1
|
Peter JU, Dieudonné P, Zolk O. Pharmacokinetics, Pharmacodynamics, and Side Effects of Midazolam: A Review and Case Example. Pharmaceuticals (Basel) 2024; 17:473. [PMID: 38675433 PMCID: PMC11054797 DOI: 10.3390/ph17040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Midazolam, a short-acting benzodiazepine, is widely used to alleviate patient anxiety, enhance compliance, and aid in anesthesia. While its side effects are typically dose-dependent and manageable with vigilant perioperative monitoring, serious cardiorespiratory complications, including fatalities and permanent neurological impairment, have been documented. Prolonged exposure to benzodiazepines, such as midazolam, has been associated with neurological changes in infants. Despite attempts to employ therapeutic drug monitoring for optimal sedation dosing, its efficacy has been limited. Consequently, efforts are underway to identify alternative predictive markers to guide individualized dosing and mitigate adverse effects. Understanding these factors is crucial for determining midazolam's suitability for future administration, particularly after a severe adverse reaction. This article aims to elucidate the factors influencing midazolam's pharmacokinetics and pharmacodynamics, potentially leading to adverse events. Finally, a case study is presented to exemplify the complex investigation into the causative factors of midazolam-related adverse events.
Collapse
Affiliation(s)
- Jens-Uwe Peter
- Institute of Clinical Pharmacology, Immanuel Klinik Rüdersdorf, Brandenburg Medical School, 15562 Rüdersdorf, Germany;
| | - Peter Dieudonné
- Department of Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Oliver Zolk
- Institute of Clinical Pharmacology, Immanuel Klinik Rüdersdorf, Brandenburg Medical School, 15562 Rüdersdorf, Germany;
| |
Collapse
|
2
|
Xu K, Xia P, Chen X, Ma W, Yuan Y. ncRNA-mediated fatty acid metabolism reprogramming in HCC. Trends Endocrinol Metab 2023; 34:278-291. [PMID: 36890041 DOI: 10.1016/j.tem.2023.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
The challenges of hepatocellular carcinoma (HCC) pathogenesis, diagnosis, treatment, and prognosis evaluation are obvious. Hepatocyte-specific fatty acid (FA) metabolic reprogramming is an important marker of liver carcinogenesis and progression; elucidating its mechanism will help unravel the complexity of HCC pathogenesis. Noncoding RNAs (ncRNAs) play important roles in HCC development. Moreover, ncRNAs are important mediators of FA metabolism and are directly involved in the reprogramming of FA metabolism in HCC cells. Here we review significant new advances in understanding the mechanisms regulating HCC metabolism by focusing on ncRNA-mediated post-translational modifications of metabolic enzymes, metabolism-related transcription factors, and other proteins in associated signaling pathways. We also discuss the great therapeutic potential of targeting ncRNA-mediated FA metabolism reprogramming in HCC.
Collapse
Affiliation(s)
- Kequan Xu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Xi Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Weijie Ma
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
3
|
Vini R, Rajavelu A, Sreeharshan S. 27-Hydroxycholesterol, The Estrogen Receptor Modulator, Alters DNA Methylation in Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:783823. [PMID: 35360070 PMCID: PMC8961300 DOI: 10.3389/fendo.2022.783823] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
27-hydroxycholesterol (27-HC) is the first known endogenous selective estrogen receptor modulator (SERM), and its elevation from normal levels is closely associated with breast cancer. A plethora of evidence suggests that aberrant epigenetic signatures in breast cancer cells can result in differential responses to various chemotherapeutics and often leads to the development of resistant cancer cells. Such aberrant epigenetic changes are mostly dictated by the microenvironment. The local concentration of oxygen and metabolites in the microenvironment of breast cancer are known to influence the development of breast cancer. Hence, we hypothesized that 27-HC, an oxysterol, which has been shown to induce breast cancer progression via estrogen receptor alpha (ERα) and liver X receptor (LXR) and by modulating immune cells, may also induce epigenetic changes. For deciphering the same, we treated the estrogen receptor-positive cells with 27-HC and identified DNA hypermethylation on a subset of genes by performing DNA bisulfite sequencing. The genes that showed significant DNA hypermethylation were phosphatidylserine synthase 2 (PTDSS2), MIR613, indoleamine 2,3-dioxygenase 1 (IDO1), thyroid hormone receptor alpha (THRA), dystrotelin (DTYN), and mesoderm induction early response 1, family member 3 (MIER). Furthermore, we found that 27-HC weakens the DNMT3B association with the ERα in MCF-7 cells. This study reports that 27-HC induces aberrant DNA methylation changes on the promoters of a subset of genes through modulation of ERα and DNMT3B complexes to induce the local DNA methylation changes, which may dictate drug responses and breast cancer development.
Collapse
Affiliation(s)
- Ravindran Vini
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Arumugam Rajavelu
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Chennai, India
- *Correspondence: Arumugam Rajavelu, ; Sreeja Sreeharshan,
| | - Sreeja Sreeharshan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- *Correspondence: Arumugam Rajavelu, ; Sreeja Sreeharshan,
| |
Collapse
|
4
|
Huang Y, Zhang H, Wang L, Liu C, Guo M, Tan H, Liu Z. MiR-613 inhibits the proliferation, migration, and invasion of papillary thyroid carcinoma cells by directly targeting TAGLN2. Cancer Cell Int 2021; 21:494. [PMID: 34530821 PMCID: PMC8447791 DOI: 10.1186/s12935-021-02083-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022] Open
Abstract
Background Papillary thyroid carcinoma (PTC), with a rapidly increasing incidence, is the most prevalent malignant cancer of the thyroid. However, its pathogenesis is unclear and its specific clinical indicators have not yet been identified. There is increasing evidence that microRNAs (miRNAs) play important roles in tumor occurrence and progression. Specifically, miR-613 participates in the regulation of tumor development in various cancers; however, its effects and mechanisms of action in PTC are still unclear. Therefore, in this study, we investigated the expression and function of miR-613 in PTC. Methods qRT-PCR was used to determine miR-613 expression in 107 pairs of PTC and adjacent-normal tissues as well as in PTC cell lines and to detect TAGLN2 mRNA expression in PTC tissues and adjacent normal tissues. Western blot analysis was performed to identify TAGLN2 and epithelial–mesenchymal transition (EMT) biomarkers. The effects of miR-613 on PTC progression were evaluated by performing MTS, wound-healing, and Transwell assays in vitro. Luciferase reporter assays were also performed to validate the target of miR-613. Results In PTC, miR-613 was significantly downregulated and its low expression level was associated with cervical lymph node metastasis. However, its overexpression significantly suppressed PTC cell proliferation, migration, and invasion and inhibited EMT. TAGLN2 was identified as a target of miR-613, which also significantly inhibited the expression of TAGLN2. Further, the restoration of TAGLN2 expression attenuated the inhibitory effects of miR-613 on PTC cell proliferation and metastasis. Conclusion Our findings demonstrated that miR-613 can suppress the progression of PTC cells by targeting TAGLN2, indicating that miR-613 plays the role of a tumor suppressor in PTC. Overall, these results suggest that the upregulation of miR-613 is a promising therapeutic strategy for PTC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02083-8.
Collapse
Affiliation(s)
- Yonglian Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, 1 Donggang West Rd, Lanzhou, 730000, China
| | - Lidong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Chenxi Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Mingyue Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Hao Tan
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
5
|
Alizadeh-Fanalou S, Khosravi M, Alian F, Rokhsartalb-Azar S, Nazarizadeh A, Karimi-Dehkordi M, Mohammadi F. Dual role of microRNA-1297 in the suppression and progression of human malignancies. Biomed Pharmacother 2021; 141:111863. [PMID: 34243098 DOI: 10.1016/j.biopha.2021.111863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding, single-stranded and tiny RNAs that modulate several biological functions, more importantly, the pathophysiology of numerous human cancers. They are bound with target mRNAs and thereby regulate gene expression at post-transcriptional levels. MiRNAs can either trigger cancer progression as an oncogene or alleviate it as a tumor suppressor. Abnormal expression of microRNA-1297 (miR-1297) has been noticed in several human cancers suggesting a distinct role for the miRNA in tumorigenesis. More specifically, it is both up-regulated and down-regulated in various cancers suggesting that it can act as both tumor suppressor and oncogene. This review systematically highlights the different roles of miR-1297 in the pathophysiology of human cancers, explains the mechanisms underlying miR-1297-mediated tumorigenesis, and discusses its potential prognostic, diagnostic, and therapeutic importance.
Collapse
Affiliation(s)
- Shahin Alizadeh-Fanalou
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Khosravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Shirin Rokhsartalb-Azar
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Ali Nazarizadeh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Karimi-Dehkordi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah branch, Islamic Azad University, Kermanshah, Iran.
| |
Collapse
|
6
|
Wu J, Nagy LE, Liangpunsakul S, Wang L. Non-coding RNA crosstalk with nuclear receptors in liver disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166083. [PMID: 33497819 PMCID: PMC7987766 DOI: 10.1016/j.bbadis.2021.166083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/28/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
The dysregulation of nuclear receptors (NRs) underlies the pathogenesis of a variety of liver disorders. Non-coding RNAs (ncRNAs) are defined as RNA molecules transcribed from DNA but not translated into proteins. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two types of ncRNAs that have been extensively studied for regulating gene expression during diverse cellular processes. NRs as therapeutic targets in liver disease have been exemplified by the successful application of their pharmacological ligands in clinics. MiRNA-based reagents or drugs are emerging as flagship products in clinical trials. Advancing our understanding of the crosstalk between NRs and ncRNAs is critical to the development of diagnostic and therapeutic strategies. This review summarizes recent findings on the reciprocal regulation between NRs and ncRNAs (mainly on miRNAs and lncRNAs) and their implication in liver pathophysiology, which might be informative to the translational medicine of targeting NRs and ncRNAs in liver disease.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Laura E Nagy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States of America; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Li Wang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, United States of America
| |
Collapse
|
7
|
Citrin KM, Fernández-Hernando C, Suárez Y. MicroRNA regulation of cholesterol metabolism. Ann N Y Acad Sci 2021; 1495:55-77. [PMID: 33521946 DOI: 10.1111/nyas.14566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/27/2020] [Accepted: 01/09/2021] [Indexed: 12/17/2022]
Abstract
MicroRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Since many microRNAs have multiple mRNA targets, they are uniquely positioned to regulate the expression of several molecules and pathways simultaneously. For example, the multiple stages of cholesterol metabolism are heavily influenced by microRNA activity. Understanding the scope of microRNAs that control this pathway is highly relevant to diseases of perturbed cholesterol metabolism, most notably cardiovascular disease (CVD). Atherosclerosis is a common cause of CVD that involves inflammation and the accumulation of cholesterol-laden cells in the arterial wall. However, several different cell types participate in atherosclerosis, and perturbations in cholesterol homeostasis may have unique effects on the specialized functions of these various cell types. Therefore, our review discusses the current knowledge of microRNA-mediated control of cholesterol homeostasis, followed by speculation as to how these microRNA-mRNA target interactions might have distinctive effects on different cell types that participate in atherosclerosis.
