1
|
Dong L, Wu H, Qi F, Xu Y, Chen W, Wang Y, Cai P. Non-coding RNA-mediated granulosa cell dysfunction during ovarian aging: From mechanisms to potential interventions. Noncoding RNA Res 2025; 12:102-115. [PMID: 40144342 PMCID: PMC11938093 DOI: 10.1016/j.ncrna.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
As the earliest aging organ in the reproductive system, the ovary has both reproductive and endocrine functions, which are closely related to overall female health. The exact pathogenesis of ovarian aging (OA) remains incompletely understood, with granulosa cells (GCs) dysfunction playing a significant role in this process. Recent advancements in research and biotechnology have highlighted the importance of non-coding RNAs (ncRNAs), including micro RNAs, long non-coding RNAs, and circular RNAs, in regulating the biological functions of GCs through gene expression modulation. This paper provides a comprehensive overview of the role of ncRNAs in various cellular functions such as apoptosis, autophagy, proliferation, and steroid synthesis in GCs, and explores the underlying regulatory mechanisms. Additionally, the therapeutic potential of ncRNAs, particularly those carried by exosomes derived from mesenchymal stem cells, in delaying OA is discussed. Understanding the regulatory mechanisms of ncRNAs in GC function and the current progress in this field is crucial for identifying effective biomarkers and therapeutic targets, ultimately aiding in the early diagnosis, prognostic assessment, and individualized treatment of OA.
Collapse
Affiliation(s)
- Li Dong
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haicui Wu
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fanghua Qi
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Xu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wen Chen
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuqi Wang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pingping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Tian Y, Pan P, Luo X, Sun Y, Yang X, Gao H, Yang Y. Palmitic acid-induced insulin resistance triggers granulosa cell senescence by disruption of the UPR mt/mitophagy/lysosome axis. Chem Biol Interact 2025; 411:111450. [PMID: 40023272 DOI: 10.1016/j.cbi.2025.111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Insulin resistance (IR) is the main pathological feature of polycystic ovary syndrome (PCOS), but the adverse impacts of IR on ovary and granulosa cells (GCs) are unknown. Therefore, the role of palmitic acid (PA) induced IR in GCs, and a mitochondrial proteostasis and mitochondrial homeostasis control system, the mitochondrial unfolded protein response (UPRmt)/mitophagy/lysosome axis were investigated to uncover the side effect and the mechanism of IR on GCs. Our results revealed that IR in GC was successfully constructed by 100 μM PA treatment accompanied with cell senescence. In addition, mitochondrial function was impaired by IR-induced GC senescence accompanied by significantly increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential, and mitochondrial proteostasis was impaired by a dysfunctional UPRmt and increased protein aggregation, leading to more unfolded and misfolded proteins accumulating in mitochondria. Mitochondrial homeostasis was maintained by the mitophagy/lysosome degradation system, although mitophagy was significantly increased, lysosomes were damaged; hence, malfunctional mitochondria were not cleared by the mitophagy/lysosome degradation system, more ROS were produced by malfunctional mitochondria. Therefore, accelerated GC senescence was triggered by excessive ROS, and reversed by the mitophagy inhibitor cyclosporin A (CsA) accompanied with reduced IR. Additionally, the mice were administered with PA, and results revealed that the accelerated ovarian aging was caused by PA, which might be attributed to GC senescence. In conclusion, GC senescence was triggered in PA-induced IR by disruption of the UPRmt/mitophagy/lysosome axis, and IR induced GC senescence was reversed by the CsA.
Collapse
Affiliation(s)
- Yuan Tian
- General Hospital, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Pengge Pan
- General Hospital, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Xiaoqiang Luo
- Department of Clinical Laboratory, Ningxia Women and Children's Hospital, Beijing University Hospital, Yinchuan, Ningxia, PR China
| | - Yaqi Sun
- General Hospital, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Xintong Yang
- General Hospital, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Hui Gao
- General Hospital, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Yanzhou Yang
- General Hospital, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China; Emergency Department, The First People's Hospital of Yinchuan, The Second Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, PR China.
| |
Collapse
|
3
|
Liang Y, Ou J, Fu J, Wang Y, Li Y, Li J, Yi Y. Smoking, Genetic Susceptibility and Early Menopause: Unveiling Biological Mechanisms and Potential Therapy Targets. BJOG 2025; 132:625-637. [PMID: 39727065 DOI: 10.1111/1471-0528.18052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE To explore the association between smoking, genetic susceptibility and early menopause (EM) and clarify the potential mechanisms underlying this relationship. DESIGN An observational and Transcriptome-wide association analysis (TWAS) study. SETTING UK Biobank and public summary statistics. POPULATION 139 869 women with full baseline and menopause data, and no gynaecological surgery history. METHODS Adjusted modified Poisson regression models were developed to determine the smoking and genetic risk effects on EM. TWAS was used to identify gene expression between smoking and EM, with Mendelian randomisation (MR) to infer causality. Enrichment analysis explored regulatory networks of transcription factors, microRNAs and potential therapeutic targets. Small molecule drugs were predicted using drug-gene interaction analysis. MAIN OUTCOME MEASURES EM prevalence and common gene expression patterns. RESULTS Women with over 30 pack-years of smoking had about 1.5 times higher EM risk, with RRs of 1.39 (95%CI, 1.23-1.56), 1.45 (1.33-1.59) and 1.45 (1.36-1.55) in the low, intermediate and high genetic risk groups. TWAS identified hub genes such as IMMP2L, BMPR2 and HMGN1. MR confirmed daily cigarette consumption as a causal factor in early menopause. Several potential therapeutic targets (e.g., SP600125, INCB18424 and ruxolitinib) were identified. CONCLUSIONS Smoking reduction significantly lowered the risk of EM. Hub genes and therapeutic targets identified provided new avenues for mitigating harmful effects of smoking.
