1
|
Montastier É, Ye RZ, Noll C, Amrani M, Frisch F, Fortin M, Bouffard L, Phoenix S, Sarrhini O, Cunnane SC, Guérin B, Turcotte EE, Carpentier AC. Nicotinic acid increases adipose tissue dietary fatty acid trapping and reduces postprandial hepatic and cardiac fatty acid uptake in prediabetes. Eur J Pharmacol 2025; 998:177563. [PMID: 40157702 DOI: 10.1016/j.ejphar.2025.177563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Increased adipose tissue (AT) dietary fatty acids (DFA) trapping limits fatty acid exposure to lean organs in the face of elevated postprandial nonesterified fatty acid (NEFA) flux from excess AT intracellular lipolysis in prediabetes. We hypothesized that pharmacological inhibition of postprandial AT intracellular lipolysis using short-acting nicotinic acid (NA) would increase AT DFA trapping and limit AT NEFA spillover to lean organs in subjects with prediabetes. Twenty subjects with impaired glucose tolerance and 19 individuals with normal glucose tolerance underwent four postprandial studies with positron emission tomography/computed tomography with radio-labeled fatty acid tracers and stable isotopic palmitate tracers. Over the 6-h postprandial period, NA increased AT DFA partitioning with reciprocal reduction in liver and in muscle. NA also robustly reduced cardiac and liver total (DFA + NEFA) postprandial fatty acid uptake. Short-acting NA administered postprandially thus enhances AT DFA trapping and markedly reduces postprandial hepatic and cardiac fatty acid uptake. (clinicaltrials.gov NCT02808182).
Collapse
Affiliation(s)
- Émilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mehdi Amrani
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mélanie Fortin
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - Otman Sarrhini
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - Eric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada.
| |
Collapse
|
2
|
Ezeh U, Chen YI, Pall M, Buyalos RP, Chan JL, Pisarska MD, Azziz R. Alterations in nonesterified free fatty acid trafficking rather than hyperandrogenism contribute to metabolic health in obese women with polycystic ovary syndrome. Fertil Steril 2024; 121:1040-1052. [PMID: 38307453 DOI: 10.1016/j.fertnstert.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
OBJECTIVE To determine whether alterations in nonesterified fatty acid (NEFA) dynamics or degree of hyperandrogenism (HA) contribute to the difference in insulin sensitivity between women with metabolically healthy obese polycystic ovary syndrome (PCOS) (MHO-PCOS) and women with metabolically unhealthy obese PCOS (MUO-PCOS). DESIGN Prospective cross-sectional study. SETTING Tertiary-care academic center. PATIENTS One hundred twenty-five obese women with PCOS. INTERVENTION Consecutive obese (body mass index [BMI] ≥ 30 kg/m2) oligo-ovulatory women (n = 125) with PCOS underwent an oral glucose tolerance test and a subgroup of 16 participants underwent a modified frequently sampled intravenous glucose tolerance test to determine insulin-glucose and -NEFA dynamics. MAIN OUTCOME MEASURES Degree of insulin resistance (IR) in adipose tissue (AT) basally (Adipo-IR) and dynamically (the nadir in NEFA levels observed [NEFAnadir], the time it took for NEFA levels to reach nadir [TIMEnadir], and the percent suppression in plasma NEFA levels from baseline to nadir [%NEFAsupp]); peak lipolysis rate (SNEFA) and peak rate of NEFA disposal from plasma pool (KNEFA); whole-body insulin-glucose interaction (acute response of insulin to glucose [AIRg], insulin sensitivity index [Si], glucose effectiveness [Sg], and disposition index [Di]); and HA (hirsutism score, total and free testosterone levels, and dehydroepiandrosterone sulfate levels). RESULTS A total of 85 (68%) women were MUO-PCOS and 40 (32%) were MHO-PCOS using the homeostasis model of assessment of IR. Subjects with MUO-PCOS and MHO-PCOS did not differ in mean age, BMI, waist-to-hip ratio, HA, and lipoprotein levels. By a modified frequently sampled intravenous glucose tolerance test, eight women with MUO-PCOS had lesser Si, KNEFA, and the percent suppression in plasma NEFA levels from baseline to nadir (%NEFAsupp) and greater TIMEnadir, NEFAnadir, and baseline adipose tissue IR index (Adipo-IR) than eight subjects with MHO-PCOS, but similar fasting NEFA levels and SNEFA. Women with MUO-PCOS had a higher homeostasis model of assessment-β% and fasting insulin levels than women with MHO-PCOS. In bivalent analysis, Si correlated strongly and negatively with Adipo-IR and NEFAnadir, weakly and negatively with TIMEnadir, and positively with KNEFA and %NEFAsupp, in women with MUO-PCOS only. CONCLUSION Independent of age and BMI, women with MUO-PCOS have reduced NEFA uptake and altered insulin-mediated NEFA suppression, but no difference in HA, compared with women with MHO-PCOS. Altered insulin-mediated NEFA suppression, rather than HA or lipolysis rate, contributes to variations in insulin sensitivity among obese women with PCOS.
Collapse
Affiliation(s)
- Uche Ezeh
- California IVF Fertility Center, Sacramento, California; Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama; Department of Obstetrics and Gynecology, Alta Bates Summit Medical Center (Sutter), Berkeley, California
| | - Yd Ida Chen
- Department of Pediatrics and Medicine, Harbor- University of California (UCLA) Medical Center, Torrance, California; Department of Medicine, The David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Marita Pall
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Richard P Buyalos
- Fertility and Surgical Associates of California, Thousand Oaks, California
| | - Jessica L Chan
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Margareta D Pisarska
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, UCLA, Los Angeles, California
| | - Ricardo Azziz
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama; Department of Medicine, Heersink School of Medicine, UAB, Birmingham, Alabama; Department of Healthcare Organization and Policy, School of Public Health, UAB, Birmingham, Alabama; Department of Health Policy, Management and Behavior, School of Public Health, State University of New York at Albany, Albany, New York.
| |
Collapse
|
3
|
Ye RZ, Montastier E, Frisch F, Noll C, Allard-Chamard H, Gévry N, Tchernof A, Carpentier AC. Adipocyte hypertrophy associates with in vivo postprandial fatty acid metabolism and adipose single-cell transcriptional dynamics. iScience 2024; 27:108692. [PMID: 38226167 PMCID: PMC10788217 DOI: 10.1016/j.isci.2023.108692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
Adipocyte hypertrophy is associated with metabolic complications independent of obesity. We aimed to determine: 1) the association between adipocyte size and postprandial fatty acid metabolism; 2) the potential mechanisms driving the obesity-independent, hypertrophy-associated dysmetabolism in vivo and at a single-cell resolution. Tracers with positron emission tomography were used to measure fatty acid metabolism in 40 men and women with normal or impaired glucose tolerance (NCT02808182), and single nuclei RNA-sequencing (snRNA-seq) to determine transcriptional dynamics of subcutaneous adipose tissue (AT) between individuals with AT hypertrophy vs. hyperplasia matched for sex, ethnicity, glucose-tolerance status, BMI, total and percent body fat, and waist circumference. Adipocyte size was associated with high postprandial total cardiac fatty acid uptake and higher visceral AT dietary fatty acid uptake, but lower lean tissue dietary fatty acid uptake. We found major shifts in cell transcriptomal dynamics with AT hypertrophy that were consistent with in vivo metabolic changes.
Collapse
Affiliation(s)
- Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Emilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Hugues Allard-Chamard
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Nicolas Gévry
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - André Tchernof
- Québec Heart and Lung Research Institute, Laval University, Québec, QC G1V 4G5, Canada
| | - André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
4
|
Dagdeviren S, Hoang MF, Sarikhani M, Meier V, Benoit JC, Okawa MC, Melnik VY, Ricci-Blair EM, Foot N, Friedline RH, Hu X, Tauer LA, Srinivasan A, Prigozhin MB, Shenoy SK, Kumar S, Kim JK, Lee RT. An insulin-regulated arrestin domain protein controls hepatic glucagon action. J Biol Chem 2023; 299:105045. [PMID: 37451484 PMCID: PMC10413355 DOI: 10.1016/j.jbc.2023.105045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Glucagon signaling is essential for maintaining normoglycemia in mammals. The arrestin fold superfamily of proteins controls the trafficking, turnover, and signaling of transmembrane receptors as well as other intracellular signaling functions. Further investigation is needed to understand the in vivo functions of the arrestin domain-containing 4 (ARRDC4) protein family member and whether it is involved in mammalian glucose metabolism. Here, we show that mice with a global deletion of the ARRDC4 protein have impaired glucagon responses and gluconeogenesis at a systemic and molecular level. Mice lacking ARRDC4 exhibited lower glucose levels after fasting and could not suppress gluconeogenesis at the refed state. We also show that ARRDC4 coimmunoprecipitates with the glucagon receptor, and ARRDC4 expression is suppressed by insulin. These results define ARRDC4 as a critical regulator of glucagon signaling and glucose homeostasis and reveal a novel intersection of insulin and glucagon pathways in the liver.
Collapse
Affiliation(s)
- Sezin Dagdeviren
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Megan F Hoang
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Mohsen Sarikhani
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Vanessa Meier
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jake C Benoit
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Marinna C Okawa
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Veronika Y Melnik
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Elisabeth M Ricci-Blair
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Natalie Foot
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Randall H Friedline
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Xiaodi Hu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lauren A Tauer
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Arvind Srinivasan
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Maxim B Prigozhin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Sudha K Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
5
|
Littlejohn PT, Bar-Yoseph H, Edwards K, Li H, Ramirez-Contreras CY, Holani R, Metcalfe-Roach A, Fan YM, Yang TMS, Radisavljevic N, Hu X, Johnson JD, Finlay BB. Multiple micronutrient deficiencies alter energy metabolism in host and gut microbiome in an early-life murine model. Front Nutr 2023; 10:1151670. [PMID: 37497061 PMCID: PMC10365968 DOI: 10.3389/fnut.2023.1151670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction Micronutrients perform a wide range of physiological functions essential for growth and development. However, most people still need to meet the estimated average requirement worldwide. Globally, 2 billion people suffer from micronutrient deficiency, most of which are co-occurring deficiencies in children under age five. Despite decades of research, animal models studying multiple micronutrient deficiencies within the early-life period are lacking, which hinders our complete understanding of the long-term health implications and may contribute to the inefficacy of some nutritional interventions. Evidence supporting the Developmental Origins of Health and Disease (DOHaD) theory demonstrates that early-life nutritional deficiencies carry life-long consequences mediated through various mechanisms such as abnormal metabolic programming, stunting, altered body composition, and the gut microbiome. However, this is largely unexplored in the multiple micronutrient deficient host. Methods we developed a preclinical model to examine undernutrition's metabolic and functional impact on the host and gut microbiome early in life. Three-week-old weanling C57BL/6N male mice were fed a low-micronutrient diet deficient in zinc, folate, iron, vitamin A, and vitamin B12 or a control diet for 4-weeks. Results Our results showed that early-life multiple micronutrient deficiencies induced stunting, altered body composition, impaired glucose and insulin tolerance, and altered the levels of other micronutrients not depleted in the diet within the host. In addition, functional metagenomics profiling and a carbohydrate fermentation assay showed an increased microbial preference for simple sugars rather than complex ones, suggestive of a less developed microbiome in the low-micronutrient-fed mice. Moreover, we found that a zinc-only deficient diet was not sufficient to induce these phenotypes, further supporting the importance of studying co-occurring deficiencies. Discussion Together, these findings highlight a previously unappreciated role of early-life multiple micronutrient deficiencies in shaping the metabolic phenome of the host and gut microbiome through altered glucose energy metabolism, which may have implications for metabolic disease later in life in micronutrient-deficient survivors.
