1
|
Luo Y, Zhao Y, Zhang B, Chen T, Chen X, Shen C, He G, Cao M, Chen L, Wang Y, Wang N, Zong J, Zhou X, Li C. METTL14 mediates nerve growth factor-stimulated testosterone synthesis in porcine theca cells†. Biol Reprod 2024; 111:655-666. [PMID: 38938081 DOI: 10.1093/biolre/ioae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/16/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024] Open
Abstract
Ovarian theca cells produce testosterone, which acts as a vital precursor substance for synthesizing estrogens during follicular development. Nerve growth factor (NGF) has been shown to participate in reproductive physiology, specifically to follicular development and ovulation. There is currently no available data on the impact of NGF on testosterone synthesis in porcine theca cells. Furthermore, m6A modification is the most common internal modification in eukaryotic mRNAs that are closely associated with female gametogenesis, follicle development, ovulation, and other related processes. It is also uncertain whether the three main enzymes associated with m6A, such as Writers, Erasers, and Readers, play a role in this process. The present study, with an in vitro culture model, investigated the effect of NGF on testosterone synthesis in porcine theca cells and the role of Writers-METTL14 in this process. It was found that NGF activates the PI3K/AKT signaling pathway through METTL14, which regulates testosterone synthesis in porcine theca cells. This study will help to further elucidate the mechanisms by which NGF regulates follicular development and provide new therapeutic targets for ovary-related diseases in female animals. Summary Sentence The present study investigated the effect of NGF on testosterone synthesis in porcine theca cells. It was found that NGF activates the PI3K/AKT signaling pathway through METTL14, which regulates testosterone synthesis in porcine theca cells.
Collapse
Affiliation(s)
- Yuxin Luo
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Yun Zhao
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Boqi Zhang
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Tong Chen
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Xue Chen
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Caomeihui Shen
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Guitian He
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Maosheng Cao
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Lu Chen
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Yueying Wang
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Nan Wang
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Jinxin Zong
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Xu Zhou
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Chunjin Li
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| |
Collapse
|
2
|
Liu B, Liu Y, Li S, Chen P, Zhang J, Feng L. BDNF promotes mouse follicular development and reverses ovarian aging by promoting cell proliferation. J Ovarian Res 2023; 16:83. [PMID: 37106468 PMCID: PMC10134588 DOI: 10.1186/s13048-023-01163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) plays an important role in ovarian function including follicle development and oocyte maturation, and embryonic development. However, whether BDNF treatment can reimpose ovarian aging and impaired fertility remains elusive. In this study, we investigated the reproductive outcomes of BDNF treatment and potential mechanisms in aged mice. METHOD "Aged" mice (35-37 weeks old, n = 68) were treated with recombinant human BDNF protein (rhBDNF, 1 µg/200 µL) through daily intraperitoneal (IP) injection for 10 days with/without ovulation induction. Reproductive age mice (8-10 weeks old, n = 28) were treated with ANA 12 (a selective BDNF receptor, TrkB antagonist) through daily IP injection for 5 days with/without ovulation induction. Ovarian function was assessed by ovarian weight, number of follicles, and sex hormone productions. Following induction of ovulation, the number of total oocytes or abnormal oocytes, and blastocyst formation were assessed. Reproductive functions of the mice were evaluated, including pregnancy rate, mating duration for conception, implantation sites, litter size, and weight of offspring. Finally, the molecular mechanism of the effects of BDNF on ovarian cell functions in mice were examined by Western blot and immunofluorescence. RESULTS rhBDNF treatment increased the ovarian weight, number of follicles, number and quality of oocytes including increased blastocysts formation, blood estrogen levels, and pregnancy rate in 35-37-week-old mice. Conversely, BDNF receptor antagonist, ANA 12, treatment decreased the ovarian volume and number of antral follicles and increased the proportion of abnormal oocytes in 8-10-week-old mice. We further demonstrated that BDNF treatment promoted ovarian cell proliferation as well as activation of TrkB and cyclinD1-creb signalling. CONCLUSION We demonstrated that ten consecutive days of daily IP injection of rhBDNF rescued ovarian function in aged mice. Our results further indicate that TrkB and cyclin D1-creb signaling may underlie the BDNF function in ovaries. Targeting BDNF-TrkB signaling is a potential novel therapeutic strategy to reverse ovarian aging.
Collapse
Affiliation(s)
- Bin Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Reproduction, Xinhua Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, China
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuman Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pingping Chen
- Department of Reproduction, Xinhua Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Liping Feng
- Department of Obstetrics and Gynaecology, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Recchia K, Jorge AS, Pessôa LVDF, Botigelli RC, Zugaib VC, de Souza AF, Martins DDS, Ambrósio CE, Bressan FF, Pieri NCG. Actions and Roles of FSH in Germinative Cells. Int J Mol Sci 2021; 22:10110. [PMID: 34576272 PMCID: PMC8470522 DOI: 10.3390/ijms221810110] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Follicle stimulating hormone (FSH) is produced by the pituitary gland in a coordinated hypothalamic-pituitary-gonadal (HPG) axis event, plays important roles in reproduction and germ cell development during different phases of reproductive development (fetal, neonatal, puberty, and adult life), and is consequently essential for fertility. FSH is a heterodimeric glycoprotein hormone of two dissociable subunits, α and β. The FSH β-subunit (FSHβ) function starts upon coupling to its specific receptor: follicle-stimulating hormone receptor (FSHR). FSHRs are localized mainly on the surface of target cells on the testis and ovary (granulosa and Sertoli cells) and have recently been found in testicular stem cells and extra-gonadal tissue. Several reproduction disorders are associated with absent or low FSH secretion, with mutation of the FSH β-subunit or the FSH receptor, and/or its signaling pathways. However, the influence of FSH on germ cells is still poorly understood; some studies have suggested that this hormone also plays a determinant role in the self-renewal of germinative cells and acts to increase undifferentiated spermatogonia proliferation. In addition, in vitro, together with other factors, it assists the process of differentiation of primordial germ cells (PGCLCs) into gametes (oocyte-like and SSCLCs). In this review, we describe relevant research on the influence of FSH on spermatogenesis and folliculogenesis, mainly in the germ cell of humans and other species. The possible roles of FSH in germ cell generation in vitro are also presented.
Collapse
Affiliation(s)
- Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
| | - Amanda Soares Jorge
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Ramon Cesar Botigelli
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-970, Brazil
| | - Vanessa Cristiane Zugaib
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Aline Fernanda de Souza
- Department Biomedical Science, Ontary Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Daniele dos Santos Martins
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| |
Collapse
|
4
|
Huang YS, Cheng WC, Lin CY. Androgenic Sensitivities and Ovarian Gene Expression Profiles Prior to Treatment in Japanese Eel (Anguilla japonica). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:430-444. [PMID: 34191211 DOI: 10.1007/s10126-021-10035-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/28/2021] [Indexed: 06/13/2023]
Abstract
Androgens stimulate ovarian development in eels. Our previous report indicated a correlation between the initial (debut) ovarian status (determined by kernel density estimation (KDE), presented as a probability density of oocyte size) and the consequence of 17MT treatment (change in ovary). The initial ovarian status appeared to be an important factor influencing ovarian androgenic sensitivity. We postulated that the sensitivities of initial ovaries are correlated with their gene expression profiles. Japanese eels underwent operation to sample the initial ovarian tissues, and the samples were stored in liquid nitrogen. Using high-throughput next-generation sequencing (NGS) technology, ovarian transcriptomic data were mined and analyzed based on functional gene classification with cutoff-based differentially expressed genes (DEGs); the ovarian status was transformed into gene expression profiles globally or was represented by a set of gene list. Our results also implied that the initial ovary might be an important factor influencing the outcomes of 17MT treatments, and the genes related with neuronal activities or neurogenesis seemed to play an essential role in the positive effect.
Collapse
Affiliation(s)
- Yung-Sen Huang
- Department of Life Science, National University of Kaohsiung, No. 700 Kaohsiung University Road, Nan Tzu Dist, 811, Kaohsiung, Taiwan.
| | - Wen-Chih Cheng
- Institute of Information Science, Academia Sinica, No. 128 Academia Road, Section 2, Nankang Dist., 115, Taipei, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, No. 128 Academia Road, Section 2, Nankang Dist., 115, Taipei, Taiwan
| |
Collapse
|
5
|
Benitez A, Riquelme R, del Campo M, Araya C, Lara HE. Nerve Growth Factor: A Dual Activator of Noradrenergic and Cholinergic Systems of the Rat Ovary. Front Endocrinol (Lausanne) 2021; 12:636600. [PMID: 33716987 PMCID: PMC7947612 DOI: 10.3389/fendo.2021.636600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
The functioning of the ovary is influenced by the autonomic system (sympathetic and cholinergic intraovarian system) which contributes to the regulation of steroid secretion, follicular development, and ovulation. There is no information on the primary signal that activates both systems. The nerve growth factor (NGF) was the first neurotrophic factor found to regulate ovarian noradrenergic neurons and the cholinergic neurons in the central nervous system. The aim of this study was to determine whether NGF is one of the participating neurotrophic factors in the activation of the sympathetic and cholinergic system of the ovary in vivo and its role in follicular development during normal or pathological states. The administration of estradiol valerate (a polycystic ovary [PCO] phenotype model) increased norepinephrine (NE) (through an NGF-dependent mechanism) and acetylcholine (ACh) levels. Intraovarian exposure of rats for 28 days to NGF (by means of an osmotic minipump) increased the expression of tyrosine hydroxylase and acetylcholinesterase (AChE, the enzyme that degrades ACh) without affecting enzyme activity but reduced ovarian ACh levels. In vitro exposure of the ovary to NGF (100 ng/ml for 3 h) increased both choline acetyl transferase and vesicular ACh transporter expression in the ovary, with no effect in ACh level. In vivo NGF led to an anovulatory condition with the appearance of follicular cysts and decreased number of corpora lutea (corresponding to noradrenergic activation). To determine whether the predominance of a NE-induced polycystic condition after NGF is responsible for the PCO phenotype, rats were exposed to an intraovarian administration of carbachol (100 μM), a muscarinic cholinergic agonist not degraded by AChE. Decreased the number of follicular cysts and increased the number of corpora lutea, reinforcing that cholinergic activity of the ovary participates in controlling its functions. Although NGF increased the biosynthetic capacity for ACh, it was not available to act in the ovary. Hence, NGF also regulates the ovarian cholinergic system, implying that NGF is the main regulator of the dual autonomic control. These findings highlight the need for research in the treatment of PCO syndrome by modification of locally produced ACh as an in vivo regulator of follicular development.
