1
|
Yin W, Gao W, Yang Y, Lin W, Chen W, Zhu X, Zhu R, Zhu L, Jiao N. Disrupted host-microbiota crosstalk promotes nonalcoholic fatty liver disease progression by impaired mitophagy. Microbiol Spectr 2025:e0010025. [PMID: 40401922 DOI: 10.1128/spectrum.00100-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/05/2025] [Indexed: 05/23/2025] Open
Abstract
The intricate interplay between host genes and intrahepatic microbes is vital in shaping the hepatic microenvironment. This study aims to elucidate how host-microbiota interactions contribute to the progression of nonalcoholic fatty liver disease (NAFLD). Hepatic gene and microbial profiles were analyzed from 570 samples across five cohorts, including 72 control, 124 nonalcoholic fatty liver (NAFL), 143 Borderline, and 231 nonalcoholic steatohepatitis (NASH) samples. Least absolute shrinkage and selection operator penalized regression and sparse canonical correlation analysis were utilized to identify host-microbiota interactions and their function. Validation was performed using a bulk transcriptomic data set comprising 1,332 samples and a single-cell transcriptomic data set of seven samples. We observed stage-specific gene expression changes of disrupting energy metabolism and immune responses, alongside microbial shifts shaping the NAFLD microenvironment. Additionally, we identified 5,537, 1,937, 1,485, and 2,933 host-microbiota interactions in control, NAFL, Borderline, and NASH samples, respectively. Escherichia coli and Actinomyces naeslundii dominated the interaction network in control but were replaced by Sphingomonadales and Sphingomonadaceae in disease stages from NAFL, preceding the transcriptomic tipping point observed in Borderline. In NASH, interactions significantly weakened, accompanied by the loss of mutualistic interactions between bacteria such as Bacillales, Ralstonia insidiosa, Sphingomonadaceae, and host mitophagy genes including SQSTM1, OPTN, and BNIP3L. Single-cell data sets confirmed these interactions were co-localized in macrophages and monocytes in control, which shifted to hepatocytes and endothelial cells in NAFLD. Shifts in host-microbial interaction signal early microenvironment changes. Disturbed host-microbiota interactions impacting mitophagy can trigger a pro-inflammatory hepatic microenvironment, potentially driving disease progression.IMPORTANCEThis study integrated multiple cohorts to uncover fundamental and generalizable signals in the progression of nonalcoholic fatty liver disease. Key changes in both liver gene expression and microbiota were identified across disease stages, with microbial composition and interactions with host offering earlier insights into microenvironmental changes. Notably, host-microbiota interactions related to mitophagy, crucial in early stages, were destroyed in nonalcoholic steatohepatitis. This disruption may contribute to the worsening inflammation and disease progression.
Collapse
Affiliation(s)
- Wenjing Yin
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenxing Gao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuwei Yang
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weili Lin
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wanning Chen
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinyue Zhu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ruixin Zhu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lixin Zhu
- Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Na Jiao
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Yamada S, Ogawa H, Funato M, Kato M, Nakadate K, Mizukoshi T, Kawakami K, Kobayashi R, Horii T, Hatada I, Sakakibara SI. Induction of MASH-like pathogenesis in the Nwd1 -/- mouse liver. Commun Biol 2025; 8:348. [PMID: 40069352 PMCID: PMC11897295 DOI: 10.1038/s42003-025-07717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/11/2025] [Indexed: 03/15/2025] Open
Abstract
Endoplasmic reticulum (ER) stores Ca2+ and plays crucial roles in protein folding, lipid transfer, and it's perturbations trigger an ER stress. In the liver, chronic ER stress is involved in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). Dysfunction of sarco/endoplasmic reticulum calcium ATPase (SERCA2), a key regulator of Ca2+ transport from the cytosol to ER, is associated with the induction of ER stress and lipid droplet formation. We previously identified NACHT and WD repeat domain-containing protein 1 (Nwd1) localized at the ER and mitochondria. However, the physiological significance of Nwd1 outside the brain remains unclear. In this study, we revealed that Nwd1-/- mice exhibited pathological manifestations comparable to MASH. Nwd1 interacts with SERCA2 near ER membranes. Nwd1-/- livers exhibited reduced SERCA2 ATPase activity and a smaller Ca2+ pool in the ER, leading to an exacerbated state of ER stress. These findings highlight the importance of SERCA2 activity mediated by Nwd1 in the pathogenesis of MASH.
Collapse
Affiliation(s)
- Seiya Yamada
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan.
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Hayato Ogawa
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Miona Funato
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Misaki Kato
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Kazuhiko Nakadate
- Department of Functional Morphology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Tomoya Mizukoshi
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Kiyoharu Kawakami
- Department of Functional Morphology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Ryosuke Kobayashi
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, Japan
| | - Shin-Ichi Sakakibara
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan.
| |
Collapse
|
3
|
Li J, Liu X, Tran TT, Lee M, Tsai RYL. DNA Methylation and Target Gene Expression in Fatty Liver Progression From Simple Steatosis to Advanced Fibrosis. Liver Int 2025; 45:e70040. [PMID: 39982030 DOI: 10.1111/liv.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND AND AIM Metabolic dysfunction-associated steatotic liver diseases (MASLD), also known as non-alcoholic fatty liver diseases (NAFLD), have become a leading risk factor for hepatocellular carcinoma (HCC) in Western countries. NAFLD progresses from simple steatosis to HCC, with advanced liver fibrosis (ALF) and metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) representing the two preceding high-risk stages. METHODS We analysed changes in the DNA methylation landscape from simple steatosis to ALF or NASH and determined their relevance in gene regulation and HCC survival. Methylomic datasets generated from applying the Illumina 450K BeadChip on human MASLD/NAFLD liver samples were analysed using integrative data analyses to identify differentially methylated regions (DMRs) associated with ALF (F3/4 vs. F0/1) or non-fibrotic NASH (NASH-F0/1 vs. NAFLD-F0/1). RESULTS Gene Set Enrichment Analysis (GSEA) of genes associated with fibrosis-DMRs showed enrichment in xenobiotic metabolism, UV response and hypoxia pathways. Expression of 25 DMR-associated genes showed significant associations with HCC survival outcomes, including 16 genes with fibrosis-DMRs and 2 with NASH-DMRs mapped to their promoter regions. Binding motifs of seven transcription factors (TFs) were enriched in fibrosis-DMRs. Four DMR-associated genes (ESR1, TYW3, CLGN and TUBB) displayed an inverse relationship between promoter methylation and gene expression during human MASLD progression, which was further validated in a mouse MASLD model. CONCLUSIONS We propose a model in which changes in promoter DNA methylation during NAFLD progression regulate gene expression, impacting HCC survival outcomes.
Collapse
Affiliation(s)
- Jin Li
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Xiaoqin Liu
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Tran T Tran
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Miryoung Lee
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Brownsville, Texas, USA
| | - Robert Y L Tsai
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University Health Science Center, Houston, Texas, USA
| |
Collapse
|
4
|
Bourganou MV, Chondrogianni ME, Kyrou I, Flessa CM, Chatzigeorgiou A, Oikonomou E, Lambadiari V, Randeva HS, Kassi E. Unraveling Metabolic Dysfunction-Associated Steatotic Liver Disease Through the Use of Omics Technologies. Int J Mol Sci 2025; 26:1589. [PMID: 40004054 PMCID: PMC11855544 DOI: 10.3390/ijms26041589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now referred to as metabolic dysfunction-associated steatotic liver disease (MASLD), is the most prevalent liver disorder globally, linked to obesity, type 2 diabetes, and cardiovascular risk. Understanding its potential progression from simple steatosis to cirrhosis and hepatocellular carcinoma (HCC) is crucial for patient management and treatment strategies. The disease's complexity requires innovative approaches for early detection and personalized care. Omics technologies-such as genomics, transcriptomics, proteomics, metabolomics, and exposomics-are revolutionizing the study of MASLD. These high-throughput techniques allow for a deeper exploration of the molecular mechanisms driving disease progression. Genomics can identify genetic predispositions, whilst transcriptomics and proteomics reveal changes in gene expression and protein profiles during disease evolution. Metabolomics offers insights into the metabolic alterations associated with MASLD, while exposomics links environmental exposures to MASLD progression and pathology. By integrating data from various omics platforms, researchers can map out the intricate biochemical pathways involved in liver disease progression. This review discusses the roles of omics technologies in enhancing the understanding of disease progression and highlights potential diagnostic and therapeutic targets within the MASLD spectrum, emphasizing the need for non-invasive tools in disease staging and treatment development.
Collapse
Affiliation(s)
- Maria V. Bourganou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
| | - Maria Eleni Chondrogianni
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Kyrou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- College of Health, Psychology and Social Care, University of Derby, Derby DE22 IGB, UK
| | - Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Thoracic Diseases Hospital of Athens, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vaia Lambadiari
- 2nd Department of Internal-Medicine, Diabetes Centre, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Karin M, Kim JY. MASH as an emerging cause of hepatocellular carcinoma: current knowledge and future perspectives. Mol Oncol 2025; 19:275-294. [PMID: 38874196 PMCID: PMC11793012 DOI: 10.1002/1878-0261.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
Hepatocellular carcinoma is one of the deadliest and fastest-growing cancers. Among HCC etiologies, metabolic dysfunction-associated fatty liver disease (MAFLD) has served as a major HCC driver due to its great potential for increasing cirrhosis. The obesogenic environment fosters a positive energy balance and results in a continuous rise of obesity and metabolic syndrome. However, it is difficult to understand how metabolic complications lead to the poor prognosis of liver diseases and which molecular mechanisms are underpinning MAFLD-driven HCC development. Thus, suitable preclinical models that recapitulate human etiologies are essentially required. Numerous preclinical models have been created but not many mimicked anthropometric measures and the course of disease progression shown in the patients. Here we review the literature on adipose tissues, liver-related HCC etiologies and recently discovered genetic mutation signatures found in MAFLD-driven HCC patients. We also critically review current rodent models suggested for MAFLD-driven HCC study.
Collapse
Affiliation(s)
- Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Ju Youn Kim
- Department of Molecular and Life ScienceHanyang University ERICAAnsanKorea
| |
Collapse
|
6
|
Gao W, Lin W, Li Q, Chen W, Yin W, Zhu X, Gao S, Liu L, Li W, Wu D, Zhang G, Zhu R, Jiao N. Identification and validation of microbial biomarkers from cross-cohort datasets using xMarkerFinder. Nat Protoc 2024; 19:2803-2830. [PMID: 38745111 DOI: 10.1038/s41596-024-00999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/05/2024] [Indexed: 05/16/2024]
Abstract
Microbial signatures have emerged as promising biomarkers for disease diagnostics and prognostics, yet their variability across different studies calls for a standardized approach to biomarker research. Therefore, we introduce xMarkerFinder, a four-stage computational framework for microbial biomarker identification with comprehensive validations from cross-cohort datasets, including differential signature identification, model construction, model validation and biomarker interpretation. xMarkerFinder enables the identification and validation of reproducible biomarkers for cross-cohort studies, along with the establishment of classification models and potential microbiome-induced mechanisms. Originally developed for gut microbiome research, xMarkerFinder's adaptable design makes it applicable to various microbial habitats and data types. Distinct from existing biomarker research tools that typically concentrate on a singular aspect, xMarkerFinder uniquely incorporates a sophisticated feature selection process, specifically designed to address the heterogeneity between different cohorts, extensive internal and external validations, and detailed specificity assessments. Execution time varies depending on the sample size, selected algorithm and computational resource. Accessible via GitHub ( https://github.com/tjcadd2020/xMarkerFinder ), xMarkerFinder supports users with diverse expertise levels through different execution options, including step-to-step scripts with detailed tutorials and frequently asked questions, a single-command execution script, a ready-to-use Docker image and a user-friendly web server ( https://www.biosino.org/xmarkerfinder ).
Collapse
Affiliation(s)
- Wenxing Gao
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Weili Lin
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Qiang Li
- National Genomics Data Center & Bio-Med Big Data Center, Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Wanning Chen
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Wenjing Yin
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Xinyue Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Sheng Gao
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Lei Liu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Wenjie Li
- Shanghai Southgene Technology Co., Ltd., Shanghai, P. R. China
| | - Dingfeng Wu
- National Clinical Research Center for Child Health, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Guoqing Zhang
- National Genomics Data Center & Bio-Med Big Data Center, Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China.
| | - Ruixin Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China.
| | - Na Jiao
- National Clinical Research Center for Child Health, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China.
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
7
|
Demir I, Yilmaz I, Horoz E, Bozkaya G, Bilgir O. The relationship between stathmin-2 level and metabolic parameters in newly diagnosed type 2 diabetes mellitus patients. Am J Med Sci 2024; 368:25-32. [PMID: 38575071 DOI: 10.1016/j.amjms.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/19/2023] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Stathmin is a phosphoprotein that plays a role in intercellular and intracellular signaling, inflammation, and differentiation. Our aim was to evaluate the stathmin-2 level and its relationship with the metabolic parameters of newly diagnosed type 2 diabetes mellitus (nT2DM) patients. MATERIAL AND METHOD This case-control study included 76 patients with nT2DM and 76 healthy individuals with a normal oral glucose tolerance test who were matched for body mass index (BMI), age, and gender. In addition to laboratory and anthropometric measurements related to type 2 diabetes mellitus (T2DM), stathmin-2 levels were determined using an enzyme-linked immunosorbent assay. RESULTS We observed significantly higher circulating stathmin-2 levels in subjects with T2DM compared to the control group (6.39±1.60 ng/mL and 4.66±0.80 ng/mL, p<0.0001). In patients with metabolic syndrome, circulating stathmin-2 levels were significantly elevated compared to those without metabolic syndrome in both the T2DM and control groups (T2DM: 7.16±1.24 vs 5.06±1.24 ng/mL, p<0.001; Control: 3.84±1.40 vs 3.82±1.40 ng/mL). In both groups, we observed a positive correlation between stathmin-2 levels and BMI and circumference. Moreover, stathmin-2 showed a positive correlation with high-sensitivity C-reactive protein (hs-CRP), homeostatic model assessment of insulin resistance, insulin, fasting blood glucose, hemoglobin A1c, BMI, low-density lipoprotein cholesterol, and total cholesterol. A negative correlation was observed with stathmin-2 and high-density lipoprotein cholesterol. Stathmin-2 did not show any correlation with age, triglyceride, and lactate dehydrogenase. CONCLUSIONS Stathmin-2 levels were found to be elevated in patients with nT2DM and exhibited positive correlations with hyperinsulinaemia, hyperglycaemia, HOMO-IR and hs-CRP levels. These results indicate that stathmin-2 may play a role in T2DM pathogenesis.