Collapse
Affiliation(s)
- Kathryn M Citrin
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| | - Yajaira Suárez
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
8
|
Cheng J, Song Q, Yang Y, Sun Z, Tian X, Tian X, Feng L. Lipolysis by downregulating miR-92a activates the Wnt/β-catenin signaling pathway in hypoxic rats. Biomed Rep 2020; 13:33. [PMID: 32793347 PMCID: PMC7418506 DOI: 10.3892/br.2020.1340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to investigate the role of miR-92a in lipid metabolism in hypoxic rats. Microarray analysis and reverse transcription-quantitative (RT-q)PCR were used to detect changes in the mRNA expression levels of miR-92a in the epididymal fat of hypoxic and normoxic rats. The downstream target mRNA of miR-92a was predicted using bioinformatics analysis and verified using a dual luciferase reporter assay. Changes in the expression of frizzled (Fzd)10 and c-Myc in the epididymal fat were detected using RT-qPCR and western blotting. Microarray analysis and RT-qPCR results showed that the expression of miR-92a was significantly lower in the fat tissues of the hypoxic rats compared with the normoxic rats. The results of the dual luciferase reporter assay showed that the target gene of miR-92a was Fzd10, which is an acceptor in the Wnt pathway. Fzd10 expression was upregulated in the hypoxic rats. The mRNA expression levels of c-Myc, which is located downstream of the Wnt pathway, was increased significantly. The increase in the mRNA and protein expression levels of Fzd10 and c-Myc may be associated with miR-92a downregulation. Downregulation of miR-92a in-turn may result in lipolysis through the regulation of the Wnt/β-catenin signaling pathway, and thus weight loss in the rats.
Collapse
Affiliation(s)
- Jingjing Cheng
- Department of Sports and Health, Shandong Sport University, Jinan, Shandong 250102, P.R. China
| | - Qipeng Song
- Department of Sports and Health, Shandong Sport University, Jinan, Shandong 250102, P.R. China
| | - Yingjie Yang
- Department of Sports and Health, Shandong Sport University, Jinan, Shandong 250102, P.R. China
| | - Zhiyuan Sun
- Department of Sports and Health, Shandong Sport University, Jinan, Shandong 250102, P.R. China
| | - Xiaoyi Tian
- Department of Sports and Health, Shandong Sport University, Jinan, Shandong 250102, P.R. China
| | - Xuewen Tian
- Department of Sports and Health, Shandong Sport University, Jinan, Shandong 250102, P.R. China.,Biology Center, China Institute of Sport Science, Beijing 100061, P.R. China
| | - Lianshi Feng
- Biology Center, China Institute of Sport Science, Beijing 100061, P.R. China
| |
Collapse
|
9
|
Eldaly MN, Metwally FM, Shousha WG, El-Saiid AS, Ramadan SS. Clinical Potentials of miR-576-3p, miR-613, NDRG2 and YKL40 in Colorectal Cancer Patients. Asian Pac J Cancer Prev 2020; 21:1689-1695. [PMID: 32592365 PMCID: PMC7568881 DOI: 10.31557/apjcp.2020.21.6.1689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 01/08/2023] Open
Abstract
Introduction: Colorectal cancer (CRC) is the most common type of gastrointestinal tract cancers. This investigation aim was to assess the expression of miR-576-3p and miR-613 in CRC patients in addition to NDRG2 and YKL40 serum levels determination to decide their diagnostic and prognostic significance. Methods: Sixty early diagnosed CRC patients prior to any treatment in addition to twelve healthy subjects were enrolled in this study. Blood samples were taken from subjects and allowed for clotting and centrifugation, then the collected sera were stored at -80ºC till it were used for detection of our molecular biomarkers. The mature miRNAs expressions (miR-576-3p and miR-613) were detected in serum by qRT-PCR, while NDRG2 and YKL40 serum levels were determined by ELISA. In addition, the correlation of the measured parameters with the clinicopathological data of the patients was investigated. Results: The study results showed that both miRNA-576-3p and miRNA-613 were down-regulated in CRC patients with fold change 0.33, 0.36; respectively. A significant positive correlation was observed between miR-576-3p and miR-613 (r = 0.75, p < 0.001). NDRG2 serum levels were decreased in patients compared to the control group but the decrease wasn’t statistically significant. On the other hand, it was observed that YKL40 serum level was significantly increased in CRC patients compared to control (p-value < 0.001). Furthermore, YKL40 showed a very high diagnostic value (AUC = 0.97, specificity = 91.7%, sensitivity = 96%, p-value = 0.0001). Conclusion: The observations of this investigation concluded that, the expressions of miR-576-3p and miR-613 in addition to YKL40 serum levels determinations may help in the diagnosis of CRC.
Collapse
Affiliation(s)
| | | | | | - Abeer Salah El-Saiid
- Department of Clinical & Chemical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | | |
Collapse
|
10
|
MicroRNA-613: A novel tumor suppressor in human cancers. Biomed Pharmacother 2020; 123:109799. [DOI: 10.1016/j.biopha.2019.109799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/01/2019] [Accepted: 12/13/2019] [Indexed: 12/27/2022] Open
|
11
|
Ozkan H, Yakan A. Dietary high calories from sunflower oil, sucrose and fructose sources alters lipogenic genes expression levels in liver and skeletal muscle in rats. Ann Hepatol 2019; 18:715-724. [PMID: 31204236 DOI: 10.1016/j.aohep.2019.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/25/2019] [Accepted: 03/19/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES The objectives of this study were to investigate the underlying mechanism of PPARα, LXRα, ChREBP, and SREBP-1c at the level of gene and protein expression with high-energy diets in liver and skeletal muscle. MATERIALS AND METHODS Metabolic changes with consumption of high fat (Hfat), high sucrose (Hsuc) and high fructose (Hfru) diets were assessed. Levels of mRNA and protein of PPARα, LXRα, ChREBP, and SREBP-1c were investigated. Body weight changes, histological structure of liver and plasma levels of some parameters were also examined. RESULTS In Hfru group, body weights were higher than other groups (P<0.05). In liver, LXRα levels of Hsuc and Hfru groups were upregulated as 1.87±0.30 (P<0.05) and 2.01±0.29 (P<0.01). SREBP-1c levels were upregulated as 4.52±1.25 (P<0.05); 4.05±1.11 (P<0.05) and 3.85±1.04 (P<0.05) in Hfat, Hsuc, and Hfru groups, respectively. In skeletal muscle, LXRα and SREBP-1c were upregulated as 1.77±0.30 (P<0.05) and 2.71±0.56 (P<0.05), in the Hfru group. Protein levels of ChREBP (33.92±8.84ng/mg protein (P<0.05)) and SREBP-1c (135.16±15.57ng/mg protein (P<0.001)) in liver were higher in Hfru group. In skeletal muscle, LXRα, ChREBP and SREBP-1c in Hfru group were 6.67±0.60, 7.11±1.29 and 43.17±6.37ng/mg, respectively (P<0.05; P<0.01; P<0.05). The rats in Hfru group had the most damaged livers. CONCLUSION Besides liver, fructose consumption significantly effects skeletal muscle and leads to weight gain, triggers lipogenesis and metabolic disorders.
Collapse
Affiliation(s)
- Huseyin Ozkan
- Department of Genetic, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey.
| | - Akin Yakan
- Department of Animal Breeding, Faculty of Veterinary Medicine, University of Erciyes, Kayseri, Turkey
| |
Collapse
|
12
|
Sharma B, Agnihotri N. Role of cholesterol homeostasis and its efflux pathways in cancer progression. J Steroid Biochem Mol Biol 2019; 191:105377. [PMID: 31063804 DOI: 10.1016/j.jsbmb.2019.105377] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/09/2019] [Accepted: 05/04/2019] [Indexed: 12/27/2022]
Abstract
Tumor cells show high avidity for cholesterol in order to support their inherent nature to divide and proliferate. This results in the rewiring of cholesterol homeostatic pathways by influencing not only de novo synthesis but also uptake or efflux pathways of cholesterol. Recent findings have pointed towards the importance of cholesterol efflux in tumor pathogenesis. Cholesterol efflux is the first and foremost step in reverse cholesterol transport and any perturbation in this pathway may lead to the accumulation of intracellular cholesterol, thereby altering the cellular equilibrium. This review addresses the different mechanisms of cholesterol efflux from the cell and highlights their role and regulation in context to tumor development. There are four different routes by which cholesterol can be effluxed from the cell namely, 1) passive diffusion of cholesterol to mature HDL particles, 2) SR-B1 mediated facilitated diffusion, 3) Active efflux to apo A1 via ABCA1 and 4) ABCG1 mediated efflux to mature HDL. These molecular players facilitating cholesterol efflux are engaged in a complex interplay with different signaling pathways. Thus, an understanding of the efflux pathways, their regulation and cross-talk with signaling molecules may provide novel prognostic markers and therapeutic targets to combat the onset of carcinogenesis.
