1
|
Milewska-Kranc A, Ćwikła JB, Kolasinska-Ćwikła A. The Role of Receptor-Ligand Interaction in Somatostatin Signaling Pathways: Implications for Neuroendocrine Tumors. Cancers (Basel) 2023; 16:116. [PMID: 38201544 PMCID: PMC10778465 DOI: 10.3390/cancers16010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Neuroendocrine tumors (NETs) arise from neuroendocrine cells and manifest in diverse organs. Key players in their regulation are somatostatin and its receptors (SSTR1-SSTR5). Understanding receptor-ligand interactions and signaling pathways is vital for elucidating their role in tumor development and therapeutic potential. This review highlights SSTR characteristics, localization, and expression in tissues, impacting physiological functions. Mechanisms of somatostatin and synthetic analogue binding to SSTRs, their selectivity, and their affinity were analyzed. Upon activation, somatostatin initiates intricate intracellular signaling, involving cAMP, PLC, and MAP kinases and influencing growth, differentiation, survival, and hormone secretion in NETs. This review explores SSTR expression in different tumor types, examining receptor activation effects on cancer cells. SSTRs' significance as therapeutic targets is discussed. Additionally, somatostatin and analogues' role in hormone secretion regulation, tumor growth, and survival is emphasized, presenting relevant therapeutic examples. In conclusion, this review advances the knowledge of receptor-ligand interactions and signaling pathways in somatostatin receptors, with potential for improved neuroendocrine tumor treatments.
Collapse
Affiliation(s)
| | - Jarosław B. Ćwikła
- School of Medicine, University of Warmia and Mazury, Aleja Warszawska 30, 10-082 Olsztyn, Poland
- Diagnostic Therapeutic Center–Gammed, Lelechowska 5, 02-351 Warsaw, Poland
| | | |
Collapse
|
2
|
Vitali E, Piccini S, Trivellin G, Smiroldo V, Lavezzi E, Zerbi A, Pepe G, Lania AG. The impact of SST2 trafficking and signaling in the treatment of pancreatic neuroendocrine tumors. Mol Cell Endocrinol 2021; 527:111226. [PMID: 33675866 DOI: 10.1016/j.mce.2021.111226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 01/01/2023]
Abstract
Pancreatic neuroendocrine tumors (Pan-NETs), are heterogeneous neoplasms, whose incidence and prevalence are increasing worldwide. Pan-NETs are characterized by the expression of somatostatin receptors (SSTs). In particular, SST2 is the most widely distributed SST in NETs, thus representing the main molecular target for somatostatin analogs (SSAs). SSAs are currently approved for the treatment of well-differentiated NETs, and radionuclide-labeled SSAs are used for diagnostic and treatment purposes. SSAs, by binding to SSTs, have been shown to inhibit hormone secretion and thus provide control of hypersecretion symptoms, when present, and inhibit tumor proliferation. After SSA binding to SST2, the fate of the receptor is determined by trafficking mechanisms, crucial for the response to endogenous or pharmacological ligands. Although SST2 acts mostly through G protein-dependent mechanism, receptor-ligand complex endocytosis and receptor trafficking further regulate its function. SST2 mediates the decrease of hormone secretion via a G protein-dependent mechanism, culminating with the inhibition of adenylyl cyclase and calcium channels; it also inhibits cell proliferation and increases apoptosis through the modulation of protein tyrosine phosphatases. Moreover, SST2 inhibits angiogenesis and cell migration. In this respect, the cross-talk between SST2 and its interacting proteins, including Filamin A (FLNA) and aryl hydrocarbon receptor-interacting protein (AIP), plays a crucial role for SST2 signaling and responsiveness to SSAs. This review will focus on recent studies from our and other groups that have investigated the trafficking and signaling of SST2 in Pan-NETs, in order to provide insights into the mechanisms underlying tumor responsiveness to pharmacological treatments.
Collapse
Affiliation(s)
- E Vitali
- Laboratory of Cellular and Molecular Endocrinology, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy.
| | - S Piccini
- Laboratory of Cellular and Molecular Endocrinology, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - G Trivellin
- Laboratory of Cellular and Molecular Endocrinology, Italy; Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - V Smiroldo
- Oncology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - E Lavezzi
- Endocrinology and Diabetology Unit Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - A Zerbi
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy; Pancreas Surgery Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - G Pepe
- Nuclear Medicine Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - A G Lania
- Laboratory of Cellular and Molecular Endocrinology, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy; Endocrinology and Diabetology Unit Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
3
|
Günther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M, Castaño JP, Wester HJ, Culler M, Melmed S, Schulz S. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol Rev 2018; 70:763-835. [PMID: 30232095 PMCID: PMC6148080 DOI: 10.1124/pr.117.015388] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Somatostatin, also known as somatotropin-release inhibitory factor, is a cyclopeptide that exerts potent inhibitory actions on hormone secretion and neuronal excitability. Its physiologic functions are mediated by five G protein-coupled receptors (GPCRs) called somatostatin receptor (SST)1-5. These five receptors share common structural features and signaling mechanisms but differ in their cellular and subcellular localization and mode of regulation. SST2 and SST5 receptors have evolved as primary targets for pharmacological treatment of pituitary adenomas and neuroendocrine tumors. In addition, SST2 is a prototypical GPCR for the development of peptide-based radiopharmaceuticals for diagnostic and therapeutic interventions. This review article summarizes findings published in the last 25 years on the physiology, pharmacology, and clinical applications related to SSTs. We also discuss potential future developments and propose a new nomenclature.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Giovanni Tulipano
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Pascal Dournaud
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Corinne Bousquet
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Zsolt Csaba
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Kreienkamp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Márta Korbonits
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Justo P Castaño
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Wester
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Michael Culler
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Shlomo Melmed
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| |
Collapse
|
4
|
Cambiaghi V, Vitali E, Morone D, Peverelli E, Spada A, Mantovani G, Lania AG. Identification of human somatostatin receptor 2 domains involved in internalization and signaling in QGP-1 pancreatic neuroendocrine tumor cell line. Endocrine 2017; 56:146-157. [PMID: 27406390 DOI: 10.1007/s12020-016-1026-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/16/2016] [Indexed: 01/14/2023]
Abstract
Somatostatin exerts inhibitory effects on hormone secretion and cell proliferation via five receptor subtypes (SST1-SST5), whose internalization is regulated by β-arrestins. The receptor domains involved in these effects have been only partially elucidated. The aim of the study is to characterize the molecular mechanism and determinants responsible for somatostatin receptor 2 internalization and signaling in pancreatic neuroendocrine QGP-1 cell line, focusing on the third intracellular loop and carboxyl terminal domains. We demonstrated that in cells transfected with somatostatin receptor 2 third intracellular loop mutant, no differences in β-arrestins recruitment and receptor internalization were observed after somatostatin receptor 2 activation in comparison with cells bearing wild-type somatostatin receptor 2. Conversely, the truncated somatostatin receptor 2 failed to recruit β-arrestins and to internalize after somatostatin receptor 2 agonist (BIM23120) incubation. Moreover, the inhibitory effect of BIM23120 on cell proliferation, cyclin D1 expression, P-ERK1/2 levels, apoptosis and vascular endothelial growth factor secretion was completely lost in cells transfected with either third intracellular loop or carboxyl terminal mutants. In conclusion, we demonstrated that somatostatin receptor 2 internalization requires intact carboxyl terminal while the effects of SS on cell proliferation, angiogenesis and apoptosis mediated by somatostatin receptor 2 need the integrity of both third intracellular loop and carboxyl terminal.
Collapse
Affiliation(s)
- Valeria Cambiaghi
- Laboratory of Cellular and Molecular Endocrinology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Eleonora Vitali
- Laboratory of Cellular and Molecular Endocrinology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Diego Morone
- Laboratory of Cellular and Molecular Endocrinology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Erika Peverelli
- Endocrine Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Anna Spada
- Endocrine Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrine Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Andrea Gerardo Lania
- Endocrine Unit, Humanitas Clinical and Research Center, Rozzano, Italy.
- Humanitas University, School of Medicine, Rozzano, Italy.
| |
Collapse
|
5
|
Maschauer S, Heilmann M, Wängler C, Schirrmacher R, Prante O. Radiosynthesis and Preclinical Evaluation of 18F-Fluoroglycosylated Octreotate for Somatostatin Receptor Imaging. Bioconjug Chem 2016; 27:2707-2714. [PMID: 27715017 DOI: 10.1021/acs.bioconjchem.6b00472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Short synthetic octapeptide analogs derived from the native somatostatin peptides SST-14 and SST-28, namely, octreotate (TATE) or octreotide (TOC), bind with high affinity to somatostatin receptors (sstr), mainly to subtypes 2 and 5, which are expressed in high density on neuroendocrine tumors (NET). Therefore, radiolabeled TATE or TOC derivatives represent highly valuable imaging probes for NET diagnosis by positron emission tomography (PET). The aim of our study was the development of an 18F-labeled octreotate analog as an alternative radiotracer for the clinically established 68Ga-DOTATOC and 68Ga-DOTATATE. We applied our previously developed method based on copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) to the radiosynthesis of 18F-fluoroglycosylated TATE ([18F]FGlc-TATE). [18F]FGlc-TATE was obtained in high yields of 19-22% (non-decay-corrected, referred to [18F]fluoride) and in high specific activities of 32-106 GBq/μmol. [18F]FGlc-TATE showed high affinity to sstr expressed on AR42J cells (IC50 = 4.2 nM) with fast and high internalization, and a beneficial logD7.4 of -1.8. In AR42J tumor bearing nude mice, [18F]FGlc-TATE showed high and specific tumor uptake of 5.6%ID/g at 60 min post-injection, as determined by blocking experiments using octreotide, and fast clearance from other organs, resulting in excellent tumor-to-blood ratios increasing from 9 to 17 from 30 to 60 min post-injection. Small animal PET studies revealed high uptake of [18F]FGlc-TATE in the tumor which could be blocked with octreotide by >99%. Overall, [18F]FGlc-TATE revealed excellent in vitro and in vivo properties and is therefore a viable alternative 18F-labeled radiopeptide for imaging somatostatin receptor-positive tumors by PET.
