1
|
Meurer WJ, Schmitzberger FF, Yeatts S, Ramakrishnan V, Abella B, Aufderheide T, Barsan W, Benoit J, Berry S, Black J, Bozeman N, Broglio K, Brown J, Brown K, Carlozzi N, Caveney A, Cho SM, Chung-Esaki H, Clevenger R, Conwit R, Cooper R, Crudo V, Daya M, Harney D, Hsu C, Johnson NJ, Khan I, Khosla S, Kline P, Kratz A, Kudenchuk P, Lewis RJ, Madiyal C, Meyer S, Mosier J, Mouammar M, Neth M, O'Neil B, Paxton J, Perez S, Perman S, Sozener C, Speers M, Spiteri A, Stevenson V, Sunthankar K, Tonna J, Youngquist S, Geocadin R, Silbergleit R. Influence of Cooling duration on Efficacy in Cardiac Arrest Patients (ICECAP): study protocol for a multicenter, randomized, adaptive allocation clinical trial to identify the optimal duration of induced hypothermia for neuroprotection in comatose, adult survivors of after out-of-hospital cardiac arrest. Trials 2024; 25:502. [PMID: 39044295 PMCID: PMC11264458 DOI: 10.1186/s13063-024-08280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Cardiac arrest is a common and devastating emergency of both the heart and brain. More than 380,000 patients suffer out-of-hospital cardiac arrest annually in the USA. Induced cooling of comatose patients markedly improved neurological and functional outcomes in pivotal randomized clinical trials, but the optimal duration of therapeutic hypothermia has not yet been established. METHODS This study is a multi-center randomized, response-adaptive, duration (dose) finding, comparative effectiveness clinical trial with blinded outcome assessment. We investigate two populations of adult comatose survivors of cardiac arrest to ascertain the shortest duration of cooling that provides the maximum treatment effect. The design is based on a statistical model of response as defined by the primary endpoint, a weighted 90-day mRS (modified Rankin Scale, a measure of neurologic disability), across the treatment arms. Subjects will initially be equally randomized between 12, 24, and 48 h of therapeutic cooling. After the first 200 subjects have been randomized, additional treatment arms between 12 and 48 h will be opened and patients will be allocated, within each initial cardiac rhythm type (shockable or non-shockable), by response adaptive randomization. As the trial continues, shorter and longer duration arms may be opened. A maximum sample size of 1800 subjects is proposed. Secondary objectives are to characterize: the overall safety and adverse events associated with duration of cooling, the effect on neuropsychological outcomes, and the effect on patient-reported quality of life measures. DISCUSSION In vitro and in vivo studies have shown the neuroprotective effects of therapeutic hypothermia for cardiac arrest. We hypothesize that longer durations of cooling may improve either the proportion of patients that attain a good neurological recovery or may result in better recovery among the proportion already categorized as having a good outcome. If the treatment effect of cooling is increasing across duration, for at least some set of durations, then this provides evidence of the efficacy of cooling itself versus normothermia, even in the absence of a normothermia control arm, confirming previous RCTs for OHCA survivors of shockable rhythms and provides the first prospective controlled evidence of efficacy in those without initial shockable rhythms. TRIAL REGISTRATION ClinicalTrials.gov NCT04217551. Registered on 30 December 2019.
Collapse
Affiliation(s)
- William J Meurer
- Emergency Medicine, Neurology, University of Michigan, TC B1-354, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5301, USA.
| | | | - Sharon Yeatts
- Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | | | - Benjamin Abella
- Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tom Aufderheide
- Emergency Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - William Barsan
- Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Justin Benoit
- Emergency Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Joy Black
- Emergency Medicine, Neuroscience, University of Michigan, Thermo Fisher Scientific, Ann Arbor, MI, USA
| | - Nia Bozeman
- Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kristine Broglio
- Berry Consultants, Oncology Statistical Innovation, Gaithersburg, MD, USA
| | - Jeremy Brown
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Kimberly Brown
- Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Noelle Carlozzi
- Physical Medicine and Rehabilitation, Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Angela Caveney
- Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sung-Min Cho
- Critical Care Medicine, Johns Hopkins Hospital, Anesthesia, Baltimore, MD, USA
| | - Hangyul Chung-Esaki
- The Queen's Medical Center, University of Hawaii John A. Burns School of Medicine, Critical Care, Honolulu, HI, USA
| | - Robert Clevenger
- Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Robin Conwit
- Neurology, Indiana University, Indianapolis, IN, USA
| | - Richelle Cooper
- Emergency Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Valentina Crudo
- Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mohamud Daya
- Emergency Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Deneil Harney
- Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Cindy Hsu
- Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Johnson
- Emergency Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Medicine, University of Washington, Seattle, WA, USA
| | - Imad Khan
- Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Shaveta Khosla
- Emergency Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Peyton Kline
- Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Anna Kratz
- Physical Medicine and Rehabilitation, Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Peter Kudenchuk
- Division of Cardiology, Medicine, University of Washington, Seattle, WA, USA
| | - Roger J Lewis
- Emergency Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Chaitra Madiyal
- Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sara Meyer
- Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jarrod Mosier
- Emergency Medicine, Medicine, University of Arizona, Tucson, AZ, USA
| | - Marwan Mouammar
- Medicine, Critical Care Medicine, OHSU Portland Adventist Medical Center, Portland, OR, USA
| | - Matthew Neth
- Emergency Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Brian O'Neil
- Emergency Medicine, Wayne State University, Detroit, MI, USA
| | - James Paxton
- Emergency Medicine, Wayne State University, Detroit, MI, USA
| | - Sofia Perez
- Emergency Medicine Research, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Perman
- Emergency Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Cemal Sozener
- Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mickie Speers
- Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Aimee Spiteri
- Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Kavita Sunthankar
- Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Joseph Tonna