Collapse
Affiliation(s)
- Bhoomika Sharma
- Department of Biochemistry, BMS-Block II, Panjab University, Sector-25, Chandigarh, 160014, India.
| | - Navneet Agnihotri
- Department of Biochemistry, BMS-Block II, Panjab University, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
13
|
Islas JF, Moreno-Cuevas JE. A MicroRNA Perspective on Cardiovascular Development and Diseases: An Update. Int J Mol Sci 2018; 19:E2075. [PMID: 30018214 PMCID: PMC6073753 DOI: 10.3390/ijms19072075] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
In this review, we summarize the latest research pertaining to MicroRNAs (miRs) related to cardiovascular diseases. In today's molecular age, the key clinical aspects of diagnosing and treating these type of diseases are crucial, and miRs play an important role. Therefore, we have made a thorough analysis discussing the most important candidate protagonists of many pathways relating to such conditions as atherosclerosis, heart failure, myocardial infarction, and congenital heart disorders. We approach miRs initially from the fundamental molecular aspects and look at their role in developmental pathways, as well as regulatory mechanisms dysregulated under specific cardiovascular conditions. By doing so, we can better understand their functional roles. Next, we look at therapeutic aspects, including delivery and inhibition techniques. We conclude that a personal approach for treatment is paramount, and so understanding miRs is strategic for cardiovascular health.
Collapse
Affiliation(s)
- Jose Francisco Islas
- Tecnologico de Monterrey, Grupo de Investigación con Enfoque Estratégico en Bioingeniería y Medicina Regenerativa, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, NL 64710, Mexico.
| | - Jorge Eugenio Moreno-Cuevas
- Tecnologico de Monterrey, Grupo de Investigación con Enfoque Estratégico en Bioingeniería y Medicina Regenerativa, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, NL 64710, Mexico.
| |
Collapse
|
14
|
Cheng Y, Zhao W, Zhang X, Sun L, Yang H, Wang Y, Cao Y, Chu Y, Liu G. Downregulation of microRNA-1 attenuates glucose-induced apoptosis by regulating the liver X receptor α in cardiomyocytes. Exp Ther Med 2018; 16:1814-1824. [PMID: 30186406 PMCID: PMC6122156 DOI: 10.3892/etm.2018.6388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/08/2018] [Indexed: 02/07/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by abnormal myocardial structure or performance. It has been suggested that microRNA-1 (miR-1) may be abnormally expressed in the hearts of patients with diabetes. In the present study, the role of miR-1 in glucose-induced apoptosis and its underlying mechanism of action was investigated in rat cardiomyocyte H9C2 cells. Cells were transfected with anti-miR-1 or miR-1-overexpression plasmids and the expression of miR-1 and liver X receptor α (LXRα) were determined by reverse transcription-quantitative polymerase chain reaction analysis. The proportion of apoptotic cells was determined using an Annexin-V-FITC apoptosis detection kit and the mitochondrial membrane potential (ΔΨ) was measured following staining with rhodamine 123. In addition, the expression of apoptosis-associated proteins was measured by western blot analysis. The results demonstrated that expression of miR-1 was significantly increased, whereas the expression of LXRα was significantly decreased in H9C2 cells following treatment with glucose. miR-1 knockdown significantly inhibited apoptosis, increased the ΔΨ and suppressed the cleavage of poly (adenosine diphosphate-ribose) polymerase, caspase-3 and caspase-9. It also significantly downregulated the expression of Bcl-2 and upregulated the expression of Bax. In addition, it was demonstrated that miR-1 regulates LXRα; transfection with anti-miR-1 significantly increased the expression of LXRα. Furthermore, treatment of cells with the LXR agonist GW3965 inhibited apoptosis in glucose-induced anti-miR-1 cells. These results suggest a novel function of miR-1: The regulation of cardiomyocyte apoptosis via LXRα, and provide novel insights into regarding the complex mechanisms involved in DCM.
Collapse
Affiliation(s)
- Yongxia Cheng
- Department of Pathology, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Wei Zhao
- Department of Anatomy, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xiaodong Zhang
- Department of Infectious Disease, Hongqi Hospital, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Lixin Sun
- School of Adult Education, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Heran Yang
- Department of Laboratory Medicine, Hongqi Hospital, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Ying Wang
- Department of Anatomy, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yong Cao
- Department of Pathology, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yanhui Chu
- Medical Pharmacology Research Center, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Guibo Liu
- Department of Anatomy, Mudanjiang Medical College, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
15
|
Zhang X, Price NL, Fernández-Hernando C. Non-coding RNAs in lipid metabolism. Vascul Pharmacol 2018; 114:93-102. [PMID: 29929012 DOI: 10.1016/j.vph.2018.06.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/01/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD), the leading cause of death and morbidity in the Western world, begins with lipid accumulation in the arterial wall, which is the initial step in atherogenesis. Alterations in lipid metabolism result in increased risk of cardiometabolic disorders, and treatment of lipid disorders remains the most common strategy aimed at reducing the incidence of CVD. Work done over the past decade has identified numerous classes of non-coding RNA molecules including microRNAs (miRNAs) and long-non-coding RNAs (lncRNAs) as critical regulators of gene expression involved in lipid metabolism and CVD, mostly acting at post-transcriptional level. A number of miRNAs, including miR-33, miR-122 and miR-148a, have been demonstrated to play important role in controlling the risk of CVD through regulation of cholesterol homeostasis and lipoprotein metabolism. lncRNAs are recently emerging as important regulators of lipid and lipoprotein metabolism. However, much additional work will be required to fully understand the impact of lncRNAs on CVD and lipid metabolism, due to the high abundance of lncRNAs and the poor-genetic conservation between species. This article reviews the role of miRNAs and lncRNAs in lipid and lipoprotein metabolism and their potential implications for the treatment of CVD.
Collapse
Affiliation(s)
- Xinbo Zhang
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Nathan L Price
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA.
| |
Collapse
|
16
|
Li Q, Zhou L, Wang M, Wang N, Li C, Wang J, Qi L. MicroRNA-613 impedes the proliferation and invasion of glioma cells by targeting cyclin-dependent kinase 14. Biomed Pharmacother 2018; 98:636-642. [PMID: 29289838 DOI: 10.1016/j.biopha.2017.12.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence has suggested that microRNAs (miRNAs) are critical regulators of tumorigenesis. MicroRNA-613 (miR-613) has recently been reported as a novel tumor-related miRNA that plays an important role in multiple cancers. However, the expression and functional significance of miR-613 in glioma remains unclear. In this study, we aimed to investigate the biological function of miR-613 in glioma. We found that miR-613 expression was frequently downregulated in glioma tissues and cell lines compared with normal controls. Overexpression of miR-613 impeded proliferation and colony formation and induced cell cycle arrest in G0/G1 phase, and also inhibited the invasive ability of glioma cells. By contrast, miR-613 inhibition had the opposite effects. Bioinformatic analysis and dual-luciferase reporter assays showed that miR-613 directly targets the 3'-untranslated region of cyclin-dependent kinase 14 (CDK14). Real-time quantitative PCR and Western blot analysis showed that CDK14 expression is negatively regulated by miR-613. In addition, miR-613 expression was inversely correlated with CDK14 expression in clinical glioma tissues. Moreover, overexpression of miR-613 decreased the protein expression of β-catenin and inhibited the activation of Wnt signaling. Importantly, the antitumor effects of miR-613 were significantly reversed by CDK14 overexpression. Overall, our results show that miR-613 inhibits glioma cell proliferation and invasion by downregulating CDK14, suggesting that miR-613 and CDK14 may serve as potential therapeutic targets for the treatment of glioma.
Collapse
Affiliation(s)
- Qi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Lei Zhou
- Department of Ultrasonography, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chuankun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lei Qi
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
17
|
Xiong H, Yan T, Zhang W, Shi F, Jiang X, Wang X, Li S, Chen Y, Chen C, Zhu Y. miR-613 inhibits cell migration and invasion by downregulating Daam1 in triple-negative breast cancer. Cell Signal 2018; 44:33-42. [PMID: 29339084 DOI: 10.1016/j.cellsig.2018.01.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/05/2017] [Accepted: 01/10/2018] [Indexed: 11/25/2022]
Abstract
Dishevelled-associated activator of morphogenesis 1 (Daam1) is a formin protein and participates in regulating cell migration of triple-negative breast cancer (TNBC) cells. The specific miRNA targeting Daam1 and mediating cell migration and invasion remains obscure. This experiment investigated the suppressive role of miR-613 in TNBC cells. The luciferase activity of Daam1 3'-untranslated region (3'-UTR) based reporters constructed in HEK-293T and MCF-7 cells suggested that Daam1 was the target gene of miR-613. Overexpressed miR-613 reduced the protein level of Daam1, weakened RhoA activity, and retarded the cell migration, cell invasion and colony formation of TNBC cells. Overexpression of Daam1 or RhoA rescued cell migration and invasion in miR-613-overexpressed TNBC cells, but failed to reverse colony formation. MiR-613 was significantly downregulated in breast cancer tissues compared with that in adjacent normal tissues. This downregulation in TNBC tissues and lymphnode metastatic breast cancer tissues was more obvious than that in non-TNBC tissues and non-metastatic cancer tissues, respectively. MiR-613 weakens the resistance of TNBC cells against paclitaxel rather than adriamycin, cyclophosphamide, docetaxel, and kaempferol. Taken together, miR-613 is involved in cell migration and invasion of TNBC cells via targeting Daam1/RhoA signaling pathway.
Collapse
Affiliation(s)
- Huaping Xiong
- Department of Oncology, Traditional Chinese Medical Hospital of Siyang County, Siyang 223700, Jiangsu, China
| | - Ting Yan
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Weijie Zhang
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210009, Jiangsu, China
| | - Fangfang Shi
- Department of Oncology, Zhongda Hospital Southeast University, Nanjing 210009, Jiangsu, China
| | - Xuesong Jiang
- Department of Radiotherapy, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, Jiangsu, China
| | - Xiaohua Wang
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, Jiangsu, China
| | - Shoushan Li
- Department of Oncology, Traditional Chinese Medical Hospital of Siyang County, Siyang 223700, Jiangsu, China
| | - Ying Chen
- Department of Oncology, Traditional Chinese Medical Hospital of Siyang County, Siyang 223700, Jiangsu, China
| | - Cheng Chen
- Department of Radiotherapy, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, Jiangsu, China.
