1
|
Guevara-Martínez SJ, Villanueva-Mejía F, Fregoso-Aguilar TA, Zamudio-Ojeda A, Herrera-Bucio R, Morales-Palacios FG. Chronic administration of tetrahydrofuran extracts of Cochlospermum vitifolium (Wild) Sprengel in a mouse diabetes model: Hypoglycemic, antioxidant, and genoprotective effects. Biomed Pharmacother 2025; 187:118132. [PMID: 40339226 DOI: 10.1016/j.biopha.2025.118132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025] Open
Abstract
Diabetes and its complications represent a major global health burden, contributing to rising mortality rates, escalating healthcare costs, and an increasing prevalence worldwide. This has driven renewed interest in traditional medicine as a complementary approach to disease management. Cochlospermum vitifolium (Wild) Sprengel, a medicinal plant traditionally used to treat kidney pain, liver disorders (including hepatitis C and jaundice), and metabolic syndrome, has demonstrated promising antidiabetic potential. Previous studies report hypoglycemic effects in both in vitro and short-term in vivo models. In this study, we evaluated the hypoglycemic activity of tetrahydrofuran (THF) extracts from C. vitifolium heartwood and bark in mice over a six-week period (500 mg/kg dose). The heartwood extract exhibited notable antioxidant activity, scavenging over 50 % of DPPH radicals at 3.2 mg/mL, while the bark extract showed higher potency at 1.5 mg/mL. Both extracts demonstrated genoprotective effects at doses of 250 and 500 mg/kg, mitigating damage from mutagenic agents. Notably, the heartwood extracts significantly reduced blood glucose levels from > 300 mg/dL to < 100 mg/dL, whereas the bark extract had no significant hypoglycemic effect. These findings suggest that C. vitifolium extracts, particularly from the heartwood, may modulate oxidative stress-related pathways implicated in chronic degenerative diseases such as diabetes. Further research is warranted to elucidate the underlying mechanisms and long-term safety profile of these extracts.
Collapse
Affiliation(s)
- Santiago José Guevara-Martínez
- Department of Pharmacology, School of Exact Sciences and Engineering, University of Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Olímpica, Guadalajara, Jalisco, Mexico.
| | - Francisco Villanueva-Mejía
- Instituto Tecnológico de Pabellón de Arteaga, Carretera a la estación de Rincón de Romos, km 1, 20670, Pabellón de Arteaga, Aguascalientes, Mexico.
| | - Tomás Alejandro Fregoso-Aguilar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Departamento de Fisiología, Av., Wilfrido Massieu S/N, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México C.P. 07700, Mexico
| | - Adalberto Zamudio-Ojeda
- Department of Physics, School of Exact Sciences and Engineering, University of Guadalajara, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Olímpica, Guadalajara, Jalisco, Mexico.
| | - Rafael Herrera-Bucio
- Instituto de Investigaciones Químico Biólogicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica, s/n, Morelia, Michoacán 58030, Mexico.
| | - Fredy Geovannini Morales-Palacios
- Instituto de Investigaciones Químico Biólogicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica, s/n, Morelia, Michoacán 58030, Mexico.
| |
Collapse
|
2
|
López-Almada G, Domínguez-Avila JA, Robles-Sánchez RM, Arauz-Cabrera J, Martínez-Coronilla G, González-Aguilar GA, Salazar-López NJ. Naringenin Decreases Retroperitoneal Adiposity and Improves Metabolic Parameters in a Rat Model of Western Diet-Induced Obesity. Metabolites 2025; 15:109. [PMID: 39997735 PMCID: PMC11857789 DOI: 10.3390/metabo15020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Obesity is a multifactorial disease with detrimental effects on health and quality of life; unregulated satiety plays a crucial role in food intake and obesity development. Naringenin (NAR) has shown beneficial effects on lipid and carbohydrate metabolism, although its impact on adiposity and satiety remains unclear. This study reports a Western diet (WD)-induced obesity model in rats, wherein 100 mg/kg of NAR was administered as an anti-obesity agent for 8 weeks; oxidative stress, lipid profile, and satiety biomarkers were then studied, as well as in silico interaction between NAR and cholecystokinin (CCK) and ghrelin receptors. Results: NAR supplementation resulted in a significant decrease in retroperitoneal adipose tissue and liver weight, as compared to the untreated WD group (p < 0.05), potentially associated with a decreased feed efficiency. NAR also inhibited the development of dyslipidemia, particularly by reducing serum triglycerides (p < 0.05). NAR supplementation increased CCK serum levels in the basal diet group, an effect that was abolished by the WD (p < 0.05); likewise, no changes were determined on ghrelin (p > 0.05). In silico data shows that NAR is capable of interacting with the CCK and ghrelin receptors, which suggests a potential for it to modulate hunger/satiety signaling by interacting with them. Conclusions: We conclude that NAR has anti-obesogenic effects and may regulate CCK serum levels, although further research is still needed.
Collapse
Affiliation(s)
- Gabriela López-Almada
- Facultad de Medicina de Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés, Centro Cívico, Mexicali 21000, BCN, Mexico; (G.L.-A.)
| | - J. Abraham Domínguez-Avila
- SECIHTI—Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico;
| | - Rosario Maribel Robles-Sánchez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Col. Centro, Hermosillo 83000, SO, Mexico
| | - Jonathan Arauz-Cabrera
- Facultad de Medicina de Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés, Centro Cívico, Mexicali 21000, BCN, Mexico; (G.L.-A.)
| | - Gustavo Martínez-Coronilla
- Facultad de Medicina de Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés, Centro Cívico, Mexicali 21000, BCN, Mexico; (G.L.-A.)
| | - Gustavo A. González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico
| | - Norma Julieta Salazar-López
- Facultad de Medicina de Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés, Centro Cívico, Mexicali 21000, BCN, Mexico; (G.L.-A.)
| |
Collapse
|
3
|
Fotouhi S, Yavari A, Bagheri AR, Askari VR, Gholami Y, Baradaran Rahimi V. Exploring the promising impacts of naringin and its aglycone constituent naringenin as major citrus flavonoids on diabetes and its complications. J Funct Foods 2025; 124:106643. [DOI: 10.1016/j.jff.2024.106643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
4
|
Solanki S, Vig H, Khatri N, Singh BP, Khan MS, Devgun M, Wal P, Wal A. Naringenin: A Promising Immunomodulator for Anti-inflammatory, Neuroprotective and Anti-cancer Applications. Antiinflamm Antiallergy Agents Med Chem 2025; 24:1-25. [PMID: 39076091 DOI: 10.2174/0118715230320007240708074939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Inflammatory, immune, and neurodegenerative diseases constitute a category of persistent and debilitating conditions affecting millions worldwide, with intertwined pathophysiological pathways. Recent research has spotlighted naturally occurring compounds like naringenin for potential therapeutic applications across multiple ailments. OBJECTIVES This review offers an encompassing exploration of naringenin's anti-inflammatory, immune-protective, and neuroprotective mechanisms, elucidating its pharmacological targets, signal transduction pathways, safety profile, and insights from clinical investigations. METHODS Data for this review were amassed through the scrutiny of various published studies via search engines such as PubMed and Google Scholar. Content from reputable publishers including Bentham Science, Taylor and Francis, Nature, PLOS ONE, among others, was referenced. RESULTS Naringenin exhibits substantial anti-inflammatory effects by restraining the NF-κB signaling pathway. It activates Nrf2, renowned for its anti-inflammatory properties, inducing the release of hemeoxynase-1 by macrophages. Furthermore, naringenin treatment downregulates the expression of Th1 cytokines and inflammatory mediators. It also impedes xanthine oxidase, counteracts reactive oxygen species (ROS), scavenges superoxide radicals, mitigates the accessibility of oxygen-induced K+ erythrocytes, and reduces lipid peroxidation. Naringenin's antioxidant prowess holds promise for addressing neurological conditions. CONCLUSION Extensive research has been undertaken to establish the anti-inflammatory, immunomodulatory, and neuroprotective attributes of naringenin across various medical domains, lending credence to its pharmacological utility. The principal obstacle to naringenin's adoption as a therapeutic agent remains the dearth of in vivo data. Efforts should focus on rendering naringenin delivery patient-friendly, economically viable, and technologically advanced.
Collapse
Affiliation(s)
- Sarita Solanki
- Department of Pharmacy, University of Kota, Kota Rajasthan, India
| | - Himangi Vig
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH 19 Bhauti Kanpur, Uttar Pradesh, India
| | - Nidhi Khatri
- Department of Pharmacy, University of Kota, Kota Rajasthan, India
| | | | | | - Manish Devgun
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH 19 Bhauti Kanpur, Uttar Pradesh, India
| | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH 19 Bhauti Kanpur, Uttar Pradesh, India
| |
Collapse
|
5
|
Shin JH, Shin SH. A Comprehensive Review of Naringenin, a Promising Phytochemical with Therapeutic Potential. J Microbiol Biotechnol 2024; 34:2425-2438. [PMID: 39572023 PMCID: PMC11733549 DOI: 10.4014/jmb.2410.10006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 12/31/2024]
Abstract
Disorders, including cancer, metabolic disorders, and neurodegenerative diseases, can threaten human health; therefore, disease prevention is essential. Naringenin, a phytochemical with low toxicity, has been used in various disease prevention studies. This study aimed to comprehensively review the effects of naringenin on human health. First, we introduced the general characteristics of naringenin and its pharmacokinetic features when absorbed in the body. Next, we summarized the inhibitory effects of naringenin on colorectal, gastric, lung, breast, ovarian, cervical, prostate, bladder, liver, pancreatic, and skin cancers in preclinical studies. Lastly, we investigated the inhibitory effects of naringenin on metabolic disorders, including diabetes, obesity, hyperlipidemia, hypertension, cardiac toxicity, hypertrophy, steatosis, liver disease, and arteriosclerosis, as well as on neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. In conclusion, naringenin may serve as a significant natural compound that benefits human health.
Collapse
Affiliation(s)
- Jun Hong Shin
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Ho Shin
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Bio & Medical Bigdata (BK4 Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
6
|
Yardımcı BK. Naringenin and caffeic acid increase ethanol production in yeast cells by reducing very high gravity fermentation-related oxidative stress. Braz J Microbiol 2024; 55:3215-3228. [PMID: 39320639 PMCID: PMC11711439 DOI: 10.1007/s42770-024-01525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Very high gravity (VHG) fermentation is an industrial-scale process utilizing a sugar concentration above 250 g/L to attain a significant ethanol concentration, with the advantages of decreased labor, production costs, water usage, bacterial contamination, and energy consumption. Saccharomyces cerevisiae is one of the most extensively employed organisms in ethanol fermentation through VHG technology. Conversely, high glucose exposure leads to numerous stress factors that negatively impact the ethanol production efficiency of this organism. Here, the impact of various phytochemicals added to the VHG medium on viability, glucose consumption, ethanol production efficiency, total antioxidant-oxidant status (TAS and TOS), and the response of the enzymatic antioxidant system of yeast were investigated. 2.0 mM naringenin and caffeic acid increased ethanol production by 2.453 ± 0.198 and 1.261 ± 0.138-fold, respectively. The glucose consumption rate exhibited a direct relationship with ethanol production in the naringenin-supplemented group. The highest TAS was determined as 0.734 ± 0.044 mmol Trolox Eq./L in the same group. Furthermore, both phytochemical compounds exhibited robust positive correlations with TAS (rnaringenin = 0.9986; rcaffeic acid = 0.9553) and TOS levels (rnaringenin = -0.9824; rcaffeic acid = -0.9791). While naringenin caused statistically significant increases in glutathione reductase (GR) and thioredoxin reductase (TrxR) activities, caffeic acid significantly increased TrxR and superoxide dismutase (SOD). Both phytochemicals seem to impact the ethanol production ability by regulating the redox status of the cells. We believe that the incorporation of particularly cost-effective antioxidants into the fermentation medium may serve as an alternative way to enhance the efficiency of bioethanol production using VHG technology.