Collapse
Affiliation(s)
- Simone Maschauer
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine, Friedrich Alexander University Erlangen-Nürnberg (FAU) , Schwabachanlage 6, 91054 Erlangen, Germany
| | - Marcus Heilmann
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine, Friedrich Alexander University Erlangen-Nürnberg (FAU) , Schwabachanlage 6, 91054 Erlangen, Germany
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine Medical Faculty Mannheim of Heidelberg University , Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Ralf Schirrmacher
- Medical Isotope Cyclotron Facility, Department of Oncology, University of Alberta , 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Olaf Prante
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine, Friedrich Alexander University Erlangen-Nürnberg (FAU) , Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
6
|
Schulz S, Lehmann A, Kliewer A, Nagel F. Fine-tuning somatostatin receptor signalling by agonist-selective phosphorylation and dephosphorylation: IUPHAR Review 5. Br J Pharmacol 2014; 171:1591-9. [PMID: 24328848 PMCID: PMC3966740 DOI: 10.1111/bph.12551] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 10/08/2013] [Accepted: 10/31/2013] [Indexed: 12/28/2022] Open
Abstract
The biological actions of somatostatin are mediated by a family of five GPCRs, named sst1 to sst5 . Somatostatin receptors exhibit equally high-binding affinities to their natural ligand somatostatin-14 and largely overlapping distributions. The overexpression of somatostatin receptors in human tumours is the molecular basis for diagnostic and therapeutic application of the stable somatostatin analogues octreotide, lanreotide and pasireotide. The efficiency of somatostatin receptor signalling is tightly regulated and ultimately limited by the coordinated phosphorylation and dephosphorylation of intracellular carboxyl-terminal serine and threonine residues. Here, we review and discuss recent progress in the generation and application of phosphosite-specific antibodies for human sst2 and sst5 receptors. These phosphosite-specific antibodies are unique tools to monitor the spatial and temporal dynamics of receptors phosphorylation and dephosphorylation. Using a combined approach of phosphosite-specific antibodies and siRNA knock-down screening, relevant kinases and phosphatases were identified. Emerging evidence suggests distinct mechanisms of agonist-selective fine-tuning for individual somatostatin receptors. The recently uncovered differences in phosphorylation and dephosphorylation of these receptors may hence be of physiological significance in mediating responses to acute, persistent or repeated stimuli in a variety of target tissues.
Collapse
Affiliation(s)
- Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-UniversityJena, Germany
| | - Andreas Lehmann
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-UniversityJena, Germany
| | - Andrea Kliewer
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-UniversityJena, Germany
| | - Falko Nagel
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-UniversityJena, Germany
| |
Collapse
|
7
|
Yin W, Liu H, Peng Z, Chen D, Li J, Li JD. Mechanisms that underlie the internalization and extracellular signal regulated kinase 1/2 activation by PKR2 receptor. Cell Signal 2014; 26:1118-24. [PMID: 24509228 DOI: 10.1016/j.cellsig.2014.01.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/16/2014] [Accepted: 01/26/2014] [Indexed: 01/17/2023]
Abstract
Prokineticins (PKs) are a pair of signal factors involved in many physiological processes by binding to two closely related G-protein-coupled receptors (GPCRs), PKR1 and PKR2. We recently demonstrated that PKR2 undergoes rapid ligand-induced endocytosis, and PKR2 recycles back to the plasma membrane after the removal of ligand. However, little is known about the molecular mechanisms underlying the PKR2 endocytosis. Here, we studied the involvement of GPCR kinase 2 (GRK2), β-arrestins, clathrin and protein kinase C (PKC) in the PKR2 endocytosis. Our results indicated that PK2-induced PKR2 endocytosis is GRK2- and clathrin-dependent, but β-arrestin-independent. PKC activation also induced PKR2 endocytosis; however, PKC activation is not necessary for the PK2-induced PKR2 endocytosis. PK2 stimulation induced a transient activation of extracellular signal regulated kinase 1/2 (ERK1/2) on PKR2 expressing cells. The internalization and PKC activation are not required for the PK2-induced ERK1/2 activation. Our results indicated that PK2-induced ERK1/2 activation may involve the released βγ subunits of G-protein, phospholipase C β and MEK activation.
Collapse
Affiliation(s)
- Wenqing Yin
- The Second Xiangya Hospital, State Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Huadie Liu
- The Second Xiangya Hospital, State Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Zhen Peng
- The Second Xiangya Hospital, State Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Danna Chen
- The Second Xiangya Hospital, State Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Jie Li
- School of Life Sciences, Central South University, Changsha, Hunan, China.
| | - Jia-Da Li
- The Second Xiangya Hospital, State Key Laboratory of Medical Genetics, Changsha, Hunan, China; School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Reubi JC, Schonbrunn A. Illuminating somatostatin analog action at neuroendocrine tumor receptors. Trends Pharmacol Sci 2013; 34:676-88. [PMID: 24183675 DOI: 10.1016/j.tips.2013.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 02/08/2023]
Abstract
Somatostatin analogs for the diagnosis and therapy of neuroendocrine tumors (NETs) have been used in clinical applications for more than two decades. Five somatostatin receptor subtypes have been identified and molecular mechanisms of somatostatin receptor signaling and regulation have been elucidated. These advances increased understanding of the biological role of each somatostatin receptor subtype, their distribution in NETs, as well as agonist-specific regulation of receptor signaling, internalization, and phosphorylation, particularly for the sst2 receptor subtype, which is the primary target of current somatostatin analog therapy for NETs. Various hypotheses exist to explain differences in patient responsiveness to somatostatin analog inhibition of tumor secretion and growth as well as differences in the development of tumor resistance to therapy. In addition, we now have a better understanding of the action of both first generation (octreotide, lanreotide, Octreoscan) and second generation (pasireotide) FDA-approved somatostatin analogs, including the biased agonistic character of some agonists. The increased understanding of somatostatin receptor pharmacology provides new opportunities to design more sophisticated assays to aid the future development of somatostatin analogs with increased efficacy.
Collapse
Affiliation(s)
- Jean Claude Reubi
- Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, Berne, Switzerland.
| | | |
Collapse
|
9
|
Waser B, Cescato R, Liu Q, Kao YJ, Körner M, Christ E, Schonbrunn A, Reubi JC. Phosphorylation of sst2 receptors in neuroendocrine tumors after octreotide treatment of patients. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1942-9. [PMID: 22538189 DOI: 10.1016/j.ajpath.2012.01.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/13/2012] [Accepted: 01/26/2012] [Indexed: 12/18/2022]
Abstract
Somatostatin analogues, which are used to treat neuroendocrine tumors, target the high levels of somatostatin receptor subtype 2 (SSTR1; alias sst2) expressed in these cancers. However, some tumors are resistant to somatostatin analogues, and it is unknown whether the defect lies in sst2 activation or downstream signaling events. Because sst2 phosphorylation occurs rapidly after receptor activation, we examined whether sst2 is phosphorylated in neuroendocrine tumors. The sst2 receptor phosphorylation was evaluated by IHC and Western blot analysis with the new Ra-1124 antibody specific for the sst2 receptor phosphorylated at Ser341/343 in receptor-positive neuroendocrine tumors obtained from 10 octreotide-treated and 7 octreotide-naïve patients. The specificity, time course, and subcellular localization of sst2 receptor phosphorylation were examined in human embryo kinase-sst2 cell cultures by immunofluorescence and confocal microscopy. All seven octreotide-naïve tumors displayed exclusively nonphosphorylated cell surface sst2 expression. In contrast, 9 of the 10 octreotide-treated tumors contained phosphorylated sst2 that was predominantly internalized. Western blot analysis confirmed the IHC data. Octreotide treatment of human embryo kinase-sst2 cells in culture demonstrated that phosphorylated sst2 was localized at the plasma membrane after 10 seconds of stimulation and was subsequently internalized into endocytic vesicles. These data show, for the first time to our knowledge, that phosphorylated sst2 is present in most gastrointestinal neuroendocrine tumors from patients treated with octreotide but that a striking variability exists in the subcellular distribution of phosphorylated receptors among such tumors.
Collapse
MESH Headings
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Carcinoma, Neuroendocrine/drug therapy
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/surgery
- Chemotherapy, Adjuvant
- Humans
- Microscopy, Confocal
- Microscopy, Fluorescence
- Neoplasm Proteins/drug effects
- Neoplasm Proteins/metabolism
- Octreotide/pharmacology
- Octreotide/therapeutic use
- Phosphorylation/drug effects
- Receptors, Somatostatin/drug effects
- Receptors, Somatostatin/metabolism
Collapse
Affiliation(s)
- Beatrice Waser
- Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, Berne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The neuropeptide somatostatin (SRIF) is an important modulator of neurotransmission in the central nervous system and acts as a potent inhibitor of hormone and exocrine secretion. In addition, SRIF regulates cell proliferation in normal and tumorous tissues. The six somatostatin receptor subtypes (sst1, sst2A, sst2B, sst3, sst4, and sst5), which belong to the G protein-coupled receptor (GPCR) family, share a common molecular topology: a hydrophobic core of seven transmembrane-spanning α-helices, three intracellular loops, three extracellular loops, an amino-terminus outside the cell, and a carboxyl-terminus inside the cell. For most of the GPCRs, intracytosolic sequences, and more particularly the C-terminus, are believed to interact with proteins that are mandatory for either exporting neosynthesized receptor, anchoring receptor at the plasma membrane, internalization, recycling, or degradation after ligand binding. Accordingly, most of the SRIF receptors can traffic not only in vitro within different cell types but also in vivo. A picture of the pathways and proteins involved in these processes is beginning to emerge.