Collapse
|
6
|
Zangeneh FZ, Bagheri M, Shoushtari MS, Naghizadeh MM. Expression of ADR-α1, 2 and ADR-β2 in cumulus cell culture of infertile women with polycystic ovary syndrome and poor responder who are a candidate for IVF: the novel strategic role of clonidine in this expression. J Recept Signal Transduct Res 2020; 41:263-272. [PMID: 32878560 DOI: 10.1080/10799893.2020.1806320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Alpha and beta-adrenoceptors (ADR-α1, 2, and β2) play a regulatory role in the folliculogenesis and steroidogenesis in the ovarian follicles. This study aimed to measure these adrenoceptors mRNA and its protein levels in cumulus cells (CCs) culture of poor ovarian reserve (POR) and polycystic ovarian syndrome (PCOS) infertile women (IVF candidate) and the effect of clonidine treatment at CCs culture. METHODS This case/control study was conducted in 2017 includes a control (donation oocytes) and two studies (PCO and POR) groups. The ovulation induction drugs were prescribed in all groups. After the oocyte puncture, the follicular fluid was collected and CCs were isolated were cultured. RNA was extracted and cDNA was synthesized and designed the primer for the ADR-α1, 2 and ADR-β2 gene expression. The protein levels were investigated by Western Blot. RESULTS The results showed a high level of three adrenergic expressions in PCO women compared to the control group (p-value <.001), which can be reduced by clonidine. POR group showed a significant decrease in the gene expression of ADR-α1 (p-value = .004) and ADR-α2 (p-value = .003) compared to the control group and clonidine treatment had no effect. CONCLUSION The significant increase of three adrenoceptors gene expression and protein levels in CCs culture indicate to the hyperactivity of the ovarian sympathetic nervous system at the receptor levels in women with PCOS, and clonidine confirmed it by reducing this expression. In POR women, the reduction of ADR-α1, 2 expressions maybe lead to the aging process in the ovary.
Collapse
Affiliation(s)
| | - Maryam Bagheri
- Department of Reproductive Health, Faculty of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
7
|
CUMS Promotes the Development of Premature Ovarian Insufficiency Mediated by Nerve Growth Factor and Its Receptor in Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1946853. [PMID: 32685448 PMCID: PMC7345596 DOI: 10.1155/2020/1946853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/29/2020] [Accepted: 05/23/2020] [Indexed: 12/31/2022]
Abstract
This study aimed to investigate whether chronic unpredictable mild stress (CUMS) affects follicular development in ovaries through the nerve growth factor (NGF)/high affinity nerve growth factor receptor, the Tropomyosin-related kinase A (TrkA) receptor, mediated signaling pathway and to reveal the relationship between chronic stress and premature ovarian insufficiency (POI) development. In this experiment, a CUMS rat model was constructed. It was found that serum estradiol (E2), anti-Mullerian hormone (AMH), and gonadotropin-releasing hormone (GnRH) levels decreased, while follicle-stimulating hormone (FSH) levels increased. The expression of NGF, TrkA, p75, and FSHR in ovarian tissue decreased significantly. The expression levels of TrkA and p75 protein in ovarian stroma and small follicles were observed by an immunofluorescence assay. In addition, the numbers of small follicles were significantly reduced. The expression of TrkA, p75, and FSHR in CUMS ovarian tissue was upregulated by exogenous NGF in vitro. Furthermore, after treatment with NGF combined with FSH, E2 secretion in ovarian tissue culture supernatant of CUMS rats also increased significantly. Therefore, CUMS downregulates NGF and TrkA and promotes the occurrence of POI in rats. Exogenous NGF and FSH can upregulate the NGF receptor, E2, and AMH in vitro, and improve the rat ovarian function. Future studies may associate these results with female population.
Collapse
|
8
|
Chang HM, Wu HC, Sun ZG, Lian F, Leung PCK. Neurotrophins and glial cell line-derived neurotrophic factor in the ovary: physiological and pathophysiological implications. Hum Reprod Update 2020; 25:224-242. [PMID: 30608586 PMCID: PMC6390169 DOI: 10.1093/humupd/dmy047] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/22/2018] [Accepted: 12/27/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Neurotrophins [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4)] and glial cell line-derived neurotrophic factor (GDNF) are soluble polypeptide growth factors that are widely recognized for their roles in promoting cell growth, survival and differentiation in several classes of neurons. Outside the nervous system, neurotrophin (NT) and GDNF signaling events have substantial roles in various non-neural tissues, including the ovary. OBJECTIVE AND RATIONALE The molecular mechanisms that promote and regulate follicular development and oocyte maturation have been extensively investigated. However, most information has been obtained from animal models. Even though the fundamental process is highly similar across species, the paracrine regulation of ovarian function in humans remains poorly characterized. Therefore, this review aims to summarize the expression and functional roles of NTs and GDNF in human ovarian biology and disorders, and to describe and propose the development of novel strategies for diagnosing, treating and preventing related abnormalities. SEARCH METHODS Relevant literature in the English language from 1990 to 2018 describing the role of NTs and GDNF in mammalian ovarian biology and phenotypes was comprehensively selected using PubMed, MEDLINE and Google Scholar. OUTCOMES Studies have shown that the neurotrophins NGF, BDNF, NT-3 and NT-4 as well as GDNF and their functional receptors are expressed in the human ovary. Recently, gathered experimental data suggest putative roles for NT and GDNF signaling in the direct control of ovarian function, including follicle assembly, activation of the primordial follicles, follicular growth and development, oocyte maturation, steroidogenesis, ovulation and corpus luteum formation. Additionally, crosstalk occurs between these ovarian regulators and the endocrine signaling system. Dysregulation of the NT system may negatively affect ovarian function, leading to reproductive pathology (decreased ovarian reserve, polycystic ovary syndrome and endometriosis), female infertility and even epithelial ovarian cancers. WIDER IMPLICATIONS A comprehensive understanding of the expression, actions and underlying molecular mechanisms of the NT/GDNF system in the human ovary is essential for novel approaches to therapeutic and diagnostic interventions in ovarian diseases and to develop more safe, effective methods of inducing ovulation in ART in the treatment of female infertility.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hai-Cui Wu
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhen-Gao Sun
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Lian
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peter C K Leung
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Garrido MP, Bruneau N, Vega M, Selman A, Tapia JC, Romero C. Follicle-stimulating hormone promotes nerve growth factor and vascular endothelial growth factor expression in epithelial ovarian cells. Histol Histopathol 2020; 35:961-971. [PMID: 32369181 DOI: 10.14670/hh-18-226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the first cause of death for gynecological malignances in developed countries and around 80% correspond to Epithelial Ovarian Cancer (EOC). Overexpression of Nerve Growth Factor (NGF) and its high affinity receptor TRKA are involved in EOC progression, modulating several oncogenic processes such as angiogenesis by the increase of Vascular Endothelial Growth Factor (VEGF). FSH receptors (FSH-R) are present in EOC, but their changes and contribution during EOC progression are still not thoroughly known. The aims of this study were to evaluate the abundance of FSH receptors during EOC differentiation and to determine whether FSH modulates oncoproteins such as NGF and VEGF in ovarian cells. FSH-R expression in EOC tissues and cell lines (A2780, poorly differentiated EOC cells and HOSE, non-tumoral ovarian surface epithelial cells) were measured by RT-PCR and laser capture of epithelial cells from EOC samples by qPCR. FSH-R protein levels were evaluated by immunohisto/cytochemistry. Additionally, ovarian explants and ovarian cell lines were stimulated with FSH and/or FSH-R inhibitor to assess NGF and VEGF mRNA and protein levels. The results showed that FSH-R levels decreased during EOC progression, nevertheless these receptors are still present in poorly differentiated EOC. FSH increased NGF expression in ovarian cells, which was prevented using a FSH-R inhibitor. Similarly, in ovarian cancer explants, FSH increased NGF and VEGF mRNA, as well as NGF protein levels. These results suggest that FSH would display a key role not only in initial stages of EOC, but also in late stages of this disease, by modulation of NGF and VEGF levels in EOC cells.
Collapse
Affiliation(s)
- Maritza P Garrido
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago, Chile.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nicole Bruneau
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Margarita Vega
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago, Chile.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alberto Selman
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Chile, Santiago, Chile.,National Institute of Cancer, Santiago, Chile
| | - Julio C Tapia
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carmen Romero
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Chile, Santiago, Chile.,Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago, Chile.
| |
Collapse
|
10
|
Silva M, Paiva L, Ratto MH. Ovulation mechanism in South American Camelids: The active role of β-NGF as the chemical signal eliciting ovulation in llamas and alpacas. Theriogenology 2020; 150:280-287. [PMID: 32088046 DOI: 10.1016/j.theriogenology.2020.01.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 12/22/2022]
Abstract
The ovulation-inducing effect of seminal plasma was first suggested in Bactrian camels over 30 years ago, initiating a long search to identify the 'ovulation-inducing factor' (OIF) present in camelids semen. During the last decade, primarily in llamas and alpacas, this molecule has been intensively studied characterizing its biological and chemical properties and ultimately identifying it as β-Nerve Growth Factor (β-NGF). The high concentration of OIF/β-NGF in seminal plasma of llamas and alpacas, and the striking effects of seminal fluid on ovarian function strongly support the notion of an endocrine mode of action. Also, have challenged the dogma of mating induced ovulation in camelid species, questioning the classical definition of reflex ovulators, which at the light of new evidence should be revised and updated. On the other hand, the presence of OIF/β-NGF and its ovulatory effect in camelids confirm the notion that seminal plasma is not only a transport and survival medium for sperm but also, a signaling agent targeting female tissues after insemination, generating relevant physiological and reproductive consequences. The presence of this molecule, conserved among induced as well as spontaneous ovulating species, clearly suggests that the potential impacts of this reproductive feature extend beyond the camelid species and may have broad implications in mammalian fertility. The aim of the present review is to provide a brief summary of all research efforts undertaken to isolate and identify the ovulation inducing factor present in the seminal plasma of camelids. Also to give an update of the current understanding of the mechanism of action of seminal β-NGF, at central and ovarian level; finally suggesting possible brain targets for this molecule.