Collapse
Affiliation(s)
- Paula T. Littlejohn
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Haggai Bar-Yoseph
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Karlie Edwards
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Hong Li
- Life Sciences Institute and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Ravi Holani
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Avril Metcalfe-Roach
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Yiyun M. Fan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Tom Min-Shih Yang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Nina Radisavljevic
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Xiaoke Hu
- Life Sciences Institute and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - James D. Johnson
- Life Sciences Institute and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Li X, Zheng K, Gu W, Hou X, Guan Y, Liu L, Hou L, Geng J, Song G. Serum Fibroblast Growth Factor 21 Level After an Oral Fat Tolerance Test is Related to Postprandial Free Fatty Acid Level. Diabetes Metab Syndr Obes 2023; 16:1567-1576. [PMID: 37283621 PMCID: PMC10241254 DOI: 10.2147/dmso.s410457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Purpose The relationship between blood lipids and fibroblast growth factor (FGF) 21 in the postprandial period remains unclear. To investigate this, we observed the changes in blood lipid levels after an oral fat tolerance test (OFTT) and examined the short-term effects on FGF21. Patients and Methods A total of 158 non-diabetic adult volunteers who underwent OFTT were randomly recruited from the Hebei General Hospital. Participants were stratified into three groups according to fasting and 4-h postprandial triglyceride levels: normal fat tolerance (NFT), impaired fat tolerance (IFT), and hypertriglyceridemia (HTG). Blood samples were collected at 2-h intervals for 6 h. Circulating total cholesterol levels, triglycerides, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, free fatty acids (FFA), and FGF21 were assessed. Results Fasting FGF21 levels increased progressively in the NFT, IFT, and HTG groups and were strongly correlated with FFA levels (r = 0.531, P < 0.001). During the OFTT, the FFA and FGF21 levels decreased and then increased after reaching a nadir at 2 and 4 h, respectively. After adjusting for potential risk factors, the FFA incremental area under the curve (iAUC) was an independent influencing factor of FGF21 iAUC (P = 0.005). Conclusion Fasting FGF21 levels showed a strong positive correlation with FFA. During OFTT, changes in FGF21 levels were closely associated with alterations in FFA exogenously changed by OFTT. Moreover, they were linearly related to each other. Therefore, the serum FGF21 level is positively correlated to the FFA level in the postprandial period.
Collapse
Affiliation(s)
- Xiaolong Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Kunjie Zheng
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Wei Gu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Xiaoyu Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Yunpeng Guan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Lifang Liu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Baoding First Central Hospital, Baoding, Hebei, People’s Republic of China
| | - Liping Hou
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
| | - Jianlin Geng
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
7
|
Ye RZ, Montastier É, Noll C, Frisch F, Fortin M, Bouffard L, Phoenix S, Guérin B, Turcotte ÉE, Carpentier AC. Total Postprandial Hepatic Nonesterified and Dietary Fatty Acid Uptake Is Increased and Insufficiently Curbed by Adipose Tissue Fatty Acid Trapping in Prediabetes With Overweight. Diabetes 2022; 71:1891-1901. [PMID: 35748318 PMCID: PMC9862339 DOI: 10.2337/db21-1097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/14/2022] [Indexed: 02/05/2023]
Abstract
Excessive lean tissue uptake of fatty acids (FAs) is important in the development of insulin resistance and may be caused by impaired dietary FA (DFA) storage and/or increased nonesterified FA (NEFA) flux from adipose tissue intracellular lipolysis. Cardiac and hepatic total postprandial FA uptake of NEFA+DFA has, however, never been reported in prediabetes with overweight. In this study, 20 individuals with impaired glucose tolerance (IGT) and 19 participants with normal glucose tolerance (NGT) and normal fasting glucose underwent postprandial studies with whole-body positron emission tomography/computed tomography (PET/CT) with oral [18F]fluoro-thia-heptadecanoic acid and dynamic PET/CT with intravenous [11C]palmitate. Hepatic (97 [range 36-215] mmol/6 h vs. 68 [23-132] mmol/6 h, P = 0.03) but not cardiac (11 [range 4-24] mmol/6 h vs. 8 [3-20] mmol/6 h, P = 0.09) uptake of most sources of postprandial FA (NEFA + DFA uptake) integrated over 6 h was higher in IGT versus NGT. DFA accounted for lower fractions of total cardiac (21% [5-47] vs. 25% [9-39], P = 0.08) and hepatic (19% [6-52] vs. 28% [14-50], P = 0.04) uptake in IGT versus NGT. Increased adipose tissue DFA trapping predicted lower hepatic DFA uptake and was associated with higher total cardiac FA uptake. Hence, enhanced adipose tissue DFA trapping in the face of increased postprandial NEFA flux is insufficient to fully curb increased postprandial lean organ FA uptake in prediabetes with overweight (ClinicalTrials.gov; NCT02808182).
Collapse
Affiliation(s)
- Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Émilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mélanie Fortin
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Éric E. Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Corresponding author: André C. Carpentier,
| |
Collapse
|
8
|
Sun H, Chang X, Bian N, An Y, Liu J, Leng S, Wang G. Adipose Tissue Insulin Resistance Is Positively Associated With Serum Uric Acid Levels and Hyperuricemia in Northern Chinese Adults. Front Endocrinol (Lausanne) 2022; 13:835154. [PMID: 35757425 PMCID: PMC9226335 DOI: 10.3389/fendo.2022.835154] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/04/2022] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Adipose tissue plays a crucial role in serum uric acid (UA) metabolism, but the relative contribution of adipose tissue insulin resistance (IR) to serum UA levels and hyperuricemia have not explicitly been illustrated. Herein, we aimed to investigate the association between the adipose tissue insulin resistance index (Adipo-IR) and hyperuricemia in this cross-sectional study. The homeostasis model assessment of insulin resistance (HOMA-IR) index, another widely applied marker to determine systemic IR, was also explored. METHODS A total of 5821 adults were included in this study. The relationship between Adipo-IR or HOMA-IR and serum UA levels was assessed by multivariate linear regression. Binary logistic regression analyses were applied to determine the sex-specific association of the Adipo-IR tertiles and HOMA-IR tertiles with hyperuricemia. Participants were then divided into normal BMI (18.5 ≤ BMI < 24) and elevated BMI (BMI ≥ 24) groups for further analysis. RESULTS Both Adipo-IR and HOMA-IR were positively correlated with serum UA (P < 0.001). Compared with the lowest tertile, the risks of hyperuricemia increased across Adipo-IR tertiles (middle tertile: OR 1.52, 95%CI 1.24-1.88; highest tertile: OR 2.10, 95%CI 1.67-2.63) in men after full adjustment (P for trend < 0.001). In women, only the highest tertile (OR 2.09, 95%CI 1.52-2.87) was significantly associated with hyperuricemia. Those associations remained significant in participants with normal BMI status. As for HOMA-IR, only the highest tertile showed positive relationships with hyperuricemia in both genders after full adjustment (P for trend < 0.001). The association between HOMA-IR and hyperuricemia disappeared in men with normal BMI status. CONCLUSIONS Adipo-IR was strongly associated with serum UA and hyperuricemia regardless of BMI classification. In men with normal BMI, Adipo-IR, rather than HOMA-IR, was closely associated with hyperuricemia. Altogether, our finding highlights a critical role of adipose tissue IR on serum UA metabolism and hyperuricemia.
Collapse
Affiliation(s)
- Honglin Sun
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Xiaona Chang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Nannan Bian
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yu An
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Song Leng
- Health Management Center, The Second Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Guang Wang, ; Song Leng,
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Guang Wang, ; Song Leng,
| |
Collapse
|
9
|
de Wit-Verheggen VHW, van de Weijer T. Changes in Cardiac Metabolism in Prediabetes. Biomolecules 2021; 11:1680. [PMID: 34827678 PMCID: PMC8615987 DOI: 10.3390/biom11111680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/05/2023] Open
Abstract
In type 2 diabetes mellitus (T2DM), there is an increased prevalence of cardiovascular disease (CVD), even when corrected for atherosclerosis and other CVD risk factors. Diastolic dysfunction is one of the early changes in cardiac function that precedes the onset of cardiac failure, and it occurs already in the prediabetic state. It is clear that these changes are closely linked to alterations in cardiac metabolism; however, the exact etiology is unknown. In this narrative review, we provide an overview of the early cardiac changes in fatty acid and glucose metabolism in prediabetes and its consequences on cardiac function. A better understanding of the relationship between metabolism, mitochondrial function, and cardiac function will lead to insights into the etiology of the declined cardiac function in prediabetes.