Collapse
Affiliation(s)
- Yuhang Liang
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
- Bioinformatics Center, Furong Laboratory, National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Ou
- Department of Gyneacology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Fu
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, China
| | - Yijing Wang
- Bioinformatics Center, Furong Laboratory, National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yanping Li
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, China
| | - Jinchen Li
- Bioinformatics Center, Furong Laboratory, National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yi
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
- Bioinformatics Center, Furong Laboratory, National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Li Q, Zheng T, Chen J, Li B, Zhang Q, Yang S, Shao J, Guan W, Zhang S. Exploring melatonin's multifaceted role in female reproductive health: From follicular development to lactation and its therapeutic potential in obstetric syndromes. J Adv Res 2025; 70:223-242. [PMID: 38692429 PMCID: PMC11976432 DOI: 10.1016/j.jare.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Melatonin is mainly secreted by the pineal gland during darkness and regulates biological rhythms through its receptors in the suprachiasmatic nucleus of the hypothalamus. In addition, it also plays a role in the reproductive system by affecting the function of the hypothalamic-pituitary-gonadal axis, and by acting as a free radical scavenger thus contributing to the maintenance of the optimal physiological state of the gonads. Besides, melatonin can freely cross the placenta to influence fetal development. However, there is still a lack of overall understanding of the role of melatonin in the reproductive cycle of female mammals. AIM OF REVIEW Here we focus the role of melatonin in female reproduction from follicular development to delivery as well as the relationship between melatonin and lactation. We further summarize the potential role of melatonin in the treatment of preeclampsia, polycystic ovary syndrome, endometriosis, and ovarian aging. KEY SCIENTIFIC CONCEPTS OF REVIEW Understanding the physiological role of melatonin in female reproductive processes will contribute to the advancement of human fertility and reproductive medicine research.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
5
|
Pan P, Cao S, Gao H, Qu X, Ma Y, Yang J, Pei X, Yang Y. Immp2l gene knockout induces granulosa cell senescence by activation of cGAS-STING pathway via TFAM-mediated mtDNA leakage. Int J Biol Macromol 2025; 307:142368. [PMID: 40120895 DOI: 10.1016/j.ijbiomac.2025.142368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/18/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Granulosa cell-produced inflammatory factors may be key contributors to ovarian dysfunction, and Immp2l deficiency accelerates ovarian aging via granulosa cell senescence; however, the role of inflammation in granulosa cell senescence is largely unknown. Therefore, in this study, cGAS-STING-mediated inflammation was explored in Immp2l deficiency-induced granulosa cell senescence. Immp2l deficiency led to senescence-associated secretory phenotype (SASP) and granulosa cell senescence. Immp2l knockout caused mitochondrial dysfunction and mitochondrial DNA (mtDNA) leakage into the cytoplasm. The cytoplasmic mtDNA was recognized by the DNA-sensing molecule cGAS-STING, which activates cGAS-STING and key downstream interferon-stimulated genes (ISGs) and then promotes the secretion of proinflammatory factors, leading to SASP in senescent granulosa cells. Interestingly, the mitochondrial inner membrane pore protein (Cyclophilin D40) CyPD40 and the outer membrane pore protein voltage-dependent-anion channel 1 (VDAC1) were markedly increased in senescent granulosa cells, accompanied by significantly increased expression of the mtDNA stability protein mitochondrial transcription factor A (TFAM). Downregulation of TFAM with siRNA in senescent granulosa cells improved mitochondrial function, significantly decreased mtDNA in the cytoplasm, inhibited the cGAS-STING pathway and markedly decreased CyPD40 and VDAC1 protein levels in TFAM-treated senescent granulosa cells. The SASP phenotype was also alleviated. In addition, senescent granulosa cells were treated with procyanidin B2 (PCB2), which has anti-inflammatory effects, and the TFAM-mediated mtDNA-cGAS-STING pathway was inhibited, accompanied by a markedly reduced SASP phenotype and granulosa cell senescence. In conclusion, Immp2l gene knockout induced granulosa cell senescence by activation of the cGAS-STING pathway via TFAM-mediated mtDNA leakage into the cytoplasm through the CyPD40 and the VDAC1.
Collapse
Affiliation(s)
- Pengge Pan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Sinan Cao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hui Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoya Qu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yan Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Jinyi Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; Emergency Department, The First People's Hospital of Yinchuan, The Second Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
6
|
Xie J, Ma R, Xu X, Yang M, Yu H, Wan X, Xu K, Guo J, Xu P. Identification of genetic association between mitochondrial dysfunction and knee osteoarthritis through integrating multi-omics: a summary data-based Mendelian randomization study. Clin Rheumatol 2024; 43:3487-3496. [PMID: 39259428 PMCID: PMC11489259 DOI: 10.1007/s10067-024-07136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/04/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE Association between mitochondrial dysfunction and osteoarthritis (OA) has been consistently investigated, yet their genetic association remains obscure. In this study, mitochondrial-related genes were used as instrumental variables to proxy for mitochondrial dysfunction, and summary data of knee OA (KOA) were used as outcome to examine their genetic association. METHODS We obtained 1136 mitochondrial-related genes from the human MitoCarta3.0 database. Genetic proxy instruments for mitochondrial-related genes from studies of corresponding gene expression (n = 31,684) and protein (n = 35,559) quantitative trait locus (eQTLs and pQTLs), respectively. Aggregated data for KOA (62,497 KOA cases and 333,557 controls) were extracted from the largest OA genome-wide association study (GWAS). We integrated QTL data with KOA GWAS data to estimate their genetic association using summary data-based Mendelian randomization analysis (SMR). Additionally, we implemented Bayesian colocalization analysis to reveal whether suggestive mitochondrial-related genes and KOA were driven by a same genetic variant. Finally, to validate the primary findings, replication study (24,955 cases and 378,169 controls) and multi-SNP-based SMR (SMR-multi) test was performed. RESULTS Through SMR analysis, we found that the expression levels of 2 mitochondrial-related genes were associated with KOA risk. Specifically, elevated gene expression levels of the IMMP2L (odds ratio [OR] = 1.056; 95% confidence interval [CI] = 1.030-1.082; P-FDR = 0.004) increased the risk of KOA. Conversely, increased gene expression levels of AKAP10 decreased the risk of KOA (OR = 0.955; 95% CI, 0.934-0.977; P-FDR = 0.019). Colocalization analysis demonstrated that AKAP10 (PP.H4 = 0.84) and IMMP2L (PP.H4 = 0.91) shared the same genetic variant with KOA. In addition, consistent results were found in replication study and SMR-multi test, further demonstrating the reliability of our findings. CONCLUSIONS In summary, our analyses revealed the genetic association between mitochondrial dysfunction proxied by mitochondrial-related genes and KOA, providing new insight into potential pathogenesis of KOA. Furthermore, these identified candidate genes offer the possibility of clinical drug target development for KOA. Key points • This is the first SMR study to explore the genetic association between mitochondrial dysfunction proxied by mitochondrial-related genes and KOA. • Sufficient evidence to support genetic association between the expression levels of AKAP10 and IMMP2L, and KOA • Our MR analysis may provide novel new insight into potential pathogenesis of KOA. • These identified candidate genes offer the possibility of clinical drug target development for KOA.
Collapse
Affiliation(s)
- Jiale Xie
- Department of Joint Surgery, HongHui Hospital, Xian Jiaotong University, Xian, Shaanxi, China
| | - Rui Ma
- Department of Joint Surgery, HongHui Hospital, Xian Jiaotong University, Xian, Shaanxi, China
| | - Xin Xu
- Department of Joint Surgery, HongHui Hospital, Xian Jiaotong University, Xian, Shaanxi, China
| | - Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xian Jiaotong University, Xian, Shaanxi, China
| | - Hui Yu
- Department of Joint Surgery, HongHui Hospital, Xian Jiaotong University, Xian, Shaanxi, China
| | - Xianjie Wan
- Department of Joint Surgery, HongHui Hospital, Xian Jiaotong University, Xian, Shaanxi, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xian Jiaotong University, Xian, Shaanxi, China
| | - Junfei Guo
- Department of Joint Surgery, HongHui Hospital, Xian Jiaotong University, Xian, Shaanxi, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xian Jiaotong University, Xian, Shaanxi, China.
| |
Collapse
|
7
|
Qu X, Pan P, Cao S, Ma Y, Yang J, Gao H, Pei X, Yang Y. Immp2l Deficiency Induced Granulosa Cell Senescence Through STAT1/ATF4 Mediated UPR mt and STAT1/(ATF4)/HIF1α/BNIP3 Mediated Mitophagy: Prevented by Enocyanin. Int J Mol Sci 2024; 25:11122. [PMID: 39456903 PMCID: PMC11508440 DOI: 10.3390/ijms252011122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Dysfunctional mitochondria producing excessive ROS are the main factors that cause ovarian aging. Immp2l deficiency causes mitochondrial dysfunction and excessive ROS production, leading to ovarian aging, which is attributed to granulosa cell senescence. The pathway controlling mitochondrial proteostasis and mitochondrial homeostasis of the UPRmt and mitophagy are closely related with the ROS and cell senescence. Our results suggest that Immp2l knockout led to granulosa cell senescence, and enocyanin treatment alleviated Immp2l deficiency-induced granulosa cell senescence, which was accompanied by improvements in mitochondrial function and reduced ROS levels. Interestingly, redox-related protein modifications, including S-glutathionylation and S-nitrosylation, were markedly increased in Immp2l-knockout granulosa cells, and were markedly reduced by enocyanin treatment. Furthermore, STAT1 was significantly increased in Immp2l-knockout granulosa cells and reduced by enocyanin treatment. The co-IP results suggest that the expression of STAT1 was controlled by S-glutathionylation and S-nitrosylation, but not phosphorylation. The UPRmt was impaired in Immp2l-deficient granulosa cells, and unfolded and misfolded proteins aggregated in mitochondria. Then, the HIF1α/BNIP3-mediated mitophagy pathway was activated, but mitophagy was impaired due to the reduced fusion of mitophagosomes and lysosomes. The excessive aggregation of mitochondria increased ROS production, leading to senescence. Hence, Enocyanin treatment alleviated granulosa cell senescence through STAT1/ATF4-mediated UPRmt and STAT1/(ATF4)/HIF1α/BNIP3-mediated mitophagy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuying Pei
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (X.Q.); (P.P.); (S.C.); (Y.M.); (J.Y.); (H.G.)