Collapse
Affiliation(s)
- Berna Kavakcıoğlu Yardımcı
- Department of Chemistry, Faculty of Science, Pamukkale University, Denizli, Turkey.
- Advanced Technology Application and Research Center, Pamukkale University, Denizli, Turkey.
| |
Collapse
|
7
|
Nobushi Y, Wada T, Miura M, Onoda R, Ishiwata R, Oikawa N, Shigematsu K, Nakakita T, Toriyama M, Shimba S, Kishikawa Y. Effects of Flavanone Derivatives on Adipocyte Differentiation and Lipid Accumulation in 3T3-L1 Cells. Life (Basel) 2024; 14:1446. [PMID: 39598244 PMCID: PMC11595554 DOI: 10.3390/life14111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Flavanones, a class of flavonoids, are abundant in fruits, vegetables, and herbs. They are known to have several biological activities, such as anti-inflammatory and anti-cancer activities, but their effects on obesity remain unclear. Obesity is closely associated with adipocyte differentiation and lipid accumulation in adipose tissue. Therefore, in this study, we examined the effects of flavanone derivatives on adipocyte differentiation and lipid accumulation by using 3T3-L1 cells. Among the 15 flavanone derivatives studied, 4'-phenylflavanone (4PF), with a biphenyl structure, significantly inhibited adipocyte differentiation-related lipid accumulation in 3T3-L1 cells; this inhibition of lipid accumulation was dose-dependent. Gene expression analysis showed that 4PF suppressed the expression of adipogenic marker genes. Although the induction of peroxisome proliferator activator γ2 (Pparγ2), a master regulator of adipocyte differentiation, and its target genes during adipocyte differentiation was attenuated in 4PF-treated cells, 4PF did not directly regulate Pparγ2 gene expression and its activation. In contrast, 4PF suppressed mitotic clonal expansion (MCE), which is associated with changes in the expression of proliferation-related genes at the early stages of adipocyte differentiation. Taken together, these results suggest that 4PF inhibits lipid accumulation because it suppresses MCE during adipocyte differentiation. Thus, our findings may help in the development of anti-obesity drugs.
Collapse
Affiliation(s)
- Yasuhito Nobushi
- Laboratory of Clinical Pharmacy, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; (R.O.); (R.I.); (Y.K.)
| | - Taira Wada
- Laboratory of Health Science, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; (T.W.); (S.S.)
| | - Motofumi Miura
- Laboratory of Molecular Chemistry, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; (M.M.); (K.S.); (M.T.)
| | - Rikuto Onoda
- Laboratory of Clinical Pharmacy, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; (R.O.); (R.I.); (Y.K.)
| | - Ryuta Ishiwata
- Laboratory of Clinical Pharmacy, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; (R.O.); (R.I.); (Y.K.)
| | - Naoki Oikawa
- Laboratory of Medicinal Chemistry, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan;
| | - Karin Shigematsu
- Laboratory of Molecular Chemistry, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; (M.M.); (K.S.); (M.T.)
| | - Toshinori Nakakita
- Medicine Analysis Research Laboratory, Yokohama University of Pharmacy, 601, Matano-cho, Totsuka-ku, Yokohama 245-0066, Kanagawa, Japan;
| | - Masaharu Toriyama
- Laboratory of Molecular Chemistry, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; (M.M.); (K.S.); (M.T.)
| | - Shigeki Shimba
- Laboratory of Health Science, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; (T.W.); (S.S.)
| | - Yukinaga Kishikawa
- Laboratory of Clinical Pharmacy, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; (R.O.); (R.I.); (Y.K.)
| |
Collapse
|
8
|
Muralidharan J, Romain C, Chung L, Alcaraz P, Martínez-Noguera FJ, Keophiphath M, Lelouvier B, Ancel P, Gaborit B, Cases J. Effect of Sinetrol ® Xpur on metabolic health and adiposity by interactions with gut microbiota: a randomized, open label, dose-response clinical trial. Nutr Metab (Lond) 2024; 21:83. [PMID: 39415279 PMCID: PMC11484468 DOI: 10.1186/s12986-024-00851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Sinetrol® Xpur is a polyphenolic ingredient rich in citrus flavonoids that has shown weight loss effects in previous studies. The dose dependent nature, gut microbial actions of this product has not been explored previously, thus presented in this study. METHODS In this open label study, we evaluated the effect of Sinetrol® Xpur supplementation on healthy but overweight/obese adults (20-50 yrs) for 16 weeks. Participants (n = 20) were randomly allocated to a high dose group (HD, 1800 mg/day) or low dose group (LD, 900 mg/day) of the product for 16 weeks. Fat composition, gut microbial composition, were evaluated using MRI and 16S rDNA sequencing respectively at week 1 and 16. RESULTS We observed HDL, HbA1C, LDL and leptin improved significantly over 16 weeks, irrespective of the dosage. There was a trend for decrease in visceral adipose tissue (VAT), BMI over time and body weight displayed a trend for dose dependent decrease. Eubacterium xylanophilum, Ruminococcacea UCG-004 genus which increased in HD and LD respectively were negatively associated to VAT. Both doses increased butyrate producers such as Eubacterium ruminantium and Ruminococcaceae NK4A214 genus. CONCLUSIONS Overall chronic supplementation of Sinetrol® Xpur, irrespective of their dose improved HDL, HbA1c, LDL and leptin and tended to decrease visceral adipose tissue via changes in gut microbiota. Trial registration number NCT03823196.
Collapse
Affiliation(s)
| | - Cindy Romain
- Fytexia, ZAE via Europa-3 rue d'Athènes, 34350, Vendres, France
| | - Linda Chung
- Research Center for High Performance Sport-UCAM Universidad Católica de Murcia, Murcia, Spain
| | - Pedro Alcaraz
- Research Center for High Performance Sport-UCAM Universidad Católica de Murcia, Murcia, Spain
| | | | - Mayoura Keophiphath
- DIVA Expertise, Centre Pierre Potier, 1 place Pierre Potier, 31100, Toulouse, France
| | | | - Patricia Ancel
- INSERM, INRA, C2VN, Aix Marseille Univ, Marseille, France
| | | | - Julien Cases
- Fytexia, ZAE via Europa-3 rue d'Athènes, 34350, Vendres, France.
| |
Collapse
|
9
|
Samantaray M, Pattabiraman R, Murthy TPK, Ramaswamy A, Murahari M, Krishna S, Kumar SB. Structure-based virtual screening of natural compounds against wild and mutant (R1155K, A1156T and D1168A) NS3-4A protease of Hepatitis C virus. J Biomol Struct Dyn 2024; 42:8505-8522. [PMID: 37646701 DOI: 10.1080/07391102.2023.2246583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
NS3-4A, a serine protease, is a primary target for drug development against Hepatitis C Virus (HCV). However, the effectiveness of potent next-generation protease inhibitors is limited by the emergence of mutations and resulting drug resistance. To address this, in this study a structure-based drug design approach is employed to screen a large library of 7320 natural compounds against both wild-type and mutant variants of NS3-4A protease. Telaprevir, a widely used protease inhibitor, was recruited as the control drug. The top 10 compounds with favorable binding affinities underwent drug-likeness evaluation. Based on ADMET studies, complexes of NP_024762 and NP_006776 were selected for molecular dynamic simulations. Principal component analysis (PCA) was employed to explore the conformational space and protein dynamics of the protein-ligand complex using a Free Energy Landscape (FEL) approach. The cosine values obtained from FEL analysis ranged from 0 to 1, and eigenvectors with cosine values below 0.2 were chosen for further analysis. To forecast binding free energies and evaluate energy contributions per residue, the MM-PBSA method was employed. The results highlighted the crucial role of amino acids in the catalytic domain for the binding of the protease with phytochemicals. Stable associations between the top compounds and the target protease were confirmed by the formation of hydrogen bonds in the binding pocket involving residues: His1057, Gly1137, Ser1139, and Ala1157. These findings suggest the potential of these compounds for further validation through biological evaluation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahesh Samantaray
- Department of Bioinformatics, Pondicherry University, Pondicherry, India
| | - Ramya Pattabiraman
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - T P Krishna Murthy
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Amutha Ramaswamy
- Department of Bioinformatics, Pondicherry University, Pondicherry, India
| | - Manikanta Murahari
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Swati Krishna
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - S Birendra Kumar
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| |
Collapse
|
10
|
Liu H, Li Y, Jin Y, Li X, Wang D, Yu X, Jiang Z, Yin G, Chen S, Zhang X, Meng D, Yu W, Jiang W, Zhang F. Effects of different natural products in patients with non-alcoholic fatty liver disease-A network meta-analysis of randomized controlled trials. Phytother Res 2024; 38:3801-3824. [PMID: 38886838 DOI: 10.1002/ptr.8182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 06/20/2024]
Abstract
Due to a scarcity of appropriate therapeutic approaches capable of ameliorating or eliminating non-alcoholic fatty liver disease (NAFLD), many researchers have come to focus on natural products based on traditional medicine that can be utilized to successfully treat NAFLD. In this study, we aimed to evaluate the effects exerted by seven natural products (curcumin, silymarin, resveratrol, artichoke leaf extract, berberine, catechins, and naringenin) on patients with NAFLD. For this purpose, PubMed, Embase, Cochrane Library, and Web of Science, were searched for randomized controlled trials (RCTs) exclusively. The selected studies were evaluated for methodological quality via the Cochrane bias risk assessment tool, and data analysis software was used to analyze the data accordingly. The RCTs from the earliest available date until September 2022 were collected. This process resulted in 37 RCTs with a total sample size of 2509 patients being included. The results of the network meta-analysis showed that artichoke leaf extract confers a relative advantage in reducing the aspartate aminotransferase (AST) levels (SUCRA: 99.1%), alanine aminotransferase (ALT) levels (SUCRA: 88.2%) and low-density lipoprotein cholesterol (LDL-C) levels (SUCRA: 88.9%). Naringenin conferred an advantage in reducing triglyceride (TG) levels (SUCRA: 97.3%), total cholesterol (TC) levels (SUCRA: 73.9%), and improving high-density lipoprotein cholesterol (HDL-C) levels (SUCRA: 74.9%). High-density catechins significantly reduced body mass index (BMI) levels (SUCRA: 98.5%) compared with the placebo. The Ranking Plot of the Network indicated that artichoke leaf extract and naringenin performed better than the other natural products in facilitating patient recovery. Therefore, we propose that artichoke leaf extract and naringenin may exert a better therapeutic effect on NAFLD. This study may help guide clinicians and lead to further detailed studies.
