1
|
Kaymak A, Colucci F, Ahmadipour M, Andreasi NG, Rinaldo S, Israel Z, Arkadir D, Telese R, Levi V, Zorzi G, Carpaneto J, Carecchio M, Prokisch H, Zech M, Garavaglia B, Bergman H, Eleopra R, Mazzoni A, Romito LM. Spiking Patterns in the Globus Pallidus Highlight Convergent Neural Dynamics across Diverse Genetic Dystonia Syndromes. Ann Neurol 2025; 97:826-844. [PMID: 39887724 PMCID: PMC12010065 DOI: 10.1002/ana.27185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/09/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025]
Abstract
OBJECTIVE Genetic dystonia is a complex movement disorder with diverse clinical manifestations resulting from pathogenic mutations in associated genes. A recent paradigm shift emphasizes the functional convergence among dystonia genes, hinting at a shared pathomechanism. However, the neural dynamics supporting this convergence remain largely unexplored. METHODS Herein, we analyzed microelectrode recordings acquired during pallidal deep brain stimulation surgery from 31 dystonia patients with pathogenic mutations in the AOPEP, GNAL, KMT2B, PANK2, PLA2G6, SGCE, THAP1, TOR1A, and VPS16 genes. We identified 1,694 single units whose activity was characterized by a broad set of neural features. RESULTS AOPEP, PANK2, and THAP1 displayed higher firing regularity, whereas GNAL, PLA2G6, KMT2B, and SGCE shared a large fraction of bursting neurons (> 26.6%), significantly exceeding the rate in other genes. TOR1A and VPS16 genes constituted an intermediate group, bridging these 2 groups, due to having the highest degree of spiking irregularity. Hierarchical clustering algorithms based on these dynamics confirmed the results obtained with first-order comparisons. INTERPRETATION Despite lacking common molecular pathways, dystonia genes share largely overlapping structures of neural patterns, in particular the degree of pallidal spiking regularity and bursting activity. We propose that the degree of desynchronization facilitated by pallidal neural bursts may explain the variability in deep brain stimulation (DBS) of the globus pallidus internus (GPi) surgery outcomes across genetic dystonia syndromes. Lastly, investigating the effects of genetic mutations on low-frequency pallidal activity could optimize personalized adaptive DBS treatments in patients with genetic dystonia. ANN NEUROL 2025;97:826-844.
Collapse
Affiliation(s)
- Ahmet Kaymak
- The Biorobotics InstituteScuola Superiore Sant'AnnaPisaItaly
- Department of Excellence for Robotics and AIScuola Superiore Sant'AnnaPisaItaly
| | - Fabiana Colucci
- Movement Disorders DepartmentFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
- Department of Neuroscience and RehabilitationUniversity of FerraraFerraraItaly
| | - Mahboubeh Ahmadipour
- The Biorobotics InstituteScuola Superiore Sant'AnnaPisaItaly
- Department of Excellence for Robotics and AIScuola Superiore Sant'AnnaPisaItaly
| | - Nico Golfrè Andreasi
- Movement Disorders DepartmentFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Sara Rinaldo
- Movement Disorders DepartmentFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Zvi Israel
- Department of NeurosurgeryHadassah Medical CenterJerusalemIsrael
- Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
| | - David Arkadir
- Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
- Department of NeurologyHadassah Medical CenterJerusalemIsrael
| | - Roberta Telese
- Movement Disorders DepartmentFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Vincenzo Levi
- Neurosurgery Department, Functional Neurosurgery UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Giovanna Zorzi
- Department of Pediatric NeuroscienceFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Jacopo Carpaneto
- The Biorobotics InstituteScuola Superiore Sant'AnnaPisaItaly
- Department of Excellence for Robotics and AIScuola Superiore Sant'AnnaPisaItaly
| | | | - Holger Prokisch
- Institute of NeurogenomicsHelmholtz Zentrum MünchenMunichGermany
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
| | - Michael Zech
- Institute of NeurogenomicsHelmholtz Zentrum MünchenMunichGermany
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
- Institute for Advanced StudyTechnical University of MunichGarchingGermany
| | - Barbara Garavaglia
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Hagai Bergman
- Department of NeurosurgeryHadassah Medical CenterJerusalemIsrael
- Department of Medical NeuroscienceInstitute of Medical Research Israel‐Canada (IMRIC), The Hebrew University‐Hadassah Medical SchoolJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew UniversityJerusalemIsrael
| | - Roberto Eleopra
- Movement Disorders DepartmentFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Alberto Mazzoni
- The Biorobotics InstituteScuola Superiore Sant'AnnaPisaItaly
- Department of Excellence for Robotics and AIScuola Superiore Sant'AnnaPisaItaly
| | - Luigi M. Romito
- Movement Disorders DepartmentFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| |
Collapse
|
2
|
El Atiallah I, Ponterio G, Meringolo M, Martella G, Sciamanna G, Tassone A, Montanari M, Mancini M, Castagno AN, Yu-Taeger L, Nguyen HHP, Bonsi P, Pisani A. Loss-of-function of GNAL dystonia gene impairs striatal dopamine receptors-mediated adenylyl cyclase/ cyclic AMP signaling pathway. Neurobiol Dis 2024; 191:106403. [PMID: 38182074 DOI: 10.1016/j.nbd.2024.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Loss-of-function mutations in the GNAL gene are responsible for DYT-GNAL dystonia. However, how GNAL mutations contribute to synaptic dysfunction is still unclear. The GNAL gene encodes the Gαolf protein, an isoform of stimulatory Gαs enriched in the striatum, with a key role in the regulation of cAMP signaling. Here, we used a combined biochemical and electrophysiological approach to study GPCR-mediated AC-cAMP cascade in the striatum of the heterozygous GNAL (GNAL+/-) rat model. We first analyzed adenosine type 2 (A2AR), and dopamine type 1 (D1R) receptors, which are directly coupled to Gαolf, and observed that the total levels of A2AR were increased, whereas D1R level was unaltered in GNAL+/- rats. In addition, the striatal isoform of adenylyl cyclase (AC5) was reduced, despite unaltered basal cAMP levels. Notably, the protein expression level of dopamine type 2 receptor (D2R), that inhibits the AC5-cAMP signaling pathway, was also reduced, similar to what observed in different DYT-TOR1A dystonia models. Accordingly, in the GNAL+/- rat striatum we found altered levels of the D2R regulatory proteins, RGS9-2, spinophilin, Gβ5 and β-arrestin2, suggesting a downregulation of D2R signaling cascade. Additionally, by analyzing the responses of striatal cholinergic interneurons to D2R activation, we found that the receptor-mediated inhibitory effect is significantly attenuated in GNAL+/- interneurons. Altogether, our findings demonstrate a profound alteration in the A2AR/D2R-AC-cAMP cascade in the striatum of the rat DYT-GNAL dystonia model, and provide a plausible explanation for our previous findings on the loss of dopamine D2R-dependent corticostriatal long-term depression.
Collapse
Affiliation(s)
- Ilham El Atiallah
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy; UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Sciamanna
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy; UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Mancini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Fondazione Mondino, Pavia, Italy
| | - Antonio N Castagno
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Fondazione Mondino, Pavia, Italy
| | - Libo Yu-Taeger
- Department of Human Genetics, Ruhr University Bochum, Germany
| | | | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Fondazione Mondino, Pavia, Italy.
| |
Collapse
|
3
|
Franz D, Richter A, Köhling R. Electrophysiological insights into deep brain stimulation of the network disorder dystonia. Pflugers Arch 2023; 475:1133-1147. [PMID: 37530804 PMCID: PMC10499667 DOI: 10.1007/s00424-023-02845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/02/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
Deep brain stimulation (DBS), a treatment for modulating the abnormal central neuronal circuitry, has become the standard of care nowadays and is sometimes the only option to reduce symptoms of movement disorders such as dystonia. However, on the one hand, there are still open questions regarding the pathomechanisms of dystonia and, on the other hand, the mechanisms of DBS on neuronal circuitry. That lack of knowledge limits the therapeutic effect and makes it hard to predict the outcome of DBS for individual dystonia patients. Finding electrophysiological biomarkers seems to be a promising option to enable adapted individualised DBS treatment. However, biomarker search studies cannot be conducted on patients on a large scale and experimental approaches with animal models of dystonia are needed. In this review, physiological findings of deep brain stimulation studies in humans and animal models of dystonia are summarised and the current pathophysiological concepts of dystonia are discussed.
Collapse
Affiliation(s)
- Denise Franz
- Oscar Langendorff Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, University of Leipzig, Leipzig, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University Medical Center Rostock, Rostock, Germany.
| |
Collapse
|
4
|
Fan Y, Si Z, Wang L, Zhang L. DYT- TOR1A dystonia: an update on pathogenesis and treatment. Front Neurosci 2023; 17:1216929. [PMID: 37638318 PMCID: PMC10448058 DOI: 10.3389/fnins.2023.1216929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
DYT-TOR1A dystonia is a neurological disorder characterized by involuntary muscle contractions and abnormal movements. It is a severe genetic form of dystonia caused by mutations in the TOR1A gene. TorsinA is a member of the AAA + family of adenosine triphosphatases (ATPases) involved in a variety of cellular functions, including protein folding, lipid metabolism, cytoskeletal organization, and nucleocytoskeletal coupling. Almost all patients with TOR1A-related dystonia harbor the same mutation, an in-frame GAG deletion (ΔGAG) in the last of its 5 exons. This recurrent variant results in the deletion of one of two tandem glutamic acid residues (i.e., E302/303) in a protein named torsinA [torsinA(△E)]. Although the mutation is hereditary, not all carriers will develop DYT-TOR1A dystonia, indicating the involvement of other factors in the disease process. The current understanding of the pathophysiology of DYT-TOR1A dystonia involves multiple factors, including abnormal protein folding, signaling between neurons and glial cells, and dysfunction of the protein quality control system. As there are currently no curative treatments for DYT-TOR1A dystonia, progress in research provides insight into its pathogenesis, leading to potential therapeutic and preventative strategies. This review summarizes the latest research advances in the pathogenesis, diagnosis, and treatment of DYT-TOR1A dystonia.
