1
|
Hwang E, Doolittle WKL, Zhu YJ, Zhu X, Zhao L, Yu Y, Cheng SY. Thyroid hormone receptor α1: a novel regulator of thyroid cancer cell differentiation. Oncogene 2023; 42:3075-3086. [PMID: 37634007 DOI: 10.1038/s41388-023-02815-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Thyroid hormone receptor α1 (TRα1) mediates the genomic actions of thyroid hormone (T3). The biology of TRα1 in growth and development has been well studied, but the functional role of TRα1 in cancers remains to be elucidated. Analysis of the human thyroid cancer database of The Cancer Genome Atlas (TCGA) showed that THRA gene expression is lost in highly dedifferentiated anaplastic thyroid cancer (ATC). We, therefore, explored the effects of TRα1 on the progression of ATC. We stably expressed TRα1 in two human ATC cell lines, THJ-11T (11T-TRα1 #2, #7, and #8) and THJ-16T (16T-TRα1 #3, #4, and #8) cells. We found that the expressed TRα1 inhibited ATC cell proliferation and induced apoptosis. TCGA data showed that THRA gene expression was best correlated with the paired box gene 8 (PAX8). Consistently, we found that the PAX8 expression was barely detectable in parental 11T and 16T cells. However, PAX8 gene expression was elevated in 11T- and 16T-TRα1-expressing cells at the mRNA and protein levels. Using various molecular analyses, we found that TRα1 directly regulated the expression of the PAX8 gene. Single-cell transcriptomic analyses (scRNA-seq) demonstrated that TRα1 functions as a transcription factor through multiple signaling pathways to suppress tumor growth. Importantly, scRNA-seq analysis showed that TRα1-induced PAX8, via its transcription program, shifts the cell landscape of ATC toward a differentiated state. The present studies suggest that TRα1 is a newly identified regulator of thyroid differentiation and could be considered as a potential therapeutic target to improve the outcome of ATC patients.
Collapse
Affiliation(s)
- Eunmi Hwang
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Woo Kyung Lee Doolittle
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yuelin Jack Zhu
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xuguang Zhu
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Li Zhao
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Gillis NE, Cozzens LM, Wilson ER, Smith NM, Tomczak JA, Bolf EL, Carr FE. TRβ Agonism Induces Tumor Suppression and Enhances Drug Efficacy in Anaplastic Thyroid Cancer in Female Mice. Endocrinology 2023; 164:bqad135. [PMID: 37702560 PMCID: PMC10506733 DOI: 10.1210/endocr/bqad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
Thyroid hormone receptor beta (TRβ) is a recognized tumor suppressor in numerous solid cancers. The molecular signaling of TRβ has been elucidated in several cancer types through re-expression models. Remarkably, the potential impact of selective activation of endogenous TRβ on tumor progression remains largely unexplored. We used cell-based and in vivo assays to evaluate the effects of the TRβ agonist sobetirome (GC-1) on a particularly aggressive and dedifferentiated cancer, anaplastic thyroid cancer (ATC). Here we report that GC-1 reduced the tumorigenic phenotype, decreased cancer stem-like cell populations, and induced redifferentiation of the ATC cell lines with different mutational backgrounds. Of note, this selective activation of TRβ amplified the effects of therapeutic agents in blunting the aggressive cell phenotype and stem cell growth. In xenograft assays, GC-1 alone inhibited tumor growth and was as effective as the kinase inhibitor, sorafenib. These results indicate that selective activation of TRβ not only induces a tumor suppression program de novo but enhances the effectiveness of anticancer agents, revealing potential novel combination therapies for ATC and other aggressive solid tumors.
Collapse
Affiliation(s)
- Noelle E Gillis
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Lauren M Cozzens
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Emily R Wilson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Noah M Smith
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jennifer A Tomczak
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Eric L Bolf
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Frances E Carr
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
3
|
Sun J, Liu J, Wu TT, Gu ZY, Zhang XW. Sensitivity to thyroid hormone indices are associated with papillary thyroid carcinoma in Chinese patients with thyroid nodules. BMC Endocr Disord 2023; 23:126. [PMID: 37264363 DOI: 10.1186/s12902-023-01381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND The association between thyroid hormone sensitivity and thyroid cancer is unknown, and we aimed to investigate the association between sensitivity to thyroid hormone indices and papillary thyroid carcinoma (PTC) in Chinese patients with thyroid nodules (TNs). METHODS A total of 1,998 patients undergoing thyroid surgery due to TNs from Nanjing Drum Tower Hospital were included in this study. We evaluated central sensitivity to thyroid hormones, such as thyroid stimulating hormone index (TSHI), TSH T4 resistance index (TT4RI), thyroid feedback quantile-based index (TFQI), and parametric thyroid feedback quantile-based Index (PTFQI). Peripheral sensitivity to thyroid hormone was evaluated by FT3 to FT4 ratio. Multivariate logistic regression analysis was performed to evaluate the association between sensitivity to thyroid hormone indices and PTC risk. RESULTS The results showed that central indices of thyroid hormone sensitivity, including TSHI, TT4RI, TFQI, and PTFQI, were positively associated with PTC risk. For each SD increase in TSHI, TT4RI, TFQI, and PTFQI, the odds ratios (OR, 95% CI) of PTC were 1.31 (1.18-1.46), 1.01 (1.01-1.02), 1.94 (1.45-2.60), and 1.82 (1.41-2.34), respectively. On the other hand, the association between peripheral sensitivity to thyroid hormone and PTC was significantly negative. For each SD increase in FT3/FT4 ratio, the OR (95% CI) of PTC was 0.18 (0.03-0.96), and a negative correlation was found between FT3/FT4 ratio and TNM staging of PTC. CONCLUSIONS Sensitivity to thyroid hormone indices could be used as new indicators for predicting PTC in Chinese patients with TNs. Future researches are still needed to confirm our findings.
Collapse
Affiliation(s)
- Jie Sun
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Jie Liu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Ting-Ting Wu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Zhi-Yuan Gu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Xiao-Wen Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| |
Collapse
|
4
|
Chu DT, Ngo AD, Wu CC. Epigenetics in cancer development, diagnosis and therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:73-92. [PMID: 37225325 DOI: 10.1016/bs.pmbts.2023.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Cancer is a dangerous disease and one of the leading causes of death in the world. In 2020, there were nearly 10 million cancer deaths and approximately 20 million new cases. New cases and deaths from cancer are expected to increase further in the coming years. To have a deeper insight into the mechanism of carcinogenesis, epigenetics studies have been published and received much attention from scientists, doctors, and patients. Among alterations in epigenetics, DNA methylation and histone modification are studied by many scientists. They have been reported to be a major contributor in tumor formation and are involved in metastasis. From the understanding of DNA methylation and histone modification, effective, accurate and cost-effective methods for diagnosis and screening of cancer patients have been introduced. Furthermore, therapeutic approaches and drugs targeting altered epigenetics have also been clinically studied and have shown positive results in combating tumor progression. Several cancer drugs that rely on DNA methylation inactivation or histone modification have been approved by the FDA for the treatment of cancer patients. In summary, epigenetics changes such as DNA methylation or histone modification are take part in tumor growth, and they also have great prospect to study diagnostic and therapeutic methods of this dangerous disease.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Anh-Dao Ngo
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Elia G, Patrizio A, Ragusa F, Paparo SR, Mazzi V, Balestri E, Botrini C, Rugani L, Benvenga S, Materazzi G, Spinelli C, Antonelli A, Fallahi P, Ferrari SM. Molecular features of aggressive thyroid cancer. Front Oncol 2022; 12:1099280. [PMID: 36605433 PMCID: PMC9807782 DOI: 10.3389/fonc.2022.1099280] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) have a worse prognosis with respect to well differentiated TC, and the loss of the capability of up-taking 131I is one of the main features characterizing aggressive TC. The knowledge of the genomic landscape of TC can help clinicians to discover the responsible alterations underlying more advance diseases and to address more tailored therapy. In fact, to date, the antiangiogenic multi-targeted kinase inhibitor (aaMKIs) sorafenib, lenvatinib, and cabozantinib, have been approved for the therapy of aggressive radioiodine (RAI)-resistant papillary TC (PTC) or follicular TC (FTC). Several other compounds, including immunotherapies, have been introduced and, in part, approved for the treatment of TC harboring specific mutations. For example, selpercatinib and pralsetinib inhibit mutant RET in medullary thyroid cancer but they can also block the RET fusion proteins-mediated signaling found in PTC. Entrectinib and larotrectinib, can be used in patients with progressive RAI-resistant TC harboring TRK fusion proteins. In addition FDA authorized the association of dabrafenib (BRAFV600E inhibitor) and trametinib (MEK inhibitor) for the treatment of BRAFV600E-mutated ATC. These drugs not only can limit the cancer spread, but in some circumstance they are able to induce the re-differentiation of aggressive tumors, which can be again submitted to new attempts of RAI therapy. In this review we explore the current knowledge on the genetic landscape of TC and its implication on the development of new precise therapeutic strategies.
Collapse
Affiliation(s)
- Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Armando Patrizio
- Department of Emergency Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Francesca Ragusa
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Sabrina Rosaria Paparo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Valeria Mazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Eugenia Balestri
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Chiara Botrini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Licia Rugani
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy,Master Program on Childhood, Adolescent and Women’s Endocrine Health, University of Messina, Messina, Italy,Interdepartmental Program of Molecular and Clinical Endocrinology and Women’s Endocrine Health, Azienda Ospedaliera Universitaria Policlinico ‘G. Martino’, Messina, Italy
| | - Gabriele Materazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Claudio Spinelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy,*Correspondence: Alessandro Antonelli,
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | |
Collapse
|
6
|
Doolittle WKL, Zhu X, Park S, Zhu YJ, Zhao L, Meltzer P, Cheng SY. Regulation of cancer stem cell activity by thyroid hormone receptor β. Oncogene 2022; 41:2315-2325. [PMID: 35256781 PMCID: PMC9018601 DOI: 10.1038/s41388-022-02242-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
Abstract
Increasing numbers of cancer stem cell markers have been recently identified. It is not known, however, whether a member of the nuclear receptor superfamily, thyroid hormone receptor β (TRβ), can function to regulate cancer stem cell (CSC) activity. Using anaplastic thyroid cancer cells (ATC) as a model, we highlight the role of TRβ in CSC activity. ATC is one of the most aggressive solid cancers in humans and is resistant to currently available therapeutics. Recent studies provide evidence that CSC activity underlies aggressiveness and therapeutic resistance of ATC. Here we show that TRβ inhibits CSC activity by suppressing tumor-sphere formation of human ATC cells and their tumor-initiating capacity. TRβ suppresses the expression of CSC regulators, including ALDH, KLF2, SOX2, b-catenin, and ABCG2, in ATC cell-induced xenograft tumors. Single-cell transcriptomic analysis shows that TRβ reduces CSC population in ATC-induced xenograft tumors. Analysis of The Cancer Genome Atlas (TCGA) database demonstrates that the inhibition of CSC capacity by TRβ contributes to favorable clinical outcomes in human cancer. Our studies show that TRβ is a newly identified transcription regulator that acts to suppress CSC activity and that TRβ could be considered as a molecular target for therapeutic intervention of ATC.
