1
|
Ju C, Ogura A, Hayashi Y, Kawabata Y, D’Acquisto F, Kawakubo-Yasukochi T, Jimi E. The impact of environmental enrichment on energy metabolism in ovariectomized mice. PLoS One 2025; 20:e0320180. [PMID: 40173406 PMCID: PMC11964458 DOI: 10.1371/journal.pone.0320180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/15/2025] [Indexed: 04/04/2025] Open
Abstract
After menopause, a decline in ovarian function leads to various physical and psychological changes, potentially resulting in a range of pathological conditions, including abnormalities in energy metabolism. In recent years, environmental enrichment, which is characterized by positive and comfortable eustress, has been shown to improve various physiological and pathological conditions. This study investigated the effects of environmental factors on energy metabolism in a menopause model using an ovariectomized (OVX) mouse model. Wild-type female mice (8-week-old) were subjected to OVX or a sham operation and maintained under standard condition (SC), enriched environment (EE), or isolated (IS) condition for 4 weeks. OVX led to weight gain and disruption of circadian rhythms, along with changes in various metabolic parameters influenced by differences in housing environments; i.e., EE improved metabolic parameters, but IS deteriorated them. Physical activity and social interaction were factors that determined these differences. Menopause is usually a significant transitional period in a woman's life, and changes in the social environment during this period can contribute to a diverse range of physical and psychological symptoms. Consequently, when implementing interventions to alleviate menopause-related pathological conditions, not only physical symptoms but also the social context should be carefully considered.
Collapse
Affiliation(s)
- Chaoran Ju
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ayano Ogura
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Division of Oral Biological Sciences, Department of Cell Biology, Aging Science, and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yoshikazu Hayashi
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Yuko Kawabata
- Section of Oral Neuroscience, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Fulvio D’Acquisto
- School of Life and Health Science, University of Roehampton, London, United Kingdom
- William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Tomoyo Kawakubo-Yasukochi
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
AMPK inhibits liver gluconeogenesis: fact or fiction? Biochem J 2023; 480:105-125. [PMID: 36637190 DOI: 10.1042/bcj20220582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
Is there a role for AMPK in the control of hepatic gluconeogenesis and could targeting AMPK in liver be a viable strategy for treating type 2 diabetes? These are frequently asked questions this review tries to answer. After describing properties of AMPK and different small-molecule AMPK activators, we briefly review the various mechanisms for controlling hepatic glucose production, mainly via gluconeogenesis. The different experimental and genetic models that have been used to draw conclusions about the role of AMPK in the control of liver gluconeogenesis are critically discussed. The effects of several anti-diabetic drugs, particularly metformin, on hepatic gluconeogenesis are also considered. We conclude that the main effect of AMPK activation pertinent to the control of hepatic gluconeogenesis is to antagonize glucagon signalling in the short-term and, in the long-term, to improve insulin sensitivity by reducing hepatic lipid content.
Collapse
|
3
|
Wu CJ, Cheng PW, Kung MH, Ho CY, Pan JY, Tseng CJ, Chen HH. Glut5 Knockdown in the Nucleus Tractus Solitarii Alleviates Fructose-Induced Hypertension in Rats. J Nutr 2022; 152:448-457. [PMID: 34687200 DOI: 10.1093/jn/nxab374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Several studies have suggested mechanisms whereby excessive fructose intake increases blood pressure (BP). Glucose transporter 5 (GLUT5) is a fructose transporter expressed on enterocytes, and its involvement in the nucleus tractus solitarius (NTS)-modulated increase in BP following fructose intake remains unclear. OBJECTIVES Herein, we investigated whether NTS Glut5 knockdown (KD) can alleviate fructose-induced hypertension in rat models. METHODS Male Wistar-Kyoto rats (6-8 weeks old; average weight: 230 g) were randomly assigned into 4 groups [control (Con), fructose (Fru), fructose + scrambled (Fru + S), and Fru + KD]. The Con group rats had ad libitum access to regular water, and the other 3 groups were provided 10% fructose water ad libitum for 4 weeks (2 weeks before lentiviral transfection in the Fru + S and Fru + KD groups). Glut5 short hairpin RNA was delivered into the NTS of rats using a lentivirus system. Fructose-induced hypertension was assessed via the tail-cuff technique, a noninvasive blood pressure measurement approach. GLUT5-associated and other insulin signaling pathways in the NTS of rats were assessed using immunofluorescence and immunoblotting analyses. We evaluated between-group differences using the Mann-Whitney U test or Kruskal-Wallis 1-way ANOVA. RESULTS Compared with the Fru + S group, the Fru + KD group had reduced sympathetic nerve hyperactivity (48.8 ± 3.2 bursts/min; P < 0.05), improved central insulin signaling, upregulated protein kinase B (AKT; 3.0-fold) and neuronal NO synthase (nNOS; 2.78-fold) expression, and lowered BP (17 ± 1 mmHg, P < 0.05). Moreover, Glut5 KD restored signaling dependent on adenosine 5'-monophosphate-activated protein kinase and reduced fructose-induced oxidative stress 2.0-fold, and thus decreased NAD(P)H oxidase in p67-phox 1.9-fold within the NTS. CONCLUSIONS Fructose-induced reactive oxygen species generates in the NTS of rats through GLUT5 and receptor for advanced glycation end products signaling, thus impairing the AKT-nNOS-NO signaling pathway and ultimately causing hypertension.
Collapse
Affiliation(s)
- Chieh-Jen Wu
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Hsiang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chiu-Yi Ho
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jun-Yen Pan
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Warner SO, Wadian AM, Smith M, Farmer B, Dai Y, Sheanon N, Edgerton DS, Winnick JJ. Liver glycogen-induced enhancements in hypoglycemic counterregulation require neuroglucopenia. Am J Physiol Endocrinol Metab 2021; 320:E914-E924. [PMID: 33779306 PMCID: PMC8424545 DOI: 10.1152/ajpendo.00501.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 01/24/2023]
Abstract
Iatrogenic hypoglycemia is a prominent barrier to achieving optimal glycemic control in patients with diabetes, in part due to dampened counterregulatory hormone responses. It has been demonstrated that elevated liver glycogen content can enhance these hormonal responses through signaling to the brain via afferent nerves, but the role that hypoglycemia in the brain plays in this liver glycogen effect remains unclear. During the first 4 h of each study, the liver glycogen content of dogs was increased by using an intraportal infusion of fructose to stimulate hepatic glucose uptake (HG; n = 13), or glycogen was maintained near fasting levels with a saline infusion (NG; n = 6). After a 2-h control period, during which the fructose/saline infusion was discontinued, insulin was infused intravenously for an additional 2 h to bring about systemic hypoglycemia in all animals, whereas brain euglycemia was maintained in a subset of the HG group by infusing glucose bilaterally into the carotid and vertebral arteries (HG-HeadEu; n = 7). Liver glycogen content was markedly elevated in the two HG groups (43 ± 4, 73 ± 3, and 75 ± 7 mg/g in NG, HG, and HG-HeadEu, respectively). During the hypoglycemic period, arterial plasma glucose levels were indistinguishable between groups (53 ± 2, 52 ± 1, and 51 ± 1 mg/dL, respectively), but jugular vein glucose levels were kept euglycemic (88 ± 5 mg/dL) only in the HG-HeadEu group. Glucagon and epinephrine responses to hypoglycemia were higher in HG compared with NG, whereas despite the increase in liver glycogen, neither increased above basal in HG-HeadEu. These data demonstrate that the enhanced counterregulatory hormone secretion that accompanies increased liver glycogen content requires hypoglycemia in the brain.NEW & NOTEWORTHY It is well known that iatrogenic hypoglycemia is a barrier to optimal glycemic regulation in patients with diabetes. Our data confirm that increasing liver glycogen content 75% above fasting levels enhances hormonal responses to insulin-induced hypoglycemia and demonstrate that this enhanced hormonal response does not occur in the absence of hypoglycemia in the brain. These data demonstrate that information from the liver regarding glycogen availability is integrated in the brain to optimize the counterregulatory response.
Collapse
Affiliation(s)
- Shana O Warner
- Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Abby M Wadian
- Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Marta Smith
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ben Farmer
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yufei Dai
- Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Nicole Sheanon
- Department of Endocrinology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Dale S Edgerton
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jason J Winnick
- Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
5
|
Gomez-Pinilla F, Cipolat RP, Royes LFF. Dietary fructose as a model to explore the influence of peripheral metabolism on brain function and plasticity. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166036. [PMID: 33508421 DOI: 10.1016/j.bbadis.2020.166036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
High consumption of fructose has paralleled an explosion in metabolic disorders including obesity and type 2 diabetes. Even more problematic, sustained consumption of fructose is perceived as a threat for brain function and development of neurological disorders. The action of fructose on peripheral organs is an excellent model to understand how systemic physiology impacts the brain. Given the recognized action of fructose on liver metabolism, here we discuss mechanisms by which fructose can impact the brain by interacting with liver and other organs. The interaction between peripheral and central mechanisms is a suitable target to reduce the pathophysiological consequences of neurological disorders.
Collapse
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Neurosurgery, UCLA Brain Injury Research Center, University of California Los Angeles, USA; Department of Integrative Biology and Physiology, UCLA Brain Injury Research Center, University of California Los Angeles, USA.
| | - Rafael Parcianello Cipolat
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Luiz Fernando Freire Royes
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| |
Collapse
|
6
|
Cruz AM, Partridge KM, Malekizadeh Y, Vlachaki Walker JM, Weightman Potter PG, Pye KR, Shaw SJ, Ellacott KLJ, Beall C. Brain Permeable AMP-Activated Protein Kinase Activator R481 Raises Glycaemia by Autonomic Nervous System Activation and Amplifies the Counterregulatory Response to Hypoglycaemia in Rats. Front Endocrinol (Lausanne) 2021; 12:697445. [PMID: 34975743 PMCID: PMC8718766 DOI: 10.3389/fendo.2021.697445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
AIM We evaluated the efficacy of a novel brain permeable "metformin-like" AMP-activated protein kinase activator, R481, in regulating glucose homeostasis. MATERIALS AND METHODS We used glucose sensing hypothalamic GT1-7 neuronal cells and pancreatic αTC1.9 α-cells to examine the effect of R481 on AMPK pathway activation and cellular metabolism. Glucose tolerance tests and hyperinsulinemic-euglycemic and hypoglycemic clamps were used in Sprague-Dawley rats to assess insulin sensitivity and hypoglycemia counterregulation, respectively. RESULTS In vitro, we demonstrate that R481 increased AMPK phosphorylation in GT1-7 and αTC1.9 cells. In Sprague-Dawley rats, R481 increased peak glucose levels during a glucose tolerance test, without altering insulin levels or glucose clearance. The effect of R481 to raise peak glucose levels was attenuated by allosteric brain permeable AMPK inhibitor SBI-0206965. This effect was also completely abolished by blockade of the autonomic nervous system using hexamethonium. During hypoglycemic clamp studies, R481 treated animals had a significantly lower glucose infusion rate compared to vehicle treated controls. Peak plasma glucagon levels were significantly higher in R481 treated rats with no change to plasma adrenaline levels. In vitro, R481 did not alter glucagon release from αTC1.9 cells, but increased glycolysis. Non brain permeable AMPK activator R419 enhanced AMPK activity in vitro in neuronal cells but did not alter glucose excursion in vivo. CONCLUSIONS These data demonstrate that peripheral administration of the brain permeable "metformin-like" AMPK activator R481 increases blood glucose by activation of the autonomic nervous system and amplifies the glucagon response to hypoglycemia in rats. Taken together, our data suggest that R481 amplifies the counterregulatory response to hypoglycemia by a central rather than a direct effect on the pancreatic α-cell. These data provide proof-of-concept that central AMPK could be a target for future drug development for prevention of hypoglycemia in diabetes.