Collapse
Affiliation(s)
- Yuhang Fan
- Department of Neurology, the Second Hospital of Jilin University, Changchun, China
| | - Zhibo Si
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Linlin Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lei Zhang
- Department of Neurology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Taiwo FT, Adebayo PB. Neuroimaging findings in DYT1 dystonia and the pathophysiological implication: A systematic review. Brain Behav 2023; 13:e3023. [PMID: 37165749 PMCID: PMC10275528 DOI: 10.1002/brb3.3023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Primary generalized dystonia due to the DYT1 gene is an autosomal dominant disorder caused by a GAG deletion on chromosome 9q34. It is a well-defined, genetically proven, isolated dystonia syndrome. However, its pathophysiology remains unclear. OBJECTIVES This study was aimed at profiling the functional neuroimaging findings in DYT1 dystonia and harmonizing the pathophysiological implications for DYT1 dystonia from the standpoint of different neuroimaging techniques. METHODS A systematic review was conducted using identified studies published in English from Medline, PsycINFO, Embase, CINAHL, and the Cochrane Database of Systematic Reviews (CDSR), between 1985 and December 2019 (PROSPERO protocol CRD42018111211). RESULTS All DYT1 gene carriers irrespective of clinical penetrance have reduced striatal GABA, dopamine receptors and increased metabolic activity in the lentiform nucleus, supplementary motor area, and cerebellum in addition to an abnormal cerebellothalamocortical pathway. Nonmanifesting carriers on the other hand have a disruption of the distal (thalamocortical) segment and have larger putaminal volumes than manifesting carriers and healthy controls. Activation of the midbrain, thalamus, and sensorimotor cortex was only found in the manifesting carriers. CONCLUSIONS Therefore, we propose that DYT1 dystonia is a cerebellostriatothalamocortical network disorder affecting either the structure or function of the different structures or nodes in the network.
Collapse
Affiliation(s)
- Funmilola T. Taiwo
- Neurology Unit, Department of MedicineUniversity College HospitalIbadanNigeria
| | - Philip B. Adebayo
- Neurology Section, Department of Internal MedicineAga Khan UniversityDar es SalaamTanzania
| |
Collapse
|
6
|
Chambers NE, Millett M, Moehle MS. The muscarinic M4 acetylcholine receptor exacerbates symptoms of movement disorders. Biochem Soc Trans 2023; 51:691-702. [PMID: 37013974 PMCID: PMC10212540 DOI: 10.1042/bst20220525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023]
Abstract
Barbeau's seesaw hypothesis of dopamine-acetylcholine balance has predominated movement disorders literature for years. Both the simplicity of the explanation and the matching efficacy of anticholinergic treatment in movement disorders seem to support this hypothesis. However, evidence from translational and clinical studies in movement disorders indicates that many features of this simple balance are lost, broken, or absent from movement disorders models or in imaging studies of patients with these disorders. This review reappraises the dopamine-acetylcholine balance hypothesis in light of recent evidence and describes how the Gαi/o coupled muscarinic M4 receptor acts in opposition to dopamine signaling in the basal ganglia. We highlight how M4 signaling can ameliorate or exacerbate movement disorders symptoms and physiological correlates of these symptoms in specific disease states. Furthermore, we propose future directions for investigation of this mechanisms to fully understand the potential efficacy of M4 targeting therapeutics in movement disorders. Overall, initial evidence suggest that M4 is a promising pharmaceutical target to ameliorate motor symptoms of hypo- and hyper-dopaminergic disorders.
Collapse
Affiliation(s)
- Nicole E. Chambers
- Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Michael Millett
- Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Mark S. Moehle
- Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| |
Collapse
|
7
|
Rauschenberger L, Krenig EM, Stengl A, Knorr S, Harder TH, Steeg F, Friedrich MU, Grundmann-Hauser K, Volkmann J, Ip CW. Peripheral nerve injury elicits microstructural and neurochemical changes in the striatum and substantia nigra of a DYT-TOR1A mouse model with dystonia-like movements. Neurobiol Dis 2023; 179:106056. [PMID: 36863527 DOI: 10.1016/j.nbd.2023.106056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
The relationship between genotype and phenotype in DYT-TOR1A dystonia as well as the associated motor circuit alterations are still insufficiently understood. DYT-TOR1A dystonia has a remarkably reduced penetrance of 20-30%, which has led to the second-hit hypothesis emphasizing an important role of extragenetic factors in the symptomatogenesis of TOR1A mutation carriers. To analyze whether recovery from a peripheral nerve injury can trigger a dystonic phenotype in asymptomatic hΔGAG3 mice, which overexpress human mutated torsinA, a sciatic nerve crush was applied. An observer-based scoring system as well as an unbiased deep-learning based characterization of the phenotype showed that recovery from a sciatic nerve crush leads to significantly more dystonia-like movements in hΔGAG3 animals compared to wildtype control animals, which persisted over the entire monitored period of 12 weeks. In the basal ganglia, the analysis of medium spiny neurons revealed a significantly reduced number of dendrites, dendrite length and number of spines in the naïve and nerve-crushed hΔGAG3 mice compared to both wildtype control groups indicative of an endophenotypical trait. The volume of striatal calretinin+ interneurons showed alterations in hΔGAG3 mice compared to the wt groups. Nerve-injury related changes were found for striatal ChAT+, parvalbumin+ and nNOS+ interneurons in both genotypes. The dopaminergic neurons of the substantia nigra remained unchanged in number across all groups, however, the cell volume was significantly increased in nerve-crushed hΔGAG3 mice compared to naïve hΔGAG3 mice and wildtype littermates. Moreover, in vivo microdialysis showed an increase of dopamine and its metabolites in the striatum comparing nerve-crushed hΔGAG3 mice to all other groups. The induction of a dystonia-like phenotype in genetically predisposed DYT-TOR1A mice highlights the importance of extragenetic factors in the symptomatogenesis of DYT-TOR1A dystonia. Our experimental approach allowed us to dissect microstructural and neurochemical abnormalities in the basal ganglia, which either reflected a genetic predisposition or endophenotype in DYT-TOR1A mice or a correlate of the induced dystonic phenotype. In particular, neurochemical and morphological changes of the nigrostriatal dopaminergic system were correlated with symptomatogenesis.
Collapse
Affiliation(s)
- Lisa Rauschenberger
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Esther-Marie Krenig
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Alea Stengl
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Tristan H Harder
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Felix Steeg
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Maximilian U Friedrich
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Kathrin Grundmann-Hauser
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Germany; Centre for Rare Diseases, University of Tübingen, 72076, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| |
Collapse
|
8
|
El Atiallah I, Bonsi P, Tassone A, Martella G, Biella G, Castagno AN, Pisani A, Ponterio G. Synaptic Dysfunction in Dystonia: Update From Experimental Models. Curr Neuropharmacol 2023; 21:2310-2322. [PMID: 37464831 PMCID: PMC10556390 DOI: 10.2174/1570159x21666230718100156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 07/20/2023] Open
Abstract
Dystonia, the third most common movement disorder, refers to a heterogeneous group of neurological diseases characterized by involuntary, sustained or intermittent muscle contractions resulting in repetitive twisting movements and abnormal postures. In the last few years, several studies on animal models helped expand our knowledge of the molecular mechanisms underlying dystonia. These findings have reinforced the notion that the synaptic alterations found mainly in the basal ganglia and cerebellum, including the abnormal neurotransmitters signalling, receptor trafficking and synaptic plasticity, are a common hallmark of different forms of dystonia. In this review, we focus on the major contribution provided by rodent models of DYT-TOR1A, DYT-THAP1, DYT-GNAL, DYT/ PARK-GCH1, DYT/PARK-TH and DYT-SGCE dystonia, which reveal that an abnormal motor network and synaptic dysfunction represent key elements in the pathophysiology of dystonia.
Collapse
Affiliation(s)
- Ilham El Atiallah
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Gerardo Biella
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Antonio N. Castagno
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Fondazione Mondino, Pavia, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Fondazione Mondino, Pavia, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
9
|
Cheng F, Zheng W, Barbuti PA, Bonsi P, Liu C, Casadei N, Ponterio G, Meringolo M, Admard J, Dording CM, Yu-Taeger L, Nguyen HP, Grundmann-Hauser K, Ott T, Houlden H, Pisani A, Krüger R, Riess O. DYT6 mutated THAP1 is a cell type dependent regulator of the SP1 family. Brain 2022; 145:3968-3984. [PMID: 35015830 DOI: 10.1093/brain/awac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 11/12/2022] Open
Abstract
DYT6 dystonia is caused by mutations in the transcription factor THAP1. THAP1 knock-out or knock-in mouse models revealed complex gene expression changes, which are potentially responsible for the pathogenesis of DYT6 dystonia. However, how THAP1 mutations lead to these gene expression alterations and whether the gene expression changes are also reflected in the brain of THAP1 patients are still unclear. In this study we used epigenetic and transcriptomic approaches combined with multiple model systems [THAP1 patients' frontal cortex, THAP1 patients' induced pluripotent stem cell (iPSC)-derived midbrain dopaminergic neurons, THAP1 heterozygous knock-out rat model, and THAP1 heterozygous knock-out SH-SY5Y cell lines] to uncover a novel function of THAP1 and the potential pathogenesis of DYT6 dystonia. We observed that THAP1 targeted only a minority of differentially expressed genes caused by its mutation. THAP1 mutations lead to dysregulation of genes mainly through regulation of SP1 family members, SP1 and SP4, in a cell type dependent manner. Comparing global differentially expressed genes detected in THAP1 patients' iPSC-derived midbrain dopaminergic neurons and THAP1 heterozygous knock-out rat striatum, we observed many common dysregulated genes and 61 of them were involved in dystonic syndrome-related pathways, like synaptic transmission, nervous system development, and locomotor behaviour. Further behavioural and electrophysiological studies confirmed the involvement of these pathways in THAP1 knock-out rats. Taken together, our study characterized the function of THAP1 and contributes to the understanding of the pathogenesis of primary dystonia in humans and rats. As SP1 family members were dysregulated in some neurodegenerative diseases, our data may link THAP1 dystonia to multiple neurological diseases and may thus provide common treatment targets.