Collapse
Affiliation(s)
- Vera H. W. de Wit-Verheggen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
| | - Tineke van de Weijer
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
10
|
Carpentier AC. 100 th anniversary of the discovery of insulin perspective: insulin and adipose tissue fatty acid metabolism. Am J Physiol Endocrinol Metab 2021; 320:E653-E670. [PMID: 33522398 DOI: 10.1152/ajpendo.00620.2020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin inhibits systemic nonesterified fatty acid (NEFA) flux to a greater degree than glucose or any other metabolite. This remarkable effect is mainly due to insulin-mediated inhibition of intracellular triglyceride (TG) lipolysis in adipose tissues and is essential to prevent diabetic ketoacidosis, but also to limit the potential lipotoxic effects of NEFA in lean tissues that contribute to the development of diabetes complications. Insulin also regulates adipose tissue fatty acid esterification, glycerol and TG synthesis, lipogenesis, and possibly oxidation, contributing to the trapping of dietary fatty acids in the postprandial state. Excess NEFA flux at a given insulin level has been used to define in vivo adipose tissue insulin resistance. Adipose tissue insulin resistance defined in this fashion has been associated with several dysmetabolic features and complications of diabetes, but the mechanistic significance of this concept is not fully understood. This review focusses on the in vivo regulation of adipose tissue fatty acid metabolism by insulin and the mechanistic significance of the current definition of adipose tissue insulin resistance. One hundred years after the discovery of insulin and despite decades of investigations, much is still to be understood about the multifaceted in vivo actions of this hormone on adipose tissue fatty acid metabolism.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
11
|
Noll C, Montastier É, Amrani M, Kunach M, Frisch F, Fortin M, Bouffard L, Dubreuil S, Phoenix S, Cunnane SC, Guérin B, Turcotte EE, Laville M, Carpentier AC. Seven-day overfeeding enhances adipose tissue dietary fatty acid storage and decreases myocardial and skeletal muscle dietary fatty acid partitioning in healthy subjects. Am J Physiol Endocrinol Metab 2020; 318:E286-E296. [PMID: 31891539 DOI: 10.1152/ajpendo.00474.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Increased myocardial partitioning of dietary fatty acids (DFA) and decreased left ventricular (LV) function is associated with insulin resistance in prediabetes. We hypothesized that enhanced myocardial DFA partitioning and reduced LV function might be induced concomitantly with reduced insulin sensitivity upon a 7-day hypercaloric (+50% in caloric intake), high-saturated fat (~11%energy), and simple carbohydrates (~54%energy) diet (HIGHCAL) versus an isocaloric diet (ISOCAL) with a moderate amount of saturated fat (~8%energy) and carbohydrates (~50%energy). Thirteen healthy subjects (7 men/6 women) underwent HIGHCAL versus ISOCAL in a randomized crossover design, with organ-specific DFA partitioning and LV function measured using the oral 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid and [11C]acetate positron emission tomography methods at the end of both interventions. HIGHCAL induced a decrease in insulin sensitivity indexes with no significant change in body composition. HIGHCAL led to increased subcutaneous abdominal (+4.2 ± 1.6%, P < 0.04) and thigh (+2.4 ± 1.2%, P < 0.08) adipose tissue storage and reduced cardiac (-0.31 ± 0.11 mean standard uptake value [(SUV), P < 0.03] and skeletal muscle (-0.17 ± 0.08 SUV, P < 0.05) DFA partitioning without change in LV function. We conclude that early increase in adipose tissue DFA storage protects the heart and skeletal muscles from potential deleterious effects of DFA.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Émilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mehdi Amrani
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Margaret Kunach
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mélanie Fortin
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stéphanie Dubreuil
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Martine Laville
- Department of Endocrinology, Diabetology and Nutrition, Groupement Hospitalier Lyon Sud, Fédération Hospitalo-Universitaire DO-IT, Hospices Civils de Lyon, Pierre Bénite, France
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
12
|
Wang Y, Meng X, Deng X, Okekunle AP, Wang P, Zhang Q, Ding L, Guo X, Lv M, Sun C, Li Y. Postprandial Saturated Fatty Acids Increase the Risk of Type 2 Diabetes: A Cohort Study in a Chinese Population. J Clin Endocrinol Metab 2018; 103:1438-1446. [PMID: 29409024 DOI: 10.1210/jc.2017-01904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/26/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Experimental evidence suggests saturated fatty acids (SFAs) are associated with insulin resistance, but results from epidemiological studies on fasting SFAs-diabetes risk are inconsistent. OBJECTIVE We investigated SFA (fasting and 2-hour postprandial) profiles and diabetes risk. DESIGN SETTING A total of 8940 participants were recruited for the Harbin People's Health Study in 2008. Serum SFAs (fasting and 2-hour postprandial) at baseline in Chinese men and women without diabetes were profiled, and type 2 diabetes was ascertained using World Health Organization criteria after 4 to 7 years of follow-up. OUTCOME Associations between 2-hour postprandial SFA (2h-SFA) and diabetes. RESULTS At baseline, incident cases of diabetes were older with a higher body mass index and waist circumference. After a mean follow-up of 6.7 years, 658 incident cases of diabetes occurred. After propensity score computation and inverse probability of treatment weighting (IPTW) estimation, fasting SFAs were unrelated to diabetes risk but IPTW-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for the highest tertile of 2-hour postprandial stearic acid (2h-SA), 2-hour postprandial palmitic acid (2h-PA), and 2h-SFA for diabetes risk were 2.50 (2.08 to 3.16), 1.56 (1.23 to 2.02), and 1.70 (1.34 to 2.17), respectively (P-trend < 0.0001). Similarly, 2h-SA/fasting SA, 2h-PA/fasting PA, and 2h-SFA/fasting SFA ratios [IPTW-adjusted OR (95% CI): 2.94 (2.39 to 3.58), 2.31 (1.80 to 2.93), and 2.42 (1.91 to 3.11), respectively; P-trend < 0.0001] predicted the diabetes risk. CONCLUSIONS Higher serum 2h-SFA (but not fasting SFA) independently predicted diabetes risk.
Collapse
Affiliation(s)
- Yanjiao Wang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xing Meng
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xinrui Deng
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Akinkunmi Paul Okekunle
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Peng Wang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Qiao Zhang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Lingyu Ding
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xinxin Guo
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Mengfan Lv
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Changhao Sun
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Ying Li
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
13
|
Carpentier AC. Abnormal Myocardial Dietary Fatty Acid Metabolism and Diabetic Cardiomyopathy. Can J Cardiol 2018; 34:605-614. [PMID: 29627307 DOI: 10.1016/j.cjca.2017.12.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022] Open
Abstract
Patients with diabetes are at very high risk of hospitalization and death from heart failure. Increased prevalence of coronary heart disease, hypertension, autonomic neuropathy, and kidney failure all play a role in this increased risk. However, cardiac metabolic abnormalities are now recognized to play a role in this increased risk. Increased reliance on fatty acids to produce energy might predispose the diabetic heart to oxidative stress and ischemic damage. Intramyocellular accumulation of toxic lipid metabolites leads to a number of cellular abnormalities that might also contribute to cardiac remodelling and cardiac dysfunction. However, fatty acid availability from circulation and from intracellular lipid droplets to fuel the heart is critical to maintain its function. Fatty acids delivery to the heart is very complex and includes plasma nonesterified fatty acid flux as well as triglyceride-rich lipoprotein-mediated transport. Although many studies have shown a cross-sectional association between enhanced fatty acid delivery to the heart and reduction in left ventricular function in subjects with prediabetes and diabetes, these mechanisms change very rapidly during type 2 diabetes treatment. The present review focuses on the role of fatty acids in cardiac function, with particular emphasis on the possible role of early abnormalities of dietary fatty acid metabolism in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
14
|
Barrière DA, Noll C, Roussy G, Lizotte F, Kessai A, Kirby K, Belleville K, Beaudet N, Longpré JM, Carpentier AC, Geraldes P, Sarret P. Combination of high-fat/high-fructose diet and low-dose streptozotocin to model long-term type-2 diabetes complications. Sci Rep 2018; 8:424. [PMID: 29323186 PMCID: PMC5765114 DOI: 10.1038/s41598-017-18896-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
The epidemic of type 2 diabetes mellitus (T2DM) is fueled by added fructose consumption. Here, we thus combined high-fat/high-fructose diet, with multiple low-dose injections of streptozotocin (HF/HF/Stz) to emulate the long-term complications of T2DM. HF/HF/Stz rats, monitored over 56 weeks, exhibited metabolic dysfunctions associated with the different stages of the T2DM disease progression in humans: an early prediabetic phase characterized by an hyperinsulinemic period with modest dysglycemia, followed by a late stage of T2DM with frank hyperglycemia, normalization of insulinemia, marked dyslipidemia, hepatic fibrosis and pancreatic β-cell failure. Histopathological analyses combined to [18F]-FDG PET imaging further demonstrated the presence of several end-organ long-term complications, including reduction in myocardial glucose utilization, renal dysfunction as well as microvascular neuropathy and retinopathy. We also provide for the first time a comprehensive µ-PET whole brain imaging of the changes in glucose metabolic activity within discrete cerebral regions in HF/HF/Stz diabetic rats. Altogether, we developed and characterized a unique non-genetic preclinical model of T2DM adapted to the current diet and lifestyle that recapitulates the major metabolic features of the disease progression, from insulin resistance to pancreatic β-cell dysfunction, and closely mimicking the target-organ damage occurring in type 2 diabetic patients at advanced stages.
Collapse
Affiliation(s)
- David André Barrière
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada.
| | - Christophe Noll
- Département de Médecine, Service d'Endocrinologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada
| | - Geneviève Roussy
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Farah Lizotte
- Département de Médecine, Service d'Endocrinologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada
| | - Anissa Kessai
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Karyn Kirby
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Karine Belleville
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Nicolas Beaudet
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Jean-Michel Longpré
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - André C Carpentier
- Département de Médecine, Service d'Endocrinologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada
| | - Pedro Geraldes
- Département de Médecine, Service d'Endocrinologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada.
| |
Collapse
|
15
|
Grenier-Larouche T, Carreau AM, Geloën A, Frisch F, Biertho L, Marceau S, Lebel S, Hould FS, Richard D, Tchernof A, Carpentier AC. Fatty Acid Metabolic Remodeling During Type 2 Diabetes Remission After Bariatric Surgery. Diabetes 2017; 66:2743-2755. [PMID: 28835473 DOI: 10.2337/db17-0414] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/10/2017] [Indexed: 11/13/2022]
Abstract
Hypertrophic remodeling of white adipose tissues is associated with overexposure of lean organs to circulating triglycerides (TGs) and nonesterified fatty acids (NEFAs), ultimately leading to insulin resistance. Bariatric surgery promotes type 2 diabetes (T2D) remission through a succession of weight loss-dependent and -independent mechanisms. However, the longitudinal contribution of adipocyte size reduction and fatty acid metabolic handling remain unknown. Here we show that severely obese participants with T2D display hypertriglyceridemia and excessive systemic lipolysis during intravenous lipid overload. Three days after biliopancreatic diversion with duodenal switch (DS), whole-body glycerol turnover was normalized and associated with lower HOMA-insulin resistance index. A mean excess weight loss of 84% was achieved 12 months after DS. The smaller subcutaneous adipocyte size predicted better glycemic control in T2D. TG disposal and acylcarnitine production during lipid overload, along with muscle insulin sensitivity, improved with weight loss. Nevertheless, systemic NEFA fluxes and NEFA spillover remained similar, suggesting that increased NEFA storage capacity per volume of adipose tissue exactly compensated for the decrease in fat mass during weight loss. In conclusion, T2D remission after DS is mainly associated with greater circulating TG disposal, lower systemic lipolysis, and better fatty acid handling by lean tissues.
Collapse
Affiliation(s)
- Thomas Grenier-Larouche
- Department of Medicine, Division of Endocrinology, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Anne-Marie Carreau
- Department of Medicine, Division of Endocrinology, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alain Geloën
- University of Lyon, CARMEN INSERM U1060, INSA-Lyon, Villeurbanne, France
| | - Frédérique Frisch
- Department of Medicine, Division of Endocrinology, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Laurent Biertho
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Simon Marceau
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Stéfane Lebel
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Frédéric-Simon Hould
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - André Tchernof
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - André C Carpentier
- Department of Medicine, Division of Endocrinology, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
16
|
Abstract
Purpose Hepatocyte nuclear factor 1 alpha (HNF1α) defects cause Mature Onset Diabetes of the Young type 3 (MODY3), characterized by defects in beta-cell insulin secretion. However, HNF1α is involved in many other metabolic pathways with relevance for monogenic or polygenic type 2 diabetes. We aimed to investigate gut hormones, lipids, and insulin regulation in response to a meal test in HNF1α defect carriers (MODY3) compared to non-diabetic subjects (controls) and type 2 diabetes (T2D). Methods We administered a standardized liquid meal to each participant. Over 6 hours, we measured post-meal responses of insulin regulation (blood glucose, c-peptide, insulin), gut hormones (ghrelin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide-1) and lipids (non-esterified fatty acids [NEFA] and triglycerides). Results We found that MODY3 participants had lower insulin secretion indices than controls and T2D participants, showing the expected β-cell defect. MODY3 had similar glycated hemoglobin levels (HbA1c median [IQR]: 6.5 [5.6–7.6]%) compared to T2D (median: 6.6 [6.2–6.9]%; P<0.05). MODY3 had greater insulin sensitivity (Matsuda index: 71.9 [29.6; 125.5]) than T2D (3.2 [4.0; 6.0]; P<0.05). MODY3 experienced a larger decrease in the ratio of NEFA to insulin (NEFA 30–0 / insulin 30–0: -39 [-78; -30] x104) in the early post-prandial period (0–30 minutes) compared to controls and to T2D (-2.0 [-0.6; -6.4] x104; P<0.05). MODY3 had lower fasting (0.66 [0.46; 1.2] mM) and post-meal triglycerides levels compared to T2D (fasting: 2.3 [1.7; 2.7] mM; P<0.05). We did not detect significant post-meal differences in ghrelin and incretins between MODY3 and other groups. Conclusion In response to a standard meal test, MODY3 showed greater early post-prandial NEFA diminution in response to relatively low early insulin secretion, and they maintained very low post-prandial triglycerides levels.