- Surgery, University of Utah Health, Salt Lake City, UT, USA
| | - Scott Youngquist
- Emergency Medicine, Spencer Eccles School of Medicine at the University of Utah, Salt Lake City, UT, USA
| | - Romergryko Geocadin
- Neurology, Anesthesiology-Critical Care Medicine, Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
2
|
Meurer W, Schmitzberger F, Yeatts S, Ramakrishnan V, Abella B, Aufderheide T, Barsan W, Benoit J, Berry S, Black J, Bozeman N, Broglio K, Brown J, Brown K, Carlozzi N, Caveney A, Cho SM, Chung-Esaki H, Clevenger R, Conwit R, Cooper R, Crudo V, Daya M, Harney D, Hsu C, Johnson NJ, Khan I, Khosla S, Kline P, Kratz A, Kudenchuk P, Lewis RJ, Madiyal C, Meyer S, Mosier J, Mouammar M, Neth M, O'Neil B, Paxton J, Perez S, Perman S, Sozener C, Speers M, Spiteri A, Stevenson V, Sunthankar K, Tonna J, Youngquist S, Geocadin R, Silbergleit R. Influence of Cooling duration on Efficacy in Cardiac Arrest Patients (ICECAP): study protocol for a multicenter, randomized, adaptive allocation clinical trial to identify the optimal duration of induced hypothermia for neuroprotection in comatose, adult survivors of after out-of-hospital cardiac arrest. RESEARCH SQUARE 2024:rs.3.rs-4033108. [PMID: 38947064 PMCID: PMC11213199 DOI: 10.21203/rs.3.rs-4033108/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Cardiac arrest is a common and devastating emergency of both the heart and brain. More than 380,000 patients suffer out-of-hospital cardiac arrest annually in the United States. Induced cooling of comatose patients markedly improved neurological and functional outcomes in pivotal randomized clinical trials, but the optimal duration of therapeutic hypothermia has not yet been established. Methods This study is a multi-center randomized, response-adaptive, duration (dose) finding, comparative effectiveness clinical trial with blinded outcome assessment. We investigate two populations of adult comatose survivors of cardiac arrest to ascertain the shortest duration of cooling that provides the maximum treatment effect. The design is based on a statistical model of response as defined by the primary endpoint, a weighted 90-day mRS (modified Rankin Scale, a measure of neurologic disability), across the treatment arms. Subjects will initially be equally randomized between 12, 24, and 48 hours of therapeutic cooling. After the first 200 subjects have been randomized, additional treatment arms between 12 and 48 hours will be opened and patients will be allocated, within each initial cardiac rhythm type (shockable or non-shockable), by response adaptive randomization. As the trial continues, shorter and longer duration arms may be opened. A maximum sample size of 1800 subjects is proposed. Secondary objectives are to characterize: the overall safety and adverse events associated with duration of cooling, the effect on neuropsychological outcomes, and the effect on patient reported quality of life measures. Discussion In-vitro and in-vivo studies have shown the neuroprotective effects of therapeutic hypothermia for cardiac arrest. We hypothesize that longer durations of cooling may improve either the proportion of patients that attain a good neurological recovery or may result in better recovery among the proportion already categorized as having a good outcome. If the treatment effect of cooling is increasing across duration, for at least some set of durations, then this provides evidence of the efficacy of cooling itself versus normothermia, even in the absence of a normothermia control arm, confirming previous RCTs for OHCA survivors of shockable rhythms and provides the first prospective controlled evidence of efficacy in those without initial shockable rhythms. Trial registration ClinicalTrials.gov (NCT04217551, 2019-12-30).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Roger J Lewis
- UCLA Medical School: University of California Los Angeles David Geffen School of Medicine
| | | | | | | | | | | | | | | | | | - Sarah Perman
- Yale University Department of Emergency Medicine
| | | | | | | | | | | | | | | | - Romergryko Geocadin
- Johns Hopkins Medicine School of Medicine: The Johns Hopkins University School of Medicine
| | | |
Collapse
|
3
|
Binda DD, Baker MB, Varghese S, Wang J, Badenes R, Bilotta F, Nozari A. Targeted Temperature Management for Patients with Acute Ischemic Stroke: A Literature Review. J Clin Med 2024; 13:586. [PMID: 38276093 PMCID: PMC10816923 DOI: 10.3390/jcm13020586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Despite significant advances in medical imaging, thrombolytic therapy, and mechanical thrombectomy, acute ischemic strokes (AIS) remain a major cause of mortality and morbidity globally. Targeted temperature management (TTM) has emerged as a potential therapeutic intervention, aiming to mitigate neuronal damage and improve outcomes. This literature review examines the efficacy and challenges of TTM in the context of an AIS. A comprehensive literature search was conducted using databases such as PubMed, Cochrane, Web of Science, and Google Scholar. Studies were selected based on relevance and quality. We identified key factors influencing the effectiveness of TTM such as its timing, depth and duration, and method of application. The review also highlighted challenges associated with TTM, including increased pneumonia rates. The target temperature range was typically between 32 and 36 °C, with the duration of cooling from 24 to 72 h. Early initiation of TTM was associated with better outcomes, with optimal results observed when TTM was started within the first 6 h post-stroke. Emerging evidence indicates that TTM shows considerable potential as an adjunctive treatment for AIS when implemented promptly and with precision, thereby potentially mitigating neuronal damage and enhancing overall patient outcomes. However, its application is complex and requires the careful consideration of various factors.
Collapse
Affiliation(s)
- Dhanesh D. Binda
- Department of Anesthesiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (D.D.B.); (M.B.B.); (S.V.); (J.W.); (A.N.)
| | - Maxwell B. Baker
- Department of Anesthesiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (D.D.B.); (M.B.B.); (S.V.); (J.W.); (A.N.)
| | - Shama Varghese
- Department of Anesthesiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (D.D.B.); (M.B.B.); (S.V.); (J.W.); (A.N.)
| | - Jennifer Wang
- Department of Anesthesiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (D.D.B.); (M.B.B.); (S.V.); (J.W.); (A.N.)
| | - Rafael Badenes
- Department Anesthesiology, Surgical-Trauma Intensive Care and Pain Clinic, Hospital Clínic Universitari, University of Valencia, 46010 Valencia, Spain
| | - Federico Bilotta
- Department of Anaesthesiology, Critical Care and Pain Medicine, Policlinico Umberto I Teaching Hospital, Sapienza University of Rome, 00185 Rome, Italy;
| | - Ala Nozari
- Department of Anesthesiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (D.D.B.); (M.B.B.); (S.V.); (J.W.); (A.N.)
