1
|
Naderi J, Johnson AK, Thakkar H, Chandravanshi B, Ksiazek A, Anand A, Vincent V, Tran A, Kalimireddy A, Singh P, Sood A, Das A, Talbot CL, Distefano IA, Maschek JA, Cox J, Li Y, Summers SA, Atkinson DJ, Turapov T, Ratcliff JA, Fung J, Shabbir A, Shabeer Yassin M, Shiow SATE, Holland WL, Pitt GS, Chaurasia B. Ceramide-induced FGF13 impairs systemic metabolic health. Cell Metab 2025; 37:1206-1222.e8. [PMID: 40169001 PMCID: PMC12058412 DOI: 10.1016/j.cmet.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/02/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Ceramide accumulation impairs adipocytes' ability to efficiently store and utilize nutrients, leading to energy and glucose homeostasis deterioration. Using a comparative transcriptomic screen, we identified the non-canonical, non-secreted fibroblast growth factor FGF13 as a ceramide-regulated factor that impairs adipocyte function. Obesity robustly induces FGF13 expression in adipose tissue in mice and humans and is positively associated with glycemic indices of type 2 diabetes. Pharmacological or genetic inhibition of ceramide biosynthesis reduces FGF13 expression. Using mice with loss and gain of function of FGF13, we demonstrate that FGF13 is both necessary and sufficient to impair energy and glucose homeostasis independent of ceramides. Mechanistically, FGF13 exerts these effects by inhibiting mitochondrial content and function, metabolic elasticity, and caveolae formation, which cumulatively impairs glucose utilization and thermogenesis. These studies suggest the therapeutic potential of targeting FGF13 to prevent and treat metabolic diseases.
Collapse
Affiliation(s)
- Jamal Naderi
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Amanda Kelsey Johnson
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Himani Thakkar
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Bhawna Chandravanshi
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Alec Ksiazek
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Ajay Anand
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Vinnyfred Vincent
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Aaron Tran
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Anish Kalimireddy
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Pratibha Singh
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Ayushi Sood
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Aasthika Das
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Chad Lamar Talbot
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Isabella A Distefano
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - J Alan Maschek
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - James Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Ying Li
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Scott A Summers
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Donald J Atkinson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Tursun Turapov
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason A Ratcliff
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Javis Fung
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Asim Shabbir
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - M Shabeer Yassin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Sue-Anne Toh Ee Shiow
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - William L Holland
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Bhagirath Chaurasia
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Qi Y, He X, Wang B, Yang C, Da L, Liu B, Zhang W, Fu S, Liu Y. Selection signature analysis reveals genes associated with tail phenotype in sheep. Front Genet 2024; 15:1509177. [PMID: 39722798 PMCID: PMC11668752 DOI: 10.3389/fgene.2024.1509177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Tail type of sheep, which may be affected by many genes with a complex mechanism, is an important economic trait concerned by both raiser and consumers. Here, we employed two sheep breeds with extreme phenotypes - Mongolian sheep (short-fat-tailed) and Bamei Mutton sheep (long-thin-tailed) to analyze the genetic differences at the genomic level and find candidate genes associated with tail phenotype. The results of population structure analysis showed that the LD decay rate of Mongolian sheep was greater than that of Bamai Mutton sheep. When K = 2, the two populations were obviously separated with a certain degree of mixing. From 49 sheep individuals, 20,270,930 and 2,479,474 SNPs and Indels were identified, respectively. Selection signals were detected based on F ST , π-Ratio, and XP-EHH. These three methods identified 85 candidate genes, of which PDGFD, GLIS1, AR, and FGF9 were reported to be associated with tail fat deposition, while VRTN associated with tail length in sheep tail phenotype; the others were novel genes that may play important roles in sheep tail phenotype formation. Gene annotation revealed that these candidate genes mainly participate in pathways associated with fat deposition or lipid metabolism. This study provided insight into sheep tail type development and a guide for molecular breeding.
Collapse
Affiliation(s)
- Yunxia Qi
- College of Animal Sciences, Xichang University, Xichang, China
| | - Xiaolong He
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Biao Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Chaoyun Yang
- College of Animal Sciences, Xichang University, Xichang, China
| | - Lai Da
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Bin Liu
- Inner Mongolia BIONEW Technology Co., LTD., Hohhot, China
| | - Wenguang Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Shaoyin Fu
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Yongbin Liu
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
3
|
Wu XF, Liu Y, Wang YG, Zhang F, Li WY. A novel 22-bp InDel within FGF7 gene is significantly associated with growth traits in goat. Anim Biotechnol 2024; 35:2262537. [PMID: 37870116 DOI: 10.1080/10495398.2023.2262537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Fibroblast growth factor 7 (FGF7) is involved in lipid metabolism, which is considered as a candidate gene with close relation with muscle development by eGWAs and RNA-Seq analyses. To date, limited research has been conducted on the relationship between FGF7 gene and growth traits. The main objective of this work was to further investigate the association between novel InDel within FGF7 gene and growth traits in goat. Herein, FGF7 mRNA expression levels were investigated in various Fuqing goat tissues. We found that FGF7 gene was expressed in six adult goat tissues with the highest mRNA levels in adipose tissue. This result suggested that FGF7 gene might play a critical role in fat deposition. We also detected potential polymorphisms in Fuqing, Nubian and Jianyang Daer breeds. A 22-bp InDel polymorphism in FGF7 gene was detected in 396 goats and the three genotypes were designated as II, ID, and DD. Correlation analysis revealed that InDel polymorphism was significantly associated with growth traits (P < 0.05). Goats with genotypes ID and/or II had superior growth traits compared to those with genotype DD. In summary, our findings suggested that the 22-bp InDel within FGF7 gene could act as a molecular marker to improve the growth traits of goats in breeding programs.
Collapse
Affiliation(s)
- Xian-Feng Wu
- Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Yuan Liu
- Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Ying-Gang Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Fu Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wen-Yang Li
- Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Kulkoyluoglu Cotul E, Safdar MH, Paez SJ, Kulkarni A, Ayers MG, Lin H, Xianyu Z, Teegarden D, Hursting SD, Wendt MK. FGFR1 Signaling Facilitates Obesity-Driven Pulmonary Outgrowth in Metastatic Breast Cancer. Mol Cancer Res 2024; 22:254-267. [PMID: 38153436 PMCID: PMC10923021 DOI: 10.1158/1541-7786.mcr-23-0955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/30/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Survival of dormant, disseminated breast cancer cells contributes to tumor relapse and metastasis. Women with a body mass index greater than 35 have an increased risk of developing metastatic recurrence. Herein, we investigated the effect of diet-induced obesity (DIO) on primary tumor growth and metastatic progression using both metastatic and systemically dormant mouse models of breast cancer. This approach led to increased PT growth and pulmonary metastasis. We developed a novel protocol to induce obesity in Balb/c mice by combining dietary and hormonal interventions with a thermoneutral housing strategy. In contrast to standard housing conditions, ovariectomized Balb/c mice fed a high-fat diet under thermoneutral conditions became obese over a period of 10 weeks, resulting in a 250% gain in fat mass. Obese mice injected with the D2.OR model developed macroscopic pulmonary nodules compared with the dormant phenotype of these cells in mice fed a control diet. Analysis of the serum from obese Balb/c mice revealed increased levels of FGF2 as compared with lean mice. We demonstrate that serum from obese animals, exogenous FGF stimulation, or constitutive stimulation through autocrine and paracrine FGF2 is sufficient to break dormancy and drive pulmonary outgrowth. Blockade of FGFR signaling or specific depletion of FGFR1 prevented obesity-associated outgrowth of the D2.OR model. IMPLICATIONS Overall, this study developed a novel DIO model that allowed for demonstration of FGF2:FGFR1 signaling as a key molecular mechanism connecting obesity to breakage of systemic tumor dormancy and metastatic progression.
