1
|
Amrollahi-Sharifabadi M, Oladejo TO, Ibrahim AS, Shakoor B, Mehrpour O, Sadeghi-Hashjin G, Gonçalves S. Melatonin's paradox: From therapeutic benefits to toxicity warnings. Chem Biol Interact 2025; 417:111556. [PMID: 40383469 DOI: 10.1016/j.cbi.2025.111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/03/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Melatonin is an endogenous chemical predominantly synthesized in the pineal gland, widely recognized for its hormonal roles, such as regulating sleep and circadian rhythms. Through mechanisms such as anti-oxidative reduction, anti-inflammatory, and immunomodulation, it is suggested that melatonin exhibits biochemical properties in in vitro conditions. Beyond these functions, melatonin has garnered attention for its pharmacological benefits, particularly as a therapeutic agent that is exogenously administered as a supplement in various diseases ranging from insomnia to immunological and gastrointestinal disorders. However, emerging studies highlight potential toxicological concerns associated with exogenous melatonin use, especially in specific populations. This review provided a comprehensive exploration of melatonin's dual role as a therapeutic and potentially toxic agent. It summarized what is currently known about its pharmacological, toxicological, and biochemical characteristics as well as toxicity mechanisms, and safety concerns in susceptible groups. By highlighting new knowledge gaps about melatonin's clinical uses, the study opens the door for further studies to maximize its therapeutic benefits while maintaining its safety.
Collapse
Affiliation(s)
| | - Toheeb Olalekan Oladejo
- Department of Pharmacology and Toxicology, Nazarbayev School of Medicine, Astana, Kazakhstan
| | - Adedayo Sheu Ibrahim
- Department of Pharmacology and Toxicology, Nazarbayev School of Medicine, Astana, Kazakhstan
| | - Bushra Shakoor
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, 38000, Pakistan
| | - Omid Mehrpour
- Michigan Poison & Drug Information Center, School of Medicine, Wayne State University, Detroit, MI, United States of America
| | - Goudarz Sadeghi-Hashjin
- Department of Comparative Biosciences, College of Veterinary Medicine & Biomedical Science, University of Tehran, Tehran, Iran
| | - Sara Gonçalves
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal; School of Health, University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal
| |
Collapse
|
2
|
Zhu CZ, Li GZ, Lyu HF, Lu YY, Li Y, Zhang XN. Modulation of autophagy by melatonin and its receptors: implications in brain disorders. Acta Pharmacol Sin 2025; 46:525-538. [PMID: 39448859 PMCID: PMC11845611 DOI: 10.1038/s41401-024-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024]
Abstract
Autophagy plays a crucial role in maintaining neuronal homeostasis and function, and its disruption is linked to various brain diseases. Melatonin, an endogenous hormone that primarily acts through MT1 and MT2 receptors, regulates autophagy via multiple pathways. Growing evidence indicates that melatonin's ability to modulate autophagy provides therapeutic and preventive benefits in brain disorders, including neurodegenerative and affective diseases. In this review, we summarize the key mechanisms by which melatonin affects autophagy and explore its therapeutic potential in the treatment of brain disorders.
Collapse
Affiliation(s)
- Chen-Ze Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Gui-Zhi Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Hai-Feng Lyu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yang-Yang Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Yue Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
| |
Collapse
|
3
|
Maienza CSD, Lamoureux G, Lee K. Cross-species comparison of AlphaFold-derived G protein-coupled receptor structures reveals novel melatonin-related receptor in Neurospora crassa. PLoS One 2025; 20:e0318362. [PMID: 39874366 PMCID: PMC11774363 DOI: 10.1371/journal.pone.0318362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Melatonin, a molecule with diverse biological functions, is ubiquitously present in living organisms. There is significant interest in understanding melatonin signal transduction pathways in humans, particularly due to its critical role in regulating the sleep-wake cycle. However, a knowledge gap remains in fully elucidating the mechanisms by which melatonin influences circadian regulation. To bridge this gap, there is a growing need for a model system to study the role of melatonin in circadian clocks, with Neurospora crassa being a promising candidate. As a first step in this investigation, we focused on identifying melatonin receptors in N. crassa. Given the lack of sequence similarity between potential receptors in this fungus and known human melatonin receptors, we utilized structural similarity analysis through AlphaFold2. This approach led to the identification of a strong candidate gene, gpr-3, which shares structural similarities with human melatonin receptors. Experimental validation confirmed that the removal of GPR-3 from cells results in the absence of melatonin signaling. This proof-of-concept study underscores the potential of N. crassa as a model organism for circadian research and demonstrates the broader applicability of using AlphaFold2, especially when sequence similarity does not lead to candidate genes, for identifying novel receptors across different species.
Collapse
Affiliation(s)
- Cathryn S. D. Maienza
- Center for Computation and Integrative Biology, Rutgers, The State of New Jersey, Camden, NJ, United States of America
| | - Guillaume Lamoureux
- Center for Computation and Integrative Biology, Rutgers, The State of New Jersey, Camden, NJ, United States of America
- Department of Chemistry, Rutgers, The State University of New Jersey, Camden, NJ, United States of America
| | - Kwangwon Lee
- Center for Computation and Integrative Biology, Rutgers, The State of New Jersey, Camden, NJ, United States of America
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States of America
| |
Collapse
|
4
|
Okamoto HH, Cecon E, Nureki O, Rivara S, Jockers R. Melatonin receptor structure and signaling. J Pineal Res 2024; 76:e12952. [PMID: 38587234 DOI: 10.1111/jpi.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/05/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
Melatonin (5-methoxy-N-acetyltryptamine) binds with high affinity and specificity to membrane receptors. Several receptor subtypes exist in different species, of which the mammalian MT1 and MT2 receptors are the best-characterized. They are members of the G protein-coupled receptor superfamily, preferentially coupling to Gi/o proteins but also to other G proteins in a cell-context-depending manner. In this review, experts on melatonin receptors will summarize the current state of the field. We briefly report on the discovery and classification of melatonin receptors, then focus on the molecular structure of human MT1 and MT2 receptors and highlight the importance of molecular simulations to identify new ligands and to understand the structural dynamics of these receptors. We then describe the state-of-the-art of the intracellular signaling pathways activated by melatonin receptors and their complexes. Brief statements on the molecular toolbox available for melatonin receptor studies and future perspectives will round-up this review.
Collapse
Affiliation(s)
- Hiroyuki H Okamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Erika Cecon
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
5
|
Klosen P. Thirty-seven years of MT1 and MT2 melatonin receptor localization in the brain: Past and future challenges. J Pineal Res 2024; 76:e12955. [PMID: 38606787 DOI: 10.1111/jpi.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/21/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
Identifying the target cells of a hormone is a key step in understanding its function. Once the molecular nature of the receptors for a hormone has been established, researchers can use several techniques to detect these receptors. Here I will review the different tools used over the years to localize melatonin receptors and the problems associated with each of these techniques. The radioligand 2-[125I] iodomelatonin was the first tool to allow localization of melatonin receptors on tissue sections. Once the MT1 and MT2 receptors were cloned, in situ hybridization could be used to detect the messenger RNA for these receptors. The deduced amino acid sequences for MT1 and MT2 receptors allowed the production of peptide immunogens to generate antibodies against the MT1 and MT2 receptors. Finally, transgenic reporters driven by the promoter elements of the MT1 and MT2 genes have been used to map the expression of MT1 and MT2 in the brain and the retina. Several issues have complicated the localization of melatonin receptors and the characterization of melatonin target cells over the last three decades. Melatonin receptors are expressed at low levels, leading to sensitivity issues for their detection. The second problem are specificity issues with antibodies directed against the MT1 and MT2 melatonin receptors. These receptors are G protein-coupled receptors and many antibodies directed against such receptors have been shown to present similar problems concerning their specificity. Despite these specificity problems which start to be seriously addressed by recent studies, antibodies will be important tools in the future to identify and phenotype melatonin target cells. However, we will have to be more stringent than previously when establishing their specificity. The results obtained by these antibodies will have to be confronted and be coherent with results obtained by other techniques.
Collapse
Affiliation(s)
- Paul Klosen
- Regulation and Disruption of Neuroendocrine Rhythms, Institute of Cellular and Integrative Neurosciences, INCI CNRS UPR-3212, University of Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Dong S, Kifune T, Kato H, Wang L, Kong J, Hirofuji Y, Sun X, Sato H, Ito Y, Kato TA, Sakai Y, Ohga S, Fukumoto S, Masuda K. Effects of melatonin on dopaminergic neuron development via IP3-mediated mitochondrial Ca 2+ regulation in autism spectrum disorder. Biochem Biophys Res Commun 2023; 681:7-12. [PMID: 37742475 DOI: 10.1016/j.bbrc.2023.09.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Melatonin entrainment of suprachiasmatic nucleus-regulating circadian rhythms is mediated by MT1 and MT2 receptors. Melatonin also has neuroprotective and mitochondrial activating effects, suggesting it may affect neurodevelopment. We studied melatonin's pharmacological effects on autism spectrum disorder (ASD) neuropathology. Deciduous tooth-derived stem cells from children with ASD were used to model neurodevelopmental defects and differentiated into dopaminergic neurons (ASD-DNs) with or without melatonin. Without melatonin, ASD-DNs had reduced neurite outgrowth, mitochondrial dysfunction, lower mitochondrial Ca2+ levels, and Ca2+ accumulation in the endoplasmic reticulum (ER) compared to control DNs from typically developing children-derived stem cells. Melatonin enhanced IP3-dependent Ca2+ release from ER to mitochondria, improving mitochondrial function and neurite outgrowth in ASD-DNs. Luzindole, an MT1/MT2 antagonist, blocked these effects. Thus, melatonin supplementation may improve dopaminergic system development in ASD by modulating mitochondrial Ca2+ homeostasis via MT1/MT2 receptors.