Collapse
|
17
|
Grenier-Larouche T, Carreau AM, Carpentier AC. Early Metabolic Improvement After Bariatric Surgery: The First Steps Toward Remission of Type 2 Diabetes. Can J Diabetes 2017; 41:418-425. [PMID: 28318939 DOI: 10.1016/j.jcjd.2016.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/23/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023]
Abstract
The introduction of bariatric surgery into clinical practice in the 1980s was followed by a relatively long watch-and-wait period before the very rapid accumulation of scientific literature, over the past decade, concerning its clinical effectiveness and safety and its mechanisms of action in the treatment of obesity. These surgical procedures now emerge as the most effective therapeutic modality to induce long-term remission of type 2 diabetes. Recent research has shed light on the potential mechanisms leading to the profound improvement of glucose homeostasis following most bariatric surgery procedures. These mechanisms can be classified as weight loss dependent and independent, both playing sequential and then synergistic antidiabetes roles. Many groups, including our own, have contributed to our understanding of the relative roles of these mechanisms at differing time periods following these procedures. Here we summarize what we currently know about the mechanisms underlying the very rapid, weight loss-independent improvement in glucose homeostasis after bariatric surgery. Beyond its impact in the field of bariatric surgery, this new knowledge about the very rapid in vivo "reverse engineering" of type 2 diabetes actually provides unique insights into the intricate and complex mechanisms linking nutrition and obesity with the development of this disease.
Collapse
Affiliation(s)
- Thomas Grenier-Larouche
- Department of Medicine, Division of Endocrinology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Anne-Marie Carreau
- Department of Medicine, Division of Endocrinology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - André C Carpentier
- Department of Medicine, Division of Endocrinology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
18
|
Pereira MJ, Skrtic S, Katsogiannos P, Abrahamsson N, Sidibeh CO, Dahgam S, Månsson M, Risérus U, Kullberg J, Eriksson JW. Impaired adipose tissue lipid storage, but not altered lipolysis, contributes to elevated levels of NEFA in type 2 diabetes. Degree of hyperglycemia and adiposity are important factors. Metabolism 2016; 65:1768-1780. [PMID: 27832864 DOI: 10.1016/j.metabol.2016.09.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Elevated levels of circulating non-esterified fatty acids (NEFA) mediate many adverse metabolic effects. In this work we aim to determine the impact of type 2 diabetes (T2D), glycemic control and obesity on lipolysis regulation. DESIGN AND PARTICIPANTS 20 control and 20 metformin-treated T2D subjects were matched for sex (10M/10 F), age (58±11 vs 58±9 y) and BMI (30.8±4.6 vs 30.7±4.9kg/m2). In vivo lipolysis was assessed during a 3h-OGTT with plasma glycerol and NEFA levels. Subcutaneous adipose tissue (SAT) biopsies were obtained to measure mRNA and metabolite levels of factors related to lipolysis and lipid storage and to assess in vitro lipolysis in isolated subcutaneous adipocytes. RESULTS Plasma NEFA AUC during the OGTT where higher 30% (P=0.005) in T2D than in control subjects, but plasma glycerol AUC and subcutaneous adipocyte lipolysis in vitro were similar, suggesting that adipose tissue lipolysis is not altered. Expression in SAT of genes involved in lipid storage (FABP4, DGAT1, FASN) were reduced in T2D subjects compared with controls, but no differences were seen for genes involved in lipolysis. T2D subjects had elevated markers of beta-oxidation, α-hydroxybutyrate (1.4-fold, P<0.01) and β-hydroxybutyrate (1.7-fold, P<0.05) in plasma. In multivariate analysis, HbA1c, visceral adipose tissue volume and sex (male) were significantly associated with NEFA AUC in T2D subjects. CONCLUSIONS In T2D subjects, NEFA turnover is impaired, but not due to defects in lipolysis or lipid beta-oxidation. Impaired adipose NEFA re-esterification or de novo lipogenesis is likely to contribute to higher NEFA plasma levels in T2D. The data suggest that hyperglycemia and adiposity are important contributing factors for the regulation of plasma NEFA concentrations.
Collapse
Affiliation(s)
- Maria J Pereira
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Stanko Skrtic
- AstraZeneca R&D, Mölndal, Sweden; Department of Endocrinology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Cherno O Sidibeh
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | | | - Ulf Risérus
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Joel Kullberg
- Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
19
|
Jorge-Galarza E, Medina-Urrutia A, Posadas-Sánchez R, Posadas-Romero C, Cardoso-Saldaña G, Vargas-Alarcón G, Caracas-Portilla N, González-Salazar C, Torres-Tamayo M, Juárez-Rojas JG. Adipose tissue dysfunction increases fatty liver association with pre diabetes and newly diagnosed type 2 diabetes mellitus. Diabetol Metab Syndr 2016; 8:73. [PMID: 27843495 PMCID: PMC5105292 DOI: 10.1186/s13098-016-0189-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/05/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To evaluate the role of adipose tissue function on the association of fatty liver (FL) with impaired fasting glucose (IFG) or newly diagnosed type 2 diabetes mellitus (nT2D). METHODS In 1264 subjects, computed tomography was used to evaluate FL and elevated visceral adipose tissue (VAT). Fasting plasma glucose, <5.6, 5.6-6.9 and ≥7 mmol/l, were used to defined normoglycemic (NG), IFG or nT2D, respectively. Elevated free fatty acids, low serum adiponectin levels and adipose tissue insulin resistance (Adipo-IR), were used as markers of adipose tissue dysfunction. RESULTS Compared to NG subjects, those with IFG or nT2D had higher prevalence of FL and elevated VAT. FL was found to be independently associated with IFG and nT2D. Adipo-IR increased the association between FL and IFG [OR: 2.46 (95% I.C.: 1.73-3.49) to 5.42 (3.11-9.41)], whereas low adiponectin levels had a higher effect on the FL and nT2D association [OR: 4.26 (2.18-8.34) to 8.53 (2.96-24.55)]. CONCLUSION Fatty liver was independently associated with IFG and nT2D. Our results indicate for the first time, that adipose tissue dysfunction increases these associations.
Collapse
Affiliation(s)
- Esteban Jorge-Galarza
- Endocrinology Department, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col Sección XVI, Tlalpan, 14080 Mexico, Mexico
| | - Aida Medina-Urrutia
- Endocrinology Department, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col Sección XVI, Tlalpan, 14080 Mexico, Mexico
| | - Rosalinda Posadas-Sánchez
- Endocrinology Department, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col Sección XVI, Tlalpan, 14080 Mexico, Mexico
| | - Carlos Posadas-Romero
- Endocrinology Department, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col Sección XVI, Tlalpan, 14080 Mexico, Mexico
| | - Guillermo Cardoso-Saldaña
- Endocrinology Department, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col Sección XVI, Tlalpan, 14080 Mexico, Mexico
| | - Gilberto Vargas-Alarcón
- Molecular Biology Department, National Institute of Cardiology “Ignacio Chávez”, Mexico, Mexico
| | - Nacú Caracas-Portilla
- Endocrinology Department, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col Sección XVI, Tlalpan, 14080 Mexico, Mexico
| | - Carmen González-Salazar
- Endocrinology Department, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col Sección XVI, Tlalpan, 14080 Mexico, Mexico
| | - Margarita Torres-Tamayo
- Endocrinology Department, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col Sección XVI, Tlalpan, 14080 Mexico, Mexico
| | - Juan Gabriel Juárez-Rojas
- Endocrinology Department, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col Sección XVI, Tlalpan, 14080 Mexico, Mexico
| |
Collapse
|
20
|
Carswell KA, Belgaumkar AP, Amiel SA, Patel AG. A Systematic Review and Meta-analysis of the Effect of Gastric Bypass Surgery on Plasma Lipid Levels. Obes Surg 2016; 26:843-55. [PMID: 26210195 DOI: 10.1007/s11695-015-1829-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Obesity-related dyslipidaemia comprises hypercholesterolaemia, hypertriglyceridaemia, low HDL-cholesterol and normal to raised LDL-cholesterol levels. 40% of morbidly obese surgical patients have dyslipidaemia. Roux-en-Y gastric bypass (RYGB) surgery has many beneficial metabolic effects, but the full impact on plasma lipids has not been clearly defined. METHODS A systematic review of electronic databases (Ovid; Medline; PubMed; Embase) between 1960 and March 2012 was performed using search terms including the following: obesity surgery, bariatric surgery, gastric bypass, cholesterol, lipids, triglycerides and non-esterified fatty acids. A total of 2442 manuscripts were screened. Papers with paired plasma lipid levels around RYGB surgery were included. Exclusions included the following: editorials, dual publications, n < 10, resulting in 75 papers of relevance. A meta-analysis was performed of the effect of RYGB surgery upon plasma lipids at different time points up to 4 years following surgery, using a random effects model. RESULTS Paired data were available for 7815 subjects around RYGB surgery for morbid obesity with a baseline BMI 48 kg/m(2) (n = 2331). There was a reduction in plasma total cholesterol and LDL-C from 1 month up to 4 years post-RYGB (p < 0.00001, p < 0.00001). Following RYGB, HDL-C increased from 1 year onwards (p < 0.00001), and triglyceride levels were reduced postoperatively from 3 months up to 4 years (p < 0.00001). NEFA levels were increased at 1 month postoperatively (p = 0.003), but from 3 months onwards did not differ from preoperative levels (p = 0.07). CONCLUSIONS RYGB surgery reverses the dyslipidaemia of obesity. These findings support the use of RYGB in the management of high cardiovascular risk lipid profiles in morbid obesity.
Collapse
Affiliation(s)
- Kirstin A Carswell
- Department of General Surgery, King's College Hospital, Denmark Hill, London, UK, SE5 9RS.