| | - Yanzhou Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (X.Q.); (P.P.); (S.C.); (Y.M.); (J.Y.); (H.G.)
| |
Collapse
|
8
|
Yahyavi Y, Kheradi N, Karimi A, Ebrahimi-Kalan A, Ramezani F, Yousefi S, Teymouri Nobari S, Sadrekarimi H, Nouri M, Edalati M. Novel Advances in Cell-Free Therapy for Premature Ovarian Failure (POF): A Comprehensive Review. Adv Pharm Bull 2024; 14:543-557. [PMID: 39494249 PMCID: PMC11530876 DOI: 10.34172/apb.2024.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/23/2024] [Accepted: 07/30/2024] [Indexed: 11/05/2024] Open
Abstract
Premature ovarian failure (POF), is a condition characterized by the early decline of ovulation function. POF is a complex disorder that can be caused by various factors, and the idiopathic form represents a significant proportion of POF patients. Hormone replacement therapy (HRT) is currently considered the first-line treatment for POF. This review aims to provide a comprehensive overview of recent advancements in platelet-rich plasma (PRP), in vitro activation (IVA), stem cell therapy, exosome therapy, microRNAs, and mitochondrial targeting therapies as a promising cell-free therapeutic approach in reproductive medicine. PLT-Exos, a new generation of cells, has been used to treat POF for more than a decade and has been shown to attenuate oocyte morphology and promote the differentiation of theca cells through the upregulation of PI3K/Akt and Bcl2, as well as the downregulation of the Smad and Bax signaling pathways. This review summarizes the current state of the art in the field of PLT-Exos and discusses the advantages and limitations of their potential clinical applications.
Collapse
Affiliation(s)
- Yahya Yahyavi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Kheradi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudabe Yousefi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Teymouri Nobari
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hourieh Sadrekarimi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Science, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Wang ZH, Wang ZJ, Liu HC, Wang CY, Wang YQ, Yue Y, Zhao C, Wang G, Wan JP. Targeting mitochondria for ovarian aging: new insights into mechanisms and therapeutic potential. Front Endocrinol (Lausanne) 2024; 15:1417007. [PMID: 38952389 PMCID: PMC11215021 DOI: 10.3389/fendo.2024.1417007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Ovarian aging is a complex process characterized by a decline in oocyte quantity and quality, directly impacting fertility and overall well-being. Recent researches have identified mitochondria as pivotal players in the aging of ovaries, influencing various hallmarks and pathways governing this intricate process. In this review, we discuss the multifaceted role of mitochondria in determining ovarian fate, and outline the pivotal mechanisms through which mitochondria contribute to ovarian aging. Specifically, we emphasize the potential of targeting mitochondrial dysfunction through innovative therapeutic approaches, including antioxidants, metabolic improvement, biogenesis promotion, mitophagy enhancement, mitochondrial transfer, and traditional Chinese medicine. These strategies hold promise as effective means to mitigate age-related fertility decline and preserve ovarian health. Drawing insights from advanced researches in the field, this review provides a deeper understanding of the intricate interplay between mitochondrial function and ovarian aging, offering valuable perspectives for the development of novel therapeutic interventions aimed at preserving fertility and enhancing overall reproductive health.
Collapse
Affiliation(s)
- Zi-Han Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen-Jing Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China
| | - Huai-Chao Liu
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chen-Yu Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu-Qi Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yang Yue
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chen Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guoyun Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ji-Peng Wan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
10
|
Liu C, Wang C, Liu Y, Huang J, Xu W, Li J, Wang Y, Xu Y, Zhu L, Xu H. Selenium nanoparticles/carboxymethyl chitosan/alginate antioxidant hydrogel for treating steroid-induced osteonecrosis of the femoral head. Int J Pharm 2024; 653:123929. [PMID: 38387817 DOI: 10.1016/j.ijpharm.2024.123929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/21/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Oxidative stress plays a crucial role in steroid-induced osteonecrosis of the femoral head (SONFH). Although several antioxidant strategies have been investigated for treating SONFH, their antioxidant efficiencies and therapeutic effects remain unsatisfactory. Here, we developed a selenium nanoparticles/carboxymethyl chitosan/alginate (SeNPs/CMC/Alg) antioxidant hydrogel and evaluated its ability to treat SONFH. In vitro assays indicated that the SeNPs/CMC/Alg hydrogel exhibited excellent properties, such as low cytotoxicity, sustained SeNPs release, and favorable antioxidant activity. Under oxidative stress, the SeNPs/CMC/Alg hydrogel promoted reactive oxygen species (ROS) elimination and enhanced the osteogenic and proangiogenic abilities of bone marrow mesenchymal stem cells (BMSCs). After establishing a rabbit model of SONFH, the SeNPs/CMC/Alg hydrogel was transplanted into the femoral head after core decompression (CD) surgery. Radiographic and histological analyses revealed that the hydrogel treatment alleviated SONFH by eliminating ROS and promoting osteogenesis and angiogenesis compared to those in the CD and CMC/Alg groups. In vitro and in vivo studies indicated that the Wnt/β-catenin signaling pathway was activated by the SeNPs/CMC/Alg hydrogel in both hydrogen peroxide-conditioned BMSCs and necrotic femoral heads. These findings indicate that local transplantation of the SeNPs/CMC/Alg hydrogel is beneficial for treating SONFH, as it promotes ROS elimination and activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Chun Liu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chengqiang Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yang Liu
- Department of Emergency Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| | - Jiahui Huang
- Department of Joint and Orthopedics, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenning Xu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianjun Li
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yihan Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yizhou Xu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Haixia Xu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
11
|
Yao Y, Liu Y, Xu Q, Mao L. Short Chain Fatty Acids: Essential Weapons of Traditional Medicine in Treating Inflammatory Bowel Disease. Molecules 2024; 29:379. [PMID: 38257292 PMCID: PMC10818876 DOI: 10.3390/molecules29020379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent intestinal inflammatory disease, mainly including Crohn's disease (CD) and ulcerative colitis (UC). In recent years, the incidence and prevalence of IBD have been on the rise worldwide and have become a significant concern of health and a huge economic burden on patients. The occurrence and development of IBD involve a variety of pathogenic factors. The changes in short-chain fatty acids (SCFAs) are considered to be an important pathogenic mechanism of this disease. SCFAs are important metabolites in the intestinal microbial environment, which are closely involved in regulating immune, anti-tumor, and anti-inflammatory activities. Changes in metabolite levels can reflect the homeostasis of the intestinal microflora. Recent studies have shown that SCFAs provide energy for host cells and intestinal microflora, shape the intestinal environment, and regulate the immune system, thereby regulating intestinal physiology. SCFAs can effectively reduce the incidence of enteritis, cardiovascular disease, colon cancer, obesity, and diabetes, and also play an important role in maintaining the balance of energy metabolism (mainly glucose metabolism) and improving insulin tolerance. In recent years, many studies have shown that numerous decoctions and natural compounds of traditional Chinese medicine have shown promising therapeutic activities in multiple animal models of colitis and thus attracted increasing attention from scientists in the study of IBD treatment. Some of these traditional Chinese medicines or compounds can effectively alleviate colonic inflammation and clinical symptoms by regulating the generation of SCFAs. This study reviews the effects of various traditional Chinese medicines or bioactive substances on the production of SCFAs and their potential impacts on the severity of colonic inflammation. On this basis, we discussed the mechanism of SCFAs in regulating IBD-associated inflammation, as well as the related regulatory factors and signaling pathways. In addition, we provide our understanding of the limitations of current research and the prospects for future studies on the development of new IBD therapies by targeting SCFAs. This review may widen our understanding of the effect of traditional medicine from the view of SCFAs and their role in alleviating IBD animal models, thus contributing to the studies of IBD researchers.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.Y.); (Y.L.)