Collapse
Affiliation(s)
- Zsolt Csaba
- INSERM, Unité Mixte de Recherche U676, Paris, France
| | | | | |
Collapse
|
11
|
Abstract
Somatostatin (SS) and dopamine (DA) receptors have been highlighted as two critical regulators in the negative control of hormonal secretion in a wide group of human endocrine tumors. Both families of receptors belong to the superfamily of G protein-coupled receptors and share a number of structural and functional characteristics. Because of the generally reported high expression of somatostatin receptors (SSTRs) in neuroendocrine tumors (NET), somatostatin analogs (SSA) have a pronounced role in the medical therapy for this class of tumors, especially pituitary adenomas and well-differentiated gastroenteropancreatic NET (GEP NET). Moreover, NET express not only SSTR but also frequently dopamine receptors (DRs), and DA agonists targeting the D(2) receptor (D(2)) have been demonstrated to be effective in controlling hormone secretion and cell proliferation in in vivo and in vitro studies. The treatment with SSAs combined with DA agonists has already been demonstrated efficacious in a subgroup of patients with GH-secreting pituitary adenomas and few reported cases of carcinoids. The recent availability of new selective and universal SSA and DA agonists, as well as the chimeric SS/DA compounds, may shed new light on the potential role of SSTR and D(2) as combined targets for biotherapy in NET. This review provides an overview of the latest studies evaluating the expression of SSTR and DR in NET, focusing on their co-expression and the possible clinical implications of such co-expression. Moreover, the most recent insights in SSTR and D(2) pathophysiology and the future perspectives for treatment with SSA, DA agonists, and SS/DA chimeric compounds are discussed.
Collapse
Affiliation(s)
- Federico Gatto
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Room Ee530b, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | |
Collapse
|
12
|
Cakir M, Dworakowska D, Grossman A. Somatostatin receptor biology in neuroendocrine and pituitary tumours: part 1--molecular pathways. J Cell Mol Med 2011; 14:2570-84. [PMID: 20629989 PMCID: PMC4373477 DOI: 10.1111/j.1582-4934.2010.01125.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neuroendocrine tumours (NETs) may occur at many sites in the body although the majority occur within the gastroenteropancreatic axis. Non-gastroenteropancreatic NETs encompass phaeochromocytomas and paragangliomas, medullary thyroid carcinoma, anterior pituitary tumour, broncho-pulmonary NETs and parathyroid tumours. Like most endocrine tumours, NETs also express somatostatin (SST) receptors (subtypes 1–5) whose ligand SST is known to inhibit endocrine and exocrine secretions and have anti-tumour effects. In the light of this knowledge, the idea of using SST analogues in the treatment of NETs has become increasingly popular and new studies have centred upon the development of new SST analogues. We attempt to review SST receptor (SSTR) biology primarily in neuroendocrine tissues, focusing on pituitary tumours. A full data search was performed through PubMed over the years 2000–2009 with keywords ‘somatostatin, molecular biology, somatostatin receptors, somatostatin signalling, NET, pituitary’ and all relevant publications have been included, together with selected publications prior to that date. SSTR signalling in non-neuroendocrine solid tumours is beyond the scope of this review. SST is a potent anti-proliferative and anti-secretory agent for some NETs. The successful therapeutic use of SST analogues in the treatment of these tumours depends on a thorough understanding of the diverse effects of SSTR subtypes in different tissues and cell types. Further studies will focus on critical points of SSTR biology such as homo- and heterodimerization of SSTRs and the differences between post-receptor signalling pathways of SSTR subtypes.
Collapse
Affiliation(s)
- Mehtap Cakir
- Selcuk University, Meram School of Medicine, Division of Endocrinology and Metabolism, Konya, Turkey.
| | | | | |
Collapse
|
13
|
Kao YJ, Ghosh M, Schonbrunn A. Ligand-dependent mechanisms of sst2A receptor trafficking: role of site-specific phosphorylation and receptor activation in the actions of biased somatostatin agonists. Mol Endocrinol 2011; 25:1040-54. [PMID: 21493671 DOI: 10.1210/me.2010-0398] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The somatostatin receptor subtype 2A (sst2A) mediates many of somatostatin's neuroendocrine actions and is the primary therapeutic target for the stable somatostatin analogs used to inhibit hormone secretion by pituitary and gastroenteropancreatic tumors. Two new multireceptor targeting somatostatin analogs currently under clinical investigation, the multisomatostatin receptor agonist cyclo-[diaminoethylcarbamoyl-HydroxyPro-Phenylglycine-D-Trp-Lys-(4-O-benzyl)Tyr-Phe] (SOM230) (Pasireotide) and pan-somatostatin receptor agonist Tyr-cyclo-[D-diaminobutyric acid-Arg-Phe-Phe-D-Trp-Lys-Thr-Phe] (KE108), behave as functionally selective ligands at the sst2A receptor, mimicking some of somatostatin's actions but antagonizing others. Further, SOM230 and KE108 are less able to induce receptor internalization than somatostatin, indicating that they exhibit functional selectivity for receptor regulation as well as signaling. Here, we identify agonist-specific differences in the molecular events regulating sst2A receptor endocytosis. SOM230 and KE108 were less potent and less effective than somatostatin at stimulating sst2A receptor phosphorylation at two pairs of residues, Ser341/343 and Thr353/354. Only the pattern of Thr353/354 phosphorylation correlated with receptor internalization, consistent with the known importance of Thr phosphorylation for sst2A receptor endocytosis. As expected, arrestin recruitment to membrane receptors was reduced with SOM230 and KE108. In addition, both receptor dephosphorylation and receptor recycling occurred more rapidly with SOM230 and KE108 than with somatostatin. Surprisingly, however, SOM230 and KE108 also altered sst2A internalization in a phosphorylation-independent manner, because these analogs were less effective than somatostatin at stimulating the endocytosis of a phosphorylation-negative receptor mutant. These results show that the decreased receptor internalization produced by SOM230 and KE108 compared with somatostatin result from phosphorylation-independent effects as well as reduced site-specific receptor phosphorylation and receptor-arrestin association.
Collapse
Affiliation(s)
- Yachu J Kao
- Department of Integrative Biology and Pharmacology, University of Texas, Health Science Center-Houston, Houston, Texas 77030, USA
| | | | | |
Collapse
|
14
|
Ghosh M, Schonbrunn A. Differential temporal and spatial regulation of somatostatin receptor phosphorylation and dephosphorylation. J Biol Chem 2011; 286:13561-73. [PMID: 21343287 DOI: 10.1074/jbc.m110.215723] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The G(i)-coupled somatostatin 2A receptor (sst2A) mediates many of the neuromodulatory and neuroendocrine actions of somatostatin (SS) and is targeted by the SS analogs used to treat neuroendocrine tumors. As for other G protein-coupled receptors, agonists stimulate sst2A receptor phosphorylation on multiple residues, and phosphorylation at different sites has distinct effects on receptor internalization and uncoupling. To elucidate the spatial and temporal regulation of sst2A receptor phosphorylation, we examined agonist-stimulated phosphorylation of multiple receptor GPCR kinase sites using phospho-site-specific antibodies. SS increased receptor phosphorylation sequentially, first on Ser-341/343 and then on Thr-353/354, followed by receptor internalization. Reversal of receptor phosphorylation was determined by the duration of prior agonist exposure. In acutely stimulated cells, in which most receptors remained on the cell surface, dephosphorylation occurred only on Thr-353/354. In contrast, both Ser-341/343 and Thr-353/354 were rapidly dephosphorylated when cells were stimulated long enough to allow receptor internalization before agonist removal. Consistent with these observations, dephosphorylation of Thr-353/354 was not affected by either hypertonic sucrose or dynasore, which prevent receptor internalization, whereas dephosphorylation of Ser-341/343 was completely blocked. An okadaic acid- and fostriecin-sensitive phosphatase catalyzed the dephosphorylation of Thr-353/354 both intracellularly and at the cell surface. In contrast, dephosphorylation of Ser-341/343 was insensitive to these inhibitors. Our results show that the phosphorylation and dephosphorylation of neighboring GPCR kinase sites in the sst2A receptor are subject to differential spatial and temporal regulation. Thus, the pattern of receptor phosphorylation is determined by the duration of agonist stimulation and compartment-specific enzymatic activity.
Collapse
Affiliation(s)
- Madhumita Ghosh
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas 77225, USA
| | | |
Collapse
|
15
|
Waser B, Cescato R, Tamma ML, Maecke HR, Reubi JC. Absence of somatostatin SST2 receptor internalization in vivo after intravenous SOM230 application in the AR42J animal tumor model. Eur J Pharmacol 2010; 644:257-62. [DOI: 10.1016/j.ejphar.2010.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/01/2010] [Accepted: 07/09/2010] [Indexed: 12/19/2022]
|
16
|
Cescato R, Loesch KA, Waser B, Mäcke HR, Rivier JE, Reubi JC, Schonbrunn A. Agonist-biased signaling at the sst2A receptor: the multi-somatostatin analogs KE108 and SOM230 activate and antagonize distinct signaling pathways. Mol Endocrinol 2009; 24:240-9. [PMID: 19910453 DOI: 10.1210/me.2009-0321] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Somatostatin analogs that activate the somatostatin subtype 2A (sst2A) receptor are used to treat neuroendocrine cancers because they inhibit tumor secretion and growth. Recently, new analogs capable of activating multiple somatostatin receptor subtypes have been developed to increase tumor responsiveness. We tested two such multi-somatostatin analogs for functional selectivity at the sst2A receptor: SOM230, which activates sst1, sst2, sst3, and sst5 receptors, and KE108, which activates all sst receptor subtypes. Both compounds are reported to act as full agonists at their target sst receptors. In sst2A-expressing HEK293 cells, somatostatin inhibited cAMP production, stimulated intracellular calcium accumulation, and increased ERK phosphorylation. SOM230 and KE108 were also potent inhibitors of cAMP accumulation, as expected. However, they antagonized somatostatin stimulation of intracellular calcium and behaved as partial agonists/antagonists for ERK phosphorylation. In pancreatic AR42J cells, which express sst2A receptors endogenously, SOM230 and KE108 were both full agonists for cAMP inhibition. However, although somatostatin increased intracellular calcium and ERK phosphorylation, SOM230 and KE108 again antagonized these effects. Distinct mechanisms were involved in sst2A receptor signaling in AR42J cells; pertussis toxin pretreatment blocked somatostatin inhibition of cAMP accumulation but not the stimulation of intracellular calcium and ERK phosphorylation. Our results demonstrate that SOM230 and KE108 behave as agonists for inhibition of adenylyl cyclase but antagonize somatostatin's actions on intracellular calcium and ERK phosphorylation. Thus, SOM230 and KE108 are not somatostatin mimics, and their functional selectivity at sst2A receptors must be considered in clinical applications where it may have important consequences for therapy.