Collapse
Affiliation(s)
- Eylem Kulkoyluoglu Cotul
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Muhammad Hassan Safdar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Sebastian Juan Paez
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Aneesha Kulkarni
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Mitchell G. Ayers
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Hang Lin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Zilin Xianyu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Dorothy Teegarden
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Stephen D. Hursting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael K. Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
5
|
Markezana A, Paldor M, Liao H, Ahmed M, Zorde-Khvalevsky E, Rozenblum N, Stechele M, Salvermoser L, Laville F, Goldmann S, Rosenberg N, Andrasina T, Ricke J, Galun E, Goldberg SN. Fibroblast growth factors induce hepatic tumorigenesis post radiofrequency ablation. Sci Rep 2023; 13:16341. [PMID: 37770545 PMCID: PMC10539492 DOI: 10.1038/s41598-023-42819-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Image-guided radiofrequency ablation (RFA) is used to treat focal tumors in the liver and other organs. Despite potential advantages over surgery, hepatic RFA can promote local and distant tumor growth by activating pro-tumorigenic growth factor and cytokines. Thus, strategies to identify and suppress pro-oncogenic effects of RFA are urgently required to further improve the therapeutic effect. Here, the proliferative effect of plasma of Hepatocellular carcinoma or colorectal carcinoma patients 90 min post-RFA was tested on HCC cell lines, demonstrating significant cellular proliferation compared to baseline plasma. Multiplex ELISA screening demonstrated increased plasma pro-tumorigenic growth factors and cytokines including the FGF protein family which uniquely and selectively activated HepG2. Primary mouse and immortalized human hepatocytes were then subjected to moderate hyperthermia in-vitro, mimicking thermal stress induced during ablation in the peri-ablational normal tissue. Resultant culture medium induced proliferation of multiple cancer cell lines. Subsequent non-biased protein array revealed that these hepatocytes subjected to moderate hyperthermia also excrete a similar wide spectrum of growth factors. Recombinant FGF-2 activated multiple cell lines. FGFR inhibitor significantly reduced liver tumor load post-RFA in MDR2-KO inflammation-induced HCC mouse model. Thus, Liver RFA can induce tumorigenesis via the FGF signaling pathway, and its inhibition suppresses HCC development.
Collapse
Affiliation(s)
- Aurelia Markezana
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel.
| | - Mor Paldor
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Haixing Liao
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Muneeb Ahmed
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Elina Zorde-Khvalevsky
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Nir Rozenblum
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Matthias Stechele
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Lukas Salvermoser
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Flinn Laville
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Salome Goldmann
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Nofar Rosenberg
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Tomas Andrasina
- Department of Radiology and Nuclear Medicine, University Hospital Brno and Masaryk University Brno, Brno, Czech Republic
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Eithan Galun
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Shraga Nahum Goldberg
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel.
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA.
- Division of Image-Guided Therapy and Interventional Oncology, Department of Radiology, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| |
Collapse
|
6
|
Kim JY, Choi J, Kwon Y, Park S, Kim SG, Kim NH. Serum fibroblast growth factor 1 and its association with pancreatic beta cell function and insulin sensitivity in adults with glucose intolerance. Front Endocrinol (Lausanne) 2023; 14:1198311. [PMID: 37284218 PMCID: PMC10239951 DOI: 10.3389/fendo.2023.1198311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Background Beneficial role of fibroblast growth factor 1 (FGF1) in the regulation of glucose metabolism and adipose tissue remodeling was suggested in rodents. This study aimed to investigate the association between serum FGF1 levels and metabolic parameters in adults with glucose intolerance. Methods Serum FGF1 levels were examined using an enzyme-linked immunosorbent assay in 153 individuals with glucose intolerance. Associations between serum FGF1 levels and metabolic parameters, including body mass index (BMI), glycated hemoglobin (HbA1c), and 75 g oral glucose tolerance test-derived parameters, including insulinogenic index (IGI), Matsuda insulin sensitivity index (ISI), and disposition index (DI), were examined. Results Serum FGF1 was detected in 35 individuals (22.9%), possibly due to the autocrine/paracrine nature of the peptide. IGI and DI levels were significantly lower in individuals with higher FGF1 levels than in those with lower FGF1 levels or undetectable FGF1 (p=0.006 and 0.005 for IGI and DI, respectively, after adjustment for age, sex, and BMI). Univariable and multivariable analyses using the Tobit regression model also revealed a negative association between FGF1 levels and IGI and DI. The regression coefficients per 1-SD of log-transformed IGI and DI were -0.461 (p=0.013) and -0.467 (p=0.012), respectively, after adjustment for age, sex, and BMI. In contrast, serum FGF1 levels were not significantly associated with ISI, BMI, or HbA1c. Conclusions The serum concentration of FGF1 was significantly elevated in individuals with low insulin secretion, suggesting a possible interaction between FGF1 and beta cell function in humans.
Collapse
Affiliation(s)
- Ji Yoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jimi Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yeongkeun Kwon
- Center for Obesity and Metabolic Diseases, Korea University Anam Hospital, Seoul, Republic of Korea
- Division of Foregut Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sungsoo Park
- Center for Obesity and Metabolic Diseases, Korea University Anam Hospital, Seoul, Republic of Korea
- Division of Foregut Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Duarte GCK, Pellenz F, Crispim D, Assmann TS. Integrated bioinformatics approach reveals methylation-regulated differentially expressed genes in obesity. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:e000604. [PMID: 37252693 PMCID: PMC10665070 DOI: 10.20945/2359-3997000000604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/08/2022] [Indexed: 05/31/2023]
Abstract
Objective To identify DNA methylation and gene expression profiles involved in obesity by implementing an integrated bioinformatics approach. Materials and methods Gene expression (GSE94752, GSE55200, and GSE48964) and DNA methylation (GSE67024 and GSE111632) datasets were obtained from the GEO database. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) in subcutaneous adipose tissue of patients with obesity were identified using GEO2R. Methylation-regulated DEGs (MeDEGs) were identified by overlapping DEGs and DMGs. The protein-protein interaction (PPI) network was constructed with the STRING database and analyzed using Cytoscape. Functional modules and hub-bottleneck genes were identified by using MCODE and CytoHubba plugins. Functional enrichment analyses were performed based on Gene Ontology terms and KEGG pathways. To prioritize and identify candidate genes for obesity, MeDEGs were compared with obesity-related genes available at the DisGeNET database. Results A total of 54 MeDEGs were identified after overlapping the lists of significant 274 DEGs and 11,556 DMGs. Of these, 25 were hypermethylated-low expression genes and 29 were hypomethylated-high expression genes. The PPI network showed three hub-bottleneck genes (PTGS2, TNFAIP3, and FBXL20) and one functional module. The 54 MeDEGs were mainly involved in the regulation of fibroblast growth factor production, the molecular function of arachidonic acid, and ubiquitin-protein transferase activity. Data collected from DisGeNET showed that 11 of the 54 MeDEGs were involved in obesity. Conclusion This study identifies new MeDEGs involved in obesity and assessed their related pathways and functions. These results data may provide a deeper understanding of methylation-mediated regulatory mechanisms of obesity.
Collapse
Affiliation(s)
- Guilherme Coutinho Kullmann Duarte
- Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Ciências Médicas: Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Felipe Pellenz
- Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Ciências Médicas: Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Daisy Crispim
- Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Ciências Médicas: Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil,
| | - Tais Silveira Assmann
- Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Ciências Médicas: Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
8
|
Nies VJM, Struik D, Liu S, Liu W, Kruit JK, Downes M, van Zutphen T, Verkade HJ, Evans RM, Jonker JW. Autocrine FGF1 signaling promotes glucose uptake in adipocytes. Proc Natl Acad Sci U S A 2022; 119:e2122382119. [PMID: 36161959 PMCID: PMC9546606 DOI: 10.1073/pnas.2122382119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factor 1 (FGF1) is an autocrine growth factor released from adipose tissue during over-nutrition or fasting to feeding transition. While local actions underlie the majority of FGF1's anti-diabetic functions, the molecular mechanisms downstream of adipose FGF receptor signaling are unclear. We investigated the effects of FGF1 on glucose uptake and its underlying mechanism in murine 3T3-L1 adipocytes and in ex vivo adipose explants from mice. FGF1 increased glucose uptake in 3T3-L1 adipocytes and epididymal WAT (eWAT) and inguinal WAT (iWAT). Conversely, glucose uptake was reduced in eWAT and iWAT of FGF1 knockout mice. We show that FGF1 acutely increased adipocyte glucose uptake via activation of the insulin-sensitive glucose transporter GLUT4, involving dynamic crosstalk between the MEK1/2 and Akt signaling proteins. Prolonged exposure to FGF1 stimulated adipocyte glucose uptake by MEK1/2-dependent transcription of the basal glucose transporter GLUT1. We have thus identified an alternative pathway to stimulate glucose uptake in adipocytes, independent from insulin, which could open new avenues for treating patients with type 2 diabetes.