Collapse
Affiliation(s)
- Ana M Cruz
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Katie M Partridge
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Yasaman Malekizadeh
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Julia M Vlachaki Walker
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Paul G Weightman Potter
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Katherine R Pye
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Simon J Shaw
- Rigel Pharmaceuticals Inc., South San Francisco, CA, United States
| | - Kate L J Ellacott
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Craig Beall
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
7
|
Ma B, Zhang L, Li J, Xing T, Jiang Y, Gao F. Heat stress alters muscle protein and amino acid metabolism and accelerates liver gluconeogenesis for energy supply in broilers. Poult Sci 2020; 100:215-223. [PMID: 33357684 PMCID: PMC7772709 DOI: 10.1016/j.psj.2020.09.090] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
Heat stress impairs growth performance and alters body protein and amino acid metabolism. This study was investigated to explore how body protein and amino acid metabolism changed under heat stress (HS) and the stress adaptation mechanism. A total of 144 broilers (28 d old) were divided into 3 treatment groups for 1 wk: HS group (32°C), normal control group (22°C), and pair-feeding group (22°C). We found that HS elevated the feed-to-gain ratio, reduced the ADFI and ADG, decreased breast muscle mass and plasma levels of several amino acids (glycine, lysine, threonine, and tyrosine), and increased serum glutamic oxaloacetic transaminase (GOT) activity and corticosterone (CORT) level and liver GOT and glutamic pyruvic transaminase activities. Heat stress elevated muscle atrophy F-box mRNA expression and reduced mRNA expression of the 70-kD ribosomal protein S6 kinase in the breast muscle of broilers. Broilers in the HS group exhibited striking increases of mRNA expressions of solute carrier family 1 member 1, family 3 member 1, family 7 member 1, and family 7 member-like in the liver and liver gluconeogenesis genes (PCKc, PCKm, PC, and FBP1) in comparison with the other 2 groups. In conclusion, HS increased the circulating CORT level and subsequently caused muscle protein breakdown to provide amino acid substrates to liver gluconeogenesis responsible for energy supply.
Collapse
Affiliation(s)
- Bingbing Ma
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
8
|
Seenappa V, Joshi MB, Satyamoorthy K. Intricate Regulation of Phosphoenolpyruvate Carboxykinase (PEPCK) Isoforms in Normal Physiology and Disease. Curr Mol Med 2020; 19:247-272. [PMID: 30947672 DOI: 10.2174/1566524019666190404155801] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The phosphoenolpyruvate carboxykinase (PEPCK) isoforms are considered as rate-limiting enzymes for gluconeogenesis and glyceroneogenesis pathways. PEPCK exhibits several interesting features such as a) organelle-specific isoforms (cytosolic and a mitochondrial) in vertebrate clade, b) tissue-specific expression of isoforms and c) organism-specific requirement of ATP or GTP as a cofactor. In higher organisms, PEPCK isoforms are intricately regulated and activated through several physiological and pathological stimuli such as corticoids, hormones, nutrient starvation and hypoxia. Isoform-specific transcriptional/translational regulation and their interplay in maintaining glucose homeostasis remain to be fully understood. Mounting evidence indicates the significant involvement of PEPCK isoforms in physiological processes (development and longevity) and in the progression of a variety of diseases (metabolic disorders, cancer, Smith-Magenis syndrome). OBJECTIVE The present systematic review aimed to assimilate existing knowledge of transcriptional and translational regulation of PEPCK isoforms derived from cell, animal and clinical models. CONCLUSION Based on current knowledge and extensive bioinformatics analysis, in this review we have provided a comparative (epi)genetic understanding of PCK1 and PCK2 genes encompassing regulatory elements, disease-associated polymorphisms, copy number variations, regulatory miRNAs and CpG densities. We have also discussed various exogenous and endogenous modulators of PEPCK isoforms and their signaling mechanisms. A comprehensive review of existing knowledge of PEPCK regulation and function may enable identification of the underlying gaps to design new pharmacological strategies and interventions for the diseases associated with gluconeogenesis.
Collapse
Affiliation(s)
- Venu Seenappa
- School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, India
| | - Manjunath B Joshi
- School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, India
| | - Kapaettu Satyamoorthy
- School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, India
| |
Collapse
|
9
|
Brun T, Jiménez-Sánchez C, Madsen JGS, Hadadi N, Duhamel D, Bartley C, Oberhauser L, Trajkovski M, Mandrup S, Maechler P. AMPK Profiling in Rodent and Human Pancreatic Beta-Cells under Nutrient-Rich Metabolic Stress. Int J Mol Sci 2020; 21:ijms21113982. [PMID: 32492936 PMCID: PMC7312098 DOI: 10.3390/ijms21113982] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic exposure of pancreatic β-cells to elevated nutrient levels impairs their function and potentially induces apoptosis. Like in other cell types, AMPK is activated in β-cells under conditions of nutrient deprivation, while little is known on AMPK responses to metabolic stresses. Here, we first reviewed recent studies on the role of AMPK activation in β-cells. Then, we investigated the expression profile of AMPK pathways in β-cells following metabolic stresses. INS-1E β-cells and human islets were exposed for 3 days to glucose (5.5–25 mM), palmitate or oleate (0.4 mM), and fructose (5.5 mM). Following these treatments, we analyzed transcript levels of INS-1E β-cells by qRT-PCR and of human islets by RNA-Seq; with a special focus on AMPK-associated genes, such as the AMPK catalytic subunits α1 (Prkaa1) and α2 (Prkaa2). AMPKα and pAMPKα were also evaluated at the protein level by immunoblotting. Chronic exposure to the different metabolic stresses, known to alter glucose-stimulated insulin secretion, did not change AMPK expression, either in insulinoma cells or in human islets. Expression profile of the six AMPK subunits was marginally modified by the different diabetogenic conditions. However, the expression of some upstream kinases and downstream AMPK targets, including K-ATP channel subunits, exhibited stress-specific signatures. Interestingly, at the protein level, chronic fructose treatment favored fasting-like phenotype in human islets, as witnessed by AMPK activation. Collectively, previously published and present data indicate that, in the β-cell, AMPK activation might be implicated in the pre-diabetic state, potentially as a protective mechanism.
Collapse
Affiliation(s)
- Thierry Brun
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland; (T.B.); (C.J.-S.); (N.H.); (D.D.); (C.B.); (L.O.); (M.T.)
| | - Cecilia Jiménez-Sánchez
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland; (T.B.); (C.J.-S.); (N.H.); (D.D.); (C.B.); (L.O.); (M.T.)
| | - Jesper Grud Skat Madsen
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (J.G.S.M.); (S.M.)
| | - Noushin Hadadi
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland; (T.B.); (C.J.-S.); (N.H.); (D.D.); (C.B.); (L.O.); (M.T.)
| | - Dominique Duhamel
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland; (T.B.); (C.J.-S.); (N.H.); (D.D.); (C.B.); (L.O.); (M.T.)
| | - Clarissa Bartley
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland; (T.B.); (C.J.-S.); (N.H.); (D.D.); (C.B.); (L.O.); (M.T.)
| | - Lucie Oberhauser
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland; (T.B.); (C.J.-S.); (N.H.); (D.D.); (C.B.); (L.O.); (M.T.)
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland; (T.B.); (C.J.-S.); (N.H.); (D.D.); (C.B.); (L.O.); (M.T.)
| | - Susanne Mandrup
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (J.G.S.M.); (S.M.)
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland; (T.B.); (C.J.-S.); (N.H.); (D.D.); (C.B.); (L.O.); (M.T.)
- Correspondence:
| |
Collapse
|
10
|
Bi-allelic Variants in TKFC Encoding Triokinase/FMN Cyclase Are Associated with Cataracts and Multisystem Disease. Am J Hum Genet 2020; 106:256-263. [PMID: 32004446 DOI: 10.1016/j.ajhg.2020.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
We report an inborn error of metabolism caused by TKFC deficiency in two unrelated families. Rapid trio genome sequencing in family 1 and exome sequencing in family 2 excluded known genetic etiologies, and further variant analysis identified rare homozygous variants in TKFC. TKFC encodes a bifunctional enzyme involved in fructose metabolism through its glyceraldehyde kinase activity and in the generation of riboflavin cyclic 4',5'-phosphate (cyclic FMN) through an FMN lyase domain. The TKFC homozygous variants reported here are located within the FMN lyase domain. Functional assays in yeast support the deleterious effect of these variants on protein function. Shared phenotypes between affected individuals with TKFC deficiency include cataracts and developmental delay, associated with cerebellar hypoplasia in one case. Further complications observed in two affected individuals included liver dysfunction and microcytic anemia, while one had fatal cardiomyopathy with lactic acidosis following a febrile illness. We postulate that deficiency of TKFC causes disruption of endogenous fructose metabolism leading to generation of by-products that can cause cataract. In line with this, an affected individual had mildly elevated urinary galactitol, which has been linked to cataract development in the galactosemias. Further, in light of a previously reported role of TKFC in regulating innate antiviral immunity through suppression of MDA5, we speculate that deficiency of TKFC leads to impaired innate immunity in response to viral illness, which may explain the fatal illness observed in the most severely affected individual.
Collapse
|
11
|
Conde-Sieira M, Capelli V, Álvarez-Otero R, Díaz-Rúa A, Velasco C, Comesaña S, López M, Soengas JL. Hypothalamic AMPKα2 regulates liver energy metabolism in rainbow trout through vagal innervation. Am J Physiol Regul Integr Comp Physiol 2019; 318:R122-R134. [PMID: 31692367 DOI: 10.1152/ajpregu.00264.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypothalamic AMPK plays a major role in the regulation of whole body metabolism and energy balance. Present evidence has demonstrated that this canonical mechanism is evolutionarily conserved. Thus, recent data demonstrated that inhibition of AMPKα2 in fish hypothalamus led to decreased food intake and liver capacity to use and synthesize glucose, lipids, and amino acids. We hypothesize that a signal of abundance of nutrients from the hypothalamus controls hepatic metabolism. The vagus nerve is the most important link between the brain and the liver. We therefore examined in the present study whether surgical transection of the vagus nerve in rainbow trout is sufficient to alter the effect in liver of central inhibition of AMPKα2. Thus, we vagotomized (VGX) or not (Sham) rainbow trout and then intracerebroventricularly administered adenoviral vectors tagged with green fluorescent protein alone or linked to a dominant negative isoform of AMPKα2. The inhibition of AMPKα2 led to reduced food intake in parallel with changes in the mRNA abundance of hypothalamic neuropeptides [neuropeptide Y (npy), agouti-related protein 1 (agrp1), and cocaine- and amphetamine-related transcript (cartpt)] involved in food intake regulation. Central inhibition of AMPKα2 resulted in the liver having decreased capacity to use and synthesize glucose, lipids, and amino acids. Notably, these effects mostly disappeared in VGX fish. These results support the idea that autonomic nervous system actions mediate the actions of hypothalamic AMPKα2 on liver metabolism. Importantly, this evidence indicates that the well-established role of hypothalamic AMPK in energy balance is a canonical evolutionarily preserved mechanism that is also present in the fish lineage.