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
18
|
Abstract
MicroRNAs (miRNAs or miRs) are small 19-22 nucleotide long, noncoding, single-stranded, and multifunctional RNAs that regulate a diverse assortment of gene and protein functions that impact on a vast network of pathways. Lin-4, a noncoding transcript discovered in 1993 and named miRNA, initiated the exploration of research into these intriguing molecules identified in almost all organisms. miRNAs interfere with translation or posttranscriptional regulation of their target gene and regulate multiple biological actions exerted by these target genes. In cancer, they function as both oncogenes and tumor suppressor genes displaying differential activity in various cellular contexts. Although the role of miRNAs on target gene functions has been extensively investigated, less is currently known about the upstream regulatory molecules that regulate miRNAs. This chapter focuses on the factors and processes involved in miRNA regulation.
Collapse
Affiliation(s)
- Anjan K Pradhan
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
19
|
Siddiqa A, Cirillo E, Tareen SHK, Ali A, Kutmon M, Eijssen LMT, Ahmad J, Evelo CT, Coort SL. Visualizing the regulatory role of Angiopoietin-like protein 8 (ANGPTL8) in glucose and lipid metabolic pathways. Genomics 2017; 109:408-418. [PMID: 28684091 DOI: 10.1016/j.ygeno.2017.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/23/2023]
Abstract
ANGPTL8 (Angiopoietin-like protein 8) is a newly identified hormone emerging as a novel drug target for treatment of diabetes mellitus and dyslipidemia due to its unique metabolic nature. With increasing number of studies targeting the regulation of ANGPTL8, integration of their findings becomes indispensable. This study has been conducted with the aim to collect, analyze, integrate and visualize the available knowledge in the literature about ANGPTL8 and its regulation. We utilized this knowledge to construct a regulatory pathway of ANGPTL8 which is available at WikiPathways, an open source pathways database. It allows us to visualize ANGPTL8's regulation with respect to other genes/proteins in different pathways helping us to understand the complex interplay of novel hormones/genes/proteins in metabolic disorders. To the best of our knowledge, this is the first attempt to present an integrated pathway view of ANGPTL8's regulation and its associated pathways and is important resource for future omics-based studies.
Collapse
Affiliation(s)
- Amnah Siddiqa
- Research Centre for Modeling and Simulation - RCMS, National University of Sciences and Technology, Pakistan; Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Elisa Cirillo
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Samar H K Tareen
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, The Netherlands
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences - ASAB, National University of Sciences and Technology, Pakistan
| | - Martina Kutmon
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands; Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, The Netherlands
| | - Lars M T Eijssen
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Jamil Ahmad
- Research Centre for Modeling and Simulation - RCMS, National University of Sciences and Technology, Pakistan.
| | - Chris T Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands; Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, The Netherlands
| | - Susan L Coort
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| |
Collapse
|
20
|
de Luca A, Hankard R, Borys JM, Sinnett D, Marcil V, Levy E. Nutriepigenomics and malnutrition. Epigenomics 2017; 9:893-917. [DOI: 10.2217/epi-2016-0168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epigenetics is defined as the modulation of gene expression without changes to the underlying DNA sequence. Epigenetic alterations, as a consequence of in utero malnutrition, may play a role in susceptibility to develop adulthood diseases and inheritance. However, the mechanistic link between epigenetic modifications and abnormalities in nutrition remains elusive. This review provides an update on the association of suboptimal nutritional environment and the high propensity to produce adult-onset chronic illnesses with a particular focus on modifications in genome functions that occur without alterations to the DNA sequence. We will mention the drivers of the phenotype and pattern of epigenetic markers set down during the reprogramming along with novel preventative and therapeutic strategies. New knowledge of epigenetic alterations is opening a gate toward personalized medicine.
Collapse
Affiliation(s)
- Arnaud de Luca
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- INSERM, U 1069, F-37044 Tours, France
| | - Regis Hankard
- INSERM, U 1069, F-37044 Tours, France
- François Rabelais University, F-37000 Tours, France
| | | | - Daniel Sinnett
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Valérie Marcil
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- Department of Nutrition, Faculty of Medicine, University of Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Emile Levy
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- EPODE International Network, F-75017 Paris, France
- Department of Nutrition, Faculty of Medicine, University of Montréal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
21
|
Desgagné V, Bouchard L, Guérin R. microRNAs in lipoprotein and lipid metabolism: from biological function to clinical application. Clin Chem Lab Med 2017; 55:667-686. [PMID: 27987357 DOI: 10.1515/cclm-2016-0575] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are short (~22 nucleotides), non-coding, single-stranded RNA molecules that regulate the expression of target genes by partial sequence-specific base-pairing to the targeted mRNA 3'UTR, blocking its translation, and promoting its degradation or its sequestration into processing bodies. miRNAs are important regulators of several physiological processes including developmental and metabolic functions, but their concentration in circulation has also been reported to be altered in many pathological conditions such as familial hypercholesterolemia, cardiovascular diseases, obesity, type 2 diabetes, and cancers. In this review, we focus on the role of miRNAs in lipoprotein and lipid metabolism, with special attention to the well-characterized miR-33a/b, and on the huge potential of miRNAs for clinical application as biomarkers and therapeutics in the context of cardiometabolic diseases.
Collapse
Affiliation(s)
| | - Luigi Bouchard
- Département de biochimie, Université de Sherbrooke, Sherbrooke, Québec
| | - Renée Guérin
- Département de biochimie, Université de Sherbrooke, Sherbrooke, Québec
| |
Collapse
|
22
|
Peng Z, Xu T, Liao X, He H, Xu W. Effects of radiotherapy on nasopharyngeal carcinoma cell invasiveness. Tumour Biol 2016; 37:15559–15566. [PMID: 26318302 DOI: 10.1007/s13277-015-3960-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/19/2015] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy is widely used in the treatment of nasopharyngeal carcinoma (NPC), whereas its effects on the NPC growth, survival, and metastases have not been completely evaluated. Here, we compared the detected metastatic NPC tissues after radiotherapy (m-NPC) to the resected primary NPC tissues prior to radiotherapy (p-NPC). We detected higher levels of Snail2 protein, but not mRNA in m-NPC, compared to p-NPC. In vitro, a modest irradiation on NPC cells resulted in significant cell death, but increased Snail2 protein, but mRNA levels in the surviving NPC cells. Bioinformatics analyses showed that miR-613, which was significantly decreased in NPC cells after irradiation, targeted the 3'-UTR of Snail2 mRNA to inhibit its translation. Moreover, miR-613 overexpression inhibited Snail2-mediated cell invasiveness, while miR-613 depletion increased Snail2-mediated cell invasiveness in NPC cells. Finally, we detected significantly lower levels of miR-613 in m-NPC, compared to p-NPC. Together our data suggest that although radiotherapy induced NPC cell death, it may increase Snail2-mediated NPC cell invasiveness through downregulating miR-613.
Collapse
Affiliation(s)
- Zheng Peng
- Department of Radiation Oncology, Quzhou People Hospital, Zhongloudi Road, Quzhou, 324000, China,
| | | | | | | | | |
Collapse
|
23
|
Willeit P, Skroblin P, Kiechl S, Fernández-Hernando C, Mayr M. Liver microRNAs: potential mediators and biomarkers for metabolic and cardiovascular disease? Eur Heart J 2016; 37:3260-3266. [PMID: 27099265 PMCID: PMC5146692 DOI: 10.1093/eurheartj/ehw146] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/18/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023] Open
Abstract
Recent discoveries have revealed that microRNAs (miRNAs) play a key role in the regulation of gene expression. In this review, we summarize the rapidly evolving knowledge about liver miRNAs (including miR-33, -33*, miR-223, -30c, -144, -148a, -24, -29, and -122) and their link to hepatic lipid metabolism, atherosclerosis and cardiovascular disease, non-alcoholic fatty liver disease, metabolic syndrome, and type-2 diabetes. With regards to its biomarker potential, the main focus is on miR-122 as the most abundant liver miRNA with exquisite tissue specificity. MiR-122 has been proposed to play a central role in the maintenance of lipid and glucose homeostasis and is consistently detectable in serum and plasma. This miRNA may therefore constitute a novel biomarker for cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Peter Willeit
- King's British Heart Foundation Centre, King's College London, London, UK
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Philipp Skroblin
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK
| |
Collapse
|
24
|
Li MP, Hu YD, Hu XL, Zhang YJ, Yang YL, Jiang C, Tang J, Chen XP. MiRNAs and miRNA Polymorphisms Modify Drug Response. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111096. [PMID: 27834829 PMCID: PMC5129306 DOI: 10.3390/ijerph13111096] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022]
Abstract
Differences in expression of drug response-related genes contribute to inter-individual variation in drugs’ biological effects. MicroRNAs (miRNAs) are small noncoding RNAs emerging as new players in epigenetic regulation of gene expression at post-transcriptional level. MiRNAs regulate the expression of genes involved in drug metabolism, drug transportation, drug targets and downstream signal molecules directly or indirectly. MiRNA polymorphisms, the genetic variations affecting miRNA expression and/or miRNA-mRNA interaction, provide a new insight into the understanding of inter-individual difference in drug response. Here, we provide an overview of the recent progress in miRNAs mediated regulation of biotransformation enzymes, drug transporters, and nuclear receptors. We also describe the implications of miRNA polymorphisms in cancer chemotherapy response.
Collapse
Affiliation(s)
- Mu-Peng Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Yao-Dong Hu
- Department of Cardiology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China.
| | - Xiao-Lei Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Yan-Jiao Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Yong-Long Yang
- Haikou People's Hospital and Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou 570311, China.
| | - Chun Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| |
Collapse
|
25
|
MicroRNAs as key mediators of hepatic detoxification. Toxicology 2016; 368-369:80-90. [PMID: 27501766 DOI: 10.1016/j.tox.2016.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a class of short noncoding RNAs that modulate gene expression at both transcriptional and post-transcriptional levels. Many studies have extensively revealed the significance of miRNAs in mediating liver development and diseases. However, their role in hepatic detoxification processes has been explored only recently. In this review, we summarized the up-to-date knowledge about miRNA dependent regulation of enzymes involved in all three phases of the drugs and xenobiotics detoxification process. We also discussed the role of miRNA in regulating some upstream nuclear receptors involving gene expression of enzymes for detoxification process in liver. The toxicological significance of miRNAs in liver diseases and future research perspectives are finally presented.
