1
|
Li N, Zhang Z, Shen L, Song G, Tian J, Liu Q, Ni J. Selenium metabolism and selenoproteins function in brain and encephalopathy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:628-656. [PMID: 39546178 DOI: 10.1007/s11427-023-2621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 11/17/2024]
Abstract
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
Collapse
Affiliation(s)
- Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
2
|
Ma H, Stanford D, Freeman WM, Ding XQ. Transcriptomic Analysis Reveals That Excessive Thyroid Hormone Signaling Impairs Phototransduction and Mitochondrial Bioenergetics and Induces Cellular Stress in Mouse Cone Photoreceptors. Int J Mol Sci 2024; 25:7435. [PMID: 39000540 PMCID: PMC11242393 DOI: 10.3390/ijms25137435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Thyroid hormone (TH) plays an essential role in cell proliferation, differentiation, and metabolism. Experimental and clinical studies have shown a potential association between TH signaling and retinal degeneration. The suppression of TH signaling protects cone photoreceptors in mouse models of retinal degeneration, whereas excessive TH signaling induces cone degeneration, manifested as reduced light response and a loss of cones. This work investigates the genes/transcriptomic alterations that might be involved in TH-induced cone degeneration in mice using single-cell RNA sequencing (scRNAseq) analysis. One-month-old C57BL/6 mice received triiodothyronine (T3, 20 µg/mL in drinking water) for 4 weeks as a model of hyperthyroidism/excessive TH signaling. At the end of the experiments, retinal cells were dissociated, and cell viability was analyzed before being subjected to scRNAseq. The resulting data were analyzed using the Seurat package and visualized using the Loupe browser. Among 155,866 single cells, we identified 14 cell clusters, representing various retinal cell types, with rod and cone clusters comprising 76% and 4.1% of the total cell population, respectively. Cone cluster transcriptomes demonstrated the most alterations after the T3 treatment, with 450 differentially expressed genes (DEGs), accounting for 38.5% of the total DEGs. Statistically significant changes in the expression of genes in the cone cluster revealed that phototransduction and oxidative phosphorylation were impaired after the T3 treatment, along with mitochondrial dysfunction. A pathway analysis also showed the activation of the sensory neuronal/photoreceptor stress pathways after the T3 treatment. Specifically, the eukaryotic initiation factor-2 signaling pathway and the cAMP response element-binding protein signaling pathway were upregulated. Thus, excessive TH signaling substantially affects cones at the transcriptomic level. The findings from this work provide an insight into how excessive TH signaling induces cone degeneration.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 553, Oklahoma, OK 73104, USA;
| | - David Stanford
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA; (D.S.); (W.M.F.)
| | - Willard M. Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA; (D.S.); (W.M.F.)
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 553, Oklahoma, OK 73104, USA;
| |
Collapse
|
3
|
Penna GC, Salas-Lucia F, Ribeiro MO, Bianco AC. Gene polymorphisms and thyroid hormone signaling: implication for the treatment of hypothyroidism. Endocrine 2024; 84:309-319. [PMID: 37740833 PMCID: PMC10959761 DOI: 10.1007/s12020-023-03528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
INTRODUCTION Mutations and single nucleotide polymorphisms (SNPs) in the genes encoding the network of proteins involved in thyroid hormone signaling (TH) may have implications for the effectiveness of the treatment of hypothyroidism with LT4. It is conceivable that loss-of-function mutations or SNPs impair the ability of LT4 to be activated to T3, reach its targets, and ultimately resolve symptoms of hypothyroidism. Some of these patients do benefit from therapy containing LT4 and LT3. METHODS Here, we reviewed the PubMed and examined gene mutations and SNPs in the TH cellular transporters, deiodinases, and TH receptors, along with their impact on TH signaling, and potential clinical implications. RESULTS In some mechanisms, such as the Thr92Ala-DIO2 SNP, there is a compelling rationale for reduced T4 to T3 activation that limits the effectiveness of LT4 to restore euthyroidism. In other mechanisms, a potential case can be made but more studies with a larger number of individuals are needed. DISCUSSION/CONCLUSION Understanding the clinical impact of the genetic makeup of LT4-treated patients may help in the preemptive identification of those individuals that would benefit from therapy containing LT3.
Collapse
Affiliation(s)
- Gustavo C Penna
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Federico Salas-Lucia
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center for Biological Sciences and Health, Mackenzie Presbyterian University, Sao Paulo, SP, Brazil
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Richard S, Ren J, Flamant F. Thyroid hormone action during GABAergic neuron maturation: The quest for mechanisms. Front Endocrinol (Lausanne) 2023; 14:1256877. [PMID: 37854197 PMCID: PMC10579935 DOI: 10.3389/fendo.2023.1256877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Thyroid hormone (TH) signaling plays a major role in mammalian brain development. Data obtained in the past years in animal models have pinpointed GABAergic neurons as a major target of TH signaling during development, which opens up new perspectives to further investigate the mechanisms by which TH affects brain development. The aim of the present review is to gather the available information about the involvement of TH in the maturation of GABAergic neurons. After giving an overview of the kinds of neurological disorders that may arise from disruption of TH signaling during brain development in humans, we will take a historical perspective to show how rodent models of hypothyroidism have gradually pointed to GABAergic neurons as a main target of TH signaling during brain development. The third part of this review underscores the challenges that are encountered when conducting gene expression studies to investigate the molecular mechanisms that are at play downstream of TH receptors during brain development. Unravelling the mechanisms of action of TH in the developing brain should help make progress in the prevention and treatment of several neurological disorders, including autism and epilepsy.
Collapse
Affiliation(s)
| | | | - Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, USC1370 Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Lyon, France
| |
Collapse
|
5
|
Ma H, Yang F, York LR, Li S, Ding XQ. Excessive Thyroid Hormone Signaling Induces Photoreceptor Degeneration in Mice. eNeuro 2023; 10:ENEURO.0058-23.2023. [PMID: 37596046 PMCID: PMC10481642 DOI: 10.1523/eneuro.0058-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023] Open
Abstract
Rod and cone photoreceptors degenerate in inherited and age-related retinal degenerative diseases, ultimately leading to loss of vision. Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and metabolism. Recent studies have shown a link between TH signaling and retinal degeneration. This work investigates the effects of excessive TH signaling on photoreceptor function and survival in mice. C57BL/6, Thra1 -/-, Thrb2 -/-, Thrb -/-, and the cone dominant Nrl -/- mice received triiodothyronine (T3) treatment (5-20 μg/ml in drinking water) for 30 d, followed by evaluations of retinal function, photoreceptor survival/death, and retinal stress/damage. Treatment with T3 reduced light responses of rods and cones by 50-60%, compared with untreated controls. Outer nuclear layer thickness and cone density were reduced by ∼18% and 75%, respectively, after T3 treatment. Retinal sections prepared from T3-treated mice showed significantly increased numbers of TUNEL-positive, p-γH2AX-positive, and 8-OHdG-positive cells, and activation of Müller glial cells. Gene expression analysis revealed upregulation of the genes involved in oxidative stress, necroptosis, and inflammation after T3 treatment. Deletion of Thra1 prevented T3-induced degeneration of rods but not cones, whereas deletion of Thrb2 preserved both rods and cones. Treatment with an antioxidant partially preserved photoreceptors and reduced retinal stress responses. This study demonstrates that excessive TH signaling induces oxidative stress/damage and necroptosis, induces photoreceptor degeneration, and impairs retinal function. The findings provide insights into the role of TH signaling in retinal degeneration and support the view of targeting TH signaling for photoreceptor protection.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Lilliana R York
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Shujuan Li
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
6
|
Martinez ME, Pinz I, Preda M, Norton CR, Gridley T, Hernandez A. DIO3 protects against thyrotoxicosis-derived cranio-encephalic and cardiac congenital abnormalities. JCI Insight 2022; 7:e161214. [PMID: 36166296 PMCID: PMC9675556 DOI: 10.1172/jci.insight.161214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
Maternal hyperthyroidism is associated with an increased incidence of congenital abnormalities at birth, but it is not clear which of these defects arise from a transient developmental excess of thyroid hormone and which depend on pregnancy stage, antithyroid drug choice, or unwanted subsequent fetal hypothyroidism. To address this issue, we studied a mouse model of comprehensive developmental thyrotoxicosis secondary to a lack of type 3 deiodinase (DIO3). Dio3-/- mice exhibited reduced neonatal viability on most genetic backgrounds and perinatal lethality on a C57BL/6 background. Dio3-/- mice exhibited severe growth retardation during the neonatal period and cartilage loss. Mice surviving after birth manifested brain and cranial dysmorphisms, severe hydrocephalus, choanal atresia, and cleft palate. These abnormalities were noticeable in C57BL/6J Dio3-/- mice at fetal stages, in addition to a thyrotoxic heart with septal defects and thin ventricular walls. Our findings stress the protecting role of DIO3 during development and support the hypothesis that human congenital abnormalities associated with hyperthyroidism during pregnancy are caused by transient thyrotoxicosis before clinical intervention. Our results also suggest thyroid hormone involvement in the etiology of idiopathic pathologies including cleft palate, choanal atresia, Chiari malformations, Kaschin-Beck disease, and Temple and other cranio-encephalic and heart syndromes.
