1
|
Juksar J, Mijdam R, Bosman S, van Oudenaarden A, Carlotti F, de Koning EJP. Effects of Neurogenin 3 Induction on Endocrine Differentiation and Delamination in Adult Human Pancreatic Ductal Organoids. Transpl Int 2025; 38:13422. [PMID: 40236756 PMCID: PMC11996654 DOI: 10.3389/ti.2025.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/13/2025] [Indexed: 04/17/2025]
Abstract
Diabetes mellitus is characterized by the loss of pancreatic insulin-secreting β-cells in the Islets of Langerhans. Understanding the regenerative potential of human islet cells is relevant in the context of putative restoration of islet function after damage and novel islet cell replacement therapies. Adult human pancreatic tissue can be cultured as three-dimensional organoids with the capacity for long-term expansion and the promise of endocrine cell formation. Here, we characterize the endocrine differentiation potential of human adult pancreatic organoids. Because exocrine-to-endocrine differentiation is dependent on the expression of Neurogenin 3 (NEUROG3), we first generated NEUROG3-inducible organoid lines. We show that doxycycline-induced NEUROG3 expression in the organoids leads to the formation of chromogranin A positive (CHGA+) endocrine progenitor cells. The efficiency of this differentiation was improved with the addition of thyroid hormone T3 and the AXL inhibitor R428. Further, compound screening demonstrated that modifying the pivotal embryonic endocrine pancreas signalling pathways driven by Notch, YAP, and EGFR led to increased NEUROG3 expression in organoids. In a similar fashion to embryonic development, adult ductal cells delaminated from the organoids after NEUROG3 induction. Thus, mechanisms in islet (re)generation including the initiation of endocrine differentiation and delamination can be achieved by NEUROG3 induction.
Collapse
Affiliation(s)
- Juri Juksar
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, Netherlands
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Rachel Mijdam
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, Netherlands
| | - Sabine Bosman
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, Netherlands
| | | | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Eelco J. P. de Koning
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, Netherlands
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
2
|
Maruoka A, Kimura A, Hattori F, Hitomi H, Osafune K, Shiojima I, Toyoda N. Expression of genes involved in thyroid hormone action in human induced pluripotent stem cells during differentiation to insulin-producing cells: Effects of iopanoic acid on differentiation. Mol Cell Endocrinol 2025; 599:112490. [PMID: 39921130 DOI: 10.1016/j.mce.2025.112490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
AIMS Type 3 iodothyronine deiodinase (Dio3) converts triiodothyronine (T3) to diiodothyronine, thereby reducing intracellular T3 levels. In this study, we investigated the potential roles of Dio3 in the differentiation of human pancreatic β cells, using β cells derived from human induced pluripotent stem cells (hiPSCs). MAIN METHODS hiPSCs were differentiated to β cells in a stepwise manner over 29 days. The differentiation medium was supplemented with B27, which contains T3 but not T4, instead of serum. The T3 levels in the differentiated cells were determined based on the amount of T3 supplied to the medium and the activity of Dio3 within the cells. Iopanoic acid (IOP) was used as the Dio3 inhibitor. KEY FINDINGS Dio3 expression is substantially altered during differentiation. IOP treatment reduced Dio3 activity on day 4 and increased T3 levels in the medium on day 29. To investigate the involvement of Dio3 during differentiation, we used IOP, in which cells differentiated in the presence of IOP (+IOP) were compared to those differentiated without IOP (-IOP). On day 29, the proportion of β cells expressing C-peptide, NKX6 homeobox 1, and both markers was considerably higher in the presence than in the absence of IOP. Furthermore, on day 29, the insulin content of differentiated + IOP cells was considerably higher than that of differentiated -IOP cells. CONCLUSIONS An increase in intracellular T3 content promoted via the inhibition of Dio3 activity by IOP from day 0-29 enhances the differentiation of hiPSCs to β cells.
Collapse
Affiliation(s)
- Azusa Maruoka
- Department of Medicine II, Kansai Medical University, Osaka, 5731010, Japan
| | - Azuma Kimura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 6068507, Japan
| | - Fumiyuki Hattori
- iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, 5731010, Japan
| | - Hirofumi Hitomi
- iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, 5731010, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 6068507, Japan
| | - Ichiro Shiojima
- Department of Medicine II, Kansai Medical University, Osaka, 5731010, Japan
| | - Nagaoki Toyoda
- Department of Medicine II, Kansai Medical University, Osaka, 5731010, Japan.
| |
Collapse
|
3
|
Wang Y, Chen H, Li Y, Hao H, Liu J, Chen Y, Meng J, Zhang S, Gu W, Lyu Z, Zang L, Mu Y. Predictive factors that influence the clinical efficacy of umbilical cord-derived mesenchymal stromal cells in the treatment of type 2 diabetes mellitus. Cytotherapy 2024; 26:311-316. [PMID: 38219142 DOI: 10.1016/j.jcyt.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/20/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Our previous single-center, randomized, double-blinded, placebo-controlled phase 2 study evaluated the safety and effectiveness of human umbilical cord mesenchymal stromal cell (UC-MSC) transfusion for treating patients with type 2 diabetes mellitus (T2DM). Indeed, this potential treatment strategy was able to reduce insulin use by half in a considerable number of patients. However, many other patients' responses to UC-MSC transfusion were insignificant. The selection of patients who might benefit from UC-MSC treatment is crucial from a clinical standpoint. METHODS In this post hoc analysis, 37 patients who received UC-MSC transfusions were divided into two groups based on whether their glycated hemoglobin (hemoglobin A1c, or HbA1c) level was less than 7% after receiving UC-MSC treatment. The baseline differences between the two groups were summarized, and potential factors influencing efficacy of UC-MSCs for T2DM were analyzed by univariate and multivariate logistic regression. The correlations between the relevant hormone levels and the treatment effect were further analyzed. RESULTS At the 9-week follow-up, 59.5% of patients achieved their targeted HbA1c level. Male patients with lower baseline HbA1c and greater C-peptide area under the curve (AUCC-pep) values responded favorably to UC-MSC transfusion, according to multivariate analysis. The effectiveness of UC-MSCs transfusion was predicted by AUCC-pep (cutoff value: 14.22 ng/h/mL). Further investigation revealed that AUCC-pep was increased in male patients with greater baseline testosterone levels. CONCLUSIONS Male patients with T2DM with greater AUCC-pep may be more likely to respond clinically to UC-MSC therapy, and further large-scale multi-ethnic clinical studies should be performed to confirm the conclusion.