Collapse
Affiliation(s)
- Vera J. M. Nies
- Laboratory of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Dicky Struik
- Laboratory of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Sihao Liu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Weilin Liu
- Laboratory of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Janine K. Kruit
- Laboratory of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Tim van Zutphen
- Laboratory of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Henkjan J. Verkade
- Laboratory of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Johan W. Jonker
- Laboratory of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
9
|
Nandakumar M, Moin ASM, Ramanjaneya M, Qaissi AA, Sathyapalan T, Atkin SL, Butler AE. Severe iatrogenic hypoglycaemia modulates the fibroblast growth factor protein response. Diabetes Obes Metab 2022; 24:1483-1497. [PMID: 35415885 DOI: 10.1111/dom.14716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION There is evidence that fibroblast growth factor (FGF) levels may be implicated in hypoglycaemia, with FGF19 being a potential contributor to insulin-independent pathways driving postprandial hypoglycaemia following bariatric surgery and basic FGF (FGF2) being elevated following mild hypoglycaemia occurring after the glucose tolerance test. However, their response following severe iatrogenic hypoglycaemia is unknown and therefore this pilot exploratory study was undertaken. METHODS A case-control study of aged-matched type 2 diabetes (T2D; n = 23) and control (n = 23) subjects who underwent a hyperinsulinaemic clamp, initially to euglycaemia in T2D (5 mmol/L; 90 mg/dl), and then to hypoglycaemia (<2 mmol/L; <36 mg/dl) with subsequent follow-up time course to 24 h. FGF and FGF receptor proteins were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement. RESULTS At baseline, FGF12 (p = .006) was higher and FGF20 (p = .004) was lower in T2D versus controls. At hypoglycaemia, FGF7 was lower in T2D. Post-hypoglycaemic levels of FGF18, FGF19, FGF20 and FGF23 were lower while FGF12 and FGF16 were higher in T2D versus control at different time points. No differences between T2D and controls were seen for FGF1, FGF2, FGF4, FGF6, FGF8, FGF9, FGF10, FGF21 or any of the FGF receptors. At 24 h post-hypoglycaemia, FGF20 (p = .01) differed between controls and T2D, while the levels for the other proteins measured returned to baseline. None of the FGF proteins altered from baseline to euglycaemia when clamped in T2D subjects. FGF23 negatively correlated with fasting blood glucose, but no FGFs correlated with body mass index in T2D. CONCLUSION Severe transient hypoglycaemia modulated FGF7, 16, 19, 20 and 23 (known to be associated with diabetes), together with FGF18 and 12, not previously reported to be associated with diabetes but that may be important in the pathophysiology of hypoglycaemia; FGF20 remained low at 24 h. Taken together, these data suggest that recurrent hypoglycaemia may contribute to the development of complications through changes in FGF proteins.
Collapse
Affiliation(s)
- Manjula Nandakumar
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Abu Saleh Md Moin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Al Qaissi
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK
| | | | - Stephen L Atkin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Alexandra E Butler
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| |
Collapse
|
10
|
Gasser E, Sancar G, Downes M, Evans RM. Metabolic Messengers: fibroblast growth factor 1. Nat Metab 2022; 4:663-671. [PMID: 35681108 PMCID: PMC9624216 DOI: 10.1038/s42255-022-00580-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 11/09/2022]
Abstract
While fibroblast growth factor (FGF) 1 is expressed in multiple tissues, only adipose-derived and brain FGF1 have been implicated in the regulation of metabolism. Adipose FGF1 production is upregulated in response to dietary stress and is essential for adipose tissue plasticity in these conditions. Similarly, in the brain, FGF1 secretion into the ventricular space and the adjacent parenchyma is increased after a hypercaloric challenge induced by either feeding or glucose infusion. Potent anorexigenic properties have been ascribed to both peripheral and centrally injected FGF1. The ability of recombinant FGF1 and variants with reduced mitogenicity to lower glucose, suppress adipose lipolysis and promote insulin sensitization elevates their potential as candidates in the treatment of type 2 diabetes mellitus and associated comorbidities. Here, we provide an overview of the known metabolic functions of endogenous FGF1 and discuss its therapeutic potential, distinguishing between peripherally or centrally administered FGF1.
Collapse
Affiliation(s)
- Emanuel Gasser
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Gencer Sancar
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
11
|
Holowatyj AN, Gigic B, Warby CA, Ose J, Lin T, Schrotz-King P, Ulrich CM, Bernard JJ. The Use of Human Serum Samples to Study Malignant Transformation: A Pilot Study. Cells 2021; 10:2670. [PMID: 34685650 PMCID: PMC8534413 DOI: 10.3390/cells10102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Obesity and excess adiposity account for approximately 20% of all cancer cases; however, biomarkers of risk remain to be elucidated. While fibroblast growth factor-2 (FGF2) is emerging as an attractive candidate biomarker for visceral adipose tissue mass, the role of circulating FGF2 in malignant transformation remains unknown. Moreover, functional assays for biomarker discovery are limited. We sought to determine if human serum could stimulate the 3D growth of a non-tumorigenic cell line. This type of anchorage-independent 3D growth in soft agar is a surrogate marker for acquired tumorigenicity of cell lines. We found that human serum from cancer-free men and women has the potential to stimulate growth in soft agar of non-tumorigenic epithelial JB6 P+ cells. We examined circulating levels of FGF2 in humans in malignant transformation in vitro in a pilot study of n = 33 men and women. Serum FGF2 levels were not associated with colony formation in epithelial cells (r = 0.05, p = 0.80); however, a fibroblast growth factor receptor-1 (FGFR1) selective inhibitor significantly blocked serum-stimulated transformation, suggesting that FGF2 activation of FGFR1 may be necessary, but not sufficient for the transforming effects of human serum. This pilot study indicates that the FGF2/FGFR1 axis plays a role in JB6 P+ malignant transformation and describes an assay to determine critical serum factors that have the potential to promote tumorigenesis.
Collapse
Affiliation(s)
- Andreana N. Holowatyj
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (C.A.W.); (J.O.); (T.L.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Christy A. Warby
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (C.A.W.); (J.O.); (T.L.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (C.A.W.); (J.O.); (T.L.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Tengda Lin
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (C.A.W.); (J.O.); (T.L.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Petra Schrotz-King
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (C.A.W.); (J.O.); (T.L.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jamie J. Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
12
|
Kucukoglu O, Sowa JP, Mazzolini GD, Syn WK, Canbay A. Hepatokines and adipokines in NASH-related hepatocellular carcinoma. J Hepatol 2021; 74:442-457. [PMID: 33161047 DOI: 10.1016/j.jhep.2020.10.030] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing in industrialised societies; this is likely secondary to the increasing burden of non-alcoholic fatty liver disease (NAFLD), its progressive form non-alcoholic steatohepatitis (NASH), and the metabolic syndrome. Cumulative studies suggest that NAFLD-related HCC may also develop in non-cirrhotic livers. However, prognosis and survival do not differ between NAFLD- or virus-associated HCC. Thus, research has increasingly focused on NAFLD-related risk factors to better understand the biology of hepatocarcinogenesis and to develop new diagnostic, preventive, and therapeutic strategies. One important aspect thereof is the role of hepatokines and adipokines in NAFLD/NASH-related HCC. In this review, we compile current data supporting the use of hepatokines and adipokines as potential markers of disease progression in NAFLD or as early markers of NAFLD-related HCC. While much work must be done to elucidate the mechanisms and interactions underlying alterations to hepatokines and adipokines, current data support the possible utility of these factors - in particular, angiopoietin-like proteins, fibroblast growth factors, and apelin - for detection or even as therapeutic targets in NAFLD-related HCC.
Collapse
Affiliation(s)
- Ozlem Kucukoglu
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Jan-Peter Sowa
- Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Guillermo Daniel Mazzolini
- Laboratory of Gene Therapy, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires 999071, Argentina; Liver Unit, Hospital Universitario Austral, Universidad Austral, Argentina
| | - Wing-Kin Syn
- Section of Gastroenterology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA; Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC, USA; Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48940 Leioa, Vizcaya, Spain
| | - Ali Canbay
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany.
| |
Collapse
|
13
|
Wang S, Cao S, Arhatte M, Li D, Shi Y, Kurz S, Hu J, Wang L, Shao J, Atzberger A, Wang Z, Wang C, Zang W, Fleming I, Wettschureck N, Honoré E, Offermanns S. Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice. Nat Commun 2020; 11:2303. [PMID: 32385276 PMCID: PMC7211025 DOI: 10.1038/s41467-020-16026-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
White adipose tissue (WAT) expansion in obesity occurs through enlargement of preexisting adipocytes (hypertrophy) and through formation of new adipocytes (adipogenesis). Adipogenesis results in WAT hyperplasia, smaller adipocytes and a metabolically more favourable form of obesity. How obesogenic WAT hyperplasia is induced remains, however, poorly understood. Here, we show that the mechanosensitive cationic channel Piezo1 mediates diet-induced adipogenesis. Mice lacking Piezo1 in mature adipocytes demonstrated defective differentiation of preadipocyte into mature adipocytes when fed a high fat diet (HFD) resulting in larger adipocytes, increased WAT inflammation and reduced insulin sensitivity. Opening of Piezo1 in mature adipocytes causes the release of the adipogenic fibroblast growth factor 1 (FGF1), which induces adipocyte precursor differentiation through activation of the FGF-receptor-1. These data identify a central feed-back mechanism by which mature adipocytes control adipogenesis during the development of obesity and suggest Piezo1-mediated adipocyte mechano-signalling as a mechanism to modulate obesity and its metabolic consequences. Adipose tissue expansion occurs via enlargement of adipocytes as well as the generation of new fat cells, the latter being associated with more favorable metabolic outcomes. Here, the authors show that activation of adipocyte Piezo1 results in release of FGF1 and stimulates the differentiation of adipocyte precursor cells.