Collapse
|
26
|
Yoon H, Flores LF, Kim J. MicroRNAs in brain cholesterol metabolism and their implications for Alzheimer's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2139-2147. [PMID: 27155217 DOI: 10.1016/j.bbalip.2016.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 01/01/2023]
Abstract
Cholesterol is important for various neuronal functions in the brain. Brain has elaborate regulatory mechanisms to control cholesterol metabolism that are distinct from the mechanisms in periphery. Interestingly, dysregulation of the cholesterol metabolism is strongly associated with a number of neurodegenerative diseases. MicroRNAs are short non-coding RNAs acting as post-transcriptional gene regulators. Recently, several microRNAs are demonstrated to be involved in regulating cholesterol metabolism in the brain. This article reviews the regulatory mechanisms of cellular cholesterol homeostasis in the brain. In addition, we discuss the role of microRNAs in brain cholesterol metabolism and their potential implications for the treatment of Alzheimer's disease. This article is part of a special issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Collapse
Affiliation(s)
- Hyejin Yoon
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, FL, United States; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Luis F Flores
- Biochemistry and Molecular Biology Graduate Program, Mayo Graduate School, Jacksonville, FL, United States
| | - Jungsu Kim
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, FL, United States; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States.
| |
Collapse
|
27
|
Yu AM, Tian Y, Tu MJ, Ho PY, Jilek JL. MicroRNA Pharmacoepigenetics: Posttranscriptional Regulation Mechanisms behind Variable Drug Disposition and Strategy to Develop More Effective Therapy. Drug Metab Dispos 2016; 44:308-19. [PMID: 26566807 PMCID: PMC4767381 DOI: 10.1124/dmd.115.067470] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/12/2015] [Indexed: 12/11/2022] Open
Abstract
Knowledge of drug absorption, distribution, metabolism, and excretion (ADME) or pharmacokinetics properties is essential for drug development and safe use of medicine. Varied or altered ADME may lead to a loss of efficacy or adverse drug effects. Understanding the causes of variations in drug disposition and response has proven critical for the practice of personalized or precision medicine. The rise of noncoding microRNA (miRNA) pharmacoepigenetics and pharmacoepigenomics has come with accumulating evidence supporting the role of miRNAs in the modulation of ADME gene expression and then drug disposition and response. In this article, we review the advances in miRNA pharmacoepigenetics including the mechanistic actions of miRNAs in the modulation of Phase I and II drug-metabolizing enzymes, efflux and uptake transporters, and xenobiotic receptors or transcription factors after briefly introducing the characteristics of miRNA-mediated posttranscriptional gene regulation. Consequently, miRNAs may have significant influence on drug disposition and response. Therefore, research on miRNA pharmacoepigenetics shall not only improve mechanistic understanding of variations in pharmacotherapy but also provide novel insights into developing more effective therapeutic strategies.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Sacramento, California
| | - Ye Tian
- Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Sacramento, California
| | - Mei-Juan Tu
- Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Sacramento, California
| | - Pui Yan Ho
- Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Sacramento, California
| | - Joseph L Jilek
- Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
28
|
miRNA and cholesterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2041-2046. [PMID: 26778752 DOI: 10.1016/j.bbalip.2016.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/23/2022]
Abstract
MicroRNAs (miRNAs) have recently emerged as a novel class of epigenetic regulators of gene expression. They are systemically involved in the control of lipid metabolism through a complex interactive mechanism that involves gene regulatory networks. Hence, they can contribute to defective lipid metabolism and metabolic diseases. Here, we review recent advances in the roles of lipid-sensing transcription factors in regulating miRNA gene networks, as well as miRNA expression and function in the regulation of cholesterol metabolism. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Collapse
|
29
|
MiR-613 induces cell cycle arrest by targeting CDK4 in non-small cell lung cancer. Cell Oncol (Dordr) 2016; 39:139-47. [DOI: 10.1007/s13402-015-0262-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2015] [Indexed: 10/22/2022] Open
|
30
|
Fu X, Cui Y, Yang S, Xu Y, Zhang Z. MicroRNA-613 inhibited ovarian cancer cell proliferation and invasion by regulating KRAS. Tumour Biol 2015; 37:6477-83. [PMID: 26631045 DOI: 10.1007/s13277-015-4507-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) play several important roles in carcinogenesis, and the dysregulation of miRNAs is associated with cancer progression. Little is known about the role of miR-613 in ovarian cancer. In the present study, we demonstrate that miR-613 expression is downregulated in human ovarian cancer cell lines and tissues. Additionally, miR-613 overexpression suppressed ovarian cancer cell proliferation, colony formation, and invasion. Furthermore, KRAS was identified as a target of miR-613. Reintroducing KRAS rescued the inhibitory effects exerted by miR-613 on ovarian cancer cell proliferation and invasion. Taken together, our findings suggest that miR-613 functions as a candidate tumor suppressor miRNA in ovarian cancer by directly targeting KRAS. To the best of our knowledge, this is the first study to show that miR-613 affects the proliferation and invasion of ovarian cancer.
Collapse
Affiliation(s)
- Xin Fu
- Department of Gynecology Cancer, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| | - Yanfen Cui
- Department of Gynecology Cancer, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Shaobin Yang
- Department of Gynecology Cancer, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yue Xu
- Department of Gynecology Cancer, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Zicheng Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China.
| |
Collapse
|
31
|
Abente EJ, Subramanian M, Ramachandran V, Najafi-Shoushtari SH. MicroRNAs in obesity-associated disorders. Arch Biochem Biophys 2015; 589:108-19. [PMID: 26416722 DOI: 10.1016/j.abb.2015.09.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 02/08/2023]
Abstract
The emergence of a worldwide obesity epidemic has dramatically increased the prevalence of insulin resistance and metabolic syndrome, predisposing individuals to a greater risk for the development of non-alcoholic fatty liver disease, type II diabetes and atherosclerotic cardiovascular diseases. Current available pharmacological interventions combined with diet and exercise-based managements are still poorly effective for weight management, likely in part due to an incomplete understanding of regulatory mechanisms and pathways contributing to the systemic metabolic abnormalities under disturbed energy homeostasis. MicroRNAs, small non-coding RNAs that regulate posttranscriptional gene expression, have been increasingly described to influence shifts in metabolic pathways under various obesity-related disease settings. Here we review recent discoveries of the mechanistic role that microRNAs play in regulating metabolic functions in liver and adipose tissues involved in obesity associated disorders, and briefly discusses the potential candidates that are being pursued as viable therapeutic targets.
Collapse
Affiliation(s)
- Eugenio J Abente
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York 10021, NY, USA; Weill Cornell Medical College-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Murugan Subramanian
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York 10021, NY, USA; Weill Cornell Medical College-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Vimal Ramachandran
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York 10021, NY, USA; Weill Cornell Medical College-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - S Hani Najafi-Shoushtari
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York 10021, NY, USA; Weill Cornell Medical College-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
32
|
Lang-Ouellette D, Richard TG, Morin P. Mammalian hibernation and regulation of lipid metabolism: a focus on non-coding RNAs. BIOCHEMISTRY (MOSCOW) 2015; 79:1161-71. [PMID: 25540001 DOI: 10.1134/s0006297914110030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Numerous species will confront severe environmental conditions by undergoing significant metabolic rate reduction. Mammalian hibernation is one such natural model of hypometabolism. Hibernators experience considerable physiological, metabolic, and molecular changes to survive the harsh challenges associated with winter. Whether as fuel source or as key signaling molecules, lipids are of primary importance for a successful bout of hibernation and their careful regulation throughout this process is essential. In recent years, a plethora of non-coding RNAs has emerged as potential regulators of targets implicated in lipid metabolism in diverse models. In this review, we introduce the general characteristics associated with mammalian hibernation, present the importance of lipid metabolism prior to and during hibernation, as well as discuss the potential relevance of non-coding RNAs such as miRNAs and lncRNAs during this process.
Collapse
Affiliation(s)
- D Lang-Ouellette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, E1A 3E9, Canada.
| | | | | |
Collapse
|
33
|
Molecular mechanisms of fatty liver in obesity. Front Med 2015; 9:275-87. [PMID: 26290284 DOI: 10.1007/s11684-015-0410-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 05/25/2015] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) covers a spectrum of liver disorders ranging from simple steatosis to advanced pathologies, including nonalcoholic steatohepatitis and cirrhosis. NAFLD significantly contributes to morbidity and mortality in developed societies. Insulin resistance associated with central obesity is the major cause of hepatic steatosis, which is characterized by excessive accumulation of triglyceride-rich lipid droplets in the liver. Accumulating evidence supports that dysregulation of adipose lipolysis and liver de novo lipogenesis (DNL) plays a key role in driving hepatic steatosis. In this work, we reviewed the molecular mechanisms responsible for enhanced adipose lipolysis and increased hepatic DNL that lead to hepatic lipid accumulation in the context of obesity. Delineation of these mechanisms holds promise for developing novel avenues against NAFLD.
Collapse
|
34
|
DiMarco DM, Fernandez ML. The Regulation of Reverse Cholesterol Transport and Cellular Cholesterol Homeostasis by MicroRNAs. BIOLOGY 2015; 4:494-511. [PMID: 26226008 PMCID: PMC4588146 DOI: 10.3390/biology4030494] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that have the ability to post-transcriptionally regulate gene expression. Hundreds of miRNAs have been identified in humans and they are involved in the regulation of almost every process, including cholesterol transport, metabolism, and maintenance of cholesterol homeostasis. Because of their small size and their ability to very specifically regulate gene expression, miRNAs are attractive targets for the regulation of dyslipidemias and other lipid-related disorders. However, the complex interactions between miRNAs, transcription factors, and gene expression raise great potential for side effects as a result of miRNA overexpression or inhibition. Many dietary components can also target specific miRNAs, altering the expression of downstream genes. Therefore, much more research is necessary to fully understand the role(s) of each miRNA in the body and how they may be impacted by diet and health. The present review aims to summarize the known roles of miRNAs in the regulation of reverse cholesterol transport and the maintenance of cholesterol homeostasis, as well as the potential clinical consequences of their manipulation.