Collapse
Affiliation(s)
- Yuepeng Wang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China; School of Medicine, Nankai University, Tianjin, China
| | - Haixu Chen
- Institute of Geriatrics & National Clinical Research Center of Geriatrics Disease, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yijun Li
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haojie Hao
- Department of Biotherapy, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiejie Liu
- Department of Biotherapy, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yulong Chen
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junhua Meng
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Saichun Zhang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weijun Gu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Lyu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Zang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Yiming Mu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Ramzy A, Saber N, Bruin JE, Thompson DM, Kim PTW, Warnock GL, Kieffer TJ. Thyroid Hormone Levels Correlate With the Maturation of Implanted Pancreatic Endoderm Cells in Patients With Type 1 Diabetes. J Clin Endocrinol Metab 2024; 109:413-423. [PMID: 37671625 PMCID: PMC10795919 DOI: 10.1210/clinem/dgad499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Macroencapsulated pancreatic endoderm cells (PECs) can reverse diabetes in rodents and preclinical studies revealed that thyroid hormones in vitro and in vivo bias PECs to differentiate into insulin-producing cells. In an ongoing clinical trial, PECs implanted in macroencapsulation devices into patients with type 1 diabetes were safe but yielded heterogeneous outcomes. Though most patients developed meal responsive C-peptide, levels were heterogeneous and explanted grafts had variable numbers of surviving cells with variable distribution of endocrine cells. METHODS We measured circulating triiodothyronine and thyroxine levels in all patients treated at 1 of the 7 sites of the ongoing clinical trial and determined if thyroid hormone levels were associated with the C-peptide or glucagon levels and cell fate of implanted PECs. RESULTS Both triiodothyronine and thyroxine levels were significantly associated with the proportion of cells that adopted an insulin-producing fate with a mature phenotype. Thyroid hormone levels were inversely correlated to circulating glucagon levels after implantation, suggesting that thyroid hormones lead PECs to favor an insulin-producing fate over a glucagon-producing fate. In mice, hyperthyroidism led to more rapid maturation of PECs into insulin-producing cells similar in phenotype to PECs in euthyroid mice. CONCLUSION These data highlight the relevance of thyroid hormones in the context of PEC therapy in patients with type 1 diabetes and suggest that a thyroid hormone adjuvant therapy may optimize cell outcomes in some PEC recipients.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nelly Saber
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jennifer E Bruin
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - David M Thompson
- Division of Endocrinology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Peter T W Kim
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Garth L Warnock
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
5
|
Wang W, Li S, Hao Y, Cui B, Zheng X, Yan L, Yang X. MicroRNA-365-3p inhibits bone marrow mesenchymal stem cell differentiation into islet-like cell clusters via targeting Pax6 and inhibiting the MEK/ERK pathway. Minerva Endocrinol (Torino) 2023; 48:420-431. [PMID: 34160186 DOI: 10.23736/s2724-6507.21.03389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Diabetes has severe impacts on the health of patients. The differentiation of mesenchymal stem cells (MSCs) into islet-like cell clusters (ICCs) is an effective protocol for the treatment of diabetes. microRNAs (miRs) regulate multiple cellular processes including cell differentiation. This study sought to identify the mechanism of miR-365-3p in the differentiation of bone marrow MSCs (bMSCs) into ICCs. METHODS Initially, the differentiation of bMSCs into ICCs was induced. Then, the miR-365-3p expression pattern in the bMSCs and ICCs was detected. Next, the miR-365-3p expression pattern was silenced in bMSCs to assess the effect on differentiation efficiency and measure the expressions of ICC marker genes during the differentiation of bMSCs into ICCs. The miR-365-3p downstream target genes were predicted and verified. Paired box protein 6 (Pax6) was downregulated in bMSCs with silenced miR-365-3p to evaluate the differentiation of bMSCs into ICCs. Furthermore, the Pax6 downstream pathway was evaluated. RESULTS The differentiation of bMSCs into ICCs was successfully induced. The miR-365-3p expression in bMSCs was higher than that in ICCs. miR-365-3p downregulation in bMSCs facilitated the differentiation of bMSCs into ICCs, as evidenced by elevated releases of insulin and C-peptide in ICCs and elevated expressions of ICC marker genes. Our findings denoted that miR-365-3p targeted Pax6. Inhibition of Pax6 expression annulled the promotion of miR-365-3p downregulation on the differentiation of bMSCs into ICCs. Increased phosphorylation levels of MEK and ERK were identified in ICCs after downregulation of miR-365-3p however they were decreased after downregulation of Pax6. CONCLUSIONS This study supported that miR-365-3p inhibited the differentiation of bMSCs into ICCs via targeting Pax6 and inhibiting the MEK/ERK pathway.
Collapse
Affiliation(s)
- Wenting Wang
- Department of Physiology, Mudanjiang Medical University, Mudanjiang, China
| | - Shu Li
- Department of Medical Function, Mudanjiang Medical University, Mudanjiang, China
| | - Yankun Hao
- Department of Medical Function, Mudanjiang Medical University, Mudanjiang, China
| | - Baixiang Cui
- Department of Pathology, The Second Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Xuezhi Zheng
- Department of Physiology, Mudanjiang Medical University, Mudanjiang, China
| | - Lei Yan
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang, China
| | - Xufang Yang
- Department of Pathophysiology, Mudanjiang Medical University, Mudanjiang, China -
| |
Collapse
|
6
|
Jiang H, Jiang FX. Human pluripotent stem cell-derived β cells: Truly immature islet β cells for type 1 diabetes therapy? World J Stem Cells 2023; 15:182-195. [PMID: 37180999 PMCID: PMC10173812 DOI: 10.4252/wjsc.v15.i4.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
A century has passed since the Nobel Prize winning discovery of insulin, which still remains the mainstay treatment for type 1 diabetes mellitus (T1DM) to this day. True to the words of its discoverer Sir Frederick Banting, “insulin is not a cure for diabetes, it is a treatment”, millions of people with T1DM are dependent on daily insulin medications for life. Clinical donor islet transplantation has proven that T1DM is curable, however due to profound shortages of donor islets, it is not a mainstream treatment option for T1DM. Human pluripotent stem cell derived insulin-secreting cells, pervasively known as stem cell-derived β cells (SC-β cells), are a promising alternative source and have the potential to become a T1DM treatment through cell replacement therapy. Here we briefly review how islet β cells develop and mature in vivo and several types of reported SC-β cells produced using different ex vivo protocols in the last decade. Although some markers of maturation were expressed and glucose stimulated insulin secretion was shown, the SC-β cells have not been directly compared to their in vivo counterparts, generally have limited glucose response, and are not yet fully matured. Due to the presence of extra-pancreatic insulin-expressing cells, and ethical and technological issues, further clarification of the true nature of these SC-β cells is required.
Collapse
Affiliation(s)
- Helen Jiang
- Sir Charles Gairdner Hospital, University of Western Australia, Perth 6009, Australia
| | - Fang-Xu Jiang
- School of Biomedical Sciences, University of Western Australia, Perth 6009, Australia
- School of Health and Medical Sciences, Edith Cowan University, Perth 6027, Australia
| |
Collapse
|
7
|
Kim Y, Koh JS, Woo SD, Lee SI, Kang DH, Park D, Chung C, Kwon IS, Lee JE. The Tri-iodothyronine (T3) Level Is a Prognostic Factor for Patients With Advanced NSCLC: Receiving Immune Checkpoint Inhibitors and Is Associated With Liver Metastasis. Clin Med Insights Oncol 2022; 16:11795549221139522. [PMID: 36532699 PMCID: PMC9751177 DOI: 10.1177/11795549221139522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/01/2022] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Endocrine hormones influence tumor progression and the response to treatment. Despite the importance of immune checkpoint inhibitors (ICIs) as treatments for advanced non-small cell lung cancer (NSCLC), few studies have explored the effects of hormone levels in NSCLC patients on the effectiveness of ICI therapies. We thus investigated the effects of baseline blood markers in patients with advanced NSCLC on ICI treatments. METHODS Patients with advanced NSCLC who received programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors at Chungnam National University Hospital between December 2016 and November 2020 and who lacked any history of thyroid gland-related diseases were analyzed retrospectively. We collected clinical information and baseline laboratory data, including the levels of endocrine hormones, cytokines, complete blood counts (CBCs), and peripheral blood chemistry panels. We explored the relationships of hormone levels with clinical outcomes (overall survival [OS], progression-free survival [PFS], and best response), liver metastasis, and blood markers using the Kaplan-Meier method, Cox's proportional hazards regression, and logistic regression. RESULTS A total of 113 patients were enrolled. A shorter PFS was independently associated with liver metastasis, higher cortisol levels, and lower hemoglobin (Hb) levels; a shorter OS was associated with liver metastasis, lower tri-iodothyronine (T3) levels, higher lactate dehydrogenase (LDH) levels, and lower albumin levels. Patients with low T3 levels exhibited a shorter PFS and OS, and a poorer best response. Patients with low T3 levels tended to have higher disease progression rates, lower levels of adrenocorticotropic hormone (ACTH), C-peptide, albumin, Hb, and neutrophil-to-lymphocyte ratio, and higher levels of interleukin (IL)-6, white blood cells, platelets, compared with those with normal T3 levels. We found a significant association between a low T3 level and liver metastasis. CONCLUSIONS We found the baseline T3 level was associated with both prognosis and the response to ICIs in patients with advanced NSCLC, probably reflecting impaired liver function and systemic inflammation induced by the interaction of T3 with other biomarkers, such as IL-6, ACTH, cortisol, C-peptide, Hb, LDH, and albumin.