Collapse
Affiliation(s)
- ShengPeng Wang
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany. .,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, No.76 West Yanta Road, Yanta District, Xi'an, China.
| | - Shuang Cao
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany.,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, No.76 West Yanta Road, Yanta District, Xi'an, China
| | - Malika Arhatte
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Dahui Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Yue Shi
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, No.76 West Yanta Road, Yanta District, Xi'an, China
| | - Sabrina Kurz
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Lei Wang
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Jingchen Shao
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Ann Atzberger
- Max Planck Institute for Heart and Lung Research, Flow Cytometry Service Group, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Changhe Wang
- Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Weijin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Nina Wettschureck
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany.,Center for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Eric Honoré
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany. .,Center for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
14
|
A combination of genetics and microbiota influences the severity of the obesity phenotype in diet-induced obesity. Sci Rep 2020; 10:6118. [PMID: 32273571 PMCID: PMC7145845 DOI: 10.1038/s41598-020-63340-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/30/2020] [Indexed: 12/03/2022] Open
Abstract
Obesity has emerged as a major global health problem and is associated with various diseases, such as metabolic syndrome, type 2 diabetes mellitus, and cardiovascular diseases. The inbred C57BL/6 mouse strain is often used for various experimental investigations, such as metabolic research. However, over time, genetically distinguishable C57BL/6 substrains have evolved. The manifestation of genetic alterations has resulted in behavioral and metabolic differences. In this study, a comparison of diet-induced obesity in C57BL/6JHanZtm, C57BL/6NCrl and C57BL/6 J mice revealed several metabolic and immunological differences such as blood glucose level and cytokine expression, respectively, among these C57BL/6 substrains. For example, C57BL/6NCrl mice developed the most pronounced adiposity, whereas C57BL/6 J mice showed the highest impairment in glucose tolerance. Moreover, our results indicated that the immunological phenotype depends on the intestinal microbiota, as the cell subset composition of the colon was similar in obese ex-GF B6NRjB6JHanZtm and obese B6JHanZtm mice. Phenotypic differences between C57BL/6 substrains are caused by a complex combination of genetic and microbial alterations. Therefore, in performing metabolic research, considering substrain-specific characteristics, which can influence the course of study, is important. Moreover, for unbiased comparison of data, the entire strain name should be shared with the scientific community.
Collapse
|
15
|
Pichiah PBT, Sankarganesh D, Arunachalam S, Achiraman S. Adipose-Derived Molecules-Untouched Horizons in Alzheimer's Disease Biology. Front Aging Neurosci 2020; 12:17. [PMID: 32116650 PMCID: PMC7032035 DOI: 10.3389/fnagi.2020.00017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
The global incidence of Alzheimer's disease (AD) is on the rise with the increase in obesity and metabolic disease epidemic. Obesity is co-morbid with the increase in mass of adipose tissue, which secretes numerous molecules that are biologically important. Obesity and its associated conditions are perhaps involved in the causative pathway of AD. Immunologically important cytokines such as IL-1β, IL-10, and IL-18, which are released by adipose tissue, are also found to be associated with AD. Besides, the expression of IL-6, IFNγ, and TNF alpha are also associated with AD. Ang-I and Ang-II are found to mediate the progression of AD. Complement factors B, C4b, and H are differentially expressed in AD. Overall, several adipocyte-derived cytokines are found to be dysregulated in AD, and their role in AD remains to be studied. The induction of autophagy is a very promising strategy in the treatment of AD. A variety of adipose-derived molecules have been shown to modulate autophagy. However, very little literature is available on the role of adipose-derived molecules in inducing autophagy in microglial cells of AD. Understanding the role of adipose-derived molecules in the development of AD, especially in the induction of autophagy, would open up new avenues in devising strategies for the treatment of AD.
Collapse
Affiliation(s)
| | - Devaraj Sankarganesh
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, India
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - Sankarganesh Arunachalam
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - Shanmugam Achiraman
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
16
|
Struik D, Dommerholt MB, Jonker JW. Fibroblast growth factors in control of lipid metabolism: from biological function to clinical application. Curr Opin Lipidol 2019; 30:235-243. [PMID: 30893110 PMCID: PMC6530965 DOI: 10.1097/mol.0000000000000599] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Several members of the fibroblast growth factor (FGF) family have been identified as key regulators of energy metabolism in rodents and nonhuman primates. Translational studies show that their metabolic actions are largely conserved in humans, which led to the development of various FGF-based drugs, including FGF21-mimetics LY2405319, PF-05231023, and pegbelfermin, and the FGF19-mimetic NGM282. Recently, a number of clinical trials have been published that examined the safety and efficacy of these novel therapeutic proteins in the treatment of obesity, type 2 diabetes (T2D), nonalcoholic steatohepatitis (NASH), and cholestatic liver disease. In this review, we discuss the current understanding of FGFs in metabolic regulation and their clinical potential. RECENT FINDINGS FGF21-based drugs induce weight loss and improve dyslipidemia in patients with obesity and T2D, and reduce steatosis in patients with NASH. FGF19-based drugs reduce steatosis in patients with NASH, and ameliorate bile acid-induced liver damage in patients with cholestasis. In contrast to their potent antidiabetic effects in rodents and nonhuman primates, FGF-based drugs do not appear to improve glycemia in humans. In addition, various safety concerns, including elevation of low-density lipoprotein cholesterol, modulation of bone homeostasis, and increased blood pressure, have been reported as well. SUMMARY Clinical trials with FGF-based drugs report beneficial effects in lipid and bile acid metabolism, with clinical improvements in dyslipidemia, steatosis, weight loss, and liver damage. In contrast, glucose-lowering effects, as observed in preclinical models, are currently lacking.
Collapse
Affiliation(s)
- Dicky Struik
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | |
Collapse
|
17
|
Chhabra Y, Nelson CN, Plescher M, Barclay JL, Smith AG, Andrikopoulos S, Mangiafico S, Waxman DJ, Brooks AJ, Waters MJ. Loss of growth hormone-mediated signal transducer and activator of transcription 5 (STAT5) signaling in mice results in insulin sensitivity with obesity. FASEB J 2019; 33:6412-6430. [PMID: 30779881 PMCID: PMC6463913 DOI: 10.1096/fj.201802328r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Growth hormone (GH) has an important function as an insulin antagonist with elevated insulin sensitivity evident in humans and mice lacking a functional GH receptor (GHR). We sought the molecular basis for this sensitivity by utilizing a panel of mice possessing specific deletions of GHR signaling pathways. Metabolic clamps and glucose homeostasis tests were undertaken in these obese adult C57BL/6 male mice, which indicated impaired hepatic gluconeogenesis. Insulin sensitivity and glucose disappearance rate were enhanced in muscle and adipose of mice lacking the ability to activate the signal transducer and activator of transcription (STAT)5 via the GHR (Ghr-391-/-) as for GHR-null (GHR-/-) mice. These changes were associated with a striking inhibition of hepatic glucose output associated with altered glycogen metabolism and elevated hepatic glycogen content during unfed state. The enhanced hepatic insulin sensitivity was associated with increased insulin receptor β and insulin receptor substrate 1 activation along with activated downstream protein kinase B signaling cascades. Although phosphoenolpyruvate carboxykinase (Pck)-1 expression was unchanged, its inhibitory acetylation was elevated because of decreased sirtuin-2 expression, thereby promoting loss of PCK1. Loss of STAT5 signaling to defined chromatin immunoprecipitation targets would further increase lipogenesis, supporting hepatosteatosis while lowering glucose output. Finally, up-regulation of IL-15 expression in muscle, with increased secretion of adiponectin and fibroblast growth factor 1 from adipose tissue, is expected to promote insulin sensitivity.-Chhabra, Y., Nelson, C. N., Plescher, M., Barclay, J. L., Smith, A. G., Andrikopoulos, S., Mangiafico, S., Waxman, D. J., Brooks, A. J., Waters, M. J. Loss of growth hormone-mediated signal transducer and activator of transcription 5 (STAT5) signaling in mice results in insulin sensitivity with obesity.