Collapse
Affiliation(s)
- M. Elena Martinez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
| | - Ilka Pinz
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Marilena Preda
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
| | - Christine R. Norton
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
| | - Thomas Gridley
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Arturo Hernandez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Lénárt K, Bankó C, Ujlaki G, Póliska S, Kis G, Csősz É, Antal M, Bacso Z, Bai P, Fésüs L, Mádi A. Tissue Transglutaminase Knock-Out Preadipocytes and Beige Cells of Epididymal Fat Origin Possess Decreased Mitochondrial Functions Required for Thermogenesis. Int J Mol Sci 2022; 23:5175. [PMID: 35563567 PMCID: PMC9105016 DOI: 10.3390/ijms23095175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Beige adipocytes with thermogenic function are activated during cold exposure in white adipose tissue through the process of browning. These cells, similar to brown adipocytes, dissipate stored chemical energy in the form of heat with the help of uncoupling protein 1 (UCP1). Recently, we have shown that tissue transglutaminase (TG2) knock-out mice have decreased cold tolerance in parallel with lower utilization of their epididymal adipose tissue and reduced browning. To learn more about the thermogenic function of this fat depot, we isolated preadipocytes from the epididymal adipose tissue of wild-type and TG2 knock-out mice and differentiated them in the beige direction. Although differentiation of TG2 knock-out preadipocytes is phenotypically similar to the wild-type cells, the mitochondria of the knock-out beige cells have multiple impairments including an altered electron transport system generating lower electrochemical potential difference, reduced oxygen consumption, lower UCP1 protein content, and a higher portion of fragmented mitochondria. Most of these differences are present in preadipocytes as well, and the differentiation process cannot overcome the functional disadvantages completely. TG2 knock-out beige adipocytes produce more iodothyronine deiodinase 3 (DIO3) which may inactivate thyroid hormones required for the establishment of optimal mitochondrial function. The TG2 knock-out preadipocytes and beige cells are both hypometabolic as compared with the wild-type controls which may also be explained by the lower expression of solute carrier proteins SLC25A45, SLC25A47, and SLC25A42 which transport acylcarnitine, Co-A, and amino acids into the mitochondrial matrix. As a consequence, the mitochondria in TG2 knock-out beige adipocytes probably cannot reach the energy-producing threshold required for normal thermogenic functions, which may contribute to the decreased cold tolerance of TG2 knock-out mice.
Collapse
Affiliation(s)
- Kinga Lénárt
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary;
| | - Csaba Bankó
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary;
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary;
| | - Gyula Ujlaki
- NKFIH-DE Lendület Laboratory of Cellular Metabolism, Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (G.U.); (P.B.)
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
| | - Gréta Kis
- Department of Anatomy, Histology Embryology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (G.K.); (M.A.)
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
| | - Miklós Antal
- Department of Anatomy, Histology Embryology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (G.K.); (M.A.)
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary;
| | - Péter Bai
- NKFIH-DE Lendület Laboratory of Cellular Metabolism, Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (G.U.); (P.B.)
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
| | - András Mádi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., H-4032 Debrecen, Hungary; (K.L.); (S.P.); (É.C.); (L.F.)
| |
Collapse
|
8
|
Hernandez A, Martinez ME, Ng L, Forrest D. Thyroid Hormone Deiodinases: Dynamic Switches in Developmental Transitions. Endocrinology 2021; 162:bqab091. [PMID: 33963379 PMCID: PMC8248586 DOI: 10.1210/endocr/bqab091] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 12/15/2022]
Abstract
Thyroid hormones exert pleiotropic, essential actions in mammalian, including human, development. These actions depend on provision of thyroid hormones in the circulation but also to a remarkable extent on deiodinase enzymes in target tissues that amplify or deplete the local concentration of the primary active form of the hormone T3 (3,5,3'-triiodothyronine), the high affinity ligand for thyroid hormone receptors. Genetic analyses in mice have revealed key roles for activating (DIO2) and inactivating (DIO3) deiodinases in cell differentiation fates and tissue maturation, ultimately promoting neonatal viability, growth, fertility, brain development, and behavior, as well as metabolic, endocrine, and sensory functions. An emerging paradigm is how the opposing activities of DIO2 and DIO3 are coordinated, providing a dynamic switch that controls the developmental timing of a tissue response, often during neonatal and maturational transitions. A second paradigm is how cell to cell communication within a tissue determines the response to T3. Deiodinases in specific cell types, often strategically located near to blood vessels that convey thyroid hormones into the tissue, can regulate neighboring cell types, suggesting a paracrine-like layer of control of T3 action. We discuss deiodinases as switches for developmental transitions and their potential to influence tissue dysfunction in human thyroid disorders.
Collapse
Affiliation(s)
- Arturo Hernandez
- Department of Molecular Medicine, Maine Medical Center Research Institute, Maine Health, Scarborough, Maine 04074, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469, USA
| | - M Elena Martinez
- Department of Molecular Medicine, Maine Medical Center Research Institute, Maine Health, Scarborough, Maine 04074, USA
| | - Lily Ng
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Douglas Forrest
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
9
|
Ishii S, Amano I, Koibuchi N. The Role of Thyroid Hormone in the Regulation of Cerebellar Development. Endocrinol Metab (Seoul) 2021; 36:703-716. [PMID: 34365775 PMCID: PMC8419606 DOI: 10.3803/enm.2021.1150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
The proper organized expression of specific genes in time and space is responsible for the organogenesis of the central nervous system including the cerebellum. The epigenetic regulation of gene expression is tightly regulated by an intrinsic intracellular genetic program, local stimuli such as synaptic inputs and trophic factors, and peripheral stimuli from outside of the brain including hormones. Some hormone receptors are expressed in the cerebellum. Thyroid hormones (THs), among numerous circulating hormones, are well-known major regulators of cerebellar development. In both rodents and human, hypothyroidism during the postnatal developmental period results in abnormal morphogenesis or altered function. THs bind to the thyroid hormone receptors (TRs) in the nuclei and with the help of transcriptional cofactors regulate the transcription of target genes. Gene regulation by TR induces cell proliferation, migration, and differentiation, which are necessary for brain development and plasticity. Thus, the lack of TH action mediators may directly cause aberrant cerebellar development. Various kinds of animal models have been established in a bid to study the mechanism of TH action in the cerebellum. Interestingly, the phenotypes differ greatly depending on the models. Herein we summarize the actions of TH and TR particularly in the developing cerebellum.