Collapse
Affiliation(s)
- Yoonjoo Kim
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeong Suk Koh
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seong-Dae Woo
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Song-I Lee
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Da Hyun Kang
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Dongil Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - In-Sun Kwon
- Clinical Trials Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jeong Eun Lee
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Katz LS, Argmann C, Lambertini L, Scott DK. T3 and glucose increase expression of phosphoenolpyruvate carboxykinase (PCK1) leading to increased β-cell proliferation. Mol Metab 2022; 66:101646. [PMID: 36455788 PMCID: PMC9731891 DOI: 10.1016/j.molmet.2022.101646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Thyroid hormone (T3) and high glucose concentrations are critical components of β-cell maturation and function. In the present study, we asked whether T3 and glucose signaling pathways coordinately regulate transcription of genes important for β-cell function and proliferation. METHODS RNA-seq analysis was performed on cadaveric human islets from five different donors in response to low and high glucose concentrations and in the presence or absence of T3. Gene expression was also studies in sorted human β-cells, mouse islets and Ins-1 cells by RT-qPCR. Silencing of the thyroid hormone receptors (THR) was conducted using lentiviruses. Proliferation was assessed by ki67 immunostaining in primary human/mouse islets. Chromatin immunoprecipitation and proximity ligation assay were preformed to validate interactions of ChREBP and THR. RESULTS We found glucose-mediated expression of carbohydrate response element binding protein alpha and beta (ChREBPα and ChREBPβ) mRNAs and their target genes are highly dependent on T3 concentrations in rodent and human β-cells. In β-cells, T3 and glucose coordinately regulate the expression of ChREBPβ and PCK1 (phosphoenolpyruvate carboxykinase-1) among other important genes for β-cell maturation. Additionally, we show the thyroid hormone receptor (THR) and ChREBP interact, and their relative response elements are located near to each other on mutually responsive genes. In FACS-sorted adult human β-cells, we found that high concentrations of glucose and T3 induced the expression of PCK1. Next, we show that overexpression of Pck1 together with dimethyl malate (DMM), a substrate precursor, significantly increased β-cell proliferation in human islets. Finally, using a Cre-Lox approach, we demonstrated that ChREBPβ contributes to Pck1-dependent β-cell proliferation in mouse β-cells. CONCLUSIONS We conclude that T3 and glucose act together to regulate ChREBPβ, leading to increased expression and activity of Pck1, and ultimately increased β-cell proliferation.
Collapse
Affiliation(s)
- Liora S Katz
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Carmen Argmann
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luca Lambertini
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Abstract
The ability to maintain normoglycaemia, through glucose-sensitive insulin release, is a key aspect of postnatal beta cell function. However, terminally differentiated beta cell identity does not necessarily imply functional maturity. Beta cell maturation is therefore a continuation of beta cell development, albeit a process that occurs postnatally in mammals. Although many important features have been identified in the study of beta cell maturation, as of yet no unified mechanistic model of beta cell functional maturity exists. Here, we review recent findings about the underlying mechanisms of beta cell functional maturation. These findings include systemic hormonal and nutritional triggers that operate through energy-sensing machinery shifts within beta cells, resulting in primed metabolic states that allow for appropriate glucose trafficking and, ultimately, insulin release. We also draw attention to the expansive synergistic nature of these pathways and emphasise that beta cell maturation is dependent on overlapping regulatory and metabolic networks.
Collapse
Affiliation(s)
- Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Role of the Transcription Factor MAFA in the Maintenance of Pancreatic β-Cells. Int J Mol Sci 2022; 23:ijms23094478. [PMID: 35562869 PMCID: PMC9101179 DOI: 10.3390/ijms23094478] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic β-cells are specialized to properly regulate blood glucose. Maintenance of the mature β-cell phenotype is critical for glucose metabolism, and β-cell failure results in diabetes mellitus. Recent studies provide strong evidence that the mature phenotype of β-cells is maintained by several transcription factors. These factors are also required for β-cell differentiation from endocrine precursors or maturation from immature β-cells during pancreatic development. Because the reduction or loss of these factors leads to β-cell failure and diabetes, inducing the upregulation or inhibiting downregulation of these transcription factors would be beneficial for studies in both diabetes and stem cell biology. Here, we discuss one such factor, i.e., the transcription factor MAFA. MAFA is a basic leucine zipper family transcription factor that can activate the expression of insulin in β-cells with PDX1 and NEUROD1. MAFA is indeed indispensable for the maintenance of not only insulin expression but also function of adult β-cells. With loss of MAFA in type 2 diabetes, β-cells cannot maintain their mature phenotype and are dedifferentiated. In this review, we first briefly summarize the functional roles of MAFA in β-cells and then mainly focus on the molecular mechanism of cell fate conversion regulated by MAFA.
Collapse
|
11
|
Alvarez-Dominguez JR, Melton DA. Cell maturation: Hallmarks, triggers, and manipulation. Cell 2022; 185:235-249. [PMID: 34995481 PMCID: PMC8792364 DOI: 10.1016/j.cell.2021.12.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023]
Abstract
How cells become specialized, or "mature," is important for cell and developmental biology. While maturity is usually deemed a terminal fate, it may be more helpful to consider maturation not as a switch but as a dynamic continuum of adaptive phenotypic states set by genetic and environment programing. The hallmarks of maturity comprise changes in anatomy (form, gene circuitry, and interconnectivity) and physiology (function, rhythms, and proliferation) that confer adaptive behavior. We discuss efforts to harness their chemical (nutrients, oxygen, and growth factors) and physical (mechanical, spatial, and electrical) triggers in vitro and in vivo and how maturation strategies may support disease research and regenerative medicine.
Collapse
Affiliation(s)
- Juan R. Alvarez-Dominguez
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Douglas A. Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Ghila L, Legøy TA, Chera S. A Method for Encapsulation and Transplantation into Diabetic Mice of Human Induced Pluripotent Stem Cells (hiPSC)-Derived Pancreatic Progenitors. Methods Mol Biol 2022; 2454:327-349. [PMID: 33786775 DOI: 10.1007/7651_2021_356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pancreatic islet endocrine cells generated from patient-derived induced pluripotent stem cells represent a great strategy for both disease modeling and regenerative medicine. Nevertheless, these cells inherently miss the effects of the intricate network of systemic signals characterizing the living organisms. Xenotransplantation of in vitro differentiating cells into murine hosts substantially compensates for this drawback.Here we describe our transplantation strategy of encapsulated differentiating pancreatic progenitors into diabetic immunosuppressed (NSG) overtly diabetic mice generated by the total ablation of insulin-producing cells following diphtheria toxin administration. We will detail the differentiation protocol employed, the alginate encapsulation procedure, and the xenotransplantation steps required for a successful and reproducible experiment.