Collapse
Affiliation(s)
- Woo Kyung Lee Doolittle
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xuguang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sunmi Park
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yuelin Jack Zhu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Li Zhao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Paul Meltzer
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Lee WK, Cheng SY. Targeting transcriptional regulators for treatment of anaplastic thyroid cancer. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7. [PMID: 34761120 PMCID: PMC8577520 DOI: 10.20517/2394-4722.2021.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dysregulation of genes perpetuates cancer progression. During carcinogenesis, cancer cells acquire dependency of aberrant transcriptional programs (known as “transcription addiction”) to meet the high demands for uncontrolled proliferation. The needs for particular transcription programs for cancer growth could be cancer-type-selective. The dependencies of certain transcription regulators could be exploited for therapeutic benefits. Anaplastic thyroid cancer (ATC) is an extremely aggressive human cancer for which new treatment modalities are urgently needed. Its resistance to conventional treatments and the lack of therapeutic options for improving survival might have been attributed to extensive genetic heterogeneity due to subsequent evolving genetic alterations and clonal selections during carcinogenesis. Despite this genetic complexity, mounting evidence has revealed a characteristic transcriptional addiction of ATC cells resulting in evolving diverse oncogenic signaling for cancer cell survival. The transcriptional addiction has presented a huge challenge for effective targeting as shown by the failure of previous targeted therapies. However, an emerging notion is that many different oncogenic signaling pathways activated by multiple upstream driver mutations might ultimately converge on the transcriptional responses, which would provide an opportunity to target transcriptional regulators for treatment of ATC. Here, we review the current understanding of how genetic alterations in cancer distorted the transcription program, leading to acquisition of transcriptional addiction. We also highlight recent findings from studies aiming to exploit the opportunity for targeting transcription regulators as potential therapeutics for ATC.
Collapse
Affiliation(s)
- Woo Kyung Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Davidson CD, Gillis NE, Carr FE. Thyroid Hormone Receptor Beta as Tumor Suppressor: Untapped Potential in Treatment and Diagnostics in Solid Tumors. Cancers (Basel) 2021; 13:4254. [PMID: 34503062 PMCID: PMC8428233 DOI: 10.3390/cancers13174254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/07/2023] Open
Abstract
There is compelling evidence that the nuclear receptor TRβ, a member of the thyroid hormone receptor (TR) family, is a tumor suppressor in thyroid, breast, and other solid tumors. Cell-based and animal studies reveal that the liganded TRβ induces apoptosis, reduces an aggressive phenotype, decreases stem cell populations, and slows tumor growth through modulation of a complex interplay of transcriptional networks. TRβ-driven tumor suppressive transcriptomic signatures include repression of known drivers of proliferation such as PI3K/Akt pathway, activation of novel signaling such as JAK1/STAT1, and metabolic reprogramming in both thyroid and breast cancers. The presence of TRβ is also correlated with a positive prognosis and response to therapeutics in BRCA+ and triple-negative breast cancers, respectively. Ligand activation of TRβ enhances sensitivity to chemotherapeutics. TRβ co-regulators and bromodomain-containing chromatin remodeling proteins are emergent therapeutic targets. This review considers TRβ as a potential biomolecular diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Cole D. Davidson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (C.D.D.); (N.E.G.)
- University of Vermont Cancer Center, Burlington, VT 05401, USA
| | - Noelle E. Gillis
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (C.D.D.); (N.E.G.)
- University of Vermont Cancer Center, Burlington, VT 05401, USA
| | - Frances E. Carr
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (C.D.D.); (N.E.G.)
- University of Vermont Cancer Center, Burlington, VT 05401, USA
| |
Collapse
|
9
|
Cui B, Xiao X, Wang J, Wang H, Wu C, Yan Y, Zheng J, Wang J, Zong Y, Zhang Y, Hui R, Gerdes AM, Wang Y. Low THRB (thyroid hormone receptor beta) Promoter Methylation Levels in Peripheral Blood Leukocytes Induced By Systematic Inflammation Are Involved in Low Thyroid Hormone Function in Metabolic Syndrome. Hypertension 2021; 78:1005-1015. [PMID: 34397273 DOI: 10.1161/hypertensionaha.121.17847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Bing Cui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| | - Xiao Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| | - Jin'e Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| | - Hongrui Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| | - Cunjin Wu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| | - Yupeng Yan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| | - Jun Zheng
- Rizhao Port Hospital, Rizhao, Shandong, China (J.Z., JingJun Wang)
| | - JingJun Wang
- Rizhao Port Hospital, Rizhao, Shandong, China (J.Z., JingJun Wang)
| | - Yuru Zong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| | - Yu Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| | - A Martin Gerdes
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.).,Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, New York (A.M.G.)
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| |
Collapse
|
10
|
The Genomic Landscape of Thyroid Cancer Tumourigenesis and Implications for Immunotherapy. Cells 2021; 10:cells10051082. [PMID: 34062862 PMCID: PMC8147376 DOI: 10.3390/cells10051082] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Thyroid cancer is the most prevalent endocrine malignancy that comprises mostly indolent differentiated cancers (DTCs) and less frequently aggressive poorly differentiated (PDTC) or anaplastic cancers (ATCs) with high mortality. Utilisation of next-generation sequencing (NGS) and advanced sequencing data analysis can aid in understanding the multi-step progression model in the development of thyroid cancers and their metastatic potential at a molecular level, promoting a targeted approach to further research and development of targeted treatment options including immunotherapy, especially for the aggressive variants. Tumour initiation and progression in thyroid cancer occurs through constitutional activation of the mitogen-activated protein kinase (MAPK) pathway through mutations in BRAF, RAS, mutations in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway and/or receptor tyrosine kinase fusions/translocations, and other genetic aberrations acquired in a stepwise manner. This review provides a summary of the recent genetic aberrations implicated in the development and progression of thyroid cancer and implications for immunotherapy.
Collapse
|
11
|
Bolf EL, Gillis NE, Davidson CD, Rodriguez PD, Cozzens L, Tomczak JA, Frietze S, Carr FE. Thyroid Hormone Receptor Beta Induces a Tumor-Suppressive Program in Anaplastic Thyroid Cancer. Mol Cancer Res 2020; 18:1443-1452. [PMID: 32554601 PMCID: PMC7541631 DOI: 10.1158/1541-7786.mcr-20-0282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/24/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Abstract
The thyroid hormone receptor beta (TRβ), a key regulator of cellular growth and differentiation, is frequently dysregulated in cancers. Diminished expression of TRβ is noted in thyroid, breast, and other solid tumors and is correlated with more aggressive disease. Restoration of TRβ levels decreased tumor growth supporting the concept that TRβ could function as a tumor suppressor. Yet, the TRβ tumor suppression transcriptome is not well delineated and the impact of TRβ is unknown in aggressive anaplastic thyroid cancer (ATC). Here, we establish that restoration of TRβ expression in the human ATC cell line SW1736 (SW-TRβ) reduces the aggressive phenotype, decreases cancer stem cell populations and induces cell death in a T3-dependent manner. Transcriptomic analysis of SW-TRβ cells via RNA sequencing revealed distinctive expression patterns induced by ligand-bound TRβ and revealed novel molecular signaling pathways. Of note, liganded TRβ repressed multiple nodes in the PI3K/AKT pathway, induced expression of thyroid differentiation markers, and promoted proapoptotic pathways. Our results further revealed the JAK1-STAT1 pathway as a novel, T3-mediated, antitumorigenic pathway that can be activated in additional ATC lines. These findings elucidate a TRβ-driven tumor suppression transcriptomic signature, highlight unexplored therapeutic options for ATC, and support TRβ activation as a promising therapeutic option in cancers. IMPLICATIONS: TRβ-T3 induced a less aggressive phenotype and tumor suppression program in anaplastic thyroid cancer cells revealing new potential therapeutic targets.
Collapse
Affiliation(s)
- Eric L Bolf
- Department of Pharmacology, Larner College of Medicine, Burlington, Vermont
- University of Vermont Cancer Center, Burlington, Vermont
| | - Noelle E Gillis
- Department of Pharmacology, Larner College of Medicine, Burlington, Vermont
- University of Vermont Cancer Center, Burlington, Vermont
| | - Cole D Davidson
- Department of Pharmacology, Larner College of Medicine, Burlington, Vermont
- University of Vermont Cancer Center, Burlington, Vermont
| | - Princess D Rodriguez
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Lauren Cozzens
- Department of Pharmacology, Larner College of Medicine, Burlington, Vermont
| | - Jennifer A Tomczak
- Department of Pharmacology, Larner College of Medicine, Burlington, Vermont
| | - Seth Frietze
- University of Vermont Cancer Center, Burlington, Vermont
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Frances E Carr
- Department of Pharmacology, Larner College of Medicine, Burlington, Vermont.