Collapse
Affiliation(s)
- Yash Chhabra
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Caroline N Nelson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Monika Plescher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Johanna L Barclay
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Aaron G Smith
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Sof Andrikopoulos
- Department of Medicine, The University of Melbourne, Victoria, Australia
| | | | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Andrew J Brooks
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael J Waters
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Keeley T, Kirov A, Koh WY, Demambro V, Bergquist I, Cotter J, Caradonna P, Siviski ME, Best B, Henderson T, Rosen CJ, Liaw L, Prudovsky I, Small DJ. Resistance to visceral obesity is associated with increased locomotion in mice expressing an endothelial cell-specific fibroblast growth factor 1 transgene. Physiol Rep 2019; 7:e14034. [PMID: 30972920 PMCID: PMC6458108 DOI: 10.14814/phy2.14034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Overdevelopment of visceral adipose is positively correlated with the etiology of obesity-associated pathologies including cardiovascular disease and insulin resistance. However, identification of genetic, molecular, and physiological factors regulating adipose development and function in response to nutritional stress is incomplete. Fibroblast Growth Factor 1 (FGF1) is a cytokine expressed and released by both adipocytes and endothelial cells under hypoxia, thermal, and oxidative stress. Expression of Fibroblast Growth Factor 1 (FGF1) in adipose is required for normal depot development and remodeling. Loss of FGF1 leads to deleterious changes in adipose morphology, metabolism, and insulin resistance. Conversely, diabetic and obese mice injected with recombinant FGF1 display improvements in insulin sensitivity and a reduction in adiposity. We report in this novel, in vivo study that transgenic mice expressing an endothelial-specific FGF1 transgene (FGF1-Tek) are resistant to high-fat diet-induced abdominal adipose accretion and are more glucose-tolerant than wild-type control animals. Metabolic chamber analyses indicate that suppression of the development of visceral adiposity and insulin resistance was not associated with alterations in appetite or resting metabolic rate in the FGF1-Tek strain. Instead, FGF1-Tek mice display increased locomotor activity that likely promotes the utilization of dietary fatty acids before they can accumulate in adipose and liver. This study provides insight into the impact that genetic differences dictating the production of FGF1 has on the risk for developing obesity-related metabolic disease in response to nutritional stress.
Collapse
Affiliation(s)
- Tyler Keeley
- Department of Chemistry and PhysicsCollege of Arts and SciencesUniversity of New EnglandBiddefordMaine
| | - Aleksandr Kirov
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Woon Yuen Koh
- Department of Mathematical SciencesCollege of Arts and SciencesUniversity of New EnglandBiddefordMaine
| | - Victoria Demambro
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Ivy Bergquist
- Center for Excellence in NeuroscienceCollege of MedicineUniversity of New EnglandBiddefordMaine
| | - Jessica Cotter
- Department of Chemistry and PhysicsCollege of Arts and SciencesUniversity of New EnglandBiddefordMaine
| | - Peter Caradonna
- Department of Chemistry and PhysicsCollege of Arts and SciencesUniversity of New EnglandBiddefordMaine
| | - Matthew E. Siviski
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Bradley Best
- Department of Chemistry and PhysicsCollege of Arts and SciencesUniversity of New EnglandBiddefordMaine
| | - Terry Henderson
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Clifford J. Rosen
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Lucy Liaw
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Igor Prudovsky
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Deena J. Small
- Department of Chemistry and PhysicsCollege of Arts and SciencesUniversity of New EnglandBiddefordMaine
| |
Collapse
|
19
|
Wang A, Yan X, Zhang C, Du C, Long W, Zhan D, Luo X. Characterization of fibroblast growth factor 1 in obese children and adolescents. Endocr Connect 2018; 7:932-940. [PMID: 30299902 PMCID: PMC6130312 DOI: 10.1530/ec-18-0141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Fibroblast growth factor 1 (FGF1) can regulate glucose and lipid metabolism in obese mice. Serum FGF1 has increased in type 2 diabetes mellitus adults and correlated with BMI. This study aimed to indicate conventional weight loss effects on FGF1 in obese children and adolescents. MATERIALS AND METHODS Clinical and metabolic parameters of 88 lean and obese individuals (ages 5–15 years) and 39 obese individuals followed with 6 months of lifestyle intervention were collected. Serum FGF1 levels were detected through enzyme-linked immunosorbent assays. RESULTS FGF1 levels were increased in obese individuals. Serum FGF1 levels were significantly correlated with BMI and waist circumferences (r = 0.377, P = 0.012; r = 0.301, P = 0.047, respectively). Multivariate stepwise linear regression analyses showed that FGF1 levels were significantly correlated with HbA1c and HOMA-IR (β = 0.371, P = 0.008; β = 0.323, P = 0.021, respectively). Weight loss (2.3 ± 0.1 kg) was accompanied by a significant reduction of circulating FGF1 levels (7.2 ± 0.4 pg/mL). Changes in FGF1 were significantly correlated with changes in fasting glucose, HOMA-IR and low-density lipoprotein cholesterol (β = 0.277, P = 0.020; β = 0.474, P < 0.001; β = 0.320, P = 0.008, respectively). CONCLUSION FGF1 levels were increased in obese individuals. Serum FGF1 levels were significantly correlated with BMI and waist circumferences (r = 0.377, P = 0.012; r = 0.301, P = 0.047, respectively). Multivariate stepwise linear regression analyses showed that FGF1 levels were significantly correlated with HbA1c and HOMA-IR (β = 0.371, P = 0.008; β = 0.323, P = 0.021, respectively). Weight loss (2.3 ± 0.1 kg) was accompanied by a significant reduction of circulating FGF1 levels (7.2 ± 0.4 pg/mL). Changes in FGF1 were significantly correlated with changes in fasting glucose, HOMA-IR and low-density lipoprotein cholesterol (β = 0.277, P = 0.020; β = 0.474, P < 0.001; β = 0.320, P = 0.008, respectively).
Collapse
Affiliation(s)
- Anru Wang
- Department of PediatricsTongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of PediatricsThe Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueqin Yan
- Department of PediatricsBoai Hospital of Zhongshan, Zhongshan, China
| | - Cai Zhang
- Department of PediatricsTongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caiqi Du
- Department of PediatricsTongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Long
- Department of PediatricsTongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Zhan
- Department of PediatricsTongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of PediatricsTongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Correspondence should be addressed to X Luo:
| |
Collapse
|
20
|
Yang B, Kumoto T, Arima T, Nakamura M, Sanada Y, Kumrungsee T, Sotomaru Y, Shimada M, Yanaka N. Transgenic mice specifically expressing amphiregulin in white adipose tissue showed less adipose tissue mass. Genes Cells 2018; 23:136-145. [DOI: 10.1111/gtc.12558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Bo Yang
- Graduate School of Biosphere Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Takahiro Kumoto
- Graduate School of Biosphere Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Takeshi Arima
- Graduate School of Biosphere Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Minako Nakamura
- Graduate School of Biosphere Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Yohei Sanada
- Graduate School of Biosphere Science; Hiroshima University; Higashi-Hiroshima Japan
| | | | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development; Hiroshima University; Hiroshima Japan
| | - Masayuki Shimada
- Graduate School of Biosphere Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Noriyuki Yanaka
- Graduate School of Biosphere Science; Hiroshima University; Higashi-Hiroshima Japan
| |
Collapse
|
21
|
Upregulated TNF Expression 1 Year After Bariatric Surgery Reflects a Cachexia-Like State in Subcutaneous Adipose Tissue. Obes Surg 2017; 27:1514-1523. [PMID: 27900559 PMCID: PMC5423994 DOI: 10.1007/s11695-016-2477-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Adipose tissue dysfunction contributes to obesity-associated chronic diseases. In the first year after bariatric surgery, obese patients significantly improve their metabolic status upon losing weight. We aimed to investigate whether changes in subcutaneous adipose tissue gene expression reflect a restoration of a healthy lean phenotype after bariatric surgery. Methods Thirty-one severely obese patients (BMI ≥ 40 kg/m2) were examined before and after surgery. subcutaneous adipose tissue (SAT) was collected during and 1 year after bariatric surgery. SAT from 20 matched lean and overweight patients (BMI < 30 kg/m2) was collected during elective abdominal surgery. Baseline characteristics and SAT gene expression relevant to glucose and lipid metabolism, inflammation, and apoptosis were analyzed. Results After surgery, mean BMI decreased from 46.1 ± 6.3 to 31.1 ± 5.7 kg/m2 and homeostasis model assessment of insulin resistance from 5.4 ± 5.3 to 0.8 ± 0.8. SAT expression of most analyzed inflammatory cytokines, growth factors, and metabolic and cell surface markers was greatly downregulated even compared to the lean cohort. In contrast, gene expression of TNF and CASP3 was significantly upregulated. Elastic net regression analysis showed that fasting glucose levels and CASP3 predicted increased TNF expression in the post-obese group. Conclusions Gene expression patterns in SAT 1 year after bariatric surgery point to a reduced inflammation. The unexpected high TNF expression in SAT of post-obese subjects is most likely not an indicator for inflammation, but rather an indicator for increased lipolysis and adipose tissue catabolism. Notably, after bariatric surgery SAT gene expression reflects a cachexia-like phenotype and differs from the lean state. Electronic supplementary material The online version of this article (doi:10.1007/s11695-016-2477-5) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Izaguirre M, Gil MJ, Monreal I, Montecucco F, Frühbeck G, Catalán V. The Role and Potential Therapeutic Implications of the Fibroblast Growth Factors in Energy Balance and Type 2 Diabetes. Curr Diab Rep 2017; 17:43. [PMID: 28451950 DOI: 10.1007/s11892-017-0866-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Obesity and its associated metabolic diseases have reached epidemic proportions worldwide, reducing life expectancy and quality of life. Several drugs have been tested to treat these diseases but many of them have damaging side effects. Consequently, there is an urgent need to develop more effective therapies. Recently, endocrine fibroblast growth factors (FGFs) have become attractive targets in the treatment of metabolic diseases. This review summarizes their most important functions as well as FGF-based therapies for the treatment of obesity and type 2 diabetes (T2D). RECENT FINDINGS Recent studies demonstrate that circulating levels of FGF19 are reduced in obesity. In fact, exogenous FGF19 administration is associated with a reduction in food intake as well as with improvements in glycaemia. In contrast, FGF21 levels are elevated in subjects with abdominal obesity, insulin resistance and T2D, probably representing a compensatory response. Additionally, elevated levels of circulating FGF23 in individuals with obesity and T2D are reported in most clinical studies. Finally, increased FGF1 levels in obese patients associated with adipogenesis have been described. FGFs constitute important molecules in the treatment of metabolic diseases due to their beneficial effects on glucose and lipid metabolism. Among all members, FGF19 and FGF21 have demonstrated the ability to improve glucose, lipid and energy homeostasis, along with FGF1, which was recently discovered to have beneficial effects on metabolic homeostasis. Additionally, FGF23 may also play a role in insulin resistance or energy homeostasis beyond mineral metabolism control. These results highlight the relevant use of FGFs as potential biomarkers for the early diagnosis of metabolic diseases. In this regard, notable progress has been made in the development of FGF-based therapies and different approaches are being tested in different clinical trials. However, further studies are needed to determine their potential therapeutic use in the treatment of obesity and obesity-related comorbidities.