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK.
| | - Ajay P Belgaumkar
- Department of General Surgery, King's College Hospital, Denmark Hill, London, UK, SE5 9RS
| | - Stephanie A Amiel
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Ameet G Patel
- Department of General Surgery, King's College Hospital, Denmark Hill, London, UK, SE5 9RS
| |
Collapse
|
21
|
Noll C, Kunach M, Frisch F, Bouffard L, Dubreuil S, Jean-Denis F, Phoenix S, Cunnane SC, Guérin B, Turcotte EE, Carpentier AC. Seven-Day Caloric and Saturated Fat Restriction Increases Myocardial Dietary Fatty Acid Partitioning in Impaired Glucose-Tolerant Subjects. Diabetes 2015. [PMID: 26224886 DOI: 10.2337/db15-0337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Subjects with impaired glucose tolerance (IGT) have increased myocardial partitioning of dietary fatty acids (DFAs) with left ventricular dysfunction, both of which are improved by modest weight loss over 1 year induced by lifestyle changes. Here, we determined the effects of a 7-day hypocaloric diet (-500 kcal/day) low in saturated fat (<7% of energy) (LOWCAL study) versus isocaloric with the usual amount saturated fat (∼10% of energy) diet (ISOCAL) on DFA metabolism in subjects with IGT. Organ-specific DFA partitioning and cardiac and hepatic DFA fractional uptake rates were measured in 15 IGT subjects (7 males/8 females) using the oral 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid positron emission tomography method after 7 days of an ISOCAL diet versus a LOWCAL diet using a randomized crossover design. The LOWCAL diet led to reductions in weight and postprandial insulin area under the curve. Myocardial DFA partitioning over 6 h was increased after the LOWCAL diet (2.3 ± 0.1 vs. 1.9 ± 0.2 mean standard uptake value, P < 0.04). However, the early (90-120 min) myocardial DFA fractional uptake was unchanged after the LOWCAL diet (0.055 ± 0.025 vs. 0.046 ± 0.009 min(-1), P = 0.7). Liver DFA partitioning was unchanged, but liver fractional uptake of DFA tended to be increased. Very short-term caloric and saturated fat dietary restrictions do not lead to the same changes in organ-specific DFA metabolism as those associated with weight loss in subjects with IGT.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Margaret Kunach
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stéphanie Dubreuil
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Farrah Jean-Denis
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| | - Eric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| |
Collapse
|
22
|
Cook JR, Langlet F, Kido Y, Accili D. Pathogenesis of selective insulin resistance in isolated hepatocytes. J Biol Chem 2015; 290:13972-80. [PMID: 25873396 DOI: 10.1074/jbc.m115.638197] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 12/21/2022] Open
Abstract
The development of insulin resistance (IR) in the liver is a key pathophysiologic event in the development of type 2 diabetes. Although insulin loses its ability to suppress glucose production, it largely retains its capacity to drive lipogenesis. This selective IR results in the characteristic hyperglycemia and dyslipidemia of type 2 diabetes. The delineation of two branched pathways of insulin receptor (InsR) signaling to glucose versus triglyceride production, one through FoxO and the other through SREBP-1c, provides a mechanism to account for this pathophysiological abnormality. We tested the complementary hypothesis that selective IR arises due to different intrinsic sensitivities of glucose production versus de novo lipogenesis to insulin as a result of cell-autonomous down-regulation of InsR number in response to chronic hyperinsulinemia. We demonstrate in mouse primary hepatocytes that chronic hyperinsulinemia abrogates insulin's inhibition of glucose production, but not its stimulation of de novo lipogenesis. Using a competitive inhibitor of InsR, we show that there is a 4-fold difference between levels of InsR inhibition required to cause resistance of glucose production versus lipogenesis to the actions of insulin. Our data support a parsimonious model in which differential InsR activation underlies the selective IR of glucose production relative to lipogenesis, but both processes require signaling through Akt1/2.
Collapse
Affiliation(s)
- Joshua R Cook
- From the Department of Medicine, Columbia University, New York, New York 10032 and
| | - Fanny Langlet
- From the Department of Medicine, Columbia University, New York, New York 10032 and
| | - Yoshiaki Kido
- the Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Domenico Accili
- From the Department of Medicine, Columbia University, New York, New York 10032 and
| |
Collapse
|
23
|
Sallam HS, Tumurbaatar B, Zhang WR, Tuvdendorj D, Chandalia M, Tempia F, Laezza F, Taglialatela G, Abate N. Peripheral adipose tissue insulin resistance alters lipid composition and function of hippocampal synapses. J Neurochem 2015; 133:125-33. [PMID: 25640170 DOI: 10.1111/jnc.13043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/19/2014] [Accepted: 01/14/2015] [Indexed: 12/13/2022]
Abstract
Compelling evidence indicates that type 2 diabetes mellitus, insulin resistance (IR), and metabolic syndrome are often accompanied by cognitive impairment. However, the mechanistic link between these metabolic abnormalities and CNS dysfunction requires further investigations. Here, we evaluated whether adipose tissue IR and related metabolic alterations resulted in CNS changes by studying synapse lipid composition and function in the adipocyte-specific ecto-nucleotide pyrophosphate phosphodiesterase over-expressing transgenic (AtENPP1-Tg) mouse, a model characterized by white adipocyte IR, systemic IR, and ectopic fat deposition. When fed a high-fat diet, AtENPP1-Tg mice recapitulate essential features of the human metabolic syndrome, making them an ideal model to characterize peripherally induced CNS deficits. Using a combination of gas chromatography and western blot analysis, we found evidence of altered lipid composition, including decreased phospholipids and increased triglycerides (TG) and free fatty acid in hippocampal synaptosomes isolated from high-fat diet-fed AtENPP1-Tg mice. These changes were associated with impaired basal synaptic transmission at the Schaffer collaterals to hippocampal cornu ammonis 1 (CA1) synapses, decreased phosphorylation of the GluN1 glutamate receptor subunit, down-regulation of insulin receptor expression, and up-regulation of the free fatty acid receptor 1.
Collapse
Affiliation(s)
- Hanaa S Sallam
- Division of Endocrinology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Labbé SM, Noll C, Grenier-Larouche T, Kunach M, Bouffard L, Phoenix S, Guérin B, Baillargeon JP, Langlois MF, Turcotte EE, Carpentier AC. Improved cardiac function and dietary fatty acid metabolism after modest weight loss in subjects with impaired glucose tolerance. Am J Physiol Endocrinol Metab 2014; 306:E1388-96. [PMID: 24760989 DOI: 10.1152/ajpendo.00638.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Using a novel positron emission tomography (PET) method with oral administration of 14(R,S)-[¹⁸F]-fluoro-6-thia-heptadecanoic acid (¹⁸FTHA), we recently demonstrated that subjects with impaired glucose tolerance (IGT) display an impairment in cardiac function associated with increased myocardial uptake of dietary fatty acids. Here, we determined whether modest weight loss induced by lifestyle changes might improve these cardiac metabolic and functional abnormalities. Nine participants with IGT, enrolled in a one-year lifestyle intervention trial, were invited to undergo determination of organ-specific postprandial dietary fatty acids partition using the oral ¹⁸FTHA method, and cardiac function and oxidative metabolic index using PET [¹¹C]acetate kinetics with ECG-gated PET ventriculography before and after the intervention. The intervention resulted in significant weight loss and reduction of waist circumference, with reduced postprandial plasma glucose, insulin, and triglycerides excursion. We observed a significant increase in stroke volume, cardiac output, and left ventricular ejection fraction associated with reduced myocardial oxidative metabolic index and fractional dietary fatty acid uptake. Modest weight loss corrects the exaggerated myocardial channeling of dietary fatty acids and improves myocardial energy substrate metabolism and function in IGT subjects.
Collapse
Affiliation(s)
- Sébastien M Labbé
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Québec, Canada; and
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Québec, Canada; and
| | - Thomas Grenier-Larouche
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Québec, Canada; and
| | - Margaret Kunach
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Québec, Canada; and
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Québec, Canada; and
| | - Serge Phoenix
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Québec, Canada; and Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Québec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Québec, Canada
| | - Jean-Patrice Baillargeon
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Québec, Canada; and
| | - Marie-France Langlois
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Québec, Canada; and
| | - Eric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Québec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Québec, Canada; and
| |
Collapse
|
25
|
Borel AL, Boulet G, Nazare JA, Smith J, Alméras N, Tremblay A, Bergeron J, Poirier P, Carpentier AC, Després JP. Improved plasma FFA/insulin homeostasis is independently associated with improved glucose tolerance after a 1-year lifestyle intervention in viscerally obese men. Diabetes Care 2013; 36:3254-61. [PMID: 23695818 PMCID: PMC3781540 DOI: 10.2337/dc12-2353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Elevated plasma free fatty acids (FFAs) are one important link between excess visceral adiposity, insulin resistance, and the development of type 2 diabetes. Effects of lifestyle interventions on FFA metabolism are poorly known. This open-label study was conducted to test the effects of a 1-year healthy eating/physical activity intervention program on plasma FFA homeostasis in 117 viscerally obese men with dyslipidemia associated with insulin resistance (waist circumference≥90 cm, triglycerides≥1.69 mmol/L, and/or HDL-cholesterol<1.03 mmol/L). RESEARCH DESIGN AND METHODS Body weight, body composition, and fat distribution were assessed by dual-energy X-ray absorptiometry/computed tomography. Oral loads of lipid (60 g fat/m2 body surface area) and glucose (75 g) were measured before and after the intervention. RESULTS After 1 year of lifestyle intervention, visceral adiposity was reduced by -26% (95% CI -29 to -23), whereas cardiorespiratory fitness improved by +20% (95% CI +16 to +24). After 1 year, the suppression of FFAs after the glucose load improved, whereas insulin concentrations were drastically reduced. After the oral lipid load, the late increase in FFA was reduced together with reduced circulating insulin. We calculated an insulin sensitivity index to reflect the concentration of insulin needed to manage plasma FFAs after the oral lipid load, which increased after the intervention and was associated with improved glucose tolerance, independent of changes in visceral or total adiposity. CONCLUSIONS A 1-year healthy eating/physical activity intervention improved the suppression of FFAs after oral glucose and lipid load tests in viscerally obese men, possibly due to improved responsiveness to insulin. This insulin-mediated regulation of postprandial plasma FFA levels could be a link between visceral obesity and impaired glucose homeostasis.
Collapse
|
26
|
Carpentier AC. The 2012 CDA-CIHR INMD young investigator award lecture: dysfunction of adipose tissues and the mechanisms of ectopic fat deposition in type 2 diabetes. Can J Diabetes 2013; 37:109-14. [PMID: 24070801 DOI: 10.1016/j.jcjd.2013.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 12/20/2022]
Abstract
Ectopic fat deposition in skeletal muscles, liver, heart, and other tissues has been closely linked with the development of lean tissues' insulin resistance and progression toward type 2 diabetes mellitus. Mechanisms of overexposure of these tissues to fatty acids include increased de novo lipogenesis, impaired fatty acid oxidation and increased fatty acid flux to these organs. White adipose tissues are the main organs responsible for the regulation of circulating fatty acids. It has been clearly demonstrated that pre-diabetes individuals and individuals with diabetes display impaired adipose tissue dietary fatty acid storage that may lead to increased circulating flux and exaggerated lean tissue fatty acid exposure. Additionally, brown adipose tissue depots are less metabolically active in individuals with type 2 diabetes. We have developed a series of novel in vivo investigative tools using positron emission tomography to comprehensively assess postprandial interorgan fatty acid partitioning and white and brown adipose tissue metabolism in subjects with pre-diabetes and type 2 diabetes. Our findings shed new lights into the sophisticated mechanisms that regulate fatty acid partitioning and energy homeostasis during the development of type 2 diabetes. New links between abnormal dietary fatty acid metabolism and early myocardial metabolic and functional defects are now being uncovered in humans with the hope to find novel ways to predict and avoid the devastating complications of diabetes.