- University of Vermont Cancer Center, Burlington, Vermont
| |
Collapse
|
12
|
Qu M, Wan S, Ren B, Wu H, Liu L, Shen H. Association between TSHR gene methylation and papillary thyroid cancer: a meta-analysis. Endocrine 2020; 69:508-515. [PMID: 32279226 DOI: 10.1007/s12020-020-02284-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 01/11/2023]
Abstract
PURPOSE To explore the association between the thyroid stimulating hormone receptor (TSHR) gene methylation and human papillary thyroid cancer (PTC), as well as PTC related clinicopathological indicators. METHODS We searched PubMed, Embase, Medline, and Web of Science databases through computer for articles published in English on association between methylation of TSHR gene and PTC. Articles published in Chinese were searched in China National Knowledge Infrastructure (CNKI), WanFang, China Biology Medicine (CBM) disc, and WeiPu databases. Database search took place in the 4th week of October. RESULTS Totally 914 samples from 14 case-control studies were included in our meta-analysis. The methylation rate of TSHR gene in PTC group was significantly greater than that in control group (OR = 6.45, 95% CI 3.03, 13.71, P < 0.001). The subgroup analysis results showed the incidence of TSHR gene methylation was higher in autologous controls (OR = 16.39, 95% CI 8.83, 30.42, P < 0.001), Asian races (OR = 8.26, 95% CI 3.54, 19.23, P < 0.001), and Chinese (OR = 11.40, 95% CI 5.56, 23.39, P < 0.001). Hierarchical analysis of PTC related clinicopathological indicators showed that TSHR gene methylation rate are higher in PTC patients over 45 years (OR = 1.65, 95% CI 1.07, 2.55, P < 0.05) and lymph node metastasis (OR = 5.36, 95% CI 1.54, 18.67, P < 0.01). In addition, the occurrence of TSHR gene methylation had also been shown to be related to the clinical stage (OR = 0.23, 95% CI 0.07, 0.70, P < 0.05) and size (OR = 0.19, 95% CI 0.11, 0.32, P < 0.01) of tumors. The result of sensitivity analysis showed the combined results of the studies included in the meta-analysis were fairly stable. Begg's and Egger's tests also suggested that there was no significance publication bias (P > 0.1). CONCLUSIONS The rate of TSHR gene methylation is higher in PTC and it may be associated with the pathogenesis of human PTC, suggesting that TSHR gene may be a candidate marker for PTC diagnosis. In addition, the occurrence of TSHR gene methylation in PTC patients is closely related to age, lymph node metastasis, clinical stage, and tumor size, suggesting that TSHR gene may be used as an index to judge the severity of PTC.
Collapse
Affiliation(s)
- Mengying Qu
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Siyuan Wan
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Department of Preventive Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Bingxuan Ren
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Huaiyong Wu
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lixiang Liu
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongmei Shen
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
13
|
Lee WK, Kim WG, Fozzatti L, Park S, Zhao L, Willingham MC, Lonard D, O’Malley BW, Cheng SY. Steroid receptor coactivator-3 as a target for anaplastic thyroid cancer. Endocr Relat Cancer 2020; 27:209-220. [PMID: 31977311 PMCID: PMC7326649 DOI: 10.1530/erc-19-0482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022]
Abstract
Anaplastic thyroid carcinoma (ATC) is an aggressive malignancy without effective therapeutic options to improve survival. Steroid receptor coactivator-3 (SRC-3) is a transcriptional coactivator whose amplification and/or overexpression has been identified in many cancers. In this study, we explored the expression of SRC-3 in ATCs and the effects of a new class of SRC-3 inhibitor-2 (SI-2) in human ATC cells (THJ-11T and THJ-16T cells) and mouse xenograft models to assess therapeutic potential of SI-2 for the treatment of ATC. SRC-3 protein abundance was significantly higher in human ATC tissue samples and ATC cells than in differentiated thyroid carcinomas or normal controls. SI-2 treatment effectively reduced the SRC-3 expression in both ATC cells and ATC xenograft tumors induced by these cells. Cancer cell survival in ATC cells and tumor growth in xenograft tumors were significantly reduced by SI-2 treatment through induction of cancer cell apoptosis and cell cycle arrest. SI-2 also reduced cancer stem-like cells as shown by an inhibition of tumorsphere formation, ALDH activity, and expression of stem cell markers in ATC. These findings indicate that SRC-3 is a potential therapeutic target for treatment of ATC patients and that SI-2 is a potent and promising candidate for a new therapeutic agent.
Collapse
Affiliation(s)
- Woo Kyung Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4264, USA
| | - Won Gu Kim
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4264, USA
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Laura Fozzatti
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4264, USA
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sunmi Park
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4264, USA
| | - Li Zhao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4264, USA
| | - Mark C. Willingham
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4264, USA
| | - David Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4264, USA
| |
Collapse
|
14
|
Zafon C, Gil J, Pérez-González B, Jordà M. DNA methylation in thyroid cancer. Endocr Relat Cancer 2019; 26:R415-R439. [PMID: 31035251 DOI: 10.1530/erc-19-0093] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
In recent years, cancer genomics has provided new insights into genetic alterations and signaling pathways involved in thyroid cancer. However, the picture of the molecular landscape is not yet complete. DNA methylation, the most widely studied epigenetic mechanism, is altered in thyroid cancer. Recent technological advances have allowed the identification of novel differentially methylated regions, methylation signatures and potential biomarkers. However, despite recent progress in cataloging methylation alterations in thyroid cancer, many questions remain unanswered. The aim of this review is to comprehensively examine the current knowledge on DNA methylation in thyroid cancer and discuss its potential clinical applications. After providing a general overview of DNA methylation and its dysregulation in cancer, we carefully describe the aberrant methylation changes in thyroid cancer and relate them to methylation patterns, global hypomethylation and gene-specific alterations. We hope this review helps to accelerate the use of the diagnostic, prognostic and therapeutic potential of DNA methylation for the benefit of thyroid cancer patients.
Collapse
Affiliation(s)
- Carles Zafon
- Diabetes and Metabolism Research Unit (VHIR) and Department of Endocrinology, University Hospital Vall d'Hebron and Autonomous University of Barcelona, Barcelona, Spain
- Consortium for the Study of Thyroid Cancer (CECaT), Catalonia, Spain
| | - Joan Gil
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| | - Beatriz Pérez-González
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| | - Mireia Jordà
- Consortium for the Study of Thyroid Cancer (CECaT), Catalonia, Spain
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| |
Collapse
|
15
|
Fritz AJ, Gillis NE, Gerrard DL, Rodriguez PD, Hong D, Rose JT, Ghule PN, Bolf EL, Gordon JA, Tye CE, Boyd JR, Tracy KM, Nickerson JA, van Wijnen AJ, Imbalzano AN, Heath JL, Frietze SE, Zaidi SK, Carr FE, Lian JB, Stein JL, Stein GS. Higher order genomic organization and epigenetic control maintain cellular identity and prevent breast cancer. Genes Chromosomes Cancer 2019; 58:484-499. [PMID: 30873710 DOI: 10.1002/gcc.22731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
Cells establish and sustain structural and functional integrity of the genome to support cellular identity and prevent malignant transformation. In this review, we present a strategic overview of epigenetic regulatory mechanisms including histone modifications and higher order chromatin organization (HCO) that are perturbed in breast cancer onset and progression. Implications for dysfunctions that occur in hormone regulation, cell cycle control, and mitotic bookmarking in breast cancer are considered, with an emphasis on epithelial-to-mesenchymal transition and cancer stem cell activities. The architectural organization of regulatory machinery is addressed within the contexts of translating cancer-compromised genomic organization to advances in breast cancer risk assessment, diagnosis, prognosis, and identification of novel therapeutic targets with high specificity and minimal off target effects.
Collapse
Affiliation(s)
- A J Fritz
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - N E Gillis
- University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - D L Gerrard
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - P D Rodriguez
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - D Hong
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - J T Rose
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - P N Ghule
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - E L Bolf
- University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - J A Gordon
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - C E Tye
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J R Boyd
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - K M Tracy
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J A Nickerson
- Division of Genes and Development of the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - A J van Wijnen
- Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic Minnesota, Rochester, Minnesota
| | - A N Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - J L Heath
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont.,Department of Pediatrics, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - S E Frietze
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - S K Zaidi
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - F E Carr
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - J B Lian
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J L Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - G S Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| |
Collapse
|
16
|
Canipari R, Mangialardo C, Di Paolo V, Alfei F, Ucci S, Russi V, Santaguida MG, Virili C, Segni M, Misiti S, Centanni M, Verga Falzacappa C. Thyroid hormones act as mitogenic and pro survival factors in rat ovarian follicles. J Endocrinol Invest 2019; 42:271-282. [PMID: 29934772 DOI: 10.1007/s40618-018-0912-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/11/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Thyroid disorders are clinically associated with impaired fertility in women, and these abnormalities can be improved by restoring the euthyroid state. The exact mechanisms of thyroid effect on female fertility are not well known; however, it is conceivable that thyroid hormones (THs) might act on ovarian physiology via receptors in granulosa cells. This work is aimed at evaluating the effects of THs on non-tumoral granulosa cells and follicles. METHODS Freshly isolated rat ovarian follicles and granulosa cells were exposed to T3 or T4 (THs). Cell growth and viability were evaluated by cell counting and the MTT assay, respectively, follicle growth was evaluated by volume measurements. Apoptosis was evaluated by the TUNEL assay and active Caspase 3 staining. rGROV cells were exposed to T3, and apoptosis was induced by serum deprivation. Bcl2, Bcl-2-associated X protein (BAX), Akt and pAkt expression were evaluated by western blot. RESULTS T3 induced a 40% increase in follicle volume (after 7 days). This increase was presumably due to the observed decrease (33%) in the apoptotic rate of the granulosa cell population. Both T3 and T4 caused a dose-dependent increase in rat granulosa cell number and viability. In addition, THs decreased the cell apoptotic rate in a dose-dependent manner. In both conditions, T3 appeared to be more efficient. In rGROV cells, 100 nM T3 induced cell growth and, in the absence of growth factors, reduced cell apoptosis by 40%, downregulating Caspase 3 and BAX. This effect was associated with an increase in pAkt levels. The involvement of the PI3 K pathway was confirmed by the ability of the PI3 K specific inhibitor (LY-294,002) to abolish T3 pro-survival action. CONCLUSIONS THs influence cell survival of ovarian granulosa cells. This effect likely contributes to the TH-induced follicle volume increase.