Collapse
Affiliation(s)
- Maitane Izaguirre
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
| | - María J Gil
- Department of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Monreal
- Department of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino-IST, Genoa, Italy
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
23
|
Wang S, Yang Q, Yu S, Pan R, Jiang D, Liu Y, Hu H, Sun W, Hong X, Xue H, Qian W, Wang D, Zhou L, Mao C, Yuan G. Fibroblast growth factor 1 levels are elevated in newly diagnosed type 2 diabetes compared to normal glucose tolerance controls. Endocr J 2016; 63:359-65. [PMID: 26806193 DOI: 10.1507/endocrj.ej15-0627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fibroblast growth factor 1 (FGF1) has been recently characterized as a potent insulin sensitizer that regulates adipose tissue remodeling, but the physiological role of FGF1 remains unclear. This study measured serum FGF1 levels for the first time in patients with newly diagnosed type 2 diabetes mellitus (T2DM), and further explored the correlations between FGF1 levels and various metabolic parameters in T2DM. Serum FGF1 levels were determined using ELISA in age-, sex- and BMI- matched subjects with normal glucose tolerance (NGT) (n=80) and newly diagnosed T2DM (n=80). Oral glucose tolerance test (OGTT), glycosylated hemoglobin (HbA1C), blood lipids, and insulin secretion were also measured. Insulin resistance and pancreatic β-cell function were assessed by homeostasis model assessment of insulin resistance (HOMA-IR) and homeostasis model assessment of beta cell function (HOMA-β), respectively. Serum FGF1 levels were significantly higher in T2DM patients than in normal glucose tolerance subjects (74.52 [55.91∼101.34] vs. 60.31 [48.99∼83.91] pg/mL; P<0.05). In addition, serum FGF1 level positively correlated with body mass index (BMI), waist circumference (WC), waist to hip ratio (WHR), fasting plasma glucose (FPG), 2-h post-OGTT glucose (2h PG), and HbA1C (all P values <0.05) in T2DM subjects. Multivariate regression analyses showed that BMI and HbA1C were the independent factors influencing serum FGF1 levels. Logistic regression analyses demonstrated that serum FGF1 was significantly associated with type 2 diabetes (P<0.01). Circulating concentrations of FGF1 are significantly increased in T2DM patients. Our results suggest that FGF1 may play a role in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Su Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Choi Y, Jang S, Choi MS, Ryoo ZY, Park T. Increased expression of FGF1-mediated signaling molecules in adipose tissue of obese mice. J Physiol Biochem 2016; 72:157-67. [DOI: 10.1007/s13105-016-0468-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 01/29/2016] [Indexed: 01/17/2023]
|
25
|
Grefhorst A, van den Beukel JC, van Houten ELA, Steenbergen J, Visser JA, Themmen AP. Estrogens increase expression of bone morphogenetic protein 8b in brown adipose tissue of mice. Biol Sex Differ 2015; 6:7. [PMID: 25866617 PMCID: PMC4392498 DOI: 10.1186/s13293-015-0025-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/13/2015] [Indexed: 01/08/2023] Open
Abstract
Background In mammals, white adipose tissue (WAT) stores fat and brown adipose tissue (BAT) dissipates fat to produce heat. Several studies showed that females have more active BAT. Members of the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families are expressed in BAT and are involved in BAT activity. We hypothesized that differential expression of BMPs and FGFs might contribute to sex differences in BAT activity. Methods We investigated the expression of BMPs and FGFs in BAT of male and female C57BL/6J mice upon gonadectomy, cold exposure, and exposure to sex steroids. Results Of the FGF family, BAT Fgf1, Fgf9, Fgf18, and Fgf21 expression was induced upon cold exposure, but only Fgf1 expression was obviously different between the sexes: females had 2.5-fold lower BAT Fgf1 than males. Cold exposure induced BAT Bmp4 and Bmp8b expression, but only Bmp8b differed between the sexes: females had 35-fold higher BAT Bmp8b than males. Ovariectomy almost completely blunted BAT Bmp8b expression, while orchidectomy had no effect. Male mice and ovariectomized female mice treated with diethylstilbestrol (DES) had approximately 350-fold and approximately 36-fold higher BAT Bmp8b expression, respectively. Ninety-day and 7-day treatment of female mice with dihydrotestosterone (DHT) decreased BAT Bmp8b expression by approximately fivefold and approximately fourfold, respectively. Finally, treatment of primary murine brown adipocytes with DES did not result in changes in Bmp8b expression. Conclusions BAT Bmp8b expression in mice is positively regulated by presence of ovaries and estrogens such as DES.
Collapse
Affiliation(s)
- Aldo Grefhorst
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Room Ee532, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Johanna C van den Beukel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Room Ee532, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - E Leonie Af van Houten
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Room Ee532, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jacobie Steenbergen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Room Ee532, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Room Ee532, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Axel Pn Themmen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Room Ee532, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
26
|
Nies VJM, Sancar G, Liu W, van Zutphen T, Struik D, Yu RT, Atkins AR, Evans RM, Jonker JW, Downes MR. Fibroblast Growth Factor Signaling in Metabolic Regulation. Front Endocrinol (Lausanne) 2015; 6:193. [PMID: 26834701 PMCID: PMC4718082 DOI: 10.3389/fendo.2015.00193] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/25/2015] [Indexed: 12/22/2022] Open
Abstract
The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.
Collapse
Affiliation(s)
- Vera J. M. Nies
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gencer Sancar
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Weilin Liu
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tim van Zutphen
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Dicky Struik
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Annette R. Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Johan W. Jonker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Johan W. Jonker, ; Michael Robert Downes,
| | - Michael Robert Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- *Correspondence: Johan W. Jonker, ; Michael Robert Downes,
| |
Collapse
|
27
|
Schering L, Hoene M, Kanzleiter T, Jähnert M, Wimmers K, Klaus S, Eckel J, Weigert C, Schürmann A, Maak S, Jonas W, Sell H. Identification of novel putative adipomyokines by a cross-species annotation of secretomes and expression profiles. Arch Physiol Biochem 2015; 121:194-205. [PMID: 26599229 DOI: 10.3109/13813455.2015.1092044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adipose tissue and skeletal muscle are organs that respond strongly to obesity and physical activity exhibiting high secretory activity. To identify novel putative adipomyokines, comparative expression studies of skeletal muscle and adipose tissue of lean (C57BL/6J) and obese (C57BL/6J on a high-fat diet and NZO) mice, of sedentary and endurance trained C57BL/6J mice and of cattle characterized by different amounts of intramuscular fat were combined with human secretome data and scored. In highly regulated transcripts, we identified 119 myokines, 79 adipokines and 22 adipomyokines. Network analysis of these candidates revealed remodelling of extracellular matrix and tissue fibrosis as relevant functions of several of these candidates. Given the pathophysiogical relevance of fibrosis for adipose-muscle-cross-talk in obesity and type 2 diabetes and its physiological role in exercise adaptation and meat quality of farm animals, they represent interesting candidates for further investigations in different research areas and species.