Collapse
Affiliation(s)
- Fubo Cheng
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Wenxu Zheng
- Institute for Ophthalmic Research Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Peter Antony Barbuti
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- NGS Competence Center Tuebingen, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- NGS Competence Center Tuebingen, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Claire Marie Dording
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Libo Yu-Taeger
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- Department of Human Genetics, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | | | - Thomas Ott
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS C. Mondino Foundation, Pavia, Italy
| | - Rejko Krüger
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
- NGS Competence Center Tuebingen, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
10
|
Downs AM, Donsante Y, Jinnah H, Hess EJ. Blockade of M4 muscarinic receptors on striatal cholinergic interneurons normalizes striatal dopamine release in a mouse model of TOR1A dystonia. Neurobiol Dis 2022; 168:105699. [DOI: 10.1016/j.nbd.2022.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022] Open
|
11
|
Scarduzio M, Hess EJ, Standaert DG, Eskow Jaunarajs KL. Striatal synaptic dysfunction in dystonia and levodopa-induced dyskinesia. Neurobiol Dis 2022; 166:105650. [DOI: 10.1016/j.nbd.2022.105650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
|
12
|
Burbaud P, Courtin E, Ribot B, Guehl D. Basal ganglia: From the bench to the bed. Eur J Paediatr Neurol 2022; 36:99-106. [PMID: 34953339 DOI: 10.1016/j.ejpn.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/01/2021] [Indexed: 11/24/2022]
Abstract
The basal ganglia (BG) encompass a set of archaic structures of the vertebrate brain that have evolved relatively little during the phylogenetic process. From an anatomic point of view, they are widely distributed throughout brain from the telencephalon to the mesencephalon. The fact that they have been preserved through evolution suggests that they may play a critical role in behavioral monitoring. Indeed, a line of evidence suggests that they are involved in the building of behavioral routines and habits that drive most of our activities in everyday life. In this article, we first examine the organization and physiology of the basal ganglia to explain their function in the control of behavior. Then, we show how disruption of the putamen, and to a lesser extent of the cerebellum, might lead to various dystonic syndromes that frequently arise during childhood.
Collapse
Affiliation(s)
- P Burbaud
- Centre Hospitalier Universitaire de Bordeaux, Institut des Maladies Neurodégénératives, CNRS, University of Bordeaux, France.
| | - E Courtin
- Centre Hospitalier Universitaire de Bordeaux, Institut des Maladies Neurodégénératives, CNRS, University of Bordeaux, France
| | - B Ribot
- Centre Hospitalier Universitaire de Bordeaux, Institut des Maladies Neurodégénératives, CNRS, University of Bordeaux, France
| | - D Guehl
- Centre Hospitalier Universitaire de Bordeaux, Institut des Maladies Neurodégénératives, CNRS, University of Bordeaux, France
| |
Collapse
|
13
|
Sciamanna G, El Atiallah I, Montanari M, Pisani A. Plasticity, genetics and epigenetics in dystonia: An update. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:199-206. [PMID: 35034734 DOI: 10.1016/b978-0-12-819410-2.00011-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dystonia represents a group of movement disorders characterized by involuntary muscle contractions that result in abnormal posture and twisting movements. In the last 20 years several animal models have been generated, greatly improving our knowledge of the neural and molecular mechanism underlying this pathological condition, but the pathophysiology remains still poorly understood. In this review we will discuss recent genetic factors related to dystonia and the current understanding of synaptic plasticity alterations reported by both clinical and experimental research. We will also present recent evidence involving epigenetics mechanisms in dystonia.
Collapse
Affiliation(s)
- Giuseppe Sciamanna
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Ilham El Atiallah
- Department of Systems Medicine, University of Rome 2 Tor Vergata, Rome, Italy
| | - Martina Montanari
- Department of Systems Medicine, University of Rome 2 Tor Vergata, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Movement Disorders Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
14
|
Frederick NM, Pooler MM, Shah P, Didonna A, Opal P. Pharmacological perturbation reveals deficits in D2 receptor responses in Thap1 null mice. Ann Clin Transl Neurol 2021; 8:2302-2308. [PMID: 34802187 PMCID: PMC8670318 DOI: 10.1002/acn3.51481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
The primary dystonia DYT6 is caused by mutations in the transcription factor Thanatos‐associated protein 1 (THAP1). To understand THAP1’s functions, we generated mice lacking THAP1 in the nervous system. THAP1 loss causes locomotor deficits associated with transcriptional changes. Since many of the genes misregulated involve dopaminergic signaling, we pharmacologically challenged the two striatal canonical dopamine pathways: the direct, regulated by the D1 receptor, and the indirect, regulated by the D2 receptor. We discovered that depleting THAP1 specifically interferes with the D2 receptor responses, pointing to a selective misregulation of the indirect pathway in DYT6 with implications for pathogenesis and treatment.
Collapse
Affiliation(s)
- Natalie M Frederick
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, 60208, USA
| | - Morgan M Pooler
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Parth Shah
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Alessandro Didonna
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, 94158, USA
| | - Puneet Opal
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA.,Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| |
Collapse
|
15
|
Knorr S, Musacchio T, Paulat R, Matthies C, Endres H, Wenger N, Harms C, Ip CW. Experimental deep brain stimulation in rodent models of movement disorders. Exp Neurol 2021; 348:113926. [PMID: 34793784 DOI: 10.1016/j.expneurol.2021.113926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022]
Abstract
Deep brain stimulation (DBS) is the preferred treatment for therapy-resistant movement disorders such as dystonia and Parkinson's disease (PD), mostly in advanced disease stages. Although DBS is already in clinical use for ~30 years and has improved patients' quality of life dramatically, there is still limited understanding of the underlying mechanisms of action. Rodent models of PD and dystonia are essential tools to elucidate the mode of action of DBS on behavioral and multiscale neurobiological levels. Advances have been made in identifying DBS effects on the central motor network, neuroprotection and neuroinflammation in DBS studies of PD rodent models. The phenotypic dtsz mutant hamster and the transgenic DYT-TOR1A (ΔETorA) rat proved as valuable models of dystonia for preclinical DBS research. In addition, continuous refinements of rodent DBS technologies are ongoing and have contributed to improvement of experimental quality. We here review the currently existing literature on experimental DBS in PD and dystonia models regarding the choice of models, experimental design, neurobiological readouts, as well as methodological implications. Moreover, we provide an overview of the technical stage of existing DBS devices for use in rodent studies.
Collapse
Affiliation(s)
- Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany.
| | - Thomas Musacchio
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany.
| | - Raik Paulat
- Department of Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.
| | - Cordula Matthies
- Department of Neurosurgery, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany.
| | - Heinz Endres
- University of Applied Science Würzburg-Schweinfurt, Schweinfurt, Germany.
| | - Nikolaus Wenger
- Department of Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.
| | - Christoph Harms
- Department of Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany.
| |
Collapse
|
16
|
Wilkes BJ, DeSimone JC, Liu Y, Chu WT, Coombes SA, Li Y, Vaillancourt DE. Cell-specific effects of Dyt1 knock-out on sensory processing, network-level connectivity, and motor deficits. Exp Neurol 2021; 343:113783. [PMID: 34119482 PMCID: PMC8324325 DOI: 10.1016/j.expneurol.2021.113783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/19/2022]
Abstract
DYT1 dystonia is a debilitating movement disorder characterized by repetitive, unintentional movements and postures. The disorder has been linked to mutation of the TOR1A/DYT1 gene encoding torsinA. Convergent evidence from studies in humans and animal models suggest that striatal medium spiny neurons and cholinergic neurons are important in DYT1 dystonia. What is not known is how torsinA dysfunction in these specific cell types contributes to the pathophysiology of DYT1 dystonia. In this study we sought to determine whether torsinA dysfunction in cholinergic neurons alone is sufficient to generate the sensorimotor dysfunction and brain changes associated with dystonia, or if torsinA dysfunction in a broader subset of cell types is needed. We generated two genetically modified mouse models, one with selective Dyt1 knock-out from dopamine-2 receptor expressing neurons (D2KO) and one where only cholinergic neurons are impacted (Ch2KO). We assessed motor deficits and performed in vivo 11.1 T functional MRI to assess sensory-evoked brain activation and connectivity, along with diffusion MRI to assess brain microstructure. We found that D2KO mice showed greater impairment than Ch2KO mice, including reduced sensory-evoked brain activity in key regions of the sensorimotor network, and altered functional connectivity of the striatum that correlated with motor deficits. These findings suggest that (1) the added impact of torsinA dysfunction in medium spiny and dopaminergic neurons of the basal ganglia generate more profound deficits than the dysfunction of cholinergic neurons alone, and (2) that sensory network impairments are linked to motor deficits in DYT1 dystonia.
Collapse
Affiliation(s)
- B J Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | - J C DeSimone
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Y Liu
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - W T Chu
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - S A Coombes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Y Li
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - D E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Briscione MA, Dinasarapu AR, Bagchi P, Donsante Y, Roman KM, Downs AM, Fan X, Hoehner J, Jinnah HA, Hess EJ. Differential expression of striatal proteins in a mouse model of DOPA-responsive dystonia reveals shared mechanisms among dystonic disorders. Mol Genet Metab 2021; 133:352-361. [PMID: 34092491 PMCID: PMC8292208 DOI: 10.1016/j.ymgme.2021.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022]
Abstract
Dystonia is characterized by involuntary muscle contractions that cause debilitating twisting movements and postures. Although dysfunction of the basal ganglia, a brain region that mediates movement, is implicated in many forms of dystonia, the underlying mechanisms are unclear. The inherited metabolic disorder DOPA-responsive dystonia is considered a prototype for understanding basal ganglia dysfunction in dystonia because it is caused by mutations in genes necessary for the synthesis of the neurotransmitter dopamine, which mediates the activity of the basal ganglia. Therefore, to reveal abnormal striatal cellular processes and pathways implicated in dystonia, we used an unbiased proteomic approach in a knockin mouse model of DOPA-responsive dystonia, a model in which the striatum is known to play a central role in the expression of dystonia. Fifty-seven of the 1805 proteins identified were differentially regulated in DOPA-responsive dystonia mice compared to control mice. Most differentially regulated proteins were associated with gene ontology terms that implicated either mitochondrial or synaptic dysfunction whereby proteins associated with mitochondrial function were generally over-represented and proteins associated with synaptic function were largely under-represented. Remarkably, nearly 20% of the differentially regulated striatal proteins identified in our screen are associated with pathogenic variants that cause inherited disorders with dystonia as a sign in humans suggesting shared mechanisms across many different forms of dystonia.