Collapse
Affiliation(s)
- R Canipari
- DAHFMO, Unit of Histology and Medical Embryology, Sapienza, University of Rome, Rome, Italy
| | - C Mangialardo
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza, University of Rome, Rome, Italy
| | - V Di Paolo
- DAHFMO, Unit of Histology and Medical Embryology, Sapienza, University of Rome, Rome, Italy
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - F Alfei
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza, University of Rome, Rome, Italy
| | - S Ucci
- Pasteur Institute of Rome, Rome, Italy
| | - V Russi
- Pasteur Institute of Rome, Rome, Italy
| | - M G Santaguida
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza, University of Rome, Rome, Italy
| | - C Virili
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza, University of Rome, Rome, Italy
| | - M Segni
- Department of Pediatrics and Pediatric Neuropsychiatry, Sapienza, University of Rome, Rome, Italy
| | - S Misiti
- Department of Experimental Medicine, Sapienza, University of Rome, Rome, Italy
| | - M Centanni
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza, University of Rome, Rome, Italy
| | - C Verga Falzacappa
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza, University of Rome, Rome, Italy.
| |
Collapse
|
17
|
Lin HY, Chen YR, Li ZL, Shih YJ, Davis P, Whang-Peng J, Wang K. Thyroid hormone, PD-L1, and cancer. JOURNAL OF CANCER RESEARCH AND PRACTICE 2019. [DOI: 10.4103/jcrp.jcrp_26_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Zarkesh M, Zadeh-Vakili A, Azizi F, Foroughi F, Akhavan MM, Hedayati M. Altered Epigenetic Mechanisms in Thyroid Cancer Subtypes. Mol Diagn Ther 2018; 22:41-56. [PMID: 28986854 DOI: 10.1007/s40291-017-0303-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thyroid carcinoma (TC) is the most frequent malignant neoplasm of the endocrine system. Molecular methods for diagnosis of invasive thyroid disease can be effectively adopted. Epigenetic factors play an important role in the diversity patterns of gene expression and the phenotypic and biological characteristics of TC subtypes. We aimed to review epigenetic changes in the main subtypes of TC, along with a presentation of the methods that have examined these changes, and active clinical trials for the treatment of advanced TCs targeting epigenetic changes. A literature analysis was performed in MEDLINE using PubMed, Elsevier, and Google Scholar for studies published up to 2016, using the keywords: "Epigenetic alterations" OR "Epigenetic changes", "thyroid cancers", "papillary thyroid cancer", "medullary thyroid cancer", "follicular thyroid cancer", and "anaplastic thyroid cancer", which resulted in 310 articles in English. All related abstracts were reviewed and studies were included that were published in English, had available full text, and determined the details of the methods and materials associated with the epigenetic patterns of TC and its subtypes (100 articles). Analysis of epigenetic alterations in TC subtypes helps to identify pathogenesis and can play an important role in the classification and diagnosis of tumors. Epigenetic mechanisms, especially aberrant methylation of DNA and microRNAs (miRs), are likely to play an important role in thyroid tumorigenesis. Further studies are required to elucidate the role of histone modification mechanisms in TC development.
Collapse
Affiliation(s)
- Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences of Shahid Beheshti University of Medical Sciences, 19395-4763, Tehran, Iran
| | - Azita Zadeh-Vakili
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences of Shahid Beheshti University of Medical Sciences, 19395-4763, Tehran, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough Foroughi
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maziar Mohammad Akhavan
- Skin Research Center School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences of Shahid Beheshti University of Medical Sciences, 19395-4763, Tehran, Iran.
| |
Collapse
|
19
|
Thyroid hormone receptor beta-1 expression in early breast cancer: a validation study. Breast Cancer Res Treat 2018; 171:709-717. [DOI: 10.1007/s10549-018-4844-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022]
|
20
|
Gillis NE, Taber TH, Bolf EL, Beaudet CM, Tomczak JA, White JH, Stein JL, Stein GS, Lian JB, Frietze S, Carr FE. Thyroid Hormone Receptor β Suppression of RUNX2 Is Mediated by Brahma-Related Gene 1-Dependent Chromatin Remodeling. Endocrinology 2018; 159:2484-2494. [PMID: 29750276 PMCID: PMC6692870 DOI: 10.1210/en.2018-00128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Thyroid hormone receptor β (TRβ) suppresses tumor growth through regulation of gene expression, yet the associated TRβ-mediated changes in chromatin assembly are not known. The chromatin ATPase brahma-related gene 1 (BRG1; SMARCA4), a key component of chromatin-remodeling complexes, is altered in many cancers, but its role in thyroid tumorigenesis and TRβ-mediated gene expression is unknown. We previously identified the oncogene runt-related transcription factor 2 (RUNX2) as a repressive target of TRβ. Here, we report differential expression of BRG1 in nonmalignant and malignant thyroid cells concordant with TRβ. BRG1 and TRβ have similar nuclear distribution patterns and significant colocalization. BRG1 interacts with TRβ, and together, they are part of the regulatory complex at the RUNX2 promoter. Loss of BRG1 increases RUNX2 levels, whereas reintroduction of TRβ and BRG1 synergistically decreases RUNX2 expression. RUNX2 promoter accessibility corresponded to RUNX2 expression levels. Inhibition of BRG1 activity increased accessibility of the RUNX2 promoter and corresponding expression. Our results reveal a mechanism of TRβ repression of oncogenic gene expression: TRβ recruitment of BRG1 induces chromatin compaction and diminishes RUNX2 expression. Therefore, BRG1-mediated chromatin remodeling may be obligatory for TRβ transcriptional repression and tumor suppressor function in thyroid tumorigenesis.
Collapse
Affiliation(s)
- Noelle E Gillis
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Thomas H Taber
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Eric L Bolf
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Caitlin M Beaudet
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jennifer A Tomczak
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jeffrey H White
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Janet L Stein
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Gary S Stein
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jane B Lian
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Seth Frietze
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Medical Laboratory Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Frances E Carr
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Correspondence: Frances E. Carr, PhD, Department of Pharmacology, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, Vermont 05405. E-mail:
| |
Collapse
|
21
|
Peng X, Zhou Y, Sun Y, Song W, Meng X, Zhao C, Zhao R. Overexpression of modified human TRβ1 suppresses the growth of hepatocarcinoma SK-hep1 cells in vitro and in xenograft models. Mol Cell Biochem 2018; 449:207-218. [PMID: 29679278 PMCID: PMC6223806 DOI: 10.1007/s11010-018-3357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/16/2018] [Indexed: 11/25/2022]
Abstract
Association studies suggest that TRβ1 functions as a tumor suppressor. Thyroid hormone receptors (TRs) mediate transcriptional responses through a highly conserved DNA-binding domain (DBD). We previously constructed an artificially modified human TRβ1 (m-TRβ1) via the introduction of a 108-bp exon sequence into the corresponding position of the wild-type human TRβ1 (TRβ1) DBD. Studies confirmed that m-TRβ1 was functional and could inhibit the proliferation of breast cancer MDA-MB-468 cells in vitro. To understand the role of m-TRβ1 in liver tumor development, we adopted a gain-of-function approach by stably expressing TRβ (m-TRβ1 and TRβ1) genes in a human hepatocarcinoma cell line, SK-hep1 (without endogenous TRβ), and then evaluated the effects of the expressed TRβ on cancer cell proliferation, migration, and tumor growth in cell-based studies and xenograft models. In the presence of 3,5,3-l-triiodothyronine (T3), the expression of TRβ in SK-hep1 cells inhibited cancer cell proliferation and impeded tumor cell migration through the up-regulation of 4-1BB, Caspase-3, and Bak gene expression; down-regulation of Bcl-2 gene expression; and activation of the Caspase-3 protein. TRβ expression in SK-hep1 led to less tumor growth in xenograft models. Additionally, the anti-tumor effect of m-TRβ1 was stronger than that of TRβ1. These data indicate that m-TRβ1 can act as a tumor suppressor in hepatocarcinoma and its role was significantly better than that of TRβ1.
Collapse
Affiliation(s)
- Xiaoxiang Peng
- Department of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
- Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yuntao Zhou
- Central Hospital of Zibo, Zibo, 255020, Shandong, China
| | - Yanli Sun
- Department of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
- Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China
| | - Wei Song
- Department of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
- Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiangying Meng
- Department of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
- Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China
| | - Chunling Zhao
- Key Laboratory of Biological Medicine in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Ronglan Zhao
- Department of Laboratory Medicine, Weifang Medical University, Weifang, 261053, Shandong, China.
- Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
22
|
Stephen JK, Chen KM, Merritt J, Chitale D, Divine G, Worsham MJ. Methylation markers differentiate thyroid cancer from benign nodules. J Endocrinol Invest 2018; 41:163-170. [PMID: 28612287 DOI: 10.1007/s40618-017-0702-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/26/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE The incidence of thyroid cancer (TC) is increasing. Cytology by itself cannot distinguish TC from some benign nodules especially in certain subtypes of TC. Our immediate goal is to identify DNA methylation markers for early detection of TC and to molecularly differentiate TC subtypes from benign nodules. METHODS Promoter methylation status of 21 candidate genes was examined on formalin-fixed paraffin-embedded tissue (FFPE) utilizing quantitative methylation-specific polymerase chain reaction (QMSP) in a retrospective cohort of 329 patients (56% white, 29% African American, 61% female) comprising 71 normal thyroid, 83 benign nodules [follicular adenomas (FA)], 90 follicular TC (FTC) and 85 papillary TC (PTC). All genes were analyzed individually (Kruskal-Wallis and Wilcoxon rank sum tests) and in combination (logistic regression models) to identify genes whose methylation levels might best separate groups. RESULTS Combination gene panels TPO and UCHL1 (ROC = 0.607, sensitivity 78%) discriminated FTC from FA, and RASSF1 and TPO (ROC = 0.881, sensitivity 78%) discriminated FTC from normal. Methylation of TSHR distinguished PTC from FTC (ROC = 0.701, sensitivity 84%) and PTC from FA (ROC = 0.685, sensitivity 70%). The six gene panel of TIMP3, RARB2, SERPINB5, RASSF1, TPO and TSHR, which differentiates PTC from normal thyroid, had the best combination sensitivity (91%) and specificity (81%) of the panels addressing discrimination of cancer tissue. CONCLUSIONS Aberrant gene methylation used in combination panels may be useful clinically in differentiating FTC and PTC from benign nodules. If confirmed in additional studies, these findings could help reduce the over diagnosis of thyroid cancer and surgeries related to over diagnosis.