Collapse
Affiliation(s)
- Hongshuai Liu
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Yufei Li
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Yan Jin
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xin Li
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Dongxian Wang
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xiaowen Yu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Zhenyuan Jiang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Suwen Chen
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Decheng Meng
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Wenfei Yu
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Wenyin Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| |
Collapse
|
11
|
Berezin OO, Berezina TA, Hoppe UC, Lichtenauer M, Berezin AE. Diagnostic and predictive abilities of myokines in patients with heart failure. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:45-98. [PMID: 39059994 DOI: 10.1016/bs.apcsb.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Myokines are defined as a heterogenic group of numerous cytokines, peptides and metabolic derivates, which are expressed, synthesized, produced, and released by skeletal myocytes and myocardial cells and exert either auto- and paracrine, or endocrine effects. Previous studies revealed that myokines play a pivotal role in mutual communications between skeletal muscles, myocardium and remote organs, such as brain, vasculature, bone, liver, pancreas, white adipose tissue, gut, and skin. Despite several myokines exert complete divorced biological effects mainly in regulation of skeletal muscle hypertrophy, residential cells differentiation, neovascularization/angiogenesis, vascular integrity, endothelial function, inflammation and apoptosis/necrosis, attenuating ischemia/hypoxia and tissue protection, tumor growth and malignance, for other occasions, their predominant effects affect energy homeostasis, glucose and lipid metabolism, adiposity, muscle training adaptation and food behavior. Last decade had been identified 250 more myokines, which have been investigating for many years further as either biomarkers or targets for heart failure management. However, only few myokines have been allocated to a promising tool for monitoring adverse cardiac remodeling, ischemia/hypoxia-related target-organ dysfunction, microvascular inflammation, sarcopenia/myopathy and prediction for poor clinical outcomes among patients with HF. This we concentrate on some most plausible myokines, such as myostatin, myonectin, brain-derived neurotrophic factor, muslin, fibroblast growth factor 21, irisin, leukemia inhibitory factor, developmental endothelial locus-1, interleukin-6, nerve growth factor and insulin-like growth factor-1, which are suggested to be useful biomarkers for HF development and progression.
Collapse
Affiliation(s)
- Oleksandr O Berezin
- Luzerner Psychiatrie AG, Department of Senior Psychiatrie, St. Urban, Switzerland
| | - Tetiana A Berezina
- Department of Internal Medicine and Nephrology, VitaCenter, Zaporozhye, Ukraine
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
12
|
Lin P, Zhang X, Zhu B, Gao J, Yin D, Zeng J, Kang Z. Naringenin protects pancreatic β cells in diabetic rat through activation of estrogen receptor β. Eur J Pharmacol 2023; 960:176115. [PMID: 37866740 DOI: 10.1016/j.ejphar.2023.176115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Naringenin is a citrus flavonoid that potently improves metabolic parameters in animal models of metabolic disorders, such as type 2 diabetes. Estrogen receptor (ER) activation promotes β cell function and survival, thereby improving systemic glucose metabolism. In this study, we used a luciferase reporter assay, isolated rat islets and a diabetic rat model to investigate the effects of naringenin on ER signaling and the underlying mechanism of naringenin-mediated improvement of islet function in diabetes. Naringenin specifically activated ERβ without affecting the activity of ERα, G protein-coupled estrogen receptor (GPER) or estrogen-related receptor (ERR) α/β/γ. Additionally, treatment with naringenin enhanced glucose-stimulated insulin secretion in isolated rat islets. This effect was abrogated by PHTPP, an ERβ antagonist. Transcriptomic analysis revealed that naringenin upregulated the expression of genes, such as Pdx1 and Mafa, which are closely linked to improved β-cell function. In consistence, single administration of naringenin to normal rats elevated plasma insulin levels and improved glucose responses. These beneficial effects were blocked by PHTPP. In streptozocin-nicotinamide induced diabetic rats, treatment for 2 weeks with naringenin alone, but not in combination with PHTPP, significantly restored pancreatic β cell mass and improved glucose metabolism. Collectively, these data support that naringenin specifically activate ERβ to improve insulin secretion in the primary rat islets. Furthermore, naringenin administration also protected β cell function and reversed glucose dysregulation in diabetic rats. These beneficial effects are at least partially dependent on the ERβ pathway.
Collapse
Affiliation(s)
- Peibin Lin
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xiaojing Zhang
- Department of Pharmacy, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Baoyi Zhu
- Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China; Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jun Gao
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Dazhong Yin
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jianwen Zeng
- Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China; Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China.
| | - Zhanfang Kang
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China; Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China.
| |
Collapse
|
13
|
Bibi S, Nisar M, Rafique S, Waqas M, Zahoor M, Idrees M, Nazir N, Ihsan M, Salmen SH, Alharbi SA, Khan A, Al-Harrasi A. Harnessing Nature's Gifts: Salix nigra and Its Potential for Combating Hepatitis C Virus (HCV). ACS OMEGA 2023; 8:42987-42999. [PMID: 38024752 PMCID: PMC10653063 DOI: 10.1021/acsomega.3c06193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Hepatitis C virus (HCV) causes various liver complications, including fibrosis, cirrhosis, and steatosis, and finally progresses toward hepatocellular carcinoma (HCC). The current study aimed to explore the antiviral activity of the traditional Pakistani medicinal plant Salix nigra (S. nigra) known as black willow against the hepatitis C virus (HCV). The anti-HCV activity of S. nigra was established against stable Hep G2 cell lines expressing the HCV NS3 gene. Various plant-derived compounds with anti-HCV activity were identified, making phytotherapy a promising alternative to conventional treatments due to their cost-effectiveness and milder side effects. The two extraction methods (Maceration and Soxhlet) and four solvents (n-hexane, methanol, ethyl acetate, and water) were used to obtain crude extracts from S. nigra. Cytotoxicity testing showed that methanol (CC50 25 μg/mL) and water (CC50 30 μg/mL) extracts were highly toxic, while ethyl acetate and n-hexane (CC50 > 200 μg/mL) extracts were nontoxic at low concentrations (10-50 μg/mL), making them suitable for further anti-HCV investigations. Stable transfection of the NS3 gene was successfully performed in Hep G2 cells, creating a cellular expression system for studying virus-host interaction. The ethyl acetate extract of S. nigra exhibited significant inhibition of NS3 gene expression (mRNA and protein levels). The phytochemical analysis of S. nigra was also performed using the high-performance liquid chromatography (HPLC) technique. The phytochemical analysis identified several polyphenolic substances in the extracts of S. nigra. Our results concluded that the extracts of S. nigra have significantly reduced the expression of the NS3 gene at mRNA and protein levels. These findings contribute to the global efforts to combat hepatitis C by offering plant-based treatment options for HCV management.
Collapse
Affiliation(s)
- Sadia Bibi
- Department
of Botany, University of Malakand, Dir (Lower), Chakdara 18800, Khyber
Pakhtunkhwa, Pakistan
| | - Mohammad Nisar
- Department
of Botany, University of Malakand, Dir (Lower), Chakdara 18800, Khyber
Pakhtunkhwa, Pakistan
| | - Shazia Rafique
- Division
of Molecular Virology, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Waqas
- Department
of Biotechnology and Genetic Engineering, Hazara University Mansehra, Mansehra 2100, Pakistan
- Natural and
Medical Sciences Research Center, University
of Nizwa, Birkat Al Mauz, P.O Box 33, 616Nizwa, Sultanate of Oman
| | - Muhammad Zahoor
- Department
of Biochemistry, University of Malakand, Dir (Lower), Chakdara 18800, Khyber
Pakhtunkhwa, Pakistan
| | - Muhammad Idrees
- Division
of Molecular Virology, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore 54590, Pakistan
| | - Nausheen Nazir
- Department
of Biochemistry, University of Malakand, Dir (Lower), Chakdara 18800, Khyber
Pakhtunkhwa, Pakistan
| | - Mohammad Ihsan
- Department
of Botany, University of Malakand, Dir (Lower), Chakdara 18800, Khyber
Pakhtunkhwa, Pakistan
| | - Saleh H. Salmen
- Department
of Botany and Microbiology, College of Science, King Saud University, PO Box −2455, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department
of Botany and Microbiology, College of Science, King Saud University, PO Box −2455, Riyadh 11451, Saudi Arabia
| | - Ajmal Khan
- Natural and
Medical Sciences Research Center, University
of Nizwa, Birkat Al Mauz, P.O Box 33, 616Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and
Medical Sciences Research Center, University
of Nizwa, Birkat Al Mauz, P.O Box 33, 616Nizwa, Sultanate of Oman
| |
Collapse
|
14
|
Naomi R, Teoh SH, Halim S, Embong H, Hasain Z, Bahari H, Kumar J. Unraveling Obesity: Transgenerational Inheritance, Treatment Side Effects, Flavonoids, Mechanisms, Microbiota, Redox Balance, and Bioavailability-A Narrative Review. Antioxidants (Basel) 2023; 12:1549. [PMID: 37627544 PMCID: PMC10451614 DOI: 10.3390/antiox12081549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
Obesity is known as a transgenerational vicious cycle and has become a global burden due to its unavoidable complications. Modern approaches to obesity management often involve the use of pharmaceutical drugs and surgeries that have been associated with negative side effects. In contrast, natural antioxidants, such as flavonoids, have emerged as a promising alternative due to their potential health benefits and minimal side effects. Thus, this narrative review explores the potential protective role of flavonoids as a natural antioxidant in managing obesity. To identify recent in vivo studies on the efficiency of flavonoids in managing obesity, a comprehensive search was conducted on Wiley Online Library, Scopus, Nature, and ScienceDirect. The search was limited to the past 10 years; from the search, we identified 31 articles to be further reviewed. Based on the reviewed articles, we concluded that flavonoids offer novel therapeutic strategies for preventing obesity and its associated co-morbidities. This is because the appropriate dosage of flavonoid compounds is able to reduce adipose tissue mass, the formation of intracellular free radicals, enhance endogenous antioxidant defences, modulate the redox balance, and reduce inflammatory signalling pathways. Thus, this review provides an insight into the domain of a natural product therapeutic approach for managing obesity and recapitulates the transgenerational inheritance of obesity, the current available treatments to manage obesity and its side effects, flavonoids and their sources, the molecular mechanism involved, the modulation of gut microbiota in obesity, redox balance, and the bioavailability of flavonoids. In toto, although flavonoids show promising positive outcome in managing obesity, a more comprehensive understanding of the molecular mechanisms responsible for the advantageous impacts of flavonoids-achieved through translation to clinical trials-would provide a novel approach to inculcating flavonoids in managing obesity in the future as this review is limited to animal studies.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Soo Huat Teoh
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Malaysia;
| | - Shariff Halim
- Faculty of Health Sciences, University Technology Mara (UiTM) Pulau Pinang, Bertam Campus, Kepala Batas 13200, Malaysia;
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Zubaidah Hasain
- Unit of Physiology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
15
|
Naringenin inhibits lipid accumulation by activating the AMPK pathway in vivo and vitro. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Could Naringenin Participate as a Regulator of Obesity and Satiety? Molecules 2023; 28:molecules28031450. [PMID: 36771113 PMCID: PMC9921626 DOI: 10.3390/molecules28031450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Obesity is a serious health problem worldwide, since it is associated with multiple metabolic disorders and complications such as cardiovascular disease, type 2 diabetes, fatty liver disease and overall metabolic dysfunction. Dysregulation of the hunger-satiety pathway, which includes alterations of central and peripheral signaling, explains some forms of obesity by favoring hyperphagia and weight gain. The present work comprehensively summarizes the mechanisms by which naringenin (NAR), a predominant flavanone in citrus fruits, could modulate the main pathways associated with the development of obesity and some of its comorbidities, such as oxidative stress (OS), inflammation, insulin resistance (IR) and dyslipidemia, as well as the role of NAR in modulating the secretion of enterohormones of the satiety pathway and its possible antiobesogenic effect. The results of multiple in vitro and in vivo studies have shown that NAR has various potentially modulatory biological effects against obesity by countering IR, inflammation, OS, macrophage infiltration, dyslipidemia, hepatic steatosis, and adipose deposition. Likewise, NAR is capable of modulating peptides or peripheral hormones directly associated with the hunger-satiety pathway, such as ghrelin, cholecystokinin, insulin, adiponectin and leptin. The evidence supports the use of NAR as a promising alternative to prevent overweight and obesity.