Collapse
Affiliation(s)
- Luiza Ghila
- Department of Clinical Science, Faculty of Medicine, Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Thomas Aga Legøy
- Department of Clinical Science, Faculty of Medicine, Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, Faculty of Medicine, Center for Diabetes Research, University of Bergen, Bergen, Norway.
| |
Collapse
|
13
|
Thyroid Hormone Effect on the Differentiation of Human Induced Pluripotent Stem Cells into Hepatocyte-Like Cells. Pharmaceuticals (Basel) 2021; 14:ph14060544. [PMID: 34200130 PMCID: PMC8230271 DOI: 10.3390/ph14060544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) hold great potential as an unlimited source for obtaining hepatocyte-like cells (HLCs) for drug research. However, current applications of HLCs have been severely limited by the inability to produce mature hepatocytes from hiPSCs in vitro. Thyroid hormones are one of the hormones that surge during the perinatal period when liver maturation takes place. Here we assessed the influence of thyroid hormone on hepatic progenitor differentiation to HLCs. We analyzed gene and protein expression of early and late hepatic markers and demonstrated the selective activity of thyroid hormone on different genes. Particularly, we demonstrated thyroid hormone-dependent inhibition of the fetal hepatic marker AFP. Our study sheds light on the role of thyroid hormone during liver differentiation and maturation.
Collapse
|
14
|
Balboa D, Iworima DG, Kieffer TJ. Human Pluripotent Stem Cells to Model Islet Defects in Diabetes. Front Endocrinol (Lausanne) 2021; 12:642152. [PMID: 33828531 PMCID: PMC8020750 DOI: 10.3389/fendo.2021.642152] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus is characterized by elevated levels of blood glucose and is ultimately caused by insufficient insulin production from pancreatic beta cells. Different research models have been utilized to unravel the molecular mechanisms leading to the onset of diabetes. The generation of pancreatic endocrine cells from human pluripotent stem cells constitutes an approach to study genetic defects leading to impaired beta cell development and function. Here, we review the recent progress in generating and characterizing functional stem cell-derived beta cells. We summarize the diabetes disease modeling possibilities that stem cells offer and the challenges that lie ahead to further improve these models.
Collapse
Affiliation(s)
- Diego Balboa
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- *Correspondence: Diego Balboa,
| | - Diepiriye G. Iworima
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Insulin/Glucose-Responsive Cells Derived from Induced Pluripotent Stem Cells: Disease Modeling and Treatment of Diabetes. Cells 2020; 9:cells9112465. [PMID: 33198288 PMCID: PMC7696367 DOI: 10.3390/cells9112465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes, characterized by dysfunction of pancreatic β-cells and insulin resistance in peripheral organs, accounts for more than 90% of all diabetes. Despite current developments of new drugs and strategies to prevent/treat diabetes, there is no ideal therapy targeting all aspects of the disease. Restoration, however, of insulin-producing β-cells, as well as insulin-responsive cells, would be a logical strategy for the treatment of diabetes. In recent years, generation of transplantable cells derived from stem cells in vitro has emerged as an important research area. Pluripotent stem cells, either embryonic or induced, are alternative and feasible sources of insulin-secreting and glucose-responsive cells. This notwithstanding, consistent generation of robust glucose/insulin-responsive cells remains challenging. In this review, we describe basic concepts of the generation of induced pluripotent stem cells and subsequent differentiation of these into pancreatic β-like cells, myotubes, as well as adipocyte- and hepatocyte-like cells. Use of these for modeling of human disease is now feasible, while development of replacement therapies requires continued efforts.
Collapse
|
16
|
Gauthier BR, Sola‐García A, Cáliz‐Molina MÁ, Lorenzo PI, Cobo‐Vuilleumier N, Capilla‐González V, Martin‐Montalvo A. Thyroid hormones in diabetes, cancer, and aging. Aging Cell 2020; 19:e13260. [PMID: 33048427 PMCID: PMC7681062 DOI: 10.1111/acel.13260] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 09/13/2020] [Indexed: 12/18/2022] Open
Abstract
Thyroid function is central in the control of physiological and pathophysiological processes. Studies in animal models and human research have determined that thyroid hormones modulate cellular processes relevant for aging and for the majority of age‐related diseases. While several studies have associated mild reductions on thyroid hormone function with exceptional longevity in animals and humans, alterations in thyroid hormones are serious medical conditions associated with unhealthy aging and premature death. Moreover, both hyperthyroidism and hypothyroidism have been associated with the development of certain types of diabetes and cancers, indicating a great complexity of the molecular mechanisms controlled by thyroid hormones. In this review, we describe the latest findings in thyroid hormone research in the field of aging, diabetes, and cancer, with a special focus on hepatocellular carcinomas. While aging studies indicate that the direct modulation of thyroid hormones is not a viable strategy to promote healthy aging or longevity and the development of thyromimetics is challenging due to inefficacy and potential toxicity, we argue that interventions based on the use of modulators of thyroid hormone function might provide therapeutic benefit in certain types of diabetes and cancers.
Collapse
Affiliation(s)
- Benoit R. Gauthier
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases‐CIBERDEM Instituto de Salud Carlos III Madrid Spain
| | - Alejandro Sola‐García
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - María Ángeles Cáliz‐Molina
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - Petra Isabel Lorenzo
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - Nadia Cobo‐Vuilleumier
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - Vivian Capilla‐González
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - Alejandro Martin‐Montalvo
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| |
Collapse
|
17
|
Kemkem Y, Nasteska D, de Bray A, Bargi-Souza P, Peliciari-Garcia RA, Guillou A, Mollard P, Hodson DJ, Schaeffer M. Maternal hypothyroidism in mice influences glucose metabolism in adult offspring. Diabetologia 2020; 63:1822-1835. [PMID: 32472193 PMCID: PMC7406527 DOI: 10.1007/s00125-020-05172-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS During pregnancy, maternal metabolic disease and hormonal imbalance may alter fetal beta cell development and/or proliferation, thus leading to an increased risk for developing type 2 diabetes in adulthood. Although thyroid hormones play an important role in fetal endocrine pancreas development, the impact of maternal hypothyroidism on glucose homeostasis in adult offspring remains poorly understood. METHODS We investigated this using a mouse model of hypothyroidism, induced by administration of an iodine-deficient diet supplemented with propylthiouracil during gestation. RESULTS Here, we show that, when fed normal chow, adult mice born to hypothyroid mothers were more glucose-tolerant due to beta cell hyperproliferation (two- to threefold increase in Ki67-positive beta cells) and increased insulin sensitivity. However, following 8 weeks of high-fat feeding, these offspring gained 20% more body weight, became profoundly hyperinsulinaemic (with a 50% increase in fasting insulin concentration), insulin-resistant and glucose-intolerant compared with controls from euthyroid mothers. Furthermore, altered glucose metabolism was maintained in a second generation of animals. CONCLUSIONS/INTERPRETATION Therefore, gestational hypothyroidism induces long-term alterations in endocrine pancreas function, which may have implications for type 2 diabetes prevention in affected individuals.