| |
Collapse
|
4
|
Alonso-Alconada D, Gressens P, Golay X, Robertson NJ. Therapeutic hypothermia modulates the neurogenic response of the newborn piglet subventricular zone after hypoxia-ischemia. Pediatr Res 2024; 95:112-119. [PMID: 37573381 PMCID: PMC10798892 DOI: 10.1038/s41390-023-02751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/07/2023] [Accepted: 07/09/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Neuroprotection combined with neuroregeneration may be critical for optimizing functional recovery in neonatal encephalopathy. To investigate the neurogenic response to hypoxia-ischemia (HI) followed by normothermia (38.5 °C) or three different hypothermic temperatures (35, 33.5, or 30 °C) in the subventricular zone (SVZ) of the neonatal piglet. METHODS Following transient cerebral HI and resuscitation, 28 newborn piglets were randomized to: normothermia or whole-body cooling to 35 °C, 33.5 °C, or 30 °C during 2-26 h (all n = 7). At 48 h, piglets were euthanized and SVZ obtained to evaluate its cellularity, pattern of cell death, radial glia length, doublecortin (DCX, neuroblasts) expression, and Ki67 (cell proliferation) and Ki67/Sox2 (neural stem/progenitor dividing) cell counts. RESULTS Normothermic piglets showed lower total (Ki67+) and neural stem/progenitor dividing (Ki67+Sox2+) cell counts when compared to hypothermic groups. Cooling to 33.5 °C obtained the highest values of SVZ cellularity, radial glia length processes, neuroblast chains area and DCX immunohistochemistry. Cooling to 30 °C, however, revealed decreased cellularity in the lateral SVZ and shorter radial glia processes when compared with 33.5 °C. CONCLUSIONS In a neonatal piglet model, hypothermia to 33.5 °C modulates the neurogenic response of the SVZ after HI, highlighting the potential beneficial effect of hypothermia to 33.5 °C on endogenous neurogenesis and the detrimental effect of overcooling beyond this threshold. IMPACT Neuroprotection combined with neuroregeneration may be critical for optimizing functional recovery in neonatal encephalopathy. Hypothermia may modulate neurogenesis in the subventricular zone (SVZ) of the neonatal hypoxic-ischemic piglet. Cooling to 33.5 °C obtained the highest values of SVZ cellularity, radial glia length processes, neuroblast chains area and doublecortin immunohistochemistry; cooling to 30 °C, however, revealed decreased cellularity and shorter radial glia processes. In a neonatal piglet model, therapeutic hypothermia (33.5 °C) modulates the neurogenic response of the SVZ after hypoxia-ischemia, highlighting also the detrimental effect of overcooling beyond this threshold.
Collapse
Affiliation(s)
- Daniel Alonso-Alconada
- Department of Cell Biology & Histology, School of Medicine & Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Bizkaia, Spain.
| | - Pierre Gressens
- Université Paris Cité, NeuroDiderot, Inserm, F-75019, Paris, France
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK.
- Edinburgh Neuroscience & Centre for Clinical Brain Sciences (CCBS), The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB*, UK.
| |
Collapse
|
5
|
Carlstrom LP, Perry A, Graffeo CS, Dai D, Ding YH, Jakaitis DR, Lu A, Rodgers S, Kreck T, Hoofer K, Gorny KR, Kadirvel R, Kallmes DF. Novel Focal Therapeutic Hypothermia Device for Treatment of Acute Neurologic Injury: Large Animal Safety and Efficacy Trial. J Neurol Surg B Skull Base 2022; 83:203-209. [PMID: 35433184 PMCID: PMC9010132 DOI: 10.1055/s-0040-1721818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/11/2020] [Indexed: 10/22/2022] Open
Abstract
Objective Therapeutic hypothermia is a potentially powerful and controversial clinical tool for neuroprotection following acute neurologic pathology, particularly vascular injury. Indeed, therapeutic hypothermia remains a standard of care for postcardiac arrest ischemia and acute neonatal hypoxic-ischemic encephalopathy, improving both survival and outcomes. Although therapeutic hypothermia remains promising for cellular and systems-based neuronal protection in other neurologic injury states, the systemic side effects have limited clinical utility, confounded analysis of potential neurologic benefits, and precluded the completion of meaningful clinical trials. Methods To address such limitations, we developed and tested a novel, minimally invasive, neurocritical care device that employs continuous circulation of cold saline through the pharyngeal region to deliver focal cerebrovascular cooling. We conducted a preclinical safety and efficacy trial in six adult porcine animals to assess the validity and functionality of the NeuroSave device, and assess cooling potential following middle cerebral artery occlusion ( n = 2). Results NeuroSave consistently lowered brain parenchymal temperature by a median of 9°C relative to core temperature within 60 minutes of initiation, including in ischemic cerebral parenchyma. The core body temperature experienced a maximal reduction of 2°C, or 5% of body temperature, with no associated adverse effects identified. Conclusion The present study uses a large animal preclinical model to demonstrate the safety and efficacy of a novel, noninvasive device for the induction of robust and systemically safe hypothermia within the brain.