| | - Yongchao Liu
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.Y.); (Y.L.)
| | - Qiuyun Xu
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.Y.); (Y.L.)
| |
Collapse
|
12
|
Lawther AJ, Zieba J, Fang Z, Furlong TM, Conn I, Govindaraju H, Choong LLY, Turner N, Siddiqui KS, Bridge W, Merlin S, Hyams TC, Killingsworth M, Eapen V, Clarke RA, Walker AK. Antioxidant Behavioural Phenotype in the Immp2l Gene Knock-Out Mouse. Genes (Basel) 2023; 14:1717. [PMID: 37761857 PMCID: PMC10531238 DOI: 10.3390/genes14091717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondrial dysfunction is strongly associated with autism spectrum disorder (ASD) and the Inner mitochondrial membrane protein 2-like (IMMP2L) gene is linked to autism inheritance. However, the biological basis of this linkage is unknown notwithstanding independent reports of oxidative stress in association with both IMMP2L and ASD. To better understand IMMP2L's association with behaviour, we developed the Immp2lKD knockout (KO) mouse model which is devoid of Immp2l peptidase activity. Immp2lKD -/- KO mice do not display any of the core behavioural symptoms of ASD, albeit homozygous Immp2lKD -/- KO mice do display increased auditory stimulus-driven instrumental behaviour and increased amphetamine-induced locomotion. Due to reports of increased ROS and oxidative stress phenotypes in an earlier truncated Immp2l mouse model resulting from an intragenic deletion within Immp2l, we tested whether high doses of the synthetic mitochondrial targeted antioxidant (MitoQ) could reverse or moderate the behavioural changes in Immp2lKD -/- KO mice. To our surprise, we observed that ROS levels were not increased but significantly lowered in our new Immp2lKD -/- KO mice and that these mice had no oxidative stress-associated phenotypes and were fully fertile with no age-related ataxia or neurodegeneration as ascertained using electron microscopy. Furthermore, the antioxidant MitoQ had no effect on the increased amphetamine-induced locomotion of these mice. Together, these findings indicate that the behavioural changes in Immp2lKD -/- KO mice are associated with an antioxidant-like phenotype with lowered and not increased levels of ROS and no oxidative stress-related phenotypes. This suggested that treatments with antioxidants are unlikely to be effective in treating behaviours directly resulting from the loss of Immp2l/IMMP2L activity, while any behavioural deficits that maybe associated with IMMP2L intragenic deletion-associated truncations have yet to be determined.
Collapse
Affiliation(s)
- Adam J. Lawther
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Jerzy Zieba
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Department of Psychology, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Zhiming Fang
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
| | - Teri M. Furlong
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Illya Conn
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Hemna Govindaraju
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Laura L. Y. Choong
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Khawar Sohail Siddiqui
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wallace Bridge
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sam Merlin
- Medical Science, School of Science, Western Sydney University, Campbelltown, Sydney, NSW 2751, Australia
| | - Tzipi Cohen Hyams
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
| | - Murray Killingsworth
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- NSW Health Pathology, Liverpool Hospital Campus, 1 Campbell Street, Liverpool, NSW 2107, Australia
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Raymond A. Clarke
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Adam K. Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
13
|
Deng J, Tang Y, Li L, Huang R, Wang Z, Ye T, Xiao Z, Hu M, Wei S, Wang Y, Yang Y, Huang Y. miR-143-3p Promotes Ovarian Granulosa Cell Senescence and Inhibits Estradiol Synthesis by Targeting UBE2E3 and LHCGR. Int J Mol Sci 2023; 24:12560. [PMID: 37628741 PMCID: PMC10454865 DOI: 10.3390/ijms241612560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
The ovary is a highly susceptible organ to senescence, and granulosa cells (GCs) have a crucial role in oocyte development promotion and overall ovarian function maintenance. As age advances, GCs apoptosis and dysfunction escalate, leading to ovarian aging. However, the molecular mechanisms underpinning ovarian aging remain poorly understood. In this study, we observed a correlation between the age-related decline of fertility and elevated expression levels of miR-143-3p in female mice. Moreover, miR-143-3p was highly expressed in senescent ovarian GCs. The overexpression of miR-143-3p in GCs not only hindered their proliferation and induced senescence-associated secretory phenotype (SASP) but also impeded steroid hormone synthesis by targeting ubiquitin-conjugating enzyme E2 E3 (Ube2e3) and luteinizing hormone and human chorionic gonadotropin receptor (Lhcgr). These findings suggest that miR-143-3p plays a substantial role in senescence and steroid hormone synthesis in GCs, indicating its potential as a therapeutic target for interventions in the ovarian aging process.
Collapse
Affiliation(s)
- Jingxian Deng
- Department of Pharmacology, Jinan University, Guangzhou 510632, China;
| | - Yan Tang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
| | - Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
| | - Tao Ye
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
| | - Ziyan Xiao
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
| | - Meirong Hu
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
| | - Siying Wei
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
| | - Yuxin Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yadong Huang
- Department of Pharmacology, Jinan University, Guangzhou 510632, China;
- Department of Cell Biology, Jinan University, Guangzhou 510632, China (L.L.); (R.H.); (Z.W.); (T.Y.); (Z.X.); (M.H.); (S.W.); (Y.W.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| |
Collapse
|
14
|
Gao Y, Zou Y, Wu G, Zheng L. Oxidative stress and mitochondrial dysfunction of granulosa cells in polycystic ovarian syndrome. Front Med (Lausanne) 2023; 10:1193749. [PMID: 37448805 PMCID: PMC10336225 DOI: 10.3389/fmed.2023.1193749] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is one of the leading causes of anovulatory infertility in women, affecting 5%-15% of women of reproductive age worldwide. The clinical manifestations of patients include ovulation disorders, amenorrhea, hirsutism, and obesity. Life-threatening diseases, such as endometrial cancer, type 2 diabetes, hyperlipidaemia, hypertension, and cardiovascular disease, can be distant complications of PCOS. PCOS has diverse etiologies and oxidative stress (OS) plays an important role. Mitochondria, as the core organelles of energy production, are the main source of reactive oxygen species (ROS). The process of follicular growth and development is extremely complex, and the granulosa cells (GCs) are inextricably linked to follicular development. The abnormal function of GCs may directly affect follicular development and alter many symptoms of PCOS. Significantly higher levels of OS markers and abnormal mitochondrial function in GCs have been found in patients with PCOS compared to healthy subjects, suggesting that increased OS is associated with PCOS progression. Therefore, the aim of this review was to summarize and discuss the findings suggesting that OS and mitochondrial dysfunction in GCs impair ovarian function and induce PCOS.