Collapse
Affiliation(s)
- Ismail Demir
- Health Sciences University, Izmir Bozyaka Training and Research Hospital, Department of Internal Medicine, Karabaglar, Izmir, Turkey.
| | - Ismail Yilmaz
- Izmir Kâtip Celebi University Faculty of Medicine, Department of Pharmacology and Toxicology, Izmir, Turkey
| | - Ersan Horoz
- Izmir Kâtip Celebi University Faculty of Medicine, Department of Pharmacology and Toxicology, Izmir, Turkey
| | - Giray Bozkaya
- Health Sciences University, Izmir Bozyaka Training and Research Hospital, Department of Biochemistry, Izmir, Turkey
| | - Oktay Bilgir
- Health Sciences University, Izmir Bozyaka Training and Research Hospital, Department of Internal Medicine, Karabaglar, Izmir, Turkey
| |
Collapse
|
8
|
Piras IS, DiStefano JK. Comprehensive meta-analysis reveals distinct gene expression signatures of MASLD progression. Life Sci Alliance 2024; 7:e202302517. [PMID: 38565287 PMCID: PMC10987979 DOI: 10.26508/lsa.202302517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form, metabolic dysfunction-associated steatohepatitis (MASH), pose significant risks of severe fibrosis, cirrhosis, and hepatocellular carcinoma. Despite their widespread prevalence, the molecular mechanisms underlying the development and progression of these common chronic hepatic conditions are not fully understood. Here, we conducted the most extensive meta-analysis of hepatic gene expression datasets from liver biopsy samples to date, integrating 10 RNA-sequencing and microarray datasets (1,058 samples). Using a random-effects meta-analysis model, we compared over 12,000 shared genes across datasets. We identified 685 genes differentially expressed in MASLD versus normal liver, 1,870 in MASH versus normal liver, and 3,284 in MASLD versus MASH. Integrating these results with genome-wide association studies and coexpression networks, we identified two functionally relevant, validated coexpression modules mainly driven by SMOC2, ITGBL1, LOXL1, MGP, SOD3, and TAT, HGD, SLC25A15, respectively, the latter not previously associated with MASLD and MASH. Our findings provide a comprehensive and robust analysis of hepatic gene expression alterations associated with MASLD and MASH and identify novel key drivers of MASLD progression.
Collapse
Affiliation(s)
- Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Johanna K DiStefano
- Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
9
|
Yoshida M, Matsuzaki J, Fujita K, Kimura M, Umezu T, Tokuda N, Yamaguchi T, Kuroda M, Ochiya T, Saito Y, Kimura K. Plasma extracellular vesicle microRNAs reflecting the therapeutic effect of the CBP/β-catenin inhibitor PRI-724 in patients with liver cirrhosis. Sci Rep 2024; 14:6266. [PMID: 38491114 PMCID: PMC10943077 DOI: 10.1038/s41598-024-56942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
There is an unmet need for antifibrotic therapies to prevent the progression of liver cirrhosis. Previously, we conducted an exploratory trial to assess the safety and antifibrotic efficacy of PRI-724, a selective CBP/β-catenin inhibitor, in patients with liver cirrhosis. PRI-724 was well tolerated and exerted a potential antifibrotic effect. Here, we investigated whether the profiles of circulating microRNAs packaged in extracellular vesicles (EV-miRNAs) are associated with responses to liver fibrosis treatments. Eighteen patients who received PRI-724 for 12 weeks in a phase 1/2a study were classified as responders (n = 10) or non-responders (n = 8) based on changes in liver stiffness. Plasma samples were obtained before and after PRI-724 administration and the levels of EV-miRNAs were analyzed. Three miRNAs (miR-6510-5p, miR-6772-5p, and miR-4261) were identified as predictors of response or non-response to PRI-724, and the levels of three other miRNAs (miR-939-3p, miR-887-3p, and miR-7112-5p) correlated with the efficacy of treatment. Expression of miR-887-3p was detected in hepatocytes and was decreased significantly in liver tissue following PRI-724 treatment. In addition, transfection of a miR-887-3p mimic activated hepatic stellate cells. Thus, decreases in the miR-887-3p level in blood may reflect recovery from liver fibroses in patients with liver cirrhosis treated with PRI-724, although further validation studies are warranted to confirm this.
Collapse
Affiliation(s)
- Mayu Yoshida
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Koji Fujita
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Masamichi Kimura
- Department of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
| | - Tomohiro Umezu
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Noi Tokuda
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Tomoko Yamaguchi
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kiminori Kimura
- Department of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
| |
Collapse
|
10
|
Bravo-Jaimes K, Wu X, Reardon LC, Lluri G, Lin JP, Moore JP, van Arsdell G, Biniwale R, Si MS, Naini BV, Venick R, Saab S, Wray CL, Ponder R, Rosenthal C, Klomhaus A, Böstrom KI, Aboulhosn JA, Kaldas FM. Intrahepatic Transcriptomics Differentiate Advanced Fibrosis and Clinical Outcomes in Adults With Fontan Circulation. J Am Coll Cardiol 2024; 83:726-738. [PMID: 38355242 PMCID: PMC11627240 DOI: 10.1016/j.jacc.2023.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 12/04/2023] [Indexed: 02/16/2024]
Abstract
BACKGROUND The molecular mechanisms underlying Fontan-associated liver disease (FALD) remain largely unknown. OBJECTIVES This study aimed to assess intrahepatic transcriptomic differences among patients with FALD according to the degree of liver fibrosis and clinical outcomes. METHODS This retrospective cohort study included adults with the Fontan circulation. Baseline clinical, laboratory, imaging, and hemodynamic data as well as a composite clinical outcome (CCO) were extracted from medical records. Patients were classified into early or advanced fibrosis. RNA was isolated from formalin-fixed paraffin-embedded liver biopsy samples; RNA libraries were constructed with the use of an rRNA depletion method and sequenced on an Illumina Novaseq 6000. Differential gene expression and gene ontology analyses were performed with the use of DESeq2 and Metascape. RESULTS A total of 106 patients (48% male, median age 31 years [IQR: 11.3 years]) were included. Those with advanced fibrosis had higher B-type natriuretic peptide levels and Fontan, mean pulmonary artery, and capillary wedge pressures. The CCO was present in 23 patients (22%) and was not predicted by advanced liver fibrosis, right ventricular morphology, presence of aortopulmonary collaterals, or Fontan pressures on multivariable analysis. Samples with advanced fibrosis had 228 upregulated genes compared with early fibrosis. Samples with the CCO had 894 upregulated genes compared with those without the CCO. A total of 136 upregulated genes were identified in both comparisons and were enriched in cellular response to cytokine stimulus or oxidative stress, VEGFA-VEGFR2 signaling pathway, TGF-β signaling pathway, and vasculature development. CONCLUSIONS Patients with FALD and advanced fibrosis or the CCO exhibited upregulated genes related to inflammation, congestion, and angiogenesis.
Collapse
Affiliation(s)
- Katia Bravo-Jaimes
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA; Ahmanson/UCLA Adult Congenital Heart Disease Center, University of California, Los Angeles, California, USA
| | - Xiuju Wu
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, California, USA
| | - Leigh C Reardon
- Ahmanson/UCLA Adult Congenital Heart Disease Center, University of California, Los Angeles, California, USA; Department of Pediatric Cardiology, University of California, Los Angeles Mattel Children's Hospital, Los Angeles, California, USA
| | - Gentian Lluri
- Ahmanson/UCLA Adult Congenital Heart Disease Center, University of California, Los Angeles, California, USA; Division of Cardiology, Department of Medicine, University of California, Los Angeles, California, USA
| | - Jeannette P Lin
- Ahmanson/UCLA Adult Congenital Heart Disease Center, University of California, Los Angeles, California, USA; Division of Cardiology, Department of Medicine, University of California, Los Angeles, California, USA
| | - Jeremy P Moore
- Ahmanson/UCLA Adult Congenital Heart Disease Center, University of California, Los Angeles, California, USA; Department of Pediatric Cardiology, University of California, Los Angeles Mattel Children's Hospital, Los Angeles, California, USA
| | - Glen van Arsdell
- Ahmanson/UCLA Adult Congenital Heart Disease Center, University of California, Los Angeles, California, USA; Division of Congenital Cardiovascular Surgery, University of California, Los Angeles Mattel Children's Hospital, Los Angeles, California USA; Department of Surgery, University of California-Los Angeles, Los Angeles, California, USA
| | - Reshma Biniwale
- Ahmanson/UCLA Adult Congenital Heart Disease Center, University of California, Los Angeles, California, USA; Division of Congenital Cardiovascular Surgery, University of California, Los Angeles Mattel Children's Hospital, Los Angeles, California USA; Department of Surgery, University of California-Los Angeles, Los Angeles, California, USA
| | - Ming-Sing Si
- Ahmanson/UCLA Adult Congenital Heart Disease Center, University of California, Los Angeles, California, USA; Division of Congenital Cardiovascular Surgery, University of California, Los Angeles Mattel Children's Hospital, Los Angeles, California USA; Department of Surgery, University of California-Los Angeles, Los Angeles, California, USA
| | - Bita V Naini
- Department of Pathology and Lab Services, University of California, Los Angeles, California, USA
| | - Robert Venick
- Department of Gastroenterology, Hepatology, and Nutrition, University of California, Los Angeles Mattel Children's Hospital, Los Angeles, California, USA
| | - Sammy Saab
- Pfleger Liver Institute, University of California, Los Angeles, California, USA
| | - Christopher L Wray
- Department of Anesthesiology, University of California, Los Angeles, California, USA
| | - Reid Ponder
- Ahmanson/UCLA Adult Congenital Heart Disease Center, University of California, Los Angeles, California, USA
| | - Carl Rosenthal
- Dumont-UCLA Liver Transplant Center, Department of Surgery, University of California, Los Angeles, California, USA
| | - Alexandra Klomhaus
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Kristina I Böstrom
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, California, USA
| | - Jamil A Aboulhosn
- Ahmanson/UCLA Adult Congenital Heart Disease Center, University of California, Los Angeles, California, USA; Division of Cardiology, Department of Medicine, University of California, Los Angeles, California, USA
| | - Fady M Kaldas
- Dumont-UCLA Liver Transplant Center, Department of Surgery, University of California, Los Angeles, California, USA.
| |
Collapse
|
11
|
Mekala S, Dugam P, Das A. Ephrin-Eph receptor tyrosine kinases for potential therapeutics against hepatic pathologies. J Cell Commun Signal 2023; 17:549-561. [PMID: 37103689 PMCID: PMC10409970 DOI: 10.1007/s12079-023-00750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Hepatic fibrosis is the common pathological change that occurs due to increased synthesis and accumulation of extracellular matrix components. Chronic insult from hepatotoxicants leads to liver cirrhosis, which if not reversed timely using appropriate therapeutics, liver transplantation remains the only effective therapy. Often the disease further progresses into hepatic carcinoma. Although there is an increased advancement in understanding the pathological phenotypes of the disease, additional knowledge of the novel molecular signaling mechanisms involved in the disease progression would enable the development of efficacious therapeutics. Ephrin-Eph molecules belong to the largest family of receptor tyrosine kinases (RTKs) which are identified to play a crucial role in cellular migratory functions, during morphological and developmental stages. Additionally, they contribute to the growth of a multicellular organism as well as in pathological conditions like cancer, and diabetes. A wide spectrum of mechanistic studies has been performed on ephrin-Eph RTKs in various hepatic tissues under both normal and diseased conditions revealing their diverse roles in hepatic pathology. This systematic review summarizes the liver-specific ephrin-Eph RTK signaling mechanisms and recognizes them as druggable targets for mitigating hepatic pathology.
Collapse
Affiliation(s)
- Sowmya Mekala
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201 002, India
| | - Prachi Dugam
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS, 500 007, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201 002, India.
| |
Collapse
|
12
|
Kinne AS, Tillman EJ, Abdeen SJ, Johnson DE, Parmer ES, Hurst JP, de Temple B, Rinker S, Rolph TP, Bowsher RR. Noncompetitive immunoassay optimized for pharmacokinetic assessments of biologically active efruxifermin. J Pharm Biomed Anal 2023; 232:115402. [PMID: 37141854 DOI: 10.1016/j.jpba.2023.115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Efruxifermin (EFX) is a homodimeric human IgG1 Fc-FGF21 fusion protein undergoing investigation for treatment of liver fibrosis due to nonalcoholic steatohepatitis (NASH), a prevalent and serious metabolic disease for which there is no approved treatment. Biological activity of FGF21 requires its intact C-terminus, which enables binding to its obligate co-receptor β-Klotho on the surface of target cells. This interaction is a prerequisite for FGF21 signal transduction through its canonical FGF receptors: FGFR1c, 2c, and 3c. Therefore, the C-terminus of each FGF21 polypeptide chain must be intact, with no proteolytic truncation, for EFX to exert its pharmacological activity in patients. A sensitive immunoassay for quantification of biologically active EFX in human serum was therefore needed to support pharmacokinetic assessments in patients with NASH. We present a validated noncompetitive electrochemiluminescent immunoassay (ECLIA) that employs a rat monoclonal antibody for specific capture of EFX via its intact C-terminus. Bound EFX is detected by a SULFO-TAG™-conjugated, affinity purified chicken anti-EFX antiserum. The ECLIA reported herein for quantification of EFX demonstrated suitable analytical performance, with a sensitivity (LLOQ) of 20.0 ng/mL, to support reliable pharmacokinetic assessments of EFX. The validated assay was used to quantify serum EFX concentrations in a phase 2a study of NASH patients (BALANCED) with either moderate-to-advanced fibrosis or compensated cirrhosis. The pharmacokinetic profile of EFX was dose-proportional and did not differ between patients with moderate-to-advanced fibrosis and those with compensated cirrhosis. This report presents the first example of a validated pharmacokinetic assay specific for a biologically active Fc-FGF21 fusion protein, as well as the first demonstration of use of a chicken antibody conjugate as a detection reagent specific for an FGF21 analog.