Collapse
|
17
|
Sun M, Ye H. Natural Foods for the Treatment of Nonalcoholic Fatty Liver Disease. J Med Food 2023; 26:1-13. [PMID: 36579939 DOI: 10.1089/jmf.2022.k.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. The etiology of NAFLD is highly heterogeneous, which occurs and develops under the joint action of metabolism, inflammation, genetics, environment, and gut microbiota. At present, the principal therapeutic modalities targeting NAFLD are lifestyle interventions such as weight loss through diet and exercise. At present, there is no established therapy for the treatment of NAFLD, and many therapies are associated with a variety of side effects. A great number of in vitro and in vivo experiments have indicated that there are many natural foods that have therapeutic potential for NAFLD. This review summarizes the natural foods and their mechanisms that were found in recent years, furthermore, provides further information relevant to the treatment of NAFLD.
Collapse
Affiliation(s)
- Mengxia Sun
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Hua Ye
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
18
|
Naringenin Prevents Oxidative Stress and Inflammation in LPS-Induced Liver Injury through the Regulation of LncRNA-mRNA in Male Mice. Molecules 2022; 28:molecules28010198. [PMID: 36615393 PMCID: PMC9821796 DOI: 10.3390/molecules28010198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Inflammation accompanies hepatic dysfunction resulting from tissue oxidative damage. Naringenin (Nar), a natural flavanone, has known antioxidant and anti-inflammatory activities, but its mechanism of action in the regulation of liver dysfunction requires further investigation. In this study, the role of naringenin in lipopolysaccharide (LPS)-induced hepatic oxidative stress and inflammation was explored, as well as its mechanism by transcriptome sequencing. The results indicated that compared with the LPS group, Nar treatment caused a significant increase in the mRNA levels of antioxidant factors glutamate-cysteine ligase catalytic subunit (GCLC) and glutamate-cysteine ligase modifier subunit (GCLM), yet the expression of related inflammatory factors (MCP1, TNFα, IL-1β and IL-6) showed less of an increase. RNA sequencing identified 36 differentially expressed lncRNAs and 603 differentially expressed mRNAs. KEGG enrichment analysis indicated that oxidative stress and inflammation pathways are meticulously linked with naringenin treatment. The Co-lncRNA-mRNA network was also constructed. Tissue expression profiles showed that lncRNA played a higher role in the liver. Subsequently, expression levels of inflammatory factors indicated that lncRNAs and target mRNAs were significantly reduced after naringenin treatment in mouse liver AML12 cells and obese mouse. These results suggest that naringenin helps to prevent liver dysfunction through the regulation of lncRNA-mRNA axis to reduce oxidative stress and inflammatory factors.
Collapse
|
19
|
Xian L, Sahu SK, Huang L, Fan Y, Lin J, Su J, Bai M, Chen Y, Wang S, Ye P, Wang F, Luo Q, Bai H, Lin X, Yuan C, Geng X, Liu H, Wu H. The draft genome and multi-omics analyses reveal new insights into geo-herbalism properties of Citrus grandis 'Tomentosa'. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111489. [PMID: 36216298 DOI: 10.1016/j.plantsci.2022.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Citrus grandis 'Tomentosa' (CGT) (Huajuhong, HJH) is a widely used medicinal plant, which is mainly produced in Guangdong and Guangxi provinces of South China. Particularly, HJH from Huazhou (HZ) county of Guangdong province has been well-regarded as the best national product for geo-herbalism. But the reasons for geo-herbalism property in HJH from HZ county remains a mystery. Therefore, a multi-omics approach was applied to identify the nature of the geo-herbalism in CGT from three different regions. The comprehensive screening of differential metabolites revealed that the Nobiletin content was significantly different in HZ region compared to other regions, and could be employed as a key indicator to determine the geo-herbalism. Furthermore, the high-quality genome (N50 of 9.12 Mb), coupled with genomics and transcriptomics analyses indicated that CGT and Citrus grandis are closely related, with a predicted divergence time of 19.1 million years ago (MYA), and no recent WGD occurred in the CGT, and the bioactive ingredients of CGT were more abundant than that of Citrus grandis. Interestingly, Nobiletin (Polymethoxyflavones) content was identified as a potential indicator of geo-herbalism, and O-methyltransferase (OMT) genes are involved in the synthesis of Polymethoxyflavones. Further multi-omics analysis led to the identification of a novel OMT gene (CtgOMT1) whose transient overexpression displayed significantly higher Nobiletin content, suggesting that CtgOMT1 was involved in the synthesis of Nobiletin. Overall, our findings provide new data resources for geo-herbalism evaluation, germplasm conservation and insights into Nobiletin biosynthesis pathways for the medicinal plant C. grandis 'Tomentosa'.
Collapse
Affiliation(s)
- Lin Xian
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Liying Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yannan Fan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Jianhao Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jianmu Su
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mei Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yewen Chen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujie Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Peng Ye
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fang Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Luo
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Haiyi Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojing Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Caihong Yuan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaodie Geng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China.
| | - Hong Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
Ortiz-Andrade R, Araujo León JA, Sánchez-Salgado JC, Sánchez-Recillas A, Vazquez-Garcia P, Hernández-Núñez E. Citroflavonoids as Promising Agents for Drug Discovery in Diabetes and Hypertension: A Systematic Review of Experimental Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227933. [PMID: 36432034 PMCID: PMC9696987 DOI: 10.3390/molecules27227933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
Abstract
Flavonoids are naturally occurring compounds widely distributed in the Citrus genus. These natural compounds have many health benefits, mainly for metabolic and cardiovascular diseases. In fact, some these compounds are components of drug products with approved indications for peripheral vascular insufficiency and hemorrhoids. However, information on pharmacological effects of these compounds remains disperse and there is scarce comprehensive analysis of whole data and evidence. These kinds of evidence analyses could be necessary in drug design and the development of novel and innovate drug products in diabetes and hypertension. We aimed to systematically search for evidence on the efficacy of citroflavonoids in diabetes and hypertension in in vivo models. We searched four literature databases based on a PICO strategy. After database curation, twenty-nine articles were retrieved to analyze experimental data. There was high heterogeneity in both outcomes and methodology. Naringenin and hesperetin derivates were the most studied citroflavonoids in both experimental models. More investigation is still needed to determine its potential for drug design and development.
Collapse
Affiliation(s)
- Rolffy Ortiz-Andrade
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Merida 97069, Mexico
- Correspondence: (R.O.-A.); (E.H.-N.); Tel.: +52-999-922-5708 (R.O.-A.); +52-999-942-9400 (E.H.-N.)
| | - Jesús Alfredo Araujo León
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, Mérida 97205, Mexico
| | | | - Amanda Sánchez-Recillas
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Merida 97069, Mexico
| | - Priscila Vazquez-Garcia
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Merida 97069, Mexico
| | - Emanuel Hernández-Núñez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Merida 97205, Mexico
- Correspondence: (R.O.-A.); (E.H.-N.); Tel.: +52-999-922-5708 (R.O.-A.); +52-999-942-9400 (E.H.-N.)
| |
Collapse
|
21
|
Kawaguchi S, Kawahara K, Fujiwara Y, Ohnishi K, Pan C, Yano H, Hirosue A, Nagata M, Hirayama M, Sakata J, Nakashima H, Arita H, Yamana K, Gohara S, Nagao Y, Maeshiro M, Iwamoto A, Hirayama M, Yoshida R, Komohara Y, Nakayama H. Naringenin potentiates anti-tumor immunity against oral cancer by inducing lymph node CD169-positive macrophage activation and cytotoxic T cell infiltration. Cancer Immunol Immunother 2022; 71:2127-2139. [PMID: 35044489 PMCID: PMC9374624 DOI: 10.1007/s00262-022-03149-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022]
Abstract
The CD169+ macrophages in lymph nodes are implicated in cytotoxic T lymphocyte (CTL) activation and are associated with improved prognosis in several malignancies. Here, we investigated the significance of CD169+ macrophages in oral squamous cell carcinoma (OSCC). Further, we tested the anti-tumor effects of naringenin, which has been previously shown to activate CD169+ macrophages, in a murine OSCC model. Immunohistochemical analysis for CD169 and CD8 was performed on lymph node and primary tumor specimens from 89 patients with OSCC. We also evaluated the effects of naringenin on two murine OSCC models. Increased CD169+ macrophage counts in the regional lymph nodes correlated with favorable prognosis and CD8+ cell counts within tumor sites. Additionally, naringenin suppressed tumor growth in two murine OSCC models. The mRNA levels of CD169, interleukin (IL)-12, and C-X-C motif chemokine ligand 10 (CXCL10) in lymph nodes and CTL infiltration in tumors significantly increased following naringenin administration in tumor-bearing mice. These results suggest that CD169+ macrophages in lymph nodes are involved in T cell-mediated anti-tumor immunity and could be a prognostic marker for patients with OSCC. Moreover, naringenin is a new potential agent for CD169+ macrophage activation in OSCC treatment.
Collapse
Affiliation(s)
- Sho Kawaguchi
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Akiyuki Hirosue
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masashi Nagata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masatoshi Hirayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Junki Sakata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hikaru Nakashima
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hidetaka Arita
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Keisuke Yamana
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shunsuke Gohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuka Nagao
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Manabu Maeshiro
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Asuka Iwamoto
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Mayumi Hirayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
22
|
The Potent Phytoestrogen 8-Prenylnaringenin: A Friend or a Foe? Int J Mol Sci 2022; 23:ijms23063168. [PMID: 35328588 PMCID: PMC8953904 DOI: 10.3390/ijms23063168] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 12/29/2022] Open
Abstract
8-prenylnaringenin (8-PN) is a prenylated flavonoid, occurring, in particular, in hop, but also in other plants. It has proven to be one of the most potent phytoestrogens in vitro known to date, and in the past 20 years, research has unveiled new effects triggered by it in biological systems. These findings have aroused the hopes, expectations, and enthusiasm of a “wonder-drug” for a host of human diseases. However, the majority of 8-PN effects require such high concentrations that they cannot be reached by normal dietary exposure, only pharmacologically; thus, adverse impacts may also emerge. Here, we provide a comprehensive and up-to-date review on this fascinating compound, with special reference to the range of beneficial and untoward health consequences that may ensue from exposure to it.
Collapse
|
23
|
Naeini F, Namkhah Z, Tutunchi H, Rezayat SM, Mansouri S, Yaseri M, Hosseinzadeh-Attar MJ. Effects of naringenin supplementation on cardiovascular risk factors in overweight/obese patients with nonalcoholic fatty liver disease: a pilot double-blind, placebo-controlled, randomized clinical trial. Eur J Gastroenterol Hepatol 2022; 34:345-353. [PMID: 34860705 DOI: 10.1097/meg.0000000000002323] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Although several experimental models have suggested promising pharmacological effects of naringenin in the management of obesity and its related disorders, the effects of naringenin supplementation on cardiovascular disorders as one of the main complications of nonalcoholic fatty liver disease (NAFLD) are yet to be examined in humans. METHODS In this double-blind, placebo-controlled, randomized clinical trial, 44 overweight/obese patients with NAFLD were equally allocated into either naringenin or placebo group for 4 weeks. Cardiovascular risk factors including atherogenic factors, hematological indices, obesity-related parameters, blood pressure, and heart rate were assessed pre- and postintervention. RESULTS The atherogenic index of plasma value, serum non-HDL-C levels as well as total cholesterol/high-density lipoprotein cholesterol (HDL-C), triglyceride/HDL-C, low-density lipoprotein cholesterol/HDL-C, and non-HDL-C/HDL-C ratios were significantly reduced in the intervention group, compared to the placebo group post intervention (P < 0.05). Moreover, there was a significant reduction in BMI and visceral fat level in the intervention group when compared with the placebo group (P = 0.001 and P = 0.039, respectively). Furthermore, naringenin supplementation could marginally reduce systolic blood pressure (P = 0.055). Mean corpuscular hemoglobin increased significantly in the naringenin group compared to the placebo group at the endpoint (P = 0.023). Supplementation with naringenin also resulted in a marginally significant increase in the mean corpuscular hemoglobin concentration when compared with the placebo group (P = 0.050). There were no significant between-group differences for other study outcomes post intervention. CONCLUSION In conclusion, these data indicate that naringenin supplementation may be a promising treatment strategy for cardiovascular complications among NAFLD patients. However, further trials are warranted.