Collapse
Affiliation(s)
- Lucas P. Carlstrom
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States
| | - Avital Perry
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States
| | | | - Daying Dai
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Yong H. Ding
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Daniel R. Jakaitis
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Aiming Lu
- Department of Medical Physics, Mayo Clinic, Rochester, Minnesota, United States
| | - Seth Rodgers
- NeuroSave Inc., San Francisco, California, United States
| | - Thomas Kreck
- NeuroSave Inc., San Francisco, California, United States
| | - Kelly Hoofer
- NeuroSave Inc., San Francisco, California, United States
| | - Krzysztof R. Gorny
- Department of Medical Physics, Mayo Clinic, Rochester, Minnesota, United States
| | | | - David F. Kallmes
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
6
|
Onose G, Anghelescu A, Blendea CD, Ciobanu V, Daia CO, Firan FC, Munteanu C, Oprea M, Spinu A, Popescu C. Non-invasive, non-pharmacological/bio-technological interventions towards neurorestoration upshot after ischemic stroke, in adults-systematic, synthetic, literature review. FRONT BIOSCI-LANDMRK 2021; 26:1204-1239. [PMID: 34856764 DOI: 10.52586/5020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/02/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
Considering its marked life-threatening and (not seldom: severe and/or permanent) disabling, potential, plus the overall medico-psycho-socio-economic tough burden it represents for the affected persons, their families and the community, the cerebrovascular accident (CVA)-including with the, by far more frequent, ischemic type-is subject to considerable scientific research efforts that aim (if possible) at eliminating the stroke induced lesions, and consist, as well, in ambitious-but still poorly transferable into medical practice-goals such as brain neuroregeneration and/or repair, within related corollary/upshot of neurorestoration. We have conducted, in this respect, a systematic and synthetic literature review, following the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)" concept. Accordingly, we have interrogated five internationally renowned medical data bases: Elsevier, NCBI/PubMed, NCBI/PMC, PEDro, and ISI Web of Knowledge/Science (the last one to check whether the initially identified articles are published in ISI indexed journals), based on a large (details in the body text) number of most appropriate, to our knowledge, key word combinations/"syntaxes"-used contextually-and subsequently fulfilling the related, on five steps, filtering/selection methodology. We have thereby selected 114 fully eligible (of which contributive: 83-see further) papers; at the same time, additionally, we have enhanced our documentation-basically, but not exclusively, for the introductive part of this work (see further)-with bibliographic resources, overall connected to our subject, identified in the literature within a non-standardized search. It appears that the opportunity window for morph-functional recovery after stroke is larger than previously thought, actually being considered that brain neurorestoration/repair could occur, and therefore be expected, in later stages than in earlier ones, although, in this context, the number of cases possibly benefitting (for instance after physical and/or cognitive rehabilitation-including with magnetic or direct current transcranial stimulation) is quite small and with more or less conflicting, related outcomes, in the literature. Moreover, applying especially high intense, solicitating, rehabilitation interventions, in early stages post (including ischemic) stroke could even worsen the functional evolution. Accordingly, for clarifications and validation of more unitary points of view, continuing and boosting research efforts in this complex, interdisciplinary domain, is necessary. Until finding (if ever) effective modalities to cure the lesions of the central nervous system (CNS)-including post ischemic stroke-it is reasonable and recommendable-based on rigorous methodologies-the avail of combined ways: physiatric, pharmacologic, possibly also bio-technologic. On a different note, but however connected to our subject: periodic related systematic, synthetic literature reviews reappraisals are warranted and welcome.
Collapse
Affiliation(s)
- Gelu Onose
- Physical and Rehabilitation Medicine Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Aurelian Anghelescu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
- Specific Disciplines Department, Faculty of Midwifes and Nursing, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
| | - Corneliu Dan Blendea
- Medical-Surgical and Prophylactic Disciplines Department - Medical Rehabilitation, Recovery and Medical Physical Culture Discipline, Faculty of Medicine, University "Titu Maiorescu", 040051 Bucharest, Romania
- Physical and Rehabilitation Medicine & Balneology Clinic Division - The Neuro-Rehabilitation Compartment, Teaching Emergency Hospital of the Ilfov County, 22104 Bucharest, Romania
| | - Vlad Ciobanu
- Politehnica University of Bucharest, Computer Science Department, 060042 Bucharest, Romania
| | - Cristina Octaviana Daia
- Physical and Rehabilitation Medicine Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Florentina Carmen Firan
- Physical and Rehabilitation Medicine & Balneology Clinic Division - The Neuro-Rehabilitation Compartment, Teaching Emergency Hospital of the Ilfov County, 22104 Bucharest, Romania
| | - Constantin Munteanu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700454 Iasi, Romania
| | - Mihaela Oprea
- Physical and Rehabilitation Medicine Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Aura Spinu
- Physical and Rehabilitation Medicine Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Cristina Popescu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| |
Collapse
|
7
|
Zhang L, Liang W, Li Y, Yan J, Xue J, Guo Q, Gao L, Li H, Shi Q. Mild therapeutic hypothermia improves neurological outcomes in a rat model of cardiac arrest. Brain Res Bull 2021; 173:97-107. [PMID: 34022286 DOI: 10.1016/j.brainresbull.2021.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/01/2021] [Accepted: 05/16/2021] [Indexed: 11/30/2022]
Abstract
Cardiac arrest (CA) is the leading cause of death in humans. Research has shown that mild therapeutic hypothermia (MTH) can reduce neurological sequelae and mortality after CA. Nevertheless, the mechanism remains unclear. This study aimed to determine whether MTH promotes neurogenesis, attenuates neuronal damage, and inhibits apoptosis of neurons in rats after CA. Sprague-Dawley rats were divided into the normothermia and mild hypothermia groups. The rats in the normothermia and hypothermia groups were exposed to 2 h of normothermia (36-37℃) and hypothermia (32-33℃), respectively, immediately after resuscitation from 5 min of asphyxial CA. Corresponding control groups not subjected to CA were included. On days 1-6, 5-bromodeoxyuridine (BrdU) 100 mg/kg/day was administered intraperitoneally. The animals were euthanized 1 week after CA. Compared with the normothermia group, the hypothermia group showed a significant increase in the number of doublecortin (DCX) immune-positive cells in the subgranular zone of the hippocampus 1 week after CA. Neurogenesis was assessed using double immunofluorescent labeling of BrdU with neuronal-specific nuclear protein (NeuN)/DCX. There was no marked change in the number of newborn mature (BrdU+-NeuN+) neurons, though there was a significant increase in the number of newborn immature (BrdU+-DCX+) neurons in the hypothermia than in the normothermia group 1 week after CA. Neuronal injury and apoptosis in the CA1 region of the hippocampus, assessed using NeuN immunofluorescence and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays, were significantly reduced in the hypothermia group 1 week after CA. Moreover, mild hypothermia increased the expression of cold-shock protein RNA-binding motif protein 3 (RBM3) in the early stage (24 h/48 h) after CA. These results suggested that mild hypothermia promotes generation of neuronal cells, reduces neuronal injury, and inhibits apoptosis of neurons, which may be related to RBM3 expression.