Collapse
Affiliation(s)
- Yasmine Kemkem
- Institute of Functional Genomics, CNRS, Inserm U1191, University of Montpellier, F-34094, Montpellier, France
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, UK
- COMPARE University of Birmingham and University of Nottingham, Midlands, Edgbaston, Nottingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Anne de Bray
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, UK
- COMPARE University of Birmingham and University of Nottingham, Midlands, Edgbaston, Nottingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo A Peliciari-Garcia
- Morphophysiology and Pathology Sector, Department of Biological Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Anne Guillou
- Institute of Functional Genomics, CNRS, Inserm U1191, University of Montpellier, F-34094, Montpellier, France
| | - Patrice Mollard
- Institute of Functional Genomics, CNRS, Inserm U1191, University of Montpellier, F-34094, Montpellier, France
| | - David J Hodson
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, UK
- COMPARE University of Birmingham and University of Nottingham, Midlands, Edgbaston, Nottingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Marie Schaeffer
- Institute of Functional Genomics, CNRS, Inserm U1191, University of Montpellier, F-34094, Montpellier, France.
| |
Collapse
|
18
|
Huang H, Bader TN, Jin S. Signaling Molecules Regulating Pancreatic Endocrine Development from Pluripotent Stem Cell Differentiation. Int J Mol Sci 2020; 21:E5867. [PMID: 32824212 PMCID: PMC7461594 DOI: 10.3390/ijms21165867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/24/2022] Open
Abstract
Diabetes is one of the leading causes of death globally. Currently, the donor pancreas is the only source of human islets, placing extreme constraints on supply. Hence, it is imperative to develop renewable islets for diabetes research and treatment. To date, extensive efforts have been made to derive insulin-secreting cells from human pluripotent stem cells with substantial success. However, the in vitro generation of functional islet organoids remains a challenge due in part to our poor understanding of the signaling molecules indispensable for controlling differentiation pathways towards the self-assembly of functional islets from stem cells. Since this process relies on a variety of signaling molecules to guide the differentiation pathways, as well as the culture microenvironments that mimic in vivo physiological conditions, this review highlights extracellular matrix proteins, growth factors, signaling molecules, and microenvironments facilitating the generation of biologically functional pancreatic endocrine cells from human pluripotent stem cells. Signaling pathways involved in stepwise differentiation that guide the progression of stem cells into the endocrine lineage are also discussed. The development of protocols enabling the generation of islet organoids with hormone release capacities equivalent to native adult islets for clinical applications, disease modeling, and diabetes research are anticipated.
Collapse
Affiliation(s)
- Hui Huang
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA; (H.H.); (T.N.B.)
| | - Taylor N. Bader
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA; (H.H.); (T.N.B.)
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA; (H.H.); (T.N.B.)
- Center of Biomanufacturing for Regenerative Medicine, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
19
|
Mattis KK, Gloyn AL. From Genetic Association to Molecular Mechanisms for Islet-cell Dysfunction in Type 2 Diabetes. J Mol Biol 2020; 432:1551-1578. [PMID: 31945378 DOI: 10.1016/j.jmb.2019.12.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/30/2022]
Abstract
Genome-wide association studies (GWAS) have identified over 400 signals robustly associated with risk for type 2 diabetes (T2D). At the vast majority of these loci, the lead single nucleotide polymorphisms (SNPs) reside in noncoding regions of the genome, which hampers biological inference and translation of genetic discoveries into disease mechanisms. The study of these T2D risk variants in normoglycemic individuals has revealed that a significant proportion are exerting their disease risk through islet-cell dysfunction. The central role of the islet is also demonstrated by numerous studies, which have shown an enrichment of these signals in islet-specific epigenomic annotations. In recent years the emergence of authentic human beta-cell lines, and advances in genome-editing technologies coupled with improved protocols differentiating human pluripotent stem cells into beta-like cells has opened up new opportunities for T2D disease modeling. Here we review the current understanding on the genetic basis of T2D focusing on approaches, which have facilitated the identification of causal variants and their effector transcripts in human islets. We will present examples of functional studies based on animal and conventional cellular systems and highlight the potential of novel stem cell-based T2D disease models.
Collapse
Affiliation(s)
- Katia K Mattis
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, UK
| | - Anna L Gloyn
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, UK; National Institute of Health Research, Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK.
| |
Collapse
|
20
|
Kuncorojakti S, Srisuwatanasagul S, Kradangnga K, Sawangmake C. Insulin-Producing Cell Transplantation Platform for Veterinary Practice. Front Vet Sci 2020; 7:4. [PMID: 32118053 PMCID: PMC7028771 DOI: 10.3389/fvets.2020.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) remains a global concern in both human and veterinary medicine. Type I DM requires prolonged and consistent exogenous insulin administration to address hyperglycemia, which can increase the risk of diabetes complications such as retinopathy, nephropathy, neuropathy, and heart disorders. Cell-based therapies have been successful in human medicine using the Edmonton protocol. These therapies help maintain the production of endogenous insulin and stabilize blood glucose levels and may possibly be adapted to veterinary clinical practice. The limited number of cadaveric pancreas donors and the long-term use of immunosuppressive agents are the main obstacles for this protocol. Over the past decade, the development of potential therapies for DM has mainly focused on the generation of effective insulin-producing cells (IPCs) from various sources of stem cells that can be transplanted into the body. Another successful application of stem cells in type I DM therapies is transplanting generated IPCs. Encapsulation can be an alternative strategy to protect IPCs from rejection by the body due to their immunoisolation properties. This review summarizes current concepts of IPCs and encapsulation technology for veterinary clinical application and proposes a potential stem-cell-based platform for veterinary diabetic regenerative therapy.
Collapse
Affiliation(s)
- Suryo Kuncorojakti
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sayamon Srisuwatanasagul
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Krishaporn Kradangnga
- Department of Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Legøy TA, Vethe H, Abadpour S, Strand BL, Scholz H, Paulo JA, Ræder H, Ghila L, Chera S. Encapsulation boosts islet-cell signature in differentiating human induced pluripotent stem cells via integrin signalling. Sci Rep 2020; 10:414. [PMID: 31942009 PMCID: PMC6962451 DOI: 10.1038/s41598-019-57305-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022] Open
Abstract
Cell replacement therapies hold great therapeutic potential. Nevertheless, our knowledge of the mechanisms governing the developmental processes is limited, impeding the quality of differentiation protocols. Generating insulin-expressing cells in vitro is no exception, with the guided series of differentiation events producing heterogeneous cell populations that display mixed pancreatic islet phenotypes and immaturity. The achievement of terminal differentiation ultimately requires the in vivo transplantation of, usually, encapsulated cells. Here we show the impact of cell confinement on the pancreatic islet signature during the guided differentiation of alginate encapsulated human induced pluripotent stem cells (hiPSCs). Our results show that encapsulation improves differentiation by significantly reshaping the proteome landscape of the cells towards an islet-like signature. Pathway analysis is suggestive of integrins transducing the encapsulation effect into intracellular signalling cascades promoting differentiation. These analyses provide a molecular framework for understanding the confinement effects on hiPSCs differentiation while confirming its importance for this process.
Collapse
Affiliation(s)
- Thomas Aga Legøy
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Heidrun Vethe
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shadab Abadpour
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute for Surgical Research and Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Berit L Strand
- NOBIPOL, Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute for Surgical Research and Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Helge Ræder
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Luiza Ghila
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
22
|
López-Noriega L, Capilla-González V, Cobo-Vuilleumier N, Martin-Vazquez E, Lorenzo PI, Martinez-Force E, Soriano-Navarro M, García-Fernández M, Romero-Zerbo SY, Bermúdez-Silva FJ, Díaz-Contreras I, Sánchez-Cuesta A, Santos-Ocaña C, Hmadcha A, Soria B, Martín F, Gauthier BR, Martin-Montalvo A. Inadequate control of thyroid hormones sensitizes to hepatocarcinogenesis and unhealthy aging. Aging (Albany NY) 2019; 11:7746-7779. [PMID: 31518338 PMCID: PMC6781991 DOI: 10.18632/aging.102285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
An inverse correlation between thyroid hormone levels and longevity has been reported in several species and reduced thyroid hormone levels have been proposed as a biomarker for healthy aging and metabolic fitness. However, hypothyroidism is a medical condition associated with compromised health and reduced life expectancy. Herein, we show, using wild-type and the Pax8 ablated model of hypothyroidism in mice, that hyperthyroidism and severe hypothyroidism are associated with an overall unhealthy status and shorter lifespan. Mild hypothyroid Pax8 +/- mice were heavier and displayed insulin resistance, hepatic steatosis and increased prevalence of liver cancer yet had normal lifespan. These pathophysiological conditions were precipitated by hepatic mitochondrial dysfunction and oxidative damage accumulation. These findings indicate that individuals carrying mutations on PAX8 may be susceptible to develop liver cancer and/or diabetes and raise concerns regarding the development of interventions aiming to modulate thyroid hormones to promote healthy aging or lifespan in mammals.