Collapse
Affiliation(s)
- Lisa Schering
- a Institute for Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology , Dummerstorf , Germany
| | - Miriam Hoene
- b Division of Clinical Chemistry and Pathobiochemistry , Department of Internal Medicine IV, University Hospital Tübingen , Tübingen , Germany
| | - Timo Kanzleiter
- c Department of Experimental Diabetology , German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany and German Center for Diabetes Research (DZD) , Neuherberg , Germany
- d German Center for Diabetes Research (DZD) , Neuherberg , Germany
| | - Markus Jähnert
- c Department of Experimental Diabetology , German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany and German Center for Diabetes Research (DZD) , Neuherberg , Germany
- d German Center for Diabetes Research (DZD) , Neuherberg , Germany
| | - Klaus Wimmers
- e Institute for Genome Biology, Leibniz Institute for Farm Animal Biology , Dummerstorf , Germany
| | - Susanne Klaus
- f Group of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke , Nuthetal , Germany , and
| | - Jürgen Eckel
- d German Center for Diabetes Research (DZD) , Neuherberg , Germany
- g Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center , Düsseldorf , Germany
| | - Cora Weigert
- b Division of Clinical Chemistry and Pathobiochemistry , Department of Internal Medicine IV, University Hospital Tübingen , Tübingen , Germany
- d German Center for Diabetes Research (DZD) , Neuherberg , Germany
| | - Annette Schürmann
- c Department of Experimental Diabetology , German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany and German Center for Diabetes Research (DZD) , Neuherberg , Germany
- d German Center for Diabetes Research (DZD) , Neuherberg , Germany
| | - Steffen Maak
- a Institute for Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology , Dummerstorf , Germany
| | - Wenke Jonas
- c Department of Experimental Diabetology , German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany and German Center for Diabetes Research (DZD) , Neuherberg , Germany
- d German Center for Diabetes Research (DZD) , Neuherberg , Germany
| | - Henrike Sell
- d German Center for Diabetes Research (DZD) , Neuherberg , Germany
- g Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center , Düsseldorf , Germany
| |
Collapse
|
28
|
Zamboni M, Rossi AP, Fantin F, Zamboni G, Chirumbolo S, Zoico E, Mazzali G. Adipose tissue, diet and aging. Mech Ageing Dev 2013; 136-137:129-37. [PMID: 24321378 DOI: 10.1016/j.mad.2013.11.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 11/14/2013] [Accepted: 11/27/2013] [Indexed: 12/25/2022]
Abstract
Age related increase in body fat mass, visceral adipose tissue (AT), and ectopic fat deposition are strongly related to worse health conditions in the elderly. Moreover, with aging higher inflammation in adipose tissue may be observed and may contribute to inflammaging. Aging may significantly affect AT function by modifying the profile of adipokines produced by adipose cells, reducing preadipocytes number and their function and increasing AT macrophages infiltration. The initiating events of the inflammatory cascade promoting a greater AT inflammatory profile are not completely understood. Nutrients may determine changes in the amount of body fat, in its distribution as well as in AT function with some nutrients showing a pro-inflammatory effect on AT. Evidences are sparse and quite controversial with only a few studies performed in older subjects. Different dietary patterns are the result of the complex interaction of foods and nutrients, thus more studies are needed to evaluate the association between dietary patterns and changes in adipose tissue structure, distribution and function in the elderly.
Collapse
Affiliation(s)
- Mauro Zamboni
- Department of Medicine, Geriatric Medicine, University of Verona, Italy.
| | - Andrea P Rossi
- Department of Medicine, Geriatric Medicine, University of Verona, Italy
| | - Francesco Fantin
- Department of Medicine, Geriatric Medicine, University of Verona, Italy
| | | | | | - Elena Zoico
- Department of Medicine, Geriatric Medicine, University of Verona, Italy
| | - Gloria Mazzali
- Department of Medicine, Geriatric Medicine, University of Verona, Italy
| |
Collapse
|
29
|
Mejhert N, Wilfling F, Esteve D, Galitzky J, Pellegrinelli V, Kolditz CI, Viguerie N, Tordjman J, Näslund E, Trayhurn P, Lacasa D, Dahlman I, Stich V, Lång P, Langin D, Bouloumié A, Clément K, Rydén M. Semaphorin 3C is a novel adipokine linked to extracellular matrix composition. Diabetologia 2013; 56:1792-801. [PMID: 23666167 DOI: 10.1007/s00125-013-2931-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/18/2013] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Alterations in white adipose tissue (WAT) function, including changes in protein (adipokine) secretion and extracellular matrix (ECM) composition, promote an insulin-resistant state. We set out to identify novel adipokines regulated by body fat mass in human subcutaneous WAT with potential roles in adipose function. METHODS Adipose transcriptome data and secretome profiles from conditions with increased/decreased WAT mass were combined. WAT donors were predominantly women. In vitro effects were assessed using recombinant protein. Results were confirmed by quantitative PCR/ELISA, metabolic assays and immunochemistry in human WAT and adipocytes. RESULTS We identified a hitherto uncharacterised adipokine, semaphorin 3C (SEMA3C), the expression of which correlated significantly with body weight, insulin resistance (HOMA of insulin resistance [HOMAIR], and the rate constant for the insulin tolerance test [KITT]) and adipose tissue morphology (hypertrophy vs hyperplasia). SEMA3C was primarily found in mature adipocytes and had no direct effect on human adipocyte differentiation, lipolysis, glucose transport or the expression of β-oxidation genes. This could in part be explained by the significant downregulation of its cognate receptors during adipogenesis. In contrast, in pre-adipocytes, SEMA3C increased the production/secretion of several ECM components (fibronectin, elastin and collagen I) and matricellular factors (connective tissue growth factor, IL6 and transforming growth factor-β1). Furthermore, the expression of SEMA3C in human WAT correlated positively with the degree of fibrosis in WAT. CONCLUSIONS/INTERPRETATION SEMA3C is a novel adipokine regulated by weight changes. The correlation with WAT hypertrophy and fibrosis in vivo, as well as its effects on ECM production in human pre-adipocytes in vitro, together suggest that SEMA3C constitutes an adipocyte-derived paracrine signal that influences ECM composition and may play a pathophysiological role in human WAT.
Collapse
Affiliation(s)
- N Mejhert
- Department of Medicine, Lipid Laboratory, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
During the last decades, obesity research has focused on food intake regulation, whereas energy expenditure has been mainly measured based on whole-body oxygen consumption. With the renaissance of brown adipose tissue (BAT) thermogenesis as a potential drug target in humans, more thought is put into alternative heat-producing mechanisms. Also, the interaction of peripheral and central components to regulate thermogenesis requires further studies. Certainly, several of the novel molecular genetic tools available now, compared with 40 years ago, will be helpful to gain new insights in BAT-controlled energy homeostasis and promises new approaches to pharmacologically control body weight.
Collapse
Affiliation(s)
- Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.
| | | |
Collapse
|
31
|
Binato R, de Souza Fernandez T, Lazzarotto-Silva C, Du Rocher B, Mencalha A, Pizzatti L, Bouzas LF, Abdelhay E. Stability of human mesenchymal stem cells during in vitro culture: considerations for cell therapy. Cell Prolif 2012; 46:10-22. [PMID: 23163975 DOI: 10.1111/cpr.12002] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/08/2012] [Indexed: 01/30/2023] Open
Abstract
Ex vivo expansion and manipulation of human mesenchymal stem cells are important approaches to immunoregulatory and regenerative cell therapies. Although these cells show great potential for use, issues relating to their overall nature emerge as problems in the field. The need for extensive cell quantity amplification in vitro to obtain sufficient cell numbers for use, poses a risk of accumulating genetic and epigenetic abnormalities that could lead to sporadic malignant cell transformation. In this study, we have examined human mesenchymal stem cells derived from bone marrow, over extended culture time, using cytogenetic analyses, mixed lymphocyte reactions, proteomics and gene expression assays to determine whether the cultures would retain their potential for use in subsequent passages. Results indicate that in vitro cultures of these cells demonstrated chromosome variability after passage 4, but their immunomodulatory functions and differentiation capacity were maintained. At the molecular level, changes were observed from passage 5 on, indicating initiation of differentiation. Together, these results lead to the hypothesis that human mesenchymal stem cells cultures can be used successfully in cell therapy up to passage 4. However, use of cells from higher passages would have to be analysed case by case.