Collapse
Affiliation(s)
- Shuangshan Dong
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takashi Kifune
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Lu Wang
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Jun Kong
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuta Hirofuji
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Xiao Sun
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Sato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yosuke Ito
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Satoshi Fukumoto
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
7
|
Patel R, Parmar N, Rathwa N, Palit SP, Li Y, Garcia-Ocaña A, Begum R. A novel therapeutic combination of sitagliptin and melatonin regenerates pancreatic β-cells in mouse and human islets. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119263. [PMID: 35364117 DOI: 10.1016/j.bbamcr.2022.119263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023]
Abstract
Autoimmune-led challenge resulting in β-cell loss is responsible for the development of type 1 diabetes (T1D). Melatonin, a pineal hormone or sitagliptin, a dipeptidyl peptidase IV (DPP-IV) inhibitor, has increased β-cell mass in various diabetic models and has immunoregulatory property. Both β-cell regenerative capacity and melatonin secretion decrease with ageing. Thus, we aimed to investigate the therapeutic potential of melatonin combined with sitagliptin on β-cell regeneration under glucotoxic stress, in the streptozotocin-induced young and old diabetic mouse models, and euglycemic humanized islet transplant mouse model. Our results suggest that combination therapy of sitagliptin and melatonin show an additive effect in inducing mouse β-cell regeneration under glucotoxic stress, and in the human islet transplant mouse model. Further, in the young diabetic mouse model, the monotherapies induce β-cell transdifferentiation and reduce β-cell apoptosis whereas, in the old diabetic mouse model, melatonin and sitagliptin induce β-cell proliferation and β-cell transdifferentiation, and it also reduces β-cell apoptosis. Further, in both the models, combination therapy reduces fasting blood glucose levels, increases plasma insulin levels and glucose tolerance and promotes β-cell proliferation, β-cell transdifferentiation, and reduces β-cell apoptosis. It can be concluded that combination therapy is superior to monotherapies in ameliorating diabetic manifestations, and it can be used as a future therapy for β-cell regeneration in diabetes patients.
Collapse
Affiliation(s)
- Roma Patel
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara- 390002, Gujarat, India
| | - Nishant Parmar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara- 390002, Gujarat, India
| | - Nirali Rathwa
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara- 390002, Gujarat, India
| | - Sayantani Pramanik Palit
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara- 390002, Gujarat, India
| | - Yansui Li
- Diabetes, Obesity and Metabolism Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity and Metabolism Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara- 390002, Gujarat, India.
| |
Collapse
|
8
|
Zhao Y, Shao G, Liu X, Li Z. Assessment of the Therapeutic Potential of Melatonin for the Treatment of Osteoporosis Through a Narrative Review of Its Signaling and Preclinical and Clinical Studies. Front Pharmacol 2022; 13:866625. [PMID: 35645810 PMCID: PMC9130700 DOI: 10.3389/fphar.2022.866625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022] Open
Abstract
Melatonin is a bioamine produced primarily in the pineal gland, although peripheral sites, including the gut, may also be its minor source. Melatonin regulates various functions, including circadian rhythm, reproduction, temperature regulation, immune system, cardiovascular system, energy metabolism, and bone metabolism. Studies on cultured bone cells, preclinical disease models of bone loss, and clinical trials suggest favorable modulation of bone metabolism by melatonin. This narrative review gives a comprehensive account of the current understanding of melatonin at the cell/molecular to the systems levels. Melatonin predominantly acts through its cognate receptors, of which melatonin receptor 2 (MT2R) is expressed in mesenchymal stem cells (MSCs), osteoblasts (bone-forming), and osteoclasts (bone-resorbing). Melatonin favors the osteoblastic fate of MSCs, stimulates osteoblast survival and differentiation, and inhibits osteoclastogenic differentiation of hematopoietic stem cells. Produced from osteoblastic cells, osteoprotegerin (OPG) and receptor activator of nuclear factor kappa B ligand (RANKL) critically regulate osteoclastogenesis and melatonin by suppressing the osteoclastogenic RANKL, and upregulating the anti-osteoclastogenic OPG exerts a strong anti-resorptive effect. Although the anti-inflammatory role of melatonin favors osteogenic function and antagonizes the osteoclastogenic function with the participation of SIRT signaling, various miRNAs also mediate the effects of the hormone on bone cells. In rodent models of osteoporosis, melatonin has been unequivocally shown to have an anti-osteoporotic effect. Several clinical trials indicate the bone mass conserving effect of melatonin in aging/postmenopausal osteoporosis. This review aims to determine the possibility of melatonin as a novel class of anti-osteoporosis therapy through the critical assessment of the available literature.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Guoxi Shao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xingang Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhengwei Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Biringer RG. Migraine signaling pathways: amino acid metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 2022; 477:2269-2296. [PMID: 35482233 DOI: 10.1007/s11010-022-04438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Migraine is a common, debilitating disorder for which attacks typically result in a throbbing, pulsating headache. Although much is known about migraine, its complexity renders understanding the complete etiology currently out of reach. However, two important facts are clear, the brain and the metabolism of the migraineur differ from that of the non-migraineur. This review centers on the altered amino acid metabolism in migraineurs and how it helps define the pathology of migraine.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
10
|
Sadoughi F, Dana PM, Asemi Z, Shafabakhash R, Mohammadi S, Heidar Z, Mirzamoradi M, Targhazeh N, Mirzaei H. Molecular and cellular mechanisms of melatonin in breast cancer. Biochimie 2022; 202:26-33. [PMID: 35341930 DOI: 10.1016/j.biochi.2022.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
Breast cancer is considered as one of the most important health problems due to its poor prognosis and high rate of mortality and new diagnosed cases. Annually, a great number of deaths are reported in men and women; this means that despite all the improvements in cancer diagnosis and treatment, still, an intense need for more effective approaches exists. Melatonin is a multivalent compound which has a hand in several cellular and molecular processes and therefore, is an appropriate candidate for treatment of many diseases like cancer. Currently, considerable properties of this agent have oriented the research towards investigating its effects specifically in breast cancer. In this review, we gathered a bunch of evidence in order to give a new sight for breast cancer treatment utilizing melatonin. We expect that in coming years, melatonin will become one of the most common therapeutic drugs with lesser side-effects than other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Rana Shafabakhash
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Sotoudeh Mohammadi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Heidar
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Mirzamoradi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| |
Collapse
|
11
|
Structural basis of the ligand binding and signaling mechanism of melatonin receptors. Nat Commun 2022; 13:454. [PMID: 35075127 PMCID: PMC8786939 DOI: 10.1038/s41467-022-28111-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Melatonin receptors (MT1 and MT2 in humans) are family A G protein-coupled receptors that respond to the neurohormone melatonin to regulate circadian rhythm and sleep. Numerous efforts have been made to develop drugs targeting melatonin receptors for the treatment of insomnia, circadian rhythm disorder, and cancer. However, designing subtype-selective melatonergic drugs remains challenging. Here, we report the cryo-EM structures of the MT1-Gi signaling complex with 2-iodomelatonin and ramelteon and the MT2-Gi signaling complex with ramelteon. These structures, together with the reported functional data, reveal that although MT1 and MT2 possess highly similar orthosteric ligand-binding pockets, they also display distinctive features that could be targeted to design subtype-selective drugs. The unique structural motifs in MT1 and MT2 mediate structural rearrangements with a particularly wide opening on the cytoplasmic side. Gi is engaged in the receptor core shared by MT1 and MT2 and presents a conformation deviating from those in other Gi complexes. Together, our results provide new clues for designing melatonergic drugs and further insights into understanding the G protein coupling mechanism.
Collapse
|
12
|
Tse LH, Wong YH. Modeling the Heterodimer Interfaces of Melatonin Receptors. Front Cell Neurosci 2021; 15:725296. [PMID: 34690701 PMCID: PMC8529217 DOI: 10.3389/fncel.2021.725296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Melatonin receptors are Class A G protein-coupled receptors (GPCRs) that regulate a plethora of physiological activities in response to the rhythmic secretion of melatonin from the pineal gland. Melatonin is a key regulator in the control of circadian rhythm and has multiple functional roles in retinal physiology, memory, immunomodulation and tumorigenesis. The two subtypes of human melatonin receptors, termed MT1 and MT2, utilize overlapping signaling pathways although biased signaling properties have been reported in some cellular systems. With the emerging concept of GPCR dimerization, melatonin receptor heterodimers have been proposed to participate in system-biased signaling. Here, we used computational approaches to map the dimerization interfaces of known heterodimers of melatonin receptors, including MT1/MT2, MT1/GPR50, MT2/GPR50, and MT2/5-HT2C. By homology modeling and membrane protein docking analyses, we have identified putative preferred interface interactions within the different pairs of melatonin receptor dimers and provided plausible structural explanations for some of the unique pharmacological features of specific heterodimers previously reported. A thorough understanding of the molecular basis of melatonin receptor heterodimers may enable the development of new therapeutic approaches against aliments involving these heterodimeric receptors.
Collapse
Affiliation(s)
- Lap Hang Tse
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, SAR China
| | - Yung Hou Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, SAR China.,State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, SAR China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, SAR China
| |
Collapse
|
13
|
Tchio C, Musani SK, Quarshie A, Tosini G. Association between MTNR1B polymorphisms and obesity in African American: findings from the Jackson Heart Study. BMC Med Genomics 2021; 14:136. [PMID: 34020621 PMCID: PMC8138980 DOI: 10.1186/s12920-021-00983-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/13/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Melatonin is a hormone that is secreted at night by the pineal gland. It exerts its function by binding to the MT1 and MT2 receptors, which are encoded by the MTNR1A and MTNR1B genes, respectively. Previous studies reveal that MTNR1B variants are associated with insulin secretion impairments and an increased body mass index (BMI) in individuals of European and Asian ancestries. Obesity is highly prevalent in the US and disproportionately affects African Americans. Here, we hypothesized that common single nucleotide polymorphisms (SNPs) imputed in 1000 Genomes in the MTNR1B gene are associated with adiposity in African American adult men and women and that the association is modified by insomnia. METHODS We used an additive genetic model to describe the association between the adiposity traits (BMI and waist circumference) and selected MTNR1B variants in 3,029 Jackson Heart Study participants, with an average age of 55.13 ± 12.84 years, and 62% were women. We regressed the adiposity measures on the estimated allelic or genotypic dosage at every selected SNP and adjusted for age, sex, population stratification, and insomnia. Thirty common SNPs, spanning the MTNR1B gene, with a minor allele frequency ≥ 5%, a call rate ≥ 90%, a Hardy-Weinberg equilibrium p value > 10-6, were available for the analysis. RESULTS The allele T of rs76371840 was associated with adiposity (OR = 1.47 [1.13-1.82]; PFDR-adjusted = 0.0499), and the allele A of rs8192552 showed a significant association with waist circumference (β = 0.023 ± 0.007; PFDR-adjusted = 0.0077) after correcting for multiple testing. When insomnia was included in the adiposity analysis model, the following four variants became significantly associated with adiposity: rs6483208; rs4388843; rs4601728; and rs12804291. CONCLUSIONS Our data indicate that polymorphisms in the MTNR1B gene are associated with obesity traits in African Americans. To the best of our knowledge, this is the first study to explore the effect of insomnia on the association between the circadian MTNR1B genetic variants and metabolic traits in an African American sample population. We observed that insomnia affected the association between the MTNR1B variants and adiposity.
Collapse
Affiliation(s)
- Cynthia Tchio
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30130, USA
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Solomon K Musani
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alexander Quarshie
- Clinical Research Center, Morehouse School of Medicine, Atlanta, GA, USA
| | - Gianluca Tosini
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30130, USA.