Collapse
Affiliation(s)
- Sumiyasu Ishii
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
10
|
Abstract
Thyroid hormone is essential for brain development and brain function in the adult. During development, thyroid hormone acts in a spatial and temporal-specific manner to regulate the expression of genes essential for normal neural cell differentiation, migration, and myelination. In the adult brain, thyroid hormone is important for maintaining normal brain function. Thyroid hormone excess, hyperthyroidism, and thyroid hormone deficiency, hypothyroidism, are associated with disordered brain function, including depression, memory loss, impaired cognitive function, irritability, and anxiety. Adequate thyroid hormone levels are required for normal brain function. Thyroid hormone acts through a cascade of signaling components: activation and inactivation by deiodinase enzymes, thyroid hormone membrane transporters, and nuclear thyroid hormone receptors. Additionally, the hypothalamic-pituitary-thyroid axis, with negative feedback of thyroid hormone on thyrotropin-releasing hormone (TRH) and thyroid-stimulating hormone (TSH) secretion, regulates serum thyroid hormone levels in a narrow range. Animal and human studies have shown both systemic and local reduction in thyroid hormone availability in neurologic disease and after brain trauma. Treatment with thyroid hormone and selective thyroid hormone analogs has resulted in a reduction in injury and improved recovery. This article will describe the thyroid hormone signal transduction pathway in the brain and the role of thyroid hormone in the aging brain, neurologic diseases, and the protective role when administered after traumatic brain injury. © 2021 American Physiological Society. Compr Physiol 11:1-21, 2021.
Collapse
Affiliation(s)
- Yan-Yun Liu
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.,Departments of Medicine and Physiology, Endocrinology, Diabetes and Metabolism Division, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gregory A Brent
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.,Departments of Medicine and Physiology, Endocrinology, Diabetes and Metabolism Division, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
11
|
|
12
|
Marcelino CP, McAninch EA, Fernandes GW, Bocco BMLC, Ribeiro MO, Bianco AC. Temporal Pole Responds to Subtle Changes in Local Thyroid Hormone Signaling. J Endocr Soc 2020; 4:bvaa136. [PMID: 33123655 PMCID: PMC7575126 DOI: 10.1210/jendso/bvaa136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
To study thyroid hormone (TH) signaling in the human brain, we analyzed published microarray data sets of the temporal pole (Brodmann area 38) of 19 deceased donors. An index of TH signaling built on the expression of 19 well known TH-responsive genes in mouse brains (T3S+) varied from 0.92 to 1.1. After Factor analysis, T3S+ correlated independently with the expression of TH transporters (MCT8, LAT2), TH receptor (TR) beta and TR coregulators (CARM1, MED1, KAT2B, SRC2, SRC3, NCOR2a). Unexpectedly, no correlation was found between T3S+ vs DIO2, DIO3, SRC1, or TRα. An unbiased systematic analysis of the entire transcriptome identified a set of 1649 genes (set #1) with strong positive correlation with T3S+ (r > 0.75). Factor analysis of set #1 identified 2 sets of genes that correlated independently with T3S+, sets #2 (329 genes) and #3 (191 genes). When processed through the Molecular Signatures Data Base (MSigDB), both sets #2 and #3 were enriched with Gene Ontology (GO)-sets related to synaptic transmission and metabolic processes. Ranking individual human brain donors according to their T3S+ led us to identify 1262 genes (set #4) with >1.3-fold higher expression in the top half. The analysis of the overlapped genes between sets #1 and #4 resulted in 769 genes (set #5), which have a very similar MSigDB signature as sets #2 and #3. In conclusion, gene expression in the human temporal pole can be assessed through T3S+ and fluctuates with subtle variations in local TH signaling.
Collapse
Affiliation(s)
- Cícera P Marcelino
- Department of Health and Biological Sciences - CCBS, Mackenzie Presbyterian University, Sao Paulo, Sao Paulo, Brazil
- Department of Translational Medicine, Federal University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Elizabeth A McAninch
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology and Metabolism, University of Chicago, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology and Metabolism, University of Chicago, Chicago, Illinois
| | - Miriam O Ribeiro
- Department of Health and Biological Sciences - CCBS, Mackenzie Presbyterian University, Sao Paulo, Sao Paulo, Brazil
- Department of Translational Medicine, Federal University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Antonio C Bianco
- Section of Endocrinology and Metabolism, University of Chicago, Chicago, Illinois
| |
Collapse
|
13
|
|
14
|
Thamban T, Agarwaal V, Khosla S. Role of genomic imprinting in mammalian development. J Biosci 2020; 45:20. [PMID: 31965998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Non-mendelian inheritance refers to the group of phenomena and observations related to the inheritance of genetic information that cannot be merely explained by Mendel's laws of inheritance. Phenomenon including Genomic imprinting, X-chromosome Inactivation, Paramutations are some of the best studied examples of non-mendelian inheritance. Genomic imprinting is a process that reversibly marks one of the two homologous loci, chromosome or chromosomal sets during development, resulting in functional non-equivalence of gene expression. Genomic imprinting is known to occur in a few insect species, plants, and placental mammals. Over the years, studies on imprinted genes have contributed immensely to highlighting the role of epigenetic modifications and the epigenetic circuitry during gene expression and development. In this review, we discuss the phenomenon of genomic imprinting in mammals and the role it plays especially during fetoplacental growth and early development.
Collapse
Affiliation(s)
- Thushara Thamban
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | | | | |
Collapse
|
15
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
16
|
|
17
|
Stepien BK, Huttner WB. Transport, Metabolism, and Function of Thyroid Hormones in the Developing Mammalian Brain. Front Endocrinol (Lausanne) 2019; 10:209. [PMID: 31001205 PMCID: PMC6456649 DOI: 10.3389/fendo.2019.00209] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
Ever since the discovery of thyroid hormone deficiency as the primary cause of cretinism in the second half of the 19th century, the crucial role of thyroid hormone (TH) signaling in embryonic brain development has been established. However, the biological understanding of TH function in brain formation is far from complete, despite advances in treating thyroid function deficiency disorders. The pleiotropic nature of TH action makes it difficult to identify and study discrete roles of TH in various aspect of embryogenesis, including neurogenesis and brain maturation. These challenges notwithstanding, enormous progress has been achieved in understanding TH production and its regulation, their conversions and routes of entry into the developing mammalian brain. The endocrine environment has to adjust when an embryo ceases to rely solely on maternal source of hormones as its own thyroid gland develops and starts to produce endogenous TH. A number of mechanisms are in place to secure the proper delivery and action of TH with placenta, blood-brain interface, and choroid plexus as barriers of entry that need to selectively transport and modify these hormones thus controlling their active levels. Additionally, target cells also possess mechanisms to import, modify and bind TH to further fine-tune their action. A complex picture of a tightly regulated network of transport proteins, modifying enzymes, and receptors has emerged from the past studies. TH have been implicated in multiple processes related to brain formation in mammals-neuronal progenitor proliferation, neuronal migration, functional maturation, and survival-with their exact roles changing over developmental time. Given the plethora of effects thyroid hormones exert on various cell types at different developmental periods, the precise spatiotemporal regulation of their action is of crucial importance. In this review we summarize the current knowledge about TH delivery, conversions, and function in the developing mammalian brain. We also discuss their potential role in vertebrate brain evolution and offer future directions for research aimed at elucidating TH signaling in nervous system development.
Collapse
|
18
|
Korevaar TIM, Tiemeier H, Peeters RP. Clinical associations of maternal thyroid function with foetal brain development: Epidemiological interpretation and overview of available evidence. Clin Endocrinol (Oxf) 2018; 89:129-138. [PMID: 29693263 DOI: 10.1111/cen.13724] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 01/13/2023]
Abstract
Thyroid hormone is an important regulator of early brain development, particularly during early stages of gestation during which foetal thyroid hormone availability depends on the maternal transfer of thyroid hormones. There is a wide range of experimental studies showing that low maternal thyroid hormone availability is associated with suboptimal brain development parameters. While few clinical studies have shown that overt maternal hypothyroidism is associated with lower child IQ, the question whether more subclinical changes in maternal thyroid function could also lead to suboptimal foetal brain development. In this review, we put the latter studies in perspective and discuss their interpretation from an epidemiological and clinical perspective. Furthermore, we extend this discussion to also include future perspective and identify important knowledge gaps in the field.