Collapse
Affiliation(s)
- R Binato
- Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Rydén M, Agustsson T, Andersson J, Bolinder J, Toft E, Arner P. Adipose zinc-α2-glycoprotein is a catabolic marker in cancer and noncancerous states. J Intern Med 2012; 271:414-20. [PMID: 21883534 DOI: 10.1111/j.1365-2796.2011.02441.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Zinc-α2-glycoprotein (ZAG) has been proposed as a tumour-derived cancer cachexia factor. However, ZAG is produced by some normal tissues, including white adipose tissue (WAT), and high serum ZAG levels are present in nonmalignant conditions. We determined whether human WAT contributes to serum ZAG levels and how serum and WAT-secreted ZAG levels correlate with catabolism in patients with cancer and in obese subjects undergoing a very low-calorie diet (VLCD) for 11 days. DESIGN/SUBJECTS ZAG levels in serum and in conditioned medium from WAT/adipocytes were determined by enzyme-linked immunosorbent assay. ZAG release from WAT in vivo was determined in 10 healthy subjects. The correlation between ZAG and cachexia was studied in 34 patients with newly diagnosed gastrointestinal cancer. The impact of a VLCD on ZAG release and serum levels was assessed in 10 obese women. RESULTS ZAG was released from abdominal WAT and adipocytes in vitro. However, the arteriovenous differences in vivo showed that there was no significant contribution of WAT to the circulating levels. WAT-secreted but not serum ZAG correlated positively with poor nutritional status but not with fat mass (or body mass index) in patients with gastrointestinal cancer. In obese subjects on a VLCD, ZAG secretion from WAT increased significantly whereas serum levels remained unaltered. CONCLUSIONS ZAG is released from human WAT, but this tissue does not contribute significantly to the circulating levels. WAT-secreted ZAG correlates with nutritional status but not with fat mass in both cancer and nonmalignant conditions. Adipose ZAG is therefore a local factor activated primarily by the catabolic state per se.
Collapse
Affiliation(s)
- M Rydén
- Department of Medicine (H7), Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
33
|
Anveden Å, Sjöholm K, Jacobson P, Palsdottir V, Walley AJ, Froguel P, Al-Daghri N, McTernan PG, Mejhert N, Arner P, Sjöström L, Carlsson LMS, Svensson PA. ITIH-5 expression in human adipose tissue is increased in obesity. Obesity (Silver Spring) 2012; 20:708-14. [PMID: 21852814 DOI: 10.1038/oby.2011.268] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Adipocytes secrete many proteins that regulate metabolic functions. The gene inter-α (globulin) inhibitor H5 (ITIH-5) encodes a secreted protein and is known to be expressed abundantly in the placenta. However, using gene expression profiles data we observed high expression of ITIH-5 in adipose tissue. The aim of this study was to test the hypothesis that ITIH-5 is strongly expressed in human adipocytes and adipose tissue, and is related to obesity and clinical metabolic variables. ITIH-5 adipose tissue mRNA expression was analyzed with DNA microarray and real-time PCR, and its association with clinical variables was examined. ITIH-5 protein expression was analyzed using western blot. ITIH-5 mRNA expression was abundant in human adipose tissue, adipocytes, and placenta, and higher in subcutaneous (sc) compared to omental adipose tissue (P < 0.0001). ITIH-5 mRNA and protein expression in sc adipose tissue were higher in obese compared to lean subjects (P < 0.0001 and P < 0.001, respectively). ITIH-5 mRNA expression was reduced after diet-induced weight loss (P < 0.0001). ITIH-5 mRNA expression was associated with anthropometry and clinical metabolic variables. In conclusion, ITIH-5 is highly expressed in sc adipose tissue, increased in obesity, down regulated after weight loss, and associated with measures of body size and metabolism. Together, this indicates that ITIH-5 merits further investigation as a regulator of human metabolism.
Collapse
Affiliation(s)
- Åsa Anveden
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Holecki M, Chudek J, Więcek A, Titz-Bober M, Duława J. The serum level of fibroblast growth factor-23 and calcium-phosphate homeostasis in obese perimenopausal women. Int J Endocrinol 2011; 2011:707126. [PMID: 22164160 PMCID: PMC3227462 DOI: 10.1155/2011/707126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/18/2011] [Accepted: 10/18/2011] [Indexed: 11/17/2022] Open
Abstract
Plasma FGF-23 concentrations and its relationship with calcium-phosphate homeostasis were evaluated in 48 perimenopausal obese women and in 29 nonobese controls. Serum parathyroid hormone, 25-hydroxyvitamin D(3), CTX1, osteocalcin, total calcium, phosphorus, creatinine, and plasma intact FGF-23 concentrations were assessed. DXA of lumbar spine and femoral neck was performed to determine bone mineral density (BMD). Plasma iFGF-23 concentration was significantly higher in obese patients (by 42%) and correlated with age and BMD of proximal femur (R = -0.346; R = 0.285, resp.) but not with markers of bone turnover. However, serum phosphorus level in obese subjects was significantly lower. iFGF-23 concentration correlated significantly with body mass index (R = 0.292) and fat content (R = 0.259) in all study subjects. Moreover, a significant correlation between iFGF-23 and iPTH (R = 0.254) was found. No correlation between serum phosphorus or eGFR and plasma iFGF-23 and between eGFR and serum phosphorus was found. Elevated serum iFGF-23 concentration may partially explain lower phosphorus levels in the obese and seems not to reflect bone turnover.
Collapse
Affiliation(s)
- M. Holecki
- Department of Internal Medicine and Metabolic Diseases, Medical University of Silesia, ul. Ziołowa 45/47, 40-635 Katowice, Poland
| | - J. Chudek
- Department of Pathophysiology, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland
| | - A. Więcek
- Department of Nephrology, Endocrinology and Metabolic Diseases, Medical University of Silesia, ul. Francuska 20-24, 40-027 Katowice, Poland
| | - M. Titz-Bober
- Department of Internal Medicine and Metabolic Diseases, Medical University of Silesia, ul. Ziołowa 45/47, 40-635 Katowice, Poland
| | - J. Duława
- Department of Internal Medicine and Metabolic Diseases, Medical University of Silesia, ul. Ziołowa 45/47, 40-635 Katowice, Poland
| |
Collapse
|
35
|
Morton NM, Nelson YB, Michailidou Z, Di Rollo EM, Ramage L, Hadoke PWF, Seckl JR, Bunger L, Horvat S, Kenyon CJ, Dunbar DR. A stratified transcriptomics analysis of polygenic fat and lean mouse adipose tissues identifies novel candidate obesity genes. PLoS One 2011; 6:e23944. [PMID: 21915269 PMCID: PMC3168488 DOI: 10.1371/journal.pone.0023944] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/28/2011] [Indexed: 12/31/2022] Open
Abstract
Background Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. Results To enrich for adipose tissue obesity genes a ‘snap-shot’ pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. Conclusions A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity.
Collapse
Affiliation(s)
- Nicholas M Morton
- Molecular Metabolism Group, BHF/University Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hutley LJ, Newell FS, Kim YH, Luo X, Widberg CH, Shurety W, Prins JB, Whitehead JP. A putative role for endogenous FGF-2 in FGF-1 mediated differentiation of human preadipocytes. Mol Cell Endocrinol 2011; 339:165-71. [PMID: 21539890 DOI: 10.1016/j.mce.2011.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 11/27/2022]
Abstract
The defining characteristic of obesity is increased adipose tissue (AT) mass following chronic positive energy supply. AT mass is determined by adipocyte number and size, which reflect proliferation and differentiation of preadipocytes and hypertrophy of pre-existing adipocytes. The molecular pathways governing AT expansion are incompletely defined. We previously reported that FGF-1 primes proliferating primary human preadipocytes (phPA), thereby increasing adipogenesis. Here we examined whether FGF-1's adipogenic actions were due to modulation of other FGFs. Treatment of phPA with FGF-1 reduced FGF-2 mRNA/protein by 80%. To examine a putative functional role we performed siRNA knockdown studies. Following FGF-2 knockdown preadipocyte proliferation was decreased and expression of adipogenic genes (PPARγ, G3PDH and adiponectin) was increased at day 1 of differentiation. These results suggest that changes in endogenous FGF-2 levels contribute to FGF-1's early adipogenic effects and highlight the complexity of the paracrine interplay between FGFs within human AT.
Collapse
Affiliation(s)
- Louise J Hutley
- Metabolic Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland 4101, Australia
| | | | | | | | | | | | | | | |
Collapse
|