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
14
|
Wang J, Zhuo Z, Ma X, Liu Y, Xu J, He C, Fu Y, Wang F, Ji P, Zhang L, Liu G. Melatonin Alleviates the Suppressive Effect of Hypoxanthine on Oocyte Nuclear Maturation and Restores Meiosis via the Melatonin Receptor 1 (MT1)-Mediated Pathway. Front Cell Dev Biol 2021; 9:648148. [PMID: 33937242 PMCID: PMC8083900 DOI: 10.3389/fcell.2021.648148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/17/2021] [Indexed: 01/12/2023] Open
Abstract
It is well known that hypoxanthine (HX) inhibits nuclear maturation of oocytes by elevating the intracellular cAMP level, while melatonin (MT) is a molecule that reduces cAMP production, which may physiologically antagonize this inhibition and restore the meiosis process. We conducted in vitro and in vivo studies to examine this hypothesis. The results showed that 10-3 M MT potentiated the inhibitory effect of HX on mouse oocyte meiosis by lowering the rate of germinal vesicle breakdown (GVBD) and the first polar body (PB1). However, 10-5 M and 10-7 M MT significantly alleviated the nuclear suppression induced by HX and restored meiosis in 3- and 6-week-old mouse oocytes, respectively. We identified that the rate-limiting melatonin synthetic enzyme AANAT and melatonin membrane receptor MT1 were both expressed in oocytes and cumulus cells at the GV and MII stages. Luzindole, a non-selective melatonin membrane receptor antagonist, blocked the activity of MT on oocyte meiotic recovery (P < 0.05). This observation indicated that the activity of melatonin was mediated by the MT1 receptor. To understand the molecular mechanism further, MT1 knockout (KO) mice were constructed. In this MT1 KO animal model, the PB1 rate was significantly reduced with the excessive expression of cAPM synthases (Adcy2, Adcy6, Adcy7, and Adcy9) in the ovaries of these animals. The mRNA levels of Nppc and Npr2 were upregulated while the genes related to progesterone synthesis (Cyp11a11), cholesterol biosynthesis (Insig1), and feedback (Lhcgr, Prlr, and Atg7) were downregulated in the granulosa cells of MT1 KO mice (P < 0.05). The altered gene expression may be attributed to the suppression of oocyte maturation. In summary, melatonin protects against nuclear inhibition caused by HX and restores oocyte meiosis via MT1 by reducing the intracellular concentration of cAMP.
Collapse
Affiliation(s)
- Jing Wang
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiyong Zhuo
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Beijing Keao Xieli Feed Co., Ltd., Beijing, China
| | - Xiao Ma
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunjie Liu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Xu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changjiu He
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Fu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Feng Wang
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengyun Ji
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Valdivia G, Alonso-Diez Á, Pérez-Alenza D, Peña L. From Conventional to Precision Therapy in Canine Mammary Cancer: A Comprehensive Review. Front Vet Sci 2021; 8:623800. [PMID: 33681329 PMCID: PMC7925635 DOI: 10.3389/fvets.2021.623800] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Canine mammary tumors (CMTs) are the most common neoplasm in intact female dogs. Canine mammary cancer (CMC) represents 50% of CMTs, and besides surgery, which is the elective treatment, additional targeted and non-targeted therapies could offer benefits in terms of survival to these patients. Also, CMC is considered a good spontaneous intermediate animal model for the research of human breast cancer (HBC), and therefore, the study of new treatments for CMC is a promising field in comparative oncology. Dogs with CMC have a comparable disease, an intact immune system, and a much shorter life span, which allows the achievement of results in a relatively short time. Besides conventional chemotherapy, innovative therapies have a large niche of opportunities. In this article, a comprehensive review of the current research in adjuvant therapies for CMC is conducted to gather available information and evaluate the perspectives. Firstly, updates are provided on the clinical-pathological approach and the use of conventional therapies, to delve later into precision therapies against therapeutic targets such as hormone receptors, tyrosine kinase receptors, p53 tumor suppressor gene, cyclooxygenases, the signaling pathways involved in epithelial-mesenchymal transition, and immunotherapy in different approaches. A comparison of the different investigations on targeted therapies in HBC is also carried out. In the last years, the increasing number of basic research studies of new promising therapeutic agents on CMC cell lines and CMC mouse xenografts is outstanding. As the main conclusion of this review, the lack of effort to bring the in vitro studies into the field of applied clinical research emerges. There is a great need for well-planned large prospective randomized clinical trials in dogs with CMC to obtain valid results for both species, humans and dogs, on the use of new therapies. Following the One Health concept, human and veterinary oncology will have to join forces to take advantage of both the economic and technological resources that are invested in HBC research, together with the innumerable advantages of dogs with CMC as a spontaneous animal model.
Collapse
Affiliation(s)
- Guillermo Valdivia
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Ángela Alonso-Diez
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Dolores Pérez-Alenza
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Laura Peña
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
16
|
Kinker GS, Ostrowski LH, Ribeiro PAC, Chanoch R, Muxel SM, Tirosh I, Spadoni G, Rivara S, Martins VR, Santos TG, Markus RP, Fernandes PACM. MT1 and MT2 melatonin receptors play opposite roles in brain cancer progression. J Mol Med (Berl) 2021; 99:289-301. [PMID: 33392634 DOI: 10.1007/s00109-020-02023-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/19/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Primary brain tumors remain among the deadliest of all cancers. Glioma grade IV (glioblastoma), the most common and malignant type of brain cancer, is associated with a 5-year survival rate of < 5%. Melatonin has been widely reported as an anticancer molecule, and we have recently demonstrated that the ability of gliomas to synthesize and accumulate this indolamine in the surrounding microenvironment negatively correlates with tumor malignancy. However, our understanding of the specific effects mediated through the activation of melatonin membrane receptors remains limited. Thus, here we investigated the specific roles of MT1 and MT2 in gliomas and medulloblastomas. Using the MT2 antagonist DH97, we showed that MT1 activation has a negative impact on the proliferation of human glioma and medulloblastoma cell lines, while MT2 activation has an opposite effect. Accordingly, gliomas have a decreased mRNA expression of MT1 (also known as MTNR1A) and an increased mRNA expression of MT2 (also known as MTNR1B) compared to the normal brain cortex. The MT1/MT2 expression ratio negatively correlates with the expression of cell cycle-related genes and is a positive prognostic factor in gliomas. Notably, we showed that functional selective drugs that simultaneously activate MT1 and inhibit MT2 exert robust anti-tumor effects in vitro and in vivo, downregulating the expression of cell cycle and energy metabolism genes in glioma stem-like cells. Overall, we provided the first evidence regarding the differential roles of MT1 and MT2 in brain tumor progression, highlighting their relevance as druggable targets. KEY MESSAGES: • MT1 impairs while MT2 promotes the proliferation of glioma and medulloblastoma cell lines. • Gliomas have a decreased expression of MT1 and an increased expression of MT2 compared to normal brain cortex. • Tumors with a high MT1/MT2 expression ratio have significantly better survival rates. • Functional selective drugs that simultaneously activate MT1 and inhibit MT2 downregulate the expression of cell cycle and energy metabolism genes in glioma stem-like cells and exert robust anti-tumor effects in vivo.
Collapse
MESH Headings
- Animals
- Brain/metabolism
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Brain Neoplasms/mortality
- Brain Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation
- Disease Progression
- Female
- Glioma/genetics
- Glioma/metabolism
- Glioma/mortality
- Glioma/pathology
- Humans
- Kaplan-Meier Estimate
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Mice
Collapse
Affiliation(s)
- G S Kinker
- Department of Physiology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, Brazil.
| | - L H Ostrowski
- Department of Physiology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, Brazil
| | - P A C Ribeiro
- International Research Center, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | - R Chanoch
- Department of Molecular Cell Biology, Weizmann Institute, Rehovot, Israel
| | - S M Muxel
- Department of Physiology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, Brazil
| | - I Tirosh
- Department of Molecular Cell Biology, Weizmann Institute, Rehovot, Israel
| | - G Spadoni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - S Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - V R Martins
- International Research Center, A.C. Camargo Cancer Center, Sao Paulo, Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation - INCITO-INOTE, Sao Paulo, Brazil
| | - T G Santos
- International Research Center, A.C. Camargo Cancer Center, Sao Paulo, Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation - INCITO-INOTE, Sao Paulo, Brazil
| | - R P Markus
- Department of Physiology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, Brazil
| | - P A C M Fernandes
- Department of Physiology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
17
|
Oishi A, Gbahou F, Jockers R. Melatonin receptors, brain functions, and therapies. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:345-356. [PMID: 34225974 DOI: 10.1016/b978-0-12-819975-6.00022-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In mammals, including humans, the neurohormone melatonin is mainly secreted from the pineal gland at night and acts on two high-affinity G protein-coupled receptors, the melatonin MT1 and MT2 receptors. Major functions of melatonin receptors in the brain are the regulation of circadian rhythms and sleep. Correspondingly, the main indications of the currently available drugs for these receptors indicate this as targets. Yet these drugs may not only improve circadian rhythm- and sleep-related disorders but may also be beneficial for complex diseases like major depression, Alzheimer's disease, autism, and attention-deficit/hyperactivity disorders. Here, we will focus on the hypothalamic functions of melatonin receptors by updating our knowledge on their hypothalamic expression pattern at normal, aged, and disease states, by discussing their capacity to regulate circadian rhythms and sleep and by presenting the clinical applications of the melatonin receptor-targeting drugs ramelteon, tasimelteon, and agomelatine or of prolonged-release melatonin formulations. Finally, we speculate about future trends in the field of melatonin receptor drugs.
Collapse
Affiliation(s)
- Atsuro Oishi
- Institut Cochin, Université de Paris, Paris, France
| | | | - Ralf Jockers
- Institut Cochin, Université de Paris, Paris, France.
| |
Collapse
|
18
|
Ladurner A, Schwarz PF, Dirsch VM. Natural products as modulators of retinoic acid receptor-related orphan receptors (RORs). Nat Prod Rep 2021; 38:757-781. [PMID: 33118578 DOI: 10.1039/d0np00047g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 1994 to 2020 Retinoic acid receptor-related orphan receptors (RORs) belong to a subfamily of the nuclear receptor superfamily and possess prominent roles in circadian rhythm, metabolism, inflammation, and cancer. They have been subject of research for over two decades and represent attractive but challenging drug targets. Natural products were among the first identified ligands of RORs and continue to be of interest to this day. This review focuses on ligands and indirect modulators of RORs from natural sources and explores their roles in a therapeutic context.