Collapse
Affiliation(s)
- J K Stephen
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, 1 Ford Place, 1D-06, Detroit, MI, 48202, USA.
| | - K M Chen
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, 1 Ford Place, 1D-06, Detroit, MI, 48202, USA
| | - J Merritt
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, 1 Ford Place, 1D-06, Detroit, MI, 48202, USA
| | - D Chitale
- Department of Pathology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - G Divine
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - M J Worsham
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, 1 Ford Place, 1D-06, Detroit, MI, 48202, USA
| |
Collapse
|
23
|
Zhu X, Cheng SY. Analysis of Thyroid Tumorigenesis in Xenograft Mouse Model. Methods Mol Biol 2018; 1801:207-223. [PMID: 29892827 PMCID: PMC7971365 DOI: 10.1007/978-1-4939-7902-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Analysis of thyroid tumorigenesis in xenograft mouse model is important to study human thyroid cancer. Recent studies have made big strides toward understanding the molecular mechanisms by which thyroid hormone nuclear receptors (TR) act to maintain normal cellular functions in growth, differentiation, and development. Despite growing interest, the role of TR in oncogenesis remains to be fully elucidated. Two TR genes give rise to three major TR isoforms: TRα1, TRβ1, and TRβ2. These TR subtypes express in a tissue- and development-dependent manner. Research has been directed at understanding the mechanisms by which TR could mediate aberrant cellular signaling that contributes to oncogenesis, at dissecting possible distinct roles of TR isoforms in oncogenesis, and at the differential susceptibility of target tissues to the oncogenic actions of TR. This chapter gives a brief overview of the current undersatanding of known molecular oncogenic actions of TR. Here, we describe analysis of thyroid tumorigenesis used in interrogating the in vivo oncogenic actions of TR.
Collapse
Affiliation(s)
- Xuguang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
BRAF-Oncogene-Induced Senescence and the Role of Thyroid-Stimulating Hormone Signaling in the Progression of Papillary Thyroid Carcinoma. Discov Oncol 2017; 9:1-11. [PMID: 29209896 DOI: 10.1007/s12672-017-0315-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/19/2017] [Indexed: 01/28/2023] Open
Abstract
Oncogene-induced senescence (OIS) explains the phenomenon of cellular senescence triggered by the action of oncogenes. It is a mechanism adopted by a cell to inhibit progression of benign tumors into malignancy, occurs in premalignant lesions, and is almost never present in malignant lesions. BRAF mutations occur in about 40-45% of all papillary thyroid carcinomas (PTCs) and of which 99.7% is the BRAFV600E mutation. A unique phenotype of the BRAFV600E mutation is the upregulation of the thyroid-stimulating hormone receptor (TSHR) on thyrocyte membranes. Despite the overexpression of the receptor, BRAFV600E cells undergo cell cycle arrest leading to OIS via a negative feedback signaling mechanism. A simultaneous increase in serum thyroid-stimulating hormone (TSH) in response to hypothyroidism (common in autoimmune diseases such as Hashimoto's thyroiditis) would cause senescent tumor cells to overcome OIS and proceed towards malignancy, hence showing the importance of TSH/TSHR signaling in the development of PTCs. Increase in TSH/TSHR signaling triggers an increase in levels of downstream enzymes such as manganese superoxide dismutase (MnSOD) and dual-specific phosphatase 6 (DUSP6) which eventually results in the production of oncogenic proteins such as c-Myc. Therefore, the detection of these genetic alterations as effective biomarkers for premalignant lesions of PTC is important in clinical settings and techniques such as polymerase chain reaction-mediated restriction fragment length polymorphism (PCR-RFLP) and real-time PCR can be used to detect the BRAFV600E point mutation and overexpression of TSHR, MnSOD, and DUSP6, respectively.
Collapse
|
25
|
Zhu X, Cheng SY. Epigenetic Modifications: Novel Therapeutic Approach for Thyroid Cancer. Endocrinol Metab (Seoul) 2017; 32:326-331. [PMID: 28956361 PMCID: PMC5620028 DOI: 10.3803/enm.2017.32.3.326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022] Open
Abstract
The incidence of thyroid cancer is growing the fastest among all cancers in the United States, especially in women. The number of patients with thyroid neoplasm is part of an even larger number of patients who often need to undergo an operation to exclude a cancer diagnosis. While differentiated thyroid cancer (papillary thyroid cancer and follicular thyroid cancer) accounts for most cases of thyroid cancer and has a relatively good prognosis, effective treatments for patients with de-differentiated and anaplastic thyroid cancer are still gravely needed. Despite progress in the identification of genetic changes in thyroid cancer, the impact of aberrant epigenetic alterations on thyroid cancer remains to be fully elucidated. Understanding of the roles of epigenetic changes in thyroid cancer could open new opportunities for the identification of innovative molecular targets for novel treatment modalities, especially for anaplastic thyroid cancer for which treatment is very limited. This article briefly reviews the studies that exemplify the potential for and promise of using epigenetic regulators in the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Xuguang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheue Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Perra A, Plateroti M, Columbano A. T3/TRs axis in hepatocellular carcinoma: new concepts for an old pair. Endocr Relat Cancer 2016; 23:R353-69. [PMID: 27353037 DOI: 10.1530/erc-16-0152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide, and its burden is expected to further increase in the next years. Chronic inflammation, induced by multiple viruses or metabolic alterations, and epigenetic and genetic modifications, cooperate in cancer development via a combination of common and distinct aetiology-specific pathways. In spite of the advances of classical therapies, the prognosis of this neoplasm has not considerably improved over the past few years. The advent of targeted therapies and the approval of the systemic treatment of advanced HCC with the kinase inhibitor sorafenib have provided some hope for the future. However, the benefits obtained from this treatment are still disappointing, as it extends the median life expectancy of patients by only few months. It is thus mandatory to find alternative effective treatments. Although the role played by thyroid hormones (THs) and their nuclear receptors (TRs) in human cancer is still unclear, mounting evidence indicates that they behave as oncosuppressors in HCC. However, the molecular mechanisms by which they exert this effect and the consequence of their activation following ligand binding on HCC progression remain elusive. In this review, we re-evaluate the existing evidence of the role of TH/TRs in HCC development; we will also discuss how TR alterations could affect fundamental biological processes, such as hepatocyte proliferation and differentiation, and consequently HCC progression. Finally, we will discuss if and how TRs can be foreseen as therapeutic targets in HCC and whether selective TR modulation by TH analogues may hold promise for HCC treatment.
Collapse
Affiliation(s)
- Andrea Perra
- Department of Biomedical SciencesUniversity of Cagliari, Cagliari, Italy
| | - Michelina Plateroti
- Cancer Research Center of Lyon INSERM U1052CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la Recherche, Lyon, France
| | - Amedeo Columbano
- Department of Biomedical SciencesUniversity of Cagliari, Cagliari, Italy
| |
Collapse
|
27
|
Carr FE, Tai PWL, Barnum MS, Gillis NE, Evans KG, Taber TH, White JH, Tomczak JA, Jaworski DM, Zaidi SK, Lian JB, Stein JL, Stein GS. Thyroid Hormone Receptor-β (TRβ) Mediates Runt-Related Transcription Factor 2 (Runx2) Expression in Thyroid Cancer Cells: A Novel Signaling Pathway in Thyroid Cancer. Endocrinology 2016; 157:3278-92. [PMID: 27253998 PMCID: PMC4967127 DOI: 10.1210/en.2015-2046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dysregulation of the thyroid hormone receptor (TR)β is common in human cancers. Restoration of functional TRβ delays tumor progression in models of thyroid and breast cancers implicating TRβ as a tumor suppressor. Conversely, aberrant expression of the runt-related transcription factor 2 (Runx2) is established in the progression and metastasis of thyroid, breast, and other cancers. Silencing of Runx2 diminishes tumor invasive characteristics. With TRβ as a tumor suppressor and Runx2 as a tumor promoter, a compelling question is whether there is a functional relationship between these regulatory factors in thyroid tumorigenesis. Here, we demonstrated that these proteins are reciprocally expressed in normal and malignant thyroid cells; TRβ is high in normal cells, and Runx2 is high in malignant cells. T3 induced a time- and concentration-dependent decrease in Runx2 expression. Silencing of TRβ by small interfering RNA knockdown resulted in a corresponding increase in Runx2 and Runx2-regulated genes, indicating that TRβ levels directly impact Runx2 expression and associated epithelial to mesenchymal transition molecules. TRβ specifically bound to 3 putative thyroid hormone-response element motifs within the Runx2-P1 promoter ((-)105/(+)133) as detected by EMSA and chromatin immunoprecipitation. TRβ suppressed Runx2 transcriptional activities, thus confirming TRβ regulation of Runx2 at functional thyroid hormone-response elements. Significantly, these findings indicate that a ratio of the tumor-suppressor TRβ and tumor-promoting Runx2 may reflect tumor aggression and serve as biomarkers in biopsy tissues. The discovery of this TRβ-Runx2 signaling supports the emerging role of TRβ as a tumor suppressor and reveals a novel pathway for intervention.
Collapse
Affiliation(s)
- Frances E Carr
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Phillip W L Tai
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Michael S Barnum
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Noelle E Gillis
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Katherine G Evans
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Thomas H Taber
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Jeffrey H White
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Jennifer A Tomczak
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Diane M Jaworski
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Sayyed K Zaidi
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Jane B Lian
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Janet L Stein
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Gary S Stein
- Departments of Pharmacology (F.E.C., M.S.B., N.E.G., K.G.E., T.H.T., J.H.W., J.A.T.), Biochemistry (P.W.L.T., S.K.Z., J.B.L., J.L.S., G.S.S.), and Neurological Sciences (D.M.J.), College of Medicine, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
28
|
Park JW, Zhao L, Willingham M, Cheng SY. Oncogenic mutations of thyroid hormone receptor β. Oncotarget 2016; 6:8115-31. [PMID: 25924236 PMCID: PMC4480739 DOI: 10.18632/oncotarget.3466] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/20/2015] [Indexed: 11/25/2022] Open
Abstract
The C-terminal frame-shift mutant of the thyroid hormone receptor TRβ1, PV, functions as an oncogene. An important question is whether the oncogenic activity of mutated TRβ1 is uniquely dependent on the PV mutated sequence. Using four C-terminal frame-shift mutants—PV, Mkar, Mdbs, and AM—we examined that region in the oncogenic actions of TRβ1 mutants. Remarkably, these C-terminal mutants induced similar growth of tumors in mouse xenograft models. Molecular analyses showed that they physically interacted with the p85α regulatory subunit of PI3K similarly in cells. In vitro GST-binding assay showed that they bound to the C-terminal Src-homology 2 (CSH2) of p85α with markedly higher avidity. The sustained association of mutants with p85α led to activation of the common PI3K-AKT-ERK/STAT3 signaling to promote cell proliferation and invasion and to inhibit apoptosis. Thus, these results argue against the oncogenic activity of PV being uniquely dependent on the PV mutated sequence. Rather, these four mutants could favor a C-terminal conformation that interacted with the CSH2 domain of p85α to initiate activation of PI3K to relay downstream signaling to promote tumorigenesis. Thus, we propose that the mutated C-terminal region of TRβ1 could function as an “onco-domain” and TRβ1 is a potential therapeutic target.
