1
|
Till NA, Ramanathan M, Bertozzi CR. Induced proximity at the cell surface. Nat Biotechnol 2025; 43:702-711. [PMID: 40140559 DOI: 10.1038/s41587-025-02592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025]
Abstract
Molecular proximity is a governing principle of biology that is essential to normal and disease-related biochemical pathways. At the cell surface, protein-protein proximity regulates receptor activation, inhibition and protein recycling and degradation. Induced proximity is a molecular engineering principle in which bifunctional molecules are designed to bring two protein targets into close contact, inducing a desired biological outcome. Researchers use this engineering principle for therapeutic purposes and to interrogate fundamental biological mechanisms. This Review focuses on the use of induced proximity at the cell surface for diverse applications, such as targeted protein degradation, receptor inhibition and activating intracellular signaling cascades. We see a rich future for proximity-based modulation of cell surface protein activity both in basic and translational science.
Collapse
Affiliation(s)
- Nicholas A Till
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Muthukumar Ramanathan
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Chen G, Chen L, Li X, Mohammadi M. FGF-based drug discovery: advances and challenges. Nat Rev Drug Discov 2025; 24:335-357. [PMID: 39875570 DOI: 10.1038/s41573-024-01125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
The fibroblast growth factor (FGF) family comprises 15 paracrine-acting and 3 endocrine-acting polypeptides, which govern a multitude of processes in human development, metabolism and tissue homeostasis. Therapeutic endocrine FGFs have recently advanced in clinical trials, with FGF19 and FGF21-based therapies on the cusp of approval for the treatment of primary sclerosing cholangitis and metabolic syndrome-associated steatohepatitis, respectively. By contrast, while paracrine FGFs were once thought to be promising drug candidates for wound healing, burns, tissue repair and ischaemic ailments based on their potent mitogenic and angiogenic properties, repeated failures in clinical trials have led to the widespread perception that the development of paracrine FGF-based drugs is not feasible. However, the observation that paracrine FGFs can exert FGF hormone-like metabolic activities has restored interest in these FGFs. The recent structural elucidation of the FGF cell surface signalling machinery and the formulation of a new threshold model for FGF signalling specificity have paved the way for therapeutically harnessing paracrine FGFs for the treatment of a range of metabolic diseases.
Collapse
Affiliation(s)
- Gaozhi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Moosa Mohammadi
- Institute of Cell Growth Factor, Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Li Q, Liu Y, Wang Y, Zhang Q, Zhang N, Song D, Wang F, Gao Q, Chen Y, Zhang G, Wen J, Zhao G, Chen L, Gao Y. Spop deficiency impairs adipogenesis and promotes thermogenic capacity in mice. PLoS Genet 2024; 20:e1011514. [PMID: 39680603 PMCID: PMC11684654 DOI: 10.1371/journal.pgen.1011514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/30/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
As the adaptor protein that determines substrate specificity of the Cul3-SPOP-Rbx1 E3 ligase complex, SPOP is involved in numerous biological processes. However, its physiological connections with adipogenesis and thermogenesis remain poorly understood. In the current study, we report that the conditional knockout of Spop in mice results in substantial changes in protein expression, including the upregulation of a critical factor associated with thermogenesis, UCP1. Loss of SPOP also led to defects in body weight gain. In addition, conditional knockout mice exhibited resistance to high-fat-diet-induced obesity. Proteomics analysis found that proteins upregulated in the knockout mice are primarily enriched for functions in glycolysis/gluconeogenesis, oxidative phosphorylation, and thermogenesis. Furthermore, Spop knockout mice were more resilient during cold tolerance assay compared with the wild-type controls. Finally, the knockout of SPOP efficiently impaired adipogenesis in primary preadipocytes and the expression of associated genes. Collectively, these findings demonstrate the critical roles of SPOP in regulating adipogenesis and thermogenic capacity in mice.
Collapse
Affiliation(s)
- Qinghe Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yuhong Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yuanyuan Wang
- School of Biological Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, China
| | - Qi Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Na Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Danli Song
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Fei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qianmei Gao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yuxin Chen
- School of Biological Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, China
| | - Gaomeng Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jie Wen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Guiping Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Li Chen
- Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| | - Yu Gao
- School of Biological Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, China
| |
Collapse
|
4
|
Zhao J, Liu X, Yue J, Zhang S, Li L, Wei H. PF-05231023 reduces lipid deposition in apolipoprotein E-deficient mice by inhibiting the expression of lipid synthesis genes. Front Vet Sci 2024; 11:1429639. [PMID: 39144082 PMCID: PMC11322577 DOI: 10.3389/fvets.2024.1429639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a peptide hormone that is primarily expressed and secreted by the liver. The hormone is crucial for regulation of glucose homeostasis, lipid metabolism, and energy balance. Compared with natural FGF21, FGF21 analogs have become drug candidates for the treatment of cardiovascular and metabolic diseases owing to their long half-life and greater stability in vitro. Apolipoprotein E (Apoe)-knockout (Apoe -/-) mice exhibit progressive disruptions in lipid metabolism in vivo and develop further atherosclerosis pathological features owing to Apoe deletion. Therefore, this study used an Apoe -/- mouse model to investigate the effects of a long-acting FGF21 analog (PF-05231023) on lipid metabolism and related parameters. Eighteen Apoe -/- female mice were fed a Western diet equivalent for 12 weeks, and then randomly assigned to intraperitoneally receive either physiological saline (the control group) or 10 mg/kg PF-05231023 (the treatment group) three times a week for seven consecutive weeks. Body composition, glucose tolerance, blood and liver cholesterol, triglyceride levels, liver vacuolization levels, peri-ovarian white adipocyte hypertrophy, aortic atherosclerotic plaque formation, and the expression of genes related to lipid metabolism in adipose tissue were subsequently assessed before and after treatment. The aortic atherosclerotic plaque area was reduced in mice in the PF-05231023 treatment group compared with that in the saline group. Although the effect of PF-05231023 on the plasma biochemical indexes of mice was small, it significantly reduced lipid levels and lipid droplet accumulation in the liver, and reduced adipocyte hypertrophy in white adipose tissue. Transcriptome analysis of adipose tissue showed that PF-05231023 treatment downregulated the expression of lipid synthesis-related genes and inhibited the sterol regulatory element binding transcription factor 1 gene, thereby improving lipid deposition. PF-05231023 effectively improved the lipid metabolism of Apoe -/- mice, demonstrating an anti-atherosclerotic effect and providing a scientific basis and experimental foundation for the clinical treatment of cardiovascular diseases by using long-acting FGF21 analogs.
Collapse
Affiliation(s)
| | | | | | | | - Li Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangdong, China
| | - Hengxi Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangdong, China
| |
Collapse
|
5
|
Jiang Y, Wu L, Zhu X, Bian H, Gao X, Xia M. Advances in management of metabolic dysfunction-associated steatotic liver disease: from mechanisms to therapeutics. Lipids Health Dis 2024; 23:95. [PMID: 38566209 PMCID: PMC10985930 DOI: 10.1186/s12944-024-02092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of chronic liver disease that affects over 30% of the world's population. For decades, the heterogeneity of non-alcoholic fatty liver disease (NAFLD) has impeded our understanding of the disease mechanism and the development of effective medications. However, a recent change in the nomenclature from NAFLD to MASLD emphasizes the critical role of systemic metabolic dysfunction in the pathophysiology of this disease and therefore promotes the progress in the pharmaceutical treatment of MASLD. In this review, we focus on the mechanism underlying the abnormality of hepatic lipid metabolism in patients with MASLD, and summarize the latest progress in the therapeutic medications of MASLD that target metabolic disorders.
Collapse
Affiliation(s)
- Yuxiao Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Lili Wu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Department of Integrated Medicine, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
- Department of Endocrinology and Metabolism, Wusong Branch of Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Zhang X, Zheng H, Ni Z, Shen Y, Wang D, Li W, Zhao L, Li C, Gao H. Fibroblast growth factor 21 alleviates diabetes-induced cognitive decline. Cereb Cortex 2024; 34:bhad502. [PMID: 38220573 PMCID: PMC10839844 DOI: 10.1093/cercor/bhad502] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024] Open
Abstract
Diabetes mellitus (DM) causes damage to the central nervous system, resulting in cognitive impairment. Fibroblast growth factor 21 (FGF21) exhibits the potential to alleviate neurodegeneration. However, the therapeutic effect of intracerebroventricular (i.c.v) FGF21 infusion on diabetes-induced cognitive decline (DICD) and its potential mechanisms remain unclear. In this study, the impact of FGF21 on DICD was explored, and 1H nuclear magnetic resonance (NMR)-based metabolomics plus 13C NMR spectroscopy in combine with intravenous [1-13C]-glucose infusion were used to investigate the underlying metabolic mechanism. Results revealed that i.c.v FGF21 infusion effectively improved learning and memory performance of DICD mice; neuron loss and apoptosis in hippocampus and cortex were significantly blocked, suggesting a potential neuroprotective role of FGF21 in DICD. Metabolomics results revealed that FGF21 modulated DICD metabolic alterations related to glucose and neurotransmitter metabolism, which are characterized by distinct recovered enrichment of [3-13C]-lactate, [3-13C]-aspartate, [4-13C]-glutamine, [3-13C]-glutamine, [4-13C]-glutamate, and [4-13C]- γ-aminobutyric acid (GABA) from [1-13C]-glucose. Moreover, diabetes-induced neuron injury and metabolic dysfunctions might be mediated by PI3K/AKT/GSK-3β signaling pathway inactivation in the hippocampus and cortex, which were activated by i.c.v injection of FGF21. These findings indicate that i.c.v FGF21 infusion exerts its neuroprotective effect on DICD by remodeling cerebral glucose and neurotransmitter metabolism by activating the PI3K/AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Xi Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Hong Zheng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhitao Ni
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuyin Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Die Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenqing Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Liangcai Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Chen Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongchang Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
7
|
Wong C, Dash A, Fredrickson J, Lewin-Koh N, Chen S, Yoshida K, Liu Y, Gutierrez J, Kunder R. Fibroblast growth factor receptor 1/Klothoβ agonist BFKB8488A improves lipids and liver health markers in patients with diabetes or NAFLD: A phase 1b randomized trial. Hepatology 2023; 78:847-862. [PMID: 35993161 DOI: 10.1002/hep.32742] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS BFKB8488A is a bispecific antibody targeting fibroblast growth factor receptor 1c and Klothoβ. This phase 1b study assessed safety, tolerability, pharmacokinetics, immunogenicity, and pharmacodynamics of BFKB8488A in patients with type 2 diabetes mellitus (T2DM) or NAFLD. APPROACH AND RESULTS Patients were randomized to receive multiple doses of BFKB8488A at various dose levels and dosing intervals (weekly, every 2 weeks, or every 4 weeks) or placebo for 12 weeks. The primary outcome was the safety of BFKB8488A. Overall, 153 patients (T2DM: 91; NAFLD: 62) were enrolled and received at least one dose of treatment. Of these, 102 patients (62.7%) reported at least one adverse event (BFKB8488A: 83 [68.6%]; placebo: 19 [59.4%]). BFKB8488A exhibited nonlinear pharmacokinetics, with greater than dose-proportional increases in exposure. The treatment-emergent antidrug antibody incidence was 22.7%. Overall, trends in exposure-dependent increases in high-density lipoprotein (HDL) and decreases in triglyceride levels were observed. Decreases in alanine aminotransferase and aspartate aminotransferase were 0.7% and 9.2% for medium exposure and 7.3% and 11.2% for high-exposure tertiles, compared with increases of 7.5% and 17% in the placebo group, respectively, at Day 85. In patients with NAFLD, the mean decrease from baseline liver fat was 13.0%, 34.5%, and 49.0% in the low-, medium-, and high-exposure tertiles, respectively, compared with 0.1% with placebo at Day 85. CONCLUSIONS BFKB8488A was adequately tolerated in patients with T2DM or NAFLD, leading to triglyceride reduction, HDL improvements, and trends in improvement in markers of liver health for both populations and marked liver fat reduction in patients with NAFLD. ( ClinicalTrials.gov : NCT03060538).