Collapse
|
15
|
Chen J, Wang Y, Meng W, Zhao R, Lin W, Xiao H, Liao Y. Stearoyl-CoA Desaturases1 Accelerates Non-Small Cell Lung Cancer Metastasis by Promoting Aromatase Expression to Improve Estrogen Synthesis. Int J Mol Sci 2023; 24:ijms24076826. [PMID: 37047797 PMCID: PMC10095487 DOI: 10.3390/ijms24076826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
Metastases contribute to the low survival rate of non-small cell lung cancer (NSCLC) patients. Targeting lipid metabolism for anticancer therapies is attractive. Accumulative evidence shows that stearoyl-CoA desaturases1 (SCD1), a key enzyme in lipid metabolism, enables tumor metastasis and the underlying mechanism remains unknown. In this study, immunohistochemical staining of 96 clinical specimens showed that the expression of SCD1 was increased in tumor tissues (p < 0.001). SCD1 knockdown reduced the migration and invasion of HCC827 and PC9 cells in transwell and wound healing assays. Aromatase (CYP19A1) knockdown eliminated cell migration and invasion caused by SCD1 overexpression. Western blotting assays demonstrated that CYP19A1, along with β-catenin protein levels, was reduced in SCD1 knocked-down cells, and estrogen concentration was reduced (p < 0.05) in cell culture medium measured by enzyme-linked immunosorbent assay. SCD1 overexpression preserving β-catenin protein stability was evaluated by coimmunoprecipitation and Western blotting. The SCD1 inhibitor A939572, and a potential SCD1 inhibitor, grape seed extract (GSE), significantly inhibited cell migration and invasion by blocking SCD1 and its downstream β-catenin, CYP19A1 expression, and estrogen concentration. In vivo tumor formation assay and a tail vein metastasis model indicated that knockdown of SCD1 blocked tumor growth and metastasis. In conclusion, SCD1 could accelerate metastasis by maintaining the protein stability of β-catenin and then promoting CYP19A1 transcription to improve estrogen synthesis. SCD1 is expected to be a promised therapeutic target, and its novel inhibitor, GSE, has great therapeutic potential in NSCLC.
Collapse
Affiliation(s)
- Jiaping Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wangyang Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Lin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Han Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
16
|
Ma J, Wang J, Hu S, Li Y, Zhang Y, Yang Y, Yang C, Huo S, Yang Y, Zhaxi Y, Luo W. Effects of melatonin on development and hormone secretion of sheep theca cells in vitro. Theriogenology 2023; 198:172-182. [PMID: 36592515 DOI: 10.1016/j.theriogenology.2022.12.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Theca cells (TCs) play a unique role in the structure and function of the ovary. They are not only the structural basis of the follicle but also the androgen-secreting cells in female mammals, which can affect the normal development and atresia of the follicle. The results showed that melatonin receptor (MTR) MT1 and MT2 were expressed on sheep TCs. In the present study, the effects of different concentrations of MT at 0, 10-10, 10-8, 10-6 and 10-4 M/L on sheep TCs with regards to the antioxidant levels, proliferation, apoptosis and steroid hormone secretion were investigated. The results showed that in sheep TCs, all concentrations of MT significantly decreased reactive oxygen species (ROS) concentration and BAX expression; increased Cat, Sod1, and BCL-2 expression. The proliferation viability of TCs was significantly inhibited in all groups except for 10-10 M/L MT, and the expression of cyclin D1 and CDK4 was significantly reduced. MT significantly increased StAR expression and progesterone secretion in TCs, but there was no significant effect on androgen secretion and CYP11A1, CYP17A1 and 3β-HSD expression in all groups. MT-induced progesterone secretion was completely inhibited by Luzindole (a nonspecific MT1 and MT2 inhibitor) and partially inhibited by 4p-PDOT (specific MT2 inhibitor). MT-induced progesterone secretion can be inhibited by LY294002 (PI3K/AKT pathway inhibitor). This study indicated that MT inhibits apoptosis and proliferation of in vitro cultured sheep TCs, which has implications for slowing ovarian atresia and aging. MT activates the PI3K/Akt pathway to mediate the synthesis and secretion of progesterone by TCs. This study provides a basis for further exploration of the role of TCs on follicle development and ovarian steroid hormone secretion.
Collapse
Affiliation(s)
- Junyuan Ma
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Jine Wang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Songming Hu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Yang Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Yaxin Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Yahua Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Chongfa Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Shengdong Huo
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China.
| | - Yanmei Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Yingpai Zhaxi
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, 730030, China
| | - Wenxue Luo
- Tianzhu County Animal Husbandry Technology Extension Station, Wuwei, Gansu, 733200, China
| |
Collapse
|
17
|
Huang C, Deng W, Xu HZ, Zhou C, Zhang F, Chen J, Bao Q, Zhou X, Liu M, Li J, Liu C. Short-chain fatty acids reprogram metabolic profiles with the induction of reactive oxygen species production in human colorectal adenocarcinoma cells. Comput Struct Biotechnol J 2023; 21:1606-1620. [PMID: 36874158 PMCID: PMC9975252 DOI: 10.1016/j.csbj.2023.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Short-chain fatty acids (SCFAs) exhibit anticancer activity in cellular and animal models of colon cancer. Acetate, propionate, and butyrate are the three major SCFAs produced from dietary fiber by gut microbiota fermentation and have beneficial effects on human health. Most previous studies on the antitumor mechanisms of SCFAs have focused on specific metabolites or genes involved in antitumor pathways, such as reactive oxygen species (ROS) biosynthesis. In this study, we performed a systematic and unbiased analysis of the effects of acetate, propionate, and butyrate on ROS levels and metabolic and transcriptomic signatures at physiological concentrations in human colorectal adenocarcinoma cells. We observed significantly elevated levels of ROS in the treated cells. Furthermore, significantly regulated signatures were involved in overlapping pathways at metabolic and transcriptomic levels, including ROS response and metabolism, fatty acid transport and metabolism, glucose response and metabolism, mitochondrial transport and respiratory chain complex, one-carbon metabolism, amino acid transport and metabolism, and glutaminolysis, which are directly or indirectly linked to ROS production. Additionally, metabolic and transcriptomic regulation occurred in a SCFAs types-dependent manner, with an increasing degree from acetate to propionate and then to butyrate. This study provides a comprehensive analysis of how SCFAs induce ROS production and modulate metabolic and transcriptomic levels in colon cancer cells, which is vital for understanding the mechanisms of the effects of SCFAs on antitumor activity in colon cancer.