Collapse
Affiliation(s)
- Jeong Won Park
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Li Zhao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Willingham
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Master A, Wójcicka A, Giżewska K, Popławski P, Williams GR, Nauman A. A Novel Method for Gene-Specific Enhancement of Protein Translation by Targeting 5'UTRs of Selected Tumor Suppressors. PLoS One 2016; 11:e0155359. [PMID: 27171412 PMCID: PMC4865139 DOI: 10.1371/journal.pone.0155359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/27/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Translational control is a mechanism of protein synthesis regulation emerging as an important target for new therapeutics. Naturally occurring microRNAs and synthetic small inhibitory RNAs (siRNAs) are the most recognized regulatory molecules acting via RNA interference. Surprisingly, recent studies have shown that interfering RNAs may also activate gene transcription via the newly discovered phenomenon of small RNA-induced gene activation (RNAa). Thus far, the small activating RNAs (saRNAs) have only been demonstrated as promoter-specific transcriptional activators. FINDINGS We demonstrate that oligonucleotide-based trans-acting factors can also specifically enhance gene expression at the level of protein translation by acting at sequence-specific targets within the messenger RNA 5'-untranslated region (5'UTR). We designed a set of short synthetic oligonucleotides (dGoligos), specifically targeting alternatively spliced 5'UTRs in transcripts expressed from the THRB and CDKN2A suppressor genes. The in vitro translation efficiency of reporter constructs containing alternative TRβ1 5'UTRs was increased by up to more than 55-fold following exposure to specific dGoligos. Moreover, we found that the most folded 5'UTR has higher translational regulatory potential when compared to the weakly folded TRβ1 variant. This suggests such a strategy may be especially applied to enhance translation from relatively inactive transcripts containing long 5'UTRs of complex structure. SIGNIFICANCE This report represents the first method for gene-specific translation enhancement using selective trans-acting factors designed to target specific 5'UTR cis-acting elements. This simple strategy may be developed further to complement other available methods for gene expression regulation including gene silencing. The dGoligo-mediated translation-enhancing approach has the potential to be transferred to increase the translation efficiency of any suitable target gene and may have future application in gene therapy strategies to enhance expression of proteins including tumor suppressors.
Collapse
Affiliation(s)
- Adam Master
- The Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, 01-813, Warsaw, Poland
- BioTe21, Laboratory of Molecular Medical Biology, ul. Krolowej Jadwigi 33/3b, 30-209, Cracow, Poland
| | - Anna Wójcicka
- The Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, 01-813, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-089, Warsaw, Poland
- Genomic Medicine, Medical University of Warsaw, Zwirki i Wigury 61, 02-091, Warsaw, Poland
| | - Kamilla Giżewska
- BioTe21, Laboratory of Molecular Medical Biology, ul. Krolowej Jadwigi 33/3b, 30-209, Cracow, Poland
| | - Piotr Popławski
- The Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Graham R. Williams
- Molecular Endocrinology Group, Department of Medicine, Imperial College London, Hammersmith Campus, London, W12 0NN, United Kingdom
| | - Alicja Nauman
- The Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, 01-813, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-089, Warsaw, Poland
| |
Collapse
|
30
|
Jeon MJ, Kim WG, Lim S, Choi HJ, Sim S, Kim TY, Shong YK, Kim WB. Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells. Mol Cell Endocrinol 2016; 419:113-23. [PMID: 26463583 DOI: 10.1016/j.mce.2015.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/31/2015] [Accepted: 10/06/2015] [Indexed: 01/10/2023]
Abstract
The naturally occurring short-chain fatty acid, α-lipoic acid (ALA) is a powerful antioxidant which is clinically used for treatment of diabetic neuropathy. Recent studies suggested the possibility of ALA as a potential anti-cancer agent, because it could activate adenosine monophosphate activated protein kinase (AMPK) and inhibit transforming growth factor-β (TGFβ) pathway. In this study, we evaluate the effects of ALA on thyroid cancer cell proliferation, migration and invasion. We performed in vitro cell proliferation analysis using BCPAP, HTH-83, CAL-62 and FTC-133 cells. ALA suppressed thyroid cancer cell proliferation through activation of AMPK and subsequent down-regulation of mammalian target of rapamycin (mTOR)-S6 signaling pathway. Low-dose ALA, which had minimal effects on cell proliferation, also decreased cell migration and invasion of BCPAP, CAL-62 and HTH-83 cells. ALA inhibited epithelial mesenchymal transition (EMT) evidently by increase of E-cadherin and decreases of activated β-catenin, vimentin, snail, and twist in these cells. ALA suppressed TGFβ production and inhibited induction of p-Smad2 and twist by TGFβ1 or TGFβ2. These findings indicate that ALA reduces cancer cell migration and invasion through suppression of TGFβ production and inhibition of TGFβ signaling pathways in thyroid cancer cells. ALA also significantly suppressed tumor growth in mouse xenograft model using BCPAP and FTC-133 cells. This is the first study to show anti-cancer effect of ALA on thyroid cancer cells. ALA could be a potential therapeutic agent for treatment of advanced thyroid cancer, possibly as an adjuvant therapy with other systemic therapeutic agents.
Collapse
Affiliation(s)
- Min Ji Jeon
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Won Gu Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seonhee Lim
- Asan Institute of Life Sciences, Seoul, South Korea
| | | | - Soyoung Sim
- Asan Institute of Life Sciences, Seoul, South Korea
| | - Tae Yong Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young Kee Shong
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Won Bae Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
31
|
Huang Q, Fan J, Qian X, Lv Z, Zhang X, Han J, Wu F, Chen C, Du J, Guo M, Hu G, Jin Y. Retinoic acid-related orphan receptor C isoform 2 expression and its prognostic significance for non-small cell lung cancer. J Cancer Res Clin Oncol 2016; 142:263-72. [PMID: 26319393 DOI: 10.1007/s00432-015-2040-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/24/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Retinoic acid-related orphan receptor C isoform 2 (RORC2) is regarded as a pathogenic factor for autoimmune and inflammatory diseases and tumours. Previous studies have primarily focused on RORC2 expression in IL-17-producing immune cells but not in carcinoma cells; thus, little is known about the roles of RORC2 in the progression of human non-small cell lung cancer (NSCLC). In this study, we analysed the expression of RORC2 and its participation in tumour progression in NSCLC. METHODS RORC2 expression in NSCLC and adjacent normal lung tissues was assessed via quantitative real-time PCR (qRT-PCR) and immunohistochemistry. RORC2 expression in NSCLC cell lines was examined by qRT-PCR, Western blotting and flow cytometry. The effects of inhibiting RORC2 activity on the proliferation of NSCLC cells were evaluated. The prognostic value of RORC2 for NSCLC was revealed based on Kaplan-Meier analysis. RESULTS High RORC2 expression was observed in lung cancer tissues and was significantly related to age (p = 0.013) and regional lymph node metastasis (p = 0.009). RORC2 expression was higher in the A549, H460, SPC-A1 and H1299 cell lines than in a control cell line. In addition, cell proliferation was decreased in NSCLC cells upon the blocking of RORC2 activity using a specific inhibitor. High RORC2 expression correlated with worse overall survival (p = 0.030). CONCLUSIONS Our study suggests that RORC2 is expressed by lung cancer cells and greatly contributes to tumour cell proliferation and overall survival in NSCLC. These findings strongly imply that RORC2 is associated with tumour progression.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/mortality
- Adenocarcinoma/secondary
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Adenosquamous/genetics
- Carcinoma, Adenosquamous/metabolism
- Carcinoma, Adenosquamous/mortality
- Carcinoma, Adenosquamous/secondary
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/metabolism
- Carcinoma, Large Cell/mortality
- Carcinoma, Large Cell/secondary
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/secondary
- Cell Proliferation
- Female
- Flow Cytometry
- Follow-Up Studies
- Humans
- Immunoenzyme Techniques
- Lung/metabolism
- Lung/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Lymphatic Metastasis
- Male
- Middle Aged
- Neoplasm Staging
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Prognosis
- Protein Isoforms
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Qi Huang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Jinshuo Fan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Xin Qian
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
- Department of Respiratory Medicine, Taihe Hospital, Hubei University of Medicine, No. 98 South Renmin Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Zhilei Lv
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Xiuxiu Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Jieli Han
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Caiyun Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
- Department of Respiratory, the First Hospital of Xi'an City, Xi'an, 710002, Shanxi, People's Republic of China
| | - Jiao Du
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
- Zhongshan Hospital, Xiamen University, 201-209 Hubin Road, Xiamen, 361004, Fujian, People's Republic of China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Guorong Hu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
32
|
Rosignolo F, Maggisano V, Sponziello M, Celano M, Di Gioia CRT, D'Agostino M, Giacomelli L, Verrienti A, Dima M, Pecce V, Durante C. Reduced expression of THRβ in papillary thyroid carcinomas: relationship with BRAF mutation, aggressiveness and miR expression. J Endocrinol Invest 2015; 38:1283-9. [PMID: 26003825 DOI: 10.1007/s40618-015-0309-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/10/2015] [Indexed: 12/29/2022]
Abstract
PURPOSE Down-regulation of thyroid hormone receptor beta (THRβ) gene has been described in several human malignancies, including thyroid cancer. In this study, we analyzed THRβ mRNA expression in surgical specimens from a series of human papillary thyroid carcinomas (PTCs), characterized by their genotypic and clinical-biological features. METHODS Thirty-six PTCs were divided into two groups according to the 2009 American Thyroid Association risk classification (17 low, 19 intermediate), and each group was divided into subgroups based on the presence or absence of the BRAFV600E mutation (21 BRAF mutated, 15 BRAF wild type). Gene expression was analyzed using fluidic cards containing probes and primers specific for the THRβ gene, as well as for genes of thyroperoxidase (TPO), sodium/iodide symporter (NIS), thyroglobulin (Tg) and thyroid stimulating hormone receptor (TSH-R) and for some miRNAs involved in thyroid neoplasia and targeting THRβ. The mRNA levels of each tumor tissue were compared with their correspondent normal counterpart. RESULTS THRβ transcript was down-regulated in all PTCs examined. No significant differences were found between intermediate- vs low-risk PTCs patients, and BRAF-mutated vs BRAF wild-type groups. THRβ expression was directly correlated with NIS, TPO, Tg and TSH-R, and inversely correlated to miR-21, -146a, -181a and -221 expression. CONCLUSIONS Our results demonstrate that down-regulation of THRβ is a common feature of PTCs. While it is not associated with a more aggressive phenotype of PTC, it correlates with the reduction of all the markers of differentiation and is associated with overexpression of some miRNAs supposed to play a role in thyroid tumorigenesis.