Collapse
Affiliation(s)
- Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Valentina Capelli
- Departamento de Fisiología, Grupo NeurObesity, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria and Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain.,Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Rosa Álvarez-Otero
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Adrián Díaz-Rúa
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Sara Comesaña
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Miguel López
- Departamento de Fisiología, Grupo NeurObesity, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria and Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
12
|
Romero-Nava R, Aguayo-Cerón KA, Ruiz-Hernández A, Huang F, Hong E, Aguilera-Mendez A, Villafaña Rauda S. Silencing of GPR82 with Interference RNA Improved Metabolic Profiles in Rats with High Fructose Intake. J Vasc Res 2019; 57:1-7. [PMID: 31266033 DOI: 10.1159/000500781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 05/06/2019] [Indexed: 11/19/2022] Open
Abstract
Metabolic syndrome (MS) is a clinical condition, constituted by alterations that lead to the onset of type II diabetes and cardiovascular disease. It has been reported that orphan G-protein-coupled receptor 82 (GPR82) participates in metabolic processes. The aim of this study was to evaluate the function of GPR82 in MS using a small interfering RNA (siRNA) against this receptor. We used Wistar rats of 10-12 weeks of age fed with a high-fructose solution (70%) for 9 weeks to induce MS. Subsequently, the rats were treated with an intrajugular dose of an siRNA against GPR82 and the effects were evaluated on day 3 and 7 after administration. On day 3 the siRNA had a transient effect on decreasing blood pressure and triglycerides and increasing high-density lipoprotein cholesterol, which recovered to the MS control on day 7. Decreased gene expressions of GPR82 mRNA in the aorta and heart were observed on day 3; moreover, decreased gene expression was maintained in the aorta on day 7. Therefore, we conclude that the orphan receptor GPR82 participates in the development of MS induced by fructose and the silencing of this receptor could ameliorate metabolic components.
Collapse
Affiliation(s)
- Rodrigo Romero-Nava
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratorio de Investigación en Farmacología, Hospital Infantil de México Federico Gómez (HIMFG), Mexico City, Mexico.,Laboratorio de Farmacología, Departamento Ciencias de la Salud, Div. C.B.S., Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Karla Aidee Aguayo-Cerón
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Armando Ruiz-Hernández
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico.,Department of Pharmacology, School of Medicine, Autonomous University of Baja California, Mexicali, Mexico
| | - Fengyang Huang
- Laboratorio de Investigación en Farmacología, Hospital Infantil de México Federico Gómez (HIMFG), Mexico City, Mexico
| | - Enrique Hong
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Asdrubal Aguilera-Mendez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás Hidalgo, Morelia, Mexico
| | - Santiago Villafaña Rauda
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico,
| |
Collapse
|
13
|
Bartley C, Brun T, Oberhauser L, Grimaldi M, Molica F, Kwak BR, Bosco D, Chanson M, Maechler P. Chronic fructose renders pancreatic β-cells hyper-responsive to glucose-stimulated insulin secretion through extracellular ATP signaling. Am J Physiol Endocrinol Metab 2019; 317:E25-E41. [PMID: 30912960 DOI: 10.1152/ajpendo.00456.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fructose is widely used as a sweetener in processed food and is also associated with metabolic disorders, such as obesity. However, the underlying cellular mechanisms remain unclear, in particular, regarding the pancreatic β-cell. Here, we investigated the effects of chronic exposure to fructose on the function of insulinoma cells and isolated mouse and human pancreatic islets. Although fructose per se did not acutely stimulate insulin exocytosis, our data show that chronic fructose rendered rodent and human β-cells hyper-responsive to intermediate physiological glucose concentrations. Fructose exposure reduced intracellular ATP levels without affecting mitochondrial function, induced AMP-activated protein kinase activation, and favored ATP release from the β-cells upon acute glucose stimulation. The resulting increase in extracellular ATP, mediated by pannexin1 (Panx1) channels, activated the calcium-mobilizer P2Y purinergic receptors. Immunodetection revealed the presence of both Panx1 channels and P2Y1 receptors in β-cells. Addition of an ectonucleotidase inhibitor or P2Y1 agonists to naïve β-cells potentiated insulin secretion stimulated by intermediate glucose, mimicking the fructose treatment. Conversely, the P2Y1 antagonist and Panx1 inhibitor reversed the effects of fructose, as confirmed using Panx1-null islets and by the clearance of extracellular ATP by apyrase. These results reveal an important function of ATP signaling in pancreatic β-cells mediating fructose-induced hyper-responsiveness.
Collapse
Affiliation(s)
- Clarissa Bartley
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center , Geneva , Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center , Geneva , Switzerland
| | - Thierry Brun
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center , Geneva , Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center , Geneva , Switzerland
| | - Lucie Oberhauser
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center , Geneva , Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center , Geneva , Switzerland
| | - Mariagrazia Grimaldi
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center , Geneva , Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center , Geneva , Switzerland
| | - Filippo Molica
- Department of Pathology and Immunology, University of Geneva Medical Center , Geneva , Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva Medical Center , Geneva , Switzerland
- Division of Cardiology, University of Geneva Medical Center , Geneva , Switzerland
| | - Domenico Bosco
- Faculty Diabetes Center, University of Geneva Medical Center , Geneva , Switzerland
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospital , Geneva , Switzerland
| | - Marc Chanson
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center , Geneva , Switzerland
- Department of Pediatrics, Geneva University Hospital , Geneva , Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center , Geneva , Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center , Geneva , Switzerland
| |
Collapse
|
14
|
O'Flaherty B, Neigh GN, Rainnie D. High-fructose diet initiated during adolescence does not affect basolateral amygdala excitability or affective-like behavior in Sprague Dawley rats. Behav Brain Res 2019; 365:17-25. [PMID: 30807811 DOI: 10.1016/j.bbr.2019.02.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/04/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Patients with type-2 diabetes, obesity, and metabolic syndrome have a significantly increased risk of developing depression. Dysregulated metabolism may contribute to the etiology of depression by affecting neuronal activity in key limbic areas. The basolateral amygdala (BLA) acts as a critical emotional valence detector in the brain's limbic circuit, and shows hyperactivity and abnormal glucose metabolism in depressed patients. Furthermore, administering a periadolescent high-fructose diet (HFrD; a model of metabolic syndrome) to male Wistar rats increases anxiety- and depressive-like behavior. Repeated shock stress in Sprague Dawley rats similarly increases anxiety-like behavior and increases BLA excitability. We therefore investigated whether a metabolic stressor (HFrD) would have similar effects as shock stress on BLA excitability in Sprague Dawley rats. We found that a HFrD did not affect the intrinsic excitability of BLA neurons. Fructose-fed Sprague Dawley rats had elevated body fat mass, but did not show increases in metabolic efficiency and fasting blood glucose relative to control. Finally unlike Wistar rats, fructose-fed Sprague Dawley rats did not show increased anxiety- and depressive-like behavior. These results suggest that genetic differences between rat strains may affect susceptibility to a metabolic insult. Collectively, these data show that a periadolescent HFrD disrupts metabolism, but does not change affective behavior or BLA excitability in Sprague Dawley rats.
Collapse
Affiliation(s)
- Brendan O'Flaherty
- Department of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, United States
| | - Gretchen N Neigh
- Department of Physiology, Emory University, Atlanta, GA, 30322, United States; Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Donald Rainnie
- Department of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, United States.
| |
Collapse
|
15
|
Differential Role of Hypothalamic AMPKα Isoforms in Fish: an Evolutive Perspective. Mol Neurobiol 2018; 56:5051-5066. [PMID: 30460617 DOI: 10.1007/s12035-018-1434-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
Abstract
In mammals, hypothalamic AMP-activated protein kinase (AMPK) α1 and α2 isoforms mainly relate to regulation of thermogenesis/liver metabolism and food intake, respectively. Since both isoforms are present in fish, which do not thermoregulate, we assessed their role(s) in hypothalamus regarding control of food intake and energy homeostasis. Since many fish species are carnivorous and mostly mammals are omnivorous, assessing if the role of hypothalamic AMPK is different is also an open question. Using the rainbow trout as a fish model, we first observed that food deprivation for 5 days did not significantly increase phosphorylation status of AMPKα in hypothalamus. Then, we administered adenoviral vectors that express dominant negative (DN) AMPKα1 or AMPKα2 isoforms. The inhibition of AMPKα2 (but not AMPKα1) led to decreased food intake. The central inhibition of AMPKα2 resulted in liver with decreased capacity of use and synthesis of glucose, lipids, and amino acids suggesting that a signal of nutrient abundance flows from hypothalamus to the liver, thus suggesting a role for central AMPKα2 in the regulation of peripheral metabolism in fishes. The central inhibition of AMPKα1 induced comparable changes in liver metabolism though at a lower extent. From an evolutionary point of view, it is of interest that the function of central AMPKα2 remained similar throughout the vertebrate lineage. In contrast, the function of central AMPKα1 in fish relates to modulation of liver metabolism whereas in mammals modulates not only liver metabolism but also brown adipose tissue and thermogenesis.
Collapse
|
16
|
Harrell C, Zainaldin C, McFarlane D, Hyer M, Stein D, Sayeed I, Neigh G. High-fructose diet during adolescent development increases neuroinflammation and depressive-like behavior without exacerbating outcomes after stroke. Brain Behav Immun 2018; 73:340-351. [PMID: 29787857 PMCID: PMC9280910 DOI: 10.1016/j.bbi.2018.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/01/2018] [Accepted: 05/18/2018] [Indexed: 12/20/2022] Open
Abstract
Diseases, disorders, and insults of aging are frequently studied in otherwise healthy animal models despite rampant co-morbidities and exposures among the human population. Stressor exposures can increase neuroinflammation and augment the inflammatory response following a challenge. The impact of dietary exposure on baseline neural function and behavior has gained attention; in particular, a diet high in fructose can increase activation of the hypothalamic-pituitary-adrenal axis and alter behavior. The current study considers the implications of a diet high in fructose for neuroinflammation and outcomes following the cerebrovascular challenge of stroke. Ischemic injury may come as a "second hit" to pre-existing metabolic pathology, exacerbating inflammatory and behavioral sequelae. This study assesses the neuroinflammatory consequences of a peri-adolescent high-fructose diet model and assesses the impact of diet-induced metabolic dysfunction on behavioral and neuropathological outcomes after middle cerebral artery occlusion. We demonstrate that consumption of a high-fructose diet initiated during adolescent development increases brain complement expression, elevates plasma TNFα and serum corticosterone, and promotes depressive-like behavior. Despite these adverse effects of diet exposure, peri-adolescent fructose consumption did not exacerbate neurological behaviors or lesion volume after middle cerebral artery occlusion.