Collapse
Affiliation(s)
- André C Carpentier
- CIHR-GSK Chair in Diabetes Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Centre de recherche clinique Étienne-Le Bel, Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
27
|
Grenier-Larouche T, Labbé SM, Noll C, Richard D, Carpentier AC. Metabolic inflexibility of white and brown adipose tissues in abnormal fatty acid partitioning of type 2 diabetes. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2012; 2:S37-42. [PMID: 27152152 PMCID: PMC4850609 DOI: 10.1038/ijosup.2012.21] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Type 2 diabetes (T2D) is characterized by a general dysregulation of postprandial energy substrate partitioning. Although classically described in regard to glucose metabolism, it is now evident that metabolic inflexibility of plasma lipid fluxes is also present in T2D. The organ that is most importantly involved in the latter metabolic defect is the white adipose tissue (WAT). Both catecholamine-induced nonesterified fatty acid mobilization and insulin-stimulated storage of meal fatty acids are impaired in many WAT depots of insulin-resistant individuals. Novel molecular imaging techniques now demonstrate that these defects are linked to increased dietary fatty acid fluxes toward lean organs and myocardial dysfunction in humans. Recent findings also demonstrate functional abnormalities of brown adipose tissues in T2D, thus suggesting that a generalized adipose tissue dysregulation of energy storage and dissipation may be at play in the development of lean tissue energy overload and lipotoxicity.
Collapse
Affiliation(s)
- T Grenier-Larouche
- Department of Medicine, Division of Endocrinology, Centre Hospitalier Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - S M Labbé
- Department of Medicine, Division of Endocrinology, Centre Hospitalier Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - C Noll
- Department of Medicine, Division of Endocrinology, Centre Hospitalier Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - D Richard
- Centre de recherche de l'Institut de cardiologie et de pneumologie de Québec, Université Laval Québec, Québec City, Québec, Canada
| | - A C Carpentier
- Department of Medicine, Division of Endocrinology, Centre Hospitalier Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
28
|
Labbé SM, Grenier-Larouche T, Noll C, Phoenix S, Guérin B, Turcotte EE, Carpentier AC. Increased myocardial uptake of dietary fatty acids linked to cardiac dysfunction in glucose-intolerant humans. Diabetes 2012; 61:2701-10. [PMID: 23093657 PMCID: PMC3478552 DOI: 10.2337/db11-1805] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Impaired cardiac systolic and diastolic function has been observed in preclinical models and in subjects with type 2 diabetes. Using a recently validated positron emission tomography (PET) imaging method with 14(R,S)-[(¹⁸F]-fluoro-6-thia-heptadecanoic acid to quantify organ-specific dietary fatty acid partitioning, we demonstrate in this study that overweight and obese subjects with impaired glucose tolerance (IGT⁺) display significant increase in fractional myocardial dietary fatty acid uptake over the first 6 h postprandial compared with control individuals (IGT⁻). Measured by [¹¹C]acetate with PET, IGT⁺ subjects have a significant increase in myocardial oxidative index. IGT⁺ subjects have significantly reduced left ventricular stroke volume and ejection fraction (LVEF) and tend to display impaired diastolic function, as assessed by PET ventriculography. We demonstrate an inverse relationship between increased myocardial dietary fatty acid partitioning and LVEF. Fractional dietary fatty acid uptake is reduced in subcutaneous abdominal and visceral adipose tissues in IGT⁺ directly associated with central obesity. Fractional dietary fatty acid uptake in skeletal muscles or liver is, however, similar in IGT⁺ versus IGT⁻. The current study demonstrates, for the first time, that excessive myocardial partitioning of dietary fatty acids occurs in prediabetic individuals and is associated with early impairment of left ventricular function and increased myocardial oxidative metabolism.
Collapse
Affiliation(s)
- Sébastien M. Labbé
- Department of Medicine, Division of Endocrinology, Centre de Recherche Clinique Etienne-LeBel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Thomas Grenier-Larouche
- Department of Medicine, Division of Endocrinology, Centre de Recherche Clinique Etienne-LeBel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Christophe Noll
- Department of Medicine, Division of Endocrinology, Centre de Recherche Clinique Etienne-LeBel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Serge Phoenix
- Department of Medicine, Division of Endocrinology, Centre de Recherche Clinique Etienne-LeBel, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche Clinique Etienne-LeBel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche Clinique Etienne-LeBel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric E. Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche Clinique Etienne-LeBel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - André C. Carpentier
- Department of Medicine, Division of Endocrinology, Centre de Recherche Clinique Etienne-LeBel, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Corresponding author: André C. Carpentier,
| |
Collapse
|
29
|
Trottier A, Battista MC, Geller DH, Moreau B, Carpentier AC, Simoneau-Roy J, Baillargeon JP. Adipose tissue insulin resistance in peripubertal girls with first-degree family history of polycystic ovary syndrome. Fertil Steril 2012; 98:1627-34. [PMID: 22985947 DOI: 10.1016/j.fertnstert.2012.08.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/06/2012] [Accepted: 08/13/2012] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To assess metabolic and endocrine defects in girls genetically predisposed to polycystic ovary syndrome (PCOS). DESIGN Controlled cross-sectional study. SETTING University hospital. PATIENT(S) Nine girls, aged 8-14 years, having a first-degree relative diagnosed with PCOS (PCOSr) and 10 age-matched girls without a family history of PCOS. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Insulin sensitivity (IS(FSIVGTT)) determined by frequently sampled IV glucose tolerance testing (GTT) and insulin-induced nonesterified fatty acid (NEFA) suppression, estimated by the log-linear slope of NEFA levels during the first 20 minutes of GTT. RESULT(S) In comparison to controls, PCOSr had higher body mass index (BMI) Z-score, waist circumference, and waist-to-height ratio. Levels of the androgen 17α-hydroxyprogesterone (17-OHP) were significantly increased in PCOSr, independent of adiposity, and inversely correlated with IS(FSIVGTT). The IS(FSIVGTT) was decreased and the NEFA suppression was less steep in PCOSr compared with controls, independent of BMI and 17-OHP. The NEFA suppression was more pronounced with increasing IS(FSIVGTT), independent of adiposity. CONCLUSION(S) Girls at high risk of developing PCOS display increased adiposity and 17-OHP levels, but are mainly characterized by global insulin resistance and resistance to insulin-induced suppression of lipolysis that were independent of adiposity and 17-OHP levels. Therefore, genetic predisposition to PCOS may be related to early insulin resistance and adipocyte dysfunction.
Collapse
Affiliation(s)
- Andréanne Trottier
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Sotornik R, Brassard P, Martin E, Yale P, Carpentier AC, Ardilouze JL. Update on adipose tissue blood flow regulation. Am J Physiol Endocrinol Metab 2012; 302:E1157-70. [PMID: 22318953 DOI: 10.1152/ajpendo.00351.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
According to Fick's principle, any metabolic or hormonal exchange through a given tissue depends on the product of the blood flow to that tissue and the arteriovenous difference. The proper function of adipose tissue relies on adequate adipose tissue blood flow (ATBF), which determines the influx and efflux of metabolites as well as regulatory endocrine signals. Adequate functioning of adipose tissue in intermediary metabolism requires finely tuned perfusion. Because metabolic and vascular processes are so tightly interconnected, any disruption in one will necessarily impact the other. Although altered ATBF is one consequence of expanding fat tissue, it may also aggravate the negative impacts of obesity on the body's metabolic milieu. This review attempts to summarize the current state of knowledge on adipose tissue vascular bed behavior under physiological conditions and the various factors that contribute to its regulation as well as the possible participation of altered ATBF in the pathophysiology of metabolic syndrome.
Collapse
Affiliation(s)
- Richard Sotornik
- Diabetes and Metabolism Research Group, Division of Endocrinology, Department of Medicine, Centre Hospitalier, Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Lomonaco R, Ortiz-Lopez C, Orsak B, Webb A, Hardies J, Darland C, Finch J, Gastaldelli A, Harrison S, Tio F, Cusi K. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease. Hepatology 2012; 55:1389-97. [PMID: 22183689 DOI: 10.1002/hep.25539] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 11/25/2011] [Indexed: 12/11/2022]
Abstract
UNLABELLED The role of adipose tissue insulin resistance in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) remains unclear. To evaluate this, we measured in 207 patients with NAFLD (age = 51 ± 1, body mass index = 34.1 ± 0.3 kg/m(2) ) and 22 controls without NAFLD (no NAFLD) adipose tissue insulin resistance by means of a validated index (Adipo-IR(i) = plasma free fatty acids [FFA] x insulin [FPI] concentration) and as the suppression of plasma FFA during an oral glucose tolerance test and by a low-dose insulin infusion. We also explored the relationship between adipose tissue insulin resistance with metabolic and histological parameters by dividing them based on quartiles of adipose tissue insulin resistance (Adipo-IR(i) quartiles: Q1 = more sensitive; Q4 = more insulin resistant). Hepatic insulin resistance, measured as an index derived from endogenous glucose production x FPI (HIRi), and muscle insulin sensitivity, were assessed during a euglycemic insulin clamp with 3-[(3) H] glucose. Liver fat was measured by magnetic resonance imaging and spectroscopy, and a liver biopsy was performed to assess liver histology. Compared to patients without steatosis, patients with NAFLD were insulin resistant at the level of adipose tissue, liver, and skeletal muscle and had higher plasma aspartate aminotransferase and alanine aminotransferase, triglycerides, and lower high-density lipoprotein cholesterol and adiponectin levels (all P < 0.01). Metabolic parameters, hepatic insulin resistance, and liver fibrosis (but not necroinflammation) deteriorated as quartiles of adipose tissue insulin resistance worsened (all P < 0.01). CONCLUSION Adipose tissue insulin resistance plays a key role in the development of metabolic and histological abnormalities of obese patients with NAFLD. Treatment strategies targeting adipose tissue insulin resistance (e.g., weight loss and thiazolidinediones) may be of value in this population.