Collapse
Affiliation(s)
- Tim I M Korevaar
- Rotterdam Thyroid Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Rotterdam Thyroid Center, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Hernandez A, Stohn JP. The Type 3 Deiodinase: Epigenetic Control of Brain Thyroid Hormone Action and Neurological Function. Int J Mol Sci 2018; 19:ijms19061804. [PMID: 29921775 PMCID: PMC6032375 DOI: 10.3390/ijms19061804] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
Thyroid hormones (THs) influence multiple processes in the developing and adult central nervous system, and their local availability needs to be maintained at levels that are tailored to the requirements of their biological targets. The local complement of TH transporters, deiodinase enzymes, and receptors is critical to ensure specific levels of TH action in neural cells. The type 3 iodothyronine deiodinase (DIO3) inactivates THs and is highly present in the developing and adult brain, where it limits their availability and action. DIO3 deficiency in mice results in a host of neurodevelopmental and behavioral abnormalities, demonstrating the deleterious effects of TH excess, and revealing the critical role of DIO3 in the regulation of TH action in the brain. The fact the Dio3 is an imprinted gene and that its allelic expression pattern varies across brain regions and during development introduces an additional level of control to deliver specific levels of hormone action in the central nervous system (CNS). The sensitive epigenetic nature of the mechanisms controlling the genomic imprinting of Dio3 renders brain TH action particularly susceptible to disruption due to exogenous treatments and environmental exposures, with potential implications for the etiology of human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA.
- Graduate School for Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA.
- Department of Medicine, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - J Patrizia Stohn
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA.
| |
Collapse
|
20
|
Liu YY, Brent GA. Thyroid hormone and the brain: Mechanisms of action in development and role in protection and promotion of recovery after brain injury. Pharmacol Ther 2018; 186:176-185. [PMID: 29378220 DOI: 10.1016/j.pharmthera.2018.01.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thyroid hormone (TH) is essential for normal brain development and may also promote recovery and neuronal regeneration after brain injury. TH acts predominantly through the nuclear receptors, TH receptor alpha (THRA) and beta (THRB). Additional factors that impact TH action in the brain include metabolism, activation of thyroxine (T4) to triiodothyronine (T3) by the enzyme 5'-deiodinase Type 2 (Dio2), inactivation by the enzyme 5-deiodinase Type 3 (Dio3) to reverse T3 (rT3), which occurs in glial cells, and uptake by the Mct8 transporter in neurons. Traumatic brain injury (TBI) is associated with inflammation, metabolic alterations and neural death. In clinical studies, central hypothyroidism, due to hypothalamic and pituitary dysfunction, has been found in some individuals after brain injury. TH has been shown, in animal models, to be protective for the damage incurred from brain injury and may have a role to limit injury and promote recovery. Although clinical trials have not yet been reported, findings from in vitro and in vivo models inform potential treatment strategies utilizing TH for protection and promotion of recovery after brain injury.
Collapse
Affiliation(s)
- Yan-Yun Liu
- Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| | - Gregory A Brent
- Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States.
| |
Collapse
|
21
|
Delbaere J, Van Herck SLJ, Bourgeois NMA, Vancamp P, Yang S, Wingate RJT, Darras VM. Mosaic Expression of Thyroid Hormone Regulatory Genes Defines Cell Type-Specific Dependency in the Developing Chicken Cerebellum. THE CEREBELLUM 2017; 15:710-725. [PMID: 26559893 DOI: 10.1007/s12311-015-0744-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cerebellum is a morphologically unique brain structure that requires thyroid hormones (THs) for the correct coordination of key cellular events driving its development. Unravelling the interplay between the multiple factors that can regulate intracellular TH levels is a key step to understanding their role in the regulation of these cellular processes. We therefore investigated the regional/cell-specific expression pattern of TH transporters and deiodinases in the cerebellum using the chicken embryo as a model. In situ hybridisation revealed expression of the TH transporters monocarboxylate transporter 8 (MCT8) and 10 (MCT10), L-type amino acid transporter 1 (LAT1) and organic anion transporting polypeptide 1C1 (OATP1C1) as well as the inactivating type 3 deiodinase (D3) in the fourth ventricle choroid plexus, suggesting a possible contribution of the resulting proteins to TH exchange and subsequent inactivation of excess hormone at the blood-cerebrospinal fluid barrier. Exclusive expression of LAT1 and the activating type 2 deiodinase (D2) mRNA was found at the level of the blood-brain barrier, suggesting a concerted function for LAT1 and D2 in the direct access of active T3 to the developing cerebellum via the capillary endothelial cells. The presence of MCT8 mRNA in Purkinje cells and cerebellar nuclei during the first 2 weeks of embryonic development points to a potential role of this transporter in the uptake of T3 in central neurons. At later stages, together with MCT10, detection of MCT8 signal in close association with the Purkinje cell dendritic tree suggests a role of both transporters in TH signalling during Purkinje cell synaptogenesis. MCT10 was also expressed in late-born cells in the rhombic lip lineage with a clear hybridisation signal in the outer external granular layer, indicating a potential role for MCT10 in the proliferation of granule cell precursors. By contrast, expression of D3 in the first-born rhombic lip-derived population may serve as a buffering mechanism against high T3 levels during early embryonic development, a hypothesis supported by the pattern of expression of a fluorescent TH reporter in this lineage. Overall, this study builds a picture of the TH dependency in multiple cerebellar cell types starting from early embryonic development.
Collapse
Affiliation(s)
- Joke Delbaere
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium
| | - Stijn L J Van Herck
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium
| | - Nele M A Bourgeois
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium
| | - Pieter Vancamp
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium
| | - Shuo Yang
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London, UK
| | - Richard J T Wingate
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London, UK
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium.