Collapse
Affiliation(s)
- C.S. Harrell
- Department of Physiology, Emory University School of Medicine, United States
| | - C. Zainaldin
- Department of Physiology, Emory University School of Medicine, United States
| | - D. McFarlane
- Department of Physiology, Emory University School of Medicine, United States
| | - M.M. Hyer
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, United States
| | - D. Stein
- Department of Emergency Medicine, Emory University School of Medicine, United States
| | - I. Sayeed
- Department of Emergency Medicine, Emory University School of Medicine, United States
| | - G.N. Neigh
- Department of Physiology, Emory University School of Medicine, United States,Department of Anatomy & Neurobiology, Virginia Commonwealth University, United States,Corresponding author at: Department of Anatomy & Neurobiology, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA 23298, United States. (G.N. Neigh)
| |
Collapse
|
17
|
Chakera AJ, Hurst PS, Spyer G, Ogunnowo-Bada EO, Marsh WJ, Riches CH, Yueh CY, Markkula SP, Dalley JW, Cox RD, Macdonald IA, Amiel SA, MacLeod KM, Heisler LK, Hattersley AT, Evans ML. Molecular reductions in glucokinase activity increase counter-regulatory responses to hypoglycemia in mice and humans with diabetes. Mol Metab 2018; 17:17-27. [PMID: 30146176 PMCID: PMC6197723 DOI: 10.1016/j.molmet.2018.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Appropriate glucose levels are essential for survival; thus, the detection and correction of low blood glucose is of paramount importance. Hypoglycemia prompts an integrated response involving reduction in insulin release and secretion of key counter-regulatory hormones glucagon and epinephrine that together promote endogenous glucose production to restore normoglycemia. However, specifically how this response is orchestrated remains to be fully clarified. The low affinity hexokinase glucokinase is found in glucose-sensing cells involved in glucose homeostasis including pancreatic β-cells and in certain brain areas. Here, we aimed to examine the role of glucokinase in triggering counter-regulatory hormonal responses to hypoglycemia, hypothesizing that reduced glucokinase activity would lead to increased and/or earlier triggering of responses. METHODS Hyperinsulinemic glucose clamps were performed to examine counter-regulatory responses to controlled hypoglycemic challenges created in humans with monogenic diabetes resulting from heterozygous glucokinase mutations (GCK-MODY). To examine the relative importance of glucokinase in different sensing areas, we then examined responses to clamped hypoglycemia in mice with molecularly defined disruption of whole body and/or brain glucokinase. RESULTS GCK-MODY patients displayed increased and earlier glucagon responses during hypoglycemia compared with a group of glycemia-matched patients with type 2 diabetes. Consistent with this, glucagon responses to hypoglycemia were also increased in I366F mice with mutated glucokinase and in streptozotocin-treated β-cell ablated diabetic I366F mice. Glucagon responses were normal in conditional brain glucokinase-knockout mice, suggesting that glucagon release during hypoglycemia is controlled by glucokinase-mediated glucose sensing outside the brain but not in β-cells. For epinephrine, we found increased responses in GCK-MODY patients, in β-cell ablated diabetic I366F mice and in conditional (nestin lineage) brain glucokinase-knockout mice, supporting a role for brain glucokinase in triggering epinephrine release. CONCLUSIONS Our data suggest that glucokinase in brain and other non β-cell peripheral hypoglycemia sensors is important in glucose homeostasis, allowing the body to detect and respond to a falling blood glucose.
Collapse
Affiliation(s)
- Ali J Chakera
- Institute of Clinical and Biomedical Sciences, University of Exeter, United Kingdom
| | - Paul S Hurst
- Wellcome Trust/ MRC Institute of Metabolic Science and Department of Medicine, University of Cambridge, United Kingdom
| | - Gill Spyer
- Institute of Clinical and Biomedical Sciences, University of Exeter, United Kingdom
| | - Emmanuel O Ogunnowo-Bada
- Wellcome Trust/ MRC Institute of Metabolic Science and Department of Medicine, University of Cambridge, United Kingdom
| | - William J Marsh
- Wellcome Trust/ MRC Institute of Metabolic Science and Department of Medicine, University of Cambridge, United Kingdom
| | - Christine H Riches
- Wellcome Trust/ MRC Institute of Metabolic Science and Department of Medicine, University of Cambridge, United Kingdom
| | - Chen-Yu Yueh
- Wellcome Trust/ MRC Institute of Metabolic Science and Department of Medicine, University of Cambridge, United Kingdom
| | - S Pauliina Markkula
- Wellcome Trust/ MRC Institute of Metabolic Science and Department of Medicine, University of Cambridge, United Kingdom
| | - Jeffrey W Dalley
- Behavioural and Clinical Neuroscience Institute and Departments of Psychology and Psychiatry, University of Cambridge, United Kingdom
| | - Roger D Cox
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Oxford, United Kingdom
| | - Ian A Macdonald
- MRC-ARUK Centre for Musculoskeletal Ageing and NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust/ University of Nottingham, Nottingham, United Kingdom
| | - Stephanie A Amiel
- Division of Diabetes and Nutritional Sciences, King's College London, United Kingdom
| | - Kenneth M MacLeod
- Institute of Clinical and Biomedical Sciences, University of Exeter, United Kingdom
| | - Lora K Heisler
- Rowett Institute, University of Aberdeen, United Kingdom
| | - Andrew T Hattersley
- Institute of Clinical and Biomedical Sciences, University of Exeter, United Kingdom.
| | - Mark L Evans
- Wellcome Trust/ MRC Institute of Metabolic Science and Department of Medicine, University of Cambridge, United Kingdom.
| |
Collapse
|
18
|
High fructose diet-induced metabolic syndrome: Pathophysiological mechanism and treatment by traditional Chinese medicine. Pharmacol Res 2018; 130:438-450. [PMID: 29471102 DOI: 10.1016/j.phrs.2018.02.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
Abstract
Fructose is a natural monosaccharide broadly used in modern society. Over the past few decades, epidemiological studies have demonstrated that high fructose intake is an etiological factor of metabolic syndrome (MetS). This review highlights research advances on fructose-induced MetS, especially the underlying pathophysiological mechanism as well as pharmacotherapy by traditional Chinese medicine (TCM), using the PubMed, Web of science, China National Knowledge Infrastructure, China Science and Technology Journal and Wanfang Data. This review focuses on de novo lipogenesis (DNL) and uric acid (UA) production, two unique features of fructolysis different from glucose glycolysis. High level of DNL and UA production can result in insulin resistance, the key pathological event in developing MetS, mostly through oxidative stress and inflammation. Some other pathologies like the disturbance in brain and gut microbiota in the development of fructose-induced MetS in the past years, are also discussed. In management of MetS, TCM is an excellent representative in alternative and complementary medicine with a complete theory system and substantial herbal remedies. TCMs against MetS or MetS components, including Chinese patent medicines, TCM compound formulas, single TCM herbs and active compounds of TCM herbs, are reviewed on their effects and molecular mechanisms. TCMs with hypouricemic activity, which specially target fructose-induced MetS, are highlighted. And new technologies and strategies (such as high-throughput assay and systems biology) in this field are further discussed. In summary, fructose-induced MetS is a multifactorial disorder with the underlying complex mechanisms. Current clinical and pre-clinical evidence supports the potential of TCMs in management of MetS. Additionally, TCMs may show some advantages against complex MetS as their holistic feature through multiple target actions. However, further work is needed to confirm the effectivity and safety of TCMs by high-standard clinical trials, clarify the molecular mechanisms, and develop new anti-MetS drugs by development and application of optimized and feasible strategies and methods.
Collapse
|
19
|
Lv ZP, Peng YZ, Zhang BB, Fan H, Liu D, Guo YM. Glucose and lipid metabolism disorders in the chickens with dexamethasone-induced oxidative stress. J Anim Physiol Anim Nutr (Berl) 2017; 102:e706-e717. [DOI: 10.1111/jpn.12823] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Z.-P. Lv
- State Key Laboratory of Animal Nutrition; College of Animal Science & Technology; China Agricultural University; Beijing China
| | - Y.-Z. Peng
- State Key Laboratory of Animal Nutrition; College of Animal Science & Technology; China Agricultural University; Beijing China
| | - B.-B. Zhang
- State Key Laboratory of Animal Nutrition; College of Animal Science & Technology; China Agricultural University; Beijing China
| | - H. Fan
- State Key Laboratory of Animal Nutrition; College of Animal Science & Technology; China Agricultural University; Beijing China
| | - D. Liu
- State Key Laboratory of Animal Nutrition; College of Animal Science & Technology; China Agricultural University; Beijing China
| | - Y.-M. Guo
- State Key Laboratory of Animal Nutrition; College of Animal Science & Technology; China Agricultural University; Beijing China
| |
Collapse
|
20
|
Geidl-Flueck B, Gerber PA. Insights into the Hexose Liver Metabolism-Glucose versus Fructose. Nutrients 2017; 9:E1026. [PMID: 28926951 PMCID: PMC5622786 DOI: 10.3390/nu9091026] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022] Open
Abstract
High-fructose intake in healthy men is associated with characteristics of metabolic syndrome. Extensive knowledge exists about the differences between hepatic fructose and glucose metabolism and fructose-specific mechanisms favoring the development of metabolic disturbances. Nevertheless, the causal relationship between fructose consumption and metabolic alterations is still debated. Multiple effects of fructose on hepatic metabolism are attributed to the fact that the liver represents the major sink of fructose. Fructose, as a lipogenic substrate and potent inducer of lipogenic enzyme expression, enhances fatty acid synthesis. Consequently, increased hepatic diacylglycerols (DAG) are thought to directly interfere with insulin signaling. However, independently of this effect, fructose may also counteract insulin-mediated effects on liver metabolism by a range of mechanisms. It may drive gluconeogenesis not only as a gluconeogenic substrate, but also as a potent inducer of carbohydrate responsive element binding protein (ChREBP), which induces the expression of lipogenic enzymes as well as gluconeogenic enzymes. It remains a challenge to determine the relative contributions of the impact of fructose on hepatic transcriptome, proteome and allosterome changes and consequently on the regulation of plasma glucose metabolism/homeostasis. Mathematical models exist modeling hepatic glucose metabolism. Future models should not only consider the hepatic adjustments of enzyme abundances and activities in response to changing plasma glucose and insulin/glucagon concentrations, but also to varying fructose concentrations for defining the role of fructose in the hepatic control of plasma glucose homeostasis.
Collapse
Affiliation(s)
- Bettina Geidl-Flueck
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091 Zurich, Switzerland.
| | - Philipp A Gerber
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
21
|
Modulation of glucose metabolism by a natural compound from Chloranthus japonicus via activation of AMP-activated protein kinase. Sci Rep 2017; 7:778. [PMID: 28396610 PMCID: PMC5429703 DOI: 10.1038/s41598-017-00925-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 03/17/2017] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a key sensor and regulator of glucose metabolism. Here, we demonstrated that shizukaol F, a natural compound isolated from Chloranthus japonicus, can activate AMPK and modulate glucose metabolism both in vitro and in vivo. Shizukaol F increased glucose uptake in differentiated C2C12 myotubes by stimulating glucose transporter-4 (GLUT-4) membraned translocation. Treatment of primary mouse hepatocytes with shizukaol F decreased the expression of phosphoenolpyruvate carboxykinase 2 (PEPCK), glucose-6-phosphatase (G6Pase) and suppressed hepatic gluconeogenesis. Meanwhile, a single oral dose of shizukaol F reduced gluconeogenesis in C57BL/6 J mice. Further studies indicated that shizukaol F modulates glucose metabolism mainly by AMPKa phosphorylation activity. In addition, we also found that shizukaol F depolarizes the mitochondrial membrane and inhibits respiratory complex I, which may result in AMPK activation. Our results highlight the potential value of shizukaol F as a possible treatment of metabolic syndrome.
Collapse
|
22
|
Zhang DM, Jiao RQ, Kong LD. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions. Nutrients 2017; 9:E335. [PMID: 28353649 PMCID: PMC5409674 DOI: 10.3390/nu9040335] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/15/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023] Open
Abstract
High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.
Collapse
Affiliation(s)
- Dong-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China.
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China.