Collapse
Affiliation(s)
- Maria A Briscione
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | | | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, Atlanta, GA, USA
| | - Yuping Donsante
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Kaitlyn M Roman
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Anthony M Downs
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Xueliang Fan
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Jessica Hoehner
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - H A Jinnah
- Department of Human Genetics, Emory University, Atlanta, GA, USA; Department of Neurology, Emory University, Atlanta, GA, USA; Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Ellen J Hess
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA; Department of Neurology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
18
|
Williams L, Butler JS, O'Riordan S, Skeehan S, Collins C, Hutchinson M. Response to "isolated head tremor: A DAT SPECT and somatosensory temporal discrimination study.". Parkinsonism Relat Disord 2021; 87:166-167. [PMID: 34090789 DOI: 10.1016/j.parkreldis.2021.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
In response to Ferrazano and colleagues' observation of normal DAT binding in patients with isolated head tremor but with abnormal STDT, we report normal 123-IBZM SPECT in a cohort of patients with adult-onset idiopathic focal dystonia with cervical dystonia and their unaffected first-degree relatives both with normal and abnormal TDTs. We discuss molecular imaging findings in dystonia.
Collapse
Affiliation(s)
- L Williams
- Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland.
| | - J S Butler
- School of Mathematical Sciences, Technological Universtiy Dublin, Dublin, Ireland
| | - S O'Riordan
- Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland
| | - S Skeehan
- Department of Radiology, St. Vincent's University Hospital, Dublin, Ireland
| | - C Collins
- Department of Radiology, St. Vincent's University Hospital, Dublin, Ireland
| | - M Hutchinson
- Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
19
|
Downs AM, Fan X, Kadakia RF, Donsante Y, Jinnah HA, Hess EJ. Cell-intrinsic effects of TorsinA(ΔE) disrupt dopamine release in a mouse model of TOR1A dystonia. Neurobiol Dis 2021; 155:105369. [PMID: 33894367 DOI: 10.1016/j.nbd.2021.105369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
TOR1A-associated dystonia, otherwise known as DYT1 dystonia, is an inherited dystonia caused by a three base-pair deletion in the TOR1A gene (TOR1AΔE). Although the mechanisms underlying the dystonic movements are largely unknown, abnormalities in striatal dopamine and acetylcholine neurotransmission are consistently implicated whereby dopamine release is reduced while cholinergic tone is increased. Because striatal cholinergic neurotransmission mediates dopamine release, it is not known if the dopamine release deficit is mediated indirectly by abnormal acetylcholine neurotransmission or if Tor1a(ΔE) acts directly within dopaminergic neurons to attenuate release. To dissect the microcircuit that governs the deficit in dopamine release, we conditionally expressed Tor1a(ΔE) in either dopamine neurons or cholinergic interneurons in mice and assessed striatal dopamine release using ex vivo fast scan cyclic voltammetry or dopamine efflux using in vivo microdialysis. Conditional expression of Tor1a(ΔE) in cholinergic neurons did not affect striatal dopamine release. In contrast, conditional expression of Tor1a(ΔE) in dopamine neurons reduced dopamine release to 50% of normal, which is comparable to the deficit in Tor1a+/ΔE knockin mice that express the mutation ubiquitously. Despite the deficit in dopamine release, we found that the Tor1a(ΔE) mutation does not cause obvious nerve terminal dysfunction as other presynaptic mechanisms, including electrical excitability, vesicle recycling/refilling, Ca2+ signaling, D2 dopamine autoreceptor function and GABAB receptor function, are intact. Although the mechanistic link between Tor1a(ΔE) and dopamine release is unclear, these results clearly demonstrate that the defect in dopamine release is caused by the action of the Tor1a(ΔE) mutation within dopamine neurons.
Collapse
Affiliation(s)
- Anthony M Downs
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - Xueliang Fan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - Radhika F Kadakia
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - Yuping Donsante
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - H A Jinnah
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA; Department of Human Genetics, Emory University School of Medicine, 101 Woodruff Circle, WMB 6300, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, 101 Woodruff Circle, WMB 6300, Atlanta, GA 30322, USA
| | - Ellen J Hess
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Feuerstein JS, Taylor M, Kwak JJ, Berman BD. Parkinsonism and Positive Dopamine Transporter Imaging in a Patient with a Novel KMT2B Variant. Mov Disord Clin Pract 2021; 8:279-281. [PMID: 33816656 DOI: 10.1002/mdc3.13140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jeanne S Feuerstein
- Department of Neurology University of Colorado School of Medicine Aurora Colorado USA.,Department of Neurology Rocky Mountain Regional VA Medical Center Aurora Colorado USA
| | - Matthew Taylor
- Department of Medicine Adult Medical Genetics Program, University of Colorado School of Medicine Aurora Colorado USA
| | - Jennifer J Kwak
- Department of Radiology Nuclear Medicine Division, University of Colorado School of Medicine Aurora Colorado USA
| | - Brian D Berman
- Department of Neurology University of Colorado School of Medicine Aurora Colorado USA.,Department of Neurology Virginia Commonwealth University Richmond Virginia USA
| |
Collapse
|
21
|
Knorr S, Rauschenberger L, Pasos UR, Friedrich MU, Peach RL, Grundmann-Hauser K, Ott T, O'Leary A, Reif A, Tovote P, Volkmann J, Ip CW. The evolution of dystonia-like movements in TOR1A rats after transient nerve injury is accompanied by dopaminergic dysregulation and abnormal oscillatory activity of a central motor network. Neurobiol Dis 2021; 154:105337. [PMID: 33753289 DOI: 10.1016/j.nbd.2021.105337] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
TOR1A is the most common inherited form of dystonia with still unclear pathophysiology and reduced penetrance of 30-40%. ∆ETorA rats mimic the TOR1A disease by expression of the human TOR1A mutation without presenting a dystonic phenotype. We aimed to induce dystonia-like symptoms in male ∆ETorA rats by peripheral nerve injury and to identify central mechanism of dystonia development. Dystonia-like movements (DLM) were assessed using the tail suspension test and implementing a pipeline of deep learning applications. Neuron numbers of striatal parvalbumin+, nNOS+, calretinin+, ChAT+ interneurons and Nissl+ cells were estimated by unbiased stereology. Striatal dopaminergic metabolism was analyzed via in vivo microdialysis, qPCR and western blot. Local field potentials (LFP) were recorded from the central motor network. Deep brain stimulation (DBS) of the entopeduncular nucleus (EP) was performed. Nerve-injured ∆ETorA rats developed long-lasting DLM over 12 weeks. No changes in striatal structure were observed. Dystonic-like ∆ETorA rats presented a higher striatal dopaminergic turnover and stimulus-induced elevation of dopamine efflux compared to the control groups. Higher LFP theta power in the EP of dystonic-like ∆ETorA compared to wt rats was recorded. Chronic EP-DBS over 3 weeks led to improvement of DLM. Our data emphasizes the role of environmental factors in TOR1A symptomatogenesis. LFP analyses indicate that the pathologically enhanced theta power is a physiomarker of DLM. This TOR1A model replicates key features of the human TOR1A pathology on multiple biological levels and is therefore suited for further analysis of dystonia pathomechanism.
Collapse
Affiliation(s)
- Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, 97080, Germany
| | | | - Uri Ramirez Pasos
- Department of Neurology, University Hospital of Würzburg, 97080, Germany
| | | | - Robert L Peach
- Department of Neurology, University Hospital of Würzburg, 97080, Germany
| | - Kathrin Grundmann-Hauser
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, 72076, Germany; Centre for Rare Diseases, University of Tübingen, 72076, Germany
| | - Thomas Ott
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, 72076, Germany; Core Facility Transgenic Animals, University Hospital of Tübingen, 72076, Germany
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, 60528, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, 60528, Germany
| | - Philip Tovote
- Systems Neurobiology, Institute of Clinical Neurobiology, University Hospital of Würzburg, Versbacher Straße 5, 97080, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, 97080, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, 97080, Germany.
| |
Collapse
|
22
|
D’Angelo V, Giorgi M, Paldino E, Cardarelli S, Fusco FR, Saverioni I, Sorge R, Martella G, Biagioni S, Mercuri NB, Pisani A, Sancesario G. A2A Receptor Dysregulation in Dystonia DYT1 Knock-Out Mice. Int J Mol Sci 2021; 22:2691. [PMID: 33799994 PMCID: PMC7962104 DOI: 10.3390/ijms22052691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/01/2021] [Indexed: 01/28/2023] Open
Abstract
We aimed to investigate A2A receptors in the basal ganglia of a DYT1 mouse model of dystonia. A2A was studied in control Tor1a+/+ and Tor1a+/- knock-out mice. A2A expression was assessed by anti-A2A antibody immunofluorescence and Western blotting. The co-localization of A2A was studied in striatal cholinergic interneurons identified by anti-choline-acetyltransferase (ChAT) antibody. A2A mRNA and cyclic adenosine monophosphate (cAMP) contents were also assessed. In Tor1a+/+, Western blotting detected an A2A 45 kDa band, which was stronger in the striatum and the globus pallidus than in the entopeduncular nucleus. Moreover, in Tor1a+/+, immunofluorescence showed A2A roundish aggregates, 0.3-0.4 μm in diameter, denser in the neuropil of the striatum and the globus pallidus than in the entopeduncular nucleus. In Tor1a+/-, A2A Western blotting expression and immunofluorescence aggregates appeared either increased in the striatum and the globus pallidus, or reduced in the entopeduncular nucleus. Moreover, in Tor1a+/-, A2A aggregates appeared increased in number on ChAT positive interneurons compared to Tor1a+/+. Finally, in Tor1a+/-, an increased content of cAMP signal was detected in the striatum, while significant levels of A2A mRNA were neo-expressed in the globus pallidus. In Tor1a+/-, opposite changes of A2A receptors' expression in the striatal-pallidal complex and the entopeduncular nucleus suggest that the pathophysiology of dystonia is critically dependent on a composite functional imbalance of the indirect over the direct pathway in basal ganglia.
Collapse
Affiliation(s)
- Vincenza D’Angelo
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (V.D.); (R.S.); (G.M.); (N.B.M.)
| | - Mauro Giorgi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (S.C.); (I.S.); (S.B.)
| | - Emanuela Paldino
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (E.P.); (F.R.F.)
| | - Silvia Cardarelli
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (S.C.); (I.S.); (S.B.)
| | | | - Ilaria Saverioni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (S.C.); (I.S.); (S.B.)
| | - Roberto Sorge
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (V.D.); (R.S.); (G.M.); (N.B.M.)
| | - Giuseppina Martella
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (V.D.); (R.S.); (G.M.); (N.B.M.)
