2 Strains of Mice with Impaired Responsiveness to Estrogens. J Biol Rhythms 2013; 28:291-300. [DOI: 10.1177/0748730413497190] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Steroid hormones including estrogens modulate the expression of daily activity and circadian rhythms, including free-running period, phase angle of activity onset, and response to light. The mechanisms underlying these effects, however, are not fully understood. We tested the hypothesis that estrogen signaling is required for photic responsiveness of the circadian timing system. We used estrogen receptor subtype 1 (ESR1) knock-out mice (ERKO) and nonclassic estrogen receptor knock-in mice (NERKI). ERKO animals are unable to respond to estrogen at ESR1, and NERKI animals lack the ability to respond to estrogens via estrogen response element-mediated transcription but still respond via nonclassical mechanisms. We analyzed behavioral shifts in activity onset in response to 1-h light pulses given across the subjective 24-h day in gonadally intact male and female NERKI, ERKO, and wild-type (WT) littermates. We also examined Fos protein expression in the suprachiasmatic nucleus, the site of the master circadian pacemaker, at 2 times of day. We found a significant effect of genotype on phase shifts in response to light pulses given in the subjective night. Female WT mice had a significantly larger phase response than ERKO females during the early subjective night (phase shift of 98 min and 58 min, respectively; p < 0.05). NERKI females were intermediate to WT and ERKO females, suggesting a contribution of nonclassical estrogen signaling on circadian timekeeping functions. This genotype effect is not observed in males; they did not have a difference in phase shifts following a light pulse at any time point. WT males, however, shifted an average of 47 min less than did females at zeitgeber time (ZT) 16 (ZT 0 lights-on and ZT 12 lights-off). These data indicate that estrogens modify the response of the circadian timekeeping system to light via classical and nonclassical signaling pathways.
Collapse
Affiliation(s)
- Margaret S. Blattner
- Neuroscience Program and Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana
| | - Megan M. Mahoney
- Neuroscience Program and Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana
| |
Collapse
|
49
|
Abstract
Investigators typically study one function of the circadian visual system at a time, be it photoreception, transmission of photic information to the suprachiasmatic nucleus (SCN), light control of rhythm phase, locomotor activity, or gene expression. There are good reasons for such a focused approach, but sometimes it is advantageous to look at the broader picture, asking how all the parts and functions complete the whole. Here, several seemingly disparate functions of the circadian visual system are examined. They share common characteristics with respect to regulation by light and, to the extent known, share a common input neuroanatomy. The argument presented is that the 3 hypothalamically mediated effects of light for which there are the most data, circadian clock phase shifts, suppression of nocturnal locomotion (“negative masking”), and suppression of nocturnal pineal function, are regulated by a common photic input pathway terminating in the SCN. For each, light triggers a relatively fixed interval response that is irradiance-dependent, the effective stimulus can be very brief light exposure, and the response continues to completion in the absence of additional light. The presence of a triggered, fixed-length response interval is of particular importance to the understanding of the circuitry and mechanisms regulating circadian rhythm phase shifts because it implies that the SCN clock response to light is not instantaneous. It also may explain why certain stimuli (neuropeptide Y or novel wheel running) administered many minutes after light exposure are able to block light-induced phase shifts. The understanding of negative masking is complicated by the fact that it can be represented as a positive change, that is, light-induced sleep, not just as a reduction in locomotion. Acute nocturnal light exposure also induces adrenal hormone secretion and a rapid drop in body temperature, physiological responses that appear to be regulated similarly to the other light effects. The likelihood of a common regulatory basis for the several responses suggests that additional light-induced responses will be forthcoming and raises questions about the relationships between light, SCN cellular anatomy, the molecular clockworks of SCN neurons, and SCN throughput mechanisms for regulating disparate downstream activities.
Collapse
Affiliation(s)
- Lawrence P. Morin
- Department of Psychiatry, Stony Brook Medical Center, Stony Brook University, Stony Brook, NY
| |
Collapse
|
50
|
Peper JS, Dahl RE. Surging Hormones: Brain-Behavior Interactions During Puberty. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2013; 22:134-139. [PMID: 26290625 DOI: 10.1177/0963721412473755] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this paper we discuss the surging hormones of puberty and their influences on adolescent behavior. We describe why these issues represent an interesting and important area of investigation, emphasizing their contributions to a specific set of developmental processes at the heart of the transition from childhood to adolescence. We briefly review the neuroendocrine underpinnings of human puberty. Our review focuses on evidence for behavioral (and neurobehavioral) effects of gonadal hormones, and emphasizes the social and affective dimensions of these hormonal effects. More broadly, we consider how these hormonal events contribute to brain-behavior interactions that can bias early adolescent trajectories in both positive and negative directions, and in ways that may begin as small influences, but can spiral into large-scale effects over time. These influences also appear to play an important role in functional and structural brain development during adolescence. Finally we offer some thoughts on directions for future research in these areas.
Collapse
Affiliation(s)
- Jiska S Peper
- Department of Psychology, Leiden University, Wassenaarseweg 52, 2333AK, The Netherlands
| | - Ronald E Dahl
- Institute of Human Development, University of California, Berkeley, California 94707, USA
| |
Collapse
|