Collapse
Affiliation(s)
- Chin Wong
- Genentech, Inc. , South San Francisco , California , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Puengel T, Tacke F. Efruxifermin, an investigational treatment for fibrotic or cirrhotic non-alcoholic steatohepatitis (NASH). Expert Opin Investig Drugs 2023. [PMID: 37376813 DOI: 10.1080/13543784.2023.2230115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and strongly associated with metabolic disorders: obesity, type 2 diabetes (T2D), cardiovascular disease. Persistent metabolic injury results in inflammatory processes leading to nonalcoholic steatohepatitis (NASH), liver fibrosis and ultimately cirrhosis. To date, no pharmacologic agent is approved for the treatment of NASH. Fibroblast growth factor 21 (FGF21) agonism has been linked to beneficial metabolic effects ameliorating obesity, steatosis and insulin resistance, supporting its potential as a therapeutic target in NAFLD. AREAS COVERED Efruxifermin (EFX, also AKR-001 or AMG876) is an engineered Fc-FGF21 fusion protein with an optimized pharmacokinetic and pharmacodynamic profile, which is currently tested in several phase 2 clinical trials for the treatment of NASH, fibrosis and compensated liver cirrhosis. EFX improved metabolic disturbances including glycemic control, showed favorable safety and tolerability, and demonstrated antifibrotic efficacy according to FDA requirements for phase 3 trials. EXPERT OPINION While some other FGF-21 agonists (e.g. pegbelfermin) are currently not further investigated, available evidence supports the development of EFX as a promising anti-NASH drug in fibrotic and cirrhotic populations. However, antifibrotic efficacy, long-term safety and benefits (i.e. cardiovascular risk, decompensation events, disease progression, liver transplantation, mortality) remain to be determined.
Collapse
Affiliation(s)
- Tobias Puengel
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
9
|
Klein Hazebroek M, Laterveer R, Kutschke M, Ramšak Marčeta V, Barthem CS, Keipert S. Hyperphagia of female UCP1-deficient mice blunts anti-obesity effects of FGF21. Sci Rep 2023; 13:10288. [PMID: 37355753 PMCID: PMC10290677 DOI: 10.1038/s41598-023-37264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023] Open
Abstract
Increasing energy expenditure through uncoupling protein 1 (UCP1) activity in thermogenic adipose tissue is widely investigated to correct diet-induced obesity (DIO). Paradoxically, UCP1-deficient male mice are resistant to DIO at room temperature. Recently, we uncovered a key role for fibroblast growth factor 21 (FGF21), a promising drug target for treatment of metabolic disease, in this phenomenon. As the metabolic action of FGF21 is so far understudied in females, we aim to investigate potential sexual dimorphisms. Here, we confirm that male UCP1 KO mice display resistance to DIO in mild cold, without significant changes in metabolic parameters. Surprisingly, females gained the same amount of body fat as WT controls. Molecular regulation was similar between UCP1 KO males and females, with an upregulation of serum FGF21, coinciding with beiging of inguinal white adipose tissue and induced lipid metabolism. While energy expenditure did not display significant differences, UCP1 KO females significantly increased their food intake. Altogether, our results indicate that hyperphagia is likely counteracting the beneficial effects of FGF21 in female mice. This underlines the importance of sex-specific studies in (pre)clinical research for personalized drug development.
Collapse
Affiliation(s)
- Marlou Klein Hazebroek
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Rutger Laterveer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Maria Kutschke
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Vida Ramšak Marčeta
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Clarissa S Barthem
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
10
|
Ye X, Chen Y, Qi J, Zhu S, Wu Y, Xiong J, Hu F, Guo Z, Liang X. Design and pharmaceutical evaluation of bifunctional fusion protein of FGF21 and GLP-1 in the treatment of nonalcoholic steatohepatitis. Eur J Pharmacol 2023:175811. [PMID: 37245859 DOI: 10.1016/j.ejphar.2023.175811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Fibroblast growth factor 21 (FGF21) and glucagon-like peptide-1 (GLP-1) may be useful for the treatment of type 2 diabetes, obesity, and non-alcoholic fatty liver disease (NAFLD). Previous studies have shown that GLP-1 may synergize with FGF21 in the regulation of glucose and lipid metabolism. Currently, no approved drug therapy is available for non-alcoholic steatohepatitis (NASH). Here, we constructed and screened dual-targeting fusion proteins of GLP-1 and FGF21, connected by elastin-like polypeptides (ELPs), to investigate whether a combination of these two hormones would have therapeutic effects in models of NASH. The temperature phase transition and release of the hormones under physiological conditions were studied to identify a bifunctional fusion protein of FGF21 and GLP-1 (GEF) that was highly stable and showed sustained release. We further evaluated the quality and therapeutic efficacy of GEF in three mouse models of NASH. We successfully synthesized a novel recombinant bifunctional fusion protein with high stability and low immunogenicity. The GEF protein synthesized ameliorated hepatic lipid accumulation, hepatocyte damage, and inflammation; prevented the progression of NASH in the three models; reduced glycemia; and caused weight loss. This novel GEF molecule may be suitable for clinical use for the treatment of NAFLD/NASH and related metabolic diseases.
Collapse
Affiliation(s)
- Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| | - Yingli Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Jianying Qi
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuanyuan Wu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Jingjing Xiong
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Fei Hu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Zhimou Guo
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Zhongshan Road 457, Dalian, 116023, China.
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Zhongshan Road 457, Dalian, 116023, China.
| |
Collapse
|
11
|
Brinker EJ, Towns TJ, Watanabe R, Ma X, Bashir A, Cole RC, Wang X, Graff EC. Direct activation of the fibroblast growth factor-21 pathway in overweight and obese cats. Front Vet Sci 2023; 10:1072680. [PMID: 36756310 PMCID: PMC9900002 DOI: 10.3389/fvets.2023.1072680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction Feline obesity is common, afflicting ~25-40% of domestic cats. Obese cats are predisposed to many metabolic dyscrasias, such as insulin resistance, altered blood lipids, and feline hepatic lipidosis. Fibroblast Growth Factor-21 (FGF21) is an endocrine hormone that mediates the fat-liver axis, and in humans and animals, FGF21 can ameliorate insulin resistance, non-alcoholic fatty liver disease, and obesity. Activation of the FGF21 pathway may have therapeutic benefits for obese cats. Methods In this preliminary cross-sectional study, ad libitum fed, purpose-bred, male-neutered, 6-year-old, obese and overweight cats were administered either 10 mg/kg/day of an FGF21 mimetic (FGF21; n = 4) or saline (control; n = 3) for 14 days. Body weight, food, and water intake were quantified daily during and 2 weeks following treatment. Changes in metabolic and liver parameters, intrahepatic triglyceride content, liver elasticity, and gut microbiota were evaluated. Results Treatment with FGF21 resulted in significant weight loss (~5.93%) compared to control and a trend toward decreased intrahepatic triglyceride content. Cats treated with FGF21 had decreased serum alkaline phosphatase. No significant changes were noted in liver elasticity, serum, liver, or metabolic parameters, or gut microbiome composition. Discussion In obese and overweight cats, activation of the FGF21 pathway can safely induce weight loss with trends to improve liver lipid content. This exploratory study is the first to evaluate the FGF21 pathway in cats. Manipulation of the FGF21 pathway has promising potential as a therapeutic for feline obesity. Further studies are needed to see if FGF21-pathway manipulation can be therapeutic for feline hepatic lipidosis.
Collapse
Affiliation(s)
- Emily J. Brinker
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - T. Jordan Towns
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Rie Watanabe
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Xiaolei Ma
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Adil Bashir
- Department of Electrical and Computer Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, United States
| | - Robert C. Cole
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Center for Advanced Science, Innovation and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Emily C. Graff
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,*Correspondence: Emily C. Graff ✉
| |
Collapse
|
12
|
Post A, Dam WA, Sokooti S, Groothof D, Gloerich J, van Gool AJ, Kremer D, Gansevoort RT, van den Born J, Kema IP, Franssen CFM, Dullaart RPF, Bakker SJL. Circulating FGF21 Concentration, Fasting Plasma Glucose and the Risk of Type 2 Diabetes: Results from the PREVEND study. J Clin Endocrinol Metab 2022; 108:1387-1393. [PMID: 36533509 DOI: 10.1210/clinem/dgac729] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Fibroblast growth factor 21 (FGF21) is a peptide hormone that is synthesized by several organs and regulates, amongst others, energy homeostasis. In obesity, insulin resistance and type 2 diabetes (T2D), higher circulating FGF21 concentrations have been found. Temporal analyses in murine studies demonstrate that FGF21 increases before insulin resistance occurs. The current study aims to investigate in time-to-event analyses whether FGF21 may be an early biomarker in the development of T2D. RESEARCH DESIGN AND METHODS Circulating FGF21 was measured using an immunoassay of the Mesoscale U-PLEX assay platform. The study outcome was incident T2D. Associations of circulating FGF21 concentration with type 2 diabetes were quantified using Cox proportional hazards models with adjustments for potential confounders. RESULTS We included 5,244 participants aged 52 ± 12 years, of whom 50% were male. Median [interquartile range] circulating FGF21 concentration was 860 [525-1,329] pg/mL. During 7.3 [6.1-7.7] years of follow-up, 299 (5.7%) participants developed type 2 diabetes. In fully adjusted analyses, higher circulating FGF21 concentration was associated with an increased risk of incident type 2 diabetes (HR per doubling: 1.26 [95% CI: 1.06-1.51]; P = 0.008), with effect modification by fasting plasma glucose, consistent with strengthening of the association at lower fasting glucose (interaction coefficient: -0.12; P = 0.022). CONCLUSIONS Higher circulating FGF21 concentrations are independently associated with an increased risk of incident T2D in participants with a low fasting plasma glucose, making circulating FGF21 concentration a potential early biomarker for type 2 diabetes.