Collapse
Affiliation(s)
- Adam S Kinne
- B2S Life Sciences LLC, 97 East Monroe Street, Franklin, IN 46131, USA
| | - Erik J Tillman
- Akero Therapeutics, 601 Gateway Blvd. #350, South San Francisco, CA 94080, USA
| | - Sanofar J Abdeen
- B2S Life Sciences LLC, 97 East Monroe Street, Franklin, IN 46131, USA
| | - Derrick E Johnson
- B2S Life Sciences LLC, 97 East Monroe Street, Franklin, IN 46131, USA
| | - Elijah S Parmer
- B2S Life Sciences LLC, 97 East Monroe Street, Franklin, IN 46131, USA
| | - Jacob P Hurst
- B2S Life Sciences LLC, 97 East Monroe Street, Franklin, IN 46131, USA
| | - Brittany de Temple
- Akero Therapeutics, 601 Gateway Blvd. #350, South San Francisco, CA 94080, USA
| | - Sherri Rinker
- B2S Life Sciences LLC, 97 East Monroe Street, Franklin, IN 46131, USA
| | - Timothy P Rolph
- Akero Therapeutics, 601 Gateway Blvd. #350, South San Francisco, CA 94080, USA
| | - Ronald R Bowsher
- B2S Life Sciences LLC, 97 East Monroe Street, Franklin, IN 46131, USA.
| |
Collapse
|
13
|
Bravo-Jaimes K, Wu X, Reardon LC, Lluri G, Lin JP, Moore JP, Arsdell GV, Biniwale R, Si MS, Naini BV, Venick R, Saab S, Wray CL, Ponder R, Rosenthal C, Klomhaus A, Böstrom KI, Aboulhosn JA, Kaldas FM. Intrahepatic transcriptomics differentiate advanced fibrosis and clinical outcomes in adults with the Fontan circulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.05.23290997. [PMID: 37333414 PMCID: PMC10274997 DOI: 10.1101/2023.06.05.23290997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background The molecular mechanisms underlying Fontan associated liver disease (FALD) remain largely unknown. We aimed to assess intrahepatic transcriptomic differences among patients with FALD according to the degree of liver fibrosis and clinical outcomes. Methods This retrospective cohort study included adults with the Fontan circulation at the Ahmanson/UCLA Adult Congenital Heart Disease Center. Clinical, laboratory, imaging and hemodynamic data prior to the liver biopsy were extracted from medical records. Patients were classified into early (F1-F2) or advanced fibrosis (F3-F4). RNA was isolated from formalin-fixed paraffin embedded liver biopsy samples; RNA libraries were constructed using rRNA depletion method and sequencing was performed on Illumina Novaseq 6000. Differential gene expression and gene ontology analyses were carried out using DESeq2 and Metascape. Medical records were comprehensively reviewed for a composite clinical outcome which included decompensated cirrhosis, hepatocellular carcinoma, liver transplantation, protein-losing enteropathy, chronic kidney disease stage 4 or higher, or death. Results Patients with advanced fibrosis had higher serum BNP levels and Fontan, mean pulmonary artery and capillary wedge pressures. The composite clinical outcome was present in 23 patients (22%) and was predicted by age at Fontan, right ventricular morphology and presence of aortopulmonary collaterals on multivariable analysis. Samples with advanced fibrosis had 228 up-regulated genes compared to early fibrosis. Samples with the composite clinical outcome had 894 up-regulated genes compared to those without it. A total of 136 up-regulated genes were identified in both comparisons and these genes were enriched in cellular response to cytokine stimulus, response to oxidative stress, VEGFA-VEGFR2 signaling pathway, TGF-beta signaling pathway, and vasculature development. Conclusions Patients with FALD and advanced liver fibrosis or the composite clinical outcome exhibit up-regulated genes including pathways related to inflammation, congestion, and angiogenesis. This adds further insight into FALD pathophysiology.
Collapse
Affiliation(s)
- Katia Bravo-Jaimes
- Department of Cardiovascular Diseases. Mayo Clinic Jacksonville Florida
- Ahmanson/UCLA Adult Congenital Heart Disease Center. University of California, Los Angeles
| | - Xiuju Wu
- Division of Cardiology. Department of Medicine. University of California, Los Angeles
| | - Leigh C Reardon
- Ahmanson/UCLA Adult Congenital Heart Disease Center. University of California, Los Angeles
- Department of Pediatric Cardiology. University of California, Los Angeles Mattel Children’s Hospital
| | - Gentian Lluri
- Ahmanson/UCLA Adult Congenital Heart Disease Center. University of California, Los Angeles
- Division of Cardiology. Department of Medicine. University of California, Los Angeles
| | - Jeannette P Lin
- Ahmanson/UCLA Adult Congenital Heart Disease Center. University of California, Los Angeles
- Division of Cardiology. Department of Medicine. University of California, Los Angeles
| | - Jeremy P Moore
- Ahmanson/UCLA Adult Congenital Heart Disease Center. University of California, Los Angeles
- Department of Pediatric Cardiology. University of California, Los Angeles Mattel Children’s Hospital
| | - Glen Van Arsdell
- Ahmanson/UCLA Adult Congenital Heart Disease Center. University of California, Los Angeles
- Division of Cardiology. Department of Medicine. University of California, Los Angeles
| | | | | | - Bita V Naini
- Department of Pathology and Lab Services. University of California, Los Angeles
| | - Robert Venick
- Department of Gastroenterology, Hepatology and Nutrition. University of California, Los Angeles Mattel Children’s Hospital
| | - Sammy Saab
- Department of Gastroenterology, Hepatology and Nutrition. University of California, Los Angeles Mattel Children’s Hospital
| | | | - Reid Ponder
- Ahmanson/UCLA Adult Congenital Heart Disease Center. University of California, Los Angeles
| | - Carl Rosenthal
- Dumont-UCLA Liver Transplant Center. Department of Surgery. University of California, Los Angeles
| | - Alexandra Klomhaus
- Department of Medicine Statistics Core. David Geffen School of Medicine. University of California, Los Angeles
| | - Kristina I Böstrom
- Division of Cardiology. Department of Medicine. University of California, Los Angeles
| | - Jamil A Aboulhosn
- Ahmanson/UCLA Adult Congenital Heart Disease Center. University of California, Los Angeles
- Division of Cardiology. Department of Medicine. University of California, Los Angeles
| | - Fady M Kaldas
- Dumont-UCLA Liver Transplant Center. Department of Surgery. University of California, Los Angeles
| |
Collapse
|
14
|
Zhu Z, Chen Y, Qin X, Liu S, Wang J, Ren H. Multidimensional landscape of non-alcoholic fatty liver disease-related disease spectrum uncovered by big omics data: Profiling evidence and new perspectives. SMART MEDICINE 2023; 2:e20220029. [PMID: 39188279 PMCID: PMC11236021 DOI: 10.1002/smmd.20220029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/22/2023] [Indexed: 08/28/2024]
Abstract
Characterized by hepatic lipid accumulation, non-alcoholic fatty liver disease (NAFLD) is a multifactorial metabolic disorder that could promote the progression of non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). Benefiting from recent advances in omics technologies, such as high-throughput sequencing, voluminous profiling data in HCC-integrated molecular science into clinical medicine helped clinicians with rational guidance for treatments. In this review, we conclude the majority of publicly available omics data on the NAFLD-related disease spectrum and bring up new insights to inspire next-generation therapeutics against this increasingly prevalent disease spectrum in the post-genomic era.
Collapse
Affiliation(s)
- Zhengyi Zhu
- Department of Hepatobiliary SurgeryAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Yuyan Chen
- Department of Hepatobiliary SurgeryAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Xueqian Qin
- Department of Hepatobiliary SurgeryAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Shujun Liu
- Department of Hepatobiliary SurgeryAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Jinglin Wang
- Department of Hepatobiliary SurgeryAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Haozhen Ren
- Department of Hepatobiliary SurgeryAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
15
|
Conway J, Pouryahya M, Gindin Y, Pan DZ, Carrasco-Zevallos OM, Mountain V, Subramanian GM, Montalto MC, Resnick M, Beck AH, Huss RS, Myers RP, Taylor-Weiner A, Wapinski I, Chung C. Integration of deep learning-based histopathology and transcriptomics reveals key genes associated with fibrogenesis in patients with advanced NASH. Cell Rep Med 2023; 4:101016. [PMID: 37075704 PMCID: PMC10140650 DOI: 10.1016/j.xcrm.2023.101016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/31/2022] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is the most common chronic liver disease globally and a leading cause for liver transplantation in the US. Its pathogenesis remains imprecisely defined. We combined two high-resolution modalities to tissue samples from NASH clinical trials, machine learning (ML)-based quantification of histological features and transcriptomics, to identify genes that are associated with disease progression and clinical events. A histopathology-driven 5-gene expression signature predicted disease progression and clinical events in patients with NASH with F3 (pre-cirrhotic) and F4 (cirrhotic) fibrosis. Notably, the Notch signaling pathway and genes implicated in liver-related diseases were enriched in this expression signature. In a validation cohort where pharmacologic intervention improved disease histology, multiple Notch signaling components were suppressed.
Collapse
|
16
|
Wong WJ, Emdin C, Bick AG, Zekavat SM, Niroula A, Pirruccello JP, Dichtel L, Griffin G, Uddin MM, Gibson CJ, Kovalcik V, Lin AE, McConkey ME, Vromman A, Sellar RS, Kim PG, Agrawal M, Weinstock J, Long MT, Yu B, Banerjee R, Nicholls RC, Dennis A, Kelly M, Loh PR, McCarroll S, Boerwinkle E, Vasan RS, Jaiswal S, Johnson AD, Chung RT, Corey K, Levy D, Ballantyne C, Ebert BL, Natarajan P. Clonal haematopoiesis and risk of chronic liver disease. Nature 2023; 616:747-754. [PMID: 37046084 PMCID: PMC10405350 DOI: 10.1038/s41586-023-05857-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/16/2023] [Indexed: 04/14/2023]
Abstract
Chronic liver disease is a major public health burden worldwide1. Although different aetiologies and mechanisms of liver injury exist, progression of chronic liver disease follows a common pathway of liver inflammation, injury and fibrosis2. Here we examined the association between clonal haematopoiesis of indeterminate potential (CHIP) and chronic liver disease in 214,563 individuals from 4 independent cohorts with whole-exome sequencing data (Framingham Heart Study, Atherosclerosis Risk in Communities Study, UK Biobank and Mass General Brigham Biobank). CHIP was associated with an increased risk of prevalent and incident chronic liver disease (odds ratio = 2.01, 95% confidence interval (95% CI) [1.46, 2.79]; P < 0.001). Individuals with CHIP were more likely to demonstrate liver inflammation and fibrosis detectable by magnetic resonance imaging compared to those without CHIP (odds ratio = 1.74, 95% CI [1.16, 2.60]; P = 0.007). To assess potential causality, Mendelian randomization analyses showed that genetic predisposition to CHIP was associated with a greater risk of chronic liver disease (odds ratio = 2.37, 95% CI [1.57, 3.6]; P < 0.001). In a dietary model of non-alcoholic steatohepatitis, mice transplanted with Tet2-deficient haematopoietic cells demonstrated more severe liver inflammation and fibrosis. These effects were mediated by the NLRP3 inflammasome and increased levels of expression of downstream inflammatory cytokines in Tet2-deficient macrophages. In summary, clonal haematopoiesis is associated with an elevated risk of liver inflammation and chronic liver disease progression through an aberrant inflammatory response.
Collapse
Affiliation(s)
- Waihay J Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Connor Emdin
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Alexander G Bick
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seyedeh M Zekavat
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Yale University School of Medicine, New Haven, CT, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Abhishek Niroula
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - James P Pirruccello
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Laura Dichtel
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Gabriel Griffin
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Md Mesbah Uddin
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Christopher J Gibson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Veronica Kovalcik
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy E Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Marie E McConkey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amelie Vromman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rob S Sellar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Haematology, UCL Cancer Institute, London, UK
| | - Peter G Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Mridul Agrawal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joshua Weinstock
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Michelle T Long
- Section of Gastroenterology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | | | | | - Po-Ru Loh
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Steve McCarroll
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ramachandran S Vasan
- The University of Texas School of Public Health San Antonio, San Antonio, TX, USA
- Framingham Heart Study of the NHLBI and Boston University School of Medicine, Framingham, MA, USA
- The University of Texas Health Science Center, San Antonio, TX, USA
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew D Johnson
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, MA, USA
| | - Raymond T Chung
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kathleen Corey
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel Levy
- Framingham Heart Study of the NHLBI and Boston University School of Medicine, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christie Ballantyne
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Pradeep Natarajan
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Powell NR, Liang T, Ipe J, Cao S, Skaar TC, Desta Z, Qian HR, Ebert PJ, Chen Y, Thomas MK, Chalasani N. Clinically important alterations in pharmacogene expression in histologically severe nonalcoholic fatty liver disease. Nat Commun 2023; 14:1474. [PMID: 36927865 PMCID: PMC10020163 DOI: 10.1038/s41467-023-37209-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Polypharmacy is common in patients with nonalcoholic fatty liver disease (NAFLD) and previous reports suggest that NAFLD is associated with altered drug disposition. This study aims to determine if patients with NAFLD are at risk for altered drug response by characterizing changes in hepatic mRNA expression of genes mediating drug disposition (pharmacogenes) across the histological NAFLD severity spectrum. We utilize RNA-seq for 93 liver biopsies with histologically staged NAFLD Activity Score (NAS), fibrosis stage, and steatohepatitis (NASH). We identify 37 significant pharmacogene-NAFLD severity associations including CYP2C19 downregulation. We chose to validate CYP2C19 due to its actionability in drug prescribing. Meta-analysis of 16 independent studies demonstrate that CYP2C19 is significantly downregulated to 46% in NASH, to 58% in high NAS, and to 43% in severe fibrosis. Our data demonstrate the downregulation of CYP2C19 in NAFLD which supports developing personalized medicine approaches for drugs sensitive to metabolism by the CYP2C19 enzyme.
Collapse
Affiliation(s)
- Nicholas R Powell
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Tiebing Liang
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA
| | - Joseph Ipe
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Sha Cao
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA
| | - Todd C Skaar
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Zeruesenay Desta
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | | | | | - Yu Chen
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Naga Chalasani
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA.
| |
Collapse
|
18
|
Gawrieh S, Karns R, Kleiner DE, Olivier M, Jenkins T, Inge TH, Chalasani NP, Xanthakos S. Comparative Analysis of Global Hepatic Gene Expression in Adolescents and Adults with Non-alcoholic Fatty Liver Disease. ARCHIVES OF CLINICAL AND BIOMEDICAL RESEARCH 2023; 7:112-119. [PMID: 37583647 PMCID: PMC10426795 DOI: 10.26502/acbr.50170323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Introduction To gain insights into the mechanisms underlying distinct nonalcoholic fatty liver disease (NAFLD) histological phenotypes between children and adults, we compared hepatic gene expression profiles associated with NAFLD phenotypes between the two age groups. Methods Histological characteristics of intra-operative liver biopsies from adolescents and adults undergoing bariatric surgery were assessed by the same pathologist using the non-alcoholic steatohepatitis (NASH) Clinical Research Network scoring system. Hepatic gene expression was measured by microarray analysis. Transcriptomic signatures of histological phenotypes between the two groups were compared, with significance defined as p-value <0.05 and a fold change >1.5. Results In 67 adolescents and 76 adults, distribution of histological phenotypes was: not-NAFLD (controls) 51% vs 39%, NAFL 39% vs 37%, and NASH 10% vs 24%, respectively. There were 279 differentially expressed genes in adolescents and 213 in adults with NAFLD vs controls. In adolescents, transcriptomes for NAFL vs controls, and borderline vs definite NASH were undifferentiable, whereas in adults, NAFL and borderline NASH demonstrated a transcriptomic gradient between controls and definite NASH. When applied to adolescents, significant adult genes discriminated borderline and definite NASH from control and NAFL, but the majority of significant pediatric genes were not portable to adults. Genes associated with NASH in adolescents and adults showed some ontological consistency but notable differences. Conclusions There is some similarity but major differences in the transcriptomic profiles associated with NAFLD between adolescents and adults with severe obesity. These data suggest different mechanisms contribute to the pathogenesis of NAFLD severity at different stages in life.