Collapse
Affiliation(s)
- Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran
| | - Zahra Namkhah
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran
| | - Siavash Mansouri
- National Iranian Oil Company (NIOC) Health and Family Research Center, Tehran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
24
|
Zhang S, Li J, Shi X, Tan X, Si Q. Naringenin activates beige adipocyte browning in high fat diet-fed C57BL/6 mice by shaping the gut microbiota. Food Funct 2022; 13:9918-9930. [DOI: 10.1039/d2fo01610a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naringenin activates beige adipose thermogenesis and browning by gut microbe-SCFAS-host interactions, which increases energy expenditure and prevents HFD induced obesity.
Collapse
Affiliation(s)
- Sha Zhang
- Department of the Third Health Care, Second Medical Centre of Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100039, China
| | - Jinjie Li
- Centre of Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyang Shi
- Centre of Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Tan
- Centre of Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Quanjin Si
- Department of the Third Health Care, Second Medical Centre of Chinese PLA General Hospital, National Clinical Research Centre for Geriatric Diseases, Beijing 100039, China
| |
Collapse
|
25
|
Agrawal PK, Agrawal C, Blunden G. Naringenin as a Possible Candidate Against SARS-CoV-2 Infection and in the Pathogenesis of COVID-19. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211066723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Naringenin, widely distributed in fruits and vegetables, is endowed with antiviral and other health beneficial activities, such as immune-stimulating and anti-inflammatory actions that could play a role in contributing, to some extent, to either preventing or alleviating coronavirus infection. Several computational studies have identified naringenin as one of the prominent flavonoids that can possibly inhibit internalization of the virus, virus-host interactions that trigger the cytokine storm, and replication of the virus. This review highlights the antiviral potential of naringenin in COVID-19 associated risk factors and its predicted therapeutic targets against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Pawan K. Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA
| | - Chandan Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA
| | | |
Collapse
|
26
|
Feng B, Harms J, Patel N, Ye H, Luo P, Irizarry VT, Vidrine J, Coulter A, Rebello CJ, Yu S, Fan J, Berthoud HR, Greenway F, Münzberg H, Morrison C, Xu P, He Y. Targeting the T-type calcium channel Cav3.2 in GABAergic arcuate nucleus neurons to treat obesity. Mol Metab 2021; 54:101391. [PMID: 34767997 PMCID: PMC8640109 DOI: 10.1016/j.molmet.2021.101391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE Cav3.2, a T-type low voltage-activated calcium channel widely expressed throughout the central nervous system, plays a vital role in neuronal excitability and various physiological functions. However, the effects of Cav3.2 on energy homeostasis remain unclear. Here, we examined the role of Cav3.2 expressed by hypothalamic GABAergic neurons in the regulation of food intake and body weight in mice and explored the underlying mechanisms. METHODS Male congenital Cana1h (the gene coding for Cav3.2) global knockout (Cav3.2KO) mice and their wild type (WT) littermates were first used for metabolic phenotyping studies. By using the CRISPR-Cas9 technique, Cav3.2 was selectively deleted from GABAergic neurons in the arcuate nucleus of the hypothalamus (ARH) by specifically overexpressing Cas9 protein and Cav3.2-targeting sgRNAs in ARH Vgat (VgatARH) neurons. These male mutants (Cav3.2KO-VgatARH) were used to determine whether Cav3.2 expressed by VgatARH neurons is required for the proper regulation of energy balance. Subsequently, we used an electrophysiological patch-clamp recording in ex vivo brain slices to explore the impact of Cav3.2KO on the cellular excitability of VgatARH neurons. RESULTS Male Cav3.2KO mice had significantly lower food intake than their WT littermate controls when fed with either a normal chow diet (NCD) or a high-fat diet (HFD). This hypophagia phenotype was associated with increased energy expenditure and decreased fat mass, lean mass, and total body weight. Selective deletion of Cav3.2 in VgatARH neurons resulted in similar feeding inhibition and lean phenotype without changing energy expenditure. These data provides an intrinsic mechanism to support the previous finding on ARH non-AgRP GABA neurons in regulating diet-induced obesity. Lastly, we found that naringenin extract, a predominant flavanone found in various fruits and herbs and known to act on Cav3.2, decreased the firing activity of VgatARH neurons and reduced food intake and body weight. These naringenin-induced inhibitions were fully blocked in Cav3.2KO-VgatARH mice. CONCLUSION Our results identified Cav3.2 expressed by VgatARH neurons as an essential intrinsic modulator for food intake and energy homeostasis, which is a potential therapeutic target in the treatment of obesity.
Collapse
Affiliation(s)
- Bing Feng
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Jerney Harms
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Nirali Patel
- The Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hui Ye
- The Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Pei Luo
- The Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Valeria Torres Irizarry
- The Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jacob Vidrine
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Ann Coulter
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Candida J Rebello
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Sangho Yu
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Jia Fan
- The Department of Biochemistry and Molecular Biology, Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Frank Greenway
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Heike Münzberg
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Christopher Morrison
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Pingwen Xu
- The Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
27
|
Pahk K, Lee SG, Joung C, Kim EO, Kwon HW, Kim DH, Hwang JI, Kim S, Kim WK. SP-1154, a novel synthetic TGF-β inhibitor, alleviates obesity and hepatic steatosis in high-fat diet-induced mice. Biomed Pharmacother 2021; 145:112441. [PMID: 34813997 DOI: 10.1016/j.biopha.2021.112441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Obesity-induced inflamed visceral adipose tissue (VAT) secretes pro-inflammatory cytokines thereby promoting systemic inflammation and insulin resistance which further exacerbate obesity-associated nonalcoholic fatty liver disease (NAFLD). Transforming growth factor (TGF)-β /Smad3 signaling plays a crucial role in the inflammatory events within the VAT. Here, we investigate whether SP-1154, a novel synthetic verbenone derivative, can inhibit TGF-β/Smad3 signaling thereby exhibiting a therapeutic effect against obesity-induced inflamed VAT and subsequent NAFLD in high-fat diet-induced mice. METHODS NAFLD was induced by a high-fat diet (60% fat) for 20 weeks using the male C57BL/6 mice. SP-1154 (50 mg/kg) was orally given daily for 20 weeks. In vivo VAT- and systemic inflammation were measured by using 18F-fluorodeoxyglucose positron emission tomography and C-reactive protein levels. Both insulin tolerance- and glucose tolerance test were performed to assess the status of insulin resistance and glucose intolerance. Histological and molecular analyses were performed on harvested liver and VAT. KEY FINDINGS SP-1154 inhibited TGF-β/Smad3 signaling pathway and remarkably suppressed high-fat diet-induced VAT inflammation and its related systemic inflammation. Furthermore, SP-1154 significantly improved insulin sensitivity with glucose homeostasis and reduced hepatic steatosis. SP-1154 significantly improves VAT inflammation and obesity-related NAFLD. CONCLUSION Our novel findings support the potential use of SP-1154 as a therapeutic drug for obesity and its related NAFLD by targeting the inflamed VAT.
Collapse
Affiliation(s)
- Kisoo Pahk
- Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Sang Gil Lee
- Institute for Inflammation Control, Korea University, Seoul, South Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Chanmin Joung
- Institute for Inflammation Control, Korea University, Seoul, South Korea
| | - Eun-Ok Kim
- Medcial Science Research Center, College of Medicine, Korea University, Seoul, South Korea
| | - Hyun Woo Kwon
- Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Dong Hwi Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Jong-Ik Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Sungeun Kim
- Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Won-Ki Kim
- Institute for Inflammation Control, Korea University, Seoul, South Korea.
| |
Collapse
|
28
|
Wiśniewski O, Rajczewski A, Szumigała A, Gibas-Dorna M. Diet-Induced Adipocyte Browning. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/143164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Naeini F, Namkhah Z, Tutunchi H, Rezayat SM, Mansouri S, Jazayeri-Tehrani SA, Yaseri M, Hosseinzadeh-Attar MJ. Effects of naringenin supplementation in overweight/obese patients with non-alcoholic fatty liver disease: study protocol for a randomized double-blind clinical trial. Trials 2021; 22:801. [PMID: 34774104 PMCID: PMC8590238 DOI: 10.1186/s13063-021-05784-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) is one of the main causes of chronic liver disease worldwide. Flavonoids, a group of natural compounds, have garnered a great deal of attention in the management of NAFLD because of their profitable effects on glucose and lipid metabolism, inflammation, and oxidative stress which are the pivotal pathophysiological pathways in NAFLD. Naringenin is a citrus-derived flavonoid with a broad spectrum of potential biological effects including anti-inflammatory and antioxidant properties, which may exert protective effects against NAFLD. The present clinical trial aims to examine the efficacy of naringenin supplementation on plasma adiponectin and neurogulin-4 (NRG-4) concentrations, metabolic parameters, and liver function indices in overweight/obese patients with NAFLD. Methods and analysis This is a double-blind, randomized, placebo-controlled clinical study that will investigate the impacts of naringenin supplementation in overweight/obese patients with NAFLD. Liver ultrasonography will be applied to diagnose NAFLD. Forty-four eligible overweight/obese subjects with NAFLD will be selected and randomly assigned to receive naringenin capsules or identical placebo (each capsule contains 100 mg of naringenin or cellulose), twice daily for 4 weeks. Participants will be asked to remain on their usual diet and physical activity. Safety of naringenin supplementation was confirmed by the study pharmacist. The primary outcome of this study is changes in adiponectin circulating levels. The secondary outcomes include changes in NRG-4 levels, liver function indices, metabolic parameters, body weight, body mass index (BMI), waist circumference (WC), blood pressure, and hematological parameters. Statistical analysis will be conducted using the SPSS software (version 25), and P value less than 0.05 will be regarded as statistically significant. Discussion We hypothesize that naringenin administration may be useful for treating NAFLD by modulating energy balance, glucose and lipid metabolism, oxidative stress, and inflammation through different mechanisms. The current trial will exhibit the effects of naringenin, whether negative or positive, on NAFLD status. Ethical aspects The current trial received approval from the Medical Ethics Committee of Tehran University of Medical Sciences, Tehran, Iran (IR.TUMS.MEDICNE.REC.1399.439). Trial registration Iranian Registry of Clinical Trials IRCT201311250155336N12. Registered on 6 June 2020 Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05784-7.