Collapse
Affiliation(s)
- Adrian Post
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wendy A Dam
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sara Sokooti
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dion Groothof
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jolein Gloerich
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alain J van Gool
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Daan Kremer
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ron T Gansevoort
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacob van den Born
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Casper F M Franssen
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robin P F Dullaart
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Su X, Chen X, Wang B. Relationship between the development of hyperlipidemia in hypothyroidism patients. Mol Biol Rep 2022; 49:11025-11035. [PMID: 36097119 DOI: 10.1007/s11033-022-07423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022]
Abstract
As shown in the previous studies, hypothyroidism (HT) is identified to be closely associated with the elevated plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and with the decreased plasma levels of high density lipoprotein cholesterol (HDL-C). On the other hand, the thyroid hormone (TH), which has been considered as a vital hormone produced and released by the thyroid gland, are well-established to regulate the metabolism of plasma TC; whereas other evidence proposed that the thyroid-stimulating hormone (TSH) also regulated the plasma cholesterol metabolism independently of the TH, which further promotes the progression of hyperlipidemia. Nevertheless, the potential mechanism is still not illustrated. It is worth noting that several studies has found that the progression of HT-induced hyperlipidemia might be associated with the down-regulated plasma levels of TH and the up-regulated plasma levels of TSH, revealing that HT could promote hyperlipidemia and its related cardio-metabolic disorders. Otherwise, multiple novel identified plasma proteins, such as proprotein convertase subtilisin/kexin type 9 (PCSK9), angiopoietin-like protein (ANGPTLs), and fibroblast growth factors (FGFs), have also been demonstrated to embrace a vital function in modulating the progression of hyperlipidemia induced by HT. In the present comprehensive review, the recent findings which elucidated the association of HT and the progression of hyperlipidemia were summarized. Furthermore, other results which illustrated the underlying mechanisms by which HT facilitates the progression of hyperlipidemia and its cardio-metabolic disorders are also listed in the current review.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, 361000, Xiamen, Fujian, China
| | - Xiang Chen
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, 361000, Xiamen, Fujian, China.
| | - Bin Wang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, 361000, Xiamen, Fujian, China.
| |
Collapse
|
14
|
Yadav P, Khurana A, Bhatti JS, Weiskirchen R, Navik U. Glucagon-like peptide 1 and fibroblast growth factor-21 in non-alcoholic steatohepatitis: An experimental to clinical perspective. Pharmacol Res 2022; 184:106426. [PMID: 36075510 DOI: 10.1016/j.phrs.2022.106426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 12/06/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive form of Non-alcoholic fatty liver disease (NAFLD), which slowly progresses toward cirrhosis and finally leads to the development of hepatocellular carcinoma. Obesity, insulin resistance, type 2 diabetes mellitus and the metabolic syndrome are major risk factors contributing to NAFLD. Targeting these risk factors is a rational option for inhibiting NASH progression. In addition, NASH could be treated with therapies that target the metabolic abnormalities causing disease pathogenesis (such as de novo lipogenesis and insulin resistance) as well with medications targeting downstream processes such as cellular damage, apoptosis, inflammation, and fibrosis. Glucagon-like peptide (GLP-1), is an incretin hormone dysregulated in both experimental and clinical NASH, which triggers many signaling pathways including fibroblast growth factor (FGF) that augments NASH pathogenesis. Growing evidence indicates that GLP-1 in concert with FGF-21 plays crucial roles in the conservation of glucose and lipid homeostasis in metabolic disorders. In line, GLP-1 stimulation improves hepatic ballooning, steatosis, and fibrosis in NASH. A recent clinical trial on NASH patients showed that the upregulation of FGF-21 decreases liver fibrosis and hepatic steatosis, thus improving the pathogenesis of NASH. Hence, therapeutic targeting of the GLP-1/FGF axis could be therapeutically beneficial for the remission of NASH. This review outlines the significance of the GLP-1/FGF-21 axis in experimental and clinical NASH and highlights the activity of modulators targeting this axis as potential salutary agents for the treatment of NASH.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
15
|
Kaur N, Gare SR, Shen J, Raja R, Fonseka O, Liu W. Multi-organ FGF21-FGFR1 signaling in metabolic health and disease. Front Cardiovasc Med 2022; 9:962561. [PMID: 35983184 PMCID: PMC9378980 DOI: 10.3389/fcvm.2022.962561] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic syndrome is a chronic systemic disease that is particularly manifested by obesity, diabetes, and hypertension, affecting multiple organs. The increasing prevalence of metabolic syndrome poses a threat to public health due to its complications, such as liver dysfunction and cardiovascular disease. Impaired adipose tissue plasticity is another factor contributing to metabolic syndrome. Emerging evidence demonstrates that fibroblast growth factors (FGFs) are critical players in organ crosstalk via binding to specific FGF receptors (FGFRs) and their co-receptors. FGFRs activation modulates intracellular responses in various cell types under metabolic stress. FGF21, in particular is considered as the key regulator for mediating systemic metabolic effects by binding to receptors FGFR1, FGFR3, and FGFR4. The complex of FGFR1 and beta Klotho (β-KL) facilitates endocrine and paracrine communication networks that physiologically regulate global metabolism. This review will discuss FGF21-mediated FGFR1/β-KL signaling pathways in the liver, adipose, and cardiovascular systems, as well as how this signaling is involved in the interplay of these organs during the metabolic syndrome. Furthermore, the clinical implications and therapeutic strategies for preventing metabolic syndrome and its complications by targeting FGFR1/β-KL are also discussed.
Collapse
Affiliation(s)
| | | | - Jiahan Shen
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Rida Raja
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Oveena Fonseka
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
16
|
Li J, Duan H, Liu Y, Wang L, Zhou X. Biomaterial-Based Therapeutic Strategies for Obesity and Its Comorbidities. Pharmaceutics 2022; 14:1445. [PMID: 35890340 PMCID: PMC9320151 DOI: 10.3390/pharmaceutics14071445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is a global public health issue that results in many health complications or comorbidities, including type 2 diabetes mellitus, cardiovascular disease, and fatty liver. Pharmacotherapy alone or combined with either lifestyle alteration or surgery represents the main modality to combat obesity and its complications. However, most anti-obesity drugs are limited by their bioavailability, target specificity, and potential toxic effects. Only a handful of drugs, including orlistat, liraglutide, and semaglutide, are currently approved for clinical obesity treatment. Thus, there is an urgent need for alternative treatment strategies. Based on the new revelation of the pathogenesis of obesity and the efforts toward the multi-disciplinary integration of materials, chemistry, biotechnology, and pharmacy, some emerging obesity treatment strategies are gradually entering the field of preclinical and clinical research. Herein, by analyzing the current situation and challenges of various new obesity treatment strategies such as small-molecule drugs, natural drugs, and biotechnology drugs, the advanced functions and prospects of biomaterials in obesity-targeted delivery, as well as their biological activities and applications in obesity treatment, are systematically summarized. Finally, based on the systematic analysis of biomaterial-based obesity therapeutic strategies, the future prospects and challenges in this field are proposed.
Collapse
Affiliation(s)
- Jing Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Hongli Duan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Yan Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Lu Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
- Institute of Materia Medica and Center of Translational Medicine, College of Pharmacy, Army Medical University, Chongqing 400038, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
17
|
She QY, Bao JF, Wang HZ, Liang H, Huang W, Wu J, Zhong Y, Ling H, Li A, Qin SL. Fibroblast growth factor 21: A "rheostat" for metabolic regulation? Metabolism 2022; 130:155166. [PMID: 35183545 DOI: 10.1016/j.metabol.2022.155166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor 21 is an evolutionarily conserved factor that plays multiple important roles in metabolic homeostasis. During the past two decades, extensive investigations have improved our understanding of its delicate metabolic roles and identified its pharmacological potential to mitigate metabolic disorders. However, most clinical trials have failed to obtain the desired results, which raises issues regarding its clinical value. Fibroblast growth factor 21 is dynamically regulated by nutrients derived from food intake and hepatic/adipose release, which in turn act on the central nervous system, liver, and adipose tissues to influence food preference, hepatic glucose, and adipose fatty acid output. Based on this information, we propose that fibroblast growth factor 21 should not be considered merely an anti-hyperglycemia or anti-obesity factor, but rather a means of balancing of nutrient fluctuations to maintain an appropriate energy supply. Hence, the specific functions of fibroblast growth factor 21 in glycometabolism and lipometabolism depend on specific metabolic states, indicating that its pharmacological effects require further consideration.
Collapse
Affiliation(s)
- Qin-Ying She
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China; Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Jing-Fu Bao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Hui-Zhen Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Huixin Liang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Wentao Huang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Jing Wu
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Yiwen Zhong
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Hanxin Ling
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China.
| | - Shu-Lan Qin
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China.
| |
Collapse
|
18
|
Sostre-Colón J, Gavin MJ, Santoleri D, Titchenell PM. Acute Deletion of the FOXO1-dependent Hepatokine FGF21 Does not Alter Basal Glucose Homeostasis or Lipolysis in Mice. Endocrinology 2022; 163:6550639. [PMID: 35303074 PMCID: PMC8995092 DOI: 10.1210/endocr/bqac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 01/07/2023]
Abstract
The hepatic transcription factor forkhead box O1 (FOXO1) is a critical regulator of hepatic and systemic insulin sensitivity. Previous work by our group and others demonstrated that genetic inhibition of FOXO1 improves insulin sensitivity both in genetic and dietary mouse models of metabolic disease. Mechanistically, this is due in part to cell nonautonomous control of adipose tissue insulin sensitivity. However, the mechanisms mediating this liver-adipose tissue crosstalk remain ill defined. One candidate hepatokine controlled by hepatic FOXO1 is fibroblast growth factor 21 (FGF21). Preclinical and clinical studies have explored the potential of pharmacological FGF21 as an antiobesity and antidiabetic therapy. In this manuscript, we performed acute loss-of-function experiments to determine the role of hepatocyte-derived FGF21 in glucose homeostasis and insulin tolerance both in control and mice lacking hepatic insulin signaling. Surprisingly, acute deletion of FGF21 did not alter glucose tolerance, insulin tolerance, or adipocyte lipolysis in either liver-specific FGF21KO mice or mice lacking hepatic AKT-FOXO1-FGF21, suggesting a permissive role for endogenous FGF21 in the regulation of systemic glucose homeostasis and insulin tolerance in mice. In addition, these data indicate that liver FOXO1 controls glucose homeostasis independently of liver-derived FGF21.
Collapse
Affiliation(s)
- Jaimarie Sostre-Colón
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Matthew J Gavin
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dominic Santoleri
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Paul M Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Correspondence: Paul M. Titchenell, PhD, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Rm. 12-104, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Berthou F, Sobolewski C, Abegg D, Fournier M, Maeder C, Dolicka D, Correia de Sousa M, Adibekian A, Foti M. Hepatic PTEN Signaling Regulates Systemic Metabolic Homeostasis through Hepatokines-Mediated Liver-to-Peripheral Organs Crosstalk. Int J Mol Sci 2022; 23:ijms23073959. [PMID: 35409319 PMCID: PMC8999584 DOI: 10.3390/ijms23073959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Liver-derived circulating factors deeply affect the metabolism of distal organs. Herein, we took advantage of the hepatocyte-specific PTEN knockout mice (LPTENKO), a model of hepatic steatosis associated with increased muscle insulin sensitivity and decreased adiposity, to identify potential secreted hepatic factors improving metabolic homeostasis. Our results indicated that protein factors, rather than specific metabolites, released by PTEN-deficient hepatocytes trigger an improved muscle insulin sensitivity and a decreased adiposity in LPTENKO. In this regard, a proteomic analysis of conditioned media from PTEN-deficient primary hepatocytes identified seven hepatokines whose expression/secretion was deregulated. Distinct expression patterns of these hepatokines were observed in hepatic tissues from human/mouse with NAFLD. The expression of specific factors was regulated by the PTEN/PI3K, PPAR or AMPK signaling pathways and/or modulated by classical antidiabetic drugs. Finally, loss-of-function studies identified FGF21 and the triad AHSG, ANGPTL4 and LECT2 as key regulators of insulin sensitivity in muscle cells and in adipocytes biogenesis, respectively. These data indicate that hepatic PTEN deficiency and steatosis alter the expression/secretion of hepatokines regulating insulin sensitivity in muscles and the lipid metabolism in adipose tissue. These hepatokines could represent potential therapeutic targets to treat obesity and insulin resistance.