Collapse
Affiliation(s)
- Liangliang Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Wei Liang
- Department of Critical Care Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| | - Yiling Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Jie Yan
- Department of Human Anatomy and Histoembryology, School of Medicine, Xi'an Jiaotong University, Xian, Shaanxi, China.
| | - Jingwen Xue
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Qinyue Guo
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Lan Gao
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Hao Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Qindong Shi
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Critical Care Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
8
|
Cuprizone Affects Hypothermia-Induced Neuroprotection and Enhanced Neuroblast Differentiation in the Gerbil Hippocampus after Ischemia. Cells 2020; 9:cells9061438. [PMID: 32531881 PMCID: PMC7349804 DOI: 10.3390/cells9061438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
In the present study, we investigated the effects of cuprizone on cell death, glial activation, and neuronal plasticity induced by hypothermia after ischemia in gerbils. Food was supplemented with cuprizone at 0.2% ad libitum for eight weeks. At six weeks after diet feeing, gerbils received transient forebrain ischemia with or without hypothermic preconditioning. Cuprizone treatment for 8 weeks increased the number of astrocytes, microglia, and pro-inflammatory cytokine levels in the hippocampus. In addition, cuprizone treatment significantly decreased the number of proliferating cells and neuroblasts in the dentate gyrus. Brain ischemia caused cell death, disruption of myelin basic proteins, and reactive gliosis in CA1. In addition, ischemia significantly increased pro-inflammatory cytokines and the number of proliferating cells and differentiating neuroblasts in the dentate gyrus. In contrast, hypothermic conditioning attenuated these changes in CA1 and the dentate gyrus. However, cuprizone treatment decreased cell survival induced by hypothermic preconditioning after ischemia and increased the number of reactive microglia and astrocytes in CA1 as well as that of macrophages in the subcallosal zone. These changes occurred because the protective effect of hypothermia in ischemic damage was disrupted by cuprizone administration. Furthermore, cuprizone decreased ischemia-induced proliferating cells and neuroblasts in the dentate gyrus.
Collapse
|
9
|
Kurisu K, Kim JY, You J, Yenari MA. Therapeutic Hypothermia and Neuroprotection in Acute Neurological Disease. Curr Med Chem 2019; 26:5430-5455. [PMID: 31057103 PMCID: PMC6913523 DOI: 10.2174/0929867326666190506124836] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/24/2018] [Accepted: 04/11/2019] [Indexed: 01/07/2023]
Abstract
Therapeutic hypothermia has consistently been shown to be a robust neuroprotectant in many labs studying different models of neurological disease. Although this therapy has shown great promise, there are still challenges at the clinical level that limit the ability to apply this routinely to each pathological condition. In order to overcome issues involved in hypothermia therapy, understanding of this attractive therapy is needed. We review methodological concerns surrounding therapeutic hypothermia, introduce the current status of therapeutic cooling in various acute brain insults, and review the literature surrounding the many underlying molecular mechanisms of hypothermic neuroprotection. Because recent work has shown that body temperature can be safely lowered using pharmacological approaches, this method may be an especially attractive option for many clinical applications. Since hypothermia can affect multiple aspects of brain pathophysiology, therapeutic hypothermia could also be considered a neuroprotection model in basic research, which would be used to identify potential therapeutic targets. We discuss how research in this area carries the potential to improve outcome from various acute neurological disorders.
Collapse
Affiliation(s)
- Kota Kurisu
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | - Jong Youl Kim
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
- Departments of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jesung You
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
| |
Collapse
|
10
|
Evald L, Brønnick K, Duez CHV, Grejs AM, Jeppesen AN, Søreide E, Kirkegaard H, Nielsen JF. Prolonged targeted temperature management reduces memory retrieval deficits six months post-cardiac arrest: A randomised controlled trial. Resuscitation 2018; 134:1-9. [PMID: 30572070 DOI: 10.1016/j.resuscitation.2018.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/09/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cognitive sequelae, most frequently memory, attention, and executive dysfunctions, occur commonly in out-of-hospital cardiac arrest (OHCA) survivors. Targeted temperature management (TTM) following OHCA is associated with improved cognitive function. However, the relationship between the duration of TTM and cognitive outcome remains unclear. We hypothesised that OHCA survivors that were subjected to prolonged TTM of 48 h (TTM48) would exhibit better cognitive functions compared to those subjected to standard TTM of 24 h (TTM24) six months post-OHCA. METHODS A predefined, cognitive post-hoc sub-study was conducted on the multicentre clinical trial: "Target Temperature Management for 48 vs. 24 h and Neurologic Outcome after out-of-hospital cardiac arrest: A Randomised Clinical Trial" (the TTH48 trial). OHCA survivors with perceived good cognitive outcome (CPC score ≤ 2) were invited to a neuropsychological assessment of memory, attention, and executive functions six months post-OHCA. RESULTS In total, 79 patients were included in the study. Multivariate regression analysis revealed that TTM48 was associated with a significant better performance on three of 13 cognitive tests specific to memory retrieval after adjusting for age at follow-up and time to return of spontaneous circulation. Overall, patients in the TTM24 group were almost three times more likely (RR = 2.9 (95% CI 1.1-7.4)), p = 0.02) to be cognitively impaired. CONCLUSIONS This study reports an association between the duration of TTM and cognitive outcome. In OHCA survivors with perceived good cognitive outcome (CPC ≤ 2), TTM48 was associated with reduced memory retrieval deficits and lower relative risk of cognitive impairment six months after OHCA compared to standard TTM24. ClinicalTrials.gov (identifier: NCT01689077).
Collapse
Affiliation(s)
- Lars Evald
- Hammel Neurorehabilitation Centre and University Research Clinic, Aarhus University, Denmark.