Collapse
Affiliation(s)
- Angela Ladurner
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| | - Patrik F Schwarz
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Tchio C, Baba K, Piccione G, Tosini G. Removal of melatonin receptor type 1 signalling induces dyslipidaemia and hormonal changes in mice subjected to environmental circadian disruption. Endocrinol Diabetes Metab 2021; 4:e00171. [PMID: 33532613 PMCID: PMC7831213 DOI: 10.1002/edm2.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 11/26/2022] Open
Abstract
Background Melatonin is a hormone secreted by the pineal gland in a circadian rhythmic manner with peak synthesis at night. Melatonin signalling was suggested to play a critical role in metabolism during the circadian disruption. Methods Melatonin-proficient (C3H-f+/+ or WT) and melatonin receptor type 1 knockout (MT1 KO) male and female mice were phase-advanced (6 hours) once a week for 6 weeks. Every week, we measured weight, food intake and basal glucose levels. At the end of the experiment, we sacrificed the animals and measured the blood's plasma for lipids profile (total lipids, phospholipids, triglycerides and total cholesterol), metabolic hormones profiles (ghrelin, leptin, insulin, glucagon, glucagon-like-peptide and resistin) and the body composition. Results Environmental circadian disruption (ECD) did not produce any significant effects in C3H-f+/+, while it increased lipids profile in MT1 KO with the significant increase observed in total lipids and triglycerides. For metabolic hormones profile, ECD decreased plasma ghrelin and increased plasma insulin in MT1 KO females. Under control condition, MT1 KO females have significantly different body weight, fat mass, total lipids and total cholesterol than the control C3H-f+/+ females. Conclusion Our data show that melatonin-proficient mice are not affected by ECD. When the MT1 receptors are removed, ECD induced dyslipidaemia in males and females with females experiencing the most adverse effect. Overall, our data demonstrate that MT1 signalling is an essential modulator of lipid and metabolic homeostasis during ECD.
Collapse
Affiliation(s)
- Cynthia Tchio
- Circadian Rhythms and Sleep Disorders ProgramNeuroscience InstituteAtlantaGAUSA
- Department of Pharmacology and ToxicologyMorehouse School of MedicineNeuroscience InstituteAtlantaGAUSA
| | - Kenkichi Baba
- Circadian Rhythms and Sleep Disorders ProgramNeuroscience InstituteAtlantaGAUSA
- Department of Pharmacology and ToxicologyMorehouse School of MedicineNeuroscience InstituteAtlantaGAUSA
| | - Giuseppe Piccione
- Dipartimento di Medicine VeterinariaUniversita di MessinaMessinaItaly
| | - Gianluca Tosini
- Circadian Rhythms and Sleep Disorders ProgramNeuroscience InstituteAtlantaGAUSA
- Department of Pharmacology and ToxicologyMorehouse School of MedicineNeuroscience InstituteAtlantaGAUSA
| |
Collapse
|
20
|
Moloudizargari M, Moradkhani F, Hekmatirad S, Fallah M, Asghari MH, Reiter RJ. Therapeutic targets of cancer drugs: Modulation by melatonin. Life Sci 2020; 267:118934. [PMID: 33385405 DOI: 10.1016/j.lfs.2020.118934] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
The biological functions of melatonin range beyond the regulation of the circadian rhythm. With regard to cancer, melatonin's potential to suppress cancer initiation, progression, angiogenesis and metastasis as well as sensitizing malignant cells to conventional chemo- and radiotherapy are among its most interesting effects. The targets at which melatonin initiates its anti-cancer effects are in common with those of a majority of existing anti-cancer agents, giving rise to the notion that this molecule is a pleiotropic agent sharing many features with other antineoplastic drugs in terms of their mechanisms of action. Among these common mechanisms of action are the regulation of several major intracellular pathways including mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) and protein kinase B (AKT/PKB) signaling. The important mediators affected by melatonin include cyclins, nuclear factor-κB (NF-κB), heat shock proteins (HSPs) and c-Myc, all of which can serve as potential targets for cancer drugs. Melatonin also exerts some of its anti-cancer effects via inducing epigenetic modifications, DNA damage and mitochondrial disruption in malignant cells. The regulation of these mediators by melatonin mitigates tumor growth and invasiveness via modulating their downstream responsive genes, housekeeping enzymes, telomerase reverse transcriptase, apoptotic gene expression, angiogenic factors and structural proteins involved in metastasis. Increasing our knowledge on how melatonin affects its target sites will help find ways of exploiting the beneficial effects of this ubiquitously-acting molecule in cancer therapy. Acknowledging this, here we reviewed the most studied target pathways attributed to the anti-cancer effects of melatonin, highlighting their therapeutic potential.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradkhani
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marjan Fallah
- Medicinal Plant Research Centre, Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX, USA.
| |
Collapse
|
21
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
22
|
Chen M, Cecon E, Karamitri A, Gao W, Gerbier R, Ahmad R, Jockers R. Melatonin MT 1 and MT 2 receptor ERK signaling is differentially dependent on G i/o and G q/11 proteins. J Pineal Res 2020; 68:e12641. [PMID: 32080899 DOI: 10.1111/jpi.12641] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) transmit extracellular signals into cells by activating G protein- and β-arrestin-dependent pathways. Extracellular signal-regulated kinases (ERKs) play a central role in integrating these different linear inputs coming from a variety of GPCRs to regulate cellular functions. Here, we investigated human melatonin MT1 and MT2 receptors signaling through the ERK1/2 cascade by employing different biochemical techniques together with pharmacological inhibitors and siRNA molecules. We show that ERK1/2 activation by both receptors is exclusively G protein-dependent, without any participation of β-arrestin1/2 in HEK293 cells. ERK1/2 activation by MT1 is only mediated though Gi/o proteins, while MT2 is dependent on the cooperative activation of Gi/o and Gq/11 proteins. In the absence of Gq/11 proteins, however, MT2 -induced ERK1/2 activation switches to a β-arrestin1/2-dependent mode. The signaling cascade downstream of G proteins is the same for both receptors and involves activation of the PI3K/PKCζ/c-Raf/MEK/ERK cascade. The differential G protein dependency of MT1 - and MT2 -mediated ERK activation was confirmed at the level of EGR1 and FOS gene expression, two ERK1/2 target genes. Gi/o /Gq/11 cooperativity was also observed in Neuroscreen-1 cells expressing endogenous MT2 , whereas in the mouse retina, where MT2 is engaged into MT1 /MT2 heterodimers, ERK1/2 signaling is exclusively Gi/o -dependent. Collectively, our data reveal differential signaling modes of MT1 and MT2 in terms of ERK1/2 activation, with an unexpected Gi/o /Gq/11 cooperativity exclusively for MT2 . The plasticity of ERK activation by MT2 is highlighted by the switch to a β-arrestin1/2-dependent mode in the absence of Gq/11 proteins and by the switch to a Gi/o mode when engaged into MT1 /MT2 heterodimers, revealing a new mechanism underlying tissue-specific responses to melatonin.
Collapse
Affiliation(s)
- Min Chen
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Erika Cecon
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | | | - Wenwen Gao
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Romain Gerbier
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Raise Ahmad
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Ralf Jockers
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| |
Collapse
|
23
|
Lee BH, Bussi IL, de la Iglesia HO, Hague C, Koh DS, Hille B. Two indoleamines are secreted from rat pineal gland at night and act on melatonin receptors but are not night hormones. J Pineal Res 2020; 68:e12622. [PMID: 31715643 PMCID: PMC7007382 DOI: 10.1111/jpi.12622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 11/28/2022]
Abstract
INTRODUCTION At night, the pineal gland produces the indoleamines, melatonin, N-acetylserotonin (NAS), and N-acetyltryptamine (NAT). Melatonin is accepted as a hormone of night. Could NAS and NAT serve that role too? METHODS Concentration-response measurements with overexpressed human melatonin receptors MT1 and MT2 ; mass spectrometry analysis of norepinephrine-stimulated secretions from isolated rat pineal glands; analysis of 24-hour periodic samples of rat blood. RESULTS We show that NAT and NAS do activate melatonin receptors MT1 and MT2 , although with lower potency than melatonin, and that in vitro, melatonin and NAS are secreted from stimulated, isolated pineal glands in roughly equimolar amounts, but secretion of NAT was much less. All three were found at roughly equal concentrations in blood during the night. However, during the day, serum melatonin fell to very low values creating a high-amplitude circadian rhythm that was absent after pinealectomy, whereas NAS and NAT showed only small or no circadian variation. CONCLUSION Blood levels of NAS and NAT were insufficient to activate peripheral melatonin receptors, and they were invariant, so they could not serve as circulating hormones of night. However, they could instead act in paracrine circadian fashion near the pineal gland or via other higher-affinity receptors.
Collapse
Affiliation(s)
- Bo Hyun Lee
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290 USA
| | - Ivana L. Bussi
- Department of Biology, University of Washington School, Seattle, WA 98195-1800 USA
| | | | - Chris Hague
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195-7290 USA
| | - Duk-Su Koh
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290 USA
- Co-corresponding authors: Bertil Hille; , Phone: 206-543-6661, Duk-Su Koh; , Phone: 206-407-6690
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290 USA
- Co-corresponding authors: Bertil Hille; , Phone: 206-543-6661, Duk-Su Koh; , Phone: 206-407-6690
| |
Collapse
|
24
|
Boutin JA, Legros C. The five dimensions of receptor pharmacology exemplified by melatonin receptors: An opinion. Pharmacol Res Perspect 2020; 8:e00556. [PMID: 31893125 PMCID: PMC6935684 DOI: 10.1002/prp2.556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022] Open
Abstract
Receptology has been complicated with enhancements in our knowledge of G-protein-coupled-receptor (GPCR) biochemistry. This complexity is exemplified by the pharmacology of melatonin receptors. Here, we describe the complexity of GPCR biochemistry in five dimensions: (a) receptor expression, particularly in organs/tissues that are only partially understood; (b) ligands and receptor-associated proteins (interactome); (c) receptor function, which might be more complex than the known G-protein-coupled systems; (d) ligand bias, which favors a particular pathway; and (e) receptor dimerization, which might concern all receptors coexpressed in the same cell. Thus, receptor signaling might be modified or modulated, depending on the nature of the receptor complex. Fundamental studies are needed to clarify these points and find new ways to tackle receptor functionality. This opinion article emphasizes the global questions attached to new descriptions of GPCRs and aims to raise our awareness of the tremendous complexity of modern receptology.