Collapse
Affiliation(s)
- Flavien Berthou
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Cyril Sobolewski
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; (D.A.); (A.A.)
| | - Margot Fournier
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Christine Maeder
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Dobrochna Dolicka
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Marta Correia de Sousa
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; (D.A.); (A.A.)
| | - Michelangelo Foti
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
- Diabetes Center, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Correspondence: ; Tel.: +41-(22)-379-52-04
| |
Collapse
|
20
|
Liu H, Peng D. Update on dyslipidemia in hypothyroidism: the mechanism of dyslipidemia in hypothyroidism. Endocr Connect 2022; 11:e210002. [PMID: 35015703 PMCID: PMC8859969 DOI: 10.1530/ec-21-0002] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
Abstract
Hypothyroidism is often associated with elevated serum levels of total cholesterol, LDL-C and triglycerides. Thyroid hormone (TH) affects the production, clearance and transformation of cholesterol, but current research shows that thyroid-stimulating hormone (TSH) also participates in lipid metabolism independently of TH. Therefore, the mechanism of hypothyroidism-related dyslipidemia is associated with the decrease of TH and the increase of TSH levels. Some newly identified regulatory factors, such as proprotein convertase subtilisin/kexin type 9, angiogenin-like proteins and fibroblast growth factors are the underlying causes of dyslipidemia in hypothyroidism. HDL serum concentration changes were not consistent, and its function was reportedly impaired. The current review focuses on the updated understanding of the mechanism of hypothyroidism-related dyslipidemia.
Collapse
Affiliation(s)
- Huixing Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Correspondence should be addressed to D Peng:
| |
Collapse
|
21
|
Lamb CL, Giesy SL, McGuckin MM, Perfield JW, Butterfield A, Moniruzzaman M, Haughey NJ, McFadden JW, Boisclair YR. Fibroblast growth factor-21 improves insulin action in nonlactating ewes. Am J Physiol Regul Integr Comp Physiol 2022; 322:R170-R180. [PMID: 35018810 PMCID: PMC8816633 DOI: 10.1152/ajpregu.00259.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During metabolically demanding physiological states, ruminants and other mammals coordinate nutrient use among tissues by varying the set point of insulin action. This set point is regulated in part by metabolic hormones with some antagonizing (e.g., growth hormone and TNFα) and others potentiating (e.g., adiponectin) insulin action. Fibroblast growth factor-21 (FGF21) was recently identified as a sensitizing hormone in rodent and primate models of defective insulin action. FGF21 administration, however, failed to improve insulin action in dairy cows during the naturally occurring insulin resistance of lactation, raising the possibility that ruminants as a class of animals or lactation as a physiological state are unresponsive to FGF21. To start addressing this question, we asked whether FGF21 could improve insulin action in nonlactating ewes. Gene expression studies showed that the ovine FGF21 system resembles that of other species, with liver as the major site of FGF21 expression and adipose tissue as a target tissue based on high expression of the FGF21 receptor complex and activation of p44/42 extracellular signal-regulated kinase (ERK1/2) following exogenous FGF21 administration. FGF21 treatment for 13 days reduced plasma glucose and insulin over the entire treatment period and improved glucose disposal during a glucose tolerance test. FGF21 increased plasma adiponectin by day 3 of treatment but had no effect on the plasma concentrations of total, C16:0-, or C18:0-ceramide. Overall, these data confirm that the insulin-sensitizing effects of FGF21 are conserved in ruminants and raise the possibility that lactation is an FGF21-resistant state.
Collapse
Affiliation(s)
| | - Sarah L. Giesy
- 1Department of Animal Science, Cornell University, Ithaca, New York
| | | | - James W. Perfield
- 2Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | | | - Mohammed Moniruzzaman
- 3Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Norman J. Haughey
- 3Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
22
|
Klaebel JH, Lykkesfeldt J, Tveden-Nyborg P. Efficacy of Fibroblast Growth Factor 21 in non-alcoholic fatty liver disease in guinea pigs. Basic Clin Pharmacol Toxicol 2022; 130:385-393. [PMID: 35014168 DOI: 10.1111/bcpt.13705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/28/2022]
Abstract
Fibroblast Growth Factor 21 (FGF21) agonists have shown promising effects in preclinical models of non-alcoholic fatty liver disease (NAFLD) as well as in short-term clinical trials in patients with non-alcoholic steatohepatitis (NASH). Comparing drug formulation, dose, administration route and age, this exploratory study investigated effects of FGF21 on NAFLD-associated measures in a validated guinea pig model. In three separate studies, female guinea pigs received a high-fat diet prior to intervention with escalating doses of either recombinant native human FGF21 or a human FGF21 human recombinant analogue (FGF21/19 chimer) with an extended half-life. While no significant effects of native FGF21 on the investigated endpoints were observed, the long-acting FGF21/19 chimer significantly altered the levels of circulating lipids, increasing plasma concentrations of cholesterol (TC, LDLc and HDLc) in young guinea pigs (p<0.01 for all three parameters). Relative liver weights were reduced in FGF21/19-treated young animals (p<0.05) compared to mature animals, whereas FGF21/19 reduced body weights in both age groups (p<0.001). The FGF21/19 chimer effects on dyslipidemia, body and liver weights particularly in young animals, support an age-associated difference in the FGF21 response. The limited effects of the native human FGF21 highlights potential species-associated differences of this compound.
Collapse
Affiliation(s)
- Julie Hviid Klaebel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Pernille Tveden-Nyborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
23
|
Hyperlipidemia and hypothyroidism. Clin Chim Acta 2022; 527:61-70. [DOI: 10.1016/j.cca.2022.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
|
24
|
Klein Hazebroek M, Keipert S. Obesity-resistance of UCP1-deficient mice associates with sustained FGF21 sensitivity in inguinal adipose tissue. Front Endocrinol (Lausanne) 2022; 13:909621. [PMID: 36034414 PMCID: PMC9402904 DOI: 10.3389/fendo.2022.909621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
Metabolic diseases represent the major health burden of our modern society. With the need of novel therapeutic approaches, fibroblast growth factor 21 (FGF21) is a promising target, based on metabolic improvements upon FGF21 administration in mice and humans. Endogenous FGF21 serum levels, however, are increased during obesity-related diseases, suggesting the development of FGF21 resistance during obesity and thereby lowering FGF21 efficacy. In uncoupling protein 1 knockout (UCP1 KO) mice, however, elevated endogenous FGF21 levels mediate resistance against diet-induced obesity. Here, we show that after long-term high fat diet feeding (HFD), circulating FGF21 levels become similarly high in obese wildtype and obesity-resistant UCP1 KO mice, suggesting improved FGF21 sensitivity in UCP1 KO mice. To test this hypothesis, we injected FGF21 after long-term HFD and assessed the metabolic and molecular effects. The UCP1 KO mice lost weight directly upon FGF21 administration, whereas body weights of WT mice resisted weight loss in the initial phase of the treatment. The FGF21 treatment induced expression of liver Pck1, a typical FGF21-responsive gene, in both genotypes. In iWAT, FGF21-responsive genes were selectively induced in UCP1 KO mice, strongly associating FGF21-sensitivity in iWAT with healthy body weights. Thus, these data support the concept that FGF21-sensitivity in adipose tissue is key for metabolic improvements during obesogenic diets.
Collapse
|
25
|
Keipert S, Ost M. Stress-induced FGF21 and GDF15 in obesity and obesity resistance. Trends Endocrinol Metab 2021; 32:904-915. [PMID: 34526227 DOI: 10.1016/j.tem.2021.08.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 02/06/2023]
Abstract
Fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) are established as stress-responsive cytokines that can modulate energy balance by increasing energy expenditure or suppressing food intake, respectively. Despite their pharmacologically induced beneficial effects on obesity and comorbidities, circulating levels of both cytokines are elevated during obesity and related metabolic complications. On the other hand, endocrine crosstalk via FGF21 and GDF15 was also reported to play a crucial role in genetically modified mouse models of mitochondrial perturbations leading to diet-induced obesity (DIO) resistance. This review aims to dissect the complexities of endogenous FGF21 and GDF15 action in obesity versus DIO resistance for the regulation of energy balance in metabolic health and disease.
Collapse
Affiliation(s)
- Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Mario Ost
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
26
|
Makarova E, Kazantseva A, Dubinina A, Jakovleva T, Balybina N, Baranov K, Bazhan N. The Same Metabolic Response to FGF21 Administration in Male and Female Obese Mice Is Accompanied by Sex-Specific Changes in Adipose Tissue Gene Expression. Int J Mol Sci 2021; 22:10561. [PMID: 34638898 PMCID: PMC8508620 DOI: 10.3390/ijms221910561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/14/2021] [Accepted: 09/25/2021] [Indexed: 02/07/2023] Open
Abstract
The preference for high-calorie foods depends on sex and contributes to obesity development. Fibroblast growth factor 21 (FGF21) beneficially affects taste preferences and obesity, but its action has mainly been studied in males. The aim of this study was to compare the effects of FGF21 on food preferences and glucose and lipid metabolism in C57Bl/6J male and female mice with diet-induced obesity. Mice were injected with FGF21 or vehicle for 7 days. Body weight, choice between standard (SD) and high-fat (HFD) diets, blood parameters, and gene expression in white (WAT) and brown (BAT) adipose tissues, liver, muscles, and the hypothalamus were assessed. Compared to males, females had a greater preference for HFD; less WAT; lower levels of cholesterol, glucose, and insulin; and higher expression of Fgf21, Insr, Ppara, Pgc1, Acca and Accb in the liver and Dio2 in BAT. FGF21 administration decreased adiposity; blood levels of cholesterol, glucose, and insulin; hypothalamic Agrp expression, increased SD intake, decreased HFD intake independently of sex, and increased WAT expression of Pparg, Lpl and Lipe only in females. Thus, FGF21 administration beneficially affected mice of both sexes despite obesity-associated sex differences in metabolic characteristics, and it induced female-specific activation of gene expression in WAT.