| |
Collapse
|
22
|
Ma H, Yang F, Butler MR, Belcher J, Redmond TM, Placzek AT, Scanlan TS, Ding XQ. Inhibition of thyroid hormone receptor locally in the retina is a therapeutic strategy for retinal degeneration. FASEB J 2017; 31:3425-3438. [PMID: 28428265 PMCID: PMC5503703 DOI: 10.1096/fj.201601166rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/11/2017] [Indexed: 12/22/2022]
Abstract
Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and metabolism. Recent studies have implicated TH signaling in cone photoreceptor viability. Using mouse models of retinal degeneration, we demonstrated that antithyroid drug treatment and targeting iodothyronine deiodinases (DIOs) to suppress cellular tri-iodothyronine (T3) production or increase T3 degradation preserves cones. In this work, we investigated the effectiveness of inhibition of the TH receptor (TR). Two genes, THRA and THRB, encode TRs; THRB2 has been associated with cone viability. Using TR antagonists and Thrb2 deletion, we examined the effects of TR inhibition. Systemic and ocular treatment with the TR antagonists NH-3 and 1-850 increased cone density by 30-40% in the Rpe65-/- mouse model of Leber congenital amaurosis and reduced the number of TUNEL+ cells. Cone survival was significantly improved in Rpe65-/- and Cpfl1 (a model of achromatopsia with Pde6c defect) mice with Thrb2 deletion. Ventral cone density in Cpfl1/Thrb2-/- and Rpe65-/- /Thrb2-/- mice was increased by 1- to 4-fold, compared with age-matched controls. Moreover, the expression levels of TR were significantly higher in the cone-degeneration retinas, suggesting locally elevated TR signaling. This work shows that the effects of antithyroid treatment or targeting DIOs were likely mediated by TRs and that suppressing TR protects cones. Our findings support the view that inhibition of TR locally in the retina is a therapeutic strategy for retinal degeneration management.-Ma, H., Yang, F., Butler, M. R., Belcher, J., Redmond, T. M., Placzek, A. T., Scanlan, T. S., Ding, X.-Q. Inhibition of thyroid hormone receptor locally in the retina is a therapeutic strategy for retinal degeneration.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael R Butler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joshua Belcher
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew T Placzek
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, USA
| | - Thomas S Scanlan
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA;
| |
Collapse
|
23
|
Thyroid Hormone Acts Locally to Increase Neurogenesis, Neuronal Differentiation, and Dendritic Arbor Elaboration in the Tadpole Visual System. J Neurosci 2017; 36:10356-10375. [PMID: 27707971 DOI: 10.1523/jneurosci.4147-15.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 08/01/2016] [Indexed: 11/21/2022] Open
Abstract
Thyroid hormone (TH) regulates many cellular events underlying perinatal brain development in vertebrates. Whether and how TH regulates brain development when neural circuits are first forming is less clear. Furthermore, although the molecular mechanisms that impose spatiotemporal constraints on TH action in the brain have been described, the effects of local TH signaling are poorly understood. We determined the effects of manipulating TH signaling on development of the optic tectum in stage 46-49 Xenopus laevis tadpoles. Global TH treatment caused large-scale morphological effects in tadpoles, including changes in brain morphology and increased tectal cell proliferation. Either increasing or decreasing endogenous TH signaling in tectum, by combining targeted DIO3 knockdown and methimazole, led to corresponding changes in tectal cell proliferation. Local increases in TH, accomplished by injecting suspensions of tri-iodothyronine (T3) in coconut oil into the midbrain ventricle or into the eye, selectively increased tectal or retinal cell proliferation, respectively. In vivo time-lapse imaging demonstrated that local TH first increased tectal progenitor cell proliferation, expanding the progenitor pool, and subsequently increased neuronal differentiation. Local T3 also dramatically increased dendritic arbor growth in neurons that had already reached a growth plateau. The time-lapse data indicate that the same cells are differentially sensitive to T3 at different time points. Finally, TH increased expression of genes pertaining to proliferation and neuronal differentiation. These experiments indicate that endogenous TH locally regulates neurogenesis at developmental stages relevant to circuit assembly by affecting cell proliferation and differentiation and by acting on neurons to increase dendritic arbor elaboration. SIGNIFICANCE STATEMENT Thyroid hormone (TH) is a critical regulator of perinatal brain development in vertebrates. Abnormal TH signaling in early pregnancy is associated with significant cognitive deficits in humans; however, it is difficult to probe the function of TH in early brain development in mammals because of the inaccessibility of the fetal brain in the uterine environment and the challenge of disambiguating maternal versus fetal contributions of TH. The external development of tadpoles allows manipulation and direct observation of the molecular and cellular mechanisms underlying TH's effects on brain development in ways not possible in mammals. We find that endogenous TH locally regulates neurogenesis at developmental stages relevant to circuit assembly by affecting neural progenitor cell proliferation and differentiation and by acting on neurons to enhance dendritic arbor elaboration.
Collapse
|
24
|
Enterina JR, Enfield KSS, Anderson C, Marshall EA, Ng KW, Lam WL. DLK1-DIO3 imprinted locus deregulation in development, respiratory disease, and cancer. Expert Rev Respir Med 2017; 11:749-761. [PMID: 28715922 DOI: 10.1080/17476348.2017.1355241] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION The imprinted DLK1-DIO3 locus at 14q32.1-32.31 holds biological significance in fetal development, whereby imprinting errors are causal to developmental disorders. Emerging evidence has implicated this locus in other diseases including cancer, highlighting the biological parallels between fetal organ and tumour development. Areas covered: Controlled regulation of gene expression from the imprinted DLK1-DIO3 locus at 14q32.1-32.31 is crucial for proper fetal development. Deregulation of locus gene expression due to imprinting errors has been mechanistically linked to the developmental disorders Kagami-Ogata Syndrome and Temple Syndrome. In adult tissues, deregulation of locus genes has been associated with multiple malignancies although the causal genetic mechanisms remain largely uncharacterised. Here, we summarize the genetic mechanisms underlying the developmental disorders that arise as a result of improper locus imprinting and the resulting developmental phenotypes, emphasizing both the coding and noncoding components of the locus. We further highlight biological parallels common to both fetal development and disease, with a specific focus on lung development, respiratory disease, and lung cancer. Expert commentary: Many commonalities between respiratory and developmental defects have emerged with respect to the 14q32 locus, emphasizing the importance of studying the effects of imprinting on gene regulation patterns at this locus in both biological settings.
Collapse
Affiliation(s)
- Jhon R Enterina
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| | | | | | - Erin A Marshall
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| | - Kevin W Ng
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| | - Wan L Lam
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| |
Collapse
|
25
|
Alves RN, Cardoso JCR, Harboe T, Martins RST, Manchado M, Norberg B, Power DM. Duplication of Dio3 genes in teleost fish and their divergent expression in skin during flatfish metamorphosis. Gen Comp Endocrinol 2017; 246:279-293. [PMID: 28062304 DOI: 10.1016/j.ygcen.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 02/07/2023]
Abstract
Deiodinase 3 (Dio3) plays an essential role during early development in vertebrates by controlling tissue thyroid hormone (TH) availability. The Atlantic halibut (Hippoglossus hippoglossus) possesses duplicate dio3 genes (dio3a and dio3b). Expression analysis indicates that dio3b levels change in abocular skin during metamorphosis and this suggests that this enzyme is associated with the divergent development of larval skin to the juvenile phenotype. In larvae exposed to MMI, a chemical that inhibits TH production, expression of dio3b in ocular skin is significantly up-regulated suggesting that THs normally modulate this genes expression during this developmental event. The molecular basis for divergent dio3a and dio3b expression and responsiveness to MMI treatment is explained by the multiple conserved TREs in the proximal promoter region of teleost dio3b and their absence from the promoter of dio3a. We propose that the divergent expression of dio3 in ocular and abocular skin during halibut metamorphosis contributes to the asymmetric pigment development in response to THs.
Collapse
Affiliation(s)
- R N Alves
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - J C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - T Harboe
- Institute of Marine Research, Austevoll Research Station, Austevoll, Norway.
| | - R S T Martins
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - M Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| | - B Norberg
- Institute of Marine Research, Austevoll Research Station, Austevoll, Norway.
| | - D M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
26
|
Abstract
Thyroid hormones (TH) are endocrine messengers essential for normal development and function of virtually every vertebrate. The hypothalamic-pituitary-thyroid axis is exquisitely modulated to maintain nearly constant TH (T4 and T3) levels in circulation. However peripheral tissues and the CNS control the intracellular availability of TH, suggesting that circulating concentrations of TH are not fully representative of what each cell type sees. Indeed, recent work in the field has identified that TH transporters, deiodinases and thyroid hormone receptor coregulators can strongly control tissue-specific sensitivity to a set amount of TH. Furthermore, the mechanism by which the thyroid hormone receptors regulate target gene expression can vary by gene, tissue and cellular context. This review will highlight novel insights into the machinery that controls the cellular response to TH, which include unique signaling cascades. These findings shed new light into the pathophysiology of human diseases caused by abnormal TH signaling.
Collapse
Affiliation(s)
- Arturo Mendoza
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
van Mullem AA, van Gucht ALM, Visser WE, Meima ME, Peeters RP, Visser TJ. Effects of thyroid hormone transporters MCT8 and MCT10 on nuclear activity of T3. Mol Cell Endocrinol 2016; 437:252-260. [PMID: 27492966 DOI: 10.1016/j.mce.2016.07.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/10/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022]
Abstract
Transport of thyroid hormone (TH) across the plasma membrane is necessary for the genomic action of T3 mediated by its nuclear T3 receptor. MCT8 and MCT10 have been identified as important TH transporters. Mutations in MCT8 result in severe psychomotor retardation. In addition to TH transport into the cell, MCT8 and MCT10 also facilitate TH efflux from cells. Therefore, the aim of this study was to examine if MCT8 and MCT10 increase the availability of T3 for its nuclear receptor rather than generate a rapid equilibrium between cellular and serum T3. T3 action was investigated in JEG3 cells co-transfected with TRβ1 and a T3 response element-driven luciferase construct, and T3 metabolism was analyzed in cells transfected with type 3 deiodinase (D3). In addition, cells were transfected with MCT8 or MCT10 and/or the cytoplasmic T3-binding protein mu-crystallin (CRYM). Luciferase signal was markedly stimulated by incubating cells for 24 h with 1 nM T3, but this response was not augmented by MCT8 or MCT10 expression. Limiting the time of T3 exposure to 1-6 h and co-transfection with CRYM allowed for a modest increase in luciferase response to T3. In contrast, T3 metabolism by D3 was potently stimulated by MCT8 or MCT10 expression, but it was not affected by expression of CRYM. These results suggest that MCT8 and MCT10 by virtue of their bidirectional T3 transport have less effect on steady-state nuclear T3 levels than on T3 levels at the cell periphery where D3 is located. CRYM alters the dynamics of cellular TH transport but its exact function in the cellular distribution of TH remains to be determined.