Collapse
Affiliation(s)
- Livia López-Noriega
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Vivian Capilla-González
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Nadia Cobo-Vuilleumier
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Eugenia Martin-Vazquez
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Petra Isabel Lorenzo
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | | | | | - María García-Fernández
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - Silvana Yanina Romero-Zerbo
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Málaga, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Javier Bermúdez-Silva
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Málaga, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Díaz-Contreras
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Sánchez-Cuesta
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and CIBERER, Sevilla, Spain
| | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and CIBERER, Sevilla, Spain
| | - Abdelkrim Hmadcha
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Bernat Soria
- Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain.,Deptartment of Physiology, University Miguel Hernández School of Medicine Sant Joan d'Alacant, Alicante, Spain
| | - Franz Martín
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Benoit Raymond Gauthier
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Martin-Montalvo
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| |
Collapse
|
23
|
Balboa D, Saarimäki-Vire J, Otonkoski T. Concise Review: Human Pluripotent Stem Cells for the Modeling of Pancreatic β-Cell Pathology. Stem Cells 2018; 37:33-41. [PMID: 30270471 PMCID: PMC7379656 DOI: 10.1002/stem.2913] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic β‐cells are the only source of insulin. Disturbances in β‐cell development or function may thus result in insulin deficiency or excess, presenting as hyper‐ or hypoglycemia. It is increasingly evident that common forms of diabetes (types 1 and 2) are pathogenically heterogeneous. Development of efficient therapies is dependent on reliable disease models. Although animal models are remarkably useful research tools, they present limitations because of species differences. As an alternative, human pluripotent stem cell technologies offer multiple possibilities for the study of human diseases in vitro. In the last decade, advances in the derivation of induced pluripotent stem cells from diabetic patients, combined with β‐cell differentiation protocols, have resulted in the generation of useful disease models for diabetes. First disease models have been focusing on monogenic diabetes. The development of genome editing technologies, more advanced differentiation protocols and humanized mouse models based on transplanted cells have opened new horizons for the modeling of more complex forms of β‐cell dysfunction. We present here the incremental progress made in the modeling of diabetes using pluripotent stem cells. We discuss the current challenges and opportunities of these approaches to dissect β‐cell pathology and devise new pharmacological and cell replacement therapies. stem cells2019;37:33–41
Collapse
Affiliation(s)
- Diego Balboa
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Aguayo-Mazzucato C, Lee TB, Matzko M, DiIenno A, Rezanejad H, Ramadoss P, Scanlan T, Zavacki AM, Larsen PR, Hollenberg A, Colton C, Sharma A, Bonner-Weir S. T 3 Induces Both Markers of Maturation and Aging in Pancreatic β-Cells. Diabetes 2018; 67:1322-1331. [PMID: 29625991 PMCID: PMC6014556 DOI: 10.2337/db18-0030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/29/2018] [Indexed: 12/25/2022]
Abstract
Previously, we showed that thyroid hormone (TH) triiodothyronine (T3) enhanced β-cell functional maturation through induction of Mafa High levels of T3 have been linked to decreased life span in mammals and low levels to lengthened life span, suggesting a relationship between TH and aging. Here, we show that T3 increased p16Ink4a (a β-cell senescence marker and effector) mRNA in rodent and human β-cells. The kinetics of Mafa and p16Ink4a induction suggested both genes as targets of TH via TH receptors (THRs) binding to specific response elements. Using specific agonists CO23 and GC1, we showed that p16Ink4a expression was controlled by THRA and Mafa by THRB. Using chromatin immunoprecipitation and a transient transfection yielding biotinylated THRB1 or THRA isoforms to achieve specificity, we determined that THRA isoform bound to p16Ink4a , whereas THRB1 bound to Mafa but not to p16Ink4a On a cellular level, T3 treatment accelerated cell senescence as shown by increased number of β-cells with acidic β-galactosidase activity. Our data show that T3 can simultaneously induce both maturation (Mafa) and aging (p16Ink4a ) effectors and that these dichotomous effects are mediated through different THR isoforms. These findings may be important for further improving stem cell differentiation protocols to produce functional β-cells for replacement therapies in diabetes.
Collapse
Affiliation(s)
| | - Terence B Lee
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | | | - Amanda DiIenno
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Preeti Ramadoss
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Thomas Scanlan
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR
| | - Ann Marie Zavacki
- Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - P Reed Larsen
- Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Anthony Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Clark Colton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Arun Sharma
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | | |
Collapse
|
25
|
Chen C, Xie Z, Shen Y, Xia SF. The Roles of Thyroid and Thyroid Hormone in Pancreas: Physiology and Pathology. Int J Endocrinol 2018; 2018:2861034. [PMID: 30013597 PMCID: PMC6022313 DOI: 10.1155/2018/2861034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/18/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022] Open
Abstract
It is widely accepted that thyroid hormones (THs), secreted from the thyroid, play important roles in energy metabolism. It is also known that THs also alter the functioning of other endocrine glands; however, their effects on pancreatic function have not yet been reviewed. One of the main functions of the pancreas is insulin secretion, which is altered in diabetes. Diabetes, therefore, could be related to thyroid dysfunction. Earlier research on this subject focused on TH regulation of pancreas function (such as insulin secretion) or on insulin function through TH-mediated increase of energy metabolism. Afterwards, epidemiological investigations and animal test research found a link between autoimmune diseases, thyroid dysfunction, and pancreas pathology; however, the underlying mechanisms remain unknown. Furthermore, recent studies have shown that THs also play important roles in pancreas development and on islet pathology, both in diabetes and in pancreatic cancer. Therefore, an overview of the effects of thyroid and THs on pancreas physiology and pathology is presented. The topics contained in this review include a summary of the relationship between autoimmune thyroid dysfunction and autoimmune pancreas lesions and the effects of THs on pancreas development and pancreas pathology (diabetes and pancreatic cancer).
Collapse
Affiliation(s)
- Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, China
| | - Zhenxing Xie
- School of Basic Medicine, Henan University, Jinming Avenue 475004, Henan, Kaifeng, China
| | - Yingbin Shen
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Shu Fang Xia
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
26
|
Opitz R, Köhrle J. Editorial: Get inspired - Lessons learned from evolution of thyroid hormone signaling in developmental processes. Mol Cell Endocrinol 2017; 459:1-4. [PMID: 29241682 DOI: 10.1016/j.mce.2017.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Abstract
Following differentiation during fetal development, β cells further adapt to their postnatal role through functional maturation. While adult islets are thought to contain functionally mature β cells, recent analyses of transgenic rodent and human pancreata reveal a number of novel heterogeneity markers in mammalian β cells. The marked heterogeneity long after maturation raises the prospect that diverse populations harbor distinct roles aside from glucose-stimulated insulin secretion. In this review, we outline our current understanding of the β-cell maturation process, emphasize recent literature on novel heterogeneity markers, and offer perspectives on reconciling the findings from these two areas.