Collapse
Affiliation(s)
- Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Namkhah
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Siavash Mansouri
- National Iranian Oil Company (NIOC) Health and Family Research Center, Tehran, Iran
| | | | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hosseinzadeh-Attar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Namkhah Z, Naeini F, Mahdi Rezayat S, Mansouri S, Javad Hosseinzadeh-Attar M. Does naringenin supplementation improve lipid profile, severity of hepatic steatosis and probability of liver fibrosis in overweight/obese patients with NAFLD? A randomised, double-blind, placebo-controlled, clinical trial. Int J Clin Pract 2021; 75:e14852. [PMID: 34516703 DOI: 10.1111/ijcp.14852] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/01/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Naringenin has been reported to have some promising pharmacological effects on the management of obesity and related metabolic complications including non-alcoholic fatty liver disease (NAFLD). Therefore, the present clinical trial study was done to assess the effects of naringenin supplementation on lipid profile, aminotransferase levels, severity of steatosis, as well as probability of fibrosis in overweight/obese patients with NAFLD. MATERIALS AND METHODS This placebo-controlled, parallel randomised, double-blind clinical trial study was conducted on 44 eligible overweight/obese patients with NAFLD (naringenin-treated group (n = 22), control group (n = 22)) referred to the national Iranian oil company (NIOC) Central Hospital, Tehran City, Tehran Province, Iran. Participants were randomly assigned to receive naringenin capsules (100 mg) and identical placebo capsules twice a day, before lunch and dinner, for 4 weeks. The primary outcomes were improvement of liver steatosis and NAFLD fibrosis score (NFS), and secondary outcomes included changes in levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lipid profile. RESULTS Naringenin consumption significantly reduced percentages of NAFLD grades (P < .001), as well as, serum levels of triglyceride (TG) (P < .001), total cholesterol (TC) (P = .01), and low-density lipoprotein (LDL) (P = .02) and increased serum level of high-density lipoprotein (HDL) (P = .02) compared with the control group. Even after adjusting for the confounders, the results were significant. However, there were no significant changes in AST, ALT and NFS. CONCLUSION Our findings revealed that daily intake of 200 mg of naringenin for 4 weeks had beneficial effects on lipid profile and percentages of NAFLD grades as an indicator for the severity of hepatic steatosis. Although, NFS values and serum levels of aminotransferase enzymes including AST and ALT did not remarkably change.
Collapse
Affiliation(s)
- Zahra Namkhah
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Siavash Mansouri
- National Iranian Oil Company (NIOC) Health and Family Research Center, Tehran, Iran
| | | |
Collapse
|
31
|
Homaeigohar S, Liu Q, Kordbacheh D. Biomedical Applications of Antiviral Nanohybrid Materials Relating to the COVID-19 Pandemic and Other Viral Crises. Polymers (Basel) 2021; 13:2833. [PMID: 34451371 PMCID: PMC8401873 DOI: 10.3390/polym13162833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 01/19/2023] Open
Abstract
The COVID-19 pandemic has driven a global research to uncover novel, effective therapeutical and diagnosis approaches. In addition, control of spread of infection has been targeted through development of preventive tools and measures. In this regard, nanomaterials, particularly, those combining two or even several constituting materials possessing dissimilar physicochemical (or even biological) properties, i.e., nanohybrid materials play a significant role. Nanoparticulate nanohybrids have gained a widespread reputation for prevention of viral crises, thanks to their promising antimicrobial properties as well as their potential to act as a carrier for vaccines. On the other hand, they can perform well as a photo-driven killer for viruses when they release reactive oxygen species (ROS) or photothermally damage the virus membrane. The nanofibers can also play a crucial protective role when integrated into face masks and personal protective equipment, particularly as hybridized with antiviral nanoparticles. In this draft, we review the antiviral nanohybrids that could potentially be applied to control, diagnose, and treat the consequences of COVID-19 pandemic. Considering the short age of this health problem, trivially the relevant technologies are not that many and are handful. Therefore, still progressing, older technologies with antiviral potential are also included and discussed. To conclude, nanohybrid nanomaterials with their high engineering potential and ability to inactivate pathogens including viruses will contribute decisively to the future of nanomedicine tackling the current and future pandemics.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK;
| | - Qiqi Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China;
| | - Danial Kordbacheh
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK;
| |
Collapse
|
32
|
|
33
|
Stöhr O, Tao R, Miao J, Copps KD, White MF. FoxO1 suppresses Fgf21 during hepatic insulin resistance to impair peripheral glucose utilization and acute cold tolerance. Cell Rep 2021; 34:108893. [PMID: 33761350 PMCID: PMC8529953 DOI: 10.1016/j.celrep.2021.108893] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 12/28/2022] Open
Abstract
Fgf21 (fibroblast growth factor 21) is a regulatory hepatokine that, in pharmacologic form, powerfully promotes weight loss and glucose homeostasis. Although "Fgf21 resistance" is inferred from higher plasma Fgf21 levels in insulin-resistant mice and humans, diminished Fgf21 function is understood primarily via Fgf21 knockout mice. By contrast, we show that modestly reduced Fgf21-owing to cell-autonomous suppression by hepatic FoxO1-contributes to dysregulated metabolism in LDKO mice (Irs1L/L⋅Irs2L/L⋅CreAlb), a model of severe hepatic insulin resistance caused by deletion of hepatic Irs1 (insulin receptor substrate 1) and Irs2. Knockout of hepatic Foxo1 in LDKO mice or direct restoration of Fgf21 by adenoviral infection restored glucose utilization by BAT (brown adipose tissue) and skeletal muscle, normalized thermogenic gene expression in LDKO BAT, and corrected acute cold intolerance of LDKO mice. These studies highlight the Fgf21-dependent plasticity and importance of BAT function to metabolic health during hepatic insulin resistance.
Collapse
Affiliation(s)
- Oliver Stöhr
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Rongya Tao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Kyle D Copps
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Morris F White
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
34
|
Liu S, Dong J, Bian Q. A dual regulatory effect of naringenin on bone homeostasis in two diabetic mice models. TRADITIONAL MEDICINE AND MODERN MEDICINE 2021. [DOI: 10.1142/s2575900020500093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective: Naringenin (NAR), a flavanone in citrus fruits, has been reported to have both anti-diabetic and anti-osteoporotic effects. This study aimed to explore the effect of NAR on bone homeostasis under diabetic condition. Methods: High fat diet and streptozotocin (STZ) induced type 1 diabetic (T1DM) and leptin receptor knockout (db/db) type 2 diabetic (T2DM) mice were used to evaluate NAR effects. Melbine (DMBG) was administrated as positive control. Body weight and fasting blood glucose were monitored weekly and monthly. After 8 weeks and 74 days treatment, bone mass was evaluated by microcomputed tomography ([Formula: see text]CT) including BV/TV, Tb.N, and Tb.Th, as well as histological and histomorphometric detection. Bone resorption rate indicated by C-terminal telopeptide of type I collagen (CTIX) and N-terminal propeptide of type I procollagen (PINP) was examined by ELISA assays. Results: NAR treatment reduced body weight and blood glucose in both diabetic models, and had better hypoglycemic effect than DMBG at early stage. High fat diet and STZ-treated mice lost while db/db mice gained bone mass. NAR improved bone microarchitecture by regulating the related parameters to the similar levels as the control. Osteoblast activity was little affected, but osteoclast function was decreased in NAR-treated STZ mice. Consistently, NAR reduced bone resorption rate which was increased in both diabetic models. Conclusion: NAR exerts an anti-diabetic effect by lowering elevated level of blood glucose, regulating impaired bone mass, and reducing overactivated bone resorption rate in T1DM and T2DM conditions. Naringenin has a potential to prevent diabetes induced impairment in bone.
Collapse
Affiliation(s)
- Shufen Liu
- Spine Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital of Fudan University, Shanghai 200032, P. R. China
| | - Qin Bian
- Department of Integrative Medicine, Huashan Hospital of Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
35
|
Nason SR, Antipenko J, Presedo N, Cunningham SE, Pierre TH, Kim T, Paul JR, Holleman C, Young ME, Gamble KL, Finan B, DiMarchi R, Hunter CS, Kharitonenkov A, Habegger KM. Glucagon receptor signaling regulates weight loss via central KLB receptor complexes. JCI Insight 2021; 6:141323. [PMID: 33411693 PMCID: PMC7934938 DOI: 10.1172/jci.insight.141323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/29/2020] [Indexed: 01/15/2023] Open
Abstract
Glucagon regulates glucose and lipid metabolism and promotes weight loss. Thus, therapeutics stimulating glucagon receptor (GCGR) signaling are promising for obesity treatment; however, the underlying mechanism(s) have yet to be fully elucidated. We previously identified that hepatic GCGR signaling increases circulating fibroblast growth factor 21 (FGF21), a potent regulator of energy balance. We reported that mice deficient for liver Fgf21 are partially resistant to GCGR-mediated weight loss, implicating FGF21 as a regulator of glucagon’s weight loss effects. FGF21 signaling requires an obligate coreceptor (β-Klotho, KLB), with expression limited to adipose tissue, liver, pancreas, and brain. We hypothesized that the GCGR-FGF21 system mediates weight loss through a central mechanism. Mice deficient for neuronal Klb exhibited a partial reduction in body weight with chronic GCGR agonism (via IUB288) compared with controls, supporting a role for central FGF21 signaling in GCGR-mediated weight loss. Substantiating these results, mice with central KLB inhibition via a pharmacological KLB antagonist, 1153, also displayed partial weight loss. Central KLB, however, is dispensable for GCGR-mediated improvements in plasma cholesterol and liver triglycerides. Together, these data suggest GCGR agonism mediates part of its weight loss properties through central KLB and has implications for future treatments of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Shelly R Nason
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Jessica Antipenko
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Natalie Presedo
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Stephen E Cunningham
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Tanya H Pierre
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Teayoun Kim
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, and
| | - Cassie Holleman
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, and
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Inc., Indianapolis, Indiana, USA
| | - Richard DiMarchi
- Novo Nordisk Research Center Indianapolis, Inc., Indianapolis, Indiana, USA.,Department of Chemistry, College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | | | - Kirk M Habegger
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| |
Collapse
|
36
|
Yu KE, Alder KD, Morris MT, Munger AM, Lee I, Cahill SV, Kwon HK, Back J, Lee FY. Re-appraising the potential of naringin for natural, novel orthopedic biotherapies. Ther Adv Musculoskelet Dis 2020; 12:1759720X20966135. [PMID: 33343723 PMCID: PMC7727086 DOI: 10.1177/1759720x20966135] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/22/2020] [Indexed: 01/03/2023] Open
Abstract
Naringin is a naturally occurring flavonoid found in plants of the Citrus genus that has historically been used in traditional Chinese medical regimens for the treatment of osteoporosis. Naringin modulates signaling through numerous molecular pathways critical to musculoskeletal development, cellular differentiation, and inflammation. Administration of naringin increases in vitro expression of bone morphogenetic proteins (BMPs) and activation of the Wnt/β-catenin and extracellular signal-related kinase (Erk) pathways, thereby promoting osteoblastic proliferation and differentiation from stem cell precursors for bone formation. Naringin also inhibits osteoclastogenesis by both modifying RANK/RANKL interactions and inducing apoptosis in osteoclasts in vitro. In addition, naringin acts on the estrogen receptor in bone to mimic the native bone-preserving effects of estrogen, with few systemic side effects on other estrogen-sensitive tissues. The efficacy of naringin therapy in reducing the osteolysis characteristic of common musculoskeletal pathologies such as osteoporosis, degenerative joint disease, and osteomyelitis, as well as inflammatory conditions affecting bone such as diabetes mellitus, has been extensively demonstrated in vitro and in animal models. Naringin thus represents a naturally abundant, cost-efficient agent whose potential for use in novel musculoskeletal biotherapies warrants re-visiting and further exploration through human studies. Here, we review the cellular mechanisms of action that have been elucidated regarding the action of naringin on bone resident cells and the bone microenvironment, in vivo evidence of naringin’s osteostimulative and chondroprotective properties in the setting of osteolytic bone disease, and current limitations in the development of naringin-containing translational therapies for common musculoskeletal conditions.