Collapse
Affiliation(s)
- Renzo Cescato
- Division of Cell Biology, Institute of Pathology, University of Berne, Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
17
|
Ben-Shlomo A, Schmid H, Wawrowsky K, Pichurin O, Hubina E, Chesnokova V, Liu NA, Culler M, Melmed S. Differential ligand-mediated pituitary somatostatin receptor subtype signaling: implications for corticotroph tumor therapy. J Clin Endocrinol Metab 2009; 94:4342-50. [PMID: 19820006 DOI: 10.1210/jc.2009-1311] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Pituitary targeted pharmacotherapy for Cushing's disease is challenging and ineffective. Unlike octreotide and lanreotide, the multisomatostatin receptor (SST) analog pasireotide that exhibits SST5 greater than SST2 binding affinity offers potential for treating Cushing's disease. Because corticotroph cells express SST5 more abundantly than SST2, pasireotide likely exerts superior corticotroph action mainly through SST5. However, there is no direct evidence for this assumption, and moreover, the ligand effect on corticotroph SST2 is not known. RESULTS We used AtT20 mouse pituitary corticotroph tumor cells stably overexpressing SST2 or SST5 and TtT/GF mouse pituitary folliculostellate cells stably or transiently expressing SST receptors to examine ligand-receptor activation by SST2- and SST5-selective agonists. We show that pasireotide was more potent than either octreotide or somatostatin-14 in mouse corticotroph cells. Pasireotide potency is not affected by SST2 abundance, SST2 antagonist treatment, or octreotide cotreatment in SST2-overexpressing cells. Pasireotide also does not induce SST2 internalization and attenuates octreotide or SRIF14-induced SST2 internalization only at superphysiological dose ranges. In contrast, octreotide attenuates pasireotide potency in SST5-overexpressing cells. Moreover, short exposure to pasireotide causes prolonged inhibition of forskolin or CRH-induced cAMP accumulation, in contrast to somatostatin-14- and SST2-selective agonists that induced postwithdrawal cAMP rebound. Long-term pasireotide signaling effects are enhanced by SST5 overexpression. CONCLUSION The results indicate that SST5 determines short- and long-term enhanced pasireotide action in corticotroph cells, whereas the ligand action on SST2 is negligible.
Collapse
Affiliation(s)
- Anat Ben-Shlomo
- Department of Medicine, Pituitary Center, Cedars SinaiMedical Center, Los Angeles, California 90048, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu Q, Bee MS, Schonbrunn A. Site specificity of agonist and second messenger-activated kinases for somatostatin receptor subtype 2A (Sst2A) phosphorylation. Mol Pharmacol 2009; 76:68-80. [PMID: 19389921 PMCID: PMC2701454 DOI: 10.1124/mol.108.054262] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 04/23/2009] [Indexed: 01/25/2023] Open
Abstract
Somatostatin receptor subtype 2A (sst2A) mediates many of the endocrine and neuronal actions of somatostatin and is the target of somatostatin analogs in cancer therapy. As with many G-protein-coupled receptors, agonist stimulation causes sst2A receptor desensitization and internalization, events that require receptor phosphorylation. Furthermore, heterologous receptor activation of protein kinase C (PKC) also increases sst2A receptor phosphorylation and internalization. Here we analyzed a series of sst2A receptor mutants biochemically to identify residues in the receptor carboxyl terminus that were phosphorylated upon agonist stimulation, and we then generated four phosphorylation-sensitive antibodies to those residues. Once the selectivity of each antibody for its phosphorylated and nonphosphorylated target sequence was determined, the phospho-site-specific antibodies were used to demonstrate that somatostatin treatment of Chinese hamster ovary (CHO) cells expressing the wild type sst2A receptor increased phosphorylation on five residues in the receptor C terminus: Ser341, Ser343, Ser348, Thr353, and Thr354. Phorbol 12-myristate 13-acetate (PMA) increased receptor phosphorylation only on Ser343. Inhibition of PKC blocked PMA but not somatostatin stimulation, showing that different kinases catalyzed Ser343 phosphorylation. In contrast, somatostatin-stimulated sst2A receptor phosphorylation was inhibited by knockdown of G-protein coupled receptor kinase-2 with siRNA. Somatostatin increased sst2A receptor phosphorylation on the same five residues in GH4C1 pituitary cells as in CHO cells. However, PMA stimulated sst2A receptor phosphorylation on both Ser343 and Ser348 in GH4C1 cells. These results characterize the complex pattern of sst2A receptor phosphorylation by agonist and second messenger-activated kinases for the first time and indicate that cell type-specific regulation of sst2A receptor phosphorylation occurs.
Collapse
Affiliation(s)
- Qisheng Liu
- Department of Integrative Biology and Pharmacology, University of Texas-Houston, School of Medicine, Houston, TX 77225, USA
| | | | | |
Collapse
|
19
|
Waser B, Tamma ML, Cescato R, Maecke HR, Reubi JC. Highly Efficient In Vivo Agonist-Induced Internalization of sst2 Receptors in Somatostatin Target Tissues. J Nucl Med 2009; 50:936-41. [DOI: 10.2967/jnumed.108.061457] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
20
|
Casarini APM, Jallad RS, Pinto EM, Soares IC, Nonogaki S, Giannella-Neto D, Musolino NR, Alves VAF, Bronstein MD. Acromegaly: correlation between expression of somatostatin receptor subtypes and response to octreotide-lar treatment. Pituitary 2009; 12:297-303. [PMID: 19330452 DOI: 10.1007/s11102-009-0175-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
About one-third of acromegalics are resistant to the clinically available somatostatin analogs (SA). The resistance is related to density reduction or different expression of somatostatin receptor subtypes (SSTR). This study analyzes SSTR's expression in somatotrophinomas, comparing to SA response, hormonal levels, and tumor volume. We analyzed 39 somatotrophinomas; 49% were treated with SA. The most expressed SSTR was SSTR5, SSTR3, SSTR2, SSTR1, and SSTR4, respectively. SSTR1 and SSTR2 had higher expression in patients that had normalized GH and IGF-I. SSTR3 was more expressed in patients with tumor reduction. There was a positive correlation between the percentage of tumor reduction and SSTR1, SSTR2 and SSTR3 expression. Also, a positive correlation between SSTR2 mRNA expression and the immunohistochemical reactivity of SSTR2 was found. Our study confirmed the association between the SA response to GH and IGF-I and the SSTR2. Additionally, this finding was also demonstrated in relation to SSTR1.
Collapse
Affiliation(s)
- Ana Paula M Casarini
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, University of Sao Paulo Medical School, Av. 9 de Julho 3858 01406-100, Sao Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cervia D, Martini D, Ristori C, Catalani E, Timperio AM, Bagnoli P, Casini G. Modulation of the neuronal response to ischaemia by somatostatin analogues in wild-type and knock-out mouse retinas. J Neurochem 2008; 106:2224-35. [PMID: 18624922 DOI: 10.1111/j.1471-4159.2008.05556.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Somatostatin acts at five G protein-coupled receptors, sst(1)-sst(5). In mouse ischaemic retinas, the over-expression of sst(2) (as in sst(1) knock-out mice) results in the reduction of cell death and glutamate release. In this study, we reported that, in wild-type retinas, somatostatin, the multireceptor ligand pasireotide and the sst(2) agonist octreotide decreased ischaemia-induced cell death and that octreotide also decreased glutamate release. In contrast, cell death was increased by blocking sst(2) with cyanamide. In sst(2) over-expressing ischaemic retinas, somatostatin analogues increased cell death, and octreotide also increased glutamate release. To explain this reversal of the anti-ischaemic effect of somatostatin agonists in the presence of sst(2) over-expression, we tested sst(2) desensitisation because of internalisation or altered receptor function. We observed that (i) sst(2) was not internalised, (ii) among G protein-coupled receptor kinases (GRKs) and regulators of G protein signalling (RGSs), GRK1 and RGS1 expression increased following ischaemia, (iii) both GRK1 and RGS1 were down-regulated by octreotide in wild-type ischaemic retinas, (iv) octreotide down-regulated GRK1 but not RGS1 in sst(2) over-expressing ischaemic retinas. These results demonstrate that sst(2) activation protects against retinal ischaemia. However, in the presence of sst(2) over-expression sst(2) is functionally desensitised by agonists, possibly because of sustained RGS1 levels.