Collapse
Affiliation(s)
- Jennifer S E Liu
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
28
|
ROCKII inhibition promotes the maturation of human pancreatic beta-like cells. Nat Commun 2017; 8:298. [PMID: 28824164 PMCID: PMC5563509 DOI: 10.1038/s41467-017-00129-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/01/2017] [Indexed: 01/05/2023] Open
Abstract
Diabetes is linked to loss of pancreatic beta-cells. Pluripotent stem cells offer a valuable source of human beta-cells for basic studies of their biology and translational applications. However, the signalling pathways that regulate beta-cell development and functional maturation are not fully understood. Here we report a high content chemical screen, revealing that H1152, a ROCK inhibitor, promotes the robust generation of insulin-expressing cells from multiple hPSC lines. The insulin expressing cells obtained after H1152 treatment show increased expression of mature beta cell markers and improved glucose stimulated insulin secretion. Moreover, the H1152-treated beta-like cells show enhanced glucose stimulated insulin secretion and increased capacity to maintain glucose homeostasis after transplantation. Conditional gene knockdown reveals that inhibition of ROCKII promotes the generation and maturation of glucose-responding cells. This study provides a strategy to promote human beta-cell maturation and identifies an unexpected role for the ROCKII pathway in the development and maturation of beta-like cells.Our incomplete understanding of how pancreatic beta cells form limits the generation of beta-like cells from human pluripotent stem cells (hPSC). Here, the authors identify a ROCKII inhibitor H1152 as increasing insulin secreting cells from hPSCs and improving beta-cell maturation on transplantation in vivo.
Collapse
|
29
|
Harris SE, De Blasio MJ, Davis MA, Kelly AC, Davenport HM, Wooding FBP, Blache D, Meredith D, Anderson M, Fowden AL, Limesand SW, Forhead AJ. Hypothyroidism in utero stimulates pancreatic beta cell proliferation and hyperinsulinaemia in the ovine fetus during late gestation. J Physiol 2017; 595:3331-3343. [PMID: 28144955 PMCID: PMC5451716 DOI: 10.1113/jp273555] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/11/2017] [Indexed: 12/17/2022] Open
Abstract
Key points Thyroid hormones are important regulators of growth and maturation before birth, although the extent to which their actions are mediated by insulin and the development of pancreatic beta cell mass is unknown. Hypothyroidism in fetal sheep induced by removal of the thyroid gland caused asymmetric organ growth, increased pancreatic beta cell mass and proliferation, and was associated with increased circulating concentrations of insulin and leptin. In isolated fetal sheep islets studied in vitro, thyroid hormones inhibited beta cell proliferation in a dose‐dependent manner, while high concentrations of insulin and leptin stimulated proliferation. The developing pancreatic beta cell is therefore sensitive to thyroid hormone, insulin and leptin before birth, with possible consequences for pancreatic function in fetal and later life. The findings of this study highlight the importance of thyroid hormones during pregnancy for normal development of the fetal pancreas.
Abstract Development of pancreatic beta cell mass before birth is essential for normal growth of the fetus and for long‐term control of carbohydrate metabolism in postnatal life. Thyroid hormones are also important regulators of fetal growth, and the present study tested the hypotheses that thyroid hormones promote beta cell proliferation in the fetal ovine pancreatic islets, and that growth retardation in hypothyroid fetal sheep is associated with reductions in pancreatic beta cell mass and circulating insulin concentration in utero. Organ growth and pancreatic islet cell proliferation and mass were examined in sheep fetuses following removal of the thyroid gland in utero. The effects of triiodothyronine (T3), insulin and leptin on beta cell proliferation rates were determined in isolated fetal ovine pancreatic islets in vitro. Hypothyroidism in the sheep fetus resulted in an asymmetric pattern of organ growth, pancreatic beta cell hyperplasia, and elevated plasma insulin and leptin concentrations. In pancreatic islets isolated from intact fetal sheep, beta cell proliferation in vitro was reduced by T3 in a dose‐dependent manner and increased by insulin at high concentrations only. Leptin induced a bimodal response whereby beta cell proliferation was suppressed at the lowest, and increased at the highest, concentrations. Therefore, proliferation of beta cells isolated from the ovine fetal pancreas is sensitive to physiological concentrations of T3, insulin and leptin. Alterations in these hormones may be responsible for the increased beta cell proliferation and mass observed in the hypothyroid sheep fetus and may have consequences for pancreatic function in later life. Thyroid hormones are important regulators of growth and maturation before birth, although the extent to which their actions are mediated by insulin and the development of pancreatic beta cell mass is unknown. Hypothyroidism in fetal sheep induced by removal of the thyroid gland caused asymmetric organ growth, increased pancreatic beta cell mass and proliferation, and was associated with increased circulating concentrations of insulin and leptin. In isolated fetal sheep islets studied in vitro, thyroid hormones inhibited beta cell proliferation in a dose‐dependent manner, while high concentrations of insulin and leptin stimulated proliferation. The developing pancreatic beta cell is therefore sensitive to thyroid hormone, insulin and leptin before birth, with possible consequences for pancreatic function in fetal and later life. The findings of this study highlight the importance of thyroid hormones during pregnancy for normal development of the fetal pancreas.
Collapse
Affiliation(s)
- Shelley E Harris
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Miles J De Blasio
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Melissa A Davis
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Amy C Kelly
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Hailey M Davenport
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - F B Peter Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Dominique Blache
- School of Animal Biology, University of Western Australia, 6009, Crawley, Australia
| | - David Meredith
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Miranda Anderson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Abigail L Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Alison J Forhead
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
30
|
Corritore E, Lee YS, Pasquale V, Liberati D, Hsu MJ, Lombard CA, Van Der Smissen P, Vetere A, Bonner-Weir S, Piemonti L, Sokal E, Lysy PA. V-Maf Musculoaponeurotic Fibrosarcoma Oncogene Homolog A Synthetic Modified mRNA Drives Reprogramming of Human Pancreatic Duct-Derived Cells Into Insulin-Secreting Cells. Stem Cells Transl Med 2016; 5:1525-1537. [PMID: 27405779 DOI: 10.5966/sctm.2015-0318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/12/2016] [Indexed: 12/17/2022] Open
Abstract
: β-Cell replacement therapy represents the most promising approach to restore β-cell mass and glucose homeostasis in patients with type 1 diabetes. Safety and ethical issues associated with pluripotent stem cells stimulated the search for adult progenitor cells with endocrine differentiation capacities. We have already described a model for expansion and differentiation of human pancreatic duct-derived cells (HDDCs) into insulin-producing cells. Here we show an innovative and robust in vitro system for large-scale production of β-like cells from HDDCs using a nonintegrative RNA-based reprogramming technique. Synthetic modified RNAs for pancreatic transcription factors (pancreatic duodenal homeobox 1, neurogenin3, and V-Maf musculoaponeurotic fibrosarcoma oncogene homolog A [MAFA]) were manufactured and daily transfected in HDDCs without strongly affecting immune response and cell viability. MAFA overexpression was efficient and sufficient to induce β-cell differentiation of HDDCs, which acquired a broad repertoire of mature β-cell markers while downregulating characteristic epithelial-mesenchymal transition markers. Within 7 days, MAFA-reprogrammed HDDC populations contained 37% insulin-positive cells and a proportion of endocrine cells expressing somatostatin and pancreatic polypeptide. Ultrastructure analysis of differentiated HDDCs showed both immature and mature insulin granules with light-backscattering properties. Furthermore, in vitro HDDC-derived β cells (called β-HDDCs) secreted human insulin and C-peptide in response to glucose, KCl, 3-isobutyl-1-methylxanthine, and tolbutamide stimulation. Transplantation of β-HDDCs into diabetic SCID-beige mice confirmed their functional glucose-responsive insulin secretion and their capacity to mitigate hyperglycemia. Our data describe a new, reliable, and fast procedure in adult human pancreatic cells to generate clinically relevant amounts of new β cells with potential to reverse diabetes. SIGNIFICANCE β-Cell replacement therapy represents the most promising approach to restore glucose homeostasis in patients with type 1 diabetes. This study shows an innovative and robust in vitro system for large-scale production of β-like cells from human pancreatic duct-derived cells (HDDCs) using a nonintegrative RNA-based reprogramming technique. V-Maf musculoaponeurotic fibrosarcoma oncogene homolog A overexpression was efficient and sufficient to induce β-cell differentiation and insulin secretion from HDDCs in response to glucose stimulation, allowing the cells to mitigate hyperglycemia in diabetic SCID-beige mice. The data describe a new, reliable, and fast procedure in adult human pancreatic cells to generate clinically relevant amounts of new β cells with the potential to reverse diabetes.