Collapse
Affiliation(s)
- Alies A van Mullem
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anja L M van Gucht
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - W Edward Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel E Meima
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Theo J Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
28
|
Yang F, Ma H, Belcher J, Butler MR, Redmond TM, Boye SL, Hauswirth WW, Ding XQ. Targeting iodothyronine deiodinases locally in the retina is a therapeutic strategy for retinal degeneration. FASEB J 2016; 30:4313-4325. [PMID: 27623928 DOI: 10.1096/fj.201600715r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/01/2016] [Indexed: 12/21/2022]
Abstract
Recent studies have implicated thyroid hormone (TH) signaling in cone photoreceptor viability. Using mouse models of retinal degeneration, we found that antithyroid treatment preserves cones. This work investigates the significance of targeting intracellular TH components locally in the retina. The cellular TH level is mainly regulated by deiodinase iodothyronine (DIO)-2 and -3. DIO2 converts thyroxine (T4) to triiodothyronine (T3), which binds to the TH receptor, whereas DIO3 degrades T3 and T4. We examined cone survival after overexpression of DIO3 and inhibition of DIO2 and demonstrated the benefits of these manipulations. Subretinal delivery of AAV5-IRBP/GNAT2-DIO3, which directs expression of human DIO3 specifically in cones, increased cone density by 30-40% in a Rpe65-/- mouse model of Lebers congenital amaurosis (LCA) and in a Cpfl1 mouse with Pde6c defect model of achromatopsia, compared with their respective untreated controls. Intravitreal and topical delivery of the DIO2 inhibitor iopanoic acid also significantly improved cone survival in the LCA model mice. Moreover, the expression levels of DIO2 and Slc16a2 were significantly higher in the diseased retinas, suggesting locally elevated TH signaling. We show that targeting DIOs protects cones, and intracellular inhibition of TH components locally in the retina may represent a novel strategy for retinal degeneration management.-Yang, F., Ma, H., Belcher, J., Butler, M. R., Redmond, T. M., Boye, S. L., Hauswirth, W. W., Ding, X.-Q. Targeting iodothyronine deiodinases locally in the retina is a therapeutic strategy for retinal degeneration.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joshua Belcher
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael R Butler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, Bethesda, Maryland, USA
| | - Sanford L Boye
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA; and.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA; and.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA;
| |
Collapse
|
29
|
Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol 2016; 6:1387-428. [PMID: 27347897 DOI: 10.1002/cphy.c150027] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid-stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100-fold higher than that of T3, undergoes extra-thyroidal conversion to T3. This conversion is catalyzed by 5'-deiodinases (D1 and D2), which are TH-activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5-deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387-1428, 2016.
Collapse
Affiliation(s)
- Tania M Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Maria I Chiamolera
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Carmen C Pazos-Moura
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fredic E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
30
|
Perez JD, Rubinstein ND, Dulac C. New Perspectives on Genomic Imprinting, an Essential and Multifaceted Mode of Epigenetic Control in the Developing and Adult Brain. Annu Rev Neurosci 2016; 39:347-84. [PMID: 27145912 DOI: 10.1146/annurev-neuro-061010-113708] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mammalian evolution entailed multiple innovations in gene regulation, including the emergence of genomic imprinting, an epigenetic regulation leading to the preferential expression of a gene from its maternal or paternal allele. Genomic imprinting is highly prevalent in the brain, yet, until recently, its central roles in neural processes have not been fully appreciated. Here, we provide a comprehensive survey of adult and developmental brain functions influenced by imprinted genes, from neural development and wiring to synaptic function and plasticity, energy balance, social behaviors, emotions, and cognition. We further review the widespread identification of parental biases alongside monoallelic expression in brain tissues, discuss their potential roles in dosage regulation of key neural pathways, and suggest possible mechanisms underlying the dynamic regulation of imprinting in the brain. This review should help provide a better understanding of the significance of genomic imprinting in the normal and pathological brain of mammals including humans.
Collapse
Affiliation(s)
- Julio D Perez
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| | - Nimrod D Rubinstein
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| |
Collapse
|
31
|
Martinez ME, Karaczyn A, Stohn JP, Donnelly WT, Croteau W, Peeters RP, Galton VA, Forrest D, St Germain D, Hernandez A. The Type 3 Deiodinase Is a Critical Determinant of Appropriate Thyroid Hormone Action in the Developing Testis. Endocrinology 2016; 157:1276-88. [PMID: 26727108 PMCID: PMC4769364 DOI: 10.1210/en.2015-1910] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/28/2015] [Indexed: 11/19/2022]
Abstract
Timely and appropriate levels of thyroid hormone (TH) signaling are necessary to ensure normal developmental outcomes in many tissues. Studies using pharmacological models of altered TH status have revealed an influence of these hormones on testis development and size, but little is known about the role of endogenous determinants of TH action in the developing male gonads. Using a genetic approach, we demonstrate that the type 3 deiodinase (D3), which inactivates TH and protects developing tissues from undue TH action, is a key factor. D3 is highly expressed in the developing testis, and D3-deficient (D3KO) mice exhibit thyrotoxicosis and cell proliferation arrest in the neonatal testis, resulting in an approximately 75% reduction in testis size. This is accompanied by larger seminiferous tubules, impaired spermatogenesis, and a hormonal profile indicative of primary hypogonadism. A deficiency in the TH receptor-α fully normalizes testis size and adult testis gene expression in D3KO mice, indicating that the effects of D3 deficiency are mediated through this type of receptor. Similarly, genetic deficiencies in the D2 or in the monocarboxylate transporter 8 partially rescue the abnormalities in testis size and gonadal axis gene expression featured in the D3KO mice. Our study highlights the testis as an important tissue in which determinants of TH action coordinately converge to ensure normal development and identifies D3 as a critical factor in testis development and in testicular protection from thyrotoxicosis.
Collapse
Affiliation(s)
- M Elena Martinez
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - Aldona Karaczyn
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - J Patrizia Stohn
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - William T Donnelly
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - Walburga Croteau
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - Robin P Peeters
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - Valerie A Galton
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - Douglas Forrest
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - Donald St Germain
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - Arturo Hernandez
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| |
Collapse
|
32
|
Ma H, Ding XQ. Thyroid Hormone Signaling and Cone Photoreceptor Viability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:613-8. [PMID: 26427466 DOI: 10.1007/978-3-319-17121-0_81] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and apoptosis. In the retina, TH signaling plays a central role in cone opsin expression. TH signaling inhibits S opsin expression, stimulates M opsin expression, and promotes dorsal-ventral opsin patterning. TH signaling has also been associated with cone photoreceptor viability. Treatment with thyroid hormone triiodothyronine (T3) or induction of high T3 by deleting the hormone-inactivating enzyme type 3 iodothyronine deiodinase (DIO3) causes cone death in mice. This effect is reversed by deletion of the TH receptor (TR) gene. Consistent with the T3 treatment effect, suppressing TH signaling preserves cones in mouse models of retinal degeneration. The regulation of cone survival by TH signaling appears to be independent of its regulatory role in cone opsin expression. The mechanism by which TH signaling regulates cone viability remains to be identified. The current understanding of TH signaling regulation in photoreceptor viability suggests that suppressing TH signaling locally in the retina may represent a novel strategy for retinal degeneration management.