Collapse
Affiliation(s)
- Davide Cervia
- Department of Environmental Sciences, University of Tuscia, Largo dell'Università snc, Viterbo.
| | | | | | | | | | | | | |
Collapse
|
22
|
Jacobs S, Schulz S. Intracellular trafficking of somatostatin receptors. Mol Cell Endocrinol 2008; 286:58-62. [PMID: 18045773 DOI: 10.1016/j.mce.2007.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 09/03/2007] [Accepted: 10/10/2007] [Indexed: 01/28/2023]
Abstract
The somatostatin receptor subtypes 1-5 (sst(1)-sst(5)) exhibit different intracellular trafficking and endosomal sorting after agonist exposure. The internalization of the somatostatin receptor subtypes sst(2), sst(3) and sst(5) occurs to a much higher extent after somatostatin exposure than of sst(1) or sst(4). After endocytosis, sst(2) and sst(5) recycle to the plasma membrane, whereas sst(3) is predominantly down-regulated. This review will focus on the molecular mechanisms of the differential intracellular trafficking of sst(2), sst(3) and sst(5), and discusses our current knowledge on somatostatin receptor interacting proteins.
Collapse
Affiliation(s)
- Stefan Jacobs
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Würzburg, Germany
| | | |
Collapse
|
23
|
Schonbrunn A. Selective agonism in somatostatin receptor signaling and regulation. Mol Cell Endocrinol 2008; 286:35-9. [PMID: 18006219 PMCID: PMC2435097 DOI: 10.1016/j.mce.2007.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 09/25/2007] [Indexed: 12/13/2022]
Abstract
The five somatostatin receptor subtypes, named sst1-sst5, activate both distinct and common signaling pathways and exhibit different patterns of receptor regulation. Until recently it was believed that once a particular somatostatin receptor was activated by an agonist, all the down-stream signaling and regulatory effects characteristic of that receptor subtype in that cellular environment would be triggered. Thus, differences in the actions of somatostatin analogs between tissues were attributed to variability in the nature and concentration of the sst receptor subtypes and effectors expressed in different targets. However, agonists have recently been shown to exhibit functional selectivity at individual sst receptors such that they can elicit a subset of that receptor's potential effects, a property known as biased agonism. This review will summarize the evidence for functionally selective somatostatin receptor agonists and discuss the implications and promise of these new findings.
Collapse
Affiliation(s)
- Agnes Schonbrunn
- Department of Integrative Biology and Pharmacology, University of Texas-Houston, School of Medicine, Houston, TX 77225, USA.
| |
Collapse
|
24
|
Liu Q, Dewi DA, Liu W, Bee MS, Schonbrunn A. Distinct phosphorylation sites in the SST2A somatostatin receptor control internalization, desensitization, and arrestin binding. Mol Pharmacol 2008; 73:292-304. [PMID: 17981995 DOI: 10.1124/mol.107.038570] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The somatostatin subtype 2A (sst2A) receptor, a member of the G protein-coupled receptor superfamily, mediates many of the neuroendocrine and neuromodulatory actions of somatostatin, and it represents the primary target for somatostatin analogs used in cancer therapy and tumor localization. Agonist stimulation leads to the rapid phosphorylation, endocytosis, and desensitization of the sst2A receptor; however, little is known about the role of phosphorylation in sst2A regulation. sst2A phosphorylation occurs on serine and threonine residues in the third intracellular loop and carboxyl terminus. Therefore, we generated mutant receptors in which serine (Ser-), threonine (Thr-), or both (Ser-/Thr-) residues in these regions were mutated to alanine. In contrast to the wild-type receptor, somatostatin treatment did not stimulate the phosphorylation of the Ser-/Thr- mutant, and it did not produce desensitization. Furthermore, internalization of the Ser-/Thr- mutant occurred 5 times more slowly than with the wild-type receptor. Mutating only the Ser residues did not inhibit either internalization or desensitization. In contrast, mutating only the Thr residues inhibited receptor endocytosis to the same extent as in the full mutant, but it did not affect receptor desensitization. In both the wild-type and Ser- receptors, agonist binding produced a stable arrestin-receptor complex that was maintained during receptor trafficking, whereas arrestin was not recruited to either the Thr- or the Ser-/Thr- receptors. These results demonstrate that agonist-stimulated receptor phosphorylation is necessary for both desensitization and rapid internalization of the sst2A receptor. However, sst2A receptor internalization and uncoupling can occur independently, involve different receptor phosphorylation sites, and exhibit different requirements for stable arrestin association.
Collapse
Affiliation(s)
- Q Liu
- Department of Integrative Biology and Pharmacology, School of Medicine, University of Texas-Houston, P.O. Box 20708, Houston, TX 77225, USA
| | | | | | | | | |
Collapse
|
25
|
Cervia D, Bagnoli P. An update on somatostatin receptor signaling in native systems and new insights on their pathophysiology. Pharmacol Ther 2007; 116:322-41. [PMID: 17719647 DOI: 10.1016/j.pharmthera.2007.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 06/28/2007] [Indexed: 12/20/2022]
Abstract
The peptide somatostatin (SRIF) has important physiological effects, mostly inhibitory, which have formed the basis for the clinical use of SRIF compounds. SRIF binding to its 5 guanine nucleotide-binding proteins-coupled receptors leads to the modulation of multiple transduction pathways. However, our current understanding of signaling exerted by receptors endogenously expressed in different cells/tissues reflects a rather complicated picture. On the other hand, the complexity of SRIF receptor signaling in pathologies, including pituitary and nervous system diseases, may be studied not only as alternative intervention points for the modulation of SRIF function but also to exploit new chemical space for drug-like molecules.
Collapse
Affiliation(s)
- Davide Cervia
- Department of Environmental Sciences, University of Tuscia, largo dell'Università snc, blocco D, 01100 Viterbo, Italy.
| | | |
Collapse
|
26
|
Baragli A, Alturaihi H, Watt HL, Abdallah A, Kumar U. Heterooligomerization of human dopamine receptor 2 and somatostatin receptor 2 Co-immunoprecipitation and fluorescence resonance energy transfer analysis. Cell Signal 2007; 19:2304-16. [PMID: 17706924 DOI: 10.1016/j.cellsig.2007.07.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 07/02/2007] [Indexed: 12/17/2022]
Abstract
Somatostatin and dopamine receptors are well expressed and co-localized in several brain regions, suggesting the possibility of functional interactions. In the present study we used a combination of pharmacological, biochemical and photobleaching fluorescence resonance energy transfer (pbFRET) to determine the functional interactions between human somatostatin receptor 2 (hSSTR2) and human dopamine receptor 2 (hD2R) in both co-transfected CHO-K1 or HEK-293 cells as well as in cultured neuronal cells which express both the receptors endogenously. In monotransfected CHO-K1 or HEK-293 cells, D2R exists as a preformed dimer which is insensitive to agonist or antagonist treatment. In control CHO-K1 cells stably co-transfected with hD2R and hSSTR2, relatively low FRET efficiency and weak expression in co-immunoprecipitate from HEK-293 cells suggest the absence of preformed heterooligomers. However, upon treatment with selective ligands, hD2R and hSSTR2 exhibit heterodimerization. Agonist-induced heterodimerization was accompanied by increased affinity for dopamine and augmented hD2R signalling as well as prolonged hSSTR2 internalization. In contrast, cultured striatal neurons display constitutive heterodimerization between D2R and SSTR2, which were agonist-independent. However, heterodimerization in neurons was completely abolished in the presence of the D2R antagonist eticlopride. These findings suggest that hD2R and hSSTR2 operate as functional heterodimers modulated by ligands in situ, which may prove to be a useful model in designing new therapeutic drugs.
Collapse
Affiliation(s)
- Alessandra Baragli
- Department of Pharmacology and Therapeutics, McGill University, Royal Victoria Hospital, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
27
|
Ben-Shlomo A, Pichurin O, Barshop NJ, Wawrowsky KA, Taylor J, Culler MD, Chesnokova V, Liu NA, Melmed S. Selective regulation of somatostatin receptor subtype signaling: evidence for constitutive receptor activation. Mol Endocrinol 2007; 21:2565-78. [PMID: 17609435 DOI: 10.1210/me.2007-0081] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Anterior pituitary hormone secretion is under tonic suppression by hypothalamic somatostatin signaling through somatostatin receptor subtypes (SSTs). Because some hormonal axes are known to be abnormally regulated by ligand-independent constitutively active G protein-coupled receptors, we tested pituitary SSTs for selective constitutive signaling. We therefore differentially silenced endogenous SST2, SST3, and SST5 in somatostatin-sensitive ACTH-secreting mouse AtT-20 pituitary corticotroph cells using small inhibitory RNA (siRNA) and analyzed downstream SSTs-regulated pathways. Transfection with siRNA reduced specific receptor subtype mRNA expression up to 82%. Specificity of receptor silencing was validated against negative controls with different gene-selective siRNAs, concordance of mRNA and cAMP changes, reduced potency of receptor-selective agonists, and phenotype rescue by overexpression of the silenced receptor. Mouse SST3 > SST5 > SST2 knockdown increased basal cAMP accumulation (up to 200%) and ACTH secretion (up to 60%). SST2- and SST5-selective agonist potencies were reduced by SST3- and SST5-silencing, respectively. SST5 > SST2 = SST3 silencing also increased basal levels of ERK1/2 phosphorylation. SST3- and SST5-knockdown increased cAMP was only partially blocked by pertussis toxin. The results show that SST2, SST3, and SST5 exhibit constitutive activity in mouse pituitary corticotroph cells, restraining adenylate cyclase and MAPK activation and ACTH secretion. SST3 mainly inhibits cAMP accumulation and ACTH secretion, whereas SST5 predominantly suppresses MAPK pathway activation. Therefore, SST receptor subtypes control pituitary cell function not only through somatostatin binding to variably expressed cell membrane receptor subtypes, but also by differential ligand-independent receptor-selective constitutive action.