Collapse
Affiliation(s)
- Samer Gawrieh
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Michael Olivier
- Center for Precision Medicine, Department of Internal Medicine - Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Todd Jenkins
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Thomas H Inge
- Department of Surgery, Lurie Children’s Hospital of Chicago, and Northwestern University, Chicago, IL, USA
| | - Naga P Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stavra Xanthakos
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
19
|
Luo Y, Woodie LN, Graff EC, Zhang J, Fowler S, Wang X, Wang X, O'Neill AM, Greene MW. Role of liquid fructose/sucrose in regulating the hepatic transcriptome in a high-fat Western diet model of NAFLD. J Nutr Biochem 2023; 112:109174. [PMID: 36280127 DOI: 10.1016/j.jnutbio.2022.109174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which ranges from simple steatosis to nonalcoholic steatohepatitis (NASH), is the most common chronic liver disease. Yet, the molecular mechanisms for the progression of steatosis to NASH remain largely undiscovered. Thus, there is a need for identifying specific gene and pathway changes that drive the progression of NAFLD. This study uses high-fat Western diet (HFWD) together with liquid sugar [fructose and sucrose (F/S)] feeding for 12 weeks in mice to induce obesity and examine hepatic transcriptomic changes that occur in NAFLD progression. The combination of a HFWD+F/S in the drinking water exacerbated HFWD-induced obesity, hyperinsulinemia, hyperglycemia, hepatic steatosis, inflammation, and human and murine fibrosis gene set enrichment that is consistent with progression to NASH. RNAseq analysis revealed differentially expressed genes (DEGs) associated with HFWD and HFWD+F/S dietary treatments compared to Chow-fed mice. However, liquid sugar consumption resulted in a unique set of hepatic DEGs in HFWD+F/S-fed mice, which were enriched in the complement and coagulation cascades using network and biological analysis. Cluster analysis identified Orosomucoid (ORM) as a HFWD+F/S upregulated complement and coagulation cascades gene that was also upregulated in hepatocytes treated with TNFα or free fatty acids in combination with hypoxia. ORM expression was found to correlate with NAFLD parameters in obese mice. Taken together, this study examined key genes, biological processes, and pathway changes in the liver of HFWD+F/S mice in an effort to provide insight into the molecular basis for which the addition of liquid sugar promotes the progression of NAFLD.
Collapse
Affiliation(s)
| | | | - Emily C Graff
- Department of Pathobiology; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA
| | | | | | | | - Xu Wang
- Department of Pathobiology; HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | | | - Michael W Greene
- Department of Nutritional Sciences; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
20
|
Woestemeier A, Scognamiglio P, Zhao Y, Wagner J, Muscate F, Casar C, Siracusa F, Cortesi F, Agalioti T, Müller S, Sagebiel A, Konczalla L, Wahib R, Karstens KF, Giannou AD, Duprée A, Wolter S, Wong MN, Mühlig AK, Bielecka AA, Bansal V, Zhang T, Mann O, Puelles VG, Huber TB, Lohse AW, Izbicki JR, Palm NW, Bonn S, Huber S, Gagliani N. Multicytokine-producing CD4+ T cells characterize the livers of patients with NASH. JCI Insight 2023; 8:e153831. [PMID: 36625344 PMCID: PMC9870087 DOI: 10.1172/jci.insight.153831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/17/2022] [Indexed: 01/11/2023] Open
Abstract
A role of CD4+ T cells during the progression from nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitis (NASH) has been suggested, but which polarization state of these cells characterizes this progression and the development of fibrosis remain unclear. In addition, a gut-liver axis has been suggested to play a role in NASH, but the role of CD4+ T cells in this axis has just begun to be investigated. Combining single-cell RNA sequencing and multiple-parameter flow cytometry, we provide the first cell atlas to our knowledge focused on liver-infiltrating CD4+ T cells in patients with NAFLD and NASH, showing that NASH is characterized by a population of multicytokine-producing CD4+ T cells. Among these cells, only those with a Th17 polarization state were enriched in patients with advanced fibrosis. In parallel, we observed that Bacteroides appeared to be enriched in the intestine of NASH patients and to correlate with the frequency of multicytokine-producing CD4+ T cells. In short, we deliver a CD4+ T cell atlas of NAFLD and NASH, providing the rationale to target CD4+ T cells with a Th17 polarization state to block fibrosis development. Finally, our data offer an early indication to test whether multicytokine-producing CD4+ T cells are part of the gut-liver axis characterizing NASH.
Collapse
Affiliation(s)
| | | | - Yu Zhao
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH)
| | - Jonas Wagner
- Department for General, Visceral and Thoracic Surgery
| | | | - Christian Casar
- Department for General, Visceral and Thoracic Surgery
- Bioinformatics Core, and
| | | | | | | | - Simone Müller
- Department for General, Visceral and Thoracic Surgery
| | | | | | - Ramez Wahib
- Department for General, Visceral and Thoracic Surgery
| | | | | | - Anna Duprée
- Department for General, Visceral and Thoracic Surgery
| | - Stefan Wolter
- Department for General, Visceral and Thoracic Surgery
| | - Milagros N. Wong
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne K. Mühlig
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- University’s Children Hospital, UKE Hamburg, Hamburg, Germany
| | - Agata A. Bielecka
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Vikas Bansal
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH)
| | - Tianran Zhang
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH)
| | - Oliver Mann
- Department for General, Visceral and Thoracic Surgery
| | - Victor G. Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Noah W. Palm
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH)
| | | | - Nicola Gagliani
- Department for General, Visceral and Thoracic Surgery
- I Department of Medicine
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Salah N, Eissa S, Mansour A, El Magd NMA, Hasanin AH, El Mahdy MM, Hassan MK, Matboli M. Evaluation of the role of kefir in management of non-alcoholic steatohepatitis rat model via modulation of NASH linked mRNA-miRNA panel. Sci Rep 2023; 13:236. [PMID: 36604518 PMCID: PMC9816104 DOI: 10.1038/s41598-022-27353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is the clinically aggressive variant of non-alcoholic fatty liver disease. Hippo pathway dysregulation can contribute to NASH development and progression. The use of probiotics is effective in NASH management. Our aim is to investigate the efficacy of kefir Milk in NASH management via modulation of hepatic mRNA-miRNA based panel linked to NAFLD/NASH Hippo signaling and gut microbita regulated genes which was identified using bioinformatics tools. Firstly, we analyzed mRNAs (SOX11, SMAD4 and AMOTL2), and their epigenetic regulator (miR-6807) followed by validation of target effector proteins (TGFB1, IL6 and HepPar1). Molecular, biochemical, and histopathological, analyses were used to evaluate the effects of kefir on high sucrose high fat (HSHF) diet -induced NASH in rats. We found that administration of Kefir proved to prevent steatosis and development of the inflammatory component of NASH. Moreover, Kefir improved liver function and lipid panel. At the molecular level, kefir down-regulated the expression of miR 6807-5p with subsequent increase in the expression of SOX 11, AMOTL2 associated with downregulated SMAD4, resulting in reduction in the expression of the inflammatory and fibrotic markers, IL6 and TGF-β1 in the treated and prophylactic groups compared to the untreated rats. In conclusion, Kefir suppressed NASH progression and improved both fibrosis and hepatic inflammation. The produced effect was correlated with modulation of SOX11, SMAD4 and AMOTL2 mRNAs) - (miR-6807-5p) - (TGFB, IL6 and, HepPar1) expression.
Collapse
Affiliation(s)
- Noha Salah
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box 11381, Cairo, Egypt
| | - Sanaa Eissa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box 11381, Cairo, Egypt.
- MASRI institute of research, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Amal Mansour
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box 11381, Cairo, Egypt
| | - Nagwa M Abo El Magd
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amany Helmy Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Manal M El Mahdy
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Kamel Hassan
- Department of Biology, Faculty of Science, Port Said University, Port Said, Egypt
- Center for Genomics, Helmy Institute for Medical Science, Zewail City for Science & Technology, Giza, Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box 11381, Cairo, Egypt.
| |
Collapse
|
22
|
Zimmermann T, Thomas L, Baader-Pagler T, Haebel P, Simon E, Reindl W, Bajrami B, Rist W, Uphues I, Drucker DJ, Klein H, Santhanam R, Hamprecht D, Neubauer H, Augustin R. BI 456906: Discovery and preclinical pharmacology of a novel GCGR/GLP-1R dual agonist with robust anti-obesity efficacy. Mol Metab 2022; 66:101633. [PMID: 36356832 PMCID: PMC9679702 DOI: 10.1016/j.molmet.2022.101633] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Obesity and its associated comorbidities represent a global health challenge with a need for well-tolerated, effective, and mechanistically diverse pharmaceutical interventions. Oxyntomodulin is a gut peptide that activates the glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R) and reduces bodyweight by increasing energy expenditure and reducing energy intake in humans. Here we describe the pharmacological profile of the novel glucagon receptor (GCGR)/GLP-1 receptor (GLP-1R) dual agonist BI 456906. METHODS BI 456906 was characterized using cell-based in vitro assays to determine functional agonism. In vivo pharmacological studies were performed using acute and subchronic dosing regimens to demonstrate target engagement for the GCGR and GLP-1R, and weight lowering efficacy. RESULTS BI 456906 is a potent, acylated peptide containing a C18 fatty acid as a half-life extending principle to support once-weekly dosing in humans. Pharmacological doses of BI 456906 provided greater bodyweight reductions in mice compared with maximally effective doses of the GLP-1R agonist semaglutide. BI 456906's superior efficacy is the consequence of increased energy expenditure and reduced food intake. Engagement of both receptors in vivo was demonstrated via glucose tolerance, food intake, and gastric emptying tests for the GLP-1R, and liver nicotinamide N-methyltransferase mRNA expression and circulating biomarkers (amino acids, fibroblast growth factor-21) for the GCGR. The dual activity of BI 456906 at the GLP-1R and GCGR was supported using GLP-1R knockout and transgenic reporter mice, and an ex vivo bioactivity assay. CONCLUSIONS BI 456906 is a potent GCGR/GLP-1R dual agonist with robust anti-obesity efficacy achieved by increasing energy expenditure and decreasing food intake.
Collapse
Affiliation(s)
- Tina Zimmermann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Leo Thomas
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Tamara Baader-Pagler
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Peter Haebel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Eric Simon
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Wolfgang Reindl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Besnik Bajrami
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Wolfgang Rist
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Ingo Uphues
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.
| | - Holger Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Rakesh Santhanam
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Dieter Hamprecht
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany; Boehringer Ingelheim Research Italia, Via Lorenzini 8, 20139 Milano, Italy.
| | - Heike Neubauer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Robert Augustin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| |
Collapse
|
23
|
Tu T, Alba MM, Datta AA, Hong H, Hua B, Jia Y, Khan J, Nguyen P, Niu X, Pammidimukkala P, Slarve I, Tang Q, Xu C, Zhou Y, Stiles BL. Hepatic macrophage mediated immune response in liver steatosis driven carcinogenesis. Front Oncol 2022; 12:958696. [PMID: 36276076 PMCID: PMC9581256 DOI: 10.3389/fonc.2022.958696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Obesity confers an independent risk for carcinogenesis. Classically viewed as a genetic disease, owing to the discovery of tumor suppressors and oncogenes, genetic events alone are not sufficient to explain the progression and development of cancers. Tumor development is often associated with metabolic and immunological changes. In particular, obesity is found to significantly increase the mortality rate of liver cancer. As its role is not defined, a fundamental question is whether and how metabolic changes drive the development of cancer. In this review, we will dissect the current literature demonstrating that liver lipid dysfunction is a critical component driving the progression of cancer. We will discuss the involvement of inflammation in lipid dysfunction driven liver cancer development with a focus on the involvement of liver macrophages. We will first discuss the association of steatosis with liver cancer. This will be followed with a literature summary demonstrating the importance of inflammation and particularly macrophages in the progression of liver steatosis and highlighting the evidence that macrophages and macrophage produced inflammatory mediators are critical for liver cancer development. We will then discuss the specific inflammatory mediators and their roles in steatosis driven liver cancer development. Finally, we will summarize the molecular pattern (PAMP and DAMP) as well as lipid particle signals that are involved in the activation, infiltration and reprogramming of liver macrophages. We will also discuss some of the therapies that may interfere with lipid metabolism and also affect liver cancer development.
Collapse
Affiliation(s)
- Taojian Tu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Mario M. Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Aditi A. Datta
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Handan Hong
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Brittney Hua
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Yunyi Jia
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Jared Khan
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Phillip Nguyen
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Xiatoeng Niu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Pranav Pammidimukkala
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Ielyzaveta Slarve
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Qi Tang
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Chenxi Xu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Yiren Zhou
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Bangyan L. Stiles,
| |
Collapse
|
24
|
Single-cell transcriptome and cell type-specific molecular pathways of human non-alcoholic steatohepatitis. Sci Rep 2022; 12:13484. [PMID: 35931712 PMCID: PMC9355943 DOI: 10.1038/s41598-022-16754-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study is to characterize cell type-specific transcriptional signatures in non-alcoholic steatohepatitis (NASH) to improve our understanding of the disease. We performed single-cell RNA sequencing on liver biopsies from 10 patients with NASH. We applied weighted gene co-expression network analysis and validated our findings using a publicly available RNA sequencing data set derived from 160 patients with non-alcoholic fatty liver disease (NAFLD) and 24 controls with normal liver histology. Our study provides a comprehensive single-cell analysis of NASH pathology in humans, describing 19,627 single-cell transcriptomes from biopsy-proven NASH patients. Our data suggest that the previous notion of ”NASH-associated macrophages” can be explained by an up-regulation of normally existing subpopulations of liver macrophages. Similarly, we describe two distinct populations of activated hepatic stellate cells, associated with the level of fibrosis. Finally, we find that the expression of several circulating markers of NAFLD are co-regulated in hepatocytes together with predicted effector genes from NAFLD genome-wide association studies (GWAS), coupled to abnormalities in the complement system. In sum, our single-cell transcriptomic data set provides insights into novel cell type-specific and general biological processes associated with inflammation and fibrosis, emphasizing the importance of studying cell type-specific biological processes in human NASH.