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (E.P.); (F.R.F.)
| | - Stefano Biagioni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (S.C.); (I.S.); (S.B.)
| | - Nicola B. Mercuri
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (V.D.); (R.S.); (G.M.); (N.B.M.)
| | - Antonio Pisani
- IRCCS Mondino Foundation, 27100 Pavia, Italy;
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giuseppe Sancesario
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (V.D.); (R.S.); (G.M.); (N.B.M.)
| |
Collapse
|
23
|
Mencacci NE, Reynolds R, Ruiz SG, Vandrovcova J, Forabosco P, Sánchez-Ferrer A, Volpato V, Weale ME, Bhatia KP, Webber C, Hardy J, Botía JA, Ryten M. Dystonia genes functionally converge in specific neurons and share neurobiology with psychiatric disorders. Brain 2021; 143:2771-2787. [PMID: 32889528 PMCID: PMC8354373 DOI: 10.1093/brain/awaa217] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/19/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Dystonia is a neurological disorder characterized by sustained or intermittent muscle contractions causing abnormal movements and postures, often occurring in absence of any structural brain abnormality. Psychiatric comorbidities, including anxiety, depression, obsessive-compulsive disorder and schizophrenia, are frequent in patients with dystonia. While mutations in a fast-growing number of genes have been linked to Mendelian forms of dystonia, the cellular, anatomical, and molecular basis remains unknown for most genetic forms of dystonia, as does its genetic and biological relationship to neuropsychiatric disorders. Here we applied an unbiased systems-biology approach to explore the cellular specificity of all currently known dystonia-associated genes, predict their functional relationships, and test whether dystonia and neuropsychiatric disorders share a genetic relationship. To determine the cellular specificity of dystonia-associated genes in the brain, single-nuclear transcriptomic data derived from mouse brain was used together with expression-weighted cell-type enrichment. To identify functional relationships among dystonia-associated genes, we determined the enrichment of these genes in co-expression networks constructed from 10 human brain regions. Stratified linkage-disequilibrium score regression was used to test whether co-expression modules enriched for dystonia-associated genes significantly contribute to the heritability of anxiety, major depressive disorder, obsessive-compulsive disorder, schizophrenia, and Parkinson's disease. Dystonia-associated genes were significantly enriched in adult nigral dopaminergic neurons and striatal medium spiny neurons. Furthermore, 4 of 220 gene co-expression modules tested were significantly enriched for the dystonia-associated genes. The identified modules were derived from the substantia nigra, putamen, frontal cortex, and white matter, and were all significantly enriched for genes associated with synaptic function. Finally, we demonstrate significant enrichments of the heritability of major depressive disorder, obsessive-compulsive disorder and schizophrenia within the putamen and white matter modules, and a significant enrichment of the heritability of Parkinson's disease within the substantia nigra module. In conclusion, multiple dystonia-associated genes interact and contribute to pathogenesis likely through dysregulation of synaptic signalling in striatal medium spiny neurons, adult nigral dopaminergic neurons and frontal cortical neurons. Furthermore, the enrichment of the heritability of psychiatric disorders in the co-expression modules enriched for dystonia-associated genes indicates that psychiatric symptoms associated with dystonia are likely to be intrinsic to its pathophysiology.
Collapse
Affiliation(s)
- Niccolò E Mencacci
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Regina Reynolds
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Sonia Garcia Ruiz
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Jana Vandrovcova
- Reta Lila Weston Research Laboratories, Institute of Neurology, University College London, London, UK
| | - Paola Forabosco
- Istituto di Ricerca Genetica e Biomedica, Cittadella Universitaria di Cagliari, 09042, Monserrato, Sardinia, Italy
| | - Alvaro Sánchez-Ferrer
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus Espinardo, E-30100, Murcia, Spain.,Murcia Biomedical Research Institute (IMIB-Arrixaca), 30120, Murcia, Spain
| | - Viola Volpato
- UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
| | | | | | - Michael E Weale
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | - Caleb Webber
- UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK
| | - John Hardy
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK.,Reta Lila Weston Research Laboratories, Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute at University College London, London, UK.,Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Juan A Botía
- Reta Lila Weston Research Laboratories, Institute of Neurology, University College London, London, UK.,Department of Information and Communications Engineering, University of Murcia, Spain
| | - Mina Ryten
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK.,Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK.,Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK
| |
Collapse
|
24
|
Liu Y, Xing H, Yokoi F, Vaillancourt DE, Li Y. Investigating the role of striatal dopamine receptor 2 in motor coordination and balance: Insights into the pathogenesis of DYT1 dystonia. Behav Brain Res 2021; 403:113137. [PMID: 33476687 DOI: 10.1016/j.bbr.2021.113137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
DYT1 or DYT-TOR1A dystonia is early-onset, generalized dystonia. Most DYT1 dystonia patients have a heterozygous trinucleotide GAG deletion in DYT1 or TOR1A gene, with a loss of a glutamic acid residue of the protein torsinA. DYT1 dystonia patients show reduced striatal dopamine D2 receptor (D2R) binding activity. We previously reported reduced striatal D2R proteins and impaired corticostriatal plasticity in Dyt1 ΔGAG heterozygous knock-in (Dyt1 KI) mice. It remains unclear how the D2R reduction contributes to the pathogenesis of DYT1 dystonia. Recent knockout studies indicate that D2R on cholinergic interneurons (Chls) has a significant role in corticostriatal plasticity, while D2R on medium spiny neurons (MSNs) plays a minor role. To determine how reduced D2Rs on ChIs and MSNs affect motor performance, we generated ChI- or MSN-specific D2R conditional knockout mice (Drd2 ChKO or Drd2 sKO). The striatal ChIs in the Drd2 ChKO mice showed an increased firing frequency and impaired quinpirole-induced inhibition, suggesting a reduced D2R function on the ChIs. Drd2 ChKO mice had an age-dependent deficient performance on the beam-walking test similar to the Dyt1 KI mice. The Drd2 sKO mice, conversely, had a deficit on the rotarod but not the beam-walking test. Our findings suggest that D2Rs on Chls and MSNs have critical roles in motor control and balance. The similarity of the beam-walking deficit between the Drd2 ChKO and Dyt1 KI mice supports our earlier notion that D2R reduction on striatal ChIs contributes to the pathophysiology and the motor symptoms of DYT1 dystonia.
Collapse
Affiliation(s)
- Yuning Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, Biomedical Engineering, and Neurology, University of Florida, Gainesville, FL, United States
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
25
|
Gonzalez-Latapi P, Marotta N, Mencacci NE. Emerging and converging molecular mechanisms in dystonia. J Neural Transm (Vienna) 2021; 128:483-498. [DOI: 10.1007/s00702-020-02290-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
|
26
|
Giri S, Ghosh A, Roy S, Sankhla CS, Das SK, Ray K, Ray J. Association of TOR1A and GCH1 Polymorphisms with Isolated Dystonia in India. J Mol Neurosci 2020; 71:325-337. [PMID: 32662044 DOI: 10.1007/s12031-020-01653-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/30/2020] [Indexed: 11/29/2022]
Abstract
Isolated dystonia is a common movement disorder often caused by genetic mutations, although it is predominantly sporadic in nature. Common variants of dystonia-related genes were reported to be risk factors for idiopathic isolated dystonia. In this study, we aimed to analyse the roles of previously reported GTP cyclohydrolase (GCH1) and Torsin family 1 member A (TOR1A) polymorphisms in an Indian isolated dystonia case-control group. A total of 292 sporadic isolated dystonia patients and 316 control individuals were genotyped for single-nucleotide polymorphisms (SNPs) of GCH1 (rs3759664:G > A, rs12147422:A > G and rs10483639:C > G) and TOR1A (rs13300897:G > A, rs1801968:G > C, rs1182:G > T and rs3842225:G > Δ) using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and confirmed by direct Sanger sequencing. The statistical significance of allelic, genotypic and haplotypic associations of all of the SNPs were evaluated using the two-tailed Fisher exact test. The minor allele (A) of rs3759664 is significantly associated with isolated limb dystonia as a risk factor (p = 0.005). The minor allele (C) of rs1801968 is strongly associated with isolated dystonia (p < 0.0001) and most of its subtypes. The major allele of rs3842225 (G) may act as a significant risk factor for Writer's cramp (p = 0.03). Four different haplogroups comprising of either rs1182 or rs3842225 or in combination with rs1801968 and rs13300897 were found to be significantly associated with isolated dystonia. No other allelic, genotypic or haplotypic association was found to be significant with isolated dystonia cohort or its endophenotype stratified groups. Our study suggests that TOR1A common variants have a significant role in isolated dystonia pathogenesis in the Indian population, whereas SNPs in the GCH1 gene may have a limited role.
Collapse
Affiliation(s)
- Subhajit Giri
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Arunibha Ghosh
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Shubhrajit Roy
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | | | | | - Kunal Ray
- ATGC Diagnostics Private Limited, Kolkata, India
| | - Jharna Ray
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India.
| |
Collapse
|
27
|
Gilbertson T, Arkadir D, Steele JD. Opposing patterns of abnormal D1 and D2 receptor dependent cortico-striatal plasticity explain increased risk taking in patients with DYT1 dystonia. PLoS One 2020; 15:e0226790. [PMID: 32365120 PMCID: PMC7197855 DOI: 10.1371/journal.pone.0226790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
Patients with DYT1 dystonia caused by the mutated TOR1A gene exhibit risk neutral behaviour compared to controls who are risk averse in the same reinforcement learning task. It is unclear whether this behaviour can be linked to changes in cortico-striatal plasticity demonstrated in animal models which share the same TOR1A mutation. We hypothesised that we could reproduce the experimental risk taking behaviour using a model of the basal ganglia under conditions where cortico-striatal plasticity was abnormal. As dopamine exerts opposing effects on cortico-striatal plasticity via different receptors expressed on medium spiny neurons (MSN) of the direct (D1R dominant, dMSNs) and indirect (D2R dominant, iMSNs) pathways, we tested whether abnormalities in cortico-striatal plasticity in one or both of these pathways could explain the patient's behaviour. Our model could generate simulated behaviour indistinguishable from patients when cortico-striatal plasticity was abnormal in both dMSNs and iMSNs in opposite directions. The risk neutral behaviour of the patients was replicated when increased cortico-striatal long term potentiation in dMSN's was in combination with increased long term depression in iMSN's. This result is consistent with previous observations in rodent models of increased cortico-striatal plasticity at in dMSNs, but contrasts with the pattern reported in vitro of dopamine D2 receptor dependant increases in cortico-striatal LTP and loss of LTD at iMSNs. These results suggest that additional factors in patients who manifest motor symptoms may lead to divergent effects on D2 receptor dependant cortico-striatal plasticity that are not apparent in rodent models of this disease.