Collapse
Affiliation(s)
- Diana M DiMarco
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
35
|
Lu YL, Jing W, Feng LS, Zhang L, Xu JF, You TJ, Zhao J. Effects of hypoxic exercise training on microRNA expression and lipid metabolism in obese rat livers. J Zhejiang Univ Sci B 2015; 15:820-9. [PMID: 25183036 DOI: 10.1631/jzus.b1400052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To investigate the effects of hypoxic exercise training on microRNA (miRNA) expression and the role of miRNA expression in regulating lipid metabolism, 20 dietary-induced obese SD rats were divided into a normoxic sedentary group (N, n=10) and a hypoxic exercise training group (H, n=10). After four weeks, measurements were taken of body weight, body length, fat mass, serum lipid concentration, miRNAs differentially expressed in rat liver, and gene and protein expression levels of peroxisome proliferator activated receptor α (PPARα), fatty acid synthetase (FAS), and carnitine palmitoyl transferase 1A (CPT1A) in rat liver. Body weight, Lee's index, fat mass, fat/weight ratio, and serum levels of total cholesterol (TC) and high density lipoprotein cholesterol (HDL-C) were all significantly lower in the H group than in the N group (P<0.01). Six miRNAs expressed significantly differently in the liver (P<0.05). Specifically, expression levels of miR-378b were significantly lower in the H group than in the N group (P<0.05). Compared with the normoxic sedentary group, hypoxic exercise training resulted in a lower ratio of FAS mRNA to CPT1A mRNA (P<0.05), as well as lower CPT1A protein levels (P<0.01), while a higher ratio of FAS to CPT1A protein levels (P<0.01) was observed. In conclusion, hypoxic training may elevate the resistance of high fat diet induced obesity in rats by reducing the expression of miR-378b, and decrease the fatty acid mitochondrial oxidation in obese rat livers by decreasing the protein expression of CPT1A and increasing the protein expression ratio of FAS/CPT1A.
Collapse
Affiliation(s)
- Ying-li Lu
- Biology Center, China Institute of Sport Science, Beijing 100061, China; Sport Science Research Center of Shandong Province, Jinan 250102, China; Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA; School of Life Sciences, Shandong University, Jinan 250100, China
| | | | | | | | | | | | | |
Collapse
|
36
|
He Y, Chevillet JR, Liu G, Kim TK, Wang K. The effects of microRNA on the absorption, distribution, metabolism and excretion of drugs. Br J Pharmacol 2015; 172:2733-47. [PMID: 25296724 PMCID: PMC4439871 DOI: 10.1111/bph.12968] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 12/17/2022] Open
Abstract
The importance of genetic factors (e.g. sequence variation) in the absorption, distribution, metabolism, excretion (ADME) and overall efficacy of therapeutic agents is well established. Our ability to identify, interpret and utilize these factors is the subject of much clinical investigation and therapeutic development. However, drug ADME and efficacy are also heavily influenced by epigenetic factors such as DNA/histone methylation and non-coding RNAs [especially microRNAs (miRNAs)]. Results from studies using tools, such as in silico miRNA target prediction, in vitro functional assays, nucleic acid profiling/sequencing and high-throughput proteomics, are rapidly expanding our knowledge of these factors and their effects on drug metabolism. Although these studies reveal a complex regulation of drug ADME, an increased understanding of the molecular interplay between the genome, epigenome and transcriptome has the potential to provide practically useful strategies to facilitate drug development, optimize therapeutic efficacy, circumvent adverse effects, yield novel diagnostics and ultimately become an integral component of personalized medicine.
Collapse
Affiliation(s)
- Y He
- Institute of Medical Systems Biology, Guangdong Medical CollegeDongguan, Guangdong, China
| | | | - G Liu
- Department of Chemistry and Biochemistry, North Dakota State UniversityFargo, ND, USA
| | - T K Kim
- Institute for Systems BiologySeattle, WA, USA
| | - K Wang
- Institute for Systems BiologySeattle, WA, USA
| |
Collapse
|
37
|
Novák J, Olejníčková V, Tkáčová N, Santulli G. Mechanistic Role of MicroRNAs in Coupling Lipid Metabolism and Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 887:79-100. [PMID: 26662987 PMCID: PMC4871243 DOI: 10.1007/978-3-319-22380-3_5] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs, miRs) represent a group of powerful and versatile posttranscriptional regulators of gene expression being involved in the fine control of a plethora of physiological and pathological processes. Besides their well-established crucial roles in the regulation of cell cycle, embryogenesis or tumorigenesis, these tiny molecules have also been shown to participate in the regulation of lipid metabolism. In particular, miRs orchestrate cholesterol and fatty acids synthesis, transport, and degradation and low-density and high-density lipoprotein (LDL and HDL) formation. It is thus not surprising that they have also been reported to affect the development and progression of several lipid metabolism-related disorders including liver steatosis and atherosclerosis. Mounting evidence suggests that miRs might represent important "posttranscriptional hubs" of lipid metabolism, which means that one miR usually targets 3'-untranslated regions of various mRNAs that are involved in different steps of one precise metabolic/signaling pathway, e.g., one miR targets mRNAs of enzymes important for cholesterol synthesis, degradation, and transport. Therefore, changes in the levels of one key miR affect various steps of one pathway, which is thereby promoted or inhibited. This makes miRs potent future diagnostic and even therapeutic tools for personalized medicine. Within this chapter, the most prominent microRNAs involved in lipid metabolism, e.g., miR-27a/b, miR-33/33*, miR-122, miR-144, or miR-223, and their intracellular and extracellular functions will be extensively discussed, in particular focusing on their mechanistic role in the pathophysiology of atherosclerosis. Special emphasis will be given on miR-122, the first microRNA currently in clinical trials for the treatment of hepatitis C and on miR-223, the most abundant miR in lipoprotein particles.
Collapse
Affiliation(s)
- Jan Novák
- 2nd Department of Internal Medicine, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A18, Brno, 62500, Czech Republic.
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A20, Brno, 62500, Czech Republic.
| | - Veronika Olejníčková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A20, Brno, 62500, Czech Republic
| | - Nikola Tkáčová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A20, Brno, 62500, Czech Republic
| | - Gaetano Santulli
- Columbia University Medical Center, New York Presbyterian Hospital —Manhattan, New York, NY, USA; “Federico II” University Hospital, Naples, Italy
| |
Collapse
|
38
|
Hao B, Chen X, Dai D, Zou C, Wu X, Chen J. Bioinformatic analysis of microRNA expression in Parkinson's disease. Mol Med Rep 2014; 11:1079-84. [PMID: 25371140 DOI: 10.3892/mmr.2014.2837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 10/01/2014] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) is a type of movement disorder caused by loss of dopamine‑producing neurons in the midbrain. In order to identify the synergistic microRNA (miRNA) pattern in PD, miRNA and mRNA double expression profiles of PD were downloaded. Differentially expressed miRNA and mRNA were identified [P<0.01, following false discovery rate (FDR) correction]. A cumulative hypergeometric distribution test was then performed to identify synergistic miRNAs (P<0.01, following FDR correction). Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations were performed to analyze the miRNA regulatory target genes. Subsequently, a synergistic miRNA network was constructed and miRNAs exhibiting a high degree were identified. In total, 200 differentially expressed miRNA and 2,966 differentially expressed mRNA were identified. In addition, 1,502 synergistic miRNA interactions were identified, and miRNAs regulated 304 target genes in total. The GO and KEGG analysis demonstrated that these target genes were enriched in biosynthetic and cellular biosynthetic processes, the assembly of cellular components in morphogenesis, mitogen‑activated protein kinase signaling, myometrial relaxation and contraction pathways as well as calcium regulation. The miRNA network demonstrated that miR‑627, miR‑634, miR‑514, miR‑563 and miR‑613 had a high degree. miRNA with a high degree may be associated with the pathogenesis of PD and, therefore, may assist in the diagnosis and therapy of PD.
Collapse
Affiliation(s)
- Bin Hao
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xin Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Dongwei Dai
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Chao Zou
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xi Wu
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jianchun Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
39
|
Ou Z, Jiang M, Hu B, Huang Y, Xu M, Ren S, Li S, Liu S, Xie W, Huang M. Transcriptional regulation of human hydroxysteroid sulfotransferase SULT2A1 by LXRα. Drug Metab Dispos 2014; 42:1684-9. [PMID: 25028566 PMCID: PMC4164974 DOI: 10.1124/dmd.114.058479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/15/2014] [Indexed: 11/22/2022] Open
Abstract
The nuclear receptor liver X receptor (LXR) plays an important role in the metabolism and homeostasis of cholesterol, lipids, bile acids, and steroid hormones. In this study, we uncovered a function of LXRα (NR1H3) in regulating the human hydroxysteroid sulfotransferase SULT2A1, a phase II conjugating enzyme known to sulfonate bile acids, hydroxysteroid dehydroepiandrosterone, and related androgens. We showed that activation of LXR induced the expression of SULT2A1 at mRNA, protein, and enzymatic levels. A combination of promoter reporter gene and chromatin immunoprecipitation assays showed that LXRα transactivated the SULT2A1 gene promoter through its specific binding to the -500- to -258-base pair region of the SULT2A1 gene promoter. LXR small interfering RNA knockdown experiments suggested that LXRα, but not LXRβ, played a dominant role in regulating SULT2A1. In primary human hepatocytes, we found a positive correlation between the expression of SULT2A1 and LXRα, which further supported the regulation of SULT2A1 by LXRα. In summary, our results established human SULT2A1 as a novel LXRα target gene. The expression of LXRα is a potential predictor for the expression of SULT2A1 in human liver.