Collapse
Affiliation(s)
- Kristin E Yu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, 330 Cedar St, TMP 523 PO Box 208071, New Haven, CT 06520-8071, USA
| | - Kareme D Alder
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Montana T Morris
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Alana M Munger
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Inkyu Lee
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Sean V Cahill
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Hyuk-Kwon Kwon
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - JungHo Back
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Francis Y Lee
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| |
Collapse
|
37
|
Alberca RW, Teixeira FME, Beserra DR, de Oliveira EA, Andrade MMDS, Pietrobon AJ, Sato MN. Perspective: The Potential Effects of Naringenin in COVID-19. Front Immunol 2020; 11:570919. [PMID: 33101291 PMCID: PMC7546806 DOI: 10.3389/fimmu.2020.570919] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), was declared a pandemic by the World Health Organization in March 2020. Severe COVID-19 cases develop severe acute respiratory syndrome, which can result in multiple organ failure, sepsis, and death. The higher risk group includes the elderly and subjects with pre-existing chronic illnesses such as obesity, hypertension, and diabetes. To date, no specific treatment or vaccine is available for COVID-19. Among many compounds, naringenin (NAR) a flavonoid present in citrus fruits has been investigated for antiviral and anti-inflammatory properties like reducing viral replication and cytokine production. In this perspective, we summarize NAR potential anti-inflammatory role in COVID-19 associated risk factors and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ricardo Wesley Alberca
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | | | - Danielle Rosa Beserra
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Emily Araujo de Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Milena Mary de Souza Andrade
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | | | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Naeini F, Namkhah Z, Ostadrahimi A, Tutunchi H, Hosseinzadeh-Attar MJ. A Comprehensive Systematic Review of the Effects of Naringenin, a Citrus-Derived Flavonoid, on Risk Factors for Nonalcoholic Fatty Liver Disease. Adv Nutr 2020; 12:413-428. [PMID: 32879962 PMCID: PMC8009752 DOI: 10.1093/advances/nmaa106] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/08/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common cause of liver dysfunction worldwide. Recently, some natural compounds have attracted growing interest in the treatment of NAFLD. In this context, most attention has been paid to natural products derived from fruits, vegetables, and medicinal herbs. Naringenin, a natural flavanone, has been revealed to have pharmacological effects in the treatment of obesity and associated metabolic disorders such as NAFLD. The aim of this study was to examine the therapeutic effects of naringenin and its possible mechanisms of action in the management of NAFLD and related risk factors. The current systematic review was performed according to the guidelines of the 2015 PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) statements. We searched PubMed/Medline, Science Direct, Scopus, ProQuest, and Google Scholar databases up until February 2020. Of 1217 full-text articles assessed, 36 studies met the inclusion criteria. The evidence reviewed in the present study indicates that naringenin modulates several biological processes related to NAFLD including energy balance, lipid and glucose metabolism, inflammation, and oxidative stress by different mechanisms. Overall, the favorable effects of naringenin along with its more potency and efficacy, compared with other antioxidants, indicate that naringenin may be a promising therapeutic approach for the management of NAFLD and associated complications. However, due to the lack of clinical trials, future robust human randomized clinical trials that address the effects of naringenin on NAFLD and other liver-related diseases are crucial. Further careful human pharmacokinetic studies are also needed to establish dosage ranges, as well as addressing preliminary safety and tolerability of naringenin, before proceeding to larger-scale endpoint trials.
Collapse
Affiliation(s)
- Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Namkhah
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
39
|
Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients 2020; 12:E2393. [PMID: 32785059 PMCID: PMC7469047 DOI: 10.3390/nu12082393] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prevention and treatment of obesity is primary based on the follow-up of a healthy lifestyle, which includes a healthy diet with an important presence of bioactive compounds such as polyphenols. For many years, the health benefits of polyphenols have been attributed to their anti-oxidant capacity as free radical scavengers. More recently it has been described that polyphenols activate other cell-signaling pathways that are not related to ROS production but rather involved in metabolic regulation. In this review, we have summarized the current knowledge in this field by focusing on the metabolic effects of flavonoids. Flavonoids are widely distributed in the plant kingdom where they are used for growing and defensing. They are structurally characterized by two benzene rings and a heterocyclic pyrone ring and based on the oxidation and saturation status of the heterocyclic ring flavonoids are grouped in seven different subclasses. The present work is focused on describing the molecular mechanisms underlying the metabolic impact of flavonoids in obesity and obesity-related diseases. We described the effects of each group of flavonoids in liver, white and brown adipose tissue and central nervous system and the metabolic and signaling pathways involved on them.
Collapse
Affiliation(s)
- Viviana Sandoval
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Hèctor Sanz-Lamora
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Giselle Arias
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
40
|
Lu JF, Zhu MQ, Zhang H, Liu H, Xia B, Wang YL, Shi X, Peng L, Wu JW. Neohesperidin attenuates obesity by altering the composition of the gut microbiota in high-fat diet-fed mice. FASEB J 2020; 34:12053-12071. [PMID: 32729978 DOI: 10.1096/fj.201903102rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
Obesity and related metabolic disorders are associated with intestinal microbiota dysbiosis, disrupted intestinal barrier, and chronic inflammation. Neohesperidin (Neo), a natural polyphenol abundant in citrus fruits, is known for its preventative and therapeutic effects on numerous diseases. Here, we report that Neo administration attenuates weight gain, low-grade inflammation, and insulin resistance in mice fed high-fat diet (HFD). Also, Neo administration substantially restores gut barrier damage, metabolic endotoxemia, and systemic inflammation. Sequencing of 16S rRNA genes in fecal samples revealed that Neo administration reverses HFD-induced intestinal microbiota dysbiosis: an increase in the diversity of gut microbiota and alteration in the composition of intestinal microbiota (particularly in the relative abundances of Bacteroidetes and Firmicutes). Furthermore, systemic antibiotic treatment abolishes the beneficial effects of Neo in body weight control, suggesting that the effect of Neo on obesity attenuation largely depends on the gut microbiota. More importantly, we demonstrate that the impact of Neo on the regulation of obesity could be transferred from Neo-treated mice to HFD-fed mice via fecal microbiota transplantation. Collectively, our data highlight the efficacy of Neo as a prebiotic agent for attenuating obesity, implying a potential mechanism for gut microbiota mediated the beneficial effect of Neo.
Collapse
Affiliation(s)
- Jun Feng Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Meng Qing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Heng Zhang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Hao Liu
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Liang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xin'e Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Liang Peng
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
41
|
Loutfy SA, Elberry MH, Farroh KY, Mohamed HT, Mohamed AA, Mohamed EB, Faraag AHI, Mousa SA. Antiviral Activity of Chitosan Nanoparticles Encapsulating Curcumin Against Hepatitis C Virus Genotype 4a in Human Hepatoma Cell Lines. Int J Nanomedicine 2020; 15:2699-2715. [PMID: 32368050 PMCID: PMC7184126 DOI: 10.2147/ijn.s241702] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Current direct-acting antiviral agents for treatment of hepatitis C virus genotype 4a (HCV-4a) have been reported to cause adverse effects, and therefore less toxic antivirals are needed. This study investigated the role of curcumin chitosan (CuCs) nanocomposite as a potential anti-HCV-4a agent in human hepatoma cells Huh7. Methods Docking of curcumin and CuCs nanocomposite and binding energy calculations were carried out. Chitosan nanoparticles (CsNPs) and CuCs nanocomposite were prepared with an ionic gelation method and characterized with TEM, zeta size and potential, and HPLC to calculate encapsulation efficiency. Cytotoxicity studies were performed on Huh7 cells using MTT assay and confirmed with cellular and molecular assays. Anti-HCV-4a activity was determined using real-time PCR and Western blot. Results The strength of binding interactions between protein ligand complexes gave scores with NS3 protease, NS5A polymerase, and NS5B polymerase of -124.91, -159.02, and -129.16, for curcumin respectively, and -68.51, -54.52, and -157.63 for CuCs nanocomposite, respectively. CuCs nanocomposite was prepared at sizes 29-39.5 nm and charges of 33 mV. HPLC detected 4% of curcumin encapsulated into CsNPs. IC50 was 8 µg/mL for curcumin and 25 µg/mL for the nanocomposite on Huh7 but was 25.8 µg/mL and 34 µg/mL on WISH cells. CsNPs had no cytotoxic effect on tested cell lines. Apoptotic genes' expression revealed the caspase-dependent pathway mechanism. CsNPs and CuCs nanocomposite demonstrated 100% inhibition of viral entry and replication, which was confirmed with HCV core protein expression. Conclusion CuCs nanocomposite inhibited HCV-4a entry and replication compared to curcumin alone, suggesting its potential role as an effective therapeutic agent.
Collapse
Affiliation(s)
- Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.,Nanotechnology Research Center, British University, Cairo, Egypt
| | - Mostafa H Elberry
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Khaled Yehia Farroh
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt
| | - Hossam Taha Mohamed
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th October, Giza, Egypt.,Department of Zoology, Faculty of Science,Cairo University, Giza, Egypt
| | - Aya A Mohamed
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th October, Giza, Egypt
| | - ElChaimaa B Mohamed
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed Hassan Ibrahim Faraag
- Botany and Microbiology Department, Bioinformatics Center, Faculty of Science, Helwan University, Cairo, Egypt
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
42
|
Murugesan N, Woodard K, Ramaraju R, Greenway FL, Coulter AA, Rebello CJ. Naringenin Increases Insulin Sensitivity and Metabolic Rate: A Case Study. J Med Food 2020; 23:343-348. [PMID: 31670603 PMCID: PMC7087405 DOI: 10.1089/jmf.2019.0216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/29/2019] [Indexed: 12/25/2022] Open
Abstract
Our studies in primary human adipocytes show that naringenin, a citrus flavonoid, increases oxygen consumption rate and gene expression of uncoupling protein 1 (UCP1), glucose transporter type 4, and carnitine palmitoyltransferase 1β (CPT1β). We investigated the safety of naringenin, its effects on metabolic rate, and blood glucose and insulin responses in a single female subject with diabetes. The subject ingested 150 mg naringenin from an extract of whole oranges standardized to 28% naringenin three times/day for 8 weeks, and maintained her usual food intake. Body weight, resting metabolic rate, respiratory quotient, and blood chemistry panel including glucose, insulin, and safety markers were measured at baseline and after 8 weeks. Adverse events were evaluated every 2 weeks. We also examined the involvement of peroxisome proliferator-activated receptor α (PPARα), peroxisome proliferator-activated receptor γ (PPARγ), protein kinase A (PKA), and protein kinase G (PKG) in the response of human adipocytes to naringenin treatment. Compared to baseline, the body weight decreased by 2.3 kg. The metabolic rate peaked at 3.5% above baseline at 1 h, but there was no change in the respiratory quotient. Compared to baseline, insulin decreased by 18%, but the change in glucose was not clinically significant. Other blood safety markers were within their reference ranges, and there were no adverse events. UCP1 and CPT1β mRNA expression was reduced by inhibitors of PPARα and PPARγ, but there was no effect of PKA or PKG inhibition. We conclude that naringenin supplementation is safe in humans, reduces body weight and insulin resistance, and increases metabolic rate by PPARα and PPARγ activation. The effects of naringenin on energy expenditure and insulin sensitivity warrant investigation in a randomized controlled clinical trial.