Collapse
Key Words
- 1H–13C HMBC, 1H–13C Heteronuclear Multiple Bond Correlation Spectroscopy
- 1H–13C HSQC, 1H–13C Heteronuclear Single Quantum Coherence Spectroscopy
- 1H–1H COSY, 1H–1H Correlation Spectroscopy
- 1H–1H TOCSY, 1H–1H Total Correlation Spectroscopy
- ADP, Adenosine diphosphate
- AMP, Adenosine monophosphate
- ATP, Adenosine triphosphate
- Ace, Acetate
- Ach, Acetylcholine
- Ala, Alanine
- CRC, Colorectal Cancer
- Caco-2, Human Colon Adenocarcinoma
- Cho, Choline
- CoA, Coenzyme A
- Cre, Creatine
- DCFH-DA, Dichloro-Dihydro-Fluorescein Diacetate
- DEGs, Differentially Expressed Genes
- DMEM, Dulbecco's Modified Eagle Medium
- DMG, Dimethylglycine
- DNA, Deoxyribonucleic Acid
- EP, Eppendorf
- FA, Formate
- FDR, False Discovery Rate
- Fru, Fructose
- Fum, Fumaric acid
- GLS, Glutaminase
- GSEA, Gene Set Enrichment Analysis
- GSH, Glutathione
- Gal-1-P, Galactose-1-phosphate
- Glc, Glucose
- Gln, Glutamine
- Glu, Glutamate
- Gly, Glycine
- HCT116, Human Colorectal Carcinoma Cell Line
- HEK, Human Embryonic Kidney cells
- HT29, Human Colorectal Adenocarcinoma Cell Line with Epithelial Morphology
- His, Histidine
- Ile, Isoleucine
- J-Res, J-resolved Spectroscopy
- LDH, Lactate Dehydrogenase
- Lac, Lactate
- Leu, Leucine
- Lys, Lysine
- MCF-7, Human Breast Cancer Cell Line with Estrogen
- MCT, Monocarboxylate Transporters
- Met, Methionine
- MetS, Metabolic Syndrome
- Mitochondrial function
- NAD+, Nicotinamide adenine dinucleotide
- NAG, N-Acetyl-L-Glutamine
- NMR, Nuclear Magnetic Resonance
- NMR-based Metabolomics
- NOESY, Nuclear Overhauser Effect Spectroscopy
- O-PLS-DA, Orthogonal Projection to the Latent Structures Discriminant Analysis
- PA, Pantothenate
- PC, Phosphocholine
- PCA, Principal Component Analysis
- PDC, Pyruvate Decarboxylase
- PDK, Pyruvate Dehydrogenase Kinase
- PKC, Protein Kinase C
- PPP, Pentose Phosphate Pathway
- Phe, Phenylalanine
- Pyr, Pyruvate
- RNA, Ribonucleic Acid
- ROS, Reactive Oxygen Species
- RPKM, Reads per Kilobase of Transcript per Million Reads Mapped
- Reactive oxygen species
- SCFAs, Short Chain Fatty Acids
- SLC, Solute-Carrier Genes
- Short-chain fatty acids
- Suc, Succinate
- T2DM, Type 2 Diabetes
- TCA, Tricarboxylic Acid
- Tau, Taurine
- Thr, Threonine
- Transcriptomics
- Tyr, Tyrosine
- UDP, Uridine 5′-diphosphate
- UDP-GLC, UDP Glucose
- UDPG, UDP Glucuronate
- UDPGs, UDP Glucose and UDP Glucuronate
- UMP, Uridine 5′-monophosphate
- Val, Valine
- WST-1, Water-Soluble Tetrazolium salts
- dDNP, dissolution Dynamic Nuclear Polarization
- qRT-PCR, Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction
- α-KIV, α-Keto-isovalerate
- α-KMV, α-keto-β-methyl-valerate
Collapse
Affiliation(s)
- Chongyang Huang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Wenjun Deng
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Huan-zhou Xu
- Department of Pediatrics, Division of Infectious Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Chen Zhou
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Fan Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Junfei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Qinjia Bao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Jing Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaoyang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
18
|
Li H, Jing Y, Qu X, Yang J, Pan P, Liu X, Gao H, Pei X, Zhang C, Yang Y. The Activation of Reticulophagy by ER Stress through the ATF4-MAP1LC3A-CCPG1 Pathway in Ovarian Granulosa Cells Is Linked to Apoptosis and Necroptosis. Int J Mol Sci 2023; 24:2749. [PMID: 36769070 PMCID: PMC9917250 DOI: 10.3390/ijms24032749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Female infertility is caused by premature ovarian failure (POF), which is triggered by the endoplasmic reticulum (ER) stress-mediated apoptosis of granulosa cells. The ER unfolded protein response (UPRer) is initiated to promote cell survival by alleviating excessive ER stress, but cellular apoptosis is induced by persistent or strong ER stress. Recent studies have reported that reticulophagy is initiated by ER stress. Whether reticulophagy is activated in the ER stress-mediated apoptosis of granulosa cells and which pathway is initiated to activate reticulophagy during the apoptosis of granulosa cells are unknown. Therefore, the role of reticulophagy in granulosa cell death and the relationship between ER stress and reticulophagy were investigated in this work. Our results suggest that the ER stress inducer tunicamycin causes POF in mice, which is attributed to the apoptosis of granulosa cells and is accompanied by the activation of UPRer and reticulophagy. Furthermore, granulosa cells were treated with tunicamycin, and granulosa cell apoptosis was triggered and increased the expression of UPRer and reticulophagy molecules. The expression of ATF4 was then downregulated by RNAi, which decreased the levels of autophagy and the reticulophagy receptor CCGP1. Furthermore, ATF4 targets MAP1LC3A, as revealed by the ChIP sequencing results, and co-IP results demonstrated that MAP1LC3A interacts with CCPG1. Therefore, reticulophagy was activated by ER stress through the ATF4-MAP1LC3A-CCPG1 pathway to mitigate ER stress. Additionally, the role of reticulophagy in granulosa cells was investigated by the knockdown of CCPG1 with RNAi. Interestingly, only a small number of granulosa cells died by apoptosis, whereas the death of most granulosa cells occurred by necroptosis triggered by STAT1 and STAT3 to impair ER proteostasis and the ER protein quality control system UPRer. Taken together, the results indicate that the necroptosis of granulosa cells is triggered by up- and downregulating the reticulophagy receptor CCPG1 through STAT1/STAT3-(p)RIPK1-(p)RIPK3-(p)MLKL and that reticulophagy is activated by ER stress through the ATF4-MAP1LC3A-CCPG1 pathway.
Collapse
Affiliation(s)
- Huiduo Li
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Yanan Jing
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoya Qu
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Jinyi Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Pengge Pan
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Xinrui Liu
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Hui Gao
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Cheng Zhang
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
19
|
Stem Cell-Based Therapeutic Strategies for Premature Ovarian Insufficiency and Infertility: A Focus on Aging. Cells 2022; 11:cells11233713. [PMID: 36496972 PMCID: PMC9738202 DOI: 10.3390/cells11233713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Reproductive aging is on the rise globally and inseparable from the entire aging process. An extreme form of reproductive aging is premature ovarian insufficiency (POI), which to date has mostly been of idiopathic etiology, thus hampering further clinical applications and associated with enormous socioeconomic and personal costs. In the field of reproduction, the important functional role of inflammation-induced ovarian deterioration and therapeutic strategies to prevent ovarian aging and increase its function are current research hotspots. This review discusses the general pathophysiology and relative causes of POI and comprehensively describes the association between the aging features of POI and infertility. Next, various preclinical studies of stem cell therapies with potential for POI treatment and their molecular mechanisms are described, with particular emphasis on the use of human induced pluripotent stem cell (hiPSC) technology in the current scenario. Finally, the progress made in the development of hiPSC technology as a POI research tool for engineering more mature and functional organoids suitable as an alternative therapy to restore infertility provides new insights into therapeutic vulnerability, and perspectives on this exciting research on stem cells and the derived exosomes towards more effective POI diagnosis and treatment are also discussed.
Collapse
|
20
|
Tian Y, Liu X, Pei X, Gao H, Pan P, Yang Y. Mechanism of Mitochondrial Homeostasis Controlling Ovarian Physiology. Endocrinology 2022; 164:6828017. [PMID: 36378567 DOI: 10.1210/endocr/bqac189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Indexed: 11/17/2022]
Abstract
Ovarian cells, including oocytes, granulosa/cumulus cells, theca cells, and stromal cells, contain abundant mitochondria, which play indispensable roles in the processes of ovarian follicle development. Ovarian function is closely controlled by mitochondrial proteostasis and mitostasis. While mitochondrial proteostasis and mitostasis are disturbed by several factors, leading to dysfunction of ovarian function and initiating the mitochondrial unfolded protein response (UPRmt) and mitophagy to maintain or recover ovarian function and mitochondrial function, clear interactions between the 2 pathways in the ovary have not been fully elucidated. Here, we comprehensively summarize the molecular networks or regulatory mechanisms behind further mitochondrial research in the ovary. This review provides novel insights into the interactions between the UPRmt and mitophagy in ovarian functions.