Collapse
Affiliation(s)
- Mauricio Silva
- Department of Veterinary Sciences and Public Health, Chile; Nucleus of Research on Agrifood Production, Universidad Católica de Temuco, Temuco, Chile
| | - Luis Paiva
- Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Marcelo H Ratto
- Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
11
|
Garrido MP, Torres I, Vega M, Romero C. Angiogenesis in Gynecological Cancers: Role of Neurotrophins. Front Oncol 2019; 9:913. [PMID: 31608227 PMCID: PMC6761325 DOI: 10.3389/fonc.2019.00913] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis, or generation of new blood vessels from other pre-existing, is a key process to maintain the supply of nutrients and oxygen in tissues. Unfortunately, this process is exacerbated in pathologies such as retinopathies and cancers with high angiogenesis as ovarian cancer. Angiogenesis is regulated by multiple systems including growth factors and neurotrophins. One of the most studied angiogenic growth factors is the vascular endothelial growth factor (VEGF), which is overexpressed in several cancers. It has been recently described that neurotrophins could regulate angiogenesis through direct and indirect mechanisms. Neurotrophins are a family of proteins that include nerve growth factor (NGF), brain-derived growth factor (BDNF), and neurotrophins 3 and 4/5 (NT 3, NT 4/5). These molecules and their high affinity receptors (TRKs) regulate the development, maintenance, and plasticity of the nervous system. Furthermore, it was recently described that they display essential functions in non-neuronal tissues, such as reproductive organs among others. Studies have shown that several types of cancer overexpress neurotrophins such as NGF and BDNF, which might contribute to tumor progression and angiogenesis. Besides, in recent years the FDA has approved the use of pharmacologic inhibitors of pan-TRK receptors in patients with TRKs fusion-positive cancers. In this review, we discuss the mechanisms by which neurotrophins stimulate tumor progression and angiogenesis, with emphasis on gynecological cancers.
Collapse
Affiliation(s)
- Maritza P Garrido
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ignacio Torres
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Margarita Vega
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carmen Romero
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Gérard N, Robin E. Cellular and molecular mechanisms of the preovulatory follicle differenciation and ovulation: What do we know in the mare relative to other species. Theriogenology 2019; 130:163-176. [PMID: 30921545 DOI: 10.1016/j.theriogenology.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Terminal follicular differentiation and ovulation are essential steps of reproduction. They are induced by the increase in circulating LH, and lead to the expulsion from the ovary of oocytes ready to be fertilized. This review summarizes our current understanding of cellular and molecular pathways that control ovulation using a broad mammalian literature, with a specific focus to the mare, which is unique in some aspects of ovarian function in some cases. Essential steps and key factors are approached. The first part of this review concerns LH, receptors and signaling, addressing the description of the equine gonadotropin and cloning, signaling pathways that are activated following the binding of LH to its receptors, and implication of transcription factors which better known are CCAAT-enhancer-binding proteins (CEBP) and cAMP response element-binding protein (CREB). The second and major part is devoted to the cellular and molecular actors within follicular cells during preovulatory maturation. We relate to 1) molecules involved in vascular permeability and vasoconstriction, 2) involvement of neuropeptides, such as kisspeptin, neurotrophins and neuronal growth factor, neuropeptide Y (NPY), 3) the modification of steroidogenesis, steroids intrafollicular levels and enzymes activity, 4) the local inflammation, with the increase in prostaglandins synthesis, and implication of leukotrienes, cytokines and glucocorticoids, 5) extracellular matrix remodelling with involvement of proteases, antiproteases and inhibitors, as well as relaxin, and finaly 6) the implication of oxytocine, osteopontin, growth factors and reactive oxygen species. The third part describes our current knowledge on molecular aspect of in vivo cumulus-oocyte-complexe maturation, with a specific focus on signaling pathways, paracrine factors, and intracellular regulations that occur in cumulus cells during expansion, and in the oocyte during nuclear and cytoplasmic meiosis resumption. Our aim was to give an overall and comprehensive map of the regulatory mechanisms that intervene within the preovulatory follicle during differentiation and ovulation.
Collapse
Affiliation(s)
- Nadine Gérard
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Elodie Robin
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
13
|
Cacialli P, D'Angelo L, de Girolamo P, Avallone L, Lucini C, Pellegrini E, Castaldo L. Morpho-Functional Features of the Gonads of Danio rerio: the Role of Brain-Derived Neurotrophic Factor. Anat Rec (Hoboken) 2017; 301:140-147. [PMID: 29024578 DOI: 10.1002/ar.23702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 01/07/2023]
Abstract
Zebrafish, a suitable and widely used teleost fish model in basic biomedical research, displays morphophysiological features of adult gonads that share some commonalities with those of mammalian species. In mammals, gametogenesis is regulated, among several factors, by brain-derived neurotrophic factor (BDNF). This neurotrophin has a well-established role in the developing and adult nervous system, as well as gonads development and functions in vertebrate species. We hypothesize that BDNF has a role also in the gonadal functions of zebrafish. At this purpose, we investigated BDNF and its receptors p75 and TrkB in the ovary and testis of adult zebrafish, kept under laboratory conditions. Our results display (1) the expression of BDNF mRNA and pro-BDNF protein outside of the nervous system, specifically in the ovary and testis; (2) the presence of pro-BDNF in primary oocytes and follicular layer, and p75 in follicular cells; (3) the localization of pro-BDNF in type B spermatogonia, and Sertoli cells in testis. Altogether, these data lead us to consider that BDNF is involved in the gonadal function of adult zebrafish, and mainly in the adult ovary. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 301:140-147, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pietro Cacialli
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1 Napoli, Italy.,UFR Sciences de la vie et de l'environnement, Université de Rennes 1, Campus de Beaulieu - Bâtiment 13 263 Avenue Général Leclerc - CS 74205, Rennes Cedex 35042, France
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1 Napoli, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1 Napoli, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1 Napoli, Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1 Napoli, Italy
| | - Elisabeth Pellegrini
- UFR Sciences de la vie et de l'environnement, Université de Rennes 1, Campus de Beaulieu - Bâtiment 13 263 Avenue Général Leclerc - CS 74205, Rennes Cedex 35042, France
| | - Luciana Castaldo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1 Napoli, Italy
| |
Collapse
|
14
|
Role of Nerve Growth Factor (NGF) and miRNAs in Epithelial Ovarian Cancer. Int J Mol Sci 2017; 18:ijms18030507. [PMID: 28245631 PMCID: PMC5372523 DOI: 10.3390/ijms18030507] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/12/2017] [Accepted: 02/20/2017] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer is the eighth most common cancer in women worldwide, and epithelial ovarian cancer (EOC) represents 90% of cases. Nerve growth factor (NGF) and its high affinity receptor tyrosine kinase A receptor (TRKA) have been associated with the development of several types of cancer, including EOC; both NGF and TRKA levels are elevated in this pathology. EOC presents high angiogenesis and several molecules have been reported to induce this process. NGF increases angiogenesis through its TRKA receptor on endothelial cells, and by indirectly inducing vascular endothelial growth factor expression. Other molecules controlled by NGF include ciclooxigenase-2, disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) and calreticulin (CRT), proteins involved in crucial processes needed for EOC progression. These molecules could be modified through microRNA regulation, which could be regulated by NGF. MicroRNAs are the widest family of non-coding RNAs; they bind to 3'-UTR of mRNAs to inhibit their translation, to deadenilate or to degraded them. In EOC, a deregulation in microRNA expression has been described, including alterations of miR-200 family, cluster-17-92, and miR-23b, among others. Since the NGF-microRNA relationship in pathologies has not been studied, this review proposes that some microRNAs could be associated with NGF/TRKA activation, modifying protein levels needed for EOC progression.
Collapse
|
15
|
Meinel S, Blohberger J, Berg D, Berg U, Dissen GA, Ojeda SR, Mayerhofer A. Pro-nerve growth factor in the ovary and human granulosa cells. Horm Mol Biol Clin Investig 2016; 24:91-9. [PMID: 26457789 DOI: 10.1515/hmbci-2015-0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/21/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Pro-nerve growth factor must be cleaved to generate mature NGF, which was suggested to be a factor involved in ovarian physiology and pathology. Extracellular proNGF can induce cell death in many tissues. Whether extracellular proNGF exists in the ovary and may play a role in the death of follicular cells or atresia was unknown. MATERIALS AND METHODS Immunohistochemistry of human and rhesus monkey ovarian sections was performed. IVF-derived follicular fluid and human granulosa cells were studied by RT-PCR, qPCR, Western blotting, ATP- and caspase-assays. RESULTS AND CONCLUSION Immunohistochemistry of ovarian sections identified proNGF in granulosa cells and Western blotting of human isolated granulosa cells confirmed the presence of proNGF. Ovarian granulosa cells thus produce proNGF. Recombinant human proNGF even at high concentrations did not affect the levels of ATP or the activity of caspase 3/7, indicating that in granulosa cells proNGF does not induce death. In contrast, mature NGF, which was detected previously in follicular fluid, may be a trophic molecule for granulosa cells with unexpected functions. We found that in contrast to proNGF, NGF increased the levels of the transcription factor early growth response 1 and of the enzyme choline acetyl-transferase. A mechanism for the generation of mature NGF from proNGF in the follicular fluid may be extracellular enzymatic cleavage. The enzyme MMP7 is known to cleave proNGF and was identified in follicular fluid and as a product of granulosa cells. Thus the generation of NGF in the ovarian follicle may depend on MMP7.
Collapse
|
16
|
Shaoxia PU, Changwei QU, Zhi LI, Yansen LI, ChunMei LI. Expression of Nerve Growth Factor (NGF) and Its Receptors TrkA and p75 in the Reproductive Organs of Laying Hens. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2016. [DOI: 10.1590/1516-635x1801187-192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - LI Zhi
- Nanjing Agricultural University, China
| | - LI Yansen
- Nanjing Agricultural University, China
| | | |
Collapse
|
17
|
Hunzicker-Dunn M, Mayo K. Gonadotropin Signaling in the Ovary. KNOBIL AND NEILL'S PHYSIOLOGY OF REPRODUCTION 2015:895-945. [DOI: 10.1016/b978-0-12-397175-3.00020-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Li C, Ma Y, Yi K, Wang C, Li W, Liu Z, Sun L, Chen S, Yu J, Li H, Chen L, Zhou X. The interactions between nerve growth factor and gonadotrophins in bovine oviduct. Anim Reprod Sci 2014; 149:117-23. [DOI: 10.1016/j.anireprosci.2014.06.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/30/2014] [Accepted: 06/23/2014] [Indexed: 01/19/2023]
|
19
|
Vera C, Tapia V, Vega M, Romero C. Role of nerve growth factor and its TRKA receptor in normal ovarian and epithelial ovarian cancer angiogenesis. J Ovarian Res 2014; 7:82. [PMID: 25296882 PMCID: PMC4245781 DOI: 10.1186/s13048-014-0082-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/06/2014] [Indexed: 01/18/2023] Open
Abstract
In normal ovarian function a controlled angiogenesis is essential. Several growth factors are involved in this process, such as the vascular endothelial growth factor (VEGF) and nerve growth factor (NGF). The angiogenesis process in the normal ovary is a tightly controlled process that occurs in each ovarian cycle. Also, angiogenesis is critical for ovarian cancer development and it is responsible for tumor spread, metastasis and its peritoneal dissemination. Ovarian cancer is the fifth leading cause of cancer death in women and it is distinguished as the most lethal gynecologic cancer. In recent years angiogenesis has been given considerable attention in order to identify targets for developing effective anti-tumor therapies. Several molecules have been reported to promote angiogenesis, such as platelet-derived growth factor (PDGF) and its receptors, the angiopoietin/Tie ligand/receptor system and fibroblast growth factor (FGF). Primarily, VEGF has been identified to play key roles in driving angiogenesis. The above-mentioned molecules are candidate drug targets. Used in combination with other treatments, anti-angiogenic therapies have managed to reduce disease progression. The present review is focused in NGF and its high affinity receptor tyrosine kinase A (TRKA). The expression of VEGF, proliferation and the angiogenesis process in ovarian cancer is importantly induced by NGF, among other molecules.