Collapse
Affiliation(s)
- Romina Lomonaco
- Diabetes, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Carpentier AC, Labbé SM, Grenier-Larouche T, Noll C. Abnormal dietary fatty acid metabolic partitioning in insulin resistance and Type 2 diabetes. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/clp.11.60] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Beaudoin MS, Robinson LE, Graham TE. An oral lipid challenge and acute intake of caffeinated coffee additively decrease glucose tolerance in healthy men. J Nutr 2011; 141:574-81. [PMID: 21346110 DOI: 10.3945/jn.110.132761] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lipid-induced insulin resistance has been investigated primarily with i.v. infusions, and caffeine-induced insulin resistance, with alkaloid caffeine. The effects of orally consumed lipids and coffee have not been established and to our knowledge have never been simultaneously investigated. The goals of this study were to determine whether an oral lipid challenge and caffeinated coffee would disrupt glucose homeostasis and to characterize their respective incretin responses. It was hypothesized that oral ingestion of saturated lipids would impair glucose tolerance and that caffeinated coffee would further hinder glucose management. Ten young, healthy males participated in 5 trials in a randomized, cross-over design. At time 0 h, they underwent an oral fat tolerance test (OFTT: 1 g lipid/kg body weight) or consumed water, followed 5 h later by caffeinated (5 mg/kg) coffee, decaffeinated coffee, or water. At 6 h, volunteers underwent an oral glucose tolerance test (OGTT). Consumption of the OFTT increased glucose concentrations (P < 0.05) after a subsequent OGTT. At 7 h, caffeinated coffee produced the highest glucose concentrations (P < 0.05). Glucagon-like peptide-1 active (GLP-1a) and glucose-dependent insulinotropic polypeptide (GIP) were both increased for up to 6 h in all OFTT trials (P < 0.05). Compared to all other treatments, caffeinated and decaffeinated coffee produced higher GLP-1a response at 6.25 h (P < 0.05), whereas only caffeinated coffee increased GIP secretion (P < 0.05). These results show that oral consumption of lipids and caffeinated coffee can independently and additively decrease glucose tolerance. Incretin hormones could explain at least in part this impaired glucose homeostasis.
Collapse
Affiliation(s)
- Marie-Soleil Beaudoin
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
34
|
Labbé SM, Grenier-Larouche T, Croteau E, Normand-Lauzière F, Frisch F, Ouellet R, Guérin B, Turcotte EE, Carpentier AC. Organ-specific dietary fatty acid uptake in humans using positron emission tomography coupled to computed tomography. Am J Physiol Endocrinol Metab 2011; 300:E445-53. [PMID: 21098737 DOI: 10.1152/ajpendo.00579.2010] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A noninvasive method to determine postprandial fatty acid tissue partition may elucidate the link between excess dietary fat and type 2 diabetes. We hypothesized that the positron-emitting fatty acid analog 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid ((18)FTHA) administered orally during a meal would be incorporated into chylomicron triglycerides, allowing determination of interorgan dietary fatty acid uptake. We administered (18)FTHA orally at the beginning of a standard liquid meal ingested in nine healthy men. There was no significant (18)FTHA uptake in the portal vein and the liver during the 1st hour. Whole body PET/CT acquisition revealed early appearance of (18)FTHA in the distal thoracic duct, reaching a peak at time 240 min. (18)FTHA mean standard uptake value increased progressively in the liver, heart, quadriceps, and subcutaneous and visceral adipose tissues between time 60 and 240 min. Most circulating (18)F activity between time 0 and 360 min was recovered into chylomicron triglycerides. Using Triton WR-1339 treatment in rats that received (18)FTHA by gavage, we confirmed that >90% of this tracer reached the circulation as triglycerides. This novel noninvasive method to determine tissue dietary fatty acid distribution in humans should prove useful in the study of the mechanisms leading to lipotoxicity.
Collapse
Affiliation(s)
- Sébastien M Labbé
- Division of Endocrinology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Labbé SM, Croteau E, Grenier-Larouche T, Frisch F, Ouellet R, Langlois R, Guérin B, Turcotte EE, Carpentier AC. Normal postprandial nonesterified fatty acid uptake in muscles despite increased circulating fatty acids in type 2 diabetes. Diabetes 2011; 60:408-15. [PMID: 21228312 PMCID: PMC3028339 DOI: 10.2337/db10-0997] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Postprandial plasma nonesterified fatty acid (NEFA) appearance is increased in type 2 diabetes. Our objective was to determine whether skeletal muscle uptake of plasma NEFA is abnormal during the postprandial state in type 2 diabetes. RESEARCH DESIGN AND METHODS Thigh muscle blood flow and oxidative metabolism indexes and NEFA uptake were determined using positron emission tomography coupled with computed tomography (PET/CT) with [(11)C]acetate and 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid ((18)FTHA) in seven healthy control subjects (CON) and seven subjects with type 2 diabetes during continuous oral intake of a liquid meal to achieve steady postprandial NEFA levels with insulin infusion to maintain similar plasma glucose levels in both groups. RESULTS In the postprandial state, plasma NEFA level was higher in type 2 diabetic subjects versus CON (P < 0.01), whereas plasma glucose was at the same level in both groups. Muscle NEFA fractional extraction and blood flow index levels were 56% (P < 0.05) and 24% (P = 0.27) lower in type 2 diabetes, respectively. However, muscle NEFA uptake was similar to that of CON (quadriceps femoris [QF] 1.47 ± 0.23 vs. 1.37 ± 0.24 nmol·g(-1)·min(-1), P = 0.77; biceps femoris [BF] 1.54 ± 0.26 vs. 1.46 ± 0.28 nmol·g(-1)·min(-1), P = 0.85). Muscle oxidative metabolism was similar in both groups. Muscle NEFA fractional extraction and blood flow index were strongly and positively correlated (r = 0.79, P < 0.005). CONCLUSIONS Postprandial muscle NEFA uptake is normal despite elevated systemic NEFA levels and acute normalization of plasma glucose in type 2 diabetes. Lower postprandial muscle blood flow with resulting reduction in muscle NEFA fractional extraction may explain this phenomenon.
Collapse
Affiliation(s)
- Sébastien M. Labbé
- Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Québec, Canada
| | - Etienne Croteau
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Québec, Canada
| | | | - Frédérique Frisch
- Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Québec, Canada
| | - René Ouellet
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Québec, Canada
| | - Réjean Langlois
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Québec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Québec, Canada
| | - Eric E. Turcotte
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Québec, Canada
| | - André C. Carpentier
- Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Québec, Canada
- Corresponding author: André C. Carpentier,
| |
Collapse
|
36
|
Giacca A, Xiao C, Oprescu AI, Carpentier AC, Lewis GF. Lipid-induced pancreatic β-cell dysfunction: focus on in vivo studies. Am J Physiol Endocrinol Metab 2011; 300:E255-62. [PMID: 21119027 DOI: 10.1152/ajpendo.00416.2010] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The phenomenon of lipid-induced pancreatic β-cell dysfunction ("lipotoxicity") has been very well documented in numerous in vitro experimental systems and has become widely accepted. In vivo demonstration of β-cell lipotoxicity, on the other hand, has not been consistently demonstrated, and there remains a lack of consensus regarding the in vivo effects of chronically elevated free fatty acids (FFA) on β-cell function. Much of the disagreement relates to how insulin secretion is quantified in vivo and in particular whether insulin secretion is assessed in relation to whole body insulin sensitivity, which is clearly reduced by elevated FFA. By correcting for changes in in vivo insulin sensitivity, we and others have shown that prolonged elevation of FFA impairs β-cell secretory function. Prediabetic animal models and humans with a positive family history of type 2 diabetes are more susceptible to this impairment, whereas those with severe impairment of β-cell function (such as individuals with type 2 diabetes) demonstrate no additional impairment of β-cell function when FFA are experimentally raised. Glucolipotoxicity (i.e., the combined β-cell toxicity of elevated glucose and FFA) has been amply demonstrated in vitro and in some animal studies but not in humans, perhaps because there are limitations in experimentally raising plasma glucose to sufficiently high levels for prolonged periods of time. We and others have shown that therapies directed toward diminishing oxidative stress and ER stress have the potential to reduce lipid-induced β-cell dysfunction in animals and humans. In conclusion, lipid-induced pancreatic β-cell dysfunction is likely to be one contributor to the complex array of genetic and metabolic insults that result in the relentless decline in pancreatic β-cell function in those destined to develop type 2 diabetes, and mechanisms involved in this lipotoxicity are promising therapeutic targets.
Collapse
Affiliation(s)
- Adria Giacca
- Dept. of Physiology, Univ. of Toronto, ON, Canada.
| | | | | | | | | |
Collapse
|
37
|
Abstract
The widespread epidemics of obesity and type 2 diabetes mellitus (T2DM) suggest that both conditions are closely linked. An increasing body of evidence has shifted our view of adipose tissue from a passive energy depot to a dynamic "endocrine organ" that tightly regulates nutritional balance by means of a complex crosstalk of adipocytes with their microenvironment. Dysfunctional adipose tissue, particularly as observed in obesity, is characterized by adipocyte hypertrophy, macrophage infiltration, impaired insulin signaling, and insulin resistance. The result is the release of a host of inflammatory adipokines and excessive amounts of free fatty acids that promote ectopic fat deposition and lipotoxicity in muscle, liver, and pancreatic beta cells. This review focuses on recent work on how glucose homeostasis is profoundly altered by distressed adipose tissue. A better understanding of this relationship offers the best chance for early intervention strategies aimed at preventing the burden of T2DM.
Collapse
Affiliation(s)
- Kenneth Cusi
- The University of Texas Health Science Center at San Antonio, Diabetes Division, Room 3.380S, 7703 Floyd Curl Drive, San Antonio, TX 78284-3900, USA.
| |
Collapse
|
38
|
Normand-Lauzière F, Frisch F, Labbé SM, Bherer P, Gagnon R, Cunnane SC, Carpentier AC. Increased postprandial nonesterified fatty acid appearance and oxidation in type 2 diabetes is not fully established in offspring of diabetic subjects. PLoS One 2010; 5:e10956. [PMID: 20532041 PMCID: PMC2881041 DOI: 10.1371/journal.pone.0010956] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 05/07/2010] [Indexed: 12/15/2022] Open
Abstract
Background It has been proposed that abnormal postprandial plasma nonesterified fatty acid (NEFA) metabolism may participate in the development of tissue lipotoxicity and type 2 diabetes (T2D). We previously found that non-diabetic offspring of two parents with T2D display increased plasma NEFA appearance and oxidation rates during intravenous administration of a fat emulsion. However, it is currently unknown whether plasma NEFA appearance and oxidation are abnormal during the postprandial state in these subjects at high-risk of developing T2D. Methodology Palmitate appearance and oxidation rates and glycerol appearance rate were determined in eleven healthy offspring of two parents with T2D (positive family history, FH+), 13 healthy subjects without first-degree relatives with T2D (FH-) and 12 subjects with T2D at fasting, during normoglycemic hyperinsulinemic clamp and during continuous oral intake of a standard liquid meal to achieve steady postprandial NEFA and triacylglycerols (TG) without and with insulin infusion to maintain similar glycemia in all three groups. Principal Findings Plasma palmitate appearance and oxidation were higher at fasting and during the clamp conditions in the T2D group (all P<0.05). In the postprandial state, palmitate appearance, oxidative and non oxidative rates were all elevated in T2D (all P<0.05) but not in FH+. Both T2D and FH+ displayed elevated postprandial TG vs. FH- (P<0.001). Acute correction of hyperglycemia during the postprandial state did not affect these group differences. Increased waist circumference and BMI were positively associated with elevated postprandial plasma palmitate appearance and oxidation. Conclusions/Significance Postprandial plasma NEFA intolerance observed in subjects with T2D is not fully established in non-diabetic offspring of both parents with T2D, despite the presence of increased postprandial plasma TG in the later. Elevated postprandial plasma NEFA appearance and oxidation in T2D is observed despite acute correction of the exaggerated glycemic excursion in this group.