Collapse
Affiliation(s)
- F Rosignolo
- Department of Internal Medicine and Medical Specialties, University of Rome "Sapienza", Viale del Policlinico155, 00161, Rome, Italy
| | - V Maggisano
- Department of Health Sciences, University of Catanzaro 'Magna Graecia', 88100, Catanzaro, Italy
| | - M Sponziello
- Department of Internal Medicine and Medical Specialties, University of Rome "Sapienza", Viale del Policlinico155, 00161, Rome, Italy
| | - M Celano
- Department of Health Sciences, University of Catanzaro 'Magna Graecia', 88100, Catanzaro, Italy
| | - C R T Di Gioia
- Department of Radiological, Oncological and Pathological Sciences, University of Rome "Sapienza", 00161, Rome, Italy
| | - M D'Agostino
- Department of Health Sciences, University of Catanzaro 'Magna Graecia', 88100, Catanzaro, Italy
| | - L Giacomelli
- Department of Surgical Sciences, University of Rome "Sapienza", 00161, Rome, Italy
| | - A Verrienti
- Department of Internal Medicine and Medical Specialties, University of Rome "Sapienza", Viale del Policlinico155, 00161, Rome, Italy
| | - M Dima
- Department of Internal Medicine and Medical Specialties, University of Rome "Sapienza", Viale del Policlinico155, 00161, Rome, Italy
| | - V Pecce
- Department of Internal Medicine and Medical Specialties, University of Rome "Sapienza", Viale del Policlinico155, 00161, Rome, Italy
| | - C Durante
- Department of Internal Medicine and Medical Specialties, University of Rome "Sapienza", Viale del Policlinico155, 00161, Rome, Italy.
| |
Collapse
|
33
|
Kartal K, Onder S, Kosemehmetoglu K, Kilickap S, Tezel YG, Kaynaroglu V. Methylation status of TSHr in well-differentiated thyroid cancer by using cytologic material. BMC Cancer 2015; 15:824. [PMID: 26519197 PMCID: PMC4628362 DOI: 10.1186/s12885-015-1861-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 10/27/2015] [Indexed: 11/20/2022] Open
Abstract
Background The role of methylation status of the thyroid stimulating hormone receptor gene (TSHr) in the discrimination of benign and malignant thyroid nodules has already been studied using paraffin blocks and cell lines. As cytological sampling plays an important role in assessment of thyroidal nodules, we have investigated the potential clinical use of TSHr methylation status of fine needle aspiration specimens reported according to Bethesda System. Method Sixty nine patients who had both cytological and pathological diagnosis of the same nodule were selected. Four groups were composed according to cytological and pathological diagnoses: Benign (B), papillary thyroid carcinoma (PTC), atypia of unknown significance (AUS) and follicular neoplasia (FN). The latter 2 groups were further sub-classified into 2 as benign (AUS-B and FN-B) and malignant (AUS-M and FN-M) according to final pathological diagnosis. DNAs were isolated from the fine needle aspiration cytology specimens and the methylation status of TSHr promotor region was investigated by using methylation specific polymerase chain reaction. Results Overall, TSHr methylation was present in 58 % of cases; 71 % of malignant and 46 % of benign nodules. PTC group showed the highest TSHr methylation rate (87 %), followed by 61 % in AUS, 44 % in B, and 30 % in FN (p = 0.016). TSHr methylation rate was significantly higher in PTC group when compared to B (p = 0.013) and FN-B (p = 0.004) groups; but not in FN-M (p = 0.115) or AUS (p = 0.096) groups. All 9 cases of papillary thyroid carcinoma with lymph node metastasis showed TSHr methylation. Positive predictive value, negative predictive value, sensitivity and specificity of TSHr methylation in determination of malignancy were calculated as 60, 66, 71 and 54 %, respectively. Conclusion The eminent ratio of TSHr methylation in well-differentiated thyroid carcinoma against benign thyroidal nodules adduced that TSHr methylation status can be utilized as a tumor marker for well-differentiated thyroid cancer; however, it has a limited value. The determination of methylation status of TSHr gene had no efficiency on decision of the malignant potential for the nodules which are cytologically classified as atypia of undetermined significance.
Collapse
Affiliation(s)
- Kinyas Kartal
- Department of General Surgery, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey.
| | - Sevgen Onder
- Department of Pathology, Hacettepe School of Medicine, Ankara, Turkey
| | | | - Sadettin Kilickap
- Department of Preventive Oncology, Hacettepe School of Medicine, Ankara, Turkey
| | - Yesim Gaye Tezel
- Department of Pathology, Hacettepe School of Medicine, Ankara, Turkey
| | - Volkan Kaynaroglu
- Department of General Surgery, Hacettepe School of Medicine, Ankara, Turkey
| |
Collapse
|
34
|
Park JW, Zhao L, Webb P, Cheng SY. Src-dependent phosphorylation at Y406 on the thyroid hormone receptor β confers the tumor suppressor activity. Oncotarget 2015; 5:10002-16. [PMID: 25275301 PMCID: PMC4259401 DOI: 10.18632/oncotarget.2487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Association studies suggest that the thyroid hormone receptor β1 (TRβ1) could function as a tumor suppressor in cancer cells. However, the underlying molecular mechanisms remain to be elucidated. We explored how TRβ1 acted as a tumor suppressor in breast cancer MDA cells. Proliferation and invasiveness were markedly inhibited in cells stably expressing TRβ1 (MDA-TRβ1 cells). cSrc-phosphorylated TRβ1 at Y406 signaled T3-induced degradation. Mutation of Y406 to Phe (TRβ1Y406F) did not affect T3 binding affinity, but blocked T3-induced degradation in cells. Importantly, cell-based studies showed that TRβ1Y406F lost the inhibitory effects by TRβ1 on cell proliferation and invasion. Consistently, in xenograft models, MDA-TRβ1 cells exhibited significantly slower tumor growth rates than those of Neo control cells. In contrast, the tumor growth rates of MDA-TRβ1Y406F cells were indistinguishable from those of Neo control cells. We further showed that markedly more TRβ1Y406F than TRβ1 was physically associated with cSrc in cells, leading to constitutive activation of cSrc-FAK-ERK signaling. In contrast, degradation of T3-bound TRβ1 complexed with cSrc attenuated signaling to decrease cell proliferation and invasiveness, thus confirming TRβ1 as a tumor suppressor. Thus, the present studies suggested that TRβ1 could be tested as a novel potential therapeutic target.
Collapse
Affiliation(s)
- Jeong Won Park
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Li Zhao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Paul Webb
- Houston Methodist Research Institute, Houston, TX
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
35
|
Li B, Wu W, Luo H, Liu Z, Liu H, Li Q, Pan Z. Molecular characterization and epigenetic regulation of Mei1 in cattle and cattle-yak. Gene 2015; 573:50-6. [PMID: 26165450 DOI: 10.1016/j.gene.2015.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 11/28/2022]
Abstract
Mei1 is required for the homologous recombination of meiosis during the mammalian spermatogenesis. However, the knowledge about bovine Mei1 (bMei1) is still limited. In the present study, we cloned and characterized the bMei1, and investigated the epigenetic regulatory mechanism of bMei1 expression in vivo and in vitro. The full length coding region of bMei1 was 3819bp, which encoded a polypeptide of 1272 amino acids. Real-time PCR showed that the mRNA expression level of bMei1 in the testis of cattle-yak with meiotic arrest and male infertility was significantly decreased as compared with cattle (P<0.01). Conversely, the methylation levels of bMei1 promoter and gene body in the testis of cattle-yak were significantly increased. Additionally, the expression level of bMei1 in bovine mammary epithelial cells (BMECs) was activated by treatment with the methyltransferase inhibitor 5-aza-2' deoxycytidine (5-Aza-CdR). Our data suggest that bMei1 may play an important role in the meiosis of spermatogenesis and may be involved in cattle-yak male sterility, and its transcription was regulated by DNA methylation.
Collapse
Affiliation(s)
- Bojiang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Luo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zequn Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Heublein S, Mayr D, Meindl A, Angele M, Gallwas J, Jeschke U, Ditsch N. Thyroid Hormone Receptors Predict Prognosis in BRCA1 Associated Breast Cancer in Opposing Ways. PLoS One 2015; 10:e0127072. [PMID: 26029931 PMCID: PMC4451081 DOI: 10.1371/journal.pone.0127072] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/11/2015] [Indexed: 12/02/2022] Open
Abstract
Since BRCA1 associated breast cancers are frequently classified as hormone receptor negative or even triple negative, the application of endocrine therapies is rather limited in these patients. Like hormone receptors that bind to estrogen or progesterone, thyroid hormone receptors (TRs) are members of the nuclear hormone receptor superfamily. TRs might be interesting biomarkers - especially in the absence of classical hormone receptors. The current study aimed to investigate whether TRs may be specifically expressed in BRCA1 associated cancer cases and whether they are of prognostic significance in these patients as compared to sporadic breast cancer cases. This study analyzed TRα and TRβ immunopositivity in BRCA1 associated (n = 38) and sporadic breast cancer (n = 86). Further, TRs were studied in MCF7 (BRCA1 wildtype) and HCC3153 (BRCA1 mutated) cells. TRβ positivity rate was significantly higher in BRCA1 associated as compared to sporadic breast cancers (p = 0.001). The latter observation remained to be significant when cases that had been matched for clinicopathological criteria were compared (p = 0.037). Regarding BRCA1 associated breast cancer cases TRβ positivity turned out to be a positive prognostic factor for five-year (p = 0.007) and overall survival (p = 0.026) while TRα positivity predicted reduced five-year survival (p = 0.030). Activation of TRβ resulted in down-modulation of CTNNB1 while TRα inhibition reduced cell viability in HCC3153. However, only BRCA1 wildtype MCF7 cells were capable of rapidly degrading TRα1 in response to T3 stimulation. Significantly, this study identified TRβ to be up-regulated in BRCA1 associated breast cancer and revealed TRs to be associated with patients’ prognosis. TRs were also found to be expressed in triple negative BRCA1 associated breast cancer. Further studies need to be done in order to evaluate whether TRs may become interesting targets of endocrine therapeutic approaches, especially when tumors are triple-negative.