| | - Kolbjørn Brønnick
- Department of Psychiatry, Stavanger University Hospital, Stavanger, Norway
| | - Christophe Henri Valdemar Duez
- Research Centre for Emergency Medicine and Department of Intensive Care Medicine, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Anders Morten Grejs
- Research Centre for Emergency Medicine and Department of Intensive Care Medicine, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Anni Nørgaard Jeppesen
- Research Centre for Emergency Medicine and Department of Intensive Care Medicine, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Eldar Søreide
- Critical Care and Anaesthesiology Research Group, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hans Kirkegaard
- Research Centre for Emergency Medicine and Department of Intensive Care Medicine, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Jørgen Feldbæk Nielsen
- Hammel Neurorehabilitation Centre and University Research Clinic, Aarhus University, Denmark
| |
Collapse
|
11
|
Sasmita AO, Kuruvilla J, Ling APK. Harnessing neuroplasticity: modern approaches and clinical future. Int J Neurosci 2018; 128:1061-1077. [DOI: 10.1080/00207454.2018.1466781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andrew Octavian Sasmita
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Joshua Kuruvilla
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Sandu RE, Dumbrava D, Surugiu R, Glavan DG, Gresita A, Petcu EB. Cellular and Molecular Mechanisms Underlying Non-Pharmaceutical Ischemic Stroke Therapy in Aged Subjects. Int J Mol Sci 2017; 19:ijms19010099. [PMID: 29286319 PMCID: PMC5796049 DOI: 10.3390/ijms19010099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/22/2017] [Accepted: 12/24/2017] [Indexed: 12/12/2022] Open
Abstract
The incidence of ischemic stroke in humans increases exponentially above 70 years both in men and women. Comorbidities like diabetes, arterial hypertension or co-morbidity factors such as hypercholesterolemia, obesity and body fat distribution as well as fat-rich diet and physical inactivity are common in elderly persons and are associated with higher risk of stroke, increased mortality and disability. Obesity could represent a state of chronic inflammation that can be prevented to some extent by non-pharmaceutical interventions such as calorie restriction and hypothermia. Indeed, recent results suggest that H₂S-induced hypothermia in aged, overweight rats could have a higher probability of success in treating stroke as compared to other monotherapies, by reducing post-stroke brain inflammation. Likewise, it was recently reported that weight reduction prior to stroke, in aged, overweight rats induced by caloric restriction, led to an early re-gain of weight and a significant improvement in recovery of complex sensorimotor skills, cutaneous sensitivity, or spatial memory. CONCLUSION animal models of stroke done in young animals ignore age-associated comorbidities and may explain, at least in part, the unsuccessful bench-to-bedside translation of neuroprotective strategies for ischemic stroke in aged subjects.
Collapse
Affiliation(s)
- Raluca Elena Sandu
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Danut Dumbrava
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Roxana Surugiu
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Daniela-Gabriela Glavan
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Andrei Gresita
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Eugen Bogdan Petcu
- Gold Coast Campus, School of Medicine, Griffith University, Southport 4222, Australia.
| |
Collapse
|
13
|
Kurisu K, Yenari MA. Therapeutic hypothermia for ischemic stroke; pathophysiology and future promise. Neuropharmacology 2017; 134:302-309. [PMID: 28830757 DOI: 10.1016/j.neuropharm.2017.08.025] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/12/2017] [Accepted: 08/17/2017] [Indexed: 01/08/2023]
Abstract
Therapeutic hypothermia, or cooling of the body or brain for the purposes of preserving organ viability, is one of the most robust neuroprotectants at both the preclinical and clinical levels. Although therapeutic hypothermia has been shown to improve outcome from related clinical conditions, the significance in ischemic stroke is still under investigation. Numerous pre-clinical studies of therapeutic hypothermia has suggested optimal cooling conditions, such as depth, duration, and temporal therapeutic window for effective neuroprotection. Several studies have also explored mechanisms underlying the mechanisms of neuroprotection by therapeutic hypothermia. As such, it appears that cooling affects multiple aspects of brain pathophysiology, and regulates almost every pathway involved in the evolution of ischemic stroke. This multifaceted mechanism is thought to contribute to its strong neuroprotective effect. In order to carry out this therapy in optimal clinical settings, methodological and pathophysiological understanding is crucial. However, more investigation is still needed to better understand the underlying mechanisms of this intervention, and to overcome clinical barriers which seem to preclude the routine use therapeutic hypothermia in stroke. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
Affiliation(s)
- Kota Kurisu
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| |
Collapse
|
14
|
Sandu RE, Uzoni A, Ciobanu O, Moldovan M, Anghel A, Radu E, Coogan AN, Popa-Wagner A. Post-stroke gaseous hypothermia increases vascular density but not neurogenesis in the ischemic penumbra of aged rats. Restor Neurol Neurosci 2016; 34:401-14. [DOI: 10.3233/rnn-150600] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Adriana Uzoni
- Molecular Psychiatry, Department of Psychiatry, University of Medicine Rostock, Rostock, Germany
| | - Ovidiu Ciobanu
- University of Medicine and Pharmacy, Craiova, Romania
- Department of Psychiatry, University Medicine of Saarland, Homburg/Saar, Germany
| | - Mihai Moldovan
- Neuroscience and Pharmacology, Panum, University of Copenhagen, Copenhagen, Denmark
| | - Andrei Anghel
- Department of Biochemistry, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania
| | - Eugen Radu
- University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Andrew N. Coogan
- Department of Psychology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Aurel Popa-Wagner
- Molecular Psychiatry, Department of Psychiatry, University of Medicine Rostock, Rostock, Germany
- University of Medicine and Pharmacy, Craiova, Romania
| |
Collapse
|
15
|
Cattaneo G, Schumacher M, Maurer C, Wolfertz J, Jost T, Büchert M, Keuler A, Boos L, Shah MJ, Foerster K, Niesen WD, Ihorst G, Urbach H, Meckel S. Endovascular Cooling Catheter for Selective Brain Hypothermia: An Animal Feasibility Study of Cooling Performance. AJNR Am J Neuroradiol 2015; 37:885-91. [PMID: 26705319 DOI: 10.3174/ajnr.a4625] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/21/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND PURPOSE Therapeutic hypothermia represents a promising neuroprotective treatment in acute ischemic stroke. Selective cerebral hypothermia applied early, prior to and during endovascular mechanical recanalization therapy, may be beneficial in the critical phase of reperfusion. We aimed to assess the feasibility of a new intracarotid cooling catheter in an animal model. MATERIALS AND METHODS Nine adult sheep were included. Temperature probes were introduced into the frontal and temporal brain cortices bilaterally. The cooling catheter system was introduced into a common carotid artery. Selective blood cooling was applied for 180 minutes. Systemic and local brain temperatures were measured during cooling and rewarming. Common carotid artery diameters and flow were measured angiographically and by Doppler sonography. RESULTS The common carotid artery diameter was between 6.7 and 7.3 mm. Common carotid artery blood flow velocities increased moderately during cooling and after catheter removal. Maximum cerebral cooling in the ipsilateral temporal cortex was -4.7°C (95% CI, -5.1 to -4.0°C). Ipsilateral brain temperatures dropped significantly faster and became lower compared with the contralateral cortex with maximum temperature difference of -1.3°C (95% CI, -1.5 to -1.0°C; P < .0001) and compared with systemic temperature (-1.4°C; 95% CI, -1.7 to -1.0°C; P < .0001). CONCLUSIONS Sheep proved a feasible animal model for the intracarotid cooling catheter. Fast induction of selective mild hypothermia was achieved within the cooled cerebral hemisphere, with stable temperature gradients in the contralateral brain and systemic blood. Further studies are required to demonstrate any therapeutic benefit of selective cerebral cooling in a stroke model.