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
23
|
Faria JDA, de Araújo TMF, Razolli DS, Ignácio-Souza LM, Souza DN, Bordin S, Anhê GF. Metabolic Impact of Light Phase-Restricted Fructose Consumption Is Linked to Changes in Hypothalamic AMPK Phosphorylation and Melatonin Production in Rats. Nutrients 2017; 9:nu9040332. [PMID: 28346369 PMCID: PMC5409671 DOI: 10.3390/nu9040332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/12/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022] Open
Abstract
Recent studies show that the metabolic effects of fructose may vary depending on the phase of its consumption along with the light/dark cycle. Here, we investigated the metabolic outcomes of fructose consumption by rats during either the light (LPF) or the dark (DPF) phases of the light/dark cycle. This experimental approach was combined with other interventions, including restriction of chow availability to the dark phase, melatonin administration or intracerebroventricular inhibition of adenosine monophosphate-activated protein kinase (AMPK) with Compound C. LPF, but not DPF rats, exhibited increased hypothalamic AMPK phosphorylation, glucose intolerance, reduced urinary 6-sulfatoxymelatonin (6-S-Mel) (a metabolite of melatonin) and increased corticosterone levels. LPF, but not DPF rats, also exhibited increased chow ingestion during the light phase. The mentioned changes were blunted by Compound C. LPF rats subjected to dark phase-restricted feeding still exhibited increased hypothalamic AMPK phosphorylation but failed to develop the endocrine and metabolic changes. Moreover, melatonin administration to LPF rats reduced corticosterone and prevented glucose intolerance. Altogether, the present data suggests that consumption of fructose during the light phase results in out-of-phase feeding due to increased hypothalamic AMPK phosphorylation. This shift in spontaneous chow ingestion is responsible for the reduction of 6-S-Mel and glucose intolerance.
Collapse
Affiliation(s)
- Juliana de Almeida Faria
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, #105 Alexander Fleming St., Campinas SP 13092-140, Brazil.
| | - Thiago Matos F de Araújo
- Laboratory of Cell Signaling, Faculty of Medical Sciences, State University of Campinas, Carl von Linnaeus St., Campinas SP 13083-864, Brazil.
| | - Daniela S Razolli
- Laboratory of Cell Signaling, Faculty of Medical Sciences, State University of Campinas, Carl von Linnaeus St., Campinas SP 13083-864, Brazil.
| | | | - Dailson Nogueira Souza
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, #105 Alexander Fleming St., Campinas SP 13092-140, Brazil.
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo SP 05508-900, Brazil.
| | - Gabriel Forato Anhê
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, #105 Alexander Fleming St., Campinas SP 13092-140, Brazil.
| |
Collapse
|
24
|
Romero-Nava R, Zhou DS, García N, Ruiz-Hernández A, Si YC, Sánchez-Muñoz F, Huang F, Hong E, Villafaña S. Evidence of alterations in the expression of orphan receptors GPR26 and GPR39 due to the etiology of the metabolic syndrome. J Recept Signal Transduct Res 2017; 37:422-429. [DOI: 10.1080/10799893.2017.1298133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rodrigo Romero-Nava
- Escuela Superior de Medicina del Instituto Politécnico Nacional, Laboratorio de Señalización Intracelular, Sección de Posgrado, Mexico
| | - De-Shan Zhou
- Department of Histology and Embryology, Capital Medical University, Beijing, China
| | - Noemí García
- Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, NL, Mexico
- Centro de Investigación Básica y de Transferencia, Hospital Zambrano Hellio, Garza García, NL, Mexico
| | - Armando Ruiz-Hernández
- Escuela Superior de Medicina del Instituto Politécnico Nacional, Laboratorio de Señalización Intracelular, Sección de Posgrado, Mexico
| | - Yin-Chu Si
- Department of Anatomy, Beijing University of Chinese Medicine, Beijing, China
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Fengyang Huang
- Departamento de Farmacología y Toxicología, Hospital Infantil de México Federico Gómez (HIMFG), México, Mexico
| | - Enrique Hong
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Santiago Villafaña
- Escuela Superior de Medicina del Instituto Politécnico Nacional, Laboratorio de Señalización Intracelular, Sección de Posgrado, Mexico
| |
Collapse
|
25
|
Zhou JJ, Gao Y, Kosten TA, Zhao Z, Li DP. Acute stress diminishes M-current contributing to elevated activity of hypothalamic-pituitary-adrenal axis. Neuropharmacology 2016; 114:67-76. [PMID: 27908768 DOI: 10.1016/j.neuropharm.2016.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/17/2016] [Accepted: 11/26/2016] [Indexed: 11/16/2022]
Abstract
Acute stress stimulates corticotrophin-releasing hormone (CRH)-expressing neurons in the hypothalamic paraventricular nucleus (PVN), which is an essential component of hypothalamic-pituitary-adrenal (HPA) axis. However, the cellular and molecular mechanisms remain unclear. The M-channel is a voltage-dependent K+ channel involved in stabilizing the neuronal membrane potential and regulating neuronal excitability. In this study, we tested our hypothesis that acute stress suppresses expression of Kv7 channels to stimulate PVN-CRH neurons and the HPA axis. Rat PVN-CRH neurons were identified by expressing enhanced green fluorescent protein driven by Crh promoter. Acute restraint stress attenuated the excitatory effect of Kv7 blocker XE-991 on the firing activity of PVN-CRH neurons and blunted the increase in plasma corticosterone (CORT) levels induced by microinjection of XE-991 into the PVN. Furthermore, acute stress significantly decreased the M-currents in PVN-CRH neurons and reduced PVN expression of Kv7.3 subunit in the membrane. In addition, acute stress significantly increased phosphorylated AMP-activated protein kinase (AMPK) levels in the PVN tissue. Intracerebroventricular injection of the AMPK inhibitor dorsomorphin restored acute stress-induced elevation of CORT levels and reduction of membrane Kv7.3 protein level in the PVN. Dorsomorphin treatment increased the M-currents and reduced the firing activity of PVN-CRH neurons in acutely stressed rats. Collectively, these data suggest that acute stress diminishes Kv7 channels to stimulate PVN-CRH neurons and the HPA axis potentially via increased AMPK activity.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Department of Critical Care, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yonggang Gao
- Department of Preventive Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Therese A Kosten
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China.
| | - De-Pei Li
- Department of Critical Care, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
26
|
Dexamethasone Alters the Appetite Regulation via Induction of Hypothalamic Insulin Resistance in Rat Brain. Mol Neurobiol 2016; 54:7483-7496. [DOI: 10.1007/s12035-016-0251-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/23/2016] [Indexed: 01/08/2023]
|
27
|
López M, Nogueiras R, Tena-Sempere M, Diéguez C. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nat Rev Endocrinol 2016; 12:421-32. [PMID: 27199291 DOI: 10.1038/nrendo.2016.67] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AMP-activated protein kinase (AMPK) has a major role in the modulation of energy balance. AMPK is activated in conditions of low energy, increasing energy production and reducing energy consumption. The AMPK pathway is a canonical route regulating energy homeostasis by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. Current evidence has implicated AMPK in the hypothalamus and hindbrain with feeding, brown adipose tissue thermogenesis and browning of white adipose tissue, through modulation of the sympathetic nervous system, as well as glucose homeostasis. Interestingly, several potential antiobesity and/or antidiabetic agents, some of which are currently in clinical use such as metformin and liraglutide, exert some of their actions by acting on AMPK. Furthermore, the orexigenic and weight-gain effects of commonly used antipsychotic drugs are also mediated by hypothalamic AMPK. Overall, this evidence suggests that hypothalamic AMPK signalling is an interesting target for drug development, but is this approach feasible? In this Review we discuss the current understanding of hypothalamic AMPK and its role in the central regulation of energy balance and metabolism.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain
- FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| |
Collapse
|
28
|
Zhao C, Castonguay TW. Effects of free access to sugar solutions on the control of energy intake. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1149863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Changhui Zhao
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Thomas W. Castonguay
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
29
|
Winnick JJ, Kraft G, Gregory JM, Edgerton DS, Williams P, Hajizadeh IA, Kamal MZ, Smith M, Farmer B, Scott M, Neal D, Donahue EP, Allen E, Cherrington AD. Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis. J Clin Invest 2016; 126:2236-48. [PMID: 27140398 DOI: 10.1172/jci79895] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/10/2016] [Indexed: 11/17/2022] Open
Abstract
Liver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose intraportal fructose infusion. After hepatic glycogen levels were increased, animals underwent a 2-hour control period with no fructose infusion followed by a 2-hour hyperinsulinemic/hypoglycemic clamp. Compared with control treatment, fructose infusion caused a large increase in liver glycogen that markedly elevated the response of epinephrine and glucagon to a given hypoglycemia and increased net hepatic glucose output (NHGO). Moreover, prior denervation of the liver abolished the improved counterregulatory responses that resulted from increased liver glycogen content. When hepatic glycogen content was lowered, glucagon and NHGO responses to insulin-induced hypoglycemia were reduced. We conclude that there is a liver-brain counterregulatory axis that is responsive to liver glycogen content. It remains to be determined whether the risk of iatrogenic hypoglycemia in T1D humans could be lessened by targeting metabolic pathway(s) associated with hepatic glycogen repletion.
Collapse
|
30
|
Kataoka S, Mukai Y, Takebayashi M, Kudo M, Acuram UR, Kurasaki M, Sato S. Melinjo (Gnetum gnemon) extract intake during lactation stimulates hepatic AMP-activated protein kinase in offspring of excessive fructose-fed pregnant rats. Reprod Biol 2016; 16:165-73. [PMID: 27288341 DOI: 10.1016/j.repbio.2016.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/22/2015] [Accepted: 01/16/2016] [Indexed: 11/16/2022]
Abstract
Excessive maternal fructose intake during pregnancy and in early postnatal life has metabolic consequences for the offspring. We investigated the effects of melinjo (Gnetum gnemon) extract (MeE) intake during lactation on the expression and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) in the liver of offspring from excessive fructose-fed pregnant dams. Pregnant Wistar rats received a normal diet and 100g/L fructose solution during gestation ad libitum. At delivery, dams were divided into two groups: a control diet (FC) or a 0.1% MeE-containing diet (FM) fed during lactation. The dams that were not treated with fructose were fed a control diet (CC). At postnatal week 3, some pups were sacrificed, while the remaining continued to receive a normal diet and were sacrificed at week 17. Blood chemistry and phosphorylation levels of AMPK and acetyl-coenzyme A carboxylase (ACC) were evaluated. Plasma glucose levels in FC female offspring increased compared to that receiving CC at weeks 3 and 17; however, the levels in FM female offspring decreased at week 17. The insulin levels in FM female offspring decreased significantly compared to that in FC female offspring at week 3. Hepatic AMPK phosphorylation was upregulated in FM offspring at week 3 and in female, but not male, offspring at week 17. ACC phosphorylation in FM female offspring was upregulated at week 17. Our results suggest that maternal MeE intake during lactation may modulate the hepatic AMPK pathways in female offspring.