Collapse
Affiliation(s)
- Tom Gilbertson
- Department of Neurology, Ninewells Hospital & Medical School, Dundee, United Kingdom
- Division of Imaging Science and Technology, Medical School, University of Dundee, Dundee, United Kingdom
| | - David Arkadir
- Department of Neurology, Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
| | - J. Douglas Steele
- Department of Neurology, Ninewells Hospital & Medical School, Dundee, United Kingdom
- Division of Imaging Science and Technology, Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
28
|
Imbriani P, Ponterio G, Tassone A, Sciamanna G, El Atiallah I, Bonsi P, Pisani A. Models of dystonia: an update. J Neurosci Methods 2020; 339:108728. [PMID: 32289333 DOI: 10.1016/j.jneumeth.2020.108728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Although dystonia represents the third most common movement disorder, its pathophysiology remains still poorly understood. In the past two decades, multiple models have been generated, improving our knowledge on the molecular and cellular bases of this heterogeneous group of movement disorders. In this short survey, we will focus on recently generated novel models of DYT1 dystonia, the most common form of genetic, "isolated" dystonia. These models clearly indicate the existence of multiple signaling pathways affected by the protein mutation causative of DYT1 dystonia, torsinA, paving the way for potentially multiple, novel targets for pharmacological intervention.
Collapse
Affiliation(s)
- P Imbriani
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - G Ponterio
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - A Tassone
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - G Sciamanna
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - I El Atiallah
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - P Bonsi
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - A Pisani
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
29
|
D’Angelo V, Paldino E, Cardarelli S, Sorge R, Fusco FR, Biagioni S, Mercuri NB, Giorgi M, Sancesario G. Dystonia: Sparse Synapses for D2 Receptors in Striatum of a DYT1 Knock-out Mouse Model. Int J Mol Sci 2020; 21:ijms21031073. [PMID: 32041188 PMCID: PMC7037849 DOI: 10.3390/ijms21031073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 11/24/2022] Open
Abstract
Dystonia pathophysiology has been partly linked to downregulation and dysfunction of dopamine D2 receptors in striatum. We aimed to investigate the possible morpho-structural correlates of D2 receptor downregulation in the striatum of a DYT1 Tor1a mouse model. Adult control Tor1a+/+ and mutant Tor1a+/− mice were used. The brains were perfused and free-floating sections of basal ganglia were incubated with polyclonal anti-D2 antibody, followed by secondary immune-fluorescent antibody. Confocal microscopy was used to detect immune-fluorescent signals. The same primary antibody was used to evaluate D2 receptor expression by western blot. The D2 receptor immune-fluorescence appeared circumscribed in small disks (~0.3–0.5 µm diameter), likely representing D2 synapse aggregates, densely distributed in the striatum of Tor1a+/+ mice. In the Tor1a+/− mice the D2 aggregates were significantly smaller (µm2 2.4 ± SE 0.16, compared to µm2 6.73 ± SE 3.41 in Tor1a+/+) and sparse, with ~30% less number per microscopic field, value correspondent to the amount of reduced D2 expression in western blotting analysis. In DYT1 mutant mice the sparse and small D2 synapses in the striatum may be insufficient to “gate” the amount of presynaptic dopamine release diffusing in peri-synaptic space, and this consequently may result in a timing and spatially larger nonselective sphere of influence of dopamine action.
Collapse
Affiliation(s)
- Vincenza D’Angelo
- Department of Systems Medicine, Tor Vergata University of Rome, via Montpellier 1, 00133 Rome, Italy; (V.D.)
| | - Emanuela Paldino
- Santa Lucia Foundation, via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Silvia Cardarelli
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy (S.B.)
| | - Roberto Sorge
- Department of Systems Medicine, Tor Vergata University of Rome, via Montpellier 1, 00133 Rome, Italy; (V.D.)
| | | | - Stefano Biagioni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy (S.B.)
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, Tor Vergata University of Rome, via Montpellier 1, 00133 Rome, Italy; (V.D.)
- Santa Lucia Foundation, via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Mauro Giorgi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy (S.B.)
- Correspondence: (M.G.); (G.S.)
| | - Giuseppe Sancesario
- Department of Systems Medicine, Tor Vergata University of Rome, via Montpellier 1, 00133 Rome, Italy; (V.D.)
- Correspondence: (M.G.); (G.S.)
| |
Collapse
|
30
|
Ribot B, Aupy J, Vidailhet M, Mazère J, Pisani A, Bezard E, Guehl D, Burbaud P. Dystonia and dopamine: From phenomenology to pathophysiology. Prog Neurobiol 2019; 182:101678. [PMID: 31404592 DOI: 10.1016/j.pneurobio.2019.101678] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 11/30/2022]
Abstract
A line of evidence suggests that the pathophysiology of dystonia involves the striatum, whose activity is modulated among other neurotransmitters, by the dopaminergic system. However, the link between dystonia and dopamine appears complex and remains unclear. Here, we propose a physiological approach to investigate the clinical and experimental data supporting a role of the dopaminergic system in the pathophysiology of dystonic syndromes. Because dystonia is a disorder of motor routines, we first focus on the role of dopamine and striatum in procedural learning. Second, we consider the phenomenology of dystonia from every angle in order to search for features giving food for thought regarding the pathophysiology of the disorder. Then, for each dystonic phenotype, we review, when available, the experimental and imaging data supporting a connection with the dopaminergic system. Finally, we propose a putative model in which the different phenotypes could be explained by changes in the balance between the direct and indirect striato-pallidal pathways, a process critically controlled by the level of dopamine within the striatum. Search strategy and selection criteria References for this article were identified through searches in PubMed with the search terms « dystonia », « dopamine", « striatum », « basal ganglia », « imaging data », « animal model », « procedural learning », « pathophysiology », and « plasticity » from 1998 until 2018. Articles were also identified through searches of the authors' own files. Only selected papers published in English were reviewed. The final reference list was generated on the basis of originality and relevance to the broad scope of this review.
Collapse
Affiliation(s)
- Bastien Ribot
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Jérome Aupy
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Marie Vidailhet
- AP-HP, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Sorbonne Université, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière UPMC Univ Paris 6 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Joachim Mazère
- Université de Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France; CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France; Service de médecine nucléaire, CHU de Bordeaux, France
| | - Antonio Pisani
- Department of Neuroscience, University "Tor Vergata'', Rome, Italy; Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia I.R.C.C.S., Rome, Italy
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Dominique Guehl
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Pierre Burbaud
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
31
|
Bonsi P, Ponterio G, Vanni V, Tassone A, Sciamanna G, Migliarini S, Martella G, Meringolo M, Dehay B, Doudnikoff E, Zachariou V, Goodchild RE, Mercuri NB, D'Amelio M, Pasqualetti M, Bezard E, Pisani A. RGS9-2 rescues dopamine D2 receptor levels and signaling in DYT1 dystonia mouse models. EMBO Mol Med 2019; 11:emmm.201809283. [PMID: 30552094 PMCID: PMC6328939 DOI: 10.15252/emmm.201809283] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dopamine D2 receptor signaling is central for striatal function and movement, while abnormal activity is associated with neurological disorders including the severe early-onset DYT1 dystonia. Nevertheless, the mechanisms that regulate D2 receptor signaling in health and disease remain poorly understood. Here, we identify a reduced D2 receptor binding, paralleled by an abrupt reduction in receptor protein level, in the striatum of juvenile Dyt1 mice. This occurs through increased lysosomal degradation, controlled by competition between β-arrestin 2 and D2 receptor binding proteins. Accordingly, we found lower levels of striatal RGS9-2 and spinophilin. Further, we show that genetic depletion of RGS9-2 mimics the D2 receptor loss of DYT1 dystonia striatum, whereas RGS9-2 overexpression rescues both receptor levels and electrophysiological responses in Dyt1 striatal neurons. This work uncovers the molecular mechanism underlying D2 receptor downregulation in Dyt1 mice and in turn explains why dopaminergic drugs lack efficacy in DYT1 patients despite significant evidence for striatal D2 receptor dysfunction. Our data also open up novel avenues for disease-modifying therapeutics to this incurable neurological disorder.
Collapse
Affiliation(s)
- Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Valentina Vanni
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Giuseppe Sciamanna
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Sara Migliarini
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Benjamin Dehay
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Evelyne Doudnikoff
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Venetia Zachariou
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rose E Goodchild
- Department of Neurosciences, VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Nicola B Mercuri
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Marcello D'Amelio
- Laboratory Molecular Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy.,Unit of Molecular Neurosciences, Department of Medicine, University Campus-Biomedico, Rome, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy.,Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Antonio Pisani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy .,Department of Systems Medicine, University Tor Vergata, Rome, Italy
| |
Collapse
|
32
|
Gonzalez-Alegre P. Advances in molecular and cell biology of dystonia: Focus on torsinA. Neurobiol Dis 2019; 127:233-241. [DOI: 10.1016/j.nbd.2019.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
|
33
|
Frederick NM, Shah PV, Didonna A, Langley MR, Kanthasamy AG, Opal P. Loss of the dystonia gene Thap1 leads to transcriptional deficits that converge on common pathogenic pathways in dystonic syndromes. Hum Mol Genet 2019; 28:1343-1356. [PMID: 30590536 DOI: 10.1093/hmg/ddy433] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/26/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
Dystonia is a movement disorder characterized by involuntary and repetitive co-contractions of agonist and antagonist muscles. Dystonia 6 (DYT6) is an autosomal dominant dystonia caused by loss-of-function mutations in the zinc finger transcription factor THAP1. We have generated Thap1 knock-out mice with a view to understanding its transcriptional role. While germ-line deletion of Thap1 is embryonic lethal, mice lacking one Thap1 allele-which in principle should recapitulate the haploinsufficiency of the human syndrome-do not show a discernable phenotype. This is because mice show autoregulation of Thap1 mRNA levels with upregulation at the non-affected locus. We then deleted Thap1 in glial and neuronal precursors using a nestin-conditional approach. Although these mice do not exhibit dystonia, they show pronounced locomotor deficits reflecting derangements in the cerebellar and basal ganglia circuitry. These behavioral features are associated with alterations in the expression of genes involved in nervous system development, synaptic transmission, cytoskeleton, gliosis and dopamine signaling that link DYT6 to other primary and secondary dystonic syndromes.