Collapse
Affiliation(s)
- Zhimin Ou
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| | - Mengxi Jiang
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| | - Bingfang Hu
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| | - Yixian Huang
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| | - Meishu Xu
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| | - Songrong Ren
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| | - Song Li
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| | - Suhuan Liu
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| | - Wen Xie
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| | - Min Huang
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China (Z.O., B.H., M.H.); Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Z.O., M.J., B.H., Y.H., M.X., S.R., So.L., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China (Z.O., Su.L.)
| |
Collapse
|
40
|
Price NL, Ramírez CM, Fernández-Hernando C. Relevance of microRNA in metabolic diseases. Crit Rev Clin Lab Sci 2014; 51:305-20. [PMID: 25034902 DOI: 10.3109/10408363.2014.937522] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome is a complex metabolic condition caused by abnormal adipose deposition and function, dyslipidemia and hyperglycemia, which affects >47 million American adults and ∼1 million children. Individuals with the metabolic syndrome have essentially twice the risk for developing cardiovascular disease (CVD) and Type 2 diabetes mellitus (T2D), compared to those without the syndrome. In the search for improved and novel therapeutic strategies, microRNAs (miRNA) have been shown to be interesting targets due to their regulatory role on gene networks controlling different crucial aspects of metabolism, including lipid and glucose homeostasis. More recently, the discovery of circulating miRNAs suggest that miRNAs may be involved in facilitating metabolic crosstalk between organs as well as serving as novel biomarkers of diseases, including T2D and atherosclerosis. These findings highlight the importance of miRNAs for regulating pathways that underlie metabolic diseases, and their potential as therapeutic targets for the development of novel treatments.
Collapse
|
41
|
Goedeke L, Fernández-Hernando C. MicroRNAs: a connection between cholesterol metabolism and neurodegeneration. Neurobiol Dis 2014; 72 Pt A:48-53. [PMID: 24907491 DOI: 10.1016/j.nbd.2014.05.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/13/2014] [Accepted: 05/27/2014] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of cholesterol metabolism in the brain has been associated with many neurodegenerative disorders such as Alzheimer's disease, Niemann-Pick type C disease, Smith-Lemli-Opitz syndrome, Hungtington's disease and Parkinson's disease. Specifically, genes involved in cholesterol biosynthesis (24-dehydrocholesterol reductase, DHCR24) and cholesterol efflux (ATP-binding cassete transporter, ABCA1, and apolipoprotein E, APOE) have been associated with developing Alzheimer's disease. Indeed, APOE was the first gene variation found to increase the risk of Alzheimer's disease and remains the risk gene with the greatest known impact. Mutations in another cholesterol biosynthetic gene, 7-dehydrocholesterol reductase (DHCR7), cause Smith-Lemli-Opitz syndrome and impairment in cellular cholesterol trafficking caused by mutations in the NPC1 protein results in Niemann-Pick type C disease. Taken together, these findings provide strong evidence that cholesterol metabolism needs to be controlled at very tight levels in the brain. Recent studies have implicated microRNAs (miRNAs) as novel regulators of cholesterol metabolism in several tissues. These small non-coding RNAs regulate gene expression at the post-transcriptional level by either suppressing translation or inducing mRNA degradation. This review article focuses on how cholesterol homeostasis is regulated by miRNAs and their potential implication in several neurodegenerative disorders, such as Alzheimer's disease. Finally, we also discuss how antagonizing miRNA expression could be a potential therapy for treating cholesterol related diseases.
Collapse
Affiliation(s)
- Leigh Goedeke
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
42
|
Canfrán-Duque A, Ramírez CM, Goedeke L, Lin CS, Fernández-Hernando C. microRNAs and HDL life cycle. Cardiovasc Res 2014; 103:414-22. [PMID: 24895349 DOI: 10.1093/cvr/cvu140] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
miRNAs have emerged as important regulators of lipoprotein metabolism. Work over the past few years has demonstrated that miRNAs control the expression of most of the genes associated with high-density lipoprotein (HDL) metabolism, including the ATP transporters, ABCA1 and ABCG1, and the scavenger receptor SRB1. These findings strongly suggest that miRNAs regulate HDL biogenesis, cellular cholesterol efflux, and HDL cholesterol (HDL-C) uptake in the liver, thereby controlling all of the steps of reverse cholesterol transport. Recent work in animal models has demonstrated that manipulating miRNA levels including miR-33 can increase circulating HDL-C. Importantly, antagonizing miR-33 in vivo enhances the regression and reduces the progression of atherosclerosis. These findings support the idea of developing miRNA inhibitors for the treatment of dyslipidaemia and related cardiovascular disorders such as atherosclerosis. This review article focuses on how HDL metabolism is regulated by miRNAs and how antagonizing miRNA expression could be a potential therapy for treating cardiometabolic diseases.
Collapse
Affiliation(s)
- Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, Amistad Research Building, Room 337C, New Haven 06510, CT, USA Integrative Cell Signalling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Cristina M Ramírez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, Amistad Research Building, Room 337C, New Haven 06510, CT, USA Integrative Cell Signalling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Leigh Goedeke
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, Amistad Research Building, Room 337C, New Haven 06510, CT, USA Integrative Cell Signalling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chen-Kung Rd., Neihu 114, Taipei, Taiwan
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, Amistad Research Building, Room 337C, New Haven 06510, CT, USA Integrative Cell Signalling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
43
|
Peng Y, Yu S, Li H, Xiang H, Peng J, Jiang S. MicroRNAs: emerging roles in adipogenesis and obesity. Cell Signal 2014; 26:1888-96. [PMID: 24844591 DOI: 10.1016/j.cellsig.2014.05.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 12/31/2022]
Abstract
Obesity is a serious health problem worldwide associated with an increased risk of life-threatening diseases such as type 2 diabetes, atherosclerosis, and certain types of cancer. Understanding the molecular basis of adipogenesis and fat cell development in obesity is essential to identify new biomarkers and therapeutic targets for the development of anti-obesity drugs. Recent computational and experimental studies have shown that microRNAs (miRNAs) appear to play regulatory roles in many biological processes associated with obesity, including adipocyte differentiation and lipid metabolism. In addition, many miRNAs are dysregulated in metabolic tissues from obese animals and humans, which potentially contributes to the pathogenesis of obesity-associated complications. The discovery of circulating miRNAs has highlighted their potential as both endocrine signaling molecules and disease markers. The potential of miRNA based therapeutics targeting obesity is highlighted as well as recommendations for future research which could lead to a breakthrough in the treatment of obesity.
Collapse
Affiliation(s)
- Yongdong Peng
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shulong Yu
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Huanan Li
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Hong Xiang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - Siwen Jiang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
44
|
Boguslawska J, Piekielko-Witkowska A, Wojcicka A, Kedzierska H, Poplawski P, Nauman A. Regulatory feedback loop between T3 and microRNAs in renal cancer. Mol Cell Endocrinol 2014; 384:61-70. [PMID: 24440748 DOI: 10.1016/j.mce.2014.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 01/23/2023]
Abstract
microRNAs, short non-coding RNAs, influence key physiological processes, including hormonal regulation, by affecting the expression of genes. In this study we hypothesised that the expression of microRNAs targeting thyroid hormone pathway genes may be in turn regulated by thyroid hormone signalling. It is known that the expression of DIO1, a gene contributing to triiodothyronine (T3) signalling, is regulated by miR-224. Thus, we analysed mutual regulation between triiodothyronine pathway and miR-224/miR-452/GABRE cluster. Firstly, we found that miR-452 directly regulates the expression of thyroid hormone receptor TRβ1 in renal cancer cells. In turn, the expression of miR-224/452/GABRE cluster and other microRNAs targeting TRβ1 was influenced by T3 treatment and/or TR silencing. miR-452 expression correlated with intracellular T3 concentrations in renal tumours. In conclusion, we propose a new mechanism of feedback regulation, by which in renal cancer microRNAs regulate the expression of T3 pathway genes, while T3 in turn regulates expression of microRNAs.
Collapse
MESH Headings
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Feedback, Physiological
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Luciferases/genetics
- Luciferases/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Signal Transduction
- Thyroid Hormone Receptors beta/antagonists & inhibitors
- Thyroid Hormone Receptors beta/genetics
- Thyroid Hormone Receptors beta/metabolism
- Triiodothyronine/biosynthesis
- Triiodothyronine/genetics
- Triiodothyronine/pharmacology
Collapse
Affiliation(s)
- J Boguslawska
- Department of Biochemistry and Molecular Biology, The Centre of Postgraduate Medical Education, Warsaw, Poland
| | - A Piekielko-Witkowska
- Department of Biochemistry and Molecular Biology, The Centre of Postgraduate Medical Education, Warsaw, Poland
| | - A Wojcicka
- Department of Biochemistry and Molecular Biology, The Centre of Postgraduate Medical Education, Warsaw, Poland
| | - H Kedzierska
- Department of Biochemistry and Molecular Biology, The Centre of Postgraduate Medical Education, Warsaw, Poland
| | - P Poplawski
- Department of Biochemistry and Molecular Biology, The Centre of Postgraduate Medical Education, Warsaw, Poland
| | - A Nauman
- Department of Biochemistry and Molecular Biology, The Centre of Postgraduate Medical Education, Warsaw, Poland.
| |
Collapse
|
45
|
Gundert-Remy U, Bernauer U, Blömeke B, Döring B, Fabian E, Goebel C, Hessel S, Jäckh C, Lampen A, Oesch F, Petzinger E, Völkel W, Roos PH. Extrahepatic metabolism at the body's internal–external interfaces. Drug Metab Rev 2014; 46:291-324. [DOI: 10.3109/03602532.2014.900565] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Liu H, Wang L, Lv M, Pei R, Li P, Pei Z, Wang Y, Su W, Xie XQ. AlzPlatform: an Alzheimer's disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. J Chem Inf Model 2014; 54:1050-60. [PMID: 24597646 PMCID: PMC4010297 DOI: 10.1021/ci500004h] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Alzheimer’s
disease (AD) is one of the most complicated progressive neurodegeneration
diseases that involve many genes, proteins, and their complex interactions.
No effective medicines or treatments are available yet to stop or
reverse the progression of the disease due to its polygenic nature.
To facilitate discovery of new AD drugs and better understand the
AD neurosignaling pathways involved, we have constructed an Alzheimer’s
disease domain-specific chemogenomics knowledgebase, AlzPlatform (www.cbligand.org/AD/) with cloud computing and sourcing
functions. AlzPlatform is implemented with powerful computational
algorithms, including our established TargetHunter, HTDocking, and
BBB Predictor for target identification and polypharmacology analysis
for AD research. The platform has assembled various AD-related chemogenomics
data records, including 928 genes and 320 proteins related to AD,
194 AD drugs approved or in clinical trials, and 405 188 chemicals
associated with 1 023 137 records of reported bioactivities
from 38 284 corresponding bioassays and 10 050 references.