Collapse
Affiliation(s)
| | - Kaylee Woodard
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Rahul Ramaraju
- Baton Rouge Magnet High School, Baton Rouge, Louisiana, USA
| | - Frank L. Greenway
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Ann A. Coulter
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Candida J. Rebello
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| |
Collapse
|
43
|
Morrow NM, Burke AC, Samsoondar JP, Seigel KE, Wang A, Telford DE, Sutherland BG, O'Dwyer C, Steinberg GR, Fullerton MD, Huff MW. The citrus flavonoid nobiletin confers protection from metabolic dysregulation in high-fat-fed mice independent of AMPK. J Lipid Res 2020; 61:387-402. [PMID: 31964763 DOI: 10.1194/jlr.ra119000542] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/16/2020] [Indexed: 01/05/2023] Open
Abstract
Obesity, dyslipidemia, and insulin resistance, the increasingly common metabolic syndrome, are risk factors for CVD and type 2 diabetes that warrant novel therapeutic interventions. The flavonoid nobiletin displays potent lipid-lowering and insulin-sensitizing properties in mice with metabolic dysfunction. However, the mechanisms by which nobiletin mediates metabolic protection are not clearly established. The central role of AMP-activated protein kinase (AMPK) as an energy sensor suggests that AMPK is a target of nobiletin. We tested the hypothesis that metabolic protection by nobiletin required phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) in mouse hepatocytes, in mice deficient in hepatic AMPK (Ampkβ1 -/-), in mice incapable of inhibitory phosphorylation of ACC (AccDKI), and in mice with adipocyte-specific AMPK deficiency (iβ1β2AKO). We fed mice a high-fat/high-cholesterol diet with or without nobiletin. Nobiletin increased phosphorylation of AMPK and ACC in primary mouse hepatocytes, which was associated with increased FA oxidation and attenuated FA synthesis. Despite loss of ACC phosphorylation in Ampkβ1 -/- hepatocytes, nobiletin suppressed FA synthesis and enhanced FA oxidation. Acute injection of nobiletin into mice did not increase phosphorylation of either AMPK or ACC in liver. In mice fed a high-fat diet, nobiletin robustly prevented obesity, hepatic steatosis, dyslipidemia, and insulin resistance, and it improved energy expenditure in Ampkβ1 -/-, AccDKI, and iβ1β2AKO mice to the same extent as in WT controls. Thus, the beneficial metabolic effects of nobiletin in vivo are conferred independently of hepatic or adipocyte AMPK activation. These studies further underscore the therapeutic potential of nobiletin and begin to clarify possible mechanisms.
Collapse
Affiliation(s)
- Nadya M Morrow
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7.,Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Amy C Burke
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7.,Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Joshua P Samsoondar
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7.,Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7.,Medicine, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Kyle E Seigel
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7.,Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Andrew Wang
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7.,Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Dawn E Telford
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7.,Medicine, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Brian G Sutherland
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Conor O'Dwyer
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Murray W Huff
- Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7 .,Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7.,Medicine, University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
44
|
Liu J, He Z, Ma N, Chen ZY. Beneficial Effects of Dietary Polyphenols on High-Fat Diet-Induced Obesity Linking with Modulation of Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:33-47. [PMID: 31829012 DOI: 10.1021/acs.jafc.9b06817] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Obesity is caused by an imbalance of energy intake and expenditure. It is characterized by a higher accumulation of body fat with a chronic low-grade inflammation. Many reports have shown that gut microbiota in the host plays a pivotal role in mediating the interaction between consumption of a high-fat diet (HFD) and onset of obesity. Accumulative evidence has suggested that the changes in the composition of gut microbiota may affect the host's energy homeostasis, systemic inflammation, lipid metabolism, and insulin sensitivity. As one of the major components in human diet, polyphenols have demonstrated to be capable of modulating the composition of gut microbiota and reducing the HFD-induced obesity. The present review summarizes the findings of recent studies on dietary polyphenols regarding their metabolism and interaction with bacteria in the intestine as well as the underlying mechanisms by which they modulate the gut microbiota and alleviate the HFD-induced obesity.
Collapse
Affiliation(s)
- Jianhui Liu
- College of Food Science and Engineering , Nanjing University of Finance & Economics , Nanjing , China
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| | - Zouyan He
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| | - Ning Ma
- College of Food Science and Engineering , Nanjing University of Finance & Economics , Nanjing , China
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| | - Zhen-Yu Chen
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| |
Collapse
|
45
|
Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol Res 2020; 152:104629. [PMID: 31918019 DOI: 10.1016/j.phrs.2020.104629] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus type 2 (T2DM) is a metabolic disorder develops due to the overproduction of free radicals where oxidative stress could contribute it. Possible factors are defective insulin signals, glucose oxidation, and degradation of glycated proteins as well as alteration in glutathione metabolism which induced hyperglycemia. Previous studies revealed a link between T2DM with oxidative stress, inflammation and insulin resistance which are assumed to be regulated by numerous cellular networks such as NF-κB, PI3K/Akt, MAPK, GSK3 and PPARγ. Flavonoids are ubiquitously present in the nature and classified according to their chemical structures for example, flavonols, flavones, flavan-3-ols, anthocyanidins, flavanones, and isoflavones. Flavonoids indicate poor bioavailability which could be improved by employing various nano-delivery systems against the occurrences of T2DM. These bioactive compounds exert versatile anti-diabetic activities via modulating targeted cellular signaling networks, thereby, improving glucose metabolism, α -glycosidase, and glucose transport or aldose reductase by carbohydrate metabolic pathway in pancreatic β-cells, hepatocytes, adipocytes and skeletal myofibres. Moreover, anti-diabetic properties of flavonoids also encounter diabetic related complications. This review article has designed to shed light on the anti-diabetic potential of flavonoids, contribution of oxidative stress, evidence of efficacy in clinical, cellular and animal studies and nano-delivery approaches to enhance their therapeutic efficacy. This article might give some new insights for therapeutic intervention against T2DM in near future.
Collapse
|
46
|
|
47
|
Jack BU, Malherbe CJ, Mamushi M, Muller CJF, Joubert E, Louw J, Pheiffer C. Adipose tissue as a possible therapeutic target for polyphenols: A case for Cyclopia extracts as anti-obesity nutraceuticals. Biomed Pharmacother 2019; 120:109439. [PMID: 31590126 DOI: 10.1016/j.biopha.2019.109439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a significant contributor to increased morbidity and premature mortality due to increasing the risk of many chronic metabolic diseases such as type 2 diabetes, cardiovascular disease and certain types of cancer. Lifestyle modifications such as energy restriction and increased physical activity are highly effective first-line treatment strategies used in the management of obesity. However, adherence to these behavioral changes is poor, with an increased reliance on synthetic drugs, which unfortunately are plagued by adverse effects. The identification of new and safer anti-obesity agents is thus of significant interest. In recent years, plants and their phenolic constituents have attracted increased attention due to their health-promoting properties. Amongst these, Cyclopia, an endemic South African plant commonly consumed as a herbal tea (honeybush), has been shown to possess modulating properties against oxidative stress, hyperglycemia, and obesity. Likewise, several studies have reported that some of the major phenolic compounds present in Cyclopia spp. exhibit anti-obesity effects, particularly by targeting adipose tissue. These phenolic compounds belong to the xanthone, flavonoid and benzophenone classes. The aim of this review is to assess the potential of Cyclopia extracts as an anti-obesity nutraceutical as underpinned by in vitro and in vivo studies and the underlying cellular mechanisms and biological pathways regulated by their phenolic compounds.
Collapse
Affiliation(s)
- Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa.
| | - Christiaan J Malherbe
- Plant Bioactives Group, Post-Harvest and Agro-processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Mokadi Mamushi
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Agro-processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa; Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
48
|
Burke AC, Sutherland BG, Telford DE, Morrow MR, Sawyez CG, Edwards JY, Huff MW. Naringenin enhances the regression of atherosclerosis induced by a chow diet in Ldlr -/- mice. Atherosclerosis 2019; 286:60-70. [PMID: 31102954 DOI: 10.1016/j.atherosclerosis.2019.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/31/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Naringenin is a citrus-derived flavonoid with lipid-lowering and insulin-sensitizing effects leading to athero-protection in Ldlr-/- mice fed a high-fat diet. However, the ability of naringenin to promote atherosclerosis regression is unknown. In the present study, we assessed the capacity of naringenin to enhance regression in Ldlr-/- mice with diet-induced intermediate atherosclerosis intervened with a chow diet. METHODS Male Ldlr-/- mice were fed a high-fat, cholesterol-containing (HFHC) diet for 12 weeks to induce intermediate atherosclerosis and metabolic dysfunction. Subsequently, a group of these mice were sacrificed for baseline analyses and the remainder either 1) continued on the HFHC diet, 2) switched to a chow diet or 3) switched to chow diet supplemented with naringenin. RESULTS After 12 weeks induction, intermediate lesions developed in the aortic sinus. Intervention with chow alone slowed lesion growth, while intervention with naringenin-supplemented chow completely halted lesion growth. Lesions were characterized by features of improved morphology. Compared to chow alone, naringenin reduced plaque macrophages and modestly increased smooth muscle cells. Investigating processes that contributed to improved plaque morphology, we showed naringenin further reduced plasma triglycerides and cholesterol compared to chow alone. Furthermore, elevated monocytosis and myelopoiesis were further corrected by intervention with naringenin compared to chow alone. Metabolically, naringenin enhanced the correction of insulin resistance, hepatic steatosis and obesity compared to chow alone, potentially contributing to enhanced regression. CONCLUSIONS Naringenin supplementation to chow enhances atherosclerosis regression in male Ldlr-/- mice. These studies further underscore the potential therapeutic utility of naringenin.
Collapse
Affiliation(s)
- Amy C Burke
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Biochemistry, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Brian G Sutherland
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Dawn E Telford
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Medicine, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Marisa R Morrow
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Cynthia G Sawyez
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Medicine, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Jane Y Edwards
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Medicine, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Murray W Huff
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Biochemistry, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Medicine, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
49
|
Chung TW, Li S, Lin CC, Tsai SW. Antinociceptive and anti-inflammatory effects of the citrus flavanone naringenin. Tzu Chi Med J 2019; 31:81-85. [PMID: 31007486 PMCID: PMC6450145 DOI: 10.4103/tcmj.tcmj_103_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/15/2018] [Accepted: 04/29/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Naringenin, a flavonoid found in citrus fruits, has notably diverse pharmacological properties. In the present study, we investigated the antinociceptive and anti-inflammatory effects of naringenin. MATERIALS AND METHODS The antinociceptive effects were evaluated using hot-plate, acetic acid-induced writhing, and tail-flick assays in mice and rats. The anti-inflammatory effects were examined by a carrageenan-induced paw edema test in rats. RESULTS Naringenin (100 or 200 mg/kg, oral administration) significantly delayed the reaction time of mice to thermal stimulation generated by a hot plate and a tail-flick unit and reduced the acetic acid-induced writhing response in mice. In addition, naringenin significantly decreased paw edema induced by carrageenan in rats, showing its anti-inflammatory effect. CONCLUSION Our results show that naringenin has therapeutic potential with antinociceptive and anti-inflammatory properties and can further be exploited for the development of drugs for pain and inflammatory-related diseases.
Collapse
Affiliation(s)
- Ting-Wen Chung
- Department of Medical Sciences, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shiming Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Life Science, Huanggang Normal University, Huanggang, China
| | - Chi-Chien Lin
- Institute of Biomedical Science, National Chung Hsing University, Taichung, Taiwan
| | - Sen-Wei Tsai
- Department of Physical Medicine and Rehabilitation, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
50
|
Antidiabetic Properties of Naringenin: A Citrus Fruit Polyphenol. Biomolecules 2019; 9:biom9030099. [PMID: 30871083 PMCID: PMC6468535 DOI: 10.3390/biom9030099] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by insulin resistance and hyperglycemia and is associated with personal health and global economic burdens. Current strategies/approaches of insulin resistance and T2DM prevention and treatment are lacking in efficacy resulting in the need for new preventative and targeted therapies. In recent years, epidemiological studies have suggested that diets rich in vegetables and fruits are associated with health benefits including protection against insulin resistance and T2DM. Naringenin, a citrus flavanone, has been reported to have antioxidant, anti-inflammatory, hepatoprotective, nephroprotective, immunomodulatory and antidiabetic properties. The current review summarizes the existing in vitro and in vivo animal studies examining the anti-diabetic effects of naringenin.
Collapse
|