Collapse
Affiliation(s)
| | | | - Alessandro Didonna
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Monica R Langley
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Puneet Opal
- Davee Department of Neurology.,Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
34
|
Richter F, Bauer A, Perl S, Schulz A, Richter A. Optogenetic augmentation of the hypercholinergic endophenotype in DYT1 knock-in mice induced erratic hyperactive movements but not dystonia. EBioMedicine 2019; 41:649-658. [PMID: 30819512 PMCID: PMC6444071 DOI: 10.1016/j.ebiom.2019.02.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/04/2019] [Accepted: 02/19/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The most prevalent inherited form of generalized dystonia is caused by a mutation in torsinA (DYT1, ∆GAG) with incomplete penetrance. Rodent models with mutated torsinA do not develop dystonic symptoms, but previous ex vivo studies indicated abnormal excitation of cholinergic interneurons (ChI) and increased striatal acetylcholine. METHODS We used in vivo optogenetics to exacerbate this endophenotype in order to determine its capacity to trigger dystonic symptoms in freely behaving mice. Tor1a+/Δgag DYT1 mice and wildtype littermates expressing channelrhodopsin2 under the Chat promotor were implanted bilaterally with optical LED cannulae and stimulated with blue light pulses of varied durations. FINDINGS Six months old DYT1 KI mice but not wildtype controls responded with hyperactivity to blue light specifically at 25 ms pulse duration, 10 Hz frequency. Neuronal activity (c-Fos) in cholinergic interneurons was increased immediately after light stimulation and persisted only in DYT1 KI over 15 min. Substance P was increased specifically in striosome compartments in naïve DYT1 KI mice compared to wildtype. Under optogenetic stimulation substance P increased in wildtype to match levels in Dyt1 KI, and acetylcholinesterase was elevated in the striatum of stimulated DYT1 KI. No signs of dystonic movements were observed under stimulation of up to one hour in both genotypes and age groups, and the sensorimotor deficit previously observed in 6 months old DYT1 KI mice persisted under stimulation. INTERPRETATION Overall this supports an endophenotype of dysregulated cholinergic activity in DYT1 dystonia, but depolarizing cholinergic interneurons was not sufficient to induce overt dystonia in DYT1 KI mice.
Collapse
Affiliation(s)
- Franziska Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Department of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103 Leipzig, Germany.
| | - Anne Bauer
- Institute of Pharmacology, Pharmacy and Toxicology, Department of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103 Leipzig, Germany
| | - Stefanie Perl
- Institute of Pharmacology, Pharmacy and Toxicology, Department of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103 Leipzig, Germany
| | - Anja Schulz
- Institute of Pharmacology, Pharmacy and Toxicology, Department of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103 Leipzig, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Department of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103 Leipzig, Germany.
| |
Collapse
|
35
|
Abela L, Kurian MA. Postsynaptic movement disorders: clinical phenotypes, genotypes, and disease mechanisms. J Inherit Metab Dis 2018; 41:1077-1091. [PMID: 29948482 PMCID: PMC6326993 DOI: 10.1007/s10545-018-0205-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/13/2018] [Accepted: 05/18/2018] [Indexed: 12/30/2022]
Abstract
Movement disorders comprise a group of heterogeneous diseases with often complex clinical phenotypes. Overlapping symptoms and a lack of diagnostic biomarkers may hamper making a definitive diagnosis. Next-generation sequencing techniques have substantially contributed to unraveling genetic etiologies underlying movement disorders and thereby improved diagnoses. Defects in dopaminergic signaling in postsynaptic striatal medium spiny neurons are emerging as a pathogenic mechanism in a number of newly identified hyperkinetic movement disorders. Several of the causative genes encode components of the cAMP pathway, a critical postsynaptic signaling pathway in medium spiny neurons. Here, we review the clinical presentation, genetic findings, and disease mechanisms that characterize these genetic postsynaptic movement disorders.
Collapse
Affiliation(s)
- Lucia Abela
- Molecular Neurosciences, Developmental Neuroscience, UCL Institute of Child Health, London, UK
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neuroscience, UCL Institute of Child Health, London, UK.
- Developmental Neurosciences Programme, UCL GOS - Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
36
|
Abstract
Dystonia is a neurological disorder characterized by involuntary, repetitive movements. Although the precise mechanisms of dystonia development remain unknown, the diversity of its clinical phenotypes is thought to be associated with multifactorial pathophysiology, which is linked not only to alterations of brain organization, but also environmental stressors and gene mutations. This chapter will present an overview of the pathophysiology of isolated dystonia through the lens of applications of major neuroimaging methodologies, with links to genetics and environmental factors that play a prominent role in symptom manifestation.
Collapse
|
37
|
Abstract
Dystonia is a neurological condition characterized by abnormal involuntary movements or postures owing to sustained or intermittent muscle contractions. Dystonia can be the manifesting neurological sign of many disorders, either in isolation (isolated dystonia) or with additional signs (combined dystonia). The main focus of this Primer is forms of isolated dystonia of idiopathic or genetic aetiology. These disorders differ in manifestations and severity but can affect all age groups and lead to substantial disability and impaired quality of life. The discovery of genes underlying the mendelian forms of isolated or combined dystonia has led to a better understanding of its pathophysiology. In some of the most common genetic dystonias, such as those caused by TOR1A, THAP1, GCH1 and KMT2B mutations, and idiopathic dystonia, these mechanisms include abnormalities in transcriptional regulation, striatal dopaminergic signalling and synaptic plasticity and a loss of inhibition at neuronal circuits. The diagnosis of dystonia is largely based on clinical signs, and the diagnosis and aetiological definition of this disorder remain a challenge. Effective symptomatic treatments with pharmacological therapy (anticholinergics), intramuscular botulinum toxin injection and deep brain stimulation are available; however, future research will hopefully lead to reliable biomarkers, better treatments and cure of this disorder.
Collapse
|
38
|
Caverzasio S, Amato N, Manconi M, Prosperetti C, Kaelin-Lang A, Hutchison WD, Galati S. Brain plasticity and sleep: Implication for movement disorders. Neurosci Biobehav Rev 2018; 86:21-35. [DOI: 10.1016/j.neubiorev.2017.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022]
|
39
|
Weisheit CE, Pappas SS, Dauer WT. Inherited dystonias: clinical features and molecular pathways. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:241-254. [PMID: 29325615 DOI: 10.1016/b978-0-444-63233-3.00016-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent decades have witnessed dramatic increases in understanding of the genetics of dystonia - a movement disorder characterized by involuntary twisting and abnormal posture. Hampered by a lack of overt neuropathology, researchers are investigating isolated monogenic causes to pinpoint common molecular mechanisms in this heterogeneous disease. Evidence from imaging, cellular, and murine work implicates deficiencies in dopamine neurotransmission, transcriptional dysregulation, and selective vulnerability of distinct neuronal populations to disease mutations. Studies of genetic forms of dystonia are also illuminating the developmental dependence of disease symptoms that is typical of many forms of the disease. As understanding of monogenic forms of dystonia grows, a clearer picture will develop of the abnormal motor circuitry behind this relatively common phenomenology. This chapter focuses on the current data covering the etiology and epidemiology, clinical presentation, and pathogenesis of four monogenic forms of isolated dystonia: DYT-TOR1A, DYT-THAP1, DYT-GCH1, and DYT-GNAL.
Collapse
Affiliation(s)
- Corinne E Weisheit
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Samuel S Pappas
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - William T Dauer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
40
|
Mild parkinsonian features in dystonia: Literature review, mechanisms and clinical perspectives. Parkinsonism Relat Disord 2017; 35:1-7. [DOI: 10.1016/j.parkreldis.2016.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/30/2016] [Accepted: 10/28/2016] [Indexed: 11/30/2022]
|
41
|
Cerebellar Intermittent Theta-Burst Stimulation and Motor Control Training in Individuals with Cervical Dystonia. Brain Sci 2016; 6:brainsci6040056. [PMID: 27886079 PMCID: PMC5187570 DOI: 10.3390/brainsci6040056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/31/2016] [Accepted: 11/18/2016] [Indexed: 11/20/2022] Open
Abstract
Background: There is emerging evidence that cervical dystonia is a neural network disorder with the cerebellum as a key node. The cerebellum may provide a target for neuromodulation as a therapeutic intervention in cervical dystonia. Objective: This study aimed to assess effects of intermittent theta-burst stimulation of the cerebellum on dystonia symptoms, quality of life, hand motor dexterity and cortical neurophysiology using transcranial magnetic stimulation. Methods: Sixteen participants with cervical dystonia were randomised into real or sham stimulation groups. Cerebellar neuromodulation was combined with motor training for the neck and an implicit learning task. The intervention was delivered over 10 working days. Outcome measures included dystonia severity and pain, quality of life, hand dexterity, and motor-evoked potentials and cortical silent periods recorded from upper trapezius muscles. Assessments were taken at baseline and after 5 and 10 days, with quality of life also measured 4 and 12 weeks later. Results: Intermittent theta-burst stimulation improved dystonia severity (Day 5, −5.44 points; p = 0.012; Day 10, −4.6 points; p = 0.025), however, effect sizes were small. Quality of life also improved (Day 5, −10.6 points, p = 0.012; Day 10, −8.6 points, p = 0.036; Week 4, −12.5 points, p = 0.036; Week 12, −12.4 points, p = 0.025), with medium or large effect sizes. There was a reduction in time to complete the pegboard task pre to post intervention (both p < 0.008). Cortical neurophysiology was unchanged by cerebellar neuromodulation. Conclusion: Intermittent theta-burst stimulation of the cerebellum may improve cervical dystonia symptoms, upper limb motor control and quality of life. The mechanism likely involves promoting neuroplasticity in the cerebellum although the neurophysiology remains to be elucidated. Cerebellar neuromodulation may have potential as a novel treatment intervention for cervical dystonia, although larger confirmatory studies are required.
Collapse
|
42
|
Wichmann T, DeLong MR. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality? Neurotherapeutics 2016; 13:264-83. [PMID: 26956115 PMCID: PMC4824026 DOI: 10.1007/s13311-016-0426-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Mahlon R DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
43
|
Pavese N, Tai YF. Genetic and degenerative disorders primarily causing other movement disorders. HANDBOOK OF CLINICAL NEUROLOGY 2016; 135:507-523. [PMID: 27432681 DOI: 10.1016/b978-0-444-53485-9.00025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this chapter, we will discuss the contributions of structural and functional imaging to the diagnosis and management of genetic and degenerative diseases that lead to the occurrence of movement disorders. We will mainly focus on Huntington's disease, Wilson's disease, dystonia, and neurodegeneration with brain iron accumulation, as they are the more commonly encountered clinical conditions within this group.