Collapse
Affiliation(s)
- François Normand-Lauzière
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sébastien M. Labbé
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Patrick Bherer
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Division of Genetics, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - René Gagnon
- Division of Genetics, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - André C. Carpentier
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
39
|
Ménard SL, Croteau E, Sarrhini O, Gélinas R, Brassard P, Ouellet R, Bentourkia M, van Lier JE, Des Rosiers C, Lecomte R, Carpentier AC. Abnormal in vivo myocardial energy substrate uptake in diet-induced type 2 diabetic cardiomyopathy in rats. Am J Physiol Endocrinol Metab 2010; 298:E1049-57. [PMID: 20159856 DOI: 10.1152/ajpendo.00560.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to determine in vivo myocardial energy metabolism and function in a nutritional model of type 2 diabetes. Wistar rats rendered insulin-resistant and mildly hyperglycemic, hyperinsulinemic, and hypertriglyceridemic with a high-fructose/high-fat diet over a 6-wk period with injection of a small dose of streptozotocin (HFHFS) and control rats were studied using micro-PET (microPET) without or with a euglycemic hyperinsulinemic clamp. During glucose clamp, myocardial metabolic rate of glucose measured with [(18)F]fluorodeoxyglucose ([(18)F]FDG) was reduced by approximately 81% (P < 0.05), whereas myocardial plasma nonesterified fatty acid (NEFA) uptake as determined by [(18)F]fluorothia-6-heptadecanoic acid ([(18)F]FTHA) was not significantly changed in HFHFS vs. control rats. Myocardial oxidative metabolism as assessed by [(11)C]acetate and myocardial perfusion index as assessed by [(13)N]ammonia were similar in both groups, whereas left ventricular ejection fraction as assessed by microPET was reduced by 26% in HFHFS rats (P < 0.05). Without glucose clamp, NEFA uptake was approximately 40% lower in HFHFS rats (P < 0.05). However, myocardial uptake of [(18)F]FTHA administered by gastric gavage was significantly higher in HFHFS rats (P < 0.05). These abnormalities were associated with reduced Glut4 mRNA expression and increased Cd36 mRNA expression and mitochondrial carnitine palmitoyltransferase 1 activity (P < 0.05). HFHFS rats display type 2 diabetes complicated by left ventricular contractile dysfunction with profound reduction in myocardial glucose utilization, activation of fatty acid metabolic pathways, and preserved myocardial oxidative metabolism, suggesting reduced myocardial metabolic efficiency. In this model, increased myocardial fatty acid exposure likely occurs from circulating triglyceride, but not from circulating plasma NEFA.
Collapse
Affiliation(s)
- Sébastien L Ménard
- Division of Endocrinology, Department of Medicine, University de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Carpentier AC, Bourbonnais A, Frisch F, Giacca A, Lewis GF. Plasma nonesterified Fatty Acid intolerance and hyperglycemia are associated with intravenous lipid-induced impairment of insulin sensitivity and disposition index. J Clin Endocrinol Metab 2010; 95:1256-64. [PMID: 20097711 DOI: 10.1210/jc.2009-1932] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
CONTEXT It is currently unclear why susceptibility to lipid-induced impairment of beta-cell function varies in different populations. OBJECTIVE The aim of the study was to determine whether mild hyperglycemia may be associated with nonesterified fatty acid (NEFA) intolerance and increased iv lipid-induced lipotoxic effect on the beta-cell. DESIGN AND SETTING The study consisted of an experimental design with control group conducted at an academic clinical research center. PARTICIPANTS Twenty-six overweight or obese individuals (12 with normal glucose tolerance, nine with impaired glucose tolerance or type 2 diabetes, and five subjects who previously had impaired glucose tolerance or type 2 diabetes but at the time of study had normal glucose tolerance after biliopancreatic diversion). INTERVENTIONS We assessed insulin sensitivity (S(I)) and beta-cell function [insulin disposition index (DI)] after an overnight iv infusion of heparin + Intralipid (HI) vs. normal saline for 16 h using a stepwise, incremental iv glucose infusion followed by a hyperglycemic clamp. MAIN OUTCOME MEASURES We measured S(I), DI, HI-induced change in plasma NEFA, and its association with HI-induced change in S(I) and DI. RESULTS HI resulted in significant reduction in S(I) and DI across the three groups of participants. HI-induced elevation of plasma NEFA was higher in hyperglycemic vs. normoglycemic groups. Both fasting glucose level and the magnitude of HI-induced NEFA elevation were associated with the reduction in S(I) (P = 0.007 and P = 0.01, respectively) and DI (P = 0.001 and P = 0.007, respectively). CONCLUSION Mild hyperglycemia and NEFA intolerance to iv lipid are associated with susceptibility to lipid-induced reduction in S(I) and DI.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4.
| | | | | | | | | |
Collapse
|
41
|
Zhang J, Wu W, Li D, Guo Y, Ding H. Overactivation of NF-κB impairs insulin sensitivity and mediates palmitate-induced insulin resistance in C2C12 skeletal muscle cells. Endocrine 2010; 37:157-66. [PMID: 20963565 DOI: 10.1007/s12020-009-9283-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 11/03/2009] [Indexed: 02/06/2023]
Abstract
Lipid-induced insulin resistance is associated with inflammatory state in epidemiological studies. However, it is still unclear whether the activation of NF-κB, a pivotal transcription factor of inflammation, plays a crucial role in mediating skeletal muscle insulin resistance. This study addressed what was the role of NF-κB in lipid-induced insulin resistance and whether NF-κB activation was sufficient to cause insulin resistance in C2C12 myotubes. A 16 h exposure of myotubes to palmitate reduced net insulin-stimulated glucose uptake by 48%, GLUT4 translocation by 52%, Akt phosphorylation by 54%, induced a 1.8-fold increase in insulin-stimulated insulin receptor substrate (IRS) phosphorylation, and doubled NF-κB activation. Myotubes transfected with NF-κB p65 siRNA for 24 h and followed by a treatment with palmitate for 16 h efficiently blocked NF-κB activation, and prevented the detrimental effects of palmitate on the metabolic actions of insulin. Transfection of myotubes with I-κBα siRNA for 24 h also led to a twofold induction of NF-κB activation, and reduced net insulin-stimulated glucose uptake by 30%, GLUT4 translocation by 35%, Akt phosphorylation by 31%, induced a 0.7-fold increase in insulin-stimulated IRS phosphorylation. These findings suggest that NF-κB overexpression per se is sufficient to impair insulin sensitivity and palmitate-induced insulin resistance is mediated by NF-κB in skeletal muscle cells.
Collapse
Affiliation(s)
- Jingwen Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China
| | | | | | | | | |
Collapse
|
42
|
Abstract
Early interventions to prevent type 2 diabetes mellitus (T2DM) demand a better understanding of its underlying mechanisms. Nonobese healthy subjects with a strong family history of T2DM (FH(+) subjects) hold a key to this end by allowing the study of the disease before the development of confounding factors, such as obesity or hyperglycemia. In this article, we share our experience over the past decade in studying FH(+) subjects and how lipotoxicity alters glucose metabolism in such individuals, in particular pancreatic beta-cell function. FH(+) subjects have no obvious clinical abnormalities, but when carefully studied, reveal severe hepatic/muscle/adipose tissue insulin resistance and subtle defects in beta-cell function. In most subjects, metabolic adaption allows freedom from diabetes for decades. However, the obesity epidemic is drastically changing this. Given the unique susceptibility of pancreatic beta cells to free fatty acids in FH(+) subjects, interventions that protect against obesity-induced lipotoxicity may hold the greatest promise for preventing T2DM in genetically predisposed individuals.
Collapse
Affiliation(s)
- Kenneth Cusi
- Diabetes Division, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
43
|
Lavoie F, Frisch F, Brassard P, Normand-Lauzière F, Cyr D, Gagnon R, Drouin R, Baillargeon JP, Carpentier AC. Relationship between total and high molecular weight adiponectin levels and plasma nonesterified fatty acid tolerance during enhanced intravascular triacylglycerol lipolysis in men. J Clin Endocrinol Metab 2009; 94:998-1004. [PMID: 19066306 DOI: 10.1210/jc.2008-1021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Increased plasma nonesterified fatty acid (NEFA) appearance during enhanced intravascular triacylglycerol (TG) lipolysis is a marker of metabolic adipose tissue dysfunction and may lead to the development of insulin resistance. The relationship between total and high molecular weight (HMW) adiponectin levels, NEFA appearance, and total TG lipolytic capacity has not been previously studied in humans. OBJECTIVES Our objective was to determine whether total and HMW adiponectin plasma levels are associated with plasma NEFA level and appearance, and with total TG lipolytic rate during enhanced intravascular TG lipolysis in men. DESIGN This was a cross-sectional metabolic study. SETTING The study was performed at an academic clinical research center. PARTICIPANTS There were 15 healthy men (mean +/- sd body mass index 25.5 +/- 4.7 kg/m(2)) aged 21-50 yr (mean +/- sd 31.1 +/- 10.2) without first-degree relatives with type 2 diabetes included in the study. INTERVENTIONS Pancreatic clamps and iv infusion of stable isotopic tracers ([1,1,2,3,3-(2)H(5)]glycerol and [U-(13)C]palmitate) were performed, whereas intravascular TG lipolysis was clamped by iv infusion of heparin plus Intralipid at low (fasting) and high insulin levels. Total and HMW adiponectin levels were measured using an ELISA. MAIN OUTCOME MEASURES Levels of total and HMW adiponectin, palmitate appearance (plasma palmitate appearance rate), and glycerol appearance (plasma glycerol appearance rate) were calculated. RESULTS During heparin plus Intralipid infusion, total and HMW adiponectin was inversely correlated with plasma palmitate appearance rate (r = -0.65; P = 0.01), but this association was lost when expressed per nonlean weight. Adiponectin levels were positively associated with plasma glycerol appearance rate per nonlean weight (r = 0.71 and r = 0.66, respectively; P < or = 0.01). CONCLUSIONS Increased adipose tissue mass likely explains the association between low adiponectin and reduced NEFA tolerance. Adiponectin level is a marker of total TG lipolytic rate per adipose tissue mass in men.
Collapse
Affiliation(s)
- F Lavoie
- Department of Medicine, Division of Endocrinology, Centre Hospitalier Universitaire de Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Matikainen N, Taskinen MR. Postprandial triglyceride-rich lipoproteins in insulin resistance and Type 2 diabetes. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17460875.3.5.531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
Carpentier AC. Postprandial fatty acid metabolism in the development of lipotoxicity and type 2 diabetes. DIABETES & METABOLISM 2008; 34:97-107. [DOI: 10.1016/j.diabet.2007.10.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/19/2007] [Accepted: 10/26/2007] [Indexed: 12/31/2022]
|