Collapse
Affiliation(s)
- Jean A. Boutin
- Institut de Recherches Internationales ServierSuresnesFrance
| | - Céline Legros
- Institut de Recherches ServierCroissy‐sur‐SeineFrance
| |
Collapse
|
25
|
Reyes-Resina I, Awad Alkozi H, del Ser-Badia A, Sánchez-Naves J, Lillo J, Jiménez J, Pintor J, Navarro G, Franco R. Expression of Melatonin and Dopamine D 3 Receptor Heteromers in Eye Ciliary Body Epithelial Cells and Negative Correlation with Ocular Hypertension. Cells 2020; 9:cells9010152. [PMID: 31936298 PMCID: PMC7016594 DOI: 10.3390/cells9010152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Experiments in the late nineties showed an inverse relationship in the eye levels of melatonin and dopamine, thereby constituting an example of eye parameters that are prone to circadian variations. The underlying mechanisms are not known but these relevant molecules act via specific cell surface dopamine and melatonin receptors. This study investigated whether these receptors formed heteromers whose function impact on eye physiology. We performed biophysical assays to identify interactions in heterologous systems. Particular heteromer functionality was detected using Gi coupling, MAPK activation, and label-free assays. The expression of the heteroreceptor complexes was assessed using proximity ligation assays in cells producing the aqueous humor and human eye samples. Dopamine D3 receptors (D3Rs) were identified in eye ciliary body epithelial cells. We discovered heteromers formed by D3R and either MT1 (MT1R) or MT2 (MT2R) melatonin receptors. Heteromerization led to the blockade of D3R-Gi coupling and regulation of signaling to the MAPK pathway. Heteromer expression was negatively correlated with intraocular hypertension. CONCLUSIONS Heteromers likely mediate melatonin and dopamine actions in structures regulating intraocular pressure. Significant expression of D3R-MT1R and D3R-MT1R was associated with normotensive conditions, whereas expression diminished in a cell model of hypertension. A clear trend of expression reduction was observed in samples from glaucoma cases. The trend was marked but no statistical analysis was possible as the number of available eyes was 2.
Collapse
Affiliation(s)
- Irene Reyes-Resina
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Neuroplasticity Research Group, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.d.S.-B.); (J.J.)
- Correspondence: (I.R.-R.); (G.N.); or (R.F.); Tel.: +34-934021208 (I.R.-R. & G.N.)
| | - Hanan Awad Alkozi
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, 28037 Madrid, Spain; (H.A.A.); (J.P.)
| | - Anna del Ser-Badia
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.d.S.-B.); (J.J.)
- Department de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Juan Sánchez-Naves
- Department of Ophthalmology, Balearic Islands Institute of Ophthalmology, 07013 Palma de Mallorca, Mallorca, Spain;
| | - Jaume Lillo
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.d.S.-B.); (J.J.)
| | - Jasmina Jiménez
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.d.S.-B.); (J.J.)
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, 28037 Madrid, Spain; (H.A.A.); (J.P.)
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.d.S.-B.); (J.J.)
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08027 Barcelona, Spain
- Correspondence: (I.R.-R.); (G.N.); or (R.F.); Tel.: +34-934021208 (I.R.-R. & G.N.)
| | - Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.d.S.-B.); (J.J.)
- School of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
- Correspondence: (I.R.-R.); (G.N.); or (R.F.); Tel.: +34-934021208 (I.R.-R. & G.N.)
| |
Collapse
|
26
|
Age Associated Decrease of MT-1 Melatonin Receptor in Human Dermal Skin Fibroblasts Impairs Protection Against UV-Induced DNA Damage. Int J Mol Sci 2020; 21:ijms21010326. [PMID: 31947744 PMCID: PMC6982064 DOI: 10.3390/ijms21010326] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/14/2022] Open
Abstract
The human body follows a physiological rhythm in response to the day/night cycle which is synchronized with the circadian rhythm through internal clocks. Most cells in the human body, including skin cells, express autonomous clocks and the genes responsible for running those clocks. Melatonin, a ubiquitous small molecular weight hormone, is critical in regulating the sleep cycle and other functions in the body. Melatonin is present in the skin and, in this study, we showed that it has the ability to dose-dependently stimulate PER1 clock gene expression in normal human dermal fibroblasts and normal human epidermal keratinocytes. Then we further evaluated the role of MT-1 melatonin receptor in mediating melatonin actions on human skin using fibroblasts derived from young and old subjects. Using immunocytochemistry, Western blotting and RT-PCR, we confirmed the expression of MT-1 receptor in human skin fibroblasts and demonstrated a dramatic age-dependent decrease in its level in mature fibroblasts. We used siRNA technology to transiently knockdown MT-1 receptor in fibroblasts. In these MT-1 knockdown cells, UV-dependent oxidative stress (H2O2 production) was enhanced and DNA damage was also increased, suggesting a critical role of MT-1 receptor in protecting skin cells from UV-induced DNA damage. These studies demonstrate that the melatonin pathway plays a pivotal role in skin aging and damage. Moreover, its correlation with skin circadian rhythm may offer new approaches for decelerating skin aging by modulating the expression of melatonin receptors in human skin.
Collapse
|
27
|
Alkozi HA, Navarro G, Franco R, Pintor J. Melatonin and the control of intraocular pressure. Prog Retin Eye Res 2019; 75:100798. [PMID: 31560946 DOI: 10.1016/j.preteyeres.2019.100798] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Melatonin is not only synthesized by the pineal gland but by several ocular structures. This natural indoleamine is of great importance for regulating several eye processes, among which pressure homeostasis is included. Glaucoma, the most prevalent eye disease, also known as the silent thief of vision, is a multifactorial pathology that is associated to age and, often, to intraocular hypertension (IOP). Indeed IOP is the only modifiable risk factor and as such medications are available to control it; however, novel medications are sought to minimize undesirable side effects. Melatonin and analogues decrease IOP in both normotensive and hypertensive eyes. Melatonin activates its cognate membrane receptors, MT1 and MT2, which are present in numerous ocular tissues, including the aqueous-humor-producing ciliary processes. Melatonin receptors belong to the superfamily of G-protein-coupled receptors and their activation would lead to different signalling pathways depending on the tissue. This review describes the molecular mechanisms underlying differential functionalities that are attributed to melatonin receptors. Accordingly, the current work highlights the important role of melatonin and its analogues in the healthy and in the glaucomatous eyes, with special attention to the control of intraocular pressure.
Collapse
Affiliation(s)
- Hanan Awad Alkozi
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegeneratives (CiberNed), Instituto de Salud Carlos III, Sinesio Delgado 6, 28029, Madrid, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Juan XXIII, 27, 08027, Barcelona, Spain
| | - Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegeneratives (CiberNed), Instituto de Salud Carlos III, Sinesio Delgado 6, 28029, Madrid, Spain; Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Barcelona, Spain.
| | - Jesus Pintor
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain; Real Academia Nacional de Farmacia, Calle Farmacia 11, 28004, Madrid, Spain.
| |
Collapse
|
28
|
Liu L, Wang T, Yang X, Xu C, Liao Z, Wang X, Su D, Li Y, Zhou H, Qiu X, Chen Y, Huang D, Lian C, Su P. MTNR1B loss promotes chordoma recurrence by abrogating melatonin-mediated β-catenin signaling repression. J Pineal Res 2019; 67:e12588. [PMID: 31140197 DOI: 10.1111/jpi.12588] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/16/2019] [Accepted: 05/22/2019] [Indexed: 01/03/2023]
Abstract
Chordoma is an extremely rare malignant bone tumor with a high rate of relapse. While cancer stem cells (CSCs) are closely associated with tumor recurrence, which depend on its capacity to self-renew and induce chemo-/radioresistance, whether and how CSCs participate in chordoma recurrence remains unclear. The current study found that tumor cells in recurrent chordoma displayed more dedifferentiated CSC-like properties than those in corresponding primary tumor tissues. Meanwhile, MTNR1B deletion along with melatonin receptor 1B (MTNR1B) down-regulation was observed in recurrent chordoma. Further investigation revealed that activation of Gαi2 by MTNR1B upon melatonin stimulation could inhibit SRC kinase activity via recruiting CSK and SRC, increasing SRC Y530 phosphorylation, and decreasing SRC Y419 phosphorylation. This subsequently suppressed β-catenin signaling and stemness via decreasing β-catenin p-Y86/Y333/Y654. However, MTNR1B loss in chordoma mediated increased CSC properties, chemoresistance, and tumor progression by releasing melatonin's repression of β-catenin signaling. Clinically, MTNR1B deletion was found to correlate with patients' survival. Together, our study establishes a novel convergence between melatonin and β-catenin signaling pathways and reveals the significance of this cross talk in chordoma recurrence. Besides, we propose that MTNR1B is a potential biomarker for prediction of chordoma prognosis and selection of treatment options, and chordoma patients might benefit from targeting MTNR1B/Gαi2/SRC/β-catenin axis.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/deficiency
- Biomarkers, Tumor/genetics
- Bone Neoplasms/drug therapy
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Cell Line, Tumor
- Chondroma/drug therapy
- Chondroma/genetics
- Chondroma/metabolism
- Chondroma/pathology
- Female
- Humans
- Melatonin/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Receptor, Melatonin, MT2/deficiency
- Receptor, Melatonin, MT2/metabolism
- Signal Transduction/drug effects
- Xenograft Model Antitumor Assays
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Lei Liu
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, China
- Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tingting Wang
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoming Yang
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Caixia Xu
- Research Centre for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiheng Liao
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xudong Wang
- Department of Spine Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Deying Su
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongyong Li
- Research Centre for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hang Zhou
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xianjian Qiu
- Department of Spine Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuyu Chen
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongsheng Huang
- Department of Spine Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chengjie Lian
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peiqiang Su
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, China
- Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China
| |
Collapse
|
29
|
Tiong YL, Ng KY, Koh RY, Ponnudurai G, Chye SM. Melatonin Prevents Oxidative Stress-Induced Mitochondrial Dysfunction and Apoptosis in High Glucose-Treated Schwann Cells via Upregulation of Bcl2, NF-κB, mTOR, Wnt Signalling Pathways. Antioxidants (Basel) 2019; 8:antiox8070198. [PMID: 31247931 PMCID: PMC6680940 DOI: 10.3390/antiox8070198] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
Neuropathy is a complication that affects more than 50% of long-standing diabetic patients. One of the causes of diabetes neuropathy (DN) is the apoptosis of Schwann cells due to prolonged exposure to high glucose and build-up of oxidative stress. Melatonin is a hormone that has a known antioxidant property. In this study, we investigated the protective effect of melatonin on high glucose-induced Schwann cells' apoptosis. Our results revealed that high glucose promoted apoptosis via mitochondrial-related oxidative stress and downregulated Bcl-2 family proteins in Schwann cells. In this signalling pathway, Bcl-2, Bcl-XL and Mcl-1 proteins were down-regulated while p-BAD and Puma proteins were up-regulated by high glucose treatment. Besides, we also proved that high glucose promoted apoptosis in Schwann cells through decreasing the p-NF-κB in the NF-κB signalling pathway. Key regulators of mTOR signalling pathway such as p-mTOR, Rictor and Raptor were also down-regulated after high glucose treatment. Additionally, high glucose treatment also decreased the Wnt signalling pathway downstream proteins (Wnt 5a/b, p-Lrp6 and Axin). Our results showed that melatonin treatment significantly inhibited high glucose-induced ROS generation, restored mitochondrial membrane potential and inhibited high glucose-induced apoptosis in Schwann cells. Furthermore, melatonin reversed the alterations of protein expression caused by high glucose treatment. Our results concluded that melatonin alleviates high glucose-induced apoptosis in Schwann cells through mitigating mitochondrial-related oxidative stress and the alterations of Bcl-2, NF-κB, mTOR and Wnt signalling pathways.