Collapse
Affiliation(s)
- Carolina Vera
- />Laboratorio de Endocrinología y Biología Reproductiva, Hospital Clínico Universidad de Chile, Santos Dumont # 999, Santiago, Chile
| | - Verónica Tapia
- />Laboratorio de Endocrinología y Biología Reproductiva, Hospital Clínico Universidad de Chile, Santos Dumont # 999, Santiago, Chile
- />Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Margarita Vega
- />Laboratorio de Endocrinología y Biología Reproductiva, Hospital Clínico Universidad de Chile, Santos Dumont # 999, Santiago, Chile
- />Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carmen Romero
- />Laboratorio de Endocrinología y Biología Reproductiva, Hospital Clínico Universidad de Chile, Santos Dumont # 999, Santiago, Chile
- />Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- />Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| |
Collapse
|
20
|
Dorfman MD, Garcia-Rudaz C, Alderman Z, Kerr B, Lomniczi A, Dissen GA, Castellano JM, Garcia-Galiano D, Gaytan F, Xu B, Tena-Sempere M, Ojeda SR. Loss of Ntrk2/Kiss1r signaling in oocytes causes premature ovarian failure. Endocrinology 2014; 155:3098-111. [PMID: 24877631 PMCID: PMC4097998 DOI: 10.1210/en.2014-1111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neurotrophins (NTs), once believed to be neural-specific trophic factors, are now known to also provide developmental cues to non-neural cells. In the ovary, NTs contribute to both the formation and development of follicles. Here we show that oocyte-specific deletion of the Ntrk2 gene that encodes the NTRK2 receptor (NTRK2) for neurotrophin-4/5 and brain-derived neurotrophic factor (BDNF) results in post-pubertal oocyte death, loss of follicular organization, and early adulthood infertility. Oocytes lacking NTRK2 do not respond to gonadotropins with activation of phosphatidylinositol 3-kinase (PI3K)-AKT-mediated signaling. Before puberty, oocytes only express a truncated NTRK2 form (NTRK2.T1), but at puberty full-length (NTRK2.FL) receptors are rapidly induced by the preovulatory gonadotropin surge. A cell line expressing both NTRK2.T1 and the kisspeptin receptor (KISS1R) responds to BDNF stimulation with activation of Ntrk2 expression only if kisspeptin is present. This suggests that BDNF and kisspeptin that are produced by granulosa cells (GCs) of periovulatory follicles act in concert to mediate the effect of gonadotropins on Ntrk2 expression in oocytes. In keeping with this finding, the oocytes of NTRK2-intact mice fail to respond to gonadotropins with increased Ntrk2 expression in the absence of KISS1R. Our results demonstrate that the preovulatory gonadotropin surge promotes oocyte survival at the onset of reproductive cyclicity by inducing oocyte expression of NTRK2.FL receptors that set in motion an AKT-mediated survival pathway. They also suggest that gonadotropins activate NTRK2.FL expression via a dual communication pathway involving BDNF and kisspeptin produced in GCs and their respective receptors NTRK2.T1 and KISS1R expressed in oocytes.
Collapse
Affiliation(s)
- Mauricio D Dorfman
- Division of Neuroscience (M.D.D., C.G.-R., Z.A., B.K., A.L., G.A.D., J.M.C., S.R.O.), Oregon National Primate Research Center/Oregon Health and Science University, Beaverton, Oregon 97006; Department of Cell Biology, Physiology and Immunology (D.G.-G., F.G., M.T.-S.), University of Córdoba; Centro de Investigacion Biomedica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas/Hospital Universitario Reina Sofia, Cordoba, Spain 14004; and Department of Pharmacology and Physiology (B.X.), Georgetown University Medical Center, Washington DC 20057
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Seasonal changes in expression of nerve growth factor and its receptors TrkA and p75 in the ovary of wild ground squirrel (Citellus dauricus Brandt). J Ovarian Res 2014; 7:3. [PMID: 24405743 PMCID: PMC3898233 DOI: 10.1186/1757-2215-7-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/21/2013] [Indexed: 01/31/2023] Open
Abstract
The aim of this study was to investigate the presence of nerve growth factor (NGF) and its receptors tyrosine kinase A (TrkA) and p75 in the ovaries of the wild ground squirrels during the breeding and nonbreeding seasons. In the breeding period, NGF, TrkA and p75 were immunolocalized in granulosa cells, thecal cells, interstitial cells and luteal cells whereas in the nonbreeding period, both of them were detected only in granulosa cells, thecal cells and interstitial cells. Stronger immunostaining of NGF, TrkA and p75 were observed in granulosa cells, thecal cells and interstitial cells in the breeding season compared to the nonbreeding season. Corresponding for the immunohistochemical results, immunoreactivities of NGF and its two receptors were greater in the ovaries of the breeding season then decreased to a relatively low level in the nonbreeding season. The mean mRNA levels of NGF, TrkA and p75 were significantly higher in the breeding season than in the nonbreeding season. In addition, plasma gonadotropins, estradiol-17β and progesterone concentrations were significantly higher in the breeding season than in the nonbreeding season, suggesting that the expression patterns of NGF, and TrkA and p75 were correlated with changes in plasma gonadotropins, estradiol-17β and progesterone concentrations. These results indicated that NGF and its receptors, TrkA and p75 may be involved in the regulation of seasonal changes in the ovarian functions of the wild ground squirrel.
Collapse
|
22
|
Palumbo MA, Giuffrida E, Gulino FA, Leonardi E, Cantarella G, Bernardini R. Nerve growth factor (NGF) levels in follicular fluid of infertile patients undergoing to in vitro fertilization (IVF) cycle. Gynecol Endocrinol 2013; 29:1002-4. [PMID: 23971410 DOI: 10.3109/09513590.2013.829450] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine the levels of NGF in follicular fluid and serum samples, and to correlate them with some characteristics of the patients (age) and of the IVF protocol (E2 levels, number of collected oocytes, used FSHr IU) to investigate its rule in the folliculogenesis. METHODS This study examined a sample of 78 women undergoing to FIVET/ICSI cycles since October 2011 to March 2013. NGF levels were determinated in follicular fluid (FF) and serum sample using enzyme immunoassay ELISA kit for NGF. RESULTS The NGF level was significantly higher in FF (213.76 pg/ml) than in basal serum (46.47 pg/ml (p < 0.001) and in serum sample of the pick-up day (60.75 pg/ml (p < 0.001). In FF, the levels of NGF were positively correlated to age of women (corr.coeff. r = 0.44) and units of FSHr used during stimulation protocol (corr.coeff r = 0.34). DISCUSSION Our results demonstrate that the FF levels are higher than the blood; so there is a local production of NGF in the ovarian follicle, important for the follicle's growth and oocyte quality. We could also say that the increase of NGF levels is correlated to a lower ovary response, that is obviously less in the older women.
Collapse
Affiliation(s)
- Marco Antonio Palumbo
- Department of Surgery, Division of Gynecology/Obstetrics, Center of Physiopathology of Human Reproduction, University of Catania , Catania , Italy and
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Cryopreservation of ovarian tissue has been proposed for use in preserving female fertility before anticancer chemo-radiotherapy, because ovarian tissue contains a large pool of non-growing, primordial follicles. The mechanisms that regulate the exit of follicles from the pool are poorly understood. To determine optimal conditions for in vitro ovarian culture, we investigated the effects of nerve growth factor (NGF) and oxygen concentration on follicle growth and apoptosis. Oxygen concentration affected both cell proliferation and apoptosis. Under 20% oxygen, but not 1.5% or 5%, NGF decreased apoptosis in mouse ovaries by down-regulating the pro-apoptotic genes Bax and p53. In conclusion, high oxygen tension during in vitro ovarian culture promotes follicle growth and, in conjunction with NGF, suppresses apoptosis. The efficiency of this method to preserve fertility depends in part on the level of atresia. These results suggest that oxygen and NGF may be used to increase numbers of preantral follicles and mature oocytes in the culture of mammalian ovarian cortical strips.
Collapse
Affiliation(s)
- Jaesook Roh
- Laboratory of Reproductive Endocrinology, Department of Anatomy & Cell Biology, College of Medicine, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul, South Korea.
| | | |
Collapse
|
24
|
Chen N, Li Y, Wang W, Ma Y, Yang D, Zhang Q. Vasoactive Intestinal Peptide Can Promote the Development of Neonatal Rat Primordial Follicles During In Vitro Culture1. Biol Reprod 2013; 88:12. [DOI: 10.1095/biolreprod.111.098335] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
25
|
Abstract
Summary Nerve growth factor (NGF) is a prototype member of the neurotrophins family and has important functions in the maintenance of viability and proliferation of neuronal and non-neuronal cells, such as certain ovarian cells. The present review highlights the role of NGF and its receptors on ovarian follicle development. NGF initiates its multiple actions through binding to two classes of receptors: the high affinity receptor tyrosine kinase A (TrkA) and the low-affinity receptor p75. Different intracytoplasmic signalling pathways may be activated through binding to NGF due to variation in the receptors. The TrkA receptor activates predominantly phosphatidylinositol-3-kinase (PI3K) and mitogenic activated protein kinase (MAPK) to promote cell survival and proliferation. The activation of the phospholipase type Cγ (PLCγ) pathway, which results in the production of diacylglycerol (DAG) and inositol triphosphate (IP3), culminates in the release of calcium from the intracytoplasmic cellular stocks. However, the details of activation through p75 receptor are less well known. Expression of NGF and its receptors is localized in ovarian cells (oocyte, granulosa, theca and interstitial cells) from several species, which suggests that NGF and its receptors may regulate some ovarian functions such as follicular survival or development. Thus, the use of NGF in culture medium for ovarian follicles may be of critical importance for researchers who want to promote follicular development in vitro in the future.