Collapse
Affiliation(s)
- Sabine Heublein
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany
- * E-mail:
| | - Doris Mayr
- Department of Pathology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Alfons Meindl
- Department of Obstetrics and Gynecology, Technical University of Munich, Munich, Germany
| | - Martin Angele
- Department of Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Julia Gallwas
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Nina Ditsch
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
37
|
Zhang LJ, Xiong Y, Nilubol N, He M, Bommareddi S, Zhu X, Jia L, Xiao Z, Park JW, Xu X, Patel D, Willingham MC, Cheng SY, Kebebew E. Testosterone regulates thyroid cancer progression by modifying tumor suppressor genes and tumor immunity. Carcinogenesis 2015; 36:420-8. [PMID: 25576159 DOI: 10.1093/carcin/bgv001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/30/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer gender disparity has been observed for a variety of human malignancies. Thyroid cancer is one such cancer with a higher incidence in women, but more aggressive disease in men. There is scant evidence on the role of sex hormones on cancer initiation/progression. Using a transgenic mouse model of follicular thyroid cancer (FTC), we found castration led to lower rates of cancer in females and less advanced cancer in males. Mechanistically, less advanced cancer in castrated males was due to increased expression of tumor suppressor (Glipr1, Sfrp1) and immune-regulatory genes and higher tumor infiltration with M1 macrophages and CD8 cells. Functional study showed that GLIPR1 reduced cell growth and increased chemokine secretion (Ccl5) that activates immune cells. Our data demonstrate that testosterone regulates thyroid cancer progression by reducing tumor suppressor gene expression and tumor immunity.
Collapse
Affiliation(s)
- Lisa J Zhang
- Endocrine Oncology Branch, Laboratory of Molecular Biology and Bioinformatics Core Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA and Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Yin Xiong
- Endocrine Oncology Branch, Laboratory of Molecular Biology and Bioinformatics Core Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA and Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Naris Nilubol
- Endocrine Oncology Branch, Laboratory of Molecular Biology and Bioinformatics Core Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA and Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mei He
- Endocrine Oncology Branch, Laboratory of Molecular Biology and Bioinformatics Core Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA and Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Swaroop Bommareddi
- Endocrine Oncology Branch, Laboratory of Molecular Biology and Bioinformatics Core Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA and Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | - Li Jia
- Bioinformatics Core Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA and
| | - Zhen Xiao
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | - Xia Xu
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Dhaval Patel
- Endocrine Oncology Branch, Laboratory of Molecular Biology and Bioinformatics Core Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA and Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | | | - Electron Kebebew
- Endocrine Oncology Branch, Laboratory of Molecular Biology and Bioinformatics Core Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA and Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
38
|
Liu L, Shi J, Mao F, Wei J, Fu D, Zhang J. Synchronous primary cancers of the thyroid and breast: A case report and review of the literature. Oncol Lett 2014; 9:351-354. [PMID: 25435991 PMCID: PMC4246699 DOI: 10.3892/ol.2014.2625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/08/2014] [Indexed: 11/06/2022] Open
Abstract
The current report presents the case of a 41-year-old female exhibiting synchronous primary cancers of the thyroid and breast. Pathological examination of a tissue sample following biopsy identified papillary carcinoma of the thyroid and invasive ductal carcinoma of the breast to provide a definitive diagnosis of synchronous primary tumors. The patient underwent a modified radical mastectomy and total thyroidectomy. Following regular adjuvant chemotherapy with cyclophosphamide (800 mg), doxorubicin (100 mg) and paclitaxel (120 mg), once every three weeks for 3.5 months, oral levothyroxine and endocrinotherapy was recommended. Two years after the initial diagnosis, the patient was healthy with no disease recurrence. To the best of our knowledge, no association has been identified between the etiology and diagnoses of the two synchronous primary tumors. Thus, the aim of the current report was to improve the understanding of synchronous primary tumors of the thyroid and breast by presenting a review of the associated literature regarding breast and thyroid cancer. The mechanisms of synchronous neoplasms have only recently been elucidated, however, misdiagnosis is common. Clinicians are, therefore, advised to carefully examine patients with thyroid or breast cancer to avoid an incorrect or misdiagnosis. Furthermore, the present report aims to provide a reference for the cancer database, since the majority of analyses of rare diseases are derived from case reports. To improve the understanding of synchronous primary cancers of the thyroid and breast, an analysis of recent studies regarding the underlying mechanisms of synchronous primary cancers was also undertaken.
Collapse
Affiliation(s)
- Li Liu
- Department of Thyroid and Breast Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Jing Shi
- Department of Thyroid and Breast Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Fengfeng Mao
- Department of Thyroid and Breast Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Jinli Wei
- Department of Thyroid and Breast Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Deyuan Fu
- Department of Thyroid and Breast Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Jiaxin Zhang
- Department of Thyroid and Breast Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
39
|
Wojcicka A, Piekielko–Witkowska A, Kedzierska H, Rybicka B, Poplawski P, Boguslawska J, Master A, Nauman A. Epigenetic regulation of thyroid hormone receptor beta in renal cancer. PLoS One 2014; 9:e97624. [PMID: 24849932 PMCID: PMC4029725 DOI: 10.1371/journal.pone.0097624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/23/2014] [Indexed: 12/21/2022] Open
Abstract
Thyroid hormone receptor beta (THRB) gene is commonly deregulated in cancers and, as strengthened by animal models, postulated to play a tumor-suppressive role. Our previous studies revealed downregulation of THRB in clear cell renal cell carcinoma (ccRCC), but the culpable mechanisms have not been fully elucidated. Since epigenetic regulation is a common mechanism influencing the expression of tumor suppressors, we hypothesized that downregulation of THRB in renal cancer results from epigenetic aberrances, including CpG methylation and microRNA-dependent silencing. Our study revealed that ccRCC tumors exhibited a 56% decrease in THRB and a 37% increase in DNA methyltransferase 1 (DNMT1) expression when compared with paired non-neoplastic control samples. However, THRB CpG methylation analysis performed using BSP, SNaPshot and MSP-PCR consistently revealed no changes in methylation patterns between matched tumor and control samples. In silico analysis resulted in identification of four microRNAs (miR-155, miR-425, miR-592, and miR-599) as potentially targeting THRB transcript. Luciferase assay showed direct binding of miR-155 and miR-425 to 3′UTR of THRB, and subsequent in vivo analyses revealed that transfection of UOK171 cell line with synthetic miR-155 or miR-425 resulted in decreased expression of endogenous TRHB by 22% and 64%, respectively. Finally, real-time PCR analysis showed significant upregulation of miR-155 (354%) and miR-425 (162%) in ccRCC when compared with matched controls. Moreover, microRNA levels were negatively correlated with the amount of THRB transcript in tissue samples. We conclude that CpG methylation is not the major mechanism contributing to decreased THRB expression in ccRCC. In contrast, THRB is targeted by microRNAs miR-155 and miR-425, whose increased expression may be responsible for downregulation of THRB in ccRCC tumors.
Collapse
Affiliation(s)
- Anna Wojcicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Genomic Medicine, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | | | - Hanna Kedzierska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Piotr Poplawski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Joanna Boguslawska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Adam Master
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Alicja Nauman
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
- * E-mail:
| |
Collapse
|
40
|
Vu-Phan D, Koenig RJ. Genetics and epigenetics of sporadic thyroid cancer. Mol Cell Endocrinol 2014; 386:55-66. [PMID: 23933154 PMCID: PMC3867574 DOI: 10.1016/j.mce.2013.07.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 12/23/2022]
Abstract
Thyroid carcinoma is the most common endocrine malignancy, and although the disease generally has an excellent prognosis, therapeutic options are limited for patients not cured by surgery and radioiodine. Thyroid carcinomas commonly contain one of a small number of recurrent genetic mutations. The identification and study of these mutations has led to a deeper understanding of the pathophysiology of this disease and is providing new approaches to diagnosis and therapy. Papillary thyroid carcinomas usually contain an activating mutation in the RAS cascade, most commonly in BRAF and less commonly in RAS itself or through gene fusions that activate RET. A chromosomal translocation that results in production of a PAX8-PPARG fusion protein is found in follicular carcinomas. Anaplastic carcinomas may contain some of the above changes as well as additional mutations. Therapies that are targeted to these mutations are being used in patient care and clinical trials.
Collapse
Affiliation(s)
- Dang Vu-Phan
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| | - Ronald J Koenig
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
41
|
Kim WG, Zhao L, Kim DW, Willingham MC, Cheng SY. Inhibition of tumorigenesis by the thyroid hormone receptor β in xenograft models. Thyroid 2014; 24:260-9. [PMID: 23731250 PMCID: PMC3926148 DOI: 10.1089/thy.2013.0054] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Previous studies showed a close association between several types of human cancers and somatic mutations of thyroid hormone receptor β (TRβ) and reduced expression of TRβ due to epigenetic inactivation and/or deletion of the THRB gene. These observations suggest that TRβ could act as a tumor suppressor in carcinogenesis. However, the mechanisms by which TRβ could function to inhibit tumorigenesis are less well understood. METHODS We used the human follicular thyroid cancer cell lines (FTC-133 and FTC-236 cells) to elucidate how functional expression of the THRB gene could affect tumorigenesis. We stably expressed the THRB gene in FTC cells and evaluated the effects of the expressed TRβ on cancer cell proliferation, migration, and tumor growth in cell-based studies and xenograft models. RESULTS Expression of TRβ in FTC-133 cells, as compared with control FTC cells without TRβ, reduced cancer cell proliferation and impeded migration of tumor cells through inhibition of the AKT-mTOR-p70 S6K pathway. TRβ expression in FTC-133 and FTC-236 led to less tumor growth in xenograft models. Importantly, new vessel formation was significantly suppressed in tumors induced by FTC cells expressing TRβ compared with control FTC cells without TRβ. The decrease in vessel formation was mediated by the downregulation of vascular endothelial growth factor in FTC cells expressing TRβ. CONCLUSIONS These findings indicate that TRβ acts as a tumor suppressor through downregulation of the AKT-mTOR-p70 S6K pathway and decreased vascular endothelial growth factor expression in FTC cells. The present results raise the possibility that TRβ could be considered as a potential therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Won Gu Kim
- Laboratory of Molecular Biology, Center for Cancer Research , National Cancer Institute, Bethesda, Maryland
| | | | | | | | | |
Collapse
|