Collapse
Affiliation(s)
- Yee Lian Tiong
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Selangor 47500, Malaysia
| | - Rhun Yian Koh
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | | | - Soi Moi Chye
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
30
|
Melatonin MT1 receptor as a novel target in neuropsychopharmacology: MT1 ligands, pathophysiological and therapeutic implications, and perspectives. Pharmacol Res 2019; 144:343-356. [DOI: 10.1016/j.phrs.2019.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/06/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022]
|
31
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
32
|
Reproductive response to male joining with ewes with different allelic variants of the MTNR1A gene. Anim Reprod Sci 2019; 200:67-74. [DOI: 10.1016/j.anireprosci.2018.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022]
|
33
|
Benleulmi-Chaachoua A, Hegron A, Le Boulch M, Karamitri A, Wierzbicka M, Wong V, Stagljar I, Delagrange P, Ahmad R, Jockers R. Melatonin receptors limit dopamine reuptake by regulating dopamine transporter cell-surface exposure. Cell Mol Life Sci 2018; 75:4357-4370. [PMID: 30043140 PMCID: PMC11105639 DOI: 10.1007/s00018-018-2876-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/26/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022]
Abstract
Melatonin, a neuro-hormone released by the pineal gland, has multiple effects in the central nervous system including the regulation of dopamine (DA) levels, but how melatonin accomplishes this task is not clear. Here, we show that melatonin MT1 and MT2 receptors co-immunoprecipitate with the DA transporter (DAT) in mouse striatal synaptosomes. Increased DA re-uptake and decreased amphetamine-induced locomotor activity were observed in the striatum of mice with targeted deletion of MT1 or MT2 receptors. In vitro experiments confirmed the interactions and recapitulated the inhibitory effect of melatonin receptors on DA re-uptake. Melatonin receptors retained DAT in the endoplasmic reticulum in its immature non-glycosylated form. In conclusion, we reveal one of the first molecular complexes between G protein-coupled receptors (MT1 and MT2) and transporters (DAT) in which melatonin receptors regulate the availability of DAT at the plasma membrane, thus limiting the striatal DA re-uptake capacity in mice.
Collapse
MESH Headings
- Animals
- Cell Membrane/metabolism
- Corpus Striatum/metabolism
- Dopamine/metabolism
- Dopamine Plasma Membrane Transport Proteins/genetics
- Dopamine Plasma Membrane Transport Proteins/metabolism
- HEK293 Cells
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/genetics
- Protein Binding
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Synaptosomes/metabolism
Collapse
Affiliation(s)
- Abla Benleulmi-Chaachoua
- Inserm, U1016, Institut Cochin, 22 Rue Mechain, 75014, Paris, France
- CNRS, UMR 8104, 22 Rue Mechain, 75014, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006, Paris, France
| | - Alan Hegron
- Inserm, U1016, Institut Cochin, 22 Rue Mechain, 75014, Paris, France
- CNRS, UMR 8104, 22 Rue Mechain, 75014, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006, Paris, France
| | - Marine Le Boulch
- Inserm, U1016, Institut Cochin, 22 Rue Mechain, 75014, Paris, France
- CNRS, UMR 8104, 22 Rue Mechain, 75014, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006, Paris, France
| | - Angeliki Karamitri
- Inserm, U1016, Institut Cochin, 22 Rue Mechain, 75014, Paris, France
- CNRS, UMR 8104, 22 Rue Mechain, 75014, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006, Paris, France
| | - Marta Wierzbicka
- Donnelly Centre, Department of Biochemistry, Faculty of Medicine, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Victoria Wong
- Donnelly Centre, Department of Biochemistry, Faculty of Medicine, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Igor Stagljar
- Donnelly Centre, Department of Biochemistry, Faculty of Medicine, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Philippe Delagrange
- Pôle d'Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy, France
| | - Raise Ahmad
- Inserm, U1016, Institut Cochin, 22 Rue Mechain, 75014, Paris, France
- CNRS, UMR 8104, 22 Rue Mechain, 75014, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006, Paris, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, 22 Rue Mechain, 75014, Paris, France.
- CNRS, UMR 8104, 22 Rue Mechain, 75014, Paris, France.
- University of Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006, Paris, France.
| |
Collapse
|
34
|
Osorno T, Arenas O, Ramírez-Suarez NJ, Echeverry FA, Gomez MDP, Nasi E. Light control of G protein signaling pathways by a novel photopigment. PLoS One 2018; 13:e0205015. [PMID: 30273391 PMCID: PMC6166976 DOI: 10.1371/journal.pone.0205015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/18/2018] [Indexed: 11/22/2022] Open
Abstract
Channelopsins and photo-regulated ion channels make it possible to use light to control electrical activity of cells. This powerful approach has lead to a veritable explosion of applications, though it is limited to changing membrane voltage of the target cells. An enormous potential could be tapped if similar opto-genetic techniques could be extended to the control of chemical signaling pathways. Photopigments from invertebrate photoreceptors are an obvious choice—as they do not bleach upon illumination -however, their functional expression has been problematic. We exploited an unusual opsin, pScop2, recently identified in ciliary photoreceptors of scallop. Phylogenetically, it is closer to vertebrate opsins, and offers the advantage of being a bi-stable photopigment. We inserted its coding sequence and a fluorescent protein reporter into plasmid vectors and demonstrated heterologous expression in various mammalian cell lines. HEK 293 cells were selected as a heterologous system for functional analysis, because wild type cells displayed the largest currents in response to the G-protein activator, GTP-γ-S. A line of HEK cells stably transfected with pScop2 was generated; after reconstitution of the photopigment with retinal, light responses were obtained in some cells, albeit of modest amplitude. In native photoreceptors pScop2 couples to Go; HEK cells express poorly this G-protein, but have a prominent Gq/PLC pathway linked to internal Ca mobilization. To enhance pScop2 competence to tap into this pathway, we swapped its third intracellular loop—important to confer specificity of interaction between 7TMDRs and G-proteins—with that of a Gq-linked opsin which we cloned from microvillar photoreceptors present in the same retina. The chimeric construct was evaluated by a Ca fluorescence assay, and was shown to mediate a robust mobilization of internal calcium in response to illumination. The results project pScop2 as a potentially powerful optogenetic tool to control signaling pathways.
Collapse
Affiliation(s)
- Tomás Osorno
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Oscar Arenas
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Fabio A. Echeverry
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - María del Pilar Gomez
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Enrico Nasi
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
35
|
Lochner A, Marais E, Huisamen B. Melatonin and cardioprotection against ischaemia/reperfusion injury: What's new? A review. J Pineal Res 2018; 65:e12490. [PMID: 29570845 DOI: 10.1111/jpi.12490] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Melatonin is a pleiotropic hormone with several functions. It binds to specific receptors and to a number of cytosolic proteins, activating a vast array of signalling pathways. Its potential to protect the heart against ischaemia/reperfusion damage has attracted much attention, particularly in view of its possible clinical applications. This review will focus mainly on the possible signalling pathways involved in melatonin-induced cardioprotection. In particular, the role of the melatonin receptors and events downstream of receptor activation, for example, the reperfusion injury salvage kinase (RISK), survivor activating factor enhancement (SAFE) and Notch pathways, the sirtuins, nuclear factor E2-related factor 2 (Nrf2) and translocases in the outer membrane (TOM70) will be discussed. Particular attention is given to the role of the mitochondrion in melatonin-induced cardioprotection. In addition, a brief overview will be given regarding the status quo of the clinical application of melatonin in humans.
Collapse
Affiliation(s)
- Amanda Lochner
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Erna Marais
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Barbara Huisamen
- Biomedical Research and Innovation Platform, SA Medical Research Council, Tygerberg, South Africa
| |
Collapse
|
36
|
Cecon E, Oishi A, Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br J Pharmacol 2018; 175:3263-3280. [PMID: 28707298 PMCID: PMC6057902 DOI: 10.1111/bph.13950] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, an evolutionally old molecule, is produced by the pineal gland in vertebrates, and it binds with high affinity to melatonin receptors, which are members of the GPCR family. Among the multiple effects attributed to melatonin, we will focus here on those that are dependent on the activation of the two mammalian MT1 and MT2 melatonin receptors. We briefly summarize the latest developments on synthetic melatonin receptor ligands, including multi-target-directed ligands, and the characterization of signalling-biased ligands. We discuss signalling pathways activated by melatonin receptors that appear to be highly cell- and tissue-dependent, emphasizing the impact of system bias on the functional outcome. Different proteins have been demonstrated to interact with melatonin receptors, and thus, we postulate that part of this system bias has its molecular basis in differences of the expression of receptor-associated proteins including heterodimerization partners. Finally, bias at the level of the receptor, by the expression of genetic receptor variants, will be discussed to show how a modified receptor function can have an effect on the risk for common diseases like type 2 diabetes in humans. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Erika Cecon
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Atsuro Oishi
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Ralf Jockers
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| |
Collapse
|
37
|
Baker J, Kimpinski K. Role of melatonin in blood pressure regulation: An adjunct anti-hypertensive agent. Clin Exp Pharmacol Physiol 2018; 45:755-766. [DOI: 10.1111/1440-1681.12942] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Jacquie Baker
- School of Kinesiology; Western University; London ON Canada
- Department of Clinical Neurological Sciences; London Health Sciences Centre; University Hospital; London ON Canada
| | - Kurt Kimpinski
- School of Kinesiology; Western University; London ON Canada
- Department of Clinical Neurological Sciences; London Health Sciences Centre; University Hospital; London ON Canada
- Schulich School of Medicine & Dentistry; Western University; London ON Canada
| |
Collapse
|
38
|
Krestinina OV, Baburina YL, Odinokova IV, Azarashvili TS, Akatov VS. Melatonin Modulates Phosphorylation of 2′,3′-Cyclic Nucleotide-3′-Phosphodiesterase in the Presence of Protoporphyrin IX in the Brain Mitochondria of Rats during the Functioning of the Non-Specific Mitochondrial Pore. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418010051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Owino S, Sánchez-Bretaño A, Tchio C, Cecon E, Karamitri A, Dam J, Jockers R, Piccione G, Noh HL, Kim T, Kim JK, Baba K, Tosini G. Nocturnal activation of melatonin receptor type 1 signaling modulates diurnal insulin sensitivity via regulation of PI3K activity. J Pineal Res 2018; 64:10.1111/jpi.12462. [PMID: 29247541 PMCID: PMC5843510 DOI: 10.1111/jpi.12462] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
Abstract
Recent genetic studies have highlighted the potential involvement of melatonin receptor 1 (MT1 ) and melatonin receptor 2 (MT2 ) in the pathogenesis of type 2 diabetes. Here, we report that mice lacking MT1 (MT1 KO) tend to accumulate more fat mass than WT mice and exhibit marked systemic insulin resistance. Additional experiments revealed that the main insulin signaling pathway affected by the loss of MT1 was the activation of phosphatidylinositol-3-kinase (PI3K). Transcripts of both catalytic and regulatory subunits of PI3K were strongly downregulated within MT1 KO mice. Moreover, the suppression of nocturnal melatonin levels within WT mice, by exposing mice to constant light, resulted in impaired PI3K activity and insulin resistance during the day, similar to what was observed in MT1 KO mice. Inversely, administration of melatonin to WT mice exposed to constant light was sufficient and necessary to restore insulin-mediated PI3K activity and insulin sensitivity. Hence, our data demonstrate that the activation of MT1 signaling at night modulates insulin sensitivity during the day via the regulation of the PI3K transcription and activity. Lastly, we provide evidence that decreased expression of MTNR1A (MT1 ) in the liver of diabetic individuals is associated with poorly controlled diabetes.