Collapse
|
25
|
Wen Y, Wu Q, Zhang L, He J, Chen Y, Yang X, Zhang K, Niu X, Li S. Association of Intrauterine Microbes with Endometrial Factors in Intrauterine Adhesion Formation and after Medicine Treatment. Pathogens 2022; 11:pathogens11070784. [PMID: 35890029 PMCID: PMC9322781 DOI: 10.3390/pathogens11070784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Intrauterine adhesions (IUAs) have caused serious harm to women’s reproductive health. Although emerging evidence has linked intrauterine microbiome to gynecological diseases, the association of intrauterine microbiome with IUA, remains unknown. We performed metagenome-wide association, metabolomics, and transcriptomics studies on IUA and non-IUA uteri of adult rats to identify IUA-associated microbial species, which affected uterine metabolites and endometrial transcriptions. A rat model was used with one side of the duplex uterus undergoing IUA and the other remaining as a non-IUA control. Both 16S rRNA sequencing and metagenome-wide association analysis revealed that instead of Mycoplasmopsis specie in genital tract, murine lung pathogen Mycoplasmopsispulmonis markedly increased in IUA samples and displayed a distinct positive interaction with the host immune system. Moreover, most of the IUA-enriched 58 metabolites positively correlate with M.pulmonis, which inversely correlates with a mitotic progression inhibitor named 3-hydroxycapric acid. A comparison of metabolic profiles of intrauterine flushing fluids from human patients with IUA, endometritis, and fallopian tube obstruction suggested that rat IUA shared much similarity to human IUA. The endometrial gene Tenascin-N, which is responsible for extracellular matrix of wounds, was highly up-regulated, while the key genes encoding parvalbumin, trophectoderm Dkkl1 and telomerase involved in leydig cells, trophectoderm cells, activated T cells and monocytes were dramatically down-regulated in rat IUA endometria. Treatment for rat IUA with estrogen (E2), oxytetracycline (OTC), and a traditional Chinese patent medicine GongXueNing (GXN) did not reduce the incidence of IUA, though inflammatory factor IL-6 was dramatically down-regulated (96–86%) with all three. Instead, in both the E2 and OTC treated groups, IUA became worse with a highly up-regulated B cell receptor signaling pathway, which may be associated with the significantly increased proportions of Ulvibacter or Staphylococcus. Our results suggest an association between intrauterine microbiota alterations, certain uterine metabolites, characteristic changes in endometrial transcription, and IUA and the possibility to intervene in IUA formation by targeting the causal factors, microbial infection, and Tenascin-like proteins.
Collapse
Affiliation(s)
- Ya Wen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming 650091, China
| | - Qunfu Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
| | - Longlong Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
| | - Jiangbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
- Kunming Key Laboratory of Respiratory Disease, Kunming University, Kunming 650214, China
| | - Yonghong Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
| | - Xiaoyu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
- Regenerative Medicine Research Center, The First People’s Hospital of Yunnan Province, Kunming 650034, China
| | - Keqin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
| | - Xuemei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
- Correspondence: (X.N.); (S.L.)
| | - Shenghong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (X.N.); (S.L.)
| |
Collapse
|
26
|
Fujiwara N, Kubota N, Crouchet E, Koneru B, Marquez CA, Jajoriya AK, Panda G, Qian T, Zhu S, Goossens N, Wang X, Liang S, Zhong Z, Lewis S, Taouli B, Schwartz ME, Fiel MI, Singal AG, Marrero JA, Fobar AJ, Parikh ND, Raman I, Li QZ, Taguri M, Ono A, Aikata H, Nakahara T, Nakagawa H, Matsushita Y, Tateishi R, Koike K, Kobayashi M, Higashi T, Nakagawa S, Yamashita YI, Beppu T, Baba H, Kumada H, Chayama K, Baumert TF, Hoshida Y. Molecular signatures of long-term hepatocellular carcinoma risk in nonalcoholic fatty liver disease. Sci Transl Med 2022; 14:eabo4474. [PMID: 35731891 PMCID: PMC9236162 DOI: 10.1126/scitranslmed.abo4474] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prediction of hepatocellular carcinoma (HCC) risk is an urgent unmet need in patients with nonalcoholic fatty liver disease (NAFLD). In cohorts of 409 patients with NAFLD from multiple global regions, we defined and validated hepatic transcriptome and serum secretome signatures predictive of long-term HCC risk in patients with NAFLD. A 133-gene signature, prognostic liver signature (PLS)-NAFLD, predicted incident HCC over up to 15 years of longitudinal observation. High-risk PLS-NAFLD was associated with IDO1+ dendritic cells and dysfunctional CD8+ T cells in fibrotic portal tracts along with impaired metabolic regulators. PLS-NAFLD was validated in independent cohorts of patients with NAFLD who were HCC naïve (HCC incidence rates at 15 years were 22.7 and 0% in high- and low-risk patients, respectively) or HCC experienced (de novo HCC recurrence rates at 5 years were 71.8 and 42.9% in high- and low-risk patients, respectively). PLS-NAFLD was bioinformatically translated into a four-protein secretome signature, PLSec-NAFLD, which was validated in an independent cohort of HCC-naïve patients with NAFLD and cirrhosis (HCC incidence rates at 15 years were 37.6 and 0% in high- and low-risk patients, respectively). Combination of PLSec-NAFLD with our previously defined etiology-agnostic PLSec-AFP yielded improved HCC risk stratification. PLS-NAFLD was modified by bariatric surgery, lipophilic statin, and IDO1 inhibitor, suggesting that the signature can be used for drug discovery and as a surrogate end point in HCC chemoprevention clinical trials. Collectively, PLS/PLSec-NAFLD may enable NAFLD-specific HCC risk prediction and facilitate clinical translation of NAFLD-directed HCC chemoprevention.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo; Tokyo, 113-8655, Japan
| | - Naoto Kubota
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Emilie Crouchet
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, University of Strasbourg and IHU, Pole Hépato-digestif, Strasbourg University Hospitals; Strasbourg, 67000, France
| | - Bhuvaneswari Koneru
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Cesia A Marquez
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Arun K Jajoriya
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Gayatri Panda
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Tongqi Qian
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Shijia Zhu
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Nicolas Goossens
- Division of Gastroenterology and Hepatology, Geneva University Hospital; Geneva, 44041, Switzerland
| | - Xiaochen Wang
- Department of Immunology, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Shuang Liang
- Department of Immunology, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Sara Lewis
- Department of Radiology, Icahn School of Medicine at Mount Sinai; New York, 10029, U.S
| | - Bachir Taouli
- Department of Radiology, Icahn School of Medicine at Mount Sinai; New York, 10029, U.S
| | - Myron E Schwartz
- Department of Surgery, Icahn School of Medicine at Mount Sinai; New York, 10029, U.S
| | - Maria Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai; New York, 10029, U.S
| | - Amit G Singal
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Jorge A Marrero
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, 19104, U.S
| | - Austin J Fobar
- Division of Gastroenterology and Hepatology, University of Michigan; Ann Arbor, 48109, U.S
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan; Ann Arbor, 48109, U.S
| | - Indu Raman
- BioCenter Microarray Core Facility, Department of Immunology, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Quan-Zhen Li
- BioCenter Microarray Core Facility, Department of Immunology, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| | - Masataka Taguri
- Department of Data Science, School of Data Science, Yokohama City University; Yokohama, 236-0027, Japan
| | - Atsushi Ono
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Sciences, Hiroshima University; Hiroshima, 734-8551, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Sciences, Hiroshima University; Hiroshima, 734-8551, Japan
| | - Takashi Nakahara
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Sciences, Hiroshima University; Hiroshima, 734-8551, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo; Tokyo, 113-8655, Japan
| | - Yuki Matsushita
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo; Tokyo, 113-8655, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo; Tokyo, 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo; Tokyo, 113-8655, Japan
| | | | - Takaaki Higashi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University; Kumamoto, 860-8555, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University; Kumamoto, 860-8555, Japan
| | - Yo-ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University; Kumamoto, 860-8555, Japan
| | - Toru Beppu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University; Kumamoto, 860-8555, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University; Kumamoto, 860-8555, Japan
| | - Hiromitsu Kumada
- Department of Hepatology, Toranomon Hospital; Tokyo, 105-0001, Japan
| | - Kazuaki Chayama
- Collaborative Research Laboratory of Medical Innovation, Research Center for Hepatology and Gastroenterology, Hiroshima University; Hiroshima, 734-8551, Japan
- RIKEN Center for Integrative Medical Sciences; Yokohama, 230-0045, Japan
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, University of Strasbourg and IHU, Pole Hépato-digestif, Strasbourg University Hospitals; Strasbourg, 67000, France
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center; Dallas, 75390, U.S
| |
Collapse
|
27
|
Fahlbusch P, Nikolic A, Hartwig S, Jacob S, Kettel U, Köllmer C, Al-Hasani H, Lehr S, Müller-Wieland D, Knebel B, Kotzka J. Adaptation of Oxidative Phosphorylation Machinery Compensates for Hepatic Lipotoxicity in Early Stages of MAFLD. Int J Mol Sci 2022; 23:ijms23126873. [PMID: 35743314 PMCID: PMC9224893 DOI: 10.3390/ijms23126873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 12/10/2022] Open
Abstract
Alterations in mitochondrial function are an important control variable in the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), while also noted by increased de novo lipogenesis (DNL) and hepatic insulin resistance. We hypothesized that the organization and function of a mitochondrial electron transport chain (ETC) in this pathologic condition is a consequence of shifted substrate availability. We addressed this question using a transgenic mouse model with increased hepatic insulin resistance and DNL due to constitutively active human SREBP-1c. The abundance of ETC complex subunits and components of key metabolic pathways are regulated in the liver of these animals. Further omics approaches combined with functional assays in isolated liver mitochondria and primary hepatocytes revealed that the SREBP-1c-forced fatty liver induced a substrate limitation for oxidative phosphorylation, inducing enhanced complex II activity. The observed increased expression of mitochondrial genes may have indicated a counteraction. In conclusion, a shift of available substrates directed toward activated DNL results in increased electron flows, mainly through complex II, to compensate for the increased energy demand of the cell. The reorganization of key compounds in energy metabolism observed in the SREBP-1c animal model might explain the initial increase in mitochondrial function observed in the early stages of human MAFLD.
Collapse
Affiliation(s)
- Pia Fahlbusch
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Aleksandra Nikolic
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Sylvia Jacob
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
| | - Ulrike Kettel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
| | - Cornelia Köllmer
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
- Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Dirk Müller-Wieland
- Clinical Research Centre, Department of Internal Medicine I, University Hospital Aachen, 52074 Aachen, Germany;
| | - Birgit Knebel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
- Correspondence: ; Tel.: +49-211-3382-536
| | - Jörg Kotzka
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
28
|
Lefever DE, Miedel MT, Pei F, DiStefano JK, Debiasio R, Shun TY, Saydmohammed M, Chikina M, Vernetti LA, Soto-Gutierrez A, Monga SP, Bataller R, Behari J, Yechoor VK, Bahar I, Gough A, Stern AM, Taylor DL. A Quantitative Systems Pharmacology Platform Reveals NAFLD Pathophysiological States and Targeting Strategies. Metabolites 2022; 12:528. [PMID: 35736460 PMCID: PMC9227696 DOI: 10.3390/metabo12060528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence with a heterogeneous and complex pathophysiology that presents barriers to traditional targeted therapeutic approaches. We describe an integrated quantitative systems pharmacology (QSP) platform that comprehensively and unbiasedly defines disease states, in contrast to just individual genes or pathways, that promote NAFLD progression. The QSP platform can be used to predict drugs that normalize these disease states and experimentally test predictions in a human liver acinus microphysiology system (LAMPS) that recapitulates key aspects of NAFLD. Analysis of a 182 patient-derived hepatic RNA-sequencing dataset generated 12 gene signatures mirroring these states. Screening against the LINCS L1000 database led to the identification of drugs predicted to revert these signatures and corresponding disease states. A proof-of-concept study in LAMPS demonstrated mitigation of steatosis, inflammation, and fibrosis, especially with drug combinations. Mechanistically, several structurally diverse drugs were predicted to interact with a subnetwork of nuclear receptors, including pregnane X receptor (PXR; NR1I2), that has evolved to respond to both xenobiotic and endogenous ligands and is intrinsic to NAFLD-associated transcription dysregulation. In conjunction with iPSC-derived cells, this platform has the potential for developing personalized NAFLD therapeutic strategies, informing disease mechanisms, and defining optimal cohorts of patients for clinical trials.
Collapse
Affiliation(s)
- Daniel E. Lefever
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
| | - Mark T. Miedel
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Fen Pei
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Johanna K. DiStefano
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute TGen, Phoenix, AZ 85004, USA;
| | - Richard Debiasio
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
| | - Tong Ying Shun
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
| | - Manush Saydmohammed
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
| | - Maria Chikina
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lawrence A. Vernetti
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Alejandro Soto-Gutierrez
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Satdarshan P. Monga
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ramon Bataller
- Division of Gastroenterology Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (R.B.); (J.B.)
| | - Jaideep Behari
- Division of Gastroenterology Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (R.B.); (J.B.)
- UPMC Liver Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Vijay K. Yechoor
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Ivet Bahar
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Albert Gough
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - Andrew M. Stern
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
| | - D. Lansing Taylor
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.E.L.); (M.T.M.); (R.D.); (T.Y.S.); (M.S.); (L.A.V.); (A.S.-G.); (S.P.M.); (V.K.Y.); (I.B.); (A.G.)
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (F.P.); (M.C.)
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
29
|
Deep proteomic profiling unveils arylsulfatase A as a non-alcoholic steatohepatitis inducible hepatokine and regulator of glycemic control. Nat Commun 2022; 13:1259. [PMID: 35273160 PMCID: PMC8913628 DOI: 10.1038/s41467-022-28889-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) and type 2 diabetes are closely linked, yet the pathophysiological mechanisms underpinning this bidirectional relationship remain unresolved. Using proteomic approaches, we interrogate hepatocyte protein secretion in two models of murine NASH to understand how liver-derived factors modulate lipid metabolism and insulin sensitivity in peripheral tissues. We reveal striking hepatokine remodelling that is associated with insulin resistance and maladaptive lipid metabolism, and identify arylsulfatase A (ARSA) as a hepatokine that is upregulated in NASH and type 2 diabetes. Mechanistically, hepatic ARSA reduces sulfatide content and increases lysophosphatidylcholine (LPC) accumulation within lipid rafts and suppresses LPC secretion from the liver, thereby lowering circulating LPC and lysophosphatidic acid (LPA) levels. Reduced LPA is linked to improvements in skeletal muscle insulin sensitivity and systemic glycemic control. Hepatic silencing of Arsa or inactivation of ARSA's enzymatic activity reverses these effects. Together, this study provides a unique resource describing global changes in hepatokine secretion in NASH, and identifies ARSA as a regulator of liver to muscle communication and as a potential therapeutic target for type 2 diabetes.
Collapse
|
30
|
The role of RNA binding proteins in hepatocellular carcinoma. Adv Drug Deliv Rev 2022; 182:114114. [PMID: 35063534 DOI: 10.1016/j.addr.2022.114114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of overall cancer deaths worldwide with limited therapeutic options. Due to the heterogeneity of HCC pathogenesis, the molecular mechanisms underlying HCC development are not fully understood. Emerging evidence indicates that RNA-binding proteins (RBPs) play a vital role throughout hepatocarcinogenesis. Thus, a deeper understanding of how RBPs contribute to HCC progression will provide new tools for early diagnosis and prognosis of this devastating disease. In this review, we summarize the tumor suppressive and oncogenic roles of RBPs and their roles in hepatocarcinogenesis. The diagnostic and therapeutic potential of RBPs in HCC, including their limitations, are also discussed.