Collapse
Affiliation(s)
- G Cattaneo
- From Acandis (G.C., J.W., T.J., M.B.), Pforzheim, Germany
| | - M Schumacher
- Departments of Neuroradiology (M.S., C.M., A.K., L.B., H.U., S.M.)
| | - C Maurer
- Departments of Neuroradiology (M.S., C.M., A.K., L.B., H.U., S.M.)
| | - J Wolfertz
- From Acandis (G.C., J.W., T.J., M.B.), Pforzheim, Germany
| | - T Jost
- From Acandis (G.C., J.W., T.J., M.B.), Pforzheim, Germany
| | - M Büchert
- From Acandis (G.C., J.W., T.J., M.B.), Pforzheim, Germany
| | - A Keuler
- Departments of Neuroradiology (M.S., C.M., A.K., L.B., H.U., S.M.)
| | - L Boos
- Departments of Neuroradiology (M.S., C.M., A.K., L.B., H.U., S.M.)
| | | | | | | | - G Ihorst
- University Study Center (G.I.), University Hospital Freiburg, Freiburg, Germany
| | - H Urbach
- Departments of Neuroradiology (M.S., C.M., A.K., L.B., H.U., S.M.)
| | - S Meckel
- Departments of Neuroradiology (M.S., C.M., A.K., L.B., H.U., S.M.)
| |
Collapse
|
16
|
Karnatovskaia LV, Wartenberg KE, Freeman WD. Therapeutic hypothermia for neuroprotection: history, mechanisms, risks, and clinical applications. Neurohospitalist 2014; 4:153-63. [PMID: 24982721 DOI: 10.1177/1941874413519802] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The earliest recorded application of therapeutic hypothermia in medicine spans about 5000 years; however, its use has become widespread since 2002, following the demonstration of both safety and efficacy of regimens requiring only a mild (32°C-35°C) degree of cooling after cardiac arrest. We review the mechanisms by which hypothermia confers neuroprotection as well as its physiological effects by body system and its associated risks. With regard to clinical applications, we present evidence on the role of hypothermia in traumatic brain injury, intracranial pressure elevation, stroke, subarachnoid hemorrhage, spinal cord injury, hepatic encephalopathy, and neonatal peripartum encephalopathy. Based on the current knowledge and areas undergoing or in need of further exploration, we feel that therapeutic hypothermia holds promise in the treatment of patients with various forms of neurologic injury; however, additional quality studies are needed before its true role is fully known.
Collapse
Affiliation(s)
| | - Katja E Wartenberg
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Germany
| | - William D Freeman
- Departments of Neurology, Neurosurgery, Critical Care, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
17
|
Prolonged therapeutic hypothermia does not adversely impact neuroplasticity after global ischemia in rats. J Cereb Blood Flow Metab 2012; 32:1525-34. [PMID: 22434072 PMCID: PMC3421089 DOI: 10.1038/jcbfm.2012.38] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hypothermia improves clinical outcome after cardiac arrest in adults. Animal data show that a day or more of cooling optimally reduces edema and tissue injury after cerebral ischemia, especially after longer intervention delays. Lengthy treatments, however, may inhibit repair processes (e.g., synaptogenesis). Thus, we evaluated whether unilateral brain hypothermia (∼33°C) affects neuroplasticity in the rat 2-vessel occlusion model. In the first experiment, we cooled starting 1 hour after ischemia for 2, 4, or 7 days. Another group was cooled for 2 days starting 48 hours after ischemia. One group remained normothermic throughout. All hypothermia treatments started 1 hour after ischemia equally reduced hippocampal CA1 injury in the cooled hemisphere compared with the normothermic side and the normothermic group. Cooling only on days 3 and 4 was not beneficial. Importantly, no treatment influenced neurogenesis (Ki67/Doublecortin (DCX) staining), synapse formation (synaptophysin), or brain-derived neurotropic factor (BDNF) immunohistochemistry. A second experiment confirmed that BDNF levels (ELISA) were equivalent in normothermic and 7-day cooled rats. Last, we measured zinc (Zn), which is important in plasticity, with X-ray fluorescence imaging in normothermic and 7-day cooled rats. Hypothermia did not alter the postischemic distribution of Zn within the hippocampus. In summary, cooling significantly mitigates injury without compromising neuroplasticity.
Collapse
|
18
|
Campos F, Blanco M, Barral D, Agulla J, Ramos-Cabrer P, Castillo J. Influence of temperature on ischemic brain: Basic and clinical principles. Neurochem Int 2012; 60:495-505. [DOI: 10.1016/j.neuint.2012.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 01/31/2012] [Accepted: 02/04/2012] [Indexed: 12/24/2022]
|
19
|
Yenari MA, Han HS. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat Rev Neurosci 2012; 13:267-78. [DOI: 10.1038/nrn3174] [Citation(s) in RCA: 423] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Bregy A, Nixon R, Lotocki G, Alonso OF, Atkins CM, Tsoulfas P, Bramlett HM, Dietrich WD. Posttraumatic hypothermia increases doublecortin expressing neurons in the dentate gyrus after traumatic brain injury in the rat. Exp Neurol 2011; 233:821-8. [PMID: 22197046 DOI: 10.1016/j.expneurol.2011.12.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/30/2011] [Accepted: 12/05/2011] [Indexed: 12/12/2022]
Abstract
Previous studies have demonstrated that moderate hypothermia reduces histopathological damage and improves behavioral outcome after experimental traumatic brain injury (TBI). Further investigations have clarified the mechanisms underlying the beneficial effects of hypothermia by showing that cooling reduces multiple cell injury cascades. The purpose of this study was to determine whether hypothermia could also enhance endogenous reparative processes following TBI such as neurogenesis and the replacement of lost neurons. Male Sprague-Dawley rats underwent moderate fluid-percussion brain injury and then were randomized into normothermia (37°C) or hypothermia (33°C) treatment. Animals received injections of 5-bromo-2'-deoxyuridine (BrdU) to detect mitotic cells after brain injury. After 3 or 7 days, animals were perfusion-fixed and processed for immunocytochemistry and confocal analysis. Sections were stained for markers selective for cell proliferation (BrdU), neuroblasts and immature neurons (doublecortin), and mature neurons (NeuN) and then analyzed using non-biased stereology to quantify neurogenesis in the dentate gyrus (DG). At 7 days after TBI, both normothermic and hypothermic TBI animals demonstrated a significant increase in the number of BrdU-immunoreactive cells in the DG as compared to sham-operated controls. At 7 days post-injury, hypothermia animals had a greater number of BrdU (ipsilateral cortex) and doublecortin (ipsilateral and contralateral cortex) immunoreactive cells in the DG as compared to normothermia animals. Because adult neurogenesis following injury may be associated with enhanced functional recovery, these data demonstrate that therapeutic hypothermia sustains the increase in neurogenesis induced by TBI and this may be one of the mechanisms by which hypothermia promotes reparative strategies in the injured nervous system.