Collapse
Affiliation(s)
- Nicola Pavese
- Division of Brain Sciences, Imperial College London, UK; Aarhus University, Denmark.
| | - Yen F Tai
- Division of Brain Sciences, Imperial College London, UK
| |
Collapse
|
44
|
Karimi M, Perlmutter JS. The role of dopamine and dopaminergic pathways in dystonia: insights from neuroimaging. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2015; 5:280. [PMID: 25713747 PMCID: PMC4314610 DOI: 10.7916/d8j101xv] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/03/2015] [Indexed: 12/14/2022]
Abstract
Background Dystonia constitutes a heterogeneous group of movement abnormalities, characterized by sustained or intermittent muscle contractions causing abnormal postures. Overwhelming data suggest involvement of basal ganglia and dopaminergic pathways in dystonia. In this review, we critically evaluate recent neuroimaging studies that investigate dopamine receptors, endogenous dopamine release, morphology of striatum, and structural or functional connectivity in cortico-basal ganglia-thalamo-cortical and related cerebellar circuits in dystonia. Method A PubMed search was conducted in August 2014. Results Positron emission tomography (PET) imaging offers strong evidence for altered D2/D3 receptor binding and dopaminergic release in many forms of idiopathic dystonia. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data reveal likely involvement of related cerebello-thalamo-cortical and sensory-motor networks in addition to basal ganglia. Discussion PET imaging of dopamine receptors or transmitter release remains an effective means to investigate dopaminergic pathways, yet may miss factors affecting dopamine homeostasis and related subcellular signaling cascades that could alter the function of these pathways. fMRI and DTI methods may reveal functional or anatomical changes associated with dysfunction of dopamine-mediated pathways. Each of these methods can be used to monitor target engagement for potential new treatments. PET imaging of striatal phosphodiesterase and development of new selective PET radiotracers for dopamine D3-specific receptors and Mechanistic target of rampamycin (mTOR) are crucial to further investigate dopaminergic pathways. A multimodal approach may have the greatest potential, using PET to identify the sites of molecular pathology and magnetic resonance methods to determine their downstream effects.
Collapse
Affiliation(s)
- Morvarid Karimi
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Joel S Perlmutter
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA ; Department of Radiology, Neurobiology, Physical Therapy and Occupational Therapy, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
45
|
|
46
|
Sako W, Uluğ AM, Eidelberg D. Functional Imaging to Study Movement Disorders. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
47
|
Alongi P, Iaccarino L, Perani D. PET Neuroimaging: Insights on Dystonia and Tourette Syndrome and Potential Applications. Front Neurol 2014; 5:183. [PMID: 25295029 PMCID: PMC4171987 DOI: 10.3389/fneur.2014.00183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/09/2014] [Indexed: 11/13/2022] Open
Abstract
Primary dystonia (pD) is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements, postures, or both. Gilles de la Tourette syndrome (GTS) is a childhood-onset neuropsychiatric developmental disorder characterized by motor and phonic tics, which could progress to behavioral changes. GTS and obsessive-compulsive disorders are often seen in comorbidity, also suggesting that a possible overlap in the pathophysiological bases of these two conditions. PET techniques are of considerable value in detecting functional and molecular abnormalities in vivo, according to the adopted radioligands. For example, PET is the unique technique that allows in vivo investigation of neurotransmitter systems, providing evidence of changes in GTS or pD. For example, presynaptic and post-synaptic dopaminergic studies with PET have shown alterations compatible with dysfunction or loss of D2-receptors bearing neurons, increased synaptic dopamine levels, or both. Measures of cerebral glucose metabolism with (18)F-fluorodeoxyglucose PET ((18)F-FDG PET) are very sensitive in showing brain functional alterations as well. (18)F-FDG PET data have shown metabolic changes within the cortico-striato-pallido-thalamo-cortical and cerebello-thalamo-cortical networks, revealing possible involvement of brain circuits not limited to basal ganglia in pD and GTS. The aim of this work is to overview PET consistent neuroimaging literature on pD and GTS that has provided functional and molecular knowledge of the underlying neural dysfunction. Furthermore, we suggest potential applications of these techniques in monitoring treatments.
Collapse
Affiliation(s)
- Pierpaolo Alongi
- Department of Nuclear Medicine, San Raffaele Hospital , Milan , Italy ; Bicocca University , Milan , Italy
| | - Leonardo Iaccarino
- Department of Nuclear Medicine, San Raffaele Hospital , Milan , Italy ; Vita-Salute San Raffaele University , Milan , Italy
| | - Daniela Perani
- Department of Nuclear Medicine, San Raffaele Hospital , Milan , Italy ; Vita-Salute San Raffaele University , Milan , Italy
| |
Collapse
|
48
|
Abstract
Recent advances in structural and functional imaging have greatly improved our ability to assess normal functions of the basal ganglia, diagnose parkinsonian syndromes, understand the pathophysiology of parkinsonism and other movement disorders, and detect and monitor disease progression. Radionuclide imaging is the best way to detect and monitor dopamine deficiency, and will probably continue to be the best biomarker for assessment of the effects of disease-modifying therapies. However, advances in magnetic resonance enable the separation of patients with Parkinson's disease from healthy controls, and show great promise for differentiation between Parkinson's disease and other akinetic-rigid syndromes. Radionuclide imaging is useful to show the dopaminergic basis for both motor and behavioural complications of Parkinson's disease and its treatment, and alterations in non-dopaminergic systems. Both PET and MRI can be used to study patterns of functional connectivity in the brain, which is disrupted in Parkinson's disease and in association with its complications, and in other basal-ganglia disorders such as dystonia, in which an anatomical substrate is not otherwise apparent. Functional imaging is increasingly used to assess underlying pathological processes such as neuroinflammation and abnormal protein deposition. This imaging is another promising approach to assess the effects of treatments designed to slow disease progression.
Collapse
Affiliation(s)
- A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia and Vancouver Coastal Health, Vancouver, BC, Canada.
| | - Stephane Lehericy
- Institut National de la Santé et de la Recherche Médicale, U 1127, F-75013, Paris, France; Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7225, F-75013, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris 06, Unite Mixte de Recherche S 1127, F-75013, Paris, France; Institut du Cerveau et de la Moelle épinière, ICM (Centre de NeuroImagerie de Recherche, CENIR), F-75013, Paris, France; Assistance Publique, Hopitaux de Paris, Hôpital de la Pitié Salpêtrière, Service de Neuroradiologie F-75013, Paris, France
| | - Antonio P Strafella
- Morton and Gloria Shulman Movement Disorder Unit and E J Safra Parkinson Disease Program, University of Toronto, Toronto, ON, Canada; Division of Brain, Imaging and Behaviour-Systems Neuroscience, Toronto Western Hospital and Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada; Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
Sciamanna G, Ponterio G, Tassone A, Maltese M, Madeo G, Martella G, Poli S, Schirinzi T, Bonsi P, Pisani A. Negative allosteric modulation of mGlu5 receptor rescues striatal D2 dopamine receptor dysfunction in rodent models of DYT1 dystonia. Neuropharmacology 2014; 85:440-50. [PMID: 24951854 DOI: 10.1016/j.neuropharm.2014.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/30/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Early onset torsion dystonia (DYT1) is an autosomal dominantly inherited disorder caused by deletion in TOR1A gene. Evidence suggests that TOR1A mutation produces dystonia through an aberrant neuronal signalling within the striatum, where D2 dopamine receptors (D2R) produce an abnormal excitatory response in cholinergic interneurons (ChIs) in different models of DYT1 dystonia. The excitability of ChIs may be modulated by group I metabotropic glutamate receptor subtypes (mGlu1 and 5). We performed electrophysiological and calcium imaging recordings from ChIs of both knock-in mice heterozygous for Δ-torsinA (Tor1a(+/Δgag) mice) and transgenic mice overexpressing human torsinA (hMT1). We demonstrate that the novel negative allosteric modulator (NAM) of metabotropic glutamate 5 (mGlu) receptor, dipraglurant (ADX48621) counteracts the abnormal membrane responses and calcium rise induced either by the D2R agonist quinpirole or by caged dopamine (NPEC-Dopamine) in both models. These inhibitory effects were mimicked by two other well-characterized mGlu5 receptor antagonists, SIB1757 and MPEP, but not by mGlu1 antagonism. D2R and mGlu5 post-receptor signalling may converge on PI3K/Akt pathway. Interestingly, we found that the abnormal D2R response was prevented by the selective PI3K inhibitor, LY294002, whereas PLC and PKC inhibitors were both ineffective. Currently, no satisfactory pharmacological treatment is available for DYT1 dystonia patients. Our data show that negative modulation of mGlu5 receptors may counteract abnormal D2R responses, normalizing cholinergic cell excitability, by modulating the PI3K/Akt post-receptor pathway, thereby representing a novel potential treatment of DYT1 dystonia.
Collapse
Affiliation(s)
- G Sciamanna
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - G Ponterio
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - A Tassone
- Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - M Maltese
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - G Madeo
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - G Martella
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - S Poli
- ADDEX Therapeutics, Geneva, Switzerland
| | - T Schirinzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - P Bonsi
- Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - A Pisani
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
50
|
Ledoux MS, Dauer WT, Warner TT. Emerging common molecular pathways for primary dystonia. Mov Disord 2014; 28:968-81. [PMID: 23893453 DOI: 10.1002/mds.25547] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/23/2022] Open
Abstract
The dystonias are a group of hyperkinetic movement disorders whose principal cause is neuron dysfunction at 1 or more interconnected nodes of the motor system. The study of genes and proteins that cause familial dystonia provides critical information about the cellular pathways involved in this dysfunction, which disrupts the motor pathways at the systems level. In recent years study of the increasing number of DYT genes has implicated a number of cell functions that appear to be involved in the pathogenesis of dystonia. A review of the literature published in English-language publications available on PubMed relating to the genetics and cellular pathology of dystonia was performed. Numerous potential pathogenetic mechanisms have been identified. We describe those that fall into 3 emerging thematic groups: cell-cycle and transcriptional regulation in the nucleus, endoplasmic reticulum and nuclear envelope function, and control of synaptic function. © 2013 Movement Disorder Society.
Collapse
Affiliation(s)
- Mark S Ledoux
- Department of Neurology, University of Tennessee Health Science Center Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|