Collapse
|
31
|
Haworth JJ, Pitcher CK, Ferrandino G, Hobson AR, Pappan KL, Lawson JLD. Breathing new life into clinical testing and diagnostics: perspectives on volatile biomarkers from breath. Crit Rev Clin Lab Sci 2022; 59:353-372. [PMID: 35188863 DOI: 10.1080/10408363.2022.2038075] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human breath offers several benefits for diagnostic applications, including simple, noninvasive collection. Breath is a rich source of clinically-relevant biological information; this includes a volatile fraction, where greater than 1,000 volatile organic compounds (VOCs) have been described so far, and breath aerosols that carry nucleic acids, proteins, signaling molecules, and pathogens. Many of these factors, especially VOCs, are delivered to the lung by the systemic circulation, and diffusion of candidate biomarkers from blood into breath allows systematic profiling of organismal health. Biomarkers on breath offer the capability to advance early detection and precision medicine in areas of global clinical need. Breath tests are noninvasive and can be performed at home or in a primary care setting, which makes them well-suited for the kind of public screening program that could dramatically improve the early detection of conditions such as lung cancer. Since measurements of VOCs on breath largely report on metabolic changes, this too aids in the early detection of a broader range of illnesses and can be used to detect metabolic shifts that could be targeted through precision medicine. Furthermore, the ability to perform frequent sampling has envisioned applications in monitoring treatment responses. Breath has been investigated in respiratory, liver, gut, and neurological diseases and in contexts as diverse as infectious diseases and cancer. Preclinical research studies using breath have been ongoing for some time, yet only a few breath-based diagnostics tests are currently available and in widespread clinical use. Most recently, tests assessing the gut microbiome using hydrogen and methane on breath, in addition to tests using urea to detect Helicobacter pylori infections have been released, yet there are many more applications of breath tests still to be realized. Here, we discuss the strengths of breath as a clinical sampling matrix and the technical challenges to be addressed in developing it for clinical use. Historically, a lack of standardized methodologies has delayed the discovery and validation of biomarker candidates, resulting in a proliferation of early-stage pilot studies. We will explore how advancements in breath collection and analysis are in the process of driving renewed progress in the field, particularly in the context of gastrointestinal and chronic liver disease. Finally, we will provide a forward-looking outlook for developing the next generation of clinically relevant breath tests and how they may emerge into clinical practice.
Collapse
|
32
|
Lin W, Liu Z, Li L, Zhou Z, Ma S, He F. Effects of Shugan Quzhi Capsule in treating different metabolic diseases based on network pharmacology and molecular docking. 2021 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) 2021:3832-3839. [DOI: 10.1109/bibm52615.2021.9669290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Lefebvre P, Staels B. Hepatic sexual dimorphism - implications for non-alcoholic fatty liver disease. Nat Rev Endocrinol 2021; 17:662-670. [PMID: 34417588 DOI: 10.1038/s41574-021-00538-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The liver is often thought of as a single functional unit, but both its structural and functional architecture make it highly multivalent and adaptable. In any given physiological situation, the liver can maintain metabolic homeostasis, conduct appropriate inflammatory responses, carry out endobiotic and xenobiotic transformation and synthesis reactions, as well as store and release multiple bioactive molecules. Moreover, the liver is a very resilient organ. This resilience means that chronic liver diseases can go unnoticed for decades, yet culminate in life-threatening clinical complications once the adaptive capacity of the liver is overwhelmed. Non-alcoholic fatty liver disease (NAFLD) predisposes individuals to cirrhosis and increases liver-related and cardiovascular disease-related mortality. This Review discusses the accumulating evidence of sexual dimorphism in NAFLD, which is currently rarely considered in preclinical and clinical studies. Increased awareness of the mechanistic causes of hepatic sexual dimorphism could lead to improved understanding of the biological processes that are dysregulated in NAFLD, to the identification of relevant therapeutic targets and to improved risk stratification of patients with NAFLD undergoing therapeutic intervention.
Collapse
Affiliation(s)
- Philippe Lefebvre
- Université Lille, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France.
| | - Bart Staels
- Université Lille, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
34
|
Saydmohammed M, Jha A, Mahajan V, Gavlock D, Shun TY, DeBiasio R, Lefever D, Li X, Reese C, Kershaw EE, Yechoor V, Behari J, Soto-Gutierrez A, Vernetti L, Stern A, Gough A, Miedel MT, Lansing Taylor D. Quantifying the progression of non-alcoholic fatty liver disease in human biomimetic liver microphysiology systems with fluorescent protein biosensors. Exp Biol Med (Maywood) 2021; 246:2420-2441. [PMID: 33957803 PMCID: PMC8606957 DOI: 10.1177/15353702211009228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome is a complex disease that involves multiple organ systems including a critical role for the liver. Non-alcoholic fatty liver disease (NAFLD) is a key component of the metabolic syndrome and fatty liver is linked to a range of metabolic dysfunctions that occur in approximately 25% of the population. A panel of experts recently agreed that the acronym, NAFLD, did not properly characterize this heterogeneous disease given the associated metabolic abnormalities such as type 2 diabetes mellitus (T2D), obesity, and hypertension. Therefore, metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed as the new term to cover the heterogeneity identified in the NAFLD patient population. Although many rodent models of NAFLD/NASH have been developed, they do not recapitulate the full disease spectrum in patients. Therefore, a platform has evolved initially focused on human biomimetic liver microphysiology systems that integrates fluorescent protein biosensors along with other key metrics, the microphysiology systems database, and quantitative systems pharmacology. Quantitative systems pharmacology is being applied to investigate the mechanisms of NAFLD/MAFLD progression to select molecular targets for fluorescent protein biosensors, to integrate computational and experimental methods to predict drugs for repurposing, and to facilitate novel drug development. Fluorescent protein biosensors are critical components of the platform since they enable monitoring of the pathophysiology of disease progression by defining and quantifying the temporal and spatial dynamics of protein functions in the biosensor cells, and serve as minimally invasive biomarkers of the physiological state of the microphysiology system experimental disease models. Here, we summarize the progress in developing human microphysiology system disease models of NAFLD/MAFLD from several laboratories, developing fluorescent protein biosensors to monitor and to measure NAFLD/MAFLD disease progression and implementation of quantitative systems pharmacology with the goal of repurposing drugs and guiding the creation of novel therapeutics.
Collapse
Affiliation(s)
- Manush Saydmohammed
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anupma Jha
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vineet Mahajan
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dillon Gavlock
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tong Ying Shun
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel Lefever
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiang Li
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Celeste Reese
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erin E Kershaw
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vijay Yechoor
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jaideep Behari
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh, PA 15261, USA
- UPMC Liver Clinic, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Larry Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark T Miedel
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
35
|
Kozumi K, Kodama T, Murai H, Sakane S, Govaere O, Cockell S, Motooka D, Kakita N, Yamada Y, Kondo Y, Tahata Y, Yamada R, Hikita H, Sakamori R, Kamada Y, Daly AK, Anstee QM, Tatsumi T, Morii E, Takehara T. Transcriptomics Identify Thrombospondin-2 as a Biomarker for NASH and Advanced Liver Fibrosis. Hepatology 2021; 74:2452-2466. [PMID: 34105780 PMCID: PMC8596693 DOI: 10.1002/hep.31995] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS NAFLD is the most common liver disease worldwide. NASH, the progressive form of NAFLD, and advanced fibrosis are associated with poor outcomes. We searched for their noninvasive biomarkers. APPROACH AND RESULTS Global RNA sequencing of liver tissue from 98 patients with biopsy-proven NAFLD was performed. Unsupervised hierarchical clustering well distinguished NASH from nonalcoholic fatty liver (NAFL), and patients with NASH exhibited molecular abnormalities reflecting their pathological features. Transcriptomic analysis identified proteins up-regulated in NASH and/or advanced fibrosis (stage F3-F4), including matricellular glycoprotein thrombospondin-2 (TSP-2), encoded by the thrombospondin 2 (THBS2) gene. The intrahepatic THBS2 expression level showed the highest areas under the receiver operating characteristic curves (AUROCs) of 0.915 and 0.957 for diagnosing NASH and advanced fibrosis, respectively. THBS2 positively correlated with inflammation and ballooning according to NAFLD activity score, serum aspartate aminotransferase and hyaluronic acid (HA) levels, and NAFLD Fibrosis Score (NFS). THBS2 was associated with extracellular matrix and collagen biosynthesis, platelet activation, caspase-mediated cleavage of cytoskeletal proteins, and immune cell infiltration. Serum TSP-2 expression was measured in 213 patients with biopsy-proven NAFLD, was significantly higher in NASH than in NAFL, and increased parallel to fibrosis stage. The AUROCs for predicting NASH and advanced fibrosis were 0.776 and 0.856, respectively, which were comparable to Fibrosis-4 index, serum HA level, and NFS in advanced fibrosis diagnosis. Serum TSP-2 level and platelet count were independent predictors of NASH and advanced fibrosis. Serum TSP-2 levels could stratify patients with NAFLD according to the risk of hepatic complications, including liver cancer and decompensated cirrhotic events. CONCLUSIONS TSP-2 may be a useful biomarker for NASH and advanced fibrosis diagnosis in patients with NAFLD.
Collapse
Affiliation(s)
- Kazuhiro Kozumi
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaJapan
| | - Takahiro Kodama
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaJapan
| | - Hiroki Murai
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaJapan
| | - Sadatsugu Sakane
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaJapan
| | - Olivier Govaere
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUnited Kingdom
| | - Simon Cockell
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUnited Kingdom
| | - Daisuke Motooka
- Genome Information Research CenterResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Naruyasu Kakita
- Department of Gastroenterology and HepatologyKaizuka City HospitalOsakaJapan
| | - Yukinori Yamada
- Department of Gastroenterology and HepatologyKaizuka City HospitalOsakaJapan
| | - Yasuteru Kondo
- Department of HepatologySendai Kousei HospitalSendaiJapan
| | - Yuki Tahata
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaJapan
| | - Ryoko Yamada
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaJapan
| | - Hayato Hikita
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaJapan
| | - Ryotaro Sakamori
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic HepatologyOsaka University Graduate School of MedicineSuitaJapan
| | - Ann K. Daly
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUnited Kingdom
| | - Quentin M. Anstee
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUnited Kingdom
- Newcastle National Institute for Health Research Biomedical Research CentreNewcastle Upon Tyne Hospitals National Health Service Foundation TrustNewcastle Upon TyneUnited Kingdom
| | - Tomohide Tatsumi
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaJapan
| | - Eiichi Morii
- Department of PathologyOsaka University Graduate School of MedicineOsakaJapan
| | - Tetsuo Takehara
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
36
|
Zhou JL, Zhao YZ, Wang SS, Chen MX, Zhou S, Chen C. RNA Splicing: A Versatile Regulatory Mechanism in Pediatric Liver Diseases. Front Mol Biosci 2021; 8:725308. [PMID: 34651015 PMCID: PMC8505697 DOI: 10.3389/fmolb.2021.725308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/23/2021] [Indexed: 12/03/2022] Open
Abstract
With the development of high-throughput sequencing technology, the posttranscriptional mechanism of alternative splicing is becoming better understood. From decades of studies, alternative splicing has been shown to occur in multiple tissues, including the brain, heart, testis, skeletal muscle, and liver. This regulatory mechanism plays an important role in physiological functions in most liver diseases. Currently, due to the absence of symptoms, chronic pediatric liver diseases have a significant impact on public health. Furthermore, the progression of the disease is accelerated in children, leading to severe damage to their liver tissue if no precautions are taken. To this end, this review article summarizes the current knowledge of alternative splicing in pediatric liver diseases, paying special attention to liver damage in the child stage. The discussion of the regulatory role of splicing in liver diseases and its potential as a new therapeutic target is also included.
Collapse
Affiliation(s)
- Jian-Li Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yu-Zhen Zhao
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Shan-Shan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Shaoming Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Chen Chen
- Department of Infectious Disease, Nanjing Second Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
37
|
Wang ZY, Keogh A, Waldt A, Cuttat R, Neri M, Zhu S, Schuierer S, Ruchti A, Crochemore C, Knehr J, Bastien J, Ksiazek I, Sánchez-Taltavull D, Ge H, Wu J, Roma G, Helliwell SB, Stroka D, Nigsch F. Single-cell and bulk transcriptomics of the liver reveals potential targets of NASH with fibrosis. Sci Rep 2021; 11:19396. [PMID: 34588551 PMCID: PMC8481490 DOI: 10.1038/s41598-021-98806-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is characterized by the excessive production of collagen and other extracellular matrix (ECM) components and represents a leading cause of morbidity and mortality worldwide. Previous studies of nonalcoholic steatohepatitis (NASH) with fibrosis were largely restricted to bulk transcriptome profiles. Thus, our understanding of this disease is limited by an incomplete characterization of liver cell types in general and hepatic stellate cells (HSCs) in particular, given that activated HSCs are the major hepatic fibrogenic cell population. To help fill this gap, we profiled 17,810 non-parenchymal cells derived from six healthy human livers. In conjunction with public single-cell data of fibrotic/cirrhotic human livers, these profiles enable the identification of potential intercellular signaling axes (e.g., ITGAV-LAMC1, TNFRSF11B-VWF and NOTCH2-DLL4) and master regulators (e.g., RUNX1 and CREB3L1) responsible for the activation of HSCs during fibrogenesis. Bulk RNA-seq data of NASH patient livers and rodent models for liver fibrosis of diverse etiologies allowed us to evaluate the translatability of candidate therapeutic targets for NASH-related fibrosis. We identified 61 liver fibrosis-associated genes (e.g., AEBP1, PRRX1 and LARP6) that may serve as a repertoire of translatable drug target candidates. Consistent with the above regulon results, gene regulatory network analysis allowed the identification of CREB3L1 as a master regulator of many of the 61 genes. Together, this study highlights potential cell-cell interactions and master regulators that underlie HSC activation and reveals genes that may represent prospective hallmark signatures for liver fibrosis.