Collapse
Affiliation(s)
- Anat Ben-Shlomo
- Department of Medicine, Cedars Sinai Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90048, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Holliday ND, Tough IR, Cox HM. A functional comparison of recombinant and native somatostatin sst2 receptor variants in epithelia. Br J Pharmacol 2007; 152:132-40. [PMID: 17603546 PMCID: PMC1978267 DOI: 10.1038/sj.bjp.0707365] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Somatostatin (SRIF-14) exerts broad spectrum antisecretory effects by activating the somatostatin 2 (sst(2)) receptor. The rat (r) sst(2) receptor exists in 'long' (sst(2a)) and 'short' (sst(2b)) forms that differ in their C termini, while a single human (h) sst(2a) exists. This study compares the characteristics of recombinant rsst(2a), rsst(2b) and hsst(2a) activation in human epithelia, and with native sst(2) responses in rat colon. EXPERIMENTAL APPROACH Epithelial layers of each clone or rat colon were placed in Ussing chambers and short-circuit current (I (SC)) measured in response to SRIF-14 and chosen analogues. The relative potencies and ability to cause desensitization to SRIF-14 were assessed, and the affinities of the sst(2) antagonist, D-Tyr(8) CYN154806 for hsst(2a), rsst(2a) and native rat colon sst(2) receptors were established. KEY RESULTS Basolateral SRIF-14 responses were transient in hsst(2a) and rsst(2a) epithelia, but prolonged in rsst(2b)-expressing cells. Activation of rsst(2a) resulted in significant desensitization to SRIF-14 and receptor phosphorylation, whereas the rsst(2b) receptor did neither. Sst(2)-preferred agonists (BIM23190C and BIM23027) reduced I (sc) with similar potency and both caused complete desensitization to SRIF-14. CYN154806 antagonized hsst(2a) and rsst(2a) receptors with pK (B) values of 7.9 and 7.8, respectively. In rat colon mucosa, CYN154806 blocked SRIF-14 responses with a pA (2) value of 8.2, and BIM23190C responses with a pK (B) of 8.4. CONCLUSIONS AND IMPLICATIONS SRIF-14 caused rapid rsst(2a) receptor phosphorylation and desensitization of epithelial antisecretory responses, neither of which occurred with the rsst(2b) receptor. These mechanisms are most likely to be a prerequisite for sensitivity to sst(2)-analogues with radiotherapeutic potential.
Collapse
Affiliation(s)
- N D Holliday
- Wolfson Centre for Age-Related Diseases, King's College London, Hodgkin Building, Guy's Campus London, UK
| | - I R Tough
- Wolfson Centre for Age-Related Diseases, King's College London, Hodgkin Building, Guy's Campus London, UK
| | - H M Cox
- Wolfson Centre for Age-Related Diseases, King's College London, Hodgkin Building, Guy's Campus London, UK
- Author for correspondence:
| |
Collapse
|
29
|
Huang CC, Yang PC, Lin HJ, Hsu KS. Repeated cocaine administration impairs group II metabotropic glutamate receptor-mediated long-term depression in rat medial prefrontal cortex. J Neurosci 2007; 27:2958-68. [PMID: 17360919 PMCID: PMC6672575 DOI: 10.1523/jneurosci.4247-06.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drug-induced neuroadaptations within the medial prefrontal cortex (mPFC) are thought to underlie the development of cocaine sensitization. Here, we report that repeated cocaine administration in vivo impaired the long-term depression (LTD) induced by bath application of group II metabotropic glutamate receptor (mGluR) agonists DCG-IV [2S, 2'R, 3'R)-2-(2', 3'-dicarboxycyclopropyl)glycine] or LY379268 [(1R,4R,5S,6R)-4-amino-2-oxabicyclo[3.1.0]hexane-4,6-dicarboxylic acid] at excitatory synapses onto layer V pyramidal neurons of rat mPFC. In contrast, this impairment was not found in slices from rats treated with saline or a single dose of cocaine. Such effect of cocaine was selectively prevented when cocaine was coadministered with the selective D1-like receptor antagonist SCH23390 [(R)-(+)-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine]. In slices from control rats, a brief application of either protein kinase C (PKC) activator phorbol-12,13-dibutyrate or adenosine A3 receptor agonist 2-chloro-N6-(3-iodobenzyl)-adenosine-5-N-methyluronamide mimicked the effect of repeated cocaine treatment to impair the induction of LTD. Bilateral intra-mPFC infusion of PKC inhibitor bisindolylmaleimide I or adenosine A3 receptor antagonist MRS1220 (N-[9-chloro-2-(2-furanyl)[1,2,4]-triazolo[1,5-c]quinazolin-5-benzeneacetamide) before cocaine injection prevented cocaine-induced impairment of LTD induction. Furthermore, endogenous adenosine tone is greater in slices from cocaine-treated rats than from the saline-treated controls. When the metabolism of cAMP to adenosine was blocked, the extent of LTD in slices from saline and cocaine-treated rats was similar. These results suggest that cocaine-induced impairment of group II mGluR-mediated LTD is caused, at least in part, by an increase in adenosine subsequent to the rise in cAMP after D1-like receptor activation, which leads to an adenosine A3 receptor-mediated upregulation of PKC activity and thereby triggers an inhibition of group II metabotropic glutamate receptor function.
Collapse
Affiliation(s)
| | | | - Hsiao-Ju Lin
- Department of Pharmacology, College of Medicine, and
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, and
- Center for Gene Regulation and Signal Transduction Research, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
30
|
Abstract
The experimental data reviewed in the present paper deal with the molecular events underlying the agonist-dependent regulation of the distinct somatostatin receptor subtypes and may suggest important clues about the clinical use of somatostatin analogs with different pattern of receptor specificity for the in vivo targeting of tumoral somatostatin receptors. Somatostatin receptor subtypes are characterized by differential beta-arrestin trafficking and endosomal sorting upon agonist binding due, at least in part, to the differences in their C-terminal tails. Moreover, the subcellular expression pattern of somatostatin receptor subtypes and their activity in response to agonist treatment are affected by intracellular complements, such as proteins involved in intracellular vesicle trafficking. Different somatostatin analogs may induce distinct conformations of the receptor/ligand complex, preferentially coupled to either receptor signaling or receptor endocytosis.
Collapse
|
31
|
Durán-Prado M, Bucharles C, Gonzalez BJ, Vázquez-Martínez R, Martínez-Fuentes AJ, García-Navarro S, Rhodes SJ, Vaudry H, Malagón MM, Castaño JP. Porcine somatostatin receptor 2 displays typical pharmacological sst2 features but unique dynamics of homodimerization and internalization. Endocrinology 2007; 148:411-21. [PMID: 17053026 DOI: 10.1210/en.2006-0920] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Somatostatin (SRIF) exerts its multiple actions, including inhibition of GH secretion and of tumoral growth, through a family of five receptor subtypes (sst1-sst5). We recently reported that an sst2-selective agonist markedly decreases GH release from pig somatotropes, suggesting important roles for this scarcely explored receptor, psst2. Here, functional expression of psst2 in Chinese hamster ovary-K1 and human embryonic kidney-293-AD cell lines was employed to determine its pharmacological features and functional ability to reduce cAMP, and to examine its homodimerization and internalization dynamics in real time in single living cells. Results show that psst2 is a high-affinity receptor (dissociation constant = 0.27 nM) displaying a typical sst2 profile (nM affinity for SRIF-14> or =SRIF-28>cortistatin>MK678>octreotide) and high selectivity (EC(50) = 1.1 nM) for the sst2 agonist l-779,976, but millimolar or undetectable affinity to other sst-specific agonists (sst3>sst1>sst5>>>sst4). Accordingly, SRIF dose-dependently inhibited forskolin-stimulated cAMP with high potency (EC(50) = 6.55 pm) and modest efficacy (maximum 29.1%) via psst2. Cotransfection of human embryonic kidney-293 and Chinese hamster ovary-K1 cells with two receptor constructs modified with distinct fluorescent tags (psst2-YFP/psst2-CFP) enabled fluorescence resonance energy transfer measurement of physical interaction between psst2 receptors and also receptor internalization in single living cells. This revealed that under basal conditions, psst2 forms constitutive homodimers/homomultimers, which dissociate immediately (11 sec) upon SRIF binding. Interestingly, contrary to human sst2, psst2 rapidly reassociates (110.5 sec) during a subsequent process that temporally overlaps with receptor internalization (half-maximal = 95.1 sec). Therefore, psst2 is a potent inhibitory receptor displaying a unique set of interrelated dynamic features of agonist-dependent dimerization, dissociation, internalization, and reassociation, a cascade of events that might be critical for receptor function.
Collapse
Affiliation(s)
- Mario Durán-Prado
- Department of Cell Biology, University of Córdoba, E-14014 Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cammalleri M, Cervia D, Dal Monte M, Martini D, Langenegger D, Fehlmann D, Feuerbach D, Pavan B, Hoyer D, Bagnoli P. Compensatory changes in the hippocampus of somatostatin knockout mice: upregulation of somatostatin receptor 2 and its function in the control of bursting activity and synaptic transmission. Eur J Neurosci 2006; 23:2404-22. [PMID: 16706848 DOI: 10.1111/j.1460-9568.2006.04770.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Somatostatin-14 (SRIF) co-localizes with gamma-aminobutyric acid (GABA) in the hippocampus and regulates neuronal excitability. A role of SRIF in the control of seizures has been proposed, although its exact contribution requires some clarification. In particular, SRIF knockout (KO) mice do not exhibit spontaneous seizures, indicating that compensatory changes may occur in KO. In the KO hippocampus, we examined whether specific SRIF receptors and/or the cognate peptide cortistatin-14 (CST) compensate for the absence of SRIF. We found increased levels of both sst2 receptors (sst2) and CST, and we explored the functional consequences of sst2 compensation on bursting activity and synaptic responses in hippocampal slices. Bursting was decreased by SRIF in wild-type (WT) mice, but it was not affected by either CST or sst2 agonist and antagonist. sst4 agonist increased bursting frequency in either WT or KO. In WT, but not in KO, its effects were blocked by agonizing or antagonizing sst2, suggesting that sst2 and sst4 are functionally coupled in the WT hippocampus. Bursting was reduced in KO as compared with WT and was increased upon application of sst2 antagonist, while SRIF, CST and sst2 agonist had no effect. At the synaptic level, we observed that in WT, SRIF decreased excitatory postsynaptic potentials which were, in contrast, increased by sst2 antagonist in KO. We conclude that sst2 compensates for SRIF absence and that its upregulation is responsible for reduced bursting and decreased excitatory transmission in KO mice. We suggest that a critical density of sst2 is needed to control hippocampal activity.