Furthermore, we have demonstrated the application of the AlzPlatform
in three case studies for identification of multitargets and polypharmacology
analysis of FDA-approved drugs and also for screening and prediction
of new AD active small chemical molecules and potential novel AD drug
targets by our established TargetHunter and/or HTDocking programs.
The predictions were confirmed by reported bioactivity data and our
in vitro experimental validation. Overall, AlzPlatform will enrich
our knowledge for AD target identification, drug discovery, and polypharmacology
analyses and, also, facilitate the chemogenomics data sharing and
information exchange/communications in aid of new anti-AD drug discovery
and development.
Collapse
Affiliation(s)
- Haibin Liu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; Drug Discovery Institute; University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Vinod M, Chennamsetty I, Colin S, Belloy L, De Paoli F, Schaider H, Graier WF, Frank S, Kratky D, Staels B, Chinetti-Gbaguidi G, Kostner GM. miR-206 controls LXRα expression and promotes LXR-mediated cholesterol efflux in macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:827-35. [PMID: 24603323 PMCID: PMC3996726 DOI: 10.1016/j.bbalip.2014.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/13/2014] [Accepted: 02/24/2014] [Indexed: 01/16/2023]
Abstract
Liver X receptors (LXRα and LXRβ) are key transcription factors in cholesterol metabolism that regulate cholesterol biosynthesis/efflux and bile acid metabolism/excretion in the liver and numerous organs. In macrophages, LXR signaling modulates cholesterol handling and the inflammatory response, pathways involved in atherosclerosis. Since regulatory pathways of LXR transcription control are well understood, in the present study we aimed at identifying post-transcriptional regulators of LXR activity. MicroRNAs (miRs) are such post-transcriptional regulators of genes that in the canonical pathway mediate mRNA inactivation. In silico analysis identified miR-206 as a putative regulator of LXRα but not LXRβ. Indeed, as recently shown, we found that miR-206 represses LXRα activity and expression of LXRα and its target genes in hepatic cells. Interestingly, miR-206 regulates LXRα differently in macrophages. Stably overexpressing miR-206 in THP-1 human macrophages revealed an up-regulation and miR-206 knockdown led to a down-regulation of LXRα and its target genes. In support of these results, bone marrow-derived macrophages (BMDMs) from miR-206 KO mice also exhibited lower expression of LXRα target genes. The physiological relevance of these findings was proven by gain- and loss-of-function of miR-206; overexpression of miR-206 enhanced cholesterol efflux in human macrophages and knocking out miR-206 decreased cholesterol efflux from MPMs. Moreover, we show that miR-206 expression in macrophages is repressed by LXRα activation, while oxidized LDL and inflammatory stimuli profoundly induced miR-206 expression. We therefore propose a feed-back loop between miR-206 and LXRα that might be part of an LXR auto-regulatory mechanism to fine tune LXR activity. Functional differences of miR-206 in the liver and macrophages In the liver, miR-206 suppresses LXRα expression and signaling. In macrophages, miR-206 increases LXRα abundance and promotes cholesterol efflux. In macrophages, LXRα activation represses miR-206 expression. In macrophages, pro-inflammatory stimuli increase miR-206 expression.
Collapse
Affiliation(s)
- Manjula Vinod
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | | | - Sophie Colin
- Université Lille 2, F-59000 Lille, France; Inserm, U1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59019 Lille, France; European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Loic Belloy
- Université Lille 2, F-59000 Lille, France; Inserm, U1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59019 Lille, France; European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Federica De Paoli
- Université Lille 2, F-59000 Lille, France; Inserm, U1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59019 Lille, France; European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Helmut Schaider
- Translation Research Institute, University of Queensland, Brisbane, Australia
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Saša Frank
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Bart Staels
- Université Lille 2, F-59000 Lille, France; Inserm, U1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59019 Lille, France; European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Giulia Chinetti-Gbaguidi
- Université Lille 2, F-59000 Lille, France; Inserm, U1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59019 Lille, France; European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Gerhard M Kostner
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| |
Collapse
|
48
|
Mennigen JA, Martyniuk CJ, Seiliez I, Panserat S, Skiba-Cassy S. Metabolic consequences of microRNA-122 inhibition in rainbow trout, Oncorhynchus mykiss. BMC Genomics 2014; 15:70. [PMID: 24467738 PMCID: PMC3914182 DOI: 10.1186/1471-2164-15-70] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 01/22/2014] [Indexed: 01/31/2023] Open
Abstract
Background MicroRNAs (miRNAs) are small regulatory molecules which post-transcriptionally regulate mRNA stability and translation. Several microRNAs have received attention due to their role as key metabolic regulators. In spite of the high evolutionary conservation of several miRNAs, the role of miRNAs in lower taxa of vertebrates has not been studied with regard to metabolism. The liver-specific and highly abundant miRNA-122 is one of the most widely studied miRNA in mammals, where it has been implicated in the control of hepatic lipid metabolism. Following our identification of acute postprandial, nutritional and endocrine regulation of hepatic miRNA-122 isomiRNA expression in rainbow trout, we used complementary in silico and in vivo approaches to study the role of miRNA-122 in rainbow trout metabolism. We hypothesized that the role of miRNA-122 in regulating lipid metabolism in rainbow trout is conserved to that in mammals and that modulation of miRNA-122 function would result in altered lipid homeostasis and secondarily altered glucose homeostasis, since lipogenesis has been suggested to act as glucose sink in trout. Results Our results show that miRNA-122 was functionally inhibited in vivo in the liver. Postprandial glucose concentrations increased significantly in rainbow trout injected with a miRNA-122 inhibitor, and this effect correlated with decreases in hepatic FAS protein abundance, indicative of altered lipogenic potential. Additionally, miRNA-122 inhibition resulted in a 20% decrease in plasma cholesterol concentration, an effect associated with increased expression of genes involved in cholesterol degradation and excretion. Conclusions Overall evidence suggests that miRNA-122 may have evolved in early vertebrates to support liver-specific metabolic functions. Nevertheless, our data also indicate that metabolic consequences of miRNA-122 inhibition may differ quantitatively between vertebrate species and that distinct direct molecular targets of miRNA-122 may mediate metabolic effects between vertebrate species, indicating that miRNA-122 - mRNA target relationships may have undergone species-specific evolutionary changes.
Collapse
Affiliation(s)
| | | | | | | | - Sandrine Skiba-Cassy
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle F-64310, France.
| |
Collapse
|
49
|
Natunen T, Martiskainen H, Sarajärvi T, Helisalmi S, Pursiheimo JP, Viswanathan J, Laitinen M, Mäkinen P, Kauppinen T, Rauramaa T, Leinonen V, Alafuzoff I, Haapasalo A, Soininen H, Hiltunen M. Effects of NR1H3 genetic variation on the expression of liver X receptor α and the progression of Alzheimer's disease. PLoS One 2013; 8:e80700. [PMID: 24278306 PMCID: PMC3835410 DOI: 10.1371/journal.pone.0080700] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/16/2013] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease (AD) has been postulated to involve defects in the clearance of amyloid-β (Aβ). Activation of liver X receptor α (LXRα) increases the expression of apolipoprotein E (ApoE) as well as cholesterol transporters ABCA1 and ABCG1, leading to augmented clearance of Aβ. We have previously shown that the C allele of rs7120118 in the NR1H3 gene encoding LXRα reduces the risk of AD. Here, we wanted to assess whether the rs7120118 variation affects the progression of AD and modulates the expression of NR1H3 and its downstream targets APOE, ABCA1 and ABCG1.We utilized tissue samples from the inferior temporal cortex of 87 subjects, which were subdivided according to Braak staging into mild, moderate and severe AD groups on the basis of AD-related neurofibrillary pathology. APOE ε4 allele increased soluble Aβ42 levels in the tissue samples in a dose-dependent manner, but did not affect the expression status of APOE. In contrast, the CC genotype of rs7120118 was underrepresented in the severe group, although this result did not reach statistical significance. Also, patients with the CC genotype of rs7120118 showed significantly decreased soluble Aβ42 levels as compared to the patients with TT genotype. Although the severity of AD did not affect NR1H3 expression, the mRNA levels of NR1H3 among the patients with CT genotype of rs7120118 were significantly increased as compared to the patients with TT genotype. These results suggest that genetic variation in NR1H3 modulates the expression of LXRα and the levels of soluble Aβ42.
Collapse
Affiliation(s)
- Teemu Natunen
- Institute of Clinical Medicine – Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Henna Martiskainen
- Institute of Clinical Medicine – Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Timo Sarajärvi
- Institute of Clinical Medicine – Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Seppo Helisalmi
- Institute of Clinical Medicine – Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | | | - Jayashree Viswanathan
- Institute of Clinical Medicine – Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Marjo Laitinen
- Institute of Clinical Medicine – Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Petra Mäkinen
- Institute of Clinical Medicine – Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Tarja Kauppinen
- Institute of Clinical Medicine – Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital, Finland and Institute of Clinical Medicine, Unit of Pathology, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Institute of Clinical Medicine – Neurosurgery, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine – Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine – Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Clinical Medicine – Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- * E-mail:
| |
Collapse
|
50
|
Lyons PJ, Lang-Ouellette D, Morin P. CryomiRs: towards the identification of a cold-associated family of microRNAs. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:358-64. [PMID: 24212287 DOI: 10.1016/j.cbd.2013.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 12/26/2022]
Abstract
Hypometabolism is a strategy favored by many species to survive extreme environmental stresses such as low temperatures, lack of food sources or anoxic conditions. Mammalian hibernation and insect cold hardiness are well-documented examples of natural models utilizing metabolic rate depression when confronted with such conditions. A plethora of metabolic and molecular changes must occur in these species to regulate this process. A recently discovered family of short non-coding nucleic acids, the miRNAs, is rapidly emerging as a potential modulator of cold tolerance in different species. In this review, we present the current knowledge associated with physiological and biochemical adaptations at low temperatures. We further explore the cascade of miRNA biogenesis as well as miRNA target recognition and translational repression. Finally, we introduce miRNAs shown to be differentially regulated in selected species when confronted with low temperatures and discuss the potential transcript targets regulated by these "CryomiRs".
Collapse
Affiliation(s)
- Pierre J Lyons
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick E1A 3E9, Canada
| | | | | |
Collapse
|