Collapse
Affiliation(s)
- Elena Makarova
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Antonina Kazantseva
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Anastasia Dubinina
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Tatiana Jakovleva
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Natalia Balybina
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Konstantin Baranov
- The Institute of Molecular and Cellular Biology, 630090 Novosibirsk, Russia;
| | - Nadezhda Bazhan
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| |
Collapse
|
27
|
Diener JL, Mowbray S, Huang WJ, Yowe D, Xu J, Caplan S, Misra A, Kapur A, Shapiro J, Ke X, Wu X, Bose A, Panza D, Chen M, Beaulieu V, Gao J. FGF21 Normalizes Plasma Glucose in Mouse Models of Type 1 Diabetes and Insulin Receptor Dysfunction. Endocrinology 2021; 162:6267686. [PMID: 33951176 DOI: 10.1210/endocr/bqab092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 11/19/2022]
Abstract
Fibroblast growth factor (FGF) 21 is a member of the FGF family of proteins. The biological activity of FGF21 was first shown to induce insulin-independent glucose uptake in adipocytes through the GLUT1 transporter. Subsequently, it was shown to have effects on the liver to increase fatty acid oxidation. FGF21 treatment provides beneficial metabolic effects in both animal models and patients with obesity, type 2 diabetes mellitus (T2D) and/or fatty liver disease. In this paper, we revisited the original finding and found that insulin-independent glucose uptake in adipocytes is preserved in the presence of an insulin receptor antagonist. Using a 40-kDa PEGylated (PEG) and half-life extended form of FGF21 (FGF21-PEG), we extended these in vitro results to 2 different mouse models of diabetes. FGF21-PEG normalized plasma glucose in streptozotocin-treated mice, a model of type 1 diabetes (T1D), without restoring pancreatic β-cell function. FGF21-PEG also normalized plasma glucose levels and improved glucose tolerance in mice chronically treated with an insulin competitive insulin receptor antagonist, a model of autoimmune/type-B insulin resistance. These data extend the pharmacological potential of FGF21 beyond the settings of T2D, fatty liver, and obesity.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipocytes/drug effects
- Adipocytes/metabolism
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Fibroblast Growth Factors/pharmacology
- HEK293 Cells
- Humans
- Hyperglycemia/blood
- Hyperglycemia/etiology
- Hyperglycemia/pathology
- Hyperglycemia/prevention & control
- Insulin/metabolism
- Insulin Resistance/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Obese
- Obesity/blood
- Obesity/complications
- Obesity/pathology
- Receptor, Insulin/antagonists & inhibitors
- Receptor, Insulin/drug effects
- Receptor, Insulin/physiology
- Streptozocin
Collapse
Affiliation(s)
- John L Diener
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Sarah Mowbray
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Waan-Jeng Huang
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - David Yowe
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Jian Xu
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Shari Caplan
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Abhay Misra
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Ankur Kapur
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Jeffrey Shapiro
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Xiaoling Ke
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Xiaoping Wu
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Avirup Bose
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Darrell Panza
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Min Chen
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Valerie Beaulieu
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Jiaping Gao
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| |
Collapse
|
28
|
Thompson KE, Guillot M, Graziano MJ, Mangipudy RS, Chadwick KD. Pegbelfermin, a PEGylated FGF21 analogue, has pharmacology without bone toxicity after 1-year dosing in skeletally-mature monkeys. Toxicol Appl Pharmacol 2021; 428:115673. [PMID: 34364948 DOI: 10.1016/j.taap.2021.115673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 01/13/2023]
Abstract
Pegbelfermin (PGBF) is a PEGylated fibroblast growth factor 21 (FGF21) analogue in development for treatment of nonalcoholic steatohepatitis (NASH). Mouse models highlight potential utility of FGF21 in NASH, but also suggest negative effects on bone, though these findings are confounded by profound FGF21-related decreases in body mass/growth. This study aimed to profile PGBF-related bone effects in adult nonhuman primates after long-term, clinically-relevant exposures. Adult male cynomolgus monkeys received weekly subcutaneous PGBF (0.3, 0.75 mg/kg) or control injections for 1 year (n = 5/group). Assessments included body weight, clinical chemistry, adiponectin levels, bone turnover biomarkers, skeletal radiography, pharmacokinetics, immunogenicity, and histopathology. Bone densitometry and body composition were evaluated in vivo and/or ex vivo with dual-energy x-ray absorptiometry, peripheral quantitative computed tomography, and biomechanical strength testing. After 1 year of PGBF administration, there was clear evidence of sustained PGBF pharmacology in monkeys (peak increase in serum adiponectin of 1.7× and 2.35× pretest at 0.3 and 0.75 mg/kg PGBF, respectively) and decreased body weight compared with control at exposures comparable to those tested in humans. At 0.75 mg/kg PGBF, pharmacologically-mediated reductions in lean mass, lean area, and fat area were observed relative to controls. There were no PGBF-related effects on bone biomarkers, radiography, densitometry, or strength. Together, these data demonstrate that PGBF did not adversely alter bone metabolism, density, or strength following 1 year of dosing at clinically relevant (0.7-2.2× human AUC[0-168 h] at 20 mg once weekly), pharmacologically-active exposures in adult monkeys, suggesting a low potential for negative effects on bone quality in adult humans.
Collapse
Affiliation(s)
- Kary E Thompson
- Nonclinical Safety, Bristol-Myers Squibb, New Brunswick, NJ, USA
| | - Martin Guillot
- Musculoskeletal Research & Imaging, Charles River Laboratories, Senneville, QC, Canada
| | | | - Raja S Mangipudy
- Nonclinical Safety, Bristol-Myers Squibb, New Brunswick, NJ, USA
| | | |
Collapse
|
29
|
Ferguson D, Finck BN. Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus. Nat Rev Endocrinol 2021; 17:484-495. [PMID: 34131333 PMCID: PMC8570106 DOI: 10.1038/s41574-021-00507-z] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent liver disease in the world, yet there are still no approved pharmacological therapies to prevent or treat this condition. NAFLD encompasses a spectrum of severity, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Although NASH is linked to an increased risk of hepatocellular carcinoma and cirrhosis and has now become the leading cause of liver failure-related transplantation, the majority of patients with NASH will ultimately die as a result of complications of type 2 diabetes mellitus (T2DM) and cardiometabolic diseases. Importantly, NAFLD is closely linked to obesity and tightly interrelated with insulin resistance and T2DM. Thus, targeting these interconnected conditions and taking a holistic attitude to the treatment of metabolic disease could prove to be a very beneficial approach. This Review will explore the latest relevant literature and discuss the ongoing therapeutic options for NAFLD focused on targeting intermediary metabolism, insulin resistance and T2DM to remedy the global health burden of these diseases.
Collapse
Affiliation(s)
- Daniel Ferguson
- Division of Geriatrics and Nutritional Sciences, Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Brian N Finck
- Division of Geriatrics and Nutritional Sciences, Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
30
|
Krumm CS, Xu X, Bare CJ, Holman CD, Kersten S, Dow LE, Lee AH, Cohen DE. Inducible hepatic expression of CREBH mitigates diet-induced obesity, insulin resistance, and hepatic steatosis in mice. J Biol Chem 2021; 297:100815. [PMID: 34023388 PMCID: PMC8246594 DOI: 10.1016/j.jbc.2021.100815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclic AMP-responsive element-binding protein H (CREBH encoded by Creb3l3) is a transcription factor that regulates the expression of genes that control lipid and glucose metabolism as well as inflammation. CREBH is upregulated in the liver under conditions of overnutrition, and mice globally lacking the gene (CREBH-/-) are highly susceptible to diet-induced obesity, insulin resistance, and hepatic steatosis. The net protective effects of CREBH have been attributed in large part to the activities of fibroblast growth factor (Fgf)-21 (Fgf21), a target gene that promotes weight loss, improves glucose homeostasis, and reduces hepatic lipid accumulation. To explore the possibility that activation of the CREBH-Fgf21 axis could ameliorate established effects of high-fat feeding, we generated an inducible transgenic hepatocyte-specific CREBH overexpression mouse model (Tg-rtTA). Acute overexpression of CREBH in livers of Tg-rtTA mice effectively reversed diet-induced obesity, insulin resistance, and hepatic steatosis. These changes were associated with increased activities of thermogenic brown and beige adipose tissues in Tg-rtTA mice, leading to reductions in fat mass, along with enhanced insulin sensitivity and glucose tolerance. Genetically silencing Fgf21 in Tg-rtTA mice abrogated the CREBH-mediated reductions in body weight loss, but only partially reversed the observed improvements in glucose metabolism. These findings reveal that the protective effects of CREBH activation may be leveraged to mitigate diet-induced obesity and associated metabolic abnormalities in both Fgf21-dependent and Fgf21-independent pathways.
Collapse
Affiliation(s)
- Christopher S Krumm
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Xu Xu
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Curtis J Bare
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Corey D Holman
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Lukas E Dow
- Division of Hematology & Medical Oncology, Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, New York, USA
| | - Ann-Hwee Lee
- Department of Pathology & Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - David E Cohen
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA.
| |
Collapse
|
31
|
Geng S, Qin L, He Y, Li X, Yang M, Li L, Liu D, Li Y, Niu D, Yang G. Effective and safe delivery of GLP-1AR and FGF-21 plasmids using amino-functionalized dual-mesoporous silica nanoparticles in vitro and in vivo. Biomaterials 2021; 271:120763. [PMID: 33780737 DOI: 10.1016/j.biomaterials.2021.120763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
Nanomaterials have attracted increased attention because of their excellent drug-carrying capacity. However, these nanomaterials are rarely used in the treatment of metabolic diseases. Liraglutide, a glucagon-like peptide-1 receptor agonist, has been widely used in the treatment of type 2 diabetes mellitus (T2DM). Furthermore, fibroblast growth factor 21 (FGF-21) has been found to improve glucose metabolism and insulin resistance (IR). To investigate whether these two molecules have synergistic effects in vivo, we developed a novel drug delivery system using amino-functionalized and embedded dual-mesoporous silica nanoparticles (N-EDMSNs) to simultaneously carry liraglutide and FGF-21, and observed their biological effects. The resultant N-EDMSNs possessed unique hierarchical porous structures consisting of open large pores (>10 nm) and small mesopores (~2.5 nm) in the silica framework, highly positively charged surfaces and good disperisity in aqueous solution. We found that N-EDMSNs had a high loading capacity for exogenous genes and low toxicity to Hepa1-6 cells. Moreover, N-EDMSNs can simultaneously carry FGF-21 plasmids and liraglutide and successfully transfect them into Hepa1-6 cells. The transfection efficiency of N-EDMSNs was higher than that of Lipofectamine 2000 in vitro. In mice experiments, N-EDMSNs/pFGF21 treatment resulted in higher FGF-21 expression in the liver than pFGF21 treatment with hydrodynamic delivery. Compared with both pFGF21 and liraglutide, N-EDMSNs/pFGF21/Lira treatment significantly reduced the food intake, body weight, and blood glucose; increased the energy expenditure and improved hepatic IR in high-fat diet (HFD)-fed mice. Our results demonstrated that the biological effects of N-EDMSNs/pFGF21/Lira complexes were better than those of pFGF21 combined with liraglutide in vivo.