Collapse
Affiliation(s)
- Maurizio Cammalleri
- Department of Physiology and Biochemistry G. Moruzzi, University of Pisa, 56127 Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ginj M, Schmitt JS, Chen J, Waser B, Reubi JC, de Jong M, Schulz S, Maecke HR. Design, Synthesis, and Biological Evaluation of Somatostatin-Based Radiopeptides. ACTA ACUST UNITED AC 2006; 13:1081-90. [PMID: 17052612 DOI: 10.1016/j.chembiol.2006.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 08/04/2006] [Accepted: 08/28/2006] [Indexed: 10/24/2022]
Abstract
The prototypes for tumor targeting with radiolabeled peptides are derivatives of somatostatin. Usually, they primarily have high affinity for somatostatin receptor subtype 2 (sst2), and they have moderate affinity for sst5. We aimed at developing analogs that recognize different somatostatin receptor subtypes for internal radiotherapy in order to extend the present range of accessible tumors. We synthesized DOTA-octapeptides based on octreotide by replacing Phe3 mainly with unnatural amino acids. The affinity profile was determined by using cell lines transfected with sst1-5. Internalization was determined by using AR42J, HEK-sst3, and HEK-sst5 cell lines, and biodistribution was studied in rat tumor models. Two of the derivatives thus obtained showed an improved binding affinity profile, enhanced internalization into cells expressing sst2 and sst3, respectively, and better tumor:kidney ratios in animals.
Collapse
Affiliation(s)
- Mihaela Ginj
- Division of Radiological Chemistry, Department of Radiology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Young Shim E, Jung Kim H, Kim MJ, Rhie DJ, Jo YH, Kim MS, June Hahn S, Lee MY, Yoon SH. Desensitization of somatostatin-induced inhibition of low extracellular magnesium concentration-induced calcium spikes in cultured rat hippocampal neurons. Brain Res 2006; 1111:61-71. [PMID: 16879804 DOI: 10.1016/j.brainres.2006.06.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 06/20/2006] [Accepted: 06/27/2006] [Indexed: 11/21/2022]
Abstract
Neuronal excitability is inhibited by somatostatin, which might play important roles in seizure and neuroprotection. The possibility of whether the effect of somatostatin on neurotransmission is susceptible to desensitization was investigated. We tested the effects of prolonged exposure to somatostatin on 0.1 mM extracellular Mg(2+) concentration ([Mg(2+)](o))-induced intracellular free Ca(2+) concentration ([Ca(2+)](i)) spikes in cultured rat hippocampal neurons using fura-2-based microfluorimetry. Reducing [Mg(2+)](o) to 0.1 mM elicited repetitive [Ca(2+)](i) spikes. These [Ca(2+)](i) spikes were inhibited by exposure to somatostatin-14. The inhibitory effects of somatostatin were blocked by pretreatment with pertussis toxin (PTX, 100 ng/ml) for 18-24 h. Prolonged exposure to somatostatin induced a desensitization of the somatostatin-induced inhibition of [Ca(2+)](i) spikes in a concentration-dependent manner. The somatostatin-induced desensitization was retarded by the nonspecific protein kinase C (PKC) inhibitor staurosporin (100 nM) or chronic treatment with phorbol dibutyrate (1 microM) for 24 h, but not by the protein kinase A inhibitor KT5720. The desensitization was significantly retarded by the novel PKCepsilon translocation inhibitor peptide (1 microM). In addition, suramin (3 microM), an inhibitor of G-protein-coupled receptor kinase 2 (GRK2), caused a reduction in the desensitization. After tetrodotoxin (TTX, 1 microM) completely blocked the low [Mg(2+)](o)-induced [Ca(2+)](i) spikes, glutamate-induced [Ca(2+)](i) transients were slightly inhibited by somatostatin and the inhibition was desensitized by prolonged exposure to somatostatin. These results indicate that the prolonged activation of somatostatin receptors induces the desensitization of somatostatin-induced inhibition on low [Mg(2+)](o)-induced [Ca(2+)](i) spikes through the activation of GRK2 and partly a novel PKCepsilon in cultured rat hippocampal neurons.
Collapse
Affiliation(s)
- Eun Young Shim
- Department of Physiology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu AMF, Wong YH. Activation of Nuclear Factor κB by Somatostatin Type 2 Receptor in Pancreatic Acinar AR42J Cells Involves Gα14 and Multiple Signaling Components. J Biol Chem 2005; 280:34617-25. [PMID: 16115892 DOI: 10.1074/jbc.m504264200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Medications targeting the somatostatin type 2 receptor (SSTR2) have been employed for pancreatic inflammations and cancers, possibly via the regulation of the transcription factor nuclear factor kappaB (NFkappaB). Here we demonstrate that in tumoral pancreatic acinar AR42J cells, activation of SSTR2 leads to stimulation of the inhibitor kappaB kinase (IKK)/NFkappaB signaling cascade via pertussis toxin-insensitive G proteins in a time- and dose-dependent manner. The inability of G(q/11) and G(12/13) proteins to activate IKK/NFkappaB by SSTR2 in transfected human embryonic kidney 293 cells and the lack of Galpha(16) in AR42J cells suggested a possible role of Galpha(14) in mediating SSTR2-induced responses. This regulatory role of Galpha(14) was further confirmed by the activation of IKK and NFkappaB in human embryonic kidney 293 cells expressing SSTR2 and Galpha(14) upon induction. The stimulatory effect of Gbeta(1)gamma(2) and the abrogation by overexpressing transducin confirmed the participation of Gbetagamma in SSTR2-mediated IKK/NFkappaB activation. By the application of specific inhibitors and dominant negative mutants, phospholipase Cbeta, protein kinase C, and calmodulin-dependent kinase II were shown to be involved in SSTR2-induced responses. Inhibition of c-Src and numerous intermediates, including Ras, Raf-1 kinase, MEK1/2, along with the extracellular signal-regulated kinase cascade attenuated somatostatin-mediated IKK/NFkappaB activation. Although c-Jun N-terminal kinase and p38 mitogen-activated protein kinase (MAPK) were also stimulated by SSTR2, suppression of these two MAPKs was ineffective in altering the somatostatin-mediated responses. Similar results were also obtained using AR42J cells. These data suggest that activation of the IKK/NFkappaB signaling cascade by SSTR2 requires a complicated network consisting of Galpha(14) and multiple intermediates.
Collapse
Affiliation(s)
- Andrew M F Liu
- Department of Biochemistry, Molecular Neuroscience Center, and Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | |
Collapse
|
36
|
Liu Q, Cescato R, Dewi DA, Rivier J, Reubi JC, Schonbrunn A. Receptor signaling and endocytosis are differentially regulated by somatostatin analogs. Mol Pharmacol 2005; 68:90-101. [PMID: 15855408 DOI: 10.1124/mol.105.011767] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Upon hormone stimulation, the sst2 somatostatin receptor couples to adenylyl cyclase through G(i/o) proteins and undergoes rapid endocytosis via clathrin-coated pits. In this study, we determined the relationship between the ability of ligands to induce sst2 receptor internalization and inhibit adenylyl cyclase. Immunocytochemical studies demonstrated that peptide agonists [such as somatostatin-14, cortistatin-17, octreotide, vapreotide, KE108 (Tyr0-cyclo[d-diaminobutyric acid-Arg-Phe-Phe-d-Trp-Lys-Thr-Phe]), and SOM230 (cyclo[diaminoethylcarbamoyl-hydroxyproline-phenylglycine-d-Trp-Lys-(4-O-benzyl)-l-Tyr-Phe])] and nonpeptide agonists (such as L-779,976), stimulated the rapid endocytosis of sst2 receptors in human embryonic kidney 293 and CHO-K1 cells. In contrast, two antagonists did not induce receptor endocytosis by themselves and completely blocked agonist stimulation. Using a quantitative enzyme-linked immunosorbent assay to measure sst2 receptor sequestration, we found that peptide agonists varied by more than 100-fold in their potencies but exhibited the same efficacy as somatostatin14. In contrast, L-779,976 did not induce maximal receptor internalization. It is interesting that although betaarrestin-2 was recruited to cell surface sst2 receptors after stimulation with either somatostatin14 or L-779,976, the betaarrestin-receptor complex dissociated earlier in the endocytic pathway with the nonpeptide ligand. Although all agonists, including L-779,976, produced the same maximal inhibition of cyclic AMP, the potency ratio for inhibition of cyclic AMP and stimulation of receptor endocytosis varied by 15-fold. In general, native peptides showed similar potencies for cyclic AMP inhibition and receptor endocytosis, whereas short therapeutic analogs were substantially more potent at inhibiting cyclic AMP synthesis. These results demonstrate that the activity of somatostatin analogs to regulate receptor endocytosis and signaling are not tightly linked and provide compelling evidence for the induction of agonist specific states of the sst2 receptor.