Collapse
|
26
|
Dorfman MD, Kerr B, Garcia-Rudaz C, Paredes AH, Dissen GA, Ojeda SR. Neurotrophins acting via TRKB receptors activate the JAGGED1-NOTCH2 cell-cell communication pathway to facilitate early ovarian development. Endocrinology 2011; 152:5005-16. [PMID: 22028443 PMCID: PMC3230062 DOI: 10.1210/en.2011-1465] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tropomyosin-related kinase (TRK) receptor B (TRKB) mediates the supportive actions of neurotrophin 4/5 and brain-derived neurotrophic factor on early ovarian follicle development. Absence of TRKB receptors reduces granulosa cell (GC) proliferation and delays follicle growth. In the present study, we offer mechanistic insights into this phenomenon. DNA array and quantitative PCR analysis of ovaries from TrkB-null mice revealed that by the end of the first week of postnatal life, Jagged1, Hes1, and Hey2 mRNA abundance is reduced in the absence of TRKB receptors. Although Jagged1 encodes a NOTCH receptor ligand, Hes1 and Hey2 are downstream targets of the JAGGED1-NOTCH2 signaling system. Jagged1 is predominantly expressed in oocytes, and the abundance of JAGGED1 is decreased in TrkB(-/-) oocytes. Lack of TRKB receptors also resulted in reduced expression of c-Myc, a NOTCH target gene that promotes entry into the cell cycle, but did not alter the expression of genes encoding core regulators of cell-cycle progression. Selective restoration of JAGGED1 synthesis in oocytes of TrkB(-/-) ovaries via lentiviral-mediated transfer of the Jagged1 gene under the control of the growth differentiation factor 9 (Gdf9) promoter rescued c-Myc expression, GC proliferation, and follicle growth. These results suggest that neurotrophins acting via TRKB receptors facilitate early follicle growth by supporting a JAGGED1-NOTCH2 oocyte-to-GC communication pathway, which promotes GC proliferation via a c-MYC-dependent mechanism.
Collapse
Affiliation(s)
- Mauricio D Dorfman
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | | | | | | | |
Collapse
|
27
|
Carré GA, Couty I, Hennequet-Antier C, Govoroun MS. Gene expression profiling reveals new potential players of gonad differentiation in the chicken embryo. PLoS One 2011; 6:e23959. [PMID: 21931629 PMCID: PMC3170287 DOI: 10.1371/journal.pone.0023959] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 08/02/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s) involved in gonad differentiation is still incomplete. METHODOLOGY/PRINCIPAL FINDINGS With the aim of improving characterization of the molecular pathway(s) involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein) and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. CONCLUSION/SIGNIFICANCE This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors of chicken gonad differentiation and provides evidence of the preferential expression of BMPs in the developing ovary and Inhibin/Activin subunits in the developing testis.
Collapse
Affiliation(s)
- Gwenn-Aël Carré
- Physiologie de la Reproduction et des Comportements UMR 6175, INRA- CNRS-Université F. Rabelais de Tours-Haras Nationaux, Nouzilly, France
| | - Isabelle Couty
- Physiologie de la Reproduction et des Comportements UMR 6175, INRA- CNRS-Université F. Rabelais de Tours-Haras Nationaux, Nouzilly, France
| | | | - Marina S. Govoroun
- Physiologie de la Reproduction et des Comportements UMR 6175, INRA- CNRS-Université F. Rabelais de Tours-Haras Nationaux, Nouzilly, France
- * E-mail:
| |
Collapse
|
28
|
Garcia-Rudaz C, Dorfman M, Nagalla S, Svechnikov K, Söder O, Ojeda SR, Dissen GA. Excessive ovarian production of nerve growth factor elicits granulosa cell apoptosis by setting in motion a tumor necrosis factor α/stathmin-mediated death signaling pathway. Reproduction 2011; 142:319-31. [PMID: 21646391 DOI: 10.1530/rep-11-0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Excessive nerve growth factor (NGF) production by the ovary, achieved via a transgenic approach, results in arrested antral follicle growth, reduced ovulatory capacity, and a predisposition to cyst formation in response to mildly elevated LH levels. Two salient features in these mutant mice (termed 17NF) are an elevated production of 17α-hydroxyprogesterone (17-OHP(4)), testosterone, and estradiol (E(2)) in response to gonadotropins, and an increased frequency of granulosa cell (GC) apoptosis. In this study, we show that the increase in steroidal response is associated with enhanced expression of Cyp17a1, Hsd17b, and Cyp19a1, which encode the enzymes catalyzing the synthesis of 17-OHP(4), testosterone, and E(2) respectively. Using a proteomic approach, we identified stathmin (STMN1), as a protein that is overproduced in 17NF ovaries. In its phosphorylated state, STMN1 mediates a cell death signal initiated by tumor necrosis factor α (TNF). STMN1 is expressed in GCs and excessive NGF increases its abundance as well as that of its forms phosphorylated at serine (Ser) 16, 25, and 38. TNF synthesis is also increased in 17NF ovaries, and this change is abolished by blocking neurotrophic tyrosine kinase receptors. Inhibiting TNF actions in vivo by administering a soluble TNF receptor prevented the increase in total and phosphorylated STMN1 production, as well as GC apoptosis in NGF-overproducing ovaries. These results indicate that an excess of NGF in the ovary promotes steroidogenesis by enhancing the expression of enzyme genes involved in 17-OHP(4), testosterone, and E(2) synthesis, and causes GC apoptosis by activating a TNF/ STMN1-mediated cell death pathway.
Collapse
Affiliation(s)
- Cecilia Garcia-Rudaz
- Division of Neuroscience, Oregon National Primate Research Center-Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Oron G, Ao A, Friedman O, Fisch B, Zhang XY, Ben-Haroush A, Peled Y, Abir R. Expression of neurotrophin 3 and its tropomyosin-related kinase receptor C in human preantral follicles. Fertil Steril 2011; 95:2056-62. [DOI: 10.1016/j.fertnstert.2011.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 02/06/2011] [Accepted: 02/07/2011] [Indexed: 01/19/2023]
|
30
|
Jana B, Koszykowska M, Czarzasta J. Expression of nerve growth factor and its receptors, TrkA and p75, in porcine ovaries. J Reprod Dev 2011; 57:468-74. [PMID: 21502727 DOI: 10.1262/jrd.10-180h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellular localization of nerve growth factor (NGF) and its receptors (TrkA, p75) was investigated during the estrous cycle in gilts. Also, the levels of expression of these factors in walls of tertiary follicles and corpora lutea (CLs) were determined using Western blot. The ovaries from days 3, 7, 16 and 20 of the cycle revealed the presence of NGF and its receptors in oocytes of secondary and tertiary follicles, follicular cells of primary and secondary follicles, thecal and granulosa cells of tertiary follicles and steroidogenic cells of CLs. In wall cells of primary follicles, NGF, TrkA and p75 staining was strongest on day 16, while in secondary follicles, only p75 was more intensely stained on day 16 and 20. In walls of small (to 3 mm in diameter) and medium (4-6 mm in diameter) follicles, NGF staining was lower on day 16, and the p75 reaction was strongest on day 20. On day 20, NGF staining in large follicles (7-10 mm in diameter) was higher than in smaller follicles. The levels of NGF and p75 in small and medium follicles were highest on day 20. The contents of NGF and TrkA in large follicles on day 20 were higher than in smaller follicles. NGF and TrkA contents in CLs were highest on day 7. Our study demonstrates that NGF, TrkA and p75 are expressed in the ovary during the estrous cycle in gilts. These results suggest that NGF and its receptors may be important for ovarian function in cycling gilts.
Collapse
Affiliation(s)
- Barbara Jana
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland.
| | | | | |
Collapse
|
31
|
Zhang X, Zhang L, Huo S, Wang J, Cui S. Neonatal superior ovarian nerve transection inhibits follicle development by enhancing follicular atresia and suppressing granulosa cell proliferation in rats. Reprod Fertil Dev 2011; 22:1148-58. [PMID: 20797353 DOI: 10.1071/rd09271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/26/2010] [Indexed: 11/23/2022] Open
Abstract
The ovarian sympathetic nerves participate in the regulation of mammalian ovarian function, but it is still not known whether the neonatal ovarian sympathetic nerve is involved in follicular development and related mechanisms. In the present study, the superior ovarian nerve (SON) of the neonatal rat was transected on postnatal day (PD) 2, and follicle development, ovarian hormone secretion, ovulation rate, granulosa cell proliferation and apoptosis were analysed on PD 30 and PD 90. The results demonstrate that SON transection decreases follicle number and size, reduces ovulation induced by gonadotrophin and enhances follicular atresia. Bromodeoxyuridine (BrdU) and cleaved caspase-3 immunohistochemistry staining provide evidence that SON transection inhibits granulosa cell proliferation and promotes granulosa cell apoptosis. In addition, SON transection increases serum oestradiol levels, but has no influence on serum progesterone levels. These results suggest that the sympathetic nerve supply to the ovaries is important in regulating follicle development and ovary function. These results are critical for further understanding of the neuroendocrine regulation of ovary development and function, although the mechanism needs to be elucidated in future studies.