Collapse
Affiliation(s)
- Hongwei Ma
- The Department of Cell Biology, University of Oklahoma Health Sciences Center, 73104, Oklahoma City, OK, USA.
| | - Xi-Qin Ding
- The Department of Cell Biology, University of Oklahoma Health Sciences Center, 73104, Oklahoma City, OK, USA.
| |
Collapse
|
33
|
Nandi-Munshi D, Taplin CE. Thyroid-related neurological disorders and complications in children. Pediatr Neurol 2015; 52:373-82. [PMID: 25661286 DOI: 10.1016/j.pediatrneurol.2014.12.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 12/23/2014] [Accepted: 12/25/2014] [Indexed: 12/01/2022]
Abstract
BACKGROUND Thyroid hormones exert critical roles throughout the body and play an important and permissive role in neuroendocrine, neurological, and neuromuscular function. METHODS We performed a PubMed search through June 2014 with search terms including "hypothyroidism," "hyperthyroidism," "neurological complications," "neuropathy," "myopathy," "congenital hypothyroidism," and "encephalopathy." Relevant publications reviewed included case series, individual case reports, systematic reviews, retrospective analyses, and randomized controlled trials. The neurological outcomes of congenital hypothyroidism were reviewed, along with the clinical features of associated neuromuscular syndromes of both hypothyroidism and hyperthyroidism, including other autoimmune conditions. Evidence for, and pathophysiological controversies surrounding, Hashimoto encephalopathy was also reviewed. RESULTS The establishment of widespread newborn screening programs has been highly successful in attenuating or preventing early and irreversible neurological harm resulting from congenital thyroid hormone deficiency, but some children continue to display neuromuscular, sensory, and cognitive defects in later life. Acquired disorders of thyroid function such as Hashimoto thyroiditis and Graves' disease are associated with a spectrum of central nervous system and/or neuromuscular dysfunction. However, considerable variation in clinical phenotype is described, and much of our knowledge of the role of thyroid disease in childhood neurological disorders is derived from adult case series. CONCLUSIONS Early and aggressive normalization of thyroxine levels in newborn infants with congenital hypothyroidism is important in minimizing neurological sequelae, but maternal thyroid hormone sources are also critically important to the early developing brain. A spectrum of neurological disorders has been reported in older children with acquired thyroid disease, but the frequency with which these occur remains poorly defined in the literature, and much must be extrapolated from adult data. A high index of suspicion for acquired thyroid disease is paramount in the investigation of many neurological disorders of youth, as many reported sequelae of hypothyroidism and hyperthyroidism are reversible with appropriate endocrine management.
Collapse
Affiliation(s)
- Debika Nandi-Munshi
- Division of Endocrinology and Diabetes, Department of Pediatrics, University of Washington, Seattle Children's Hospital, Seattle, Washington
| | - Craig E Taplin
- Division of Endocrinology and Diabetes, Department of Pediatrics, University of Washington, Seattle Children's Hospital, Seattle, Washington.
| |
Collapse
|
34
|
Alkemade A. Thyroid hormone and the developing hypothalamus. Front Neuroanat 2015; 9:15. [PMID: 25750617 PMCID: PMC4335174 DOI: 10.3389/fnana.2015.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/02/2015] [Indexed: 01/12/2023] Open
Abstract
Thyroid hormone (TH) plays an essential role in normal brain development and function. Both TH excess and insufficiency during development lead to structural brain abnormalities. Proper TH signaling is dependent on active transport of the prohormone thyroxine (T4) across the blood-brain-barrier and into brain cells. In the brain T4 undergoes local deiodination into the more active 3,3′,5-triiodothyronine (T3), which binds to nuclear TH receptors (TRs). TRs are already expressed during the first trimester of pregnancy, even before the fetal thyroid becomes functional. Throughout pregnancy, the fetus is largely dependent on the maternal TH supply. Recent studies in mice have shown that normal hypothalamic development requires intact TH signaling. In addition, the development of the human lateral hypothalamic zone coincides with a strong increase in T3 and TR mRNA concentrations in the brain. During this time the fetal hypothalamus already shows evidence for TH signaling. Expression of components crucial for central TH signaling show a specific developmental timing in the human hypothalamus. A coordinated expression of deiodinases in combination with TH transporters suggests that TH concentrations are regulated to prevent untimely maturation of brain cells. Even though the fetus depends on the maternal TH supply, there is evidence suggesting a role for the fetal hypothalamus in the regulation of TH serum concentrations. A decrease in expression of proteins involved in TH signaling towards the end of pregnancy may indicate a lower fetal TH demand. This may be relevant for the thyrotropin (TSH) surge that is usually observed after birth, and supports a role for the hypothalamus in the regulation of TH concentrations during the fetal period anticipating birth.
Collapse
Affiliation(s)
- Anneke Alkemade
- Amsterdam Brain and Cognition Center, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
35
|
Darras VM, Houbrechts AM, Van Herck SL. Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor-mediated impact on vertebrate development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:130-41. [DOI: 10.1016/j.bbagrm.2014.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/17/2014] [Accepted: 05/07/2014] [Indexed: 01/13/2023]
|
36
|
Pitts MW, Byrns CN, Ogawa-Wong AN, Kremer P, Berry MJ. Selenoproteins in nervous system development and function. Biol Trace Elem Res 2014; 161:231-45. [PMID: 24974905 PMCID: PMC4222985 DOI: 10.1007/s12011-014-0060-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/23/2014] [Indexed: 01/03/2023]
Abstract
Selenoproteins are a distinct class of proteins that are characterized by the co-translational incorporation of selenium (Se) in the form of the 21st amino acid selenocysteine. Selenoproteins provide a key defense against oxidative stress, as many of these proteins participate in oxidation-reduction reactions neutralizing reactive oxygen species, where selenocysteine residues act as catalytic sites. Many selenoproteins are highly expressed in the brain, and mouse knockout studies have determined that several are required for normal brain development. In parallel with these laboratory studies, recent reports of rare human cases with mutations in genes involved in selenoprotein biosynthesis have described individuals with an assortment of neurological problems that mirror those detailed in knockout mice. These deficits include impairments in cognition and motor function, seizures, hearing loss, and altered thyroid metabolism. Additionally, due to the fact that oxidative stress is a key feature of neurodegenerative disease, there is considerable interest in the therapeutic potential of selenium supplementation for human neurological disorders. Studies performed in cell culture and rodent models have demonstrated that selenium administration attenuates oxidative stress, prevents neurodegeneration, and counters cell signaling mechanisms known to be dysregulated in certain disease states. However, there is currently no definitive evidence in support of selenium supplementation to prevent and/or treat common neurological conditions in the general population. It appears likely that, in humans, supplementation with selenium may only benefit certain subpopulations, such as those that are either selenium-deficient or possess genetic variants that affect selenium metabolism.