Collapse
Affiliation(s)
- Zhong-Yi Wang
- Novartis Institutes for BioMedical Research, 4056, Basel, Switzerland.
| | - Adrian Keogh
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Annick Waldt
- Novartis Institutes for BioMedical Research, 4056, Basel, Switzerland
| | - Rachel Cuttat
- Novartis Institutes for BioMedical Research, 4056, Basel, Switzerland
| | - Marilisa Neri
- Novartis Institutes for BioMedical Research, 4056, Basel, Switzerland
| | - Shanshan Zhu
- China Novartis Institutes for BioMedical Research, Shanghai, 201203, China
| | - Sven Schuierer
- Novartis Institutes for BioMedical Research, 4056, Basel, Switzerland
| | - Alexandra Ruchti
- Novartis Institutes for BioMedical Research, 4056, Basel, Switzerland
| | | | - Judith Knehr
- Novartis Institutes for BioMedical Research, 4056, Basel, Switzerland
| | - Julie Bastien
- Novartis Institutes for BioMedical Research, 4056, Basel, Switzerland
| | - Iwona Ksiazek
- Novartis Institutes for BioMedical Research, 4056, Basel, Switzerland
| | - Daniel Sánchez-Taltavull
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Hui Ge
- China Novartis Institutes for BioMedical Research, Shanghai, 201203, China
| | - Jing Wu
- China Novartis Institutes for BioMedical Research, Shanghai, 201203, China
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, 4056, Basel, Switzerland
| | - Stephen B Helliwell
- Novartis Institutes for BioMedical Research, 4056, Basel, Switzerland
- Rejuveron Life Sciences AG, 8952, Schlieren, Switzerland
| | - Deborah Stroka
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Florian Nigsch
- Novartis Institutes for BioMedical Research, 4056, Basel, Switzerland.
| |
Collapse
|
38
|
Skat-Rørdam J, Ipsen DH, Seemann SE, Latta M, Lykkesfeldt J, Tveden-Nyborg P. Modelling Nonalcoholic Steatohepatitis In Vivo-A Close Transcriptomic Similarity Supports the Guinea Pig Disease Model. Biomedicines 2021; 9:biomedicines9091198. [PMID: 34572384 PMCID: PMC8471870 DOI: 10.3390/biomedicines9091198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/29/2022] Open
Abstract
The successful development of effective treatments against nonalcoholic steatohepatitis (NASH) is significantly set back by the limited availability of predictive preclinical models, thereby delaying and reducing patient recovery. Uniquely, the guinea pig NASH model develops hepatic histopathology and fibrosis resembling that of human patients, supported by similarities in selected cellular pathways. The high-throughput sequencing of guinea pig livers with fibrotic NASH (n = 6) and matched controls (n = 6) showed a clear separation of the transcriptomic profile between NASH and control animals. A comparison to NASH patients with mild disease (GSE126848) revealed a 45.2% overlap in differentially expressed genes, while pathway analysis showed a 34% match between the top 50 enriched pathways in patients with advanced NASH (GSE49541) and guinea pigs. Gene set enrichment analysis highlighted the similarity to human patients (GSE49541), also when compared to three murine models (GSE52748, GSE38141, GSE67680), and leading edge genes THRSP, CCL20 and CD44 were highly expressed in both guinea pigs and NASH patients. Nine candidate genes were identified as highly correlated with hepatic fibrosis (correlation coefficient > 0.8), and showed a similar expression pattern in NASH patients. Of these, two candidate genes (VWF and SERPINB9) encode secreted factors, warranting further investigations as potential biomarkers of human NASH progression. This study demonstrates key similarities in guinea pig and human NASH, supporting increased predictability when translating research findings to human patients.
Collapse
Affiliation(s)
- Josephine Skat-Rørdam
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederikberg, Denmark; (J.S.-R.); (D.H.I.); (J.L.)
| | - David H. Ipsen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederikberg, Denmark; (J.S.-R.); (D.H.I.); (J.L.)
| | - Stefan E. Seemann
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Section for Animal Genetics, Bioinformatics and Breeding, University of Copenhagen, DK-1871 Frederiksberg, Denmark;
| | - Markus Latta
- Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, DK-2760 Måløv, Denmark;
| | - Jens Lykkesfeldt
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederikberg, Denmark; (J.S.-R.); (D.H.I.); (J.L.)
| | - Pernille Tveden-Nyborg
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederikberg, Denmark; (J.S.-R.); (D.H.I.); (J.L.)
- Correspondence: ; Tel.: +45-35-33-31-67
| |
Collapse
|
39
|
Pantano L, Agyapong G, Shen Y, Zhuo Z, Fernandez-Albert F, Rust W, Knebel D, Hill J, Boustany-Kari CM, Doerner JF, Rippmann JF, Chung RT, Ho Sui SJ, Simon E, Corey KE. Molecular characterization and cell type composition deconvolution of fibrosis in NAFLD. Sci Rep 2021; 11:18045. [PMID: 34508113 PMCID: PMC8433177 DOI: 10.1038/s41598-021-96966-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/05/2021] [Indexed: 01/16/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease worldwide. In adults with NAFLD, fibrosis can develop and progress to liver cirrhosis and liver failure. However, the underlying molecular mechanisms of fibrosis progression are not fully understood. Using total RNA-Seq, we investigated the molecular mechanisms of NAFLD and fibrosis. We sequenced liver tissue from 143 adults across the full spectrum of fibrosis stage including those with stage 4 fibrosis (cirrhosis). We identified gene expression clusters that strongly correlate with fibrosis stage including four genes that have been found consistently across previously published transcriptomic studies on NASH i.e. COL1A2, EFEMP2, FBLN5 and THBS2. Using cell type deconvolution, we estimated the loss of hepatocytes versus gain of hepatic stellate cells, macrophages and cholangiocytes with advancing fibrosis stage. Hepatocyte-specific functional analysis indicated increase of pro-apoptotic pathways and markers of bipotent hepatocyte/cholangiocyte precursors. Regression modelling was used to derive predictors of fibrosis stage. This study elucidated molecular and cell composition changes associated with increasing fibrosis stage in NAFLD and defined informative gene signatures for the disease.
Collapse
Affiliation(s)
- Lorena Pantano
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, 401 Park Dr, Boston, MA, 02215, USA
| | - George Agyapong
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, USA
| | - Yang Shen
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88937, Biberach Riss, Germany
| | - Zhu Zhuo
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, 401 Park Dr, Boston, MA, 02215, USA
| | | | - Werner Rust
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88937, Biberach Riss, Germany
| | - Dagmar Knebel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88937, Biberach Riss, Germany
| | - Jon Hill
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | | | - Julia F Doerner
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88937, Biberach Riss, Germany
| | - Jörg F Rippmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88937, Biberach Riss, Germany
| | - Raymond T Chung
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA. .,Harvard Medical School, Boston, MA, USA.
| | - Shannan J Ho Sui
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, 401 Park Dr, Boston, MA, 02215, USA.
| | - Eric Simon
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88937, Biberach Riss, Germany.
| | - Kathleen E Corey
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Ruan X, Li P, Ma Y, Jiang CF, Chen Y, Shi Y, Gupta N, Seifuddin F, Pirooznia M, Ohnishi Y, Yoneda N, Nishiwaki M, Dumbovic G, Rinn JL, Higuchi Y, Kawai K, Suemizu H, Cao H. Identification of human long noncoding RNAs associated with nonalcoholic fatty liver disease and metabolic homeostasis. J Clin Invest 2021; 131:136336. [PMID: 33048844 DOI: 10.1172/jci136336] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
A growing number of long noncoding RNAs (lncRNAs) have emerged as vital metabolic regulators. However, most human lncRNAs are nonconserved and highly tissue specific, vastly limiting our ability to identify human lncRNA metabolic regulators (hLMRs). In this study, we established a pipeline to identify putative hLMRs that are metabolically sensitive, disease relevant, and population applicable. We first progressively processed multilevel human transcriptome data to select liver lncRNAs that exhibit highly dynamic expression in the general population, show differential expression in a nonalcoholic fatty liver disease (NAFLD) population, and respond to dietary intervention in a small NAFLD cohort. We then experimentally demonstrated the responsiveness of selected hepatic lncRNAs to defined metabolic milieus in a liver-specific humanized mouse model. Furthermore, by extracting a concise list of protein-coding genes that are persistently correlated with lncRNAs in general and NAFLD populations, we predicted the specific function for each hLMR. Using gain- and loss-of-function approaches in humanized mice as well as ectopic expression in conventional mice, we validated the regulatory role of one nonconserved hLMR in cholesterol metabolism by coordinating with an RNA-binding protein, PTBP1, to modulate the transcription of cholesterol synthesis genes. Our work overcame the heterogeneity intrinsic to human data to enable the efficient identification and functional definition of disease-relevant human lncRNAs in metabolic homeostasis.
Collapse
Affiliation(s)
- Xiangbo Ruan
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Ping Li
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Yonghe Ma
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Cheng-Fei Jiang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Yi Chen
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Yu Shi
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Nikhil Gupta
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Yasuyuki Ohnishi
- Laboratory Animal Research Department, Biomedical Research Laboratory, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Nao Yoneda
- Laboratory Animal Research Department, Biomedical Research Laboratory, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Megumi Nishiwaki
- Laboratory Animal Research Department, Biomedical Research Laboratory, Central Institute for Experimental Animals, Kawasaki, Japan.,Technical Service Department, CLEA Japan Inc., Shizuoka, Japan
| | - Gabrijela Dumbovic
- Department of Biochemistry and BioFrontiers, University of Colorado Boulder, Boulder, Colorado, USA
| | - John L Rinn
- Department of Biochemistry and BioFrontiers, University of Colorado Boulder, Boulder, Colorado, USA
| | - Yuichiro Higuchi
- Laboratory Animal Research Department, Biomedical Research Laboratory, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Kenji Kawai
- Department Pathology Analysis Center, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Biomedical Research Laboratory, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Haiming Cao
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Yin H, Pranzatelli TJF, French BN, Zhang N, Warner BM, Chiorini JA. Sclerosing Sialadenitis Is Associated With Salivary Gland Hypofunction and a Unique Gene Expression Profile in Sjögren's Syndrome. Front Immunol 2021; 12:699722. [PMID: 34400910 PMCID: PMC8363566 DOI: 10.3389/fimmu.2021.699722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose To develop a novel method to quantify the amount of fibrosis in the salivary gland and to investigate the relationship between fibrosis and specific symptoms associated with Sjögren’s syndrome (SS) using this method. Materials and Methods Paraffin-embedded labial salivary gland (LSG) slides from 20 female SS patients and their clinical and LSG pathology data were obtained from the Sjögren’s International Collaborative Clinical Alliance. Relative interstitial fibrosis area (RIFA) in Masson’s trichrome-stained LSG sections was quantified from digitally scanned slides and used for correlation analysis. Gene expression levels were assessed by microarray analysis. Core promoter accessibility for RIFA-correlated genes was determined using DNase I hypersensitive sites sequencing analysis. Results RIFA was significantly correlated with unstimulated whole saliva flow rate in SS patients. Sixteen genes were significantly and positively correlated with RIFA. In a separate analysis, a group of differentially expressed genes was identified by comparing severe and moderate fibrosis groups. This combined set of genes was distinct from differentially expressed genes identified in lung epithelium from idiopathic pulmonary fibrosis patients compared with controls. Single-cell RNA sequencing analysis of salivary glands suggested most of the RIFA-correlated genes are expressed by fibroblasts in the gland and are in a permissive chromatin state. Conclusion RIFA quantification is a novel method for assessing interstitial fibrosis and the impact of fibrosis on SS symptoms. Loss of gland function may be associated with salivary gland fibrosis, which is likely to be driven by a unique set of genes that are mainly expressed by fibroblasts.
Collapse
Affiliation(s)
- Hongen Yin
- Adeno-Associated Virus (AAV) Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Thomas J F Pranzatelli
- Adeno-Associated Virus (AAV) Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Benjamin N French
- Adeno-Associated Virus (AAV) Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Nan Zhang
- Adeno-Associated Virus (AAV) Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Blake M Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - John A Chiorini
- Adeno-Associated Virus (AAV) Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
42
|
Subudhi S, Drescher HK, Dichtel LE, Bartsch LM, Chung RT, Hutter MM, Gee DW, Meireles OR, Witkowski ER, Gelrud L, Masia R, Osganian SA, Gustafson JL, Rwema S, Bredella MA, Bhatia SN, Warren A, Miller KK, Lauer GM, Corey KE. Distinct Hepatic Gene-Expression Patterns of NAFLD in Patients With Obesity. Hepatol Commun 2021; 6:77-89. [PMID: 34558849 PMCID: PMC8710788 DOI: 10.1002/hep4.1789] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023] Open
Abstract
Approaches to manage nonalcoholic fatty liver disease (NAFLD) are limited by an incomplete understanding of disease pathogenesis. The aim of this study was to identify hepatic gene‐expression patterns associated with different patterns of liver injury in a high‐risk cohort of adults with obesity. Using the NanoString Technologies (Seattle, WA) nCounter assay, we quantified expression of 795 genes, hypothesized to be involved in hepatic fibrosis, inflammation, and steatosis, in liver tissue from 318 adults with obesity. Liver specimens were categorized into four distinct NAFLD phenotypes: normal liver histology (NLH), steatosis only (steatosis), nonalcoholic steatohepatitis without fibrosis (NASH F0), and NASH with fibrosis stage 1‐4 (NASH F1‐F4). One hundred twenty‐five genes were significantly increasing or decreasing as NAFLD pathology progressed. Compared with NLH, NASH F0 was characterized by increased inflammatory gene expression, such as gamma‐interferon‐inducible lysosomal thiol reductase (IFI30) and chemokine (C‐X‐C motif) ligand 9 (CXCL9), while complement and coagulation related genes, such as C9 and complement component 4 binding protein beta (C4BPB), were reduced. In the presence of NASH F1‐F4, extracellular matrix degrading proteinases and profibrotic/scar deposition genes, such as collagens and transforming growth factor beta 1 (TGFB1), were simultaneously increased, suggesting a dynamic state of tissue remodeling. Conclusion: In adults with obesity, distinct states of NAFLD are associated with intrahepatic perturbations in genes related to inflammation, complement and coagulation pathways, and tissue remodeling. These data provide insights into the dynamic pathogenesis of NAFLD in high‐risk individuals.
Collapse
Affiliation(s)
- Sonu Subudhi
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hannah K Drescher
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura E Dichtel
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lea M Bartsch
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raymond T Chung
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew M Hutter
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Denise W Gee
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ozanan R Meireles
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Elan R Witkowski
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Louis Gelrud
- Department of Medicine, St. Mary's Hospital Bon Secours, Richmond, VA, USA
| | - Ricard Masia
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephanie A Osganian
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jenna L Gustafson
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Steve Rwema
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Miriam A Bredella
- Division of Musculoskeletal Radiology and Interventions, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sangeeta N Bhatia
- Ludwig Center for Molecular Oncology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew Warren
- Ludwig Center for Molecular Oncology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karen K Miller
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Georg M Lauer
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathleen E Corey
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Johnson ND, Wu X, Still CD, Chu X, Petrick AT, Gerhard GS, Conneely KN, DiStefano JK. Differential DNA methylation and changing cell-type proportions as fibrotic stage progresses in NAFLD. Clin Epigenetics 2021; 13:152. [PMID: 34353365 PMCID: PMC8340447 DOI: 10.1186/s13148-021-01129-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is characterized by changes in cell composition that occur throughout disease pathogenesis, which includes the development of fibrosis in a subset of patients. DNA methylation (DNAm) is a plausible mechanism underlying these shifts, considering that DNAm profiles differ across tissues and cell types, and DNAm may play a role in cell-type differentiation. Previous work investigating the relationship between DNAm and fibrosis in NAFLD has been limited by sample size and the number of CpG sites interrogated. RESULTS Here, we performed an epigenome-wide analysis using Infinium MethylationEPIC array data from 325 individuals with NAFLD, including 119 with severe fibrosis and 206 with no histological evidence of fibrosis. After adjustment for latent confounders, we identified 7 CpG sites whose DNAm associated with fibrosis (p < 5.96 × 10-8). Analysis of RNA-seq data collected from a subset of individuals (N = 56) revealed that gene expression at 288 genes associated with DNAm at one or more of the 7 fibrosis-related CpGs. DNAm-based estimates of cell-type proportions showed that estimated proportions of natural killer cells increased, while epithelial cell proportions decreased with disease stage. Finally, we used an elastic net regression model to assess DNAm as a biomarker of fibrotic stage and found that our model predicted fibrosis with a sensitivity of 0.93 and provided information beyond a model based solely on cell-type proportions. CONCLUSION These findings are consistent with DNAm as a mechanism underpinning or marking fibrosis-related shifts in cell composition and demonstrate the potential of DNAm as a possible biomarker of NAFLD fibrosis.