Collapse
Affiliation(s)
- Xiaoxin Zhang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | |
Collapse
|
32
|
Drouilhet L, Taragnat C, Fontaine J, Duittoz A, Mulsant P, Bodin L, Fabre S. Endocrine Characterization of the Reproductive Axis in Highly Prolific Lacaune Sheep Homozygous for the FecLL Mutation1. Biol Reprod 2010; 82:815-24. [DOI: 10.1095/biolreprod.109.082065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
33
|
Long MJ, Sairam MR, Komar CM. Initiation of the expression of peroxisome proliferator-activated receptor gamma (PPAR gamma) in the rat ovary and the role of FSH. Reprod Biol Endocrinol 2009; 7:145. [PMID: 19968884 PMCID: PMC2795759 DOI: 10.1186/1477-7827-7-145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 12/07/2009] [Indexed: 12/02/2022] Open
Abstract
PPARgamma is highly expressed in granulosa cells by 23 days post-partum (pp) and is down-regulated in response to the LH surge. We tested the hypothesis that high levels of FSH during the neonatal period trigger the expression of PPARgamma. To determine when PPARgamma expression is initiated, ovaries were collected from neonatal rats. Messenger RNA for PPARgamma was undetectable on day 1, low from days 5-14, and increased by day 19 pp (p < 0.05). PPARgamma was detected in select granulosa cells in primary/early secondary follicles. Messenger RNA for the FSH receptor was detected as early as day 1 and remained steady throughout day 19 pp. The FSH receptor was detected by immunoblot analysis in ovaries collected 1, 2, and 5-9 days pp. In a subsequent experiment, neonatal rats were treated with acyline (GnRH antagonist) which significantly reduced FSH (p < 0.05) but not levels of mRNA for PPARgamma. The role of FSH in the induction of PPARgamma expression was further assessed in ovarian tissue from FORKO mice. Both mRNA and protein for PPARgamma were identified in ovarian tissue from FORKO mice. In summary, the FSH/FSH receptor system is present in granulosa cells prior to the onset of expression of PPARgamma. Reducing FSH during the neonatal period, or the ability to respond to FSH, did not decrease expression of mRNA for PPARgamma. These data indicate that FSH is not a primary factor initiating the expression of PPARgamma and that other agents play a role in activating its expression in the ovary.
Collapse
Affiliation(s)
- Mary J Long
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - M Ram Sairam
- Molecular Reproduction Research Laboratory, Institut de Recherches Cliniques de Montreal Montreal, Quebec, H2W 1R7, Canada
| | - Carolyn M Komar
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA
| |
Collapse
|
34
|
Drouilhet L, Lecerf F, Bodin L, Fabre S, Mulsant P. Fine mapping of theFecLlocus influencing prolificacy in Lacaune sheep. Anim Genet 2009; 40:804-12. [DOI: 10.1111/j.1365-2052.2009.01919.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Kobayashi N, Orisaka M, Cao M, Kotsuji F, Leader A, Sakuragi N, Tsang BK. Growth differentiation factor-9 mediates follicle-stimulating hormone-thyroid hormone interaction in the regulation of rat preantral follicular development. Endocrinology 2009; 150:5566-74. [PMID: 19833718 DOI: 10.1210/en.2009-0262] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FSH regulates follicular growth in a stage-development fashion. Although preantral follicle stage is gonadotropin responsive, FSH is not required for preantral follicular growth. With the antrum, the follicles continue growing under the influence of FSH and become gonadotropin dependent. Although thyroid hormone is important for normal female reproductive function, its role and interaction with FSH in the regulation of preantral ovarian follicular growth is yet to be defined. In the present study, we have examined the action and interaction of FSH and T(3) in the regulation of the growth of preantral follicles, especially in their transition from preantral to early antral stage, using an established follicle culture system and evaluated the involvement of growth differentiation factor-9 (GDF-9) in this process in vitro. We have demonstrated that although T(3) alone had no effect on follicular development, it markedly enhanced FSH-induced preantral follicular growth. Although FSH alone significantly down-regulated FSH receptor (FSHR) mRNA abundance in the preantral follicles and T(3) alone was ineffective, expression of the message was significantly increased in the presence of both hormones. In addition, intra-oocyte injection of GDF-9 antisense oligonucleotides (GDF-9 morpholino) induced follicular cell apoptosis and suppressed follicular growth induced by FSH and T(3). These responses were attenuated by exogenous GDF-9. Our findings support the concept that thyroid hormone regulates ovarian follicular development through its direct action on the ovary and that promotes FSH-induced preantral follicular growth through up-regulation of FSHR, a mechanism dependent on the expression and action of oocyte-derived GDF-9.
Collapse
Affiliation(s)
- Noriko Kobayashi
- Reproductive Biology Unit and Division of Reproductive Medicine, Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa Hospital Research Institute, The Ottawa Hospital (Civic Campus), Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Julio-Pieper M, Lozada P, Tapia V, Vega M, Miranda C, Vantman D, Ojeda SR, Romero C. Nerve growth factor induces vascular endothelial growth factor expression in granulosa cells via a trkA receptor/mitogen-activated protein kinase-extracellularly regulated kinase 2-dependent pathway. J Clin Endocrinol Metab 2009; 94:3065-71. [PMID: 19454577 PMCID: PMC2730870 DOI: 10.1210/jc.2009-0542] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CONTEXT Acquisition of ovulatory competence by antral follicles requires development of an adequate vascular supply. Although it is well established that ovarian angiogenesis is cyclically regulated by vascular endothelial growth factor (VEGF), the factors controlling VEGF production by ovarian follicles remain largely unknown. Nerve growth factor (NGF) may be one of these factors, because NGF promotes angiogenesis and synthesis of angiogenic factors in other tissues and is produced by human granulosa cells (hGCs). OBJECTIVE The aim of the study was to determine whether NGF influences the production of VEGF by hGCs and to identify a potential signaling pathway underlying this effect. DESIGN We conducted a prospective experimental study. PATIENTS hGCs were obtained from 41 women participating in the in vitro fertilization program of our institution. METHODS Changes in VEGF mRNA after exposure to NGF were evaluated in cultured hGCs by PCR and real-time PCR. The effect of NGF on VEGF secretion was determined by ELISA. The involvement of trkA, the high affinity NGF receptor, was examined by inhibiting the receptor's tyrosine kinase activity with K252a. The contribution of an ERK1/ERK2-mediated signaling pathway was identified by detecting NGF-dependent phosphorylation of these proteins and by blocking their activity with the inhibitor U0126. RESULTS NGF promotes VEGF production in cultured hGCs. Blockade of trkA receptor tyrosine kinase activity blocks this effect. NGF induces MAPK-ERK2 phosphorylation, and blockade of this signaling pathway prevents the NGF-induced increase in VEGF production. CONCLUSIONS NGF promotes ovarian angiogenesis by enhancing the synthesis and secretion of VEGF from hGCs via a trkA- and ERK2-dependent mechanism.
Collapse
Affiliation(s)
- Marcela Julio-Pieper
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santos Dumont 999 Independencia, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Nilsson E, Dole G, Skinner MK. Neurotrophin NT3 promotes ovarian primordial to primary follicle transition. Reproduction 2009; 138:697-707. [PMID: 19584175 DOI: 10.1530/rep-09-0179] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurotrophins are growth factors that are known to have a role in promoting cell survival and differentiation. The focus of the current study is to examine the role of neurotrophins in regulating ovarian primordial follicle development. Ovaries from 4-day old rats were placed into organ culture and cultured for 10 days in the absence or presence of neurotrophin-3 (NT3), brain-derived neurotrophic factor (BDNF), or nerve growth factor (NGF). Treatment of ovaries with NT3 resulted in a significant (P<0.01) increase in primordial follicle development (i.e. primordial to primary follicle transition). Treatment with BDNF at high doses of 100-250 ng/ml also significantly (P<0.01) increased primordial follicle development, but NGF had no effect. Immunohistochemical studies determined that NT3 was present in granulosa cells, interstitial tissue, and in the oocytes of primordial and primary follicles. The NT3 receptor NTRK3 was present in oocytes at all stages of development. Analysis of ovaries that contain predominantly primordial follicles demonstrated the transcripts for NT3, NTRK3, NGF, and the BDNF/neurotrophin-4 (NT4) receptor NTRK2 are expressed, while BDNF, NT4, and the NGF receptor NTRK1 are not detectable. Inhibition of the NTRK3 receptor with the tyrphostin AG 879 resulted in oocyte death and a significant (P<0.01) reduction in follicle pool size. Inhibition of the NTRK receptors with K252a slowed primordial to primary follicle transition. A microarray analysis demonstrated that a small number of genes were differentially expressed after NT3 treatment. Observations indicate that the neurotrophin NT3, acting through the NTRK3 receptor in oocytes, promotes the primordial to primary follicle transition.
Collapse
Affiliation(s)
- Eric Nilsson
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4234, USA
| | | | | |
Collapse
|
38
|
Kerr B, Garcia-Rudaz C, Dorfman M, Paredes A, Ojeda SR. NTRK1 and NTRK2 receptors facilitate follicle assembly and early follicular development in the mouse ovary. Reproduction 2009; 138:131-40. [PMID: 19357131 DOI: 10.1530/rep-08-0474] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies have demonstrated that neurotrophins (NTs) and their NTRK tyrosine kinase receptors, thought to be exclusively required for the development of the nervous system, are also involved in controlling ovarian development. Here, we show that primordial follicle formation is decreased in the absence of nerve growth factor (NGF) or its receptor NTRK1, and in the absence of NTRK2, the receptor for neurotrophin-4 (NTF4) and brain-derived neurotrophic factor (BDNF). This deficiency is not due to premature oocyte loss, because the ovaries of Ntrk1(-/-) and Ntrk2(-/-) mice do not show an increased rate of oocyte death antedating the initiation of folliculogenesis. Moreover, exposure of NGF-deficient ovaries to NGF rescues the defect in follicular assembly, if NTRK1 receptors are present, suggesting that the absence of NTs causes a delay, and not an irretrievable loss, of follicle formation. Both the number of secondary follicles and FSH receptor (FSHR) expression are diminished in Ntrk1- and Ntrk2-null ovaries, but not in ovaries lacking the common NT receptor NGFR. Transient exposure of wild-type ovaries to NTF4 increases Fshr gene expression and enhances the ability of the ovary to respond to FSH with formation of cyclin D2, a cell cycle protein mediating the proliferative actions of FSH in the ovary. These results indicate that both NTRK1 and NTRK2 receptors are necessary for the timely assembly of primordial follicles and for sustaining early follicular development. They also suggest that a mechanism by which NTRK2 receptors facilitate subsequent follicle development is by inducing the formation of functional FSHR.