Collapse
Affiliation(s)
- Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St, Honolulu, HI, 96813, USA,
| | | | | | | | | |
Collapse
|
37
|
Préau L, Fini JB, Morvan-Dubois G, Demeneix B. Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:112-21. [PMID: 24980696 DOI: 10.1016/j.bbagrm.2014.06.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/14/2014] [Accepted: 06/20/2014] [Indexed: 12/11/2022]
Abstract
The essential roles of thyroid hormone (TH) in perinatal brain development have been known for decades. More recently, many of the molecular mechanisms underlying the multiple effects of TH on proliferation, differentiation, migration, synaptogenesis and myelination in the developing nervous system have been elucidated. At the same time data from both epidemiological studies and animal models have revealed that the influence of thyroid signaling on development of the nervous system, extends to all periods of life, from early embryogenesis to neurogenesis in the adult brain. This review focuses on recent insights into the actions of TH during early neurogenesis. A key concept is that, in contrast to the previous ideas that only the unliganded receptor was implicated in these early phases, a critical role of the ligand, T3, is increasingly recognized. These findings are considered in the light of increasing knowledge of cell specific control of T3 availability as a function of deiodinase activity and transporter expression. These requirements for TH in the early stages of neurogenesis take on new relevance given the increasing epidemiological data on adverse effects of TH lack in early pregnancy on children's neurodevelopmental outcome. These ideas lead logically into a discussion on how the actions of TH during the first phases of neurogenesis can be potentially disrupted by gestational iodine lack and/or chemical pollution. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Laetitia Préau
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | - Jean Baptiste Fini
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | - Ghislaine Morvan-Dubois
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | - Barbara Demeneix
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, 75231 Paris, France.
| |
Collapse
|
38
|
A marked paucity of granule cells in the developing cerebellum of the Npc1(-/-) mouse is corrected by a single injection of hydroxypropyl-β-cyclodextrin. Neurobiol Dis 2014; 70:117-26. [PMID: 24969023 PMCID: PMC4148175 DOI: 10.1016/j.nbd.2014.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/01/2014] [Accepted: 06/17/2014] [Indexed: 11/22/2022] Open
Abstract
In this study we show that postnatal development of cerebellar granule neurons (GNs) is defective in Npc1−/− mice. Compared to age-matched wild-type littermates, there is an accelerated disappearance of the external granule layer (EGL) in these mice. This is due to a premature exit from the cell cycle of GN precursors residing at the level of the EGL. As a consequence, the size of cerebellar lobules of these mice displays a 20%–25% reduction compared to that of age-matched wild-type mice. This size reduction is detectable at post-natal day 28 (PN28), when cerebellar GN development is completed while signs of neuronal atrophy are not yet apparent. Based on the analysis of EGL thickness and the determination of proliferating GN fractions at increasing developmental times (PN8–PN14), we trace the onset of this GN developmental defect during the second postnatal week. We also show that during this developmental time Shh transcripts undergo a significant reduction in Npc1−/− mice compared to age-matched wild-type mice. In light of the mitogenic activity of Shh on GNs, this observation further supports the presence of defective GN proliferation in Npc1−/− mice. A single injection of hydroxypropyl-β-cyclodextrin at PN7 rescues this defect, restoring the normal patterns of granule neuron proliferation and cerebellar lobule size. To our knowledge, these findings identify a novel developmental defect that was underappreciated in previous studies. This defect was probably overlooked because Npc1 loss-of-function does not affect cerebellar foliation and causes the internal granule layer and molecular layer to decrease proportionally, giving rise to a normally appearing, yet harmoniously smaller, cerebellum. Cerebellar lobules of adult Npc1−/− mice display a 20–25% reduction in size compared to wild-type age-matched mice. The proliferation of granule neuron (GN) precursors in the developing cerebellum of Npc1−/− mice is defective. Npc1−/− GN precursors of the external granule layer (EGL) undergo a premature exit from the cell cycle. The EGL of Npc1−/− mice is thinner and persists for a shorter time. A single injection of hydroxypropyl-β-cyclodextrin at PN7 rescues these defects.
Collapse
|
39
|
Picou F, Fauquier T, Chatonnet F, Richard S, Flamant F. Deciphering direct and indirect influence of thyroid hormone with mouse genetics. Mol Endocrinol 2014; 28:429-41. [PMID: 24617548 DOI: 10.1210/me.2013-1414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
T3, the active form of thyroid hormone, binds nuclear receptors that regulate the transcription of a large number of genes in many cell types. Unraveling the direct and indirect effect of this hormonal stimulation, and establishing links between these molecular events and the developmental and physiological functions of the hormone, is a major challenge. New mouse genetics tools, notably those based on Cre/loxP technology, are suitable to perform a multiscale analysis of T3 signaling and achieve this task.
Collapse
Affiliation(s)
- Frédéric Picou
- Université de Lyon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon 1, École Normale, Supérieure de Lyon, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| | | | | | | | | |
Collapse
|
40
|
McAninch EA, Bianco AC. Thyroid hormone signaling in energy homeostasis and energy metabolism. Ann N Y Acad Sci 2014; 1311:77-87. [PMID: 24697152 DOI: 10.1111/nyas.12374] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The thyroid hormone (TH) plays a significant role in diverse processes related to growth, development, differentiation, and metabolism. TH signaling modulates energy expenditure through both central and peripheral pathways. At the cellular level, the TH exerts its effects after concerted mechanisms facilitate binding to the TH receptor. In the hypothalamus, signals from a range of metabolic pathways, including appetite, temperature, afferent stimuli via the autonomic nervous system, availability of energy substrates, hormones, and other biologically active molecules, converge to maintain plasma TH at the appropriate level to preserve energy homeostasis. At the tissue level, TH actions on metabolism are controlled by transmembrane transporters, deiodinases, and TH receptors. In the modern environment, humans are susceptible to an energy surplus, which has resulted in an obesity epidemic and, thus, understanding the contribution of the TH to cellular and organism metabolism is increasingly relevant.
Collapse
Affiliation(s)
- Elizabeth A McAninch
- Division of Endocrinology, Diabetes, and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | | |
Collapse
|
41
|
Faustino LC, Ortiga-Carvalho TM. Thyroid hormone role on cerebellar development and maintenance: a perspective based on transgenic mouse models. Front Endocrinol (Lausanne) 2014; 5:75. [PMID: 24904526 PMCID: PMC4033007 DOI: 10.3389/fendo.2014.00075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/02/2014] [Indexed: 01/15/2023] Open
Abstract
Cerebellum development is sensitive to thyroid hormone (TH) levels, as THs regulate neuronal migration, differentiation, and myelination. Most effects of THs are mediated by the thyroid hormone receptor (TR) isoforms TRβ1, TRβ2, and TRα1. Studies aimed at identifying TH target genes during cerebellum development have only achieved partial success, as some of these genes do not possess classical TH-responsive elements, and those that do are likely to be temporally and spatially regulated by THs. THs may also affect neurodevelopment by regulating transcription factors that control particular groups of genes. Furthermore, TH action can also be affected by TH transport, which is mediated mainly by monocarboxylate transporter family members. Studies involving transgenic animal models and genome-wide expression analyses have helped to address the unanswered questions regarding the role of TH in cerebellar development. Recently, a growing body of evidence has begun to clarify the molecular, cellular, and functional aspects of THs in the developing cerebellum. This review describes the current findings concerning the effects of THs on cerebellar development and maintenance as well as advances in the genetic animal models used in this field.
Collapse
Affiliation(s)
- Larissa C. Faustino
- Laboratorio de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tania M. Ortiga-Carvalho
- Laboratorio de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Tania M. Ortiga-Carvalho, Laboratorio de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, s/n Cidade Universitária, Rio de Janeiro 21941-902, Brazil e-mail:
| |
Collapse
|
42
|
Visser WE, van Mullem AAA, Visser TJ, Peeters RP. Different causes of reduced sensitivity to thyroid hormone: diagnosis and clinical management. Clin Endocrinol (Oxf) 2013; 79:595-605. [PMID: 23834164 DOI: 10.1111/cen.12281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/05/2013] [Accepted: 07/01/2013] [Indexed: 11/30/2022]
Abstract
Normal thyroid hormone (TH) metabolism and action require adequate cellular TH signalling. This entails proper function of TH transporters in the plasma membrane, intracellular deiodination of TH and action of the bioactive hormone T3 at its nuclear receptors (TRs). The present review summarizes the discoveries of different syndromes with reduced sensitivity at the cellular level. Mutations in the TH transporter MCT8 cause psychomotor retardation and abnormal thyroid parameters. Mutations in the SBP2 protein, which is required for normal deiodination, give rise to a multisystem disorder including abnormal thyroid function tests. Mutations in TRβ1 are a well-known cause of resistance to TH with mostly a mild phenotype, while only recently, patients with mutations in TRα1 were identified. The latter patients have slightly abnormal TH levels, growth retardation and cognitive defects. This review will describe the mechanisms of disease, clinical phenotype, diagnostic testing and suggestions for treatment strategies for each of these syndromes.
Collapse
Affiliation(s)
- W Edward Visser
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|