Collapse
Affiliation(s)
- Elisa Corritore
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yong-Syu Lee
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Valentina Pasquale
- Diabetes Research Institute, Istituti di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Liberati
- Diabetes Research Institute, Istituti di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Mei-Ju Hsu
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Catherine Anne Lombard
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | | | - Amedeo Vetere
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Susan Bonner-Weir
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lorenzo Piemonti
- Diabetes Research Institute, Istituti di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Etienne Sokal
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe A Lysy
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Pediatric Endocrinology Unit, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
31
|
Soria B, Montanya E, Martín F, Hmadcha A. A Role for the Host in the Roadmap to Diabetes Stem Cell Therapy. Diabetes 2016; 65:1155-7. [PMID: 27208184 DOI: 10.2337/dbi16-0003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Bernat Soria
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Eduard Montanya
- CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain Bellvitge Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Franz Martín
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Abdelkrim Hmadcha
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| |
Collapse
|
32
|
Saxena P, Heng BC, Bai P, Folcher M, Zulewski H, Fussenegger M. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nat Commun 2016; 7:11247. [PMID: 27063289 PMCID: PMC4831023 DOI: 10.1038/ncomms11247] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/04/2016] [Indexed: 02/06/2023] Open
Abstract
Synthetic biology has advanced the design of standardized transcription control
devices that programme cellular behaviour. By coupling synthetic signalling cascade-
and transcription factor-based gene switches with reverse and differential
sensitivity to the licensed food additive vanillic acid, we designed a synthetic
lineage-control network combining vanillic acid-triggered mutually exclusive
expression switches for the transcription factors Ngn3 (neurogenin 3; OFF-ON-OFF)
and Pdx1 (pancreatic and duodenal homeobox 1; ON-OFF-ON) with the concomitant
induction of MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A;
OFF-ON). This designer network consisting of different network topologies
orchestrating the timely control of transgenic and genomic Ngn3, Pdx1 and MafA
variants is able to programme human induced pluripotent stem cells (hIPSCs)-derived
pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like
cells, whose glucose-stimulated insulin-release dynamics are comparable to human
pancreatic islets. Synthetic lineage-control networks may provide the missing link
to genetically programme somatic cells into autologous cell phenotypes for
regenerative medicine. Synthetic biology offers the potential for the design and
implementation of rationally designed, complex genetic programmes. Here the authors
design a genetic network to trigger the differentiation of patient derived IPSCs into
beta-like cells.
Collapse
Affiliation(s)
- Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Boon Chin Heng
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Peng Bai
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Marc Folcher
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Henryk Zulewski
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland.,Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland.,Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
33
|
Okano S. Unique Aspects of Cryptochrome in Chronobiology and Metabolism, Pancreatic β-Cell Dysfunction, and Regeneration: Research into Cysteine414-Alanine Mutant CRY1. J Diabetes Res 2016; 2016:3459246. [PMID: 28105441 PMCID: PMC5220486 DOI: 10.1155/2016/3459246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 11/27/2016] [Indexed: 01/05/2023] Open
Abstract
Cryptochrome proteins (CRYs), which can bind noncovalently to cofactor (chromophore) flavin adenine dinucleotide (FAD), occur widely among organisms. CRYs play indispensable roles in the generation of circadian rhythm in mammals. Transgenic mice (Tg mice), ubiquitously expressing mouse CRY1 having a mutation in which cysteine414 (the zinc-binding site of CRY1) being replaced with alanine, display unique phenotypes in their circadian rhythms. Moreover, male Tg mice exhibit symptoms of diabetes characterized by beta-cell dysfunction, resembling human maturity onset diabetes of the young (MODY). The lowered proliferation of β-cells is a primary cause of age-dependent β-cell loss. Furthermore, unusually enlarged duct-like structures developed prominently in the Tg mice pancreases. The duct-like structures contained insulin-positive cells, suggesting neogenesis of β-cells in the Tg mice. This review, based mainly on the author's investigation of the unique features of Tg mice, presents reported results and recent findings related to molecular processes associated with mammalian cryptochromes, especially their involvement in the regulation of metabolism. New information is described with emphasis on the aspects of islet architecture, pancreatic β-cell dysfunction, and regeneration.
Collapse
Affiliation(s)
- Satoshi Okano
- Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
- *Satoshi Okano:
| |
Collapse
|
34
|
El Khattabi I, Sharma A. Proper activation of MafA is required for optimal differentiation and maturation of pancreatic β-cells. Best Pract Res Clin Endocrinol Metab 2015; 29:821-31. [PMID: 26696512 PMCID: PMC4690007 DOI: 10.1016/j.beem.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A key therapeutic approach for the treatment of Type 1 diabetes (T1D) is transplantation of functional islet β-cells. Despite recent advances in generating stem cell-derived glucose-responsive insulin(+) cells, their further maturation to fully functional adult β-cells still remains a daunting task. Conquering this hurdle will require a better understanding of the mechanisms driving maturation of embryonic insulin(+) cells into adult β-cells, and the implementation of that knowledge to improve current differentiation protocols. Here, we will review our current understanding of β-cell maturation, and discuss the contribution of key β-cell transcription factor MafA, to this process. The fundamental importance of MafA in regulating adult β-cell maturation and function indicates that enhancing MafA expression may improve the generation of definitive β-cells for transplantation. Additionally, we suggest that the temporal control of MafA induction at a specific stage of β-cell differentiation will be the next critical challenge for achieving optimum maturation of β-cells.
Collapse
Affiliation(s)
| | - Arun Sharma
- Cardiovascular and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, USA.
| |
Collapse
|
35
|
Abstract
Although similar, mouse and human pancreatic development and beta cell physiology have significant differences. For this reason, mouse models present shortcomings that can obscure the understanding of human diabetes pathology. Progress in the field of human pluripotent stem cell (hPSC) differentiation now makes it possible to derive unlimited numbers of human beta cells in vitro. This constitutes an invaluable approach to gain insight into human beta cell development and physiology and to generate improved disease models. Here we summarize the main differences in terms of development and physiology of the pancreatic endocrine cells between mouse and human, and describe the recent progress in modeling diabetes using hPSC. We highlight the need of developing more physiological hPSC-derived beta cell models and anticipate the future prospects of these approaches.
Collapse
Affiliation(s)
- Diego Balboa
- University of Helsinki, Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Center, Finland
| | - Timo Otonkoski
- University of Helsinki, Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Center, Finland; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland.
| |
Collapse
|