Collapse
Affiliation(s)
- Bredford Kerr
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | | | | | |
Collapse
|
39
|
Matagne V, Mastronardi C, Shapiro RA, Dorsa DM, Ojeda SR. Hypothalamic expression of Eap1 is not directly controlled by ovarian steroids. Endocrinology 2009; 150:1870-8. [PMID: 19022886 PMCID: PMC2659281 DOI: 10.1210/en.2008-0779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A gene termed EAP1 (enhanced at puberty 1) was recently identified as a transcriptional regulator of female neuroendocrine reproductive function. We have now used in vivo and in vitro assays, and the female rat as an animal model, to determine whether Eap1 gene expression is regulated by ovarian steroids. Eap1 mRNA abundance decreases in both the hypothalamus and cerebral cortex during the infantile-juvenile phases of development, but it increases selectively in the hypothalamus at puberty, suggesting that in contrast to the general decline in expression observed in immature animals, the region-specific increase in Eap1 mRNA levels that occurs at puberty might be elicited by ovarian steroids. This is, however, not the case, because hypothalamic Eap1 mRNA levels increase at the expected time of puberty in rats ovariectomized at the beginning of the juvenile period. Although a subpopulation of EAP1-containing cells in the medial basal hypothalamus (MBH) and preoptic area express estrogen receptor-alpha (ERalpha), the 5'-flanking region of the rat Eap1 (rEap1) gene does not contain a complete estrogen-responsive element, and no such estrogen-responsive element is detected within 100 kb of the rEap1 locus. Functional promoter assays showed that neither estradiol (E(2)) alone nor a combination of E(2) plus progesterone increases rEap1 gene transcription. Likewise, E(2) administered to ovariectomized immature rats elicited a robust surge of LH but increased neither preoptic area nor MBH Eap1 mRNA levels. E(2)/progesterone-treated rats showed a massive elevation in plasma LH but only a modest increase in Eap1 mRNA levels, limited to the MBH. These results indicate that hypothalamic Eap1 expression is not directly controlled by ovarian steroids and suggest that Eap1 expression increases at puberty driven by ovary-independent, centrally initiated events.
Collapse
Affiliation(s)
- Valerie Matagne
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | | | | | | | |
Collapse
|
40
|
Dissen GA, Garcia-Rudaz C, Ojeda SR. Role of neurotrophic factors in early ovarian development. Semin Reprod Med 2009; 27:24-31. [PMID: 19197802 DOI: 10.1055/s-0028-1108007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Much is known about the endocrine hormonal mechanisms controlling ovarian development. More recently, attention has focused on identifying regulatory pathways that, operating within the ovarian microenvironment, contribute to the acquisition of ovarian reproductive competence. Within this framework, the concept has developed that neurotrophins (NTs) and their Trk tyrosine kinase receptors, long thought to be exclusively required for the development of the nervous system, are also involved in the control of ovarian maturation. The ovary of several species, including rodents, sheep, cows, nonhuman primates, and humans, produce NTs and express both the high-affinity receptors and the common p75 (NTR) receptor required for signaling. Studies in humans and rodents have shown that this expression is initiated during fetal life, before the formation of primordial follicles. Gene targeting approaches have identified TrkB, the high-affinity receptor for neurotrophin-4/5 and brain-derived neurotrophic factor, as a signaling module required for follicular assembly, early follicular growth, and oocyte survival. A similar approach has shown that nerve growth factor contributes independently to the growth of primordial follicles into gonadotropin-responsive structures. Altogether, these observations indicate that NTs are important contributors to the gonadotropin-independent process underlying the formation and initiation of ovarian follicular growth.
Collapse
Affiliation(s)
- Gregory A Dissen
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon 97006-3448, USA.
| | | | | |
Collapse
|
41
|
Garcia-Rudaz C, Deng V, Matagne V, Ronnekleiv O, Bosch M, Han V, Percy AK, Ojeda SR. FXYD1, a modulator of Na,K-ATPase activity, facilitates female sexual development by maintaining gonadotrophin-releasing hormone neuronal excitability. J Neuroendocrinol 2009; 21:108-22. [PMID: 19187398 PMCID: PMC2934895 DOI: 10.1111/j.1365-2826.2008.01812.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The excitatory tone to gonadotrophin-releasing hormone (GnRH) neurones is a critical component underlying the pubertal increase in GnRH secretion. However, the homeostatic mechanisms modulating the response of GnRH neurones to excitatory inputs remain poorly understood. A basic mechanism of neuronal homeostasis is the Na(+),K(+)-ATPase-dependent restoration of Na(+) and K(+) transmembrane gradients after neuronal excitation. This activity is reduced in a mouse model of Rett syndrome (RTT), a neurodevelopmental disorder in which expression of FXYD1, a modulator of Na(+),K(+)-ATPase activity, is increased. We now report that the initiation, but not the completion of puberty, is advanced in girls with RTT, and that, in rodents, FXYD1 may contribute to the neuroendocrine regulation of female puberty by modulating GnRH neuronal excitability. Fxyd1 mRNA abundance reaches maximal levels in the female rat hypothalamus by the fourth postnatal week of life (i.e., around the time when the mode of GnRH secretion acquires an adult pattern of release). Although Fxyd1 mRNA expression is low in the hypothalamus, approximately 50% of GnRH neurones contain Fxyd1 transcripts. Whole-cell patch recording of GnRH-EGFP neurones revealed that the neurones of Fxyd1-null female mice respond to somatic current injections with a lower number of action potentials than wild-type cells. Both the age at vaginal opening and at first oestrous were delayed in Fxyd1(-/-) mice, but adult reproductive capacity was normal. These results suggest that FXYD1 contributes to facilitating the advent of puberty by maintaining GnRH neuronal excitability to incoming transsynaptic stimulatory inputs.
Collapse
Affiliation(s)
- Cecilia Garcia-Rudaz
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon
| | - Vivianne Deng
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon
| | - Valerie Matagne
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon
| | - Oline Ronnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Martha Bosch
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Victor Han
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon
| | - Alan K. Percy
- Department of Pediatrics University of Alabama at Birmingham, Birmingham, Alabama
| | - Sergio R. Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon
| |
Collapse
|
42
|
Dorfman M, Ramirez VD, Stener-Victorin E, Lara HE. Chronic-intermittent cold stress in rats induces selective ovarian insulin resistance. Biol Reprod 2008; 80:264-71. [PMID: 18923160 DOI: 10.1095/biolreprod.108.070904] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In rat ovary chronic cold stress increases sympathetic nerve activity, modifies follicular development, and initiates a polycystic condition. To see whether there is a relationship between the previously described changes in follicular development and metabolic changes similar to those in women with polycystic ovary, we have studied the effect of chronic cold stress (4 degrees C for 3 h/day, Monday to Friday, for 4 wk) on insulin sensitivity and the effect of insulin on sympathetic ovarian activity. Although cold-stressed rats ate more than the controls, they did not gain more weight. Insulin sensitivity, determined by hyperinsulinemic-euglycemic clamp, was significantly increased in the stressed animals. Insulin in vitro increased the basal release of norepinephrine from the ovaries of control rats but not from those of stressed rats, suggesting a local neural resistance to insulin in stressed rats. The levels of mRNA and protein for IRS1 and SLC2A4 (also known as GLUT4), molecules involved in insulin signaling, decreased significantly in the ovaries but not in the muscle of stressed rats. This decrease was preferentially located in theca-interstitial cells compared with granulosa cells, indicating that theca cells (the only cells directly innervated by sympathetic nerves) are responsible for the ovarian insulin resistance found in stressed rats. These findings suggest that ovarian insulin resistance produced by chronic stress could be in part responsible for the development of the polycystic condition induced by stress.
Collapse
Affiliation(s)
- Mauricio Dorfman
- Laboratory of Neurobiochemistry, Department of Biochemistry and Molecular Biology, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago 838-0492, Chile
| | | | | | | |
Collapse
|
43
|
Roh J, Bae J, Lee K, Mayo K, Shea L, Woodruff TK. Regulation of Wilms' tumor gene expression by nerve growth factor and follicle-stimulating hormone in the immature mouse ovary. Fertil Steril 2008; 91:1451-4. [PMID: 18774569 DOI: 10.1016/j.fertnstert.2008.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 06/12/2008] [Accepted: 07/09/2008] [Indexed: 11/29/2022]
Abstract
This study investigated the regulation of Wilms' tumor gene (WT1) in the ovary by nerve growth factor and FSH to better understand signals that initiate early follicular growth. Nerve growth factor showed a direct stimulatory effect on endogenous expression of WT1, whereas FSH attenuated basal and nerve growth factor-stimulated WT1 protein expression, which most likely depended on FSH responsiveness according to the follicle growth stage.
Collapse
Affiliation(s)
- Jaesook Roh
- Department of Obstetrics & Gynecology, Hanyang Medical University, Seoul, Korea.
| | | | | | | | | | | |
Collapse
|
44
|
Roth CL, Mastronardi C, Lomniczi A, Wright H, Cabrera R, Mungenast AE, Heger S, Jung H, Dubay C, Ojeda SR. Expression of a tumor-related gene network increases in the mammalian hypothalamus at the time of female puberty. Endocrinology 2007; 148:5147-61. [PMID: 17615149 DOI: 10.1210/en.2007-0634] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Much has been learned in recent years about the central mechanisms controlling the initiation of mammalian puberty. It is now clear that this process requires the interactive participation of several genes. Using a combination of high throughput, molecular, and bioinformatics strategies, in combination with a system biology approach, we singled out from the hypothalamus of nonhuman primates and rats a group of related genes whose expression increases at the time of female puberty. Although these genes [henceforth termed tumor-related genes (TRGs)] have diverse cellular functions, they share the common feature of having been earlier identified as involved in tumor suppression/tumor formation. A prominent member of this group is KiSS1, a gene recently shown to be essential for the occurrence of puberty. Cis-regulatory analysis revealed the presence of a hierarchically arranged gene set containing five major hubs (CDP/CUTL1, MAF, p53, YY1, and USF2) controlling the network at the transcriptional level. In turn, these hubs are heavily connected to non-TRGs involved in the transcriptional regulation of the pubertal process. TRGs may be expressed in the mammalian hypothalamus as components of a regulatory gene network that facilitates and integrates cellular and cell-cell communication programs required for the acquisition of female reproductive competence.
Collapse
Affiliation(s)
- Christian L Roth
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Deng V, Matagne V, Banine F, Frerking M, Ohliger P, Budden S, Pevsner J, Dissen GA, Sherman LS, Ojeda SR. FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice. Hum Mol Genet 2007; 16:640-50. [PMID: 17309881 DOI: 10.1093/hmg/ddm007] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder linked to heterozygous de novo mutations in the MECP2 gene. MECP2 encodes methyl-CpG-binding protein 2 (MeCP2), which represses gene transcription by binding to 5-methylcytosine residues in symmetrically positioned CpG dinucleotides. Direct MeCP2 targets underlying RTT pathogenesis remain largely unknown. Here, we report that FXYD1, which encodes a transmembrane modulator of Na(+), K(+) -ATPase activity, is elevated in frontal cortex (FC) neurons of RTT patients and Mecp2-null mice. Increasing neuronal FXDY1 expression is sufficient to reduce dendritic arborization and spine formation, hallmarks of RTT neuropathology. Mecp2-null mouse cortical neurons have diminished Na(+),K(+)-ATPase activity, suggesting that aberrant FXYD1 expression contributes to abnormal neuronal activity in RTT. MeCP2 represses Fxyd1 transcription through direct interactions with sequences in the Fxyd1 promoter that are methylated in FC neurons. FXYD1 is therefore a MeCP2 target gene whose de-repression may directly contribute to RTT neuronal pathogenesis.