Collapse
Affiliation(s)
- Shan Geng
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Limei Qin
- Lab of Low-Dimensional Materials Chemistry, School of Materials Science AndEngineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yirui He
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Xinrun Li
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Mengliu Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Ling Li
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Dongfang Liu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, School of Materials Science AndEngineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Dechao Niu
- Lab of Low-Dimensional Materials Chemistry, School of Materials Science AndEngineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
32
|
Gariani K, Jornayvaz FR. Pathophysiology of NASH in endocrine diseases. Endocr Connect 2021; 10:R52-R65. [PMID: 33449917 PMCID: PMC7983516 DOI: 10.1530/ec-20-0490] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. NAFLD encompasses a whole spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. The latter can lead to hepatocellular carcinoma. Furthermore, NASH is the most rapidly increasing indication for liver transplantation in western countries and therefore represents a global health issue. The pathophysiology of NASH is complex and includes multiple parallel hits. NASH is notably characterized by steatosis as well as evidence of hepatocyte injury and inflammation, with or without fibrosis. NASH is frequently associated with type 2 diabetes and conditions associated with insulin resistance. Moreover, NASH may also be found in many other endocrine diseases such as polycystic ovary syndrome, hypothyroidism, male hypogonadism, growth hormone deficiency or glucocorticoid excess, for example. In this review, we will discuss the pathophysiology of NASH associated with different endocrinopathies.
Collapse
Affiliation(s)
- Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - François R Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals and Geneva University, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Correspondence should be addressed to F R Jornayvaz:
| |
Collapse
|
33
|
Lin W, Zhang T, Zhou Y, Zheng J, Lin Z. Advances in Biological Functions and Clinical Studies of FGF21. Diabetes Metab Syndr Obes 2021; 14:3281-3290. [PMID: 34295169 PMCID: PMC8291585 DOI: 10.2147/dmso.s317096] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) regulates many crucial biological processes in human and mammals, particularly metabolic modulation and protective effect after injury. Therefore, determining complex regulatory mechanisms and elucidating the signaling pathway may greatly promote the prevention, diagnosis, and treatment of related injury and metabolic diseases. This review focused on the metabolic modulation and protective effect of FGF21 and summarized the molecular mechanisms and clinical research developments.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Tianlei Zhang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Yiyang Zhou
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Jinyu Zheng
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Zhenlang Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
- Correspondence: Zhenlang Lin Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China Email
| |
Collapse
|
34
|
Talukdar S, Kharitonenkov A. FGF19 and FGF21: In NASH we trust. Mol Metab 2020; 46:101152. [PMID: 33383173 PMCID: PMC8085573 DOI: 10.1016/j.molmet.2020.101152] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/04/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
Objective FGF19 and FGF21 have shown therapeutic promise since their discovery, attested by the fact there are at least 5 assets that activate the FGFR/KLB pathway and one FGF19 analog in clinical development. Methods We performed a detailed analyses of published preclinical and clinical data to offer insights into the mechanism of action, as well as PK/PD and efficacy data of the clinical assets. Results Scouring the literature, we offer mechanistic insights from preclinical data using rodents and non-human primates and pharmacodynamic data from clinical studies. Conclusion The basic and applied science around endocrine FGFs has evolved exponentially over the years with FGF19 and FGF21 analogs are now entering Phase 3 clinical research. Fibroblast Growth Factors 19 and 21 (FGF19 and FGF21) are novel endocrine messengers that regulate multiple aspects of energy homeostasis. The magnitude and pleiotropic character of their beneficial pharmacology led to coordinated efforts to design novel FGF19/21-based therapeutics. The robust effects of FGF19 and FGF21 on lipid metabolism transformed clinical emphasis for these factors toward their use for NASH. In this review, we communicate an overview of FGF19 and FGF21 biology and the recent clinical developments with FGF21/19-based analogs.
Collapse
Affiliation(s)
- Saswata Talukdar
- Merck & Co., Inc., 213 East Grand Avenue, South San Francisco, CA, 94080, United States.
| | - Alexei Kharitonenkov
- AK Biotechnologies, LLC 3812 Verdure Lane, Zionsville, IN, 46077, United States.
| |
Collapse
|
35
|
Baruch A, Wong C, Chinn LW, Vaze A, Sonoda J, Gelzleichter T, Chen S, Lewin-Koh N, Morrow L, Dheerendra S, Boismenu R, Gutierrez J, Wakshull E, Wilson ME, Arora PS. Antibody-mediated activation of the FGFR1/Klothoβ complex corrects metabolic dysfunction and alters food preference in obese humans. Proc Natl Acad Sci U S A 2020; 117:28992-29000. [PMID: 33139537 PMCID: PMC7682391 DOI: 10.1073/pnas.2012073117] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) controls metabolic organ homeostasis and eating/drinking behavior via FGF receptor 1/Klothoβ (FGFR1/KLB) complexes expressed in adipocytes, pancreatic acinar cells, and the nervous system in mice. Chronic administration of recombinant FGF21 or engineered variants improves metabolic health in rodents, nonhuman primates, and humans; however, the rapid turnover of these molecules limits therapeutic utility. Here we show that the bispecific anti-FGFR1/KLB agonist antibody BFKB8488A induced marked weight loss in obese cynomolgus monkeys while elevating serum adiponectin and the adipose expression of FGFR1 target genes, demonstrating its action as an FGF21 mimetic. In a randomized, placebo-controlled, single ascending-dose study in overweight/obese human participants, subcutaneous BFKB8488A injection caused transient body weight reduction, sustained improvement in cardiometabolic parameters, and a trend toward reduction in preference for sweet taste and carbohydrate intake. These data suggest that specific activation of the FGFR1/KLB complex in humans can be used as therapy for obesity-related metabolic defects.
Collapse
Affiliation(s)
- Amos Baruch
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA 94080
| | - Chin Wong
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA 94080
| | - Leslie W Chinn
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA 94080
| | - Anjali Vaze
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA 94080
| | - Junichiro Sonoda
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA 94080
| | - Thomas Gelzleichter
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA 94080
| | - Shan Chen
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA 94080
| | - Nicholas Lewin-Koh
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA 94080
| | | | - Suresh Dheerendra
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA 94080
| | - Richard Boismenu
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA 94080
| | - Johnny Gutierrez
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA 94080
| | - Eric Wakshull
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA 94080
| | - Maria E Wilson
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA 94080
| | - Puneet S Arora
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA 94080;
| |
Collapse
|
36
|
Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 2020; 5:181. [PMID: 32879300 PMCID: PMC7468161 DOI: 10.1038/s41392-020-00222-7] [Citation(s) in RCA: 473] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing evidences suggest that the fibroblast growth factor/FGF receptor (FGF/FGFR) signaling has crucial roles in a multitude of processes during embryonic development and adult homeostasis by regulating cellular lineage commitment, differentiation, proliferation, and apoptosis of various types of cells. In this review, we provide a comprehensive overview of the current understanding of FGF signaling and its roles in organ development, injury repair, and the pathophysiology of spectrum of diseases, which is a consequence of FGF signaling dysregulation, including cancers and chronic kidney disease (CKD). In this context, the agonists and antagonists for FGF-FGFRs might have therapeutic benefits in multiple systems.
Collapse
Affiliation(s)
- Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianding Sun
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Huabing Qi
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
37
|
Cui A, Li J, Ji S, Ma F, Wang G, Xue Y, Liu Z, Gao J, Han J, Tai P, Wang T, Chen J, Ma X, Li Y. The Effects of B1344, a Novel Fibroblast Growth Factor 21 Analog, on Nonalcoholic Steatohepatitis in Nonhuman Primates. Diabetes 2020; 69:1611-1623. [PMID: 32354858 DOI: 10.2337/db20-0209] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/27/2020] [Indexed: 11/13/2022]
Abstract
Nonalcoholic steatohepatitis has emerged as a major cause of liver diseases with no effective therapies. Here, we evaluate the efficacies and pharmacokinetics of B1344, a long-acting polyethylene glycolylated (PEGylated) fibroblast growth factor 21 analog, in a nongenetically modified nonhuman primate species that underwent liver biopsy and demonstrate the potential for efficacies in humans. B1344 is sufficient to selectively activate signaling from the βKlotho/FGFR1c receptor complex. In cynomolgus monkeys with nonalcoholic fatty liver disease (NAFLD), administration of B1344 via subcutaneous injection for 11 weeks caused a profound reduction of hepatic steatosis, inflammation, and fibrosis, along with amelioration of liver injury and hepatocyte death, as evidenced by liver biopsy specimen and biochemical analysis. Moreover, improvement of metabolic parameters was observed in the monkeys, including reduction of body weight and improvement of lipid profiles and glycemic control. To determine the role of B1344 in the progression of murine NAFLD independent of obesity, B1344 was administered to mice fed a methionine- and choline-deficient diet. Consistently, B1344 administration prevented the mice from lipotoxicity damage and nonalcoholic steatohepatitis in a dose-dependent manner. These results provide preclinical validation for an innovative therapeutic approach to NAFLD and support further clinical testing of B1344 for treating nonalcoholic steatohepatitis and other metabolic diseases in humans.
Collapse
Affiliation(s)
- Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian Li
- Tasly Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Shaohui Ji
- Kunming Biomed International, Yunnan, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Genbei Wang
- Tasly Biopharmaceuticals Co., Ltd., Shanghai, China
- Research Center of Pharmacology and Toxicology, Tasly Academy, Tasly Pharmaceutical Co., Ltd., Tianjin, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Han
- Tasly Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Ping Tai
- Research Center of Pharmacology and Toxicology, Tasly Academy, Tasly Pharmaceutical Co., Ltd., Tianjin, China
| | - Tony Wang
- Kunming Biomed International, Yunnan, China
| | | | - Xiaohui Ma
- Research Center of Pharmacology and Toxicology, Tasly Academy, Tasly Pharmaceutical Co., Ltd., Tianjin, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
38
|
Kaufman A, Abuqayyas L, Denney WS, Tillman EJ, Rolph T. AKR-001, an Fc-FGF21 Analog, Showed Sustained Pharmacodynamic Effects on Insulin Sensitivity and Lipid Metabolism in Type 2 Diabetes Patients. Cell Rep Med 2020; 1:100057. [PMID: 33205064 PMCID: PMC7659583 DOI: 10.1016/j.xcrm.2020.100057] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 05/04/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
Abstract
Experimental fibroblast growth factor 21 (FGF21) analogs can improve lipid profiles in patients with metabolic diseases. However, their effects on markers of insulin sensitivity appear to be minimal, potentially because of insufficient exposure. Systemic drug levels vary from sub-pharmacological to demonstrating pharmacodynamic effects but with dose-limiting adverse events. Here we report results from a phase 1 multiple ascending dose study of AKR-001, an Fc-FGF21 fusion protein engineered for sustained systemic pharmacologic exposure, in individuals with type 2 diabetes. With a half-life of 3-3.5 days, the peak-to-trough ratio under steady-state conditions is approximately 2 following QW dosing. AKR-001 appears to demonstrate pharmacodynamic effects on serum markers of insulin sensitivity and acceptable tolerability up to and including 70 mg QW. Positive trends in lipoprotein profile, including triglycerides, non-high-density lipoprotein (non-HDL) cholesterol, HDL-C, and apolipoproteins B and C3 are consistent with other FGF21 analogs. AKR-001's clinical profile supports further evaluation as a treatment for metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Tim Rolph
- Akero Therapeutics, South San Francisco, CA 94080, USA
| |
Collapse
|
39
|
Development of a long acting FGF21 analogue-albumin fusion protein and its anti-diabetic effects. J Control Release 2020; 324:522-531. [PMID: 32450094 DOI: 10.1016/j.jconrel.2020.05.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 01/02/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone-like protein that improves blood glucose and lipid metabolism. However, its short half-life and instability are bottlenecks to its clinical applications. In this study, to extend its pharmacological action, we created a stabilized mutant FGF21 (mFGF21:ΔHPIP, P171G, A180E, L118C-A134C, S167A) and then genetically fused it with human albumin (HSA-mFGF21) via a polypeptide linker. Physicochemical analyses suggested that HSA-mFGF21 was formed from both intact HSA and mFGF21. Pharmacokinetic findings indicated the half-life of HSA-mFGF21 was 20 times longer than that of FGF21. In addition, HSA-mFGF21 was persistently distributed in adipose tissue as a target tissue. The in vivo hypoglycemic activity of HSA-mFGF21 using streptozotocin (STZ)-induced type I diabetes model mice, in which insulin secretion was suppressed, showed that a single intravenous administration of HSA-mFGF21 rapidly alleviated hyperglycemia. At that time, HSA-mFGF21 increased GLUT1 mRNA expression in adipose tissue without having any effect on insulin secretion. A twice weekly administration of HSA-mFGF21 continuously suppressed blood glucose levels and ameliorated the abnormalities of adipose tissue induced by STZ treatment. Interestingly, HSA-mFGF21 showed no hypoglycemic effects in healthy mice. Together, HSA-mFGF21 could be a novel biotherapeutic for the treatment of metabolic disorders including diabetes mellitus.