Collapse
Affiliation(s)
- Saori Kataoka
- Department of Nutrition, Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori 030-8505, Japan
| | - Yuuka Mukai
- School of Nutrition and Dietetics, Faculty of Health and Social Work, Kanagawa University of Human Services, Kanagawa 238-8522, Japan
| | - Mihoko Takebayashi
- Department of Nutrition, Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori 030-8505, Japan
| | - Megumi Kudo
- Department of Nutrition, Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori 030-8505, Japan
| | - Uson Rachael Acuram
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shin Sato
- Department of Nutrition, Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori 030-8505, Japan.
| |
Collapse
|
31
|
Harrell CS, Burgado J, Kelly SD, Johnson ZP, Neigh GN. High-fructose diet during periadolescent development increases depressive-like behavior and remodels the hypothalamic transcriptome in male rats. Psychoneuroendocrinology 2015; 62:252-64. [PMID: 26356038 PMCID: PMC4637272 DOI: 10.1016/j.psyneuen.2015.08.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/21/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022]
Abstract
Fructose consumption, which promotes insulin resistance, hypertension, and dyslipidemia, has increased by over 25% since the 1970s. In addition to metabolic dysregulation, fructose ingestion stimulates the hypothalamic-pituitary-adrenal (HPA) axis leading to elevations in glucocorticoids. Adolescents are the greatest consumers of fructose, and adolescence is a critical period for maturation of the HPA axis. Repeated consumption of high levels of fructose during adolescence has the potential to promote long-term dysregulation of the stress response. Therefore, we determined the extent to which consumption of a diet high in fructose affected behavior, serum corticosterone, and hypothalamic gene expression using a whole-transcriptomics approach. In addition, we examined the potential of a high-fructose diet to interact with exposure to chronic adolescent stress. Male Wistar rats fed the periadolescent high-fructose diet showed increased anxiety-like behavior in the elevated plus maze and depressive-like behavior in the forced swim test in adulthood, irrespective of stress history. Periadolescent fructose-fed rats also exhibited elevated basal corticosterone concentrations relative to their chow-fed peers. These behavioral and hormonal responses to the high-fructose diet did not occur in rats fed fructose during adulthood only. Finally, rats fed the high-fructose diet throughout development underwent marked hypothalamic transcript expression remodeling, with 966 genes (5.6%) significantly altered and a pronounced enrichment of significantly altered transcripts in several pathways relating to regulation of the HPA axis. Collectively, the data presented herein indicate that diet, specifically one high in fructose, has the potential to alter behavior, HPA axis function, and the hypothalamic transcriptome in male rats.
Collapse
Affiliation(s)
| | - Jillybeth Burgado
- Neuroscience and Behavioral Biology Program, Emory University, Atlanta, GA 30322, USA
| | - Sean D Kelly
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
| | - Zachary P Johnson
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, USA
| | - Gretchen N Neigh
- Department of Physiology, Emory University, Atlanta, GA 30322, USA; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
32
|
Ge CX, Yu R, Xu MX, Li PQ, Fan CY, Li JM, Kong LD. Betaine prevented fructose-induced NAFLD by regulating LXRα/PPARα pathway and alleviating ER stress in rats. Eur J Pharmacol 2015; 770:154-64. [PMID: 26593707 DOI: 10.1016/j.ejphar.2015.11.043] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
Abstract
Betaine has been proven effective in treating nonalcoholic fatty liver disease (NAFLD) in animal models, however, its molecular mechanisms remain elusive. The aims of this study were to explore the mechanisms mediating the anti-inflammatory and anti-lipogenic actions of betaine in fructose-fed rats. In this study, betaine improved insulin resistance, reduced body weight gain and serum lipid levels, and prevented hepatic lipid accumulation in fructose-fed rats. It up-regulated hepatic expression of liver X receptor-alpha (LXRα) and peroxisome proliferator-activated receptor-alpha (PPARα), with the attenuation of the changes of their target genes, including hepatic carnitine palmitoyl transferase (CPT) 1α, glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1, apolipoprotein B, sterol regulatory element-binding protein 1c and adipocyte differentiation-related protein, involved in fatty acid oxidation and lipid storage in these model rats. Furthermore, betaine alleviated ER stress and inhibited acetyl-CoA carboxylase α, CPT II, stearoyl-CoA desaturase 1 and fatty acid synthase expression involved in fatty acid synthesis in the liver of fructose-fed rats. Betaine suppressed hepatic gluconeogenesis in fructose-fed rats by moderating protein kinase B -forkhead box protein O1 pathway, as well as p38 mitogen-activated protein kinase and mammalian target of rapamycin activity. Moreover, betaine inhibited hepatic nuclear factor kappa B /nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome activation-mediated inflammation in this animal model. These results demonstrated that betaine ameliorated hepatic lipid accumulation, gluconeogenesis, and inflammation through restoring LXRα and PPARα expression and alleviating ER stress in fructose-fed rats. This study provides the potential mechanisms of betaine involved in the treatment of NAFLD.
Collapse
Affiliation(s)
- Chen-Xu Ge
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Rong Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Min-Xuan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Pei-Qin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Chen-Yu Fan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
33
|
Ohashi K, Ando Y, Munetsuna E, Yamada H, Yamazaki M, Nagura A, Taromaru N, Ishikawa H, Suzuki K, Teradaira R. Maternal fructose consumption alters messenger RNA expression of hippocampal StAR, PBR, P450(11β), 11β-HSD, and 17β-HSD in rat offspring. Nutr Res 2015; 35:259-64. [DOI: 10.1016/j.nutres.2014.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/10/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022]
|
34
|
Dietary sugars: their detection by the gut-brain axis and their peripheral and central effects in health and diseases. Eur J Nutr 2014; 54:1-24. [PMID: 25296886 PMCID: PMC4303703 DOI: 10.1007/s00394-014-0776-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/24/2014] [Indexed: 12/25/2022]
Abstract
Background Substantial increases in dietary sugar intake together with the increasing prevalence of obesity worldwide, as well as the parallels found between sugar overconsumption and drug abuse, have motivated research on the adverse effects of sugars on health and eating behaviour. Given that the gut–brain axis depends on multiple interactions between peripheral and central signals, and because these signals are interdependent, it is crucial to have a holistic view about dietary sugar effects on health. Methods Recent data on the effects of dietary sugars (i.e. sucrose, glucose, and fructose) at both peripheral and central levels and their interactions will be critically discussed in order to improve our understanding of the effects of sugars on health and diseases. This will contribute to the development of more efficient strategies for the prevention and treatment for obesity and associated co-morbidities. Results This review highlights opposing effects of glucose and fructose on metabolism and eating behaviour. Peripheral glucose and fructose sensing may influence eating behaviour by sweet-tasting mechanisms in the mouth and gut, and by glucose-sensing mechanisms in the gut. Glucose may impact brain reward regions and eating behaviour directly by crossing the blood–brain barrier, and indirectly by peripheral neural input and by oral and intestinal sweet taste/sugar-sensing mechanisms, whereas those promoted by fructose orally ingested seem to rely only on these indirect mechanisms. Conclusions Given the discrepancies between studies regarding the metabolic effects of sugars, more studies using physiological experimental conditions and in animal models closer to humans are needed. Additional studies directly comparing the effects of sucrose, glucose, and fructose should be performed to elucidate possible differences between these sugars on the reward circuitry.
Collapse
|
35
|
Chronic activation of central AMPK attenuates glucose-stimulated insulin secretion and exacerbates hepatic insulin resistance in diabetic rats. Brain Res Bull 2014; 108:18-26. [PMID: 25149877 DOI: 10.1016/j.brainresbull.2014.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 01/04/2023]
Abstract
We investigated the effects of chronic AMP-activated kinase (AMPK) activation in the hypothalamus on energy and glucose metabolism in 90% pancreatectomized diabetic rats. Diabetic rats fed a high fat diet were divided into 3 groups and intracerebroventricular (ICV) administered with one of the following: 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR, AMPK activator; 80 μg/day), AICAR+compound C (AMPK inhibitor; 6.2 μg/day), or an artificial cerebrospinal fluid (control) by means of osmotic pumps for 4 weeks. In the hypothalamus, central AICAR activated the phosphorylation of AMPK whereas adding compound C suppressed the activation. AICAR increased body weight and epididymal and retroperitoneal fat mass by increasing energy intake for the first 2 weeks and decreasing energy expenditure, whereas compound C reversed the AICAR effect on energy metabolism. Indirect calorimetry revealed that ICV-AICAR decreased carbohydrate oxidation, but not fat oxidation, compared to the control. During euglycemic hyperinsulinemic clamp, central AICAR increased hepatic glucose output at hyperinsulinemic states. ICV-AICAR increased expressions of hepatic genes involved in fatty acid synthesis and decreased expression of hepatic genes related to thermogenesis whereas compound C nullified the AICAR effect. Insulin secretion in the first and second phases decreased in AICAR-treated rats at hyperglycemic clamp, but compound C nullified the decrease. However, central AICAR did not alter β-cell mass via its proliferation or apoptosis. In conclusion, chronic hypothalamic AMPK activation impaired energy metabolism and glucose homeostasis by increasing food intake, increasing hepatic glucose output and decreasing insulin secretion in diabetic rats. The impairment of energy and glucose homeostasis by AMPK activation was nullified by an AMPK inhibitor.
Collapse
|
36
|
Ignacio-Souza LM, Bombassaro B, Pascoal LB, Portovedo MA, Razolli DS, Coope A, Victorio SC, de Moura RF, Nascimento LF, Arruda AP, Anhe GF, Milanski M, Velloso LA. Defective regulation of the ubiquitin/proteasome system in the hypothalamus of obese male mice. Endocrinology 2014; 155:2831-44. [PMID: 24892821 DOI: 10.1210/en.2014-1090] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In both human and experimental obesity, inflammatory damage to the hypothalamus plays an important role in the loss of the coordinated control of food intake and energy expenditure. Upon prolonged maintenance of increased body mass, the brain changes the defended set point of adiposity, and returning to normal weight becomes extremely difficult. Here we show that in prolonged but not in short-term obesity, the ubiquitin/proteasome system in the hypothalamus fails to maintain an adequate rate of protein recycling, leading to the accumulation of ubiquitinated proteins. This is accompanied by an increased colocalization of ubiquitin and p62 in the arcuate nucleus and reduced expression of autophagy markers in the hypothalamus. Genetic protection from obesity is accompanied by the normal regulation of the ubiquitin/proteasome system in the hypothalamus, whereas the inhibition of proteasome or p62 results in the acceleration of body mass gain in mice exposed for a short period to a high-fat diet. Thus, the defective regulation of the ubiquitin/proteasome system in the hypothalamus may be an important mechanism involved in the progression and autoperpetuation of obesity.
Collapse
Affiliation(s)
- Leticia M Ignacio-Souza
- Laboratory of Cell Signaling (L.M.I.-S., B.B., L.B.P., M.A.P., D.S.R., A.C., S.C.V., R.F.d.M., L.F.N., A.P.A., M.M., L.A.V.), Faculty of Applied Sciences (M.A.P., M.M.), and Department of Pharmacology (G.F.A.), University of Campinas, 13084-970 Campinas, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The onset of chronic disease is often the prelude to the subsequent physiological and mental twilight in the aging population of modern society. While rates of obesity, specific types of cancer and cardiovascular disorders seem to be on the rise in this group, many new therapies have addressed diseases that have been largely untreatable in the past. Alzheimer's disease has also recently come to the forefront of ongoing maladies most typically associated with an aging population. Ironically, though, many people seem to be living longer than expected. Recent biochemical, nutritional and genomic approaches have been able to elucidate some of the complex mechanisms, which lead to chronic diseases associated with an aging population such as Alzheimer's, metabolic syndrome, tumor metastasis and cardiovascular disease. These diseases and their sequalae seem to be related in many respects, with the common culprit being the inflammatory environment created by the presence of excess fat - particularly within the vascular network. Although a substantial effort has been focused on the development of new-line therapeutics to address these issues, nutrition and overall fitness and their effects on stalling or potentially reversing the advent of these diseases has not been fully embraced in the research arena. This review discusses the role of the inflammatory environment in the development of chronic diseases in the aging population and also proposes a common pathology. The benefits that improvements and dedication in nutrition and fitness approaches may offer at the molecular level are also discussed.