Collapse
Affiliation(s)
- Yuan Tian
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xinrui Liu
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hui Gao
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Pengge Pan
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yanzhou Yang
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
21
|
Lin N, Lin J, Plosch T, Sun P, Zhou X. An Oxidative Stress-Related Gene Signature in Granulosa Cells Is Associated with Ovarian Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1070968. [PMID: 36466095 PMCID: PMC9713466 DOI: 10.1155/2022/1070968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Ovarian aging is associated with a decrease in fecundity. Increased oxidative stress of granulosa cells (GCs) is an important contributor. We thus asked whether there is an oxidative stress-related gene signature in GCs associated with ovarian aging. Public nonhuman primate (NHP) single-cell transcriptome was processed to identify GC cluster. Then, a GC signature for ovarian aging was established based on six oxidative stress-related differentially expressed genes (MAPK1, STK24, AREG, ATG7, ANXA1, and PON2). Receiver operating characteristic (ROC) analysis confirmed good discriminating capacity in both NHP single-cell and human bulk transcriptome datasets. Gene expression levels were investigated using qPCR in the human ovarian granulosa-like tumor cell line (KGN) and mouse GCs. In an oxidative stress model, KGN cells were treated with menadione (7.5 μM, 24 h) to induce oxidative stress, after which upregulation of MAPK1, STK24, ATG7, ANXA1, and PON2 and downregulation of AREG were observed (p < 0.05). In an aging model, KGN cells were continuously cultured for 3 months, leading to increased expressions of all genes (p < 0.05). In GCs of reproductively aged (8-month-old) Kunming mice, upregulated expression of Mapk1, Stk24, Atg7, and Pon2 and downregulated expression of Anxa1 and Areg were observed (p < 0.01). We therefore here identify a six-gene GC signature associated with oxidative stress and ovarian aging.
Collapse
Affiliation(s)
- Nuan Lin
- Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, Netherlands
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jiazhe Lin
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Torsten Plosch
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, Netherlands
| | - Pingnan Sun
- Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Zhou
- Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
22
|
Ma S, Li P, Liu H, Xi Y, Xu Q, Qi J, Wang J, Li L, Wang J, Hu J, He H, Han C, Bai L. Genome-wide association analysis of the primary feather growth traits of duck: identification of potential Loci for growth regulation. Poult Sci 2022; 102:102243. [PMID: 36334470 PMCID: PMC9636485 DOI: 10.1016/j.psj.2022.102243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
The feather is an important epidermal appendage, plays an important role in the life activities of avian specie, and has important economic value. Revealing the molecular regulation mechanism of feather growth has a significant meaning in studying adaptive evolution, physiology, and mating of avian species and also provides a theoretical reference for poultry breeding. In this study, the genome-wide association analysis (GWAS) of 358 ducks was based on primary feather length phenotypic data (28-60 d), length growth rates (LGRs), and maturity scores (60 d) to explore the genetic basis affecting feather growth and maturation. The results showed that, among the primary feather 1 to 5 in ducks, the mean LGR of primary feather 2 was the fastest, with the longest length. The primary feathers in males grew and matured slightly faster than in females. The mean maturity scores of primary feather 10∼7 were higher than primary feather 1 to 3 in ducks. GWAS further showed 116 SNPs associated with feather length traits. In addition, 2 candidate regions (Chr1: 127,407,230-127,524,879 bp and Chr21: 182,061,707-183,616,298 bp) were associated with LGR, which contain total 13 candidate genes (The extremely significant SNPs were mainly located in 2 genes: Chr1: REPS2 and Chr21: PTPRT). Four candidate regions (Chr1: 29,113,036-28,675,018 bp, Chr2: 18,253,612-149,111,290 bp, Chr15: 6,489,774 to 12,138,221 bp and Chr21: 6,578,021-8,472,904 bp) were associated with feather maturity, which contain total 24 candidate genes (The extremely significant SNPs were mainly located in 4 genes: Chr1: IMMP2L, DOCK4 and DDX10, Chr2: LDLRAD4). In conclusion, sex factors influence feather growth and maturity, and the genetic basis of the growth /maturity trait between different feathers is similar. REPS2, PTPRT genes, and IMMP2L, DOCK4, DDX10, and LDLRAD4 are important candidate genes that influence feather growth and maturity, respectively.
Collapse
Affiliation(s)
- Shengchao Ma
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China,College of Animal Science, Xinjiang Agricultural University, P. R. China
| | - Pengcheng Li
- Berry Genomics Corporation, Beijing 100015, P. R. China
| | - Hehe Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China,Corresponding author:
| | - Yang Xi
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Qian Xu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Jingjing Qi
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Jianmei Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Liang Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Jiwen Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Jiwei Hu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Hua He
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Chunchun Han
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Lili Bai
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| |
Collapse
|
23
|
Yuzko VO, Yuzko OM, Yuzko TA, Pryimak SH, Voloshynovych NS, Chobaniuk SI. Comparative characteristics of infertile women when applying melatonin in complex preparation for assisted reproductive technologies. J Med Life 2022; 15:1013-1017. [PMID: 36188647 PMCID: PMC9514810 DOI: 10.25122/jml-2022-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/10/2022] [Indexed: 11/21/2022] Open
Abstract
A retrospective analysis of medical records of infertile patients using assisted reproductive technologies and melatonin was performed. 76 infertile women were examined. Group 1 included 33 patients who received 3 mg of melatonin two weeks before and during ovulation induction, and group 2 included 43 patients who did not take melatonin. The average age of patients in the groups did not differ. The data of gynecological and ultrasound examinations, structure and thickness of the endometrium, antral follicle count, hormone levels: anti-mullerian, follicle-stimulating, luteinizing, progesterone, estradiol, prolactin, thyrotropin, and thyroxine were evaluated. The primary infertility incidence was significantly higher in all examined patients. Patients in the first group tended to decrease ovarian reserve, recurrent loss, and unexplained infertility; in the second group, more endometriosis, tubal and male infertility factors were observed. The incidence of extragenital pathology in the examined patients did not differ as well as antral follicle count and the thickness of the endometrium. We also did not find any significant difference in the level of hormones in the blood of the examined women, except that patients taking melatonin had significantly higher levels of lutropin but lower levels of the anti-mullerian hormone in the blood.