Collapse
Affiliation(s)
- Vivianne Deng
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mastronardi C, Smiley GG, Raber J, Kusakabe T, Kawaguchi A, Matagne V, Dietzel A, Heger S, Mungenast AE, Cabrera R, Kimura S, Ojeda SR. Deletion of the Ttf1 gene in differentiated neurons disrupts female reproduction without impairing basal ganglia function. J Neurosci 2007; 26:13167-79. [PMID: 17182767 PMCID: PMC6675010 DOI: 10.1523/jneurosci.4238-06.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thyroid transcription factor 1 (TTF1) [also known as Nkx2.1 (related to the NK-2 class of homeobox genes) and T/ebp (thyroid-specific enhancer-binding protein)], a homeodomain gene required for basal forebrain morphogenesis, remains expressed in the hypothalamus after birth, suggesting a role in neuroendocrine function. Here, we show an involvement of TTF1 in the control of mammalian puberty and adult reproductive function. Gene expression profiling of the nonhuman primate hypothalamus revealed that TTF1 expression increases at puberty. Mice in which the Ttf1 gene was ablated from differentiated neurons grew normally and had normal basal ganglia/hypothalamic morphology but exhibited delayed puberty, reduced reproductive capacity, and a short reproductive span. These defects were associated with reduced hypothalamic expression of genes required for sexual development and deregulation of a gene involved in restraining puberty. No extrapyramidal impairments associated with basal ganglia dysfunction were apparent. Thus, although TTF1 appears to fulfill only a morphogenic function in the ventral telencephalon, once this function is satisfied in the hypothalamus, TTF1 remains active as part of the transcriptional machinery controlling female sexual development.
Collapse
Affiliation(s)
- Claudio Mastronardi
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon 97006
| | - Gregory G. Smiley
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon 97006
| | - Jacob Raber
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon 97006
- Departments of Behavioral Neurosciences and Neurology, Oregon Health & Science University, Portland, Oregon 97239
| | - Takashi Kusakabe
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Akio Kawaguchi
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Valerie Matagne
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon 97006
| | - Anja Dietzel
- Hospital for Children and Adolescents, University of Leipzig, 04317 Leipzig, Germany
| | - Sabine Heger
- Hospital for Children and Adolescents, University of Leipzig, 04317 Leipzig, Germany
| | - Alison E. Mungenast
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon 97006
| | - Ricardo Cabrera
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon 97006
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Sergio R. Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon 97006
| |
Collapse
|
47
|
Effects of nerve growth factor (NGF) on blood vessels area and expression of the angiogenic factors VEGF and TGFbeta1 in the rat ovary. Reprod Biol Endocrinol 2006; 4:57. [PMID: 17096853 PMCID: PMC1665630 DOI: 10.1186/1477-7827-4-57] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 11/10/2006] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Angiogenesis is a crucial process in follicular development and luteogenesis. The nerve growth factor (NGF) promotes angiogenesis in various tissues. An impaired production of this neurotrophin has been associated with delayed wound healing. A variety of ovarian functions are regulated by NGF, but its effects on ovarian angiogenesis remain unknown. The aim of this study was to elucidate if NGF modulates 1) the amount of follicular blood vessels and 2) ovarian expression of two angiogenic factors: vascular endothelial growth factor (VEGF) and transforming growth factor beta 1 (TGFbeta1), in the rat ovary. RESULTS In cultured neonatal rat ovaries, NGF increased VEGF mRNA and protein levels, whereas TGFbeta1 expression did not change. Sectioning of the superior ovarian nerve, which increases ovarian NGF protein content, augmented VEGF immunoreactivity and the area of capillary vessels in ovaries of prepubertal rats compared to control ovaries. CONCLUSION Results indicate that NGF may be important in the maintenance of the follicular and luteal vasculature in adult rodents, either indirectly, by increasing the expression of VEGF in the ovary, or directly via promoting the proliferation of vascular cells. This data suggests that a disruption on NGF regulation could be a component in ovarian disorders related with impaired angiogenesis.
Collapse
|
48
|
Luo W, Wiltbank MC. Distinct Regulation by Steroids of Messenger RNAs for FSHR and CYP19A1 in Bovine Granulosa Cells. Biol Reprod 2006; 75:217-25. [PMID: 16641147 DOI: 10.1095/biolreprod.105.047407] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Steroidal regulation of gene expression in follicular cells is not completely defined. Granulosa cells from 5 mm bovine follicles were cultured and treated and steady-state mRNA levels determined for FSHR (follicle-stimulating hormone receptor) and CYP19A1 (aromatase). Cells were treated for 5 days with (0.1-300 ng/ml) 17beta-estradiol (E2), testosterone (T), or 5alpha-dihydrotestosterone (DHT). FSHR mRNA was increased by T and DHT but not E2. In contrast, CYP19A1 mRNA was induced by all doses of E2 but only high doses of T and DHT. Similarly, varying treatment duration (1-5 days) showed that FSHR was increased by T and DHT and CYP19A1 mRNA increased by E2 and T at all times. Synergism between steroid hormones and FSH or forskolin was also evaluated. FSH or E2 did not alter FSHR mRNA and did not enhance DHT stimulation of FSHR mRNA. In contrast, DHT alone had no effect on CYP19A1 mRNA but synergized with FSH plus E2 to increase CYP19A1 mRNA, probably due to induction of FSHR by DHT. Effects of E2 and T on CYP19A1 were blocked by ICI 182,780, indicating mediation by estrogen receptors. However, the specific androgen receptor antagonist bicalutamide did not block E2 or T effects on CYP19A1 but did block T and DHT stimulation of FSHR. Thus, FSHR is specifically regulated through androgen receptor, whereas CYP19A1 is regulated by multiple pathways, including estrogen receptors and cAMP/protein kinase A induced by FSHR activation in granulosa cells. These inter- and intracellular regulatory mechanisms may be critical for normal follicle growth and dominant follicle selection.
Collapse
Affiliation(s)
- Wenxiang Luo
- Endocrinology-Reproductive Physiology Program and Department of Dairy Science, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
49
|
Shi Z, Arai KY, Jin W, Weng Q, Watanabe G, Suzuki AK, Taya K. Expression of Nerve Growth Factor and Its Receptors NTRK1 and TNFRSF1B Is Regulated by Estrogen and Progesterone in the Uteri of Golden Hamsters1. Biol Reprod 2006; 74:850-6. [PMID: 16436532 DOI: 10.1095/biolreprod.105.044917] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Experiments were conducted using female golden hamsters to identify the presence of nerve growth factor (NGF) and its receptors NTRK1 and TNFRSF1B in the uteri of female animals and regulation on their expression by estrogen and progesterone. NGF and its receptor NTRK1 were immunolocalized to luminal epithelial cells, glandular cells, and stromal cells. TNFRSF1B was immunolocalized in luminal epithelial and glandular cells, with no staining found in stromal cells of the uterine horns of normal cyclic golden hamsters. Strong immunostaining of NGF and its receptors NTRK1 and TNFRSF1B was observed in uteri on the day of proestrus as compared to the other stages of the estrous cycle. Results of immunoblot analysis of NGF revealed that there was a positive correlation between uterine NGF expression and plasma concentrations of estradiol-17beta. To clarify the effects of estrogen and progesterone on NGF, NTRK1, and TNFRSF1B expression, adult female golden hamsters were ovariectomized and treated with estradiol-17beta and/or progesterone. Immunoblot analysis and immunohistochemistry indicated that estradiol-17beta stimulated expression of NGF and its two receptors in the uterus. Treatment with progesterone also increased NGF and NTRK1 expression in the uterus. However, no additive effect of these steroids on expression of NGF and its receptors was observed. Changes in uterine weights induced by estradiol-17beta and/or progesterone showed the same profile with that of NGF, suggesting that a proliferative act of NGF may be involved in uterine growth. These results suggest that NGF may play important roles in action of steroids on uterine function.
Collapse
Affiliation(s)
- Zhanquan Shi
- Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Lomniczi A, Cornea A, Costa ME, Ojeda SR. Hypothalamic tumor necrosis factor-alpha converting enzyme mediates excitatory amino acid-dependent neuron-to-glia signaling in the neuroendocrine brain. J Neurosci 2006; 26:51-62. [PMID: 16399672 PMCID: PMC6674310 DOI: 10.1523/jneurosci.2939-05.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glial erbB1 receptors play a significant role in the hypothalamic control of female puberty. Activation of these receptors by transforming growth factor alpha (TGFalpha) results in production of prostaglandin E2, which then stimulates luteinizing hormone releasing hormone (LHRH) neurons to secrete LHRH, the neuropeptide controlling sexual development. Glutamatergic neurons set in motion this glia-to-neuron signaling pathway by transactivating erbB1 receptors via coactivation of AMPA receptors (AMPARs) and metabotropic glutamate receptors (mGluRs). Because the metalloproteinase tumor necrosis factor alpha converting enzyme (TACE) releases TGFalpha from its transmembrane precursor before TGFalpha can bind to erbB1 receptors, we sought to determine whether TACE is required for excitatory amino acids to activate the TGFalpha-erbB1 signaling module in hypothalamic astrocytes, and thus facilitate the advent of puberty. Coactivation of astrocytic AMPARs and mGluRs caused extracellular Ca2+ influx, a Ca2+/protein kinase C-dependent increase in TACE-like activity, and enhanced release of TGFalpha. Within the hypothalamus, TACE is most abundantly expressed in astrocytes of the median eminence (ME), and its enzymatic activity increases selectively in this region at the time of the first preovulatory surge of gonadotropins. ME explants respond to stimulation of AMPARs and mGluRs with LHRH release, and this response is prevented by blocking TACE activity. In vivo inhibition of TACE activity targeted to the ME delayed the age at first ovulation, indicating that ME-specific changes in TACE activity are required for the normal timing of puberty. These results suggest that TACE is a component of the neuron-to-glia signaling process used by glutamatergic neurons to control female sexual development.
Collapse
Affiliation(s)
- Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, Beaverton, Oregon 97006, USA.
| | | | | | | |
Collapse
|