Collapse
|
38
|
McCarty MF, DiNicolantonio JJ. The cardiometabolic benefits of glycine: Is glycine an 'antidote' to dietary fructose? Open Heart 2014; 1:e000103. [PMID: 25332814 PMCID: PMC4195924 DOI: 10.1136/openhrt-2014-000103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2014] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - James J DiNicolantonio
- Department of Preventive Cardiology , Saint Luke's Mid America Heart Institute , Kansas City, Missouri , USA
| |
Collapse
|
39
|
Mukai Y, Ozaki H, Serita Y, Sato S. Maternal fructose intake during pregnancy modulates hepatic and hypothalamic AMP-activated protein kinase signalling in a sex-specific manner in offspring. Clin Exp Pharmacol Physiol 2014; 41:331-7. [DOI: 10.1111/1440-1681.12225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Yuuka Mukai
- Department of Nutrition; Faculty of Health Sciences; Aomori University of Health and Welfare; Aomori Japan
| | - Haruka Ozaki
- Department of Nutrition; Faculty of Health Sciences; Aomori University of Health and Welfare; Aomori Japan
| | - Yuko Serita
- Department of Nutrition; Faculty of Health Sciences; Aomori University of Health and Welfare; Aomori Japan
| | - Shin Sato
- Department of Nutrition; Faculty of Health Sciences; Aomori University of Health and Welfare; Aomori Japan
| |
Collapse
|
40
|
Bargut TCL, Frantz EDC, Mandarim-de-Lacerda CA, Aguila MB. Effects of a diet rich in n-3 polyunsaturated fatty acids on hepatic lipogenesis and beta-oxidation in mice. Lipids 2014; 49:431-44. [PMID: 24627299 DOI: 10.1007/s11745-014-3892-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 02/24/2014] [Indexed: 12/12/2022]
Abstract
Here, we investigate whether a diet rich in fish oil can lead to the development of hepatic alterations associated with non-alcoholic fatty liver disease (NAFLD). To achieve this goal, we provided, for 8 weeks, four different diets to 3-month-old C57BL/6 mice: (a) standard-chow diet (SC; 40 g soybean oil/kg diet, 10 % of the total energy content from lipids), (b) fish oil diet (FO; 4 g soybean oil and 36 g fish oil/kg diet, 10 % of the total energy content from lipids), (c) high-fat diet (HF; 40 g soybean oil and 238 g lard/kg diet, 50 % of the total energy content from lipids), and (d) high-fish oil diet (HFO; 40 g soybean oil and 238 g fish oil/kg diet, 50 % of the total energy content from lipids). Biochemical analyses, stereology, western-blotting and RT-qPCR were used. In the HF group, we found evidence of obesity, metabolic syndrome, and liver damage, along with hypertriglyceridemia, hepatic insulin resistance, and steatosis. On the other hand, the HFO group did not present these alterations and remained similar to the controls. The changes observed in the animals fed the HF diet were accompanied by an increase in hepatic lipogenesis and a decrease in beta-oxidation; meanwhile, in the HFO group, the opposite results were found, that is, reduced lipogenesis and elevated beta-oxidation, were most likely responsible for the prevention of deleterious hepatic alterations and liver damage. In conclusion, a diet rich in fish oil has beneficial effects on hepatic insulin resistance, lipogenesis and beta-oxidation and prevents hepatic tissue from liver damage and NAFLD.
Collapse
Affiliation(s)
- Thereza C Lonzetti Bargut
- Laboratorio de Morfometria, Metabolismo e Doença Cardiovascular, Centro Biomedico Instituto de Biologia, Universidade Do Estado Do Rio de Janeiro, Av 28 de Setembro 87 Fds, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
41
|
Zhang QY, Pan Y, Wang R, Kang LL, Xue QC, Wang XN, Kong LD. Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats. J Nutr Biochem 2013; 25:420-8. [PMID: 24491314 DOI: 10.1016/j.jnutbio.2013.11.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/17/2013] [Accepted: 11/27/2013] [Indexed: 12/18/2022]
Abstract
Fructose is a nutritional composition of fruits and honey. Its excess consumption induces insulin resistance-associated metabolic diseases. Hypothalamic insulin signaling plays a pivotal role in controlling whole-body insulin sensitivity and energy homeostasis. Quercetin, a natural flavonoid, has been reported to ameliorate high fructose-induced rat insulin resistance and hyperlipidemia. In this study, we investigated its regulatory effects on the hypothalamus of high fructose-fed rats. Rats were fed 10% fructose in drinking water for 10 weeks. After 4 weeks, these animals were orally treated with quercetin (50 and 100 mg/kg), allopurinol (5 mg/kg) and water daily for the next 6 weeks, respectively. Quercetin effectively restored high fructose-induced hypothalamic insulin signaling defect by up-regulating the phosphorylation of insulin receptor and protein kinase B. Furthermore, quercetin was found to reduce metabolic nutrient sensors adenosine monophosphate-activated protein kinase (AMPK) activation and thioredoxin-interacting protein (TXNIP) overexpression, as well as the glutamine-glutamate cycle dysfunction in the hypothalamus of high fructose-fed rats. Subsequently, it ameliorated high fructose-caused hypothalamic inflammatory lesions in rats by suppressing the activation of hypothalamic nuclear factor κB (NF-κB) pathway and NOD-like receptor 3 (NLRP3) inflammasome with interleukin 1β maturation. Allopurinol had similar effects. These results provide in vivo evidence that quercetin-mediated down-regulation of AMPK/TXNIP and subsequent inhibition of NF-κB pathway/NLRP3 inflammasome activation in the hypothalamus of rats may be associated with the reduction of hypothalamic inflammatory lesions, contributing to the improvement of hypothalamic insulin signaling defect in this model. Thus, quercetin with the central activity may be a therapeutic for high fructose-induced insulin resistance and hyperlipidemia in humans.
Collapse
Affiliation(s)
- Qing-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China.
| | - Rong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Lin-Lin Kang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Qiao-Chu Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Xiao-Ning Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
42
|
Rose AJ, Herzig S. Metabolic control through glucocorticoid hormones: an update. Mol Cell Endocrinol 2013; 380:65-78. [PMID: 23523966 DOI: 10.1016/j.mce.2013.03.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/21/2013] [Accepted: 03/08/2013] [Indexed: 01/28/2023]
Abstract
In the past decades, glucocorticoid (GC) hormones and their cognate, intracellular receptor, the glucocorticoid receptor (GR), have been well established as critical checkpoints in mammalian energy homeostasis. Whereas many aspects in healthy nutrient metabolism require physiological levels and/or action of GC, aberrant GC/GR signalling has been linked to severe metabolic dysfunction, including obesity, insulin resistance and type 2 diabetes. Consequently, studies of the molecular mechanisms within the GC signalling axis have become a major focus in biomedical research, up-to-date particularly focusing on systemic glucose and lipid handling. However, with the availability of novel high throughput technologies and more sophisticated metabolic phenotyping capabilities, as-yet non-appreciated, metabolic functions of GC have been recently discovered, including regulatory roles of the GC/GR axis in protein and bile acid homeostasis as well as metabolic inter-organ communication. Therefore, this review summarises recent advances in GC/GR biology, and summarises findings relevant for basic and translational metabolic research.
Collapse
Affiliation(s)
- Adam J Rose
- Joint Research Division, Molecular Metabolic Control, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH), Heidelberg University, Network Aging Research, University Hospital Heidelberg, Germany
| | | |
Collapse
|
43
|
Calixto MC, Lintomen L, André DM, Leiria LO, Ferreira D, Lellis-Santos C, Anhê GF, Bordin S, Landgraf RG, Antunes E. Metformin attenuates the exacerbation of the allergic eosinophilic inflammation in high fat-diet-induced obesity in mice. PLoS One 2013; 8:e76786. [PMID: 24204674 PMCID: PMC3811997 DOI: 10.1371/journal.pone.0076786] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/03/2013] [Indexed: 12/25/2022] Open
Abstract
A positive relationship between obesity and asthma has been well documented. The AMP-activated protein kinase (AMPK) activator metformin reverses obesity-associated insulin resistance (IR) and inhibits different types of inflammatory responses. This study aimed to evaluate the effects of metformin on the exacerbation of allergic eosinophilic inflammation in obese mice. Male C57BL6/J mice were fed for 10 weeks with high-fat diet (HFD) to induce obesity. The cell infiltration and inflammatory markers in bronchoalveolar lavage (BAL) fluid and lung tissue were evaluated at 48 h after ovalbumin (OVA) challenge. HFD obese mice displayed peripheral IR that was fully reversed by metformin (300 mg/kg/day, two weeks). OVA-challenge resulted in higher influx of total cell and eosinophils in lung tissue of obese mice compared with lean group. As opposed, the cell number in BAL fluid of obese mice was reduced compared with lean group. Metformin significantly reduced the tissue eosinophil infiltration and prevented the reduction of cell counts in BAL fluid. In obese mice, greater levels of eotaxin, TNF-α and NOx, together with increased iNOS protein expression were observed, all of which were normalized by metformin. In addition, metformin nearly abrogated the binding of NF-κB subunit p65 to the iNOS promoter gene in lung tissue of obese mice. Lower levels of phosphorylated AMPK and its downstream target acetyl CoA carboxylase (ACC) were found in lung tissue of obese mice, which were restored by metformin. In separate experiments, the selective iNOS inhibitor aminoguanidine (20 mg/kg, 3 weeks) and the anti-TNF-α mAb (2 mg/kg) significantly attenuated the aggravation of eosinophilic inflammation in obese mice. In conclusion, metformin inhibits the TNF-α-induced inflammatory signaling and NF-κB-mediated iNOS expression in lung tissue of obese mice. Metformin may be a good pharmacological strategy to control the asthma exacerbation in obese individuals.
Collapse
Affiliation(s)
- Marina Ciarallo Calixto
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Letícia Lintomen
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Diana Majoli André
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luiz Osório Leiria
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Danilo Ferreira
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Camilo Lellis-Santos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriel Forato Anhê
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
44
|
Chang W, Zhang M, Li J, Meng Z, Wei S, Du H, Chen L, Hatch GM. Berberine improves insulin resistance in cardiomyocytes via activation of 5'-adenosine monophosphate-activated protein kinase. Metabolism 2013; 62:1159-67. [PMID: 23537779 DOI: 10.1016/j.metabol.2013.02.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/11/2013] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Insulin resistance plays an important role in the pathogenesis of diabetic cardiomyopathy. Berberine (BBR) is a plant alkaloid which promotes hypoglycemia via increasing insulin sensitivity in peripheral tissues. Little is known of BBR's role in regulating glucose metabolism in heart. MATERIALS/METHODS We examined the effect and mechanism of BBR on glucose consumption and glucose uptake in insulin sensitive or insulin resistant rat H9c2 cardiomyocyte cells. H9c2 myoblast cells were differentiated into cardiomyocytes and incubated with insulin for 24h to induce insulin resistance. RESULTS BBR-treatment of H9c2 cells increased glucose consumption and glucose uptake compared to controls. In addition, BBR-treatment attenuated the reduction in glucose consumption and glucose uptake in insulin resistant H9c2 cells. Compound C, an inhibitor of AMP-activated protein kinase (AMPK), abolished the enhancement of glucose consumption and glucose uptake mediated by BBR in both insulin sensitive and insulin resistant H9c2 cells compared to controls. CONCLUSION BBR significantly increased AMPK activity, but had little effect on the activity of protein kinase B (AKT) in insulin resistant H9c2 cells, suggesting that berberine improves insulin resistance in H9c2 cardiomyocytes at least in part via stimulation of AMPK activity.