Collapse
Affiliation(s)
- Viktoria Olexandrivna Yuzko
- Department of Obstetrics and Gynecology, Bukovynian State Medical University, Chernivtsi, Ukraine,Medical Center of Infertility Treatment, Chernivtsi, Ukraine,Corresponding Author: Viktoria Olexandrivna Yuzko, Department of Obstetrics and Gynecology, Bukovynian State Medical University, Medical Center of Infertility Treatment, Chernivtsi, Ukraine. E-mail:
| | - Olexandr Mykhailovych Yuzko
- Department of Obstetrics and Gynecology, Bukovynian State Medical University, Chernivtsi, Ukraine,Medical Center of Infertility Treatment, Chernivtsi, Ukraine
| | | | | | | | | |
Collapse
|
24
|
Khalkhali-Evrigh R, Hedayat N, Ming L, Jirimutu. Identification of selection signatures in Iranian dromedary and Bactrian camels using whole genome sequencing data. Sci Rep 2022; 12:9653. [PMID: 35688969 PMCID: PMC9187634 DOI: 10.1038/s41598-022-14376-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
The Old World camels play an important role as one of the main food sources in large parts of Asia and Africa. Natural selection combined with artificial selection by human has affected parts of the domestic animal genome for adapting them to their habitats and meeting human needs. Here, we used whole genome sequencing data of 34 camels (including 14 dromedaries and 20 Bactrian camels) to identify the genomic signature of selection in the Iranian dromedary (ID) and Bactrian camels (IB). To detect the mentioned regions, we used two methods including population differentiation index (Fst) and cross-population extended haplotype homozygosity (XP-EHH) with 50 kb sliding window and 25 kb step size. Based on gene ontology analysis on the candidate genes identified for IB camels, we found GO terms associated with lung development, nervous system development, immune system and behavior. Also, we identified several genes related to body thermoregulation (ZNF516), meat quality (ANK1 and HSPA13), and high-altitude adaptation (OPA1) for IB camels. In the list of detected candidate genes under selection in ID camels, the genes related to energy metabolism (BDH1), reproduction (DLG1, IMMP2L and FRASI), long-term memory (GRIA1), kidney (SLC12A1), lung development (EMILIN2 and FBN1) and immunity (SOCS2, JAK1, NRROS and SENP1) were found. Our findings, along with further studies in this field, will strengthen our knowledge about the effect of selection on the camelid genome under different geographical, climatic and even cultural conditions.
Collapse
Affiliation(s)
- Reza Khalkhali-Evrigh
- Department of Animal Science, Faculty of Agriculture and Natural Recourses, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Nemat Hedayat
- Department of Animal Science, Faculty of Agriculture and Natural Recourses, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Liang Ming
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, China
| | - Jirimutu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, China
| |
Collapse
|
25
|
Bu Q, Liu S, Wang Z, Zou J, Wang P, Cao H, Li D, Cao B, An X, Song Y, Li G. PITX2 regulates steroidogenesis in granulosa cells of dairy goat by the WNT/β-catenin pathway. Gen Comp Endocrinol 2022; 321-322:114027. [PMID: 35300988 DOI: 10.1016/j.ygcen.2022.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/04/2022]
Abstract
Paired-like homeodomain transcription factor 2 (PITX2), a major driver of multiple tissue development, is a transcription factor that regulates gene expression in organisms. However, it is unknown if PITX2 regulates goat granulosa cell (GC) steroidogenesis. Therefore, we investigated the role and mechanism of PITX2 in GC steroidogenesis. In our study, PITX2 significantly facilitated the secretion level of estrogen and progesterone through increasing CYP11A1, CYP19A1, and STAR mRNA and protein expressions in GCs. Furthermore, PITX2 participated in the WNT pathway, enhancing the production of E2 and P4 in GCs. PITX2 in GCs increased the DVL-1 and CTNNB1 expression, involved in the WNT/β-catenin signaling pathway related to steroidogenesis. Moreover, GC steroidogenesis-related gene translation was decreased by CTNNB1-siRNA but enhanced when transfected with PITX2. PITX2 regulates secretion of E2 and P4 from GCs via the WNT/β-catenin pathway and alters GC proliferation and steroidogenesis. These findings will help understand the role of PITX2 in goat ovarian follicular development and oocyte maturation.
Collapse
Affiliation(s)
- Qiqi Bu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhanhang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiahao Zou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Peijie Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dexian Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Guang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
26
|
Yang K, Cao F, Qiu S, Jiang W, Tao L, Zhu Y. Metformin Promotes Differentiation and Attenuates H 2O 2-Induced Oxidative Damage of Osteoblasts via the PI3K/AKT/Nrf2/HO-1 Pathway. Front Pharmacol 2022; 13:829830. [PMID: 35387349 PMCID: PMC8978328 DOI: 10.3389/fphar.2022.829830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022] Open
Abstract
At present, the drug treatment of osteoporosis is mostly focused on inhibiting osteoclastogenesis, which has relatively poor effects. Metformin is a drug that can potentially promote osteogenic differentiation and improve bone mass in postmenopausal women. We aimed to detect the molecular mechanism underlying the osteogenic effect of metformin. Our study indicated that metformin obviously increased the Alkaline phosphatase activity and expression of osteogenic marker genes at the mRNA and protein levels. The PI3K/AKT signaling pathway was revealed to play an essential role in the metformin-induced osteogenic process, as shown by RNA sequencing. We added LY294002 to inhibit the PI3K/AKT pathway, and the results indicated that the osteogenic effect of metformin was also blocked. Additionally, the sequencing data also indicated oxidation-reduction reaction was involved in the osteogenic process of osteoblasts. We used H2O2 to mimic the oxidative damage of osteoblasts, but metformin could attenuate it. Antioxidative Nrf2/HO-1 pathway, regarded as the downstream of PI3K/AKT pathway, was modulated by metformin in the protective process. We also revealed that metformin could improve bone mass and oxidative level of OVX mice. In conclusion, our study revealed that metformin promoted osteogenic differentiation and H2O2-induced oxidative damage of osteoblasts via the PI3K/AKT/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Fangming Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Shui Qiu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Wen Jiang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Huang QY, Chen SR, Chen JM, Shi QY, Lin S. Therapeutic options for premature ovarian insufficiency: an updated review. Reprod Biol Endocrinol 2022; 20:28. [PMID: 35120535 PMCID: PMC8815154 DOI: 10.1186/s12958-022-00892-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/15/2022] [Indexed: 11/16/2022] Open
Abstract
Primary ovarian insufficiency (POI) is a rare gynecological condition. This disease causes menstrual disturbances, infertility, and various health problems. Historically, hormone replacement therapy is the first-line treatment for this disorder. Women diagnosed with POI are left with limited therapeutic options. In order to remedy this situation, a new generation of therapeutic approaches, such as in vitro activation, mitochondrial activation technique, stem cell and exosomes therapy, biomaterials strategies, and platelet-rich plasma intra-ovarian infusion, is being developed. However, these emerging therapies are yet in the experimental stage and require precise design components to accelerate their conversion into clinical treatments. Thus, each medical practitioner bears responsibility for selecting suitable therapies for individual patients. In this article, we provide a timely analysis of the therapeutic strategies that are available for POI patients and discuss the prospects of POI therapy.
Collapse
Affiliation(s)
- Qiao-Yi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shao-Rong Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Jia-Ming Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Qi-Yang Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| |
Collapse
|
28
|
Applications of Melatonin in Female Reproduction in the Context of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6668365. [PMID: 34367465 PMCID: PMC8342146 DOI: 10.1155/2021/6668365] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Oxidative stress has been recognized as one of the causal mediators of female infertility by affecting the oocyte quality and early embryo development. Improving oxidative stress is essential for reproductive health. Melatonin, a self-secreted antioxidant, has a wide range of effects by improving mitochondrial function and reducing the damage of reactive oxygen species (ROS). This minireview illustrates the applications of melatonin in reproduction from four aspects: physiological ovarian aging, vitrification freezing, in vitro maturation (IVM), and oxidative stress homeostasis imbalance associated with polycystic ovary syndrome (PCOS), emphasising the role of melatonin in improving the quality of oocytes in assisted reproduction and other adverse conditions.
Collapse
|
29
|
Sun F. Commentary on "The Immp2l Mutation Causes Ovarian Aging Through ROS-Wnt/β-Catenin-Estrogen Pathway: Preventive Effect of Melatonin". Endocrinology 2020; 161:5939335. [PMID: 33099618 DOI: 10.1210/endocr/bqaa197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|