Collapse
Affiliation(s)
- Sharon Owino
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute and Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Aida Sánchez-Bretaño
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute and Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Cynthia Tchio
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute and Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Erika Cecon
- Inserm, U1016, Institut Cochin, Paris, France
| | | | - Julie Dam
- Inserm, U1016, Institut Cochin, Paris, France
| | | | | | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Taekyoon Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Jason K. Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, MA
| | - Kenkichi Baba
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute and Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Gianluca Tosini
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute and Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
40
|
Oishi A, Cecon E, Jockers R. Melatonin Receptor Signaling: Impact of Receptor Oligomerization on Receptor Function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:59-77. [DOI: 10.1016/bs.ircmb.2018.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Deng SL, Zhang Y, Yu K, Wang XX, Chen SR, Han DP, Cheng CY, Lian ZX, Liu YX. Melatonin up-regulates the expression of the GATA-4 transcription factor and increases testosterone secretion from Leydig cells through RORα signaling in an in vitro goat spermatogonial stem cell differentiation culture system. Oncotarget 2017; 8:110592-110605. [PMID: 29299171 PMCID: PMC5746406 DOI: 10.18632/oncotarget.22855] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Because androgen function is regulated by its receptors, androgen-androgen receptor signaling is crucial for regulating spermatogenesis. Androgen is mainly testosterone secreted by testis. Based on the results of early studies in goats, the administration of melatonin over an extended period of time increases steroid production, but the underlying mechanism remains unclear. Here, we report the expression of the melatonin membrane receptors MT1 and MT2 and the retinoic acid receptor-related orphan receptor-alpha (RORα) in the goat testis. An in vitro differentiation system using spermatogonial stem cells (SSCs) cultured in the presence of testicular somatic cells was able to support the formation of sperm-like cells with a single flagellum. The addition of 10-7 M melatonin to the in vitro culture system increased RORα expression and considerably improved the efficiency of haploid cell differentiation, and the addition of the RORα agonist CGP52608 significantly increased the testosterone concentration and expression of GATA binding factor 4 (GATA-4). Furthermore, inhibitors of melatonin membrane receptors and a RORα antagonist (T0901317) also led to a considerable reduction in the efficiency of haploid spermatid formation, which was coupled with the suppression of GATA-4 expression. Based on these results, RORα may play a crucial role in enhancing melatonin-regulated GATA-4 transcription and steroid hormone synthesis in the goat spermatogonial stem cell differentiation culture system.
Collapse
Affiliation(s)
- Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Kun Yu
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Xiu-Xia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - De-Ping Han
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Zheng-Xing Lian
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|
42
|
Bahna SG, Niles LP. Epigenetic regulation of melatonin receptors in neuropsychiatric disorders. Br J Pharmacol 2017; 175:3209-3219. [PMID: 28967098 DOI: 10.1111/bph.14058] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022] Open
Abstract
Melatonin, the primary indoleamine hormone of the mammalian pineal gland, is known to have a plethora of neuroregulatory, neuroprotective and other properties. Melatonergic signalling is mediated by its two GPCRs, MT1 and MT2 , which are widely expressed in the mammalian CNS. Melatonin levels and receptor expression often show a decrease during normal ageing, and this reduction may be accelerated in some disease states. Depleted melatonergic signalling has been associated with neuropsychiatric dysfunction and impairments in cognition, memory, neurogenesis and neurorestorative processes. The anticonvulsant and mood stabilizer, valproic acid (VPA), up-regulates melatonin MT1 and/or MT2 receptor expression in cultured cells and in the rat brain. VPA is known to affect gene expression through several mechanisms, including the modulation of intracellular kinase pathways and transcription factors, as well as the inhibition of histone deacetylase (HDAC) activity. Interestingly, other HDAC inhibitors, such as trichostatin A, which are structurally distinct from VPA, can also up-regulate melatonin receptor expression, unlike a VPA analogue, valpromide, which lacks HDAC inhibitory activity. Moreover, VPA increases histone H3 acetylation along the length of the MT1 gene promoter in rat C6 cells. These findings indicate that an epigenetic mechanism, linked to histone hyperacetylation/chromatin remodelling and associated changes in gene transcription, is involved in the up-regulation of melatonin receptors by VPA. Epigenetic induction of MT1 and/or MT2 receptor expression, in areas where these receptors are lost because of ageing, injury or disease, may be a promising therapeutic avenue for the management of CNS dysfunction and other disorders. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Sarra G Bahna
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Lennard P Niles
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
43
|
Galván-Arrieta T, Trueta C, Cercós MG, Valdés-Tovar M, Alarcón S, Oikawa J, Zamudio-Meza H, Benítez-King G. The role of melatonin in the neurodevelopmental etiology of schizophrenia: A study in human olfactory neuronal precursors. J Pineal Res 2017; 63. [PMID: 28500770 DOI: 10.1111/jpi.12421] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/05/2017] [Indexed: 01/13/2023]
Abstract
Dim light exposure of the mother during pregnancy has been proposed as one of the environmental factors that affect the fetal brain development in schizophrenia. Melatonin circulating levels are regulated by the environmental light/dark cycle. This hormone stimulates neuronal differentiation in the adult brain. However, little is known about its role in the fetal human brain development. Olfactory neuronal precursors (ONPs) are useful for studying the physiopathology of neuropsychiatric diseases because they mimic all the stages of neurodevelopment in culture. Here, we first characterized whether melatonin stimulates neuronal differentiation in cloned ONPs obtained from a healthy control subject (HCS). Then, melatonin effects were evaluated in primary cultures of ONPs derived from a patient diagnosed with schizophrenia (SZ) and an age- and gender-matched HCS. Axonal formation was evidenced morphologically by tau immunostaining and by GSK3β phosphorylated state. Potassium-evoked secretion was assessed as a functional feature of differentiated neurons. As well, we report the expression of MT1/2 receptors in human ONPs for the first time. Melatonin stimulated axonal formation and ramification in cloned ONPs through a receptor-mediated mechanism and enhanced the amount and velocity of axonal and somatic secretion. SZ ONPs displayed reduced axogenesis associated with lower levels of pGSK3β and less expression of melatonergic receptors regarding the HCS ONPs. Melatonin counteracted this reduction in SZ cells. Altogether, our results show that melatonin signaling is crucial for functional differentiation of human ONPs, strongly suggesting that a deficit of this indoleamine may lead to an impaired neurodevelopment which has been associated with the etiology of schizophrenia.
Collapse
Affiliation(s)
- Tania Galván-Arrieta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Citlali Trueta
- Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Montserrat G Cercós
- Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Marcela Valdés-Tovar
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Salvador Alarcón
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Julian Oikawa
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Horacio Zamudio-Meza
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| |
Collapse
|
44
|
Lo Sardo F, Muti P, Blandino G, Strano S. Melatonin and Hippo Pathway: Is There Existing Cross-Talk? Int J Mol Sci 2017; 18:ijms18091913. [PMID: 28878191 PMCID: PMC5618562 DOI: 10.3390/ijms18091913] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Melatonin is an indolic hormone that regulates a plethora of functions ranging from the regulation of circadian rhythms and antioxidant properties to the induction and maintenance of tumor suppressor pathways. It binds to specific receptors as well as to some cytosolic proteins, leading to several cellular signaling cascades. Recently, the involvement of melatonin in cancer insurgence and progression has clearly been demonstrated. In this review, we will first describe the structure and functions of melatonin and its receptors, and then discuss both molecular and epidemiological evidence on melatonin anticancer effects. Finally, we will shed light on potential cross-talk between melatonin signaling and the Hippo signaling pathway, along with the possible implications for cancer therapy.
Collapse
Affiliation(s)
- Federica Lo Sardo
- Oncogenomic and Epigenetic Unit, Molecular Chemoprevention Group, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy.
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Molecular Chemoprevention Group, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy.
| | - Sabrina Strano
- Oncogenomic and Epigenetic Unit, Molecular Chemoprevention Group, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy.
| |
Collapse
|
45
|
Nogueira RC, Sampaio LDFS. Eye and heart morphogenesis are dependent on melatonin signaling in chick embryos. ACTA ACUST UNITED AC 2017; 220:3826-3835. [PMID: 28839011 DOI: 10.1242/jeb.159848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/18/2017] [Indexed: 12/15/2022]
Abstract
Calmodulin is vital for chick embryos morphogenesis in the incubation time 48-66 h when the rudimentary C-shaped heart attains an S-shaped pattern and the optic vesicles develop into optic cups. Melatonin is in the extraembryonic yolk sac of the avian egg; melatonin binds calmodulin. The aim of this study was to investigate the function of melatonin in the formation of the chick embryo optic cups and S-shaped heart, by pharmacological methods and immunoassays. Mel1a melatonin receptor immunofluorescence was distributed in the optic cups and rudimentary hearts. We separated embryonated chicken eggs at 48 h of incubation into basal, control and drug-treated groups, with treatment applied in the egg air sac. At 66 h of incubation, embryos were excised from the eggs and analyzed. Embryos from the basal, control (distilled water), melatonin and 6-chloromelatonin (melatonin receptor agonist) groups had regular optic cups and an S-shaped heart, while those from the calmidazolium (calmodulin inhibitor) group did not. Embryos from the luzindole (melatonin receptor antagonist) and prazosin (Mel1c melatonin receptor antagonist) groups did not have regular optic cups. Embryos from the 4-P-PDOT (Mel1b melatonin receptor antagonist) group did not have an S-shaped heart. Previous application of the melatonin, 6-chloromelatonin or forskolin (adenylate cyclase enhancer) prevented the abnormal appearance of chick embryos from the calmidazolium, luzindole, prazosin and 4-P-PDOT groups. However, 6-chloromelatonin and forskolin only partially prevented the development of defective eye cups in embryos from the calmidazolium group. The results suggested that melatonin modulates chick embryo morphogenesis via calmodulin and membrane receptors.