Collapse
Affiliation(s)
- Nicholas D Johnson
- Department of Human Genetics, Emory University, Atlanta, GA, USA.,Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA, USA
| | - Xiumei Wu
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Xin Chu
- Geisinger Obesity Institute, Danville, PA, USA
| | | | - Glenn S Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University, Atlanta, GA, USA.,Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA, USA
| | - Johanna K DiStefano
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
44
|
Wu P, Zhang M, Webster NJG. Alternative RNA Splicing in Fatty Liver Disease. Front Endocrinol (Lausanne) 2021; 12:613213. [PMID: 33716968 PMCID: PMC7953061 DOI: 10.3389/fendo.2021.613213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Alternative RNA splicing is a process by which introns are removed and exons are assembled to construct different RNA transcript isoforms from a single pre-mRNA. Previous studies have demonstrated an association between dysregulation of RNA splicing and a number of clinical syndromes, but the generality to common disease has not been established. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease affecting one-third of adults worldwide, increasing the risk of cirrhosis and hepatocellular carcinoma (HCC). In this review we focus on the change in alternative RNA splicing in fatty liver disease and the role for splicing regulation in disease progression.
Collapse
Affiliation(s)
- Panyisha Wu
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, United States
| | - Moya Zhang
- University of California Los Angeles, Los Angeles, CA, United States
| | - Nicholas J. G. Webster
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
45
|
Jensen VS, Fledelius C, Zachodnik C, Damgaard J, Nygaard H, Tornqvist KS, Kirk RK, Viuff BM, Wulff EM, Lykkesfeldt J, Hvid H. Insulin treatment improves liver histopathology and decreases expression of inflammatory and fibrogenic genes in a hyperglycemic, dyslipidemic hamster model of NAFLD. J Transl Med 2021; 19:80. [PMID: 33596938 PMCID: PMC7890970 DOI: 10.1186/s12967-021-02729-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/29/2021] [Indexed: 11/24/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are highly prevalent comorbidities in patients with Type 2 diabetes. While many of these patients eventually will need treatment with insulin, little is known about the effects of insulin treatment on histopathological parameters and hepatic gene expression in diabetic patients with co-existing NAFLD and NASH. To investigate this further, we evaluated the effects of insulin treatment in NASH diet-fed hamsters with streptozotocin (STZ) -induced hyperglycemia. Methods Forty male Syrian hamsters were randomized into four groups (n = 10/group) receiving either a NASH-inducing (high fat, fructose and cholesterol) or control diet (CTRL) for four weeks, after which they were treated with STZ or sham-injected and from week five treated with either vehicle (CTRL, NASH, NASH-STZ) or human insulin (NASH-STZ-HI) for four weeks by continuous s.c. infusion via osmotic minipumps. Results NASH-STZ hamsters displayed pronounced hyperglycemia, dyslipidemia and more severe liver pathology compared to both CTRL and NASH groups. Insulin treatment attenuated dyslipidemia in NASH-STZ-HI hamsters and liver pathology was considerably improved compared to the NASH-STZ group, with prevention/reversal of hepatic steatosis, hepatic inflammation and stellate cell activation. In addition, expression of inflammatory and fibrotic genes was decreased compared to the NASH-STZ group. Conclusions These results suggest that hyperglycemia is important for development of inflammation and profibrotic processes in the liver, and that insulin administration has beneficial effects on liver pathology and expression of genes related to inflammation and fibrosis in a hyperglycemic, dyslipidemic hamster model of NAFLD.
Collapse
Affiliation(s)
- Victoria Svop Jensen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg, Denmark. .,Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark.
| | - Christian Fledelius
- Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Christina Zachodnik
- Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Jesper Damgaard
- Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Helle Nygaard
- Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | | | - Rikke Kaae Kirk
- Pathology & Imaging, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | | | - Erik Max Wulff
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Jens Lykkesfeldt
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg, Denmark
| | - Henning Hvid
- Pathology & Imaging, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| |
Collapse
|
46
|
Govaere O, Cockell S, Tiniakos D, Queen R, Younes R, Vacca M, Alexander L, Ravaioli F, Palmer J, Petta S, Boursier J, Rosso C, Johnson K, Wonders K, Day CP, Ekstedt M, Orešič M, Darlay R, Cordell HJ, Marra F, Vidal-Puig A, Bedossa P, Schattenberg JM, Clément K, Allison M, Bugianesi E, Ratziu V, Daly AK, Anstee QM. Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci Transl Med 2020; 12:eaba4448. [PMID: 33268509 DOI: 10.1126/scitranslmed.aba4448] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 07/01/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
The mechanisms that drive nonalcoholic fatty liver disease (NAFLD) remain incompletely understood. This large multicenter study characterized the transcriptional changes that occur in liver tissue across the NAFLD spectrum as disease progresses to cirrhosis to identify potential circulating markers. We performed high-throughput RNA sequencing on a discovery cohort comprising histologically characterized NAFLD samples from 206 patients. Unsupervised clustering stratified NAFLD on the basis of disease activity and fibrosis stage with differences in age, aspartate aminotransferase (AST), type 2 diabetes mellitus, and carriage of PNPLA3 rs738409, a genetic variant associated with NAFLD. Relative to early disease, we consistently identified 25 differentially expressed genes as fibrosing steatohepatitis progressed through stages F2 to F4. This 25-gene signature was independently validated by logistic modeling in a separate replication cohort (n = 175), and an integrative analysis with publicly available single-cell RNA sequencing data elucidated the likely relative contribution of specific intrahepatic cell populations. Translating these findings to the protein level, SomaScan analysis in more than 300 NAFLD serum samples confirmed that circulating concentrations of proteins AKR1B10 and GDF15 were strongly associated with disease activity and fibrosis stage. Supporting the biological plausibility of these data, in vitro functional studies determined that endoplasmic reticulum stress up-regulated expression of AKR1B10, GDF15, and PDGFA, whereas GDF15 supplementation tempered the inflammatory response in macrophages upon lipid loading and lipopolysaccharide stimulation. This study provides insights into the pathophysiology of progressive fibrosing steatohepatitis, and proof of principle that transcriptomic changes represent potentially tractable and clinically relevant markers of disease progression.
Collapse
Affiliation(s)
- Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Simon Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dina Tiniakos
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Pathology, Aretaieio Hospital, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Rachel Queen
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ramy Younes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Medical Sciences, Division of Gastro-Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, 10124 Turin, Italy
| | - Michele Vacca
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | - Federico Ravaioli
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Jeremy Palmer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Salvatore Petta
- Sezione di Gastroenterologia, Dipartimento Biomedico di Medicina Interna e Specialistica, Università di Palermo, 90133 Palermo, Italy
| | - Jerome Boursier
- Hepatology Department, Angers University Hospital, 49933 Angers, France
| | - Chiara Rosso
- Department of Medical Sciences, Division of Gastro-Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, 10124 Turin, Italy
| | - Katherine Johnson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kristy Wonders
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Christopher P Day
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Mattias Ekstedt
- Department of Health, Medicine and Caring Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Matej Orešič
- School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden
| | - Rebecca Darlay
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50121 Florence, Italy
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Pierre Bedossa
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Sorbonne University, ICAN (Institute of Cardiometabolism and Nutrition), 75013 Paris, France
| | | | - Karine Clément
- Nutrition and Obesities: Systemic Approaches, INSERM, Sorbonne University, 75006 Paris, France
| | - Michael Allison
- Liver Unit, Department of Medicine, NIHR Cambridge Biomedical Research Centre, Cambridge University NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastro-Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, 10124 Turin, Italy
| | - Vlad Ratziu
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Sorbonne University, ICAN (Institute of Cardiometabolism and Nutrition), 75013 Paris, France
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne NE7 7DN, UK
| |
Collapse
|
47
|
Perakakis N, Stefanakis K, Mantzoros CS. The role of omics in the pathophysiology, diagnosis and treatment of non-alcoholic fatty liver disease. Metabolism 2020; 111S:154320. [PMID: 32712221 PMCID: PMC7377759 DOI: 10.1016/j.metabol.2020.154320] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted metabolic disorder, whose spectrum covers clinical, histological and pathophysiological developments ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and liver fibrosis, potentially evolving into cirrhosis, hepatocellular carcinoma and liver failure. Liver biopsy remains the gold standard for diagnosing NAFLD, while there are no specific treatments. An ever-increasing number of high-throughput Omics investigations on the molecular pathobiology of NAFLD at the cellular, tissue and system levels produce comprehensive biochemical patient snapshots. In the clinical setting, these applications are considerably enhancing our efforts towards obtaining a holistic insight on NAFLD pathophysiology. Omics are also generating non-invasive diagnostic modalities for the distinct stages of NAFLD, that remain though to be validated in multiple, large, heterogenous and independent cohorts, both cross-sectionally as well as prospectively. Finally, they aid in developing novel therapies. By tracing the flow of information from genomics to epigenomics, transcriptomics, proteomics, metabolomics, lipidomics and glycomics, the chief contributions of these techniques in understanding, diagnosing and treating NAFLD are summarized herein.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA..
| | - Konstantinos Stefanakis
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
48
|
Lim KH, Han Z, Jeon HY, Kach J, Jing E, Weyn-Vanhentenryck S, Downs M, Corrionero A, Oh R, Scharner J, Venkatesh A, Ji S, Liau G, Ticho B, Nash H, Aznarez I. Antisense oligonucleotide modulation of non-productive alternative splicing upregulates gene expression. Nat Commun 2020; 11:3501. [PMID: 32647108 PMCID: PMC7347940 DOI: 10.1038/s41467-020-17093-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
While most monogenic diseases are caused by loss or reduction of protein function, the need for technologies that can selectively increase levels of protein in native tissues remains. Here we demonstrate that antisense-mediated modulation of pre-mRNA splicing can increase endogenous expression of full-length protein by preventing naturally occurring non-productive alternative splicing and promoting generation of productive mRNA. Bioinformatics analysis of RNA sequencing data identifies non-productive splicing events in 7,757 protein-coding human genes, of which 1,246 are disease-associated. Antisense oligonucleotides targeting multiple types of non-productive splicing events lead to increases in productive mRNA and protein in a dose-dependent manner in vitro. Moreover, intracerebroventricular injection of two antisense oligonucleotides in wild-type mice leads to a dose-dependent increase in productive mRNA and protein in the brain. The targeting of natural non-productive alternative splicing to upregulate expression from wild-type or hypomorphic alleles provides a unique approach to treating genetic diseases. Restoration of normal gene expression is one way to treat monogenic disorders. Here the authors target naturally occurring non-productive alternative splicing using antisense oligonucleotides to promote the production of functional proteins.
Collapse
Affiliation(s)
| | - Zhou Han
- Stoke Therapeutics, Inc., Bedford, MA, USA
| | | | - Jacob Kach
- Stoke Therapeutics, Inc., Bedford, MA, USA
| | | | | | | | | | - Raymond Oh
- Stoke Therapeutics, Inc., Bedford, MA, USA
| | | | | | - Sophina Ji
- Stoke Therapeutics, Inc., Bedford, MA, USA
| | - Gene Liau
- Stoke Therapeutics, Inc., Bedford, MA, USA
| | | | - Huw Nash
- Stoke Therapeutics, Inc., Bedford, MA, USA
| | | |
Collapse
|
49
|
Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Animal Models of Fibrosis in Nonalcoholic Steatohepatitis: Do They Reflect Human Disease? Adv Nutr 2020; 11:1696-1711. [PMID: 33191435 PMCID: PMC7666900 DOI: 10.1093/advances/nmaa081] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is one of the most common chronic liver diseases in the world, yet no pharmacotherapies are available. The lack of translational animal models is a major barrier impeding elucidation of disease mechanisms and drug development. Multiple preclinical models of NASH have been proposed and can broadly be characterized as diet-induced, deficiency-induced, toxin-induced, genetically induced, or a combination of these. However, very few models develop advanced fibrosis while still reflecting human disease etiology or pathology, which is problematic since fibrosis stage is considered the best prognostic marker in patients and an important endpoint in clinical trials of NASH. While mice and rats predominate the NASH research, several other species have emerged as promising models. This review critically evaluates animal models of NASH, focusing on their ability to develop advanced fibrosis while maintaining their relevance to the human condition.
Collapse
Affiliation(s)
- David H Ipsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | |
Collapse
|
50
|
Gerhard GS, Davis B, Wu X, Hanson A, Wilhelmsen D, Piras IS, Still CD, Chu X, Petrick AT, DiStefano JK. Differentially expressed mRNAs and lncRNAs shared between activated human hepatic stellate cells and nash fibrosis. Biochem Biophys Rep 2020; 22:100753. [PMID: 32258441 PMCID: PMC7109412 DOI: 10.1016/j.bbrep.2020.100753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
We previously reported dysregulated expression of liver-derived messenger RNA (mRNA) and long noncoding RNA (lncRNA) in patients with advanced fibrosis resulting from nonalcoholic fatty liver disease (NAFLD). Here we sought to identify changes in mRNA and lncRNA levels associated with activation of hepatic stellate cells (HSCs), the predominant source of extracellular matrix production in the liver and key to NAFLD-related fibrogenesis. We performed expression profiling of mRNA and lncRNA from LX-2 cells, an immortalized human HSC cell line, treated to induce phenotypes resembling quiescent and myofibroblastic states. We identified 1964 mRNAs (1377 upregulated and 587 downregulated) and 1460 lncRNAs (665 upregulated and 795 downregulated) showing statistically significant evidence (FDR ≤0.05) for differential expression (fold change ≥|2|) between quiescent and activated states. Pathway analysis of differentially expressed genes showed enrichment for hepatic fibrosis (FDR = 1.35E-16), osteoarthritis (FDR = 1.47E-14), and axonal guidance signaling (FDR = 1.09E-09). We observed 127 lncRNAs/nearby mRNA pairs showing differential expression, the majority of which were dysregulated in the same direction. A comparison of differentially expressed transcripts in LX-2 cells with RNA-sequencing results from NAFLD patients with or without liver fibrosis revealed 1047 mRNAs and 91 lncRNAs shared between the two datasets, suggesting that some of the expression changes occurring during HSC activation can be observed in biopsied human tissue. These results identify lncRNA and mRNA expression patterns associated with activated human HSCs that appear to recapitulate human NAFLD fibrosis.
Collapse
Affiliation(s)
- Glenn S. Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Bethany Davis
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | - Xiumei Wu
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | - Amanda Hanson
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | - Danielle Wilhelmsen
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | - Ignazio S. Piras
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| | | | - Xin Chu
- Geisinger Obesity Institute, Danville, PA, 17822, USA
| | | | - Johanna K. DiStefano
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA
| |
Collapse
|