Collapse
|
40
|
Rebello CJ, Greenway FL. Obesity medications in development. Expert Opin Investig Drugs 2020; 29:63-71. [PMID: 31847611 PMCID: PMC6990416 DOI: 10.1080/13543784.2020.1705277] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022]
Abstract
Introduction: Obesity is compounded by a neurobiology that is resistant to weight loss. Therefore, the development of pharmacotherapies to address the pathology underlying the dysregulation of energy homeostasis is critical.Areas covered: This review examines selected clinical trial evidence for the pharmacologic treatment of obesity and provides an expert opinion on anti-obesity drug development. The article includes the outcomes of anti-obesity medications that have been evaluated in clinical trials but have not yet received approval from the U.S. Food and Drug Administration. The mechanisms of action of glucagon-like peptide-1 agonists and co-agonists, diabetes medications being investigated for weight loss, and medications acting on the central nervous system as well as peripherally are reviewed. A search was conducted on PubMed using the terms 'Obesity AND Medications' restricted to clinical trials reported in English. Using similar terms, a search was also conducted on ClinicalTrials.gov.Expert opinion: The goal of anti-obesity therapy is finding compounds that are effective and have minimal side effects. Combining medications targeting more than one of the redundant mechanisms driving obesity increases efficacy. However, targeting peripheral mechanisms to overcome the trickle-down effects of centrally acting drugs may be the key to success in treating obesity.
Collapse
Affiliation(s)
- Candida J. Rebello
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Frank L. Greenway
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
41
|
Klein Hazebroek M, Keipert S. Adapting to the Cold: A Role for Endogenous Fibroblast Growth Factor 21 in Thermoregulation? Front Endocrinol (Lausanne) 2020; 11:389. [PMID: 32714278 PMCID: PMC7343899 DOI: 10.3389/fendo.2020.00389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is in biomedical focus as a treatment option for metabolic diseases, given that administration improves metabolism in mice and humans. The metabolic effects of exogenous FGF21 administration are well-characterized, but the physiological role of endogenous FGF21 has not been fully understood yet. Despite cold-induced FGF21 expression and increased circulating levels in some studies, which co-occur with brown fat thermogenesis, recent studies in cold-acclimated mice demonstrate the dispensability of FGF21 for maintenance of body temperature, thereby questioning FGF21's role for thermogenesis. Here we discuss the evidence either supporting or opposing the role of endogenous FGF21 for thermogenesis based on the current literature. FGF21, secreted by brown fat or liver, is likely not required for energy homeostasis in the cold, but the nutritional conditions could modulate the interaction between FGF21, energy metabolism, and thermoregulation.
Collapse
|
42
|
Henriksson E, Andersen B. FGF19 and FGF21 for the Treatment of NASH-Two Sides of the Same Coin? Differential and Overlapping Effects of FGF19 and FGF21 From Mice to Human. Front Endocrinol (Lausanne) 2020; 11:601349. [PMID: 33414764 PMCID: PMC7783467 DOI: 10.3389/fendo.2020.601349] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
FGF19 and FGF21 analogues are currently in clinical development for the potential treatment of NASH. In Phase 2 clinical trials analogues of FGF19 and FGF21 decrease hepatic steatosis with up to 70% (MRI-PDFF) after 12 weeks and as early as 12-16 weeks of treatment an improvement in NASH resolution and fibrosis has been observed. Therefore, this class of compounds is currently of great interest in the field of NASH. FGF19 and FGF21 belong to the endocrine FGF19 subfamily and both require the co-receptor beta-klotho for binding and signalling through the FGF receptors. FGF19 is expressed in the ileal enterocytes and is released into the enterohepatic circulation in response to bile acids stimuli and in the liver FGF19 inhibits hepatic bile acids synthesis by transcriptional regulation of Cyp7A1, which is the rate limiting enzyme. FGF21 is, on the other hand, highly expressed in the liver and is released in response to high glucose, high free-fatty acids and low amino-acid supply and regulates energy, glucose and lipid homeostasis by actions in the CNS and in the adipose tissue. FGF19 and FGF21 are differentially expressed, have distinct target tissues and separate physiological functions. It is therefore of peculiar interest to understand why treatment with both FGF19 and FGF21 analogues have strong beneficial effects on NASH parameters in mice and human and whether the mode of action is overlapping This review will highlight the physiological and pharmacological effects of FGF19 and FGF21. The potential mode of action behind the anti-steatotic, anti-inflammatory and anti-fibrotic effects of FGF19 and FGF21 will be discussed. Finally, development of drugs is always a risk benefit analysis and the human relevance of adverse effects observed in pre-clinical species as well as findings in humans will be discussed. The aim is to provide a comprehensive overview of the current understanding of this drug class for the potential treatment of NASH.
Collapse
|
43
|
Gene Expression Profiles Induced by a Novel Selective Peroxisome Proliferator-Activated Receptor α Modulator (SPPARMα) Pemafibrate. Int J Mol Sci 2019; 20:ijms20225682. [PMID: 31766193 PMCID: PMC6888257 DOI: 10.3390/ijms20225682] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022] Open
Abstract
Pemafibrate is the first clinically-available selective peroxisome proliferator-activated receptor α modulator (SPPARMα) that has been shown to effectively improve hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. Global gene expression analysis reveals that the activation of PPARα by pemafibrate induces fatty acid (FA) uptake, binding, and mitochondrial or peroxisomal oxidation as well as ketogenesis in mouse liver. Pemafibrate most profoundly induces HMGCS2 and PDK4, which regulate the rate-limiting step of ketogenesis and glucose oxidation, respectively, compared to other fatty acid metabolic genes in human hepatocytes. This suggests that PPARα plays a crucial role in nutrient flux in the human liver. Additionally, pemafibrate induces clinically favorable genes, such as ABCA1, FGF21, and VLDLR. Furthermore, pemafibrate shows anti-inflammatory effects in vascular endothelial cells. Pemafibrate is predicted to exhibit beneficial effects in patients with atherogenic dyslipidemia and diabetic microvascular complications.
Collapse
|
44
|
Ketogenic Diet: A New Light Shining on Old but Gold Biochemistry. Nutrients 2019; 11:nu11102497. [PMID: 31627352 PMCID: PMC6836190 DOI: 10.3390/nu11102497] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
Diets low in carbohydrates and proteins and enriched in fat stimulate the hepatic synthesis of ketone bodies (KB). These molecules are used as alternative fuel for energy production in target tissues. The synthesis and utilization of KB are tightly regulated both at transcriptional and hormonal levels. The nuclear receptor peroxisome proliferator activated receptor α (PPARα), currently recognized as one of the master regulators of ketogenesis, integrates nutritional signals to the activation of transcriptional networks regulating fatty acid β-oxidation and ketogenesis. New factors, such as circadian rhythms and paracrine signals, are emerging as important aspects of this metabolic regulation. However, KB are currently considered not only as energy substrates but also as signaling molecules. β-hydroxybutyrate has been identified as class I histone deacetylase inhibitor, thus establishing a connection between products of hepatic lipid metabolism and epigenetics. Ketogenic diets (KD) are currently used to treat different forms of infantile epilepsy, also caused by genetic defects such as Glut1 and Pyruvate Dehydrogenase Deficiency Syndromes. However, several researchers are now focusing on the possibility to use KD in other diseases, such as cancer, neurological and metabolic disorders. Nonetheless, clear-cut evidence of the efficacy of KD in other disorders remains to be provided in order to suggest the adoption of such diets to metabolic-related pathologies.
Collapse
|
45
|
Zhao L, Niu J, Lin H, Zhao J, Liu Y, Song Z, Xiang C, Wang X, Yang Y, Li X, Mohammadi M, Huang Z. Paracrine-endocrine FGF chimeras as potent therapeutics for metabolic diseases. EBioMedicine 2019; 48:462-477. [PMID: 31631034 PMCID: PMC6838362 DOI: 10.1016/j.ebiom.2019.09.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/14/2019] [Accepted: 09/25/2019] [Indexed: 12/25/2022] Open
Abstract
Background The development of a clinically useful fibroblast growth factor 21 (FGF21) hormone has been impeded by its inherent instability and weak FGF receptor (FGFR) binding affinity. There is an urgent need for innovative approaches to overcome these limitations. Methods We devised a structure-based chimerisation strategy in which we substituted the thermally labile and low receptor affinity core of FGF21 with an HS binding deficient endocrinised core derived from a stable and high receptor affinity paracrine FGF1 (FGF1ΔHBS). The thermal stability, receptor binding ability, heparan sulfate and βKlotho coreceptor dependency of the chimera were measured using a thermal shift assay, SPR, SEC-MALS and cell-based studies. The half-life, tissue distribution, glucose lowering activity and adipose tissue remodeling were analyzed in normal and diabetic mice and monkeys. Findings The melting temperature of the engineered chimera (FGF1ΔHBS-FGF21C-tail) increased by ∼22 °C relative to wild-type FGF21 (FGF21WT), and resulted in a ∼5-fold increase in half-life in vivo. The chimera also acquired an ability to bind the FGFR1c isoform – the principal receptor that mediates the metabolic actions of FGF21 – and consequently was dramatically more effective than FGF21WT in correcting hyperglycemia and in ameliorating insulin resistance in db/db mice. Our chimeric FGF21 also exerted a significant beneficial effect on glycemic control in spontaneous diabetic cynomolgus monkeys. Interpretation Our study describes a structure-based chimerisation approach that effectively mitigates both the intrinsically weak receptor binding affinities and short half-lives of endocrine FGFs, and advance the development of the FGF21 hormone into a potentially useful drug for Type 2 diabetes.