Collapse
Affiliation(s)
- Renato C Nogueira
- Laboratório de Bioquímica do Desenvolvimento do Sistema Nervoso, Instituto de Ciências Biológicas, Universidade Federal do Pará. Av. Augusto Corrêa 1, CEP: 66075-110 Belém, PA, Brazil
| | - Lucia de Fatima S Sampaio
- Laboratório de Bioquímica do Desenvolvimento do Sistema Nervoso, Instituto de Ciências Biológicas, Universidade Federal do Pará. Av. Augusto Corrêa 1, CEP: 66075-110 Belém, PA, Brazil
| |
Collapse
|
46
|
Forrestel AC, Miedlich SU, Yurcheshen M, Wittlin SD, Sellix MT. Chronomedicine and type 2 diabetes: shining some light on melatonin. Diabetologia 2017; 60:808-822. [PMID: 27981356 DOI: 10.1007/s00125-016-4175-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/18/2016] [Indexed: 12/19/2022]
Abstract
In mammals, the circadian timing system drives rhythms of physiology and behaviour, including the daily rhythms of feeding and activity. The timing system coordinates temporal variation in the biochemical landscape with changes in nutrient intake in order to optimise energy balance and maintain metabolic homeostasis. Circadian disruption (e.g. as a result of shift work or jet lag) can disturb this continuity and increase the risk of cardiometabolic disease. Obesity and metabolic disease can also disturb the timing and amplitude of the clock in multiple organ systems, further exacerbating disease progression. As our understanding of the synergy between the timing system and metabolism has grown, an interest has emerged in the development of novel clock-targeting pharmaceuticals or nutraceuticals for the treatment of metabolic dysfunction. Recently, the pineal hormone melatonin has received some attention as a potential chronotherapeutic drug for metabolic disease. Melatonin is well known for its sleep-promoting effects and putative activity as a chronobiotic drug, stimulating coordination of biochemical oscillations through targeting the internal timing system. Melatonin affects the insulin secretory activity of the pancreatic beta cell, hepatic glucose metabolism and insulin sensitivity. Individuals with type 2 diabetes mellitus have lower night-time serum melatonin levels and increased risk of comorbid sleep disturbances compared with healthy individuals. Further, reduced melatonin levels, and mutations and/or genetic polymorphisms of the melatonin receptors are associated with an increased risk of developing type 2 diabetes. Herein we review our understanding of molecular clock control of glucose homeostasis, detail the influence of circadian disruption on glucose metabolism in critical peripheral tissues, explore the contribution of melatonin signalling to the aetiology of type 2 diabetes, and discuss the pros and cons of melatonin chronopharmacotherapy in disease management.
Collapse
Affiliation(s)
- Andrew C Forrestel
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 693, Rochester, NY, 14642, USA
| | - Susanne U Miedlich
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 693, Rochester, NY, 14642, USA
| | - Michael Yurcheshen
- UR Medicine Sleep Center, Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Steven D Wittlin
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 693, Rochester, NY, 14642, USA
| | - Michael T Sellix
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 693, Rochester, NY, 14642, USA.
| |
Collapse
|
47
|
Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF, Xu K. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis. Int J Mol Sci 2017; 18:E843. [PMID: 28420185 PMCID: PMC5412427 DOI: 10.3390/ijms18040843] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
There is highly credible evidence that melatonin mitigates cancer at the initiation, progression and metastasis phases. In many cases, the molecular mechanisms underpinning these inhibitory actions have been proposed. What is rather perplexing, however, is the large number of processes by which melatonin reportedly restrains cancer development and growth. These diverse actions suggest that what is being observed are merely epiphenomena of an underlying more fundamental action of melatonin that remains to be disclosed. Some of the arresting actions of melatonin on cancer are clearly membrane receptor-mediated while others are membrane receptor-independent and involve direct intracellular actions of this ubiquitously-distributed molecule. While the emphasis of melatonin/cancer research has been on the role of the indoleamine in restraining breast cancer, this is changing quickly with many cancer types having been shown to be susceptible to inhibition by melatonin. There are several facets of this research which could have immediate applications at the clinical level. Many studies have shown that melatonin's co-administration improves the sensitivity of cancers to inhibition by conventional drugs. Even more important are the findings that melatonin renders cancers previously totally resistant to treatment sensitive to these same therapies. Melatonin also inhibits molecular processes associated with metastasis by limiting the entrance of cancer cells into the vascular system and preventing them from establishing secondary growths at distant sites. This is of particular importance since cancer metastasis often significantly contributes to death of the patient. Another area that deserves additional consideration is related to the capacity of melatonin in reducing the toxic consequences of anti-cancer drugs while increasing their efficacy. Although this information has been available for more than a decade, it has not been adequately exploited at the clinical level. Even if the only beneficial actions of melatonin in cancer patients are its ability to attenuate acute and long-term drug toxicity, melatonin should be used to improve the physical wellbeing of the patients. The experimental findings, however, suggest that the advantages of using melatonin as a co-treatment with conventional cancer therapies would far exceed improvements in the wellbeing of the patients.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Sergio A Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Del Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico.
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | | | - Lilan Qin
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan, Medical University, Taichung 40201, Taiwan.
| | - Kexin Xu
- Department of Molecular Medicine, UT Health, San Antonio, TX 78229, USA.
| |
Collapse
|
48
|
Jenwitheesuk A, Boontem P, Wongchitrat P, Tocharus J, Mukda S, Govitrapong P. Melatonin regulates the aging mouse hippocampal homeostasis via the sirtuin1-FOXO1 pathway. EXCLI JOURNAL 2017; 16:340-353. [PMID: 28507478 PMCID: PMC5427465 DOI: 10.17179/excli2016-852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 12/15/2022]
Abstract
Sirtuin1 (SIRT1) and forkhead box transcription factor O subfamily 1 (FOXO1) play vital roles in the maintenance of hippocampal neuronal homeostasis during aging. Our previous study showed that melatonin, a hormone mainly secreted by the pineal gland, restored the impaired memory of aged mice. Age-related neuronal energy deficits contribute to the pathogenesis of several neurodegenerative disorders. An attempt has been made to determine whether the effect of melatonin is mediated through the SIRT1-FOXO1 pathways. The present results showed that aged mice (22 months old) exhibited significantly downregulated SIRT1, FOXO1, and melatonin receptors MT1 and MT2 protein expression but upregulated tumor suppressor protein 53 (p53), acetyl-p53 protein (Ac-p53), mouse double minute 2 homolog (MDM2), Dickkopf-1 (DKK1) protein expression in mouse hippocampus compared with the young group. Melatonin treatment (10 mg/kg, daily in drinking water for 6 months) in aged mice significantly attenuated the age-induced downregulation of SIRT1, FOXO1, MT1 and MT2 protein expression and attenuated the age-induced increase in p53, ac-p53, MDM2, and DKK1 protein and mRNA expression. Melatonin decreased p53 and MDM2 expression, which led to a decrease in FOXO1 degradation. These present results suggest that melatonin may help the hippocampal neuronal homeostasis by increasing SIRT1, FOXO1 and melatonin receptors expression while decreasing DKK1 expression in the aging hippocampus. DKK1 can be induced by the accumulation of amyloid β (Aβ) which is the major hallmark of Alzheimer's disease.
Collapse
Affiliation(s)
- Anorut Jenwitheesuk
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom, Thailand
| | - Parichart Boontem
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Prapimpun Wongchitrat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakon Pathom 73170, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom, Thailand.,Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand.,Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
49
|
Ramos E, Patiño P, Reiter RJ, Gil-Martín E, Marco-Contelles J, Parada E, de Los Rios C, Romero A, Egea J. Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med 2017; 104:32-53. [PMID: 28065781 DOI: 10.1016/j.freeradbiomed.2017.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
Stroke represents one of the most common causes of brain's vulnerability for many millions of people worldwide. The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca2+ dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death. Understanding this cascade of molecular events is mandatory in order to develop new therapeutic strategies for stroke. In this review article, we have highlighted the pleiotropic effects of melatonin to counteract the multiple processes of the ischemic cascade. Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission. Consequently, the synthesis of melatonin derivatives designed as new multitarget-directed products has focused a great interest in this area. This latter has been reinforced by the low cost of melatonin and its reduced toxicity. Furthermore, its spectrum of usages seems to be wide and with the potential for improving human health. Nevertheless, the molecular and cellular mechanisms underlying melatonin´s actions need to be further exploration and accordingly, new clinical studies should be conducted in human patients with ischemic brain pathologies.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology. University of Texas Health Science Center at San Antonio, USA
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - José Marco-Contelles
- Medicinal Chemistry Laboratory, Institute of General Organic Chemistry (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Esther Parada
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Cristobal de Los Rios
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Alejandro Romero
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Egea
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
50
|
Romero A, Ramos E, Patiño P, Oset-Gasque MJ, López-Muñoz F, Marco-Contelles J, Ayuso MI, Alcázar A. Melatonin and Nitrones As Potential Therapeutic Agents for Stroke. Front Aging Neurosci 2016; 8:281. [PMID: 27932976 PMCID: PMC5120103 DOI: 10.3389/fnagi.2016.00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/10/2016] [Indexed: 01/20/2023] Open
Abstract
Stroke is a disease of aging affecting millions of people worldwide, and recombinant tissue-type plasminogen activator (r-tPA) is the only treatment approved. However, r-tPA has a low therapeutic window and secondary effects which limit its beneficial outcome, urging thus the search for new more efficient therapies. Among them, neuroprotection based on melatonin or nitrones, as free radical traps, have arisen as drug candidates due to their strong antioxidant power. In this Perspective article, an update on the specific results of the melatonin and several new nitrones are presented.
Collapse
Affiliation(s)
- Alejandro Romero
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid Madrid, Spain
| | - Eva Ramos
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital Madrid, Spain
| | - Maria J Oset-Gasque
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University of Madrid, Ciudad Universitaria Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela UniversityMadrid, Spain; Neuropsychopharmacology Unit, "Hospital 12 de Octubre" Research InstituteMadrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC) Madrid, Spain
| | - María I Ayuso
- Neurovascular Research Group, Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, Sevilla, Spain
| | - Alberto Alcázar
- Department of Investigation, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|