Collapse
Affiliation(s)
- Qisheng Liu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center-Houston, TX 77225, USA
| | | | | | | | | | | |
Collapse
|
37
|
Bezerra Y, Fuselier JA, Peyman GA, Oner H, Drouant G, Coy DH. STUDY OF INHIBITORY EFFECTS OF AN ANTIANGIOGENIC SOMATOSTATIN-CAMPTOTHECIN CONJUGATE ON LASER-INDUCED CHOROIDAL NEOVASCULARIZATION IN RATS. Retina 2005; 25:345-54. [PMID: 15805913 DOI: 10.1097/00006982-200504000-00015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To evaluate the ocular toxicity and efficacy of intravitreal camptothecin-somatostatin conjugate (JF-10-81), a somatostatin type 2 receptor-directed, antiangiogenic compound. METHODS Part 1: New Zealand albino rabbits (except for controls) were injected intravitreally with conjugate at various concentrations. Preoperative and postoperative ocular examinations and electroretinography were performed until animals were killed for histology. Part 2: Long-Evans pigmented rats had choroidal neovascularization (CNV) induced by argon laser. One eye per animal was injected with concentration 10M (safe dose), whereas the other eyes were controls and received 30 microL of sterile water at different time intervals after laser application. Fluorescein angiography was performed at various time points to evaluate the lesions and confirm presence of CNV. Animals were euthanized. The eyes were immediately enucleated and prepared for histologic examination. RESULTS Part 1: No clinical changes were seen in groups receiving 10(-8)M, 10(-7)M, 10(-6)M, and 10(-5) M of conjugate. Electroretinography showed decreasing b-wave amplitude in groups receiving 10(-4) M and 10(-3) M; cataracts also developed in these eyes. Part 2: Fluorescein angiography revealed that intravitreal injection of somatostatin conjugate JF-10-81 favorably affected the development of CNV when the treatment was performed at least 1 week after the laser application. These results were statistically significant. Histologic analysis results of eyes treated 2 weeks after laser application also showed significant benefit. CONCLUSIONS Part 1: Camptothecin-somatostatin conjugate injected intravitreally appeared safe at concentrations of 10(-5)M or less. Part 2: Conjugate JF-10-81 at a concentration of 10(-5)M administered intravitreally 1 to 3 weeks after laser demonstrated statistically significant efficacy in the treatment of choroidal neovascularization.
Collapse
Affiliation(s)
- Yanno Bezerra
- Department of Ophthalmology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112-2699, USA
| | | | | | | | | | | |
Collapse
|
38
|
Herring D, Huang R, Singh M, Dillon GH, Leidenheimer NJ. PKC modulation of GABAA receptor endocytosis and function is inhibited by mutation of a dileucine motif within the receptor β2 subunit. Neuropharmacology 2005; 48:181-94. [PMID: 15695157 DOI: 10.1016/j.neuropharm.2004.09.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 08/04/2004] [Accepted: 09/16/2004] [Indexed: 10/26/2022]
Abstract
The modulation of GABAA receptors by protein kinase C is complex and involves effects on both ion channel function and receptor trafficking. Although PKC regulates receptor cell surface expression the mechanism is not well understood. Using immunofluorescence studies in HEK 293 cells, we demonstrate that activation of PKC by the phorbol ester PMA promotes receptor endocytosis and is dependent on the presence of a gamma subunit. This endocytosis is blocked by the dominant negative dynamin mutant K44A indicating that PKC-induced receptor endocytosis involves the dynamin endocytic pathway. Mutation of a dileucine motif within the receptor beta2 subunit inhibits the effect of PKC activation on receptor endocytosis. Using patch clamp analysis, we show that PKC activation produces a robust inhibition of GABA-gated chloride currents in cells expressing wildtype GABAA receptors, but it is ineffective in modulating receptors lacking the dileucine motif. Furthermore, the introduction into the patch pipette of a 10-amino acid peptide corresponding to the dileucine motif present in the receptor beta2 subunit prevents PKC modulation of wildtype recombinant receptors. Furthermore, in cerebral cortical neuronal slices inclusion of this peptide in the patch pipette prevents PKC modulation of native GABAA receptors. Using limited chymotrypsin digestion assays, we also show that PKC increases receptor internalization in primary cultures of cerebral cortical neurons. Lastly, PKC inhibitors do not block constitutive receptor endocytosis or affect GABA-gated chloride currents suggesting that PKC-dependent phosphorylation is not required for GABAA receptor endocytosis but plays a modulatory role in the process.
Collapse
Affiliation(s)
- Dina Herring
- Department of Pharmacology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | | | | | | | | |
Collapse
|
39
|
Naik S, Billington CK, Pascual RM, Deshpande DA, Stefano FP, Kohout TA, Eckman DM, Benovic JL, Penn RB. Regulation of cysteinyl leukotriene type 1 receptor internalization and signaling. J Biol Chem 2004; 280:8722-32. [PMID: 15590629 DOI: 10.1074/jbc.m413014200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteinyl leukotrienes activate the cysteinyl leukotriene type 1 receptor (CysLT1R) to regulate numerous cell functions important in inflammatory processes and diseases such as asthma. Despite its physiologic importance, no studies to date have examined the regulation of CysLT1R signaling or trafficking. We have established model systems for analyzing recombinant human CysLT1R and found regulation of internalization and signaling of the CysLT1R to be unique among G protein-coupled receptors. Rapid and profound LTD4-stimulated internalization was observed for the wild type (WT) CysLT1R, whereas a C-terminal truncation mutant exhibited impaired internalization yet signaled robustly, suggesting a region within amino acids 310-321 as critical to internalization. Although overexpression of WT arrestins significantly increased WT CysLT1R internalization, expression of dominant-negative arrestins had minimal effects, and WT CysLT1R internalized in murine embryonic fibroblasts lacking both arrestin-2 and arrestin-3, suggesting that arrestins are not the primary physiologic regulators of CysLT1Rs. Instead, pharmacologic inhibition of protein kinase C (PKC) was shown to profoundly inhibit CysLT1R internalization while greatly increasing both phosphoinositide (PI) production and calcium mobilization stimulated by LTD4 yet had almost no effect on H1 histamine receptor internalization or signaling. Moreover, mutation of putative PKC phosphorylation sites within the CysLT1R C-tail (CysLT1RS(313-316)A) reduced receptor internalization, increased PI production and calcium mobilization by LTD4, and significantly attenuated the effects of PKC inhibition. These findings characterized the CysLT1R as the first G protein-coupled receptor identified to date in which PKC is the principal regulator of both rapid agonist-dependent internalization and rapid agonist-dependent desensitization.
Collapse
Affiliation(s)
- Snehal Naik
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Kimmel Cancer Institute, Jefferson Medical College, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Volante M, Bozzalla-Cassione F, Papotti M. Somatostatin receptors and their interest in diagnostic pathology. Endocr Pathol 2004; 15:275-91. [PMID: 15681851 DOI: 10.1385/ep:15:4:275] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since the discovery of somatostatin (SS) and of its interactions with a family of specific somatostatin receptors (sst), a wide body of evidence has been reported on its biological activities. Those activities include inhibition of hormone secretion, neuromodulatory properties in the central nervous system, cell growth control, and induction of apoptosis. At the same time, the distribution of sst has been analyzed in both normal and pathological tissues and sst subtype selective SS-analogs, able to mimic most SS functions, have been developed. The results have been fundamental insights into sst physiology and potent clinical implications in a variety of neoplastic and non neoplastic diseases. Neuroendocrine tumors have been particular targets of investigation. Alternative methods have been validated and are available to analyze the presence and functionality of sst at the level of either mRNA or protein. These methods include RT-PCR, Northern blot, in situ hybridization, immunohistochemistry, autoradiography, and in vivo scintigraphy. Tissue localization techniques are now accessible to many pathology laboratories worldwide and the role of the pathologist in typing the different sst present in a given sample is becoming more and more crucial. This is particularly, but not exclusively, the case in the field of neuroendocrine oncology, where sst typing may affect the clinical management of patients with sst-positive tumors.
Collapse
Affiliation(s)
- Marco Volante
- Department of Biomedical Sciences, San Luigi Hospital, Orbassano, University of Turin, Turin, Italy
| | | | | |
Collapse
|
41
|
Cervia D, Zizzari P, Pavan B, Schuepbach E, Langenegger D, Hoyer D, Biondi C, Epelbaum J, Bagnoli P. Biological activity of somatostatin receptors in GC rat tumour somatotrophs: evidence with sst1-sst5 receptor-selective nonpeptidyl agonists. Neuropharmacology 2003; 44:672-85. [PMID: 12668053 DOI: 10.1016/s0028-3908(03)00031-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The physiological actions of somatostatin-14 (SRIF: somatotrophin release inhibitory factor) receptor subtypes (sst(1)-sst(5)), which are endogenously expressed in growth cells (GC cells), have not yet been elucidated, although there is evidence that sst(2) receptors are negatively coupled to cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and adenosine 3,5'-cyclic monophosphate (cAMP) accumulation. In addition, both sst(1) and sst(2) receptors are negatively coupled to growth hormone (GH) secretion in GC cells. Here we report on studies concerning the expression, the pharmacology and the functional role of native SRIF receptors in GC cells with the use of five nonpeptidyl agonists, highly selective for each of the SRIF receptors. Radioligand binding studies show that sst(2) and sst(5) receptors are present at different relative densities, while the presence of sst(3) and sst(4) receptors appears to be negligible. The absence of sst(1) receptor binding was unexpected in view of sst(1) receptor functional effects on GH secretion. This suggests very efficient receptor-effector coupling of a low-density population of sst(1) receptors. Functionally, only sst(2) receptors are coupled to the inhibition of [Ca(2+)](i) and cAMP accumulation and the selective activation of sst(5) receptors facilitates the stimulation of adenylyl cyclase activity through G(i/o) proteins. This effect was not observed when sst(2) and sst(5) receptors were simultaneously activated, suggesting that there is a functional interaction between sst(2) and sst(5) receptors. In addition, sst(1), sst(2) and sst(5) receptor activation inhibits GH release, further indicating that SRIF can modulate GH secretion in GC cells through mechanisms both dependent and independent on [Ca(2+)](i) and cAMP-dependent pathways. The present data suggest SRIF-mediated functional effects in GC cells to be very diverse and provides compelling arguments to propose that multiple native SRIF receptors expressed in the same cells are not simply redundant, but contribute to marked signalling diversity.
Collapse
Affiliation(s)
- D Cervia
- Dipartimento di Fisiologia e Biochimica G. Moruzzi, Università di Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|