Collapse
Affiliation(s)
- Longwei Zhao
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jianlou Niu
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huan Lin
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Zhao
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yang Liu
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States
| | - Zihui Song
- Tianjin Institute of Pharmaceutical Research, Tianjin 300301, China
| | - Congshang Xiang
- Tianjin Institute of Pharmaceutical Research, Tianjin 300301, China
| | - Xiaojie Wang
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yong Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Moosa Mohammadi
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States.
| | - Zhifeng Huang
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
46
|
Geller S, Arribat Y, Netzahualcoyotzi C, Lagarrigue S, Carneiro L, Zhang L, Amati F, Lopez-Mejia IC, Pellerin L. Tanycytes Regulate Lipid Homeostasis by Sensing Free Fatty Acids and Signaling to Key Hypothalamic Neuronal Populations via FGF21 Secretion. Cell Metab 2019; 30:833-844.e7. [PMID: 31474567 DOI: 10.1016/j.cmet.2019.08.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 12/28/2018] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
The hypothalamus plays a key role in the detection of energy substrates to regulate energy homeostasis. Tanycytes, the hypothalamic ependymo-glia, are located at a privileged position to integrate multiple peripheral inputs. We observed that tanycytes produce and secrete Fgf21 and are located close to Fgf21-sensitive neurons. Fasting, likely via the increase in circulating fatty acids, regulates this central Fgf21 production. Tanycytes store palmitate in lipid droplets and oxidize it, leading to the activation of a reactive oxygen species (ROS)/p38-MAPK signaling pathway, which is essential for tanycytic Fgf21 expression upon palmitate exposure. Tanycytic Fgf21 deletion triggers an increase in lipolysis, likely due to impaired inhibition of key neurons during fasting. Mice deleted for tanycytic Fgf21 exhibit increased energy expenditure and a reduction in fat mass gain, reminiscent of a browning phenotype. Our results suggest that tanycytes sense free fatty acids to maintain body lipid homeostasis through Fgf21 signaling within the hypothalamus.
Collapse
Affiliation(s)
- Sarah Geller
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Yoan Arribat
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | | | - Sylviane Lagarrigue
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Lionel Carneiro
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Lianjun Zhang
- Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Francesca Amati
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland; Institute of Sports Sciences, University of Lausanne, Lausanne 1005, Switzerland; Service of Endocrinology, Diabetology, and Metabolism, Department of Medicine, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Isabel C Lopez-Mejia
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland; Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex 33760, France.
| |
Collapse
|
47
|
Cheng STW, Li SYT, Leung PS. Fibroblast Growth Factor 21 Stimulates Pancreatic Islet Autophagy via Inhibition of AMPK-mTOR Signaling. Int J Mol Sci 2019; 20:ijms20102517. [PMID: 31121855 PMCID: PMC6567208 DOI: 10.3390/ijms20102517] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Islet autophagy plays a role in glucose/lipid metabolism in type 2 diabetes mellitus. Meanwhile, fibroblast growth factor 21 (FGF21) has been found to regulate insulin sensitivity and glucose homeostasis. Whether FGF21 induces islet autophagy, remains to be elucidated. This study aimed to explore the physiological roles and signaling pathways involved in FGF21-stimulated islet autophagy under glucolipotoxic conditions. Methods: C57/BL6J mice were fed a standard diet or high-fat diet (HFD) for 12 weeks, and islets were isolated from normal and FGF21 knockout (KO) mice. Isolated islets and INS-1E cells were exposed to normal and high-concentration glucose and palmitic acid with/without FGF21 or AMPK inhibitor compound C. Real-time PCR, Western blot and immunohistochemistry/transmission electron microscopy were performed for the expression of targeted genes/proteins. Results: HFD-treated mice showed increases in fasting plasma glucose, body weight and impaired glucose tolerance; islet protein expression of FGF21 was induced after HFD treatment. Protein expression levels of FGF21 and LC3-II (autophagy marker) were induced in mouse islets treated with high concentrations of palmitic acid and glucose, while phosphorylation of AMPK was reduced, compared with controls. In addition, induction of LC3-II protein expression was reduced in islets isolated from FGF21 KO mice. Furthermore, exogenous administration of FGF21 diminished phosphorylation of AMPK and stimulated protein expression of LC3-II. Consistently, compound C significantly induced increased expression of LC3-II protein. Conclusions: Our data indicate that glucolipotoxicity-induced FGF21 activation mediates islet autophagy via AMPK inhibition, and further consolidate the evidence for the FGF21/analog being a pharmacotherapeutic target for obesity and its related T2DM.
Collapse
Affiliation(s)
- Sam Tsz Wai Cheng
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China.
| | - Stephen Yu Ting Li
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China.
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
48
|
Zhang Q, Zhu Q, Deng R, Zhou F, Zhang L, Wang S, Zhu K, Wang X, Zhou L, Su Q. MS-275 induces hepatic FGF21 expression via H3K18ac-mediated CREBH signal. J Mol Endocrinol 2019; 62:187-196. [PMID: 30893641 DOI: 10.1530/jme-18-0259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor 21 (FGF21) plays an important role in the regulation of lipid and glucose metabolism. MS-275, as a class I-specific histone deacetylase (HDAC) inhibitor, has also been reported to affect energy metabolism. In this current study, we investigated the effects of MS-275 on hepatic FGF21 expression in vitro and in vivo and explored whether cAMP-responsive element-binding protein H (CREBH) was involved in the action of MS-275. Our results showed that MS-275 stimulated hepatic FGF21 mRNA and protein expressions in a dose- and time-dependent manner, as well as FGF21 secretion in primary mouse hepatocytes. Serum concentration and hepatic expression of FGF21 were elevated after injection of MS-275, along with increased expressions of genes involved in fatty acid oxidation and ketogenic production (peroxisome proliferator-activated receptor gammacoactivator1α, PGC-1α; carnitine palmitoyl-transferase 1a, CPT1a; 3-hydroxy-3-methylglutaryl-CoA synthase 2, Hmgcs2) as well as improved blood lipid profile. As a proved transcription factor of FGF21, the expression of CREBH was initiated by MS-275, with increased histone H3 lysine 18 acetylation (H3K18ac) signals and hepatocyte nuclear factor 4 alpha (HNF-4α) recruitment in CREBH promoter. Adenovirus-mediated knockdown of CREBH abolished MS-275-induced hepatic FGF21 and lipid metabolism-related gene expressions. These results suggest that MS-275 induces hepatic FGF21 by H3K18ac-mediated CREBH expression.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qin Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruyuan Deng
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feiye Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Linlin Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shushu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kecheng Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Libin Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Jimenez V, Jambrina C, Casana E, Sacristan V, Muñoz S, Darriba S, Rodó J, Mallol C, Garcia M, León X, Marcó S, Ribera A, Elias I, Casellas A, Grass I, Elias G, Ferré T, Motas S, Franckhauser S, Mulero F, Navarro M, Haurigot V, Ruberte J, Bosch F. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med 2019; 10:emmm.201708791. [PMID: 29987000 PMCID: PMC6079533 DOI: 10.15252/emmm.201708791] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Prevalence of type 2 diabetes (T2D) and obesity is increasing worldwide. Currently available therapies are not suited for all patients in the heterogeneous obese/T2D population, hence the need for novel treatments. Fibroblast growth factor 21 (FGF21) is considered a promising therapeutic agent for T2D/obesity. Native FGF21 has, however, poor pharmacokinetic properties, making gene therapy an attractive strategy to achieve sustained circulating levels of this protein. Here, adeno-associated viral vectors (AAV) were used to genetically engineer liver, adipose tissue, or skeletal muscle to secrete FGF21. Treatment of animals under long-term high-fat diet feeding or of ob/ob mice resulted in marked reductions in body weight, adipose tissue hypertrophy and inflammation, hepatic steatosis, inflammation and fibrosis, and insulin resistance for > 1 year. This therapeutic effect was achieved in the absence of side effects despite continuously elevated serum FGF21. Furthermore, FGF21 overproduction in healthy animals fed a standard diet prevented the increase in weight and insulin resistance associated with aging. Our study underscores the potential of FGF21 gene therapy to treat obesity, insulin resistance, and T2D.
Collapse
Affiliation(s)
- Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Claudia Jambrina
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Estefania Casana
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Victor Sacristan
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sara Darriba
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jordi Rodó
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Cristina Mallol
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Miquel Garcia
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Xavier León
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sara Marcó
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Albert Ribera
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Ivet Elias
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Alba Casellas
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Ignasi Grass
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Gemma Elias
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Tura Ferré
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sandra Motas
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sylvie Franckhauser
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Francisca Mulero
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marc Navarro
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Virginia Haurigot
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jesus Ruberte
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain .,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
50
|
Morita M, Siddiqui N, Katsumura S, Rouya C, Larsson O, Nagashima T, Hekmatnejad B, Takahashi A, Kiyonari H, Zang M, St-Arnaud R, Oike Y, Giguère V, Topisirovic I, Okada-Hatakeyama M, Yamamoto T, Sonenberg N. Hepatic posttranscriptional network comprised of CCR4-NOT deadenylase and FGF21 maintains systemic metabolic homeostasis. Proc Natl Acad Sci U S A 2019; 116:7973-7981. [PMID: 30926667 PMCID: PMC6475422 DOI: 10.1073/pnas.1816023116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Whole-body metabolic homeostasis is tightly controlled by hormone-like factors with systemic or paracrine effects that are derived from nonendocrine organs, including adipose tissue (adipokines) and liver (hepatokines). Fibroblast growth factor 21 (FGF21) is a hormone-like protein, which is emerging as a major regulator of whole-body metabolism and has therapeutic potential for treating metabolic syndrome. However, the mechanisms that control FGF21 levels are not fully understood. Herein, we demonstrate that FGF21 production in the liver is regulated via a posttranscriptional network consisting of the CCR4-NOT deadenylase complex and RNA-binding protein tristetraprolin (TTP). In response to nutrient uptake, CCR4-NOT cooperates with TTP to degrade AU-rich mRNAs that encode pivotal metabolic regulators, including FGF21. Disruption of CCR4-NOT activity in the liver, by deletion of the catalytic subunit CNOT6L, increases serum FGF21 levels, which ameliorates diet-induced metabolic disorders and enhances energy expenditure without disrupting bone homeostasis. Taken together, our study describes a hepatic CCR4-NOT/FGF21 axis as a hitherto unrecognized systemic regulator of metabolism and suggests that hepatic CCR4-NOT may serve as a target for devising therapeutic strategies in metabolic syndrome and related morbidities.
Collapse
Affiliation(s)
- Masahiro Morita
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229;
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Institute of Resource Development and Analysis, Kumamoto University, 860-0811 Kumamoto, Japan
| | - Nadeem Siddiqui
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Sakie Katsumura
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Christopher Rouya
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Scilifelab, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Takeshi Nagashima
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Kanagawa, Japan
| | - Bahareh Hekmatnejad
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada
- Department of Human Genetics, McGill University, Montreal, QC H3A 2T5, Canada
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, 904-0495 Okinawa, Japan
| | - Hiroshi Kiyonari
- Laboratories for Animal Resource Development and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047 Hyogo, Japan
| | - Mengwei Zang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - René St-Arnaud
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada
- Department of Human Genetics, McGill University, Montreal, QC H3A 2T5, Canada
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 860-8556 Kumamoto, Japan
| | - Vincent Giguère
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H2W 1S6, Canada
| | - Ivan Topisirovic
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H2W 1S6, Canada
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Mariko Okada-Hatakeyama
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Kanagawa, Japan
- Laboratory of Cell Systems, Institute for Protein Research, Osaka University, Suita, 565-0871 Osaka, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, 904-0495 Okinawa, Japan;
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada;
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|