Collapse
Affiliation(s)
- Wenguang Chang
- Department of Pharmacology, Norman Bethune Medical College, Jilin University, Changchun 130021, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Faria JA, Kinote A, Ignacio-Souza LM, de Araújo TM, Razolli DS, Doneda DL, Paschoal LB, Lellis-Santos C, Bertolini GL, Velloso LA, Bordin S, Anhê GF. Melatonin acts through MT1/MT2 receptors to activate hypothalamic Akt and suppress hepatic gluconeogenesis in rats. Am J Physiol Endocrinol Metab 2013; 305:E230-42. [PMID: 23695212 DOI: 10.1152/ajpendo.00094.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin can contribute to glucose homeostasis either by decreasing gluconeogenesis or by counteracting insulin resistance in distinct models of obesity. However, the precise mechanism through which melatonin controls glucose homeostasis is not completely understood. Male Wistar rats were administered an intracerebroventricular (icv) injection of melatonin and one of following: an icv injection of a phosphatidylinositol 3-kinase (PI3K) inhibitor, an icv injection of a melatonin receptor (MT) antagonist, or an intraperitoneal (ip) injection of a muscarinic receptor antagonist. Anesthetized rats were subjected to pyruvate tolerance test to estimate in vivo glucose clearance after pyruvate load and in situ liver perfusion to assess hepatic gluconeogenesis. The hypothalamus was removed to determine Akt phosphorylation. Melatonin injections in the central nervous system suppressed hepatic gluconeogenesis and increased hypothalamic Akt phosphorylation. These effects of melatonin were suppressed either by icv injections of PI3K inhibitors and MT antagonists and by ip injection of a muscarinic receptor antagonist. We conclude that melatonin activates hypothalamus-liver communication that may contribute to circadian adjustments of gluconeogenesis. These data further suggest a physiopathological relationship between the circadian disruptions in metabolism and reduced levels of melatonin found in type 2 diabetes patients.
Collapse
Affiliation(s)
- Juliana A Faria
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Santos GA, Pereira VD, Roman EAFR, Ignacio-Souza L, Vitorino DC, de Moura RF, Razolli DS, Torsoni AS, Velloso LA, Torsoni MA. Hypothalamic inhibition of acetyl-CoA carboxylase stimulates hepatic counter-regulatory response independent of AMPK activation in rats. PLoS One 2013; 8:e62669. [PMID: 23626844 PMCID: PMC3633841 DOI: 10.1371/journal.pone.0062669] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 03/22/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Hypothalamic AMPK acts as a cell energy sensor and can modulate food intake, glucose homeostasis, and fatty acid biosynthesis. Intrahypothalamic fatty acid injection is known to suppress liver glucose production, mainly by activation of hypothalamic ATP-sensitive potassium (K(ATP)) channels. Since all models employed seem to involve malonyl-CoA biosynthesis, we hypothesized that acetyl-CoA carboxylase can modulate the counter-regulatory response independent of nutrient availability. METHODOLOGY/PRINCIPAL FINDINGS In this study employing immunoblot, real-time PCR, ELISA, and biochemical measurements, we showed that reduction of the hypothalamic expression of acetyl-CoA carboxylase by antisense oligonucleotide after intraventricular injection increased food intake and NPY mRNA, and diminished the expression of CART, CRH, and TRH mRNA. Additionally, as in fasted rats, in antisense oligonucleotide-treated rats, serum glucagon and ketone bodies increased, while the levels of serum insulin and hepatic glycogen diminished. The reduction of hypothalamic acetyl-CoA carboxylase also increased PEPCK expression, AMPK phosphorylation, and glucose production in the liver. Interestingly, these effects were observed without modification of hypothalamic AMPK phosphorylation. CONCLUSION/SIGNIFICANCE Hypothalamic ACC inhibition can activate hepatic counter-regulatory response independent of hypothalamic AMPK activation.
Collapse
Affiliation(s)
- Gustavo A. Santos
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Vinícius D. Pereira
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Erika A. F. R. Roman
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Leticia Ignacio-Souza
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Daniele C. Vitorino
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | - Daniela S. Razolli
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Adriana S. Torsoni
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, São Paulo, Brazil
| | - Licio A. Velloso
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Marcio A. Torsoni
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, São Paulo, Brazil
| |
Collapse
|
47
|
Burmeister MA, Ayala J, Drucker DJ, Ayala JE. Central glucagon-like peptide 1 receptor-induced anorexia requires glucose metabolism-mediated suppression of AMPK and is impaired by central fructose. Am J Physiol Endocrinol Metab 2013; 304:E677-85. [PMID: 23341495 DOI: 10.1152/ajpendo.00446.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) suppresses food intake via activation of a central (i.e., brain) GLP-1 receptor (GLP-1R). Central AMP-activated protein kinase (AMPK) is a nutrient-sensitive regulator of food intake that is inhibited by anorectic signals. The anorectic effect elicited by hindbrain GLP-1R activation is attenuated by the AMPK stimulator AICAR. This suggests that central GLP-1R activation suppresses food intake via inhibition of central AMPK. The present studies examined the mechanism(s) by which central GLP-1R activation inhibits AMPK. Supporting previous findings, AICAR attenuated the anorectic effect elicited by intracerebroventricular (icv) administration of the GLP-1R agonist exendin-4 (Ex-4). We demonstrate that Ex-4 stimulates glycolysis and suppresses AMPK phosphorylation in a glucose-dependent manner in hypothalamic GT1-7 cells. This suggests that inhibition of AMPK and food intake by Ex-4 requires central glucose metabolism. Supporting this, the glycolytic inhibitor 2-deoxyglucose (2-DG) attenuated the anorectic effect of Ex-4. However, icv glucose did not enhance the suppression of food intake by Ex-4. AICAR had no effect on Ex-4-mediated reduction in locomotor activity. We also tested whether other carbohydrates affect the anorectic response to Ex-4. Intracerebroventricular pretreatment with the sucrose metabolite fructose, an AMPK activator, attenuated the anorectic effect of Ex-4. This potentially explains the increased food intake observed in sucrose-fed mice. In summary, we propose a model whereby activation of the central GLP-1R reduces food intake via glucose metabolism-dependent inhibition of central AMPK. We also suggest that fructose stimulates food intake by impairing central GLP-1R action. This has significant implications given the correlation between sugar consumption and obesity.
Collapse
Affiliation(s)
- Melissa A Burmeister
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, FL 32827, USA
| | | | | | | |
Collapse
|
48
|
Meng Z, Bao X, Zhang M, Wei S, Chang W, Li J, Chen L, Nyomba BLG. Alteration of 11β-hydroxysteroid dehydrogenase type 1 and glucocorticoid receptor by ethanol in rat liver and mouse hepatoma cells. J Diabetes Res 2013; 2013:218102. [PMID: 23819126 PMCID: PMC3683472 DOI: 10.1155/2013/218102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/07/2013] [Indexed: 12/27/2022] Open
Abstract
Alcohol is a potential risk factor of type 2 diabetes, but its underlying mechanism is unclear. To explore this issue, Wistar rats and mouse hepatoma cells (Hepa 1-6) were exposed to ethanol, 8 g·kg(-1) ·d(-1) for 3 months and 100 mM for 48 h, respectively. Glucose and insulin tolerance tests in vivo were performed, and protein levels of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and glucocorticoid receptor (GR) in liver and Hepa 1-6 cells were measured. Alterations of key enzymes of gluconeogenesis phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase), as well as glycogen synthase kinase 3a (GSK3 α ), were also examined. The results revealed that glucose levels were increased, and insulin sensitivity was impaired accompanied with liver injury in rats exposed to ethanol compared with controls. The 11β-HSD1, GR, PEPCK, G6Pase, and GSK3 α proteins were increased in the liver of rats treated with ethanol compared with controls. Ethanol-exposed Hepa 1-6 cells also showed higher expression of 11β-HSD1, GR, PEPCK, G6Pase, and GSK3 α proteins than control cells. After treatment of Hepa 1-6 cells exposed to ethanol with the GR inhibitor RU486, the expression of 11β-HSD1 and GR was significantly decreased. At the same time the increases in PEPCK, G6Pase, and GSK3 α levels induced by ethanol in Hepa 1-6 cells were also attenuated by RU486. The results indicate that ethanol causes glucose intolerance by increasing hepatic expression of 11β-HSD1 and GR, which leads to increased expression of gluconeogenic and glycogenolytic enzymes.
Collapse
Affiliation(s)
- Zhaojie Meng
- Department of Pharmacology, School of Norman Bethune Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xueying Bao
- The 208th Hospital of the Chinese People's Liberation Amry, Changchun, Jilin 130062, China
| | - Ming Zhang
- Department of Pharmacology, School of Norman Bethune Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Shengnan Wei
- Department of Pharmacology, School of Norman Bethune Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Wenguang Chang
- Department of Pharmacology, School of Norman Bethune Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Jing Li
- Department of Pharmacology, School of Norman Bethune Medical Sciences, Jilin University, Changchun, Jilin 130021, China
- *Jing Li:
| | - Li Chen
- Department of Pharmacology, School of Norman Bethune Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - B. L. Grégoire Nyomba
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada R3E3P4
| |
Collapse
|
49
|
Choe CU, Nabuurs C, Stockebrand MC, Neu A, Nunes P, Morellini F, Sauter K, Schillemeit S, Hermans-Borgmeyer I, Marescau B, Heerschap A, Isbrandt D. L-arginine:glycine amidinotransferase deficiency protects from metabolic syndrome. Hum Mol Genet 2012; 22:110-23. [PMID: 23026748 DOI: 10.1093/hmg/dds407] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phosphorylated creatine (Cr) serves as an energy buffer for ATP replenishment in organs with highly fluctuating energy demand. The central role of Cr in the brain and muscle is emphasized by severe neurometabolic disorders caused by Cr deficiency. Common symptoms of inborn errors of creatine synthesis or distribution include mental retardation and muscular weakness. Human mutations in l-arginine:glycine amidinotransferase (AGAT), the first enzyme of Cr synthesis, lead to severely reduced Cr and guanidinoacetate (GuA) levels. Here, we report the generation and metabolic characterization of AGAT-deficient mice that are devoid of Cr and its precursor GuA. AGAT-deficient mice exhibited decreased fat deposition, attenuated gluconeogenesis, reduced cholesterol levels and enhanced glucose tolerance. Furthermore, Cr deficiency completely protected from the development of metabolic syndrome caused by diet-induced obesity. Biochemical analyses revealed the chronic Cr-dependent activation of AMP-activated protein kinase (AMPK), which stimulates catabolic pathways in metabolically relevant tissues such as the brain, skeletal muscle, adipose tissue and liver, suggesting a mechanism underlying the metabolic phenotype. In summary, our results show marked metabolic effects of Cr deficiency via the chronic activation of AMPK in a first animal model of AGAT deficiency. In addition to insights into metabolic changes in Cr deficiency syndromes, our genetic model reveals a novel mechanism as a potential treatment option for obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Chi-un Choe
- Experimental Neuropediatrics, Center for Molecular Neurobiology and Department of Pediatrics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cawley NX. Sugar making sugar: gluconeogenesis triggered by fructose via a hypothalamic-adrenal-corticosterone circuit. Endocrinology 2012; 153:3561-3. [PMID: 22822224 PMCID: PMC3404346 DOI: 10.1210/en.2012-1562] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Niamh X Cawley
- Section on Cellular Neurobiology, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|