Collapse
Affiliation(s)
- Amade Bregy
- Department of Neurological Surgery, The Neurotrauma Research Center, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Therapeutic hypothermia influences cell genesis and survival in the rat hippocampus following global ischemia. J Cereb Blood Flow Metab 2011; 31:1725-35. [PMID: 21364603 PMCID: PMC3170941 DOI: 10.1038/jcbfm.2011.25] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Delayed hypothermia salvages CA1 neurons from global ischemic injury. However, the effects of this potent neuroprotectant on endogenous repair mechanisms, such as neurogenesis, have not been clearly examined. In this study, we quantified and phenotyped newly generated cells within the hippocampus following untreated and hypothermia-treated ischemia. We first show that CA1 pyramidal neurons did not spontaneously regenerate after ischemia. We then compared the level of neuroprotection when hypothermia was initiated either during or after ischemia. Treatment efficacy decreased with longer delays, but hypothermia delayed for up to 12 hours was neuroprotective. Although bromodeoxyuridine (BrdU) incorporation was elevated in ischemic groups, CA1 neurogenesis did not occur as the BrdU label did not colocalize with neuronal nuclei (NeuN) in any of the groups. Instead, the majority of BrdU-labeled cells were Iba-positive microglia, and neuroprotective hypothermia decreased the delayed generation of microglia during the third postischemic week. Conversely, hypothermia delayed for 12 hours significantly increased the survival of newly generated dentate granule cells at 4 weeks after ischemia. Thus, our findings show that CA1 neurogenesis does not contribute to hypothermic neuroprotection. Importantly, we also show that prolonged hypothermia positively interacts with postischemic repair processes, such as neurogenesis, resulting in improved functional outcome.
Collapse
|
22
|
Xiong M, Cheng GQ, Ma SM, Yang Y, Shao XM, Zhou WH. Post-ischemic hypothermia promotes generation of neural cells and reduces apoptosis by Bcl-2 in the striatum of neonatal rat brain. Neurochem Int 2011; 58:625-33. [DOI: 10.1016/j.neuint.2011.01.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 01/30/2011] [Accepted: 01/31/2011] [Indexed: 02/02/2023]
|
23
|
Lin S, Rhodes PG, Cai Z. Whole body hypothermia broadens the therapeutic window of intranasally administered IGF-1 in a neonatal rat model of cerebral hypoxia-ischemia. Brain Res 2011; 1385:246-56. [PMID: 21316352 PMCID: PMC3065539 DOI: 10.1016/j.brainres.2011.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 11/17/2022]
Abstract
To investigate whether whole body hypothermia after neonatal cerebral hypoxia-ischemia (HI) could broaden the therapeutic window of intranasal treatment of IGF-1 (iN-IGF-1), postnatal day 7 rat pups were subjected to right common carotid artery ligation, followed by 8% oxygen inhalation for 2h. After HI, one group of pups were returned to their dams and kept at room temperature (24.5±0.2°C). A second group of pups were subjected to whole body hypothermia in a cool environment (21.5±0.3°C) for 2 or 4h before being returned to their dams. Two doses of 50 μg recombinant human IGF-1 were administered intranasally at a 1h interval starting at 0, 2 or 4h after hypothermia. Hypothermia decreased the rectal temperature of pups by 4.5°C as compared to those kept at room temperature. While hypothermia or iN-IGF-1 administered 2h after HI alone did not provide neuroprotection, the combined treatment of hypothermia with iN-IGF-1 significantly protected the neonatal rat brain from HI injury. Hypothermia treatment extended the therapeutic window of IGF-1 to 6h after HI. The extended IGF-1 therapeutic window by hypothermia was associated with decreases in infiltration of polymorphonuclear leukocytes and activation of microglia/macrophages and with attenuation of NF-κB activation in the ipsilateral hemisphere following HI.
Collapse
Affiliation(s)
- Shuying Lin
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216
| | - Philip G. Rhodes
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216
| | - Zhengwei Cai
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
24
|
Dalen ML, Alme TN, Bjørås M, Munkeby BH, Rootwelt T, Saugstad OD. Reduced expression of DNA glycosylases in post-hypoxic newborn pigs undergoing therapeutic hypothermia. Brain Res 2010; 1363:198-205. [PMID: 20883672 DOI: 10.1016/j.brainres.2010.09.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 09/19/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Supplementary oxygen during resuscitation of the asphyxiated newborn is associated with increased generation of reactive oxygen species and oxidative stress. It is suspected that hyperoxic reoxygenation may cause increased damage to DNA, resulting in replication errors, and cell death or potential fixation of mutations if unrepaired. Therapeutic hypothermia may attenuate the development of brain damage after asphyxia, but it is not known how post-hypoxic hyperoxia and hypothermia affect accumulation of DNA-damage and DNA repair. Anaesthetised newborn pigs were randomised to control (n=6) or severe global hypoxia (n=46). After 20min of reoxygenation with either room air or 100% O(2), followed by 6.5h of normothermia (deep rectal temperature 39°C) or total body cooling (35°C), oxidative DNA damage (8-hydroxy-2'-deoxyguanosine) in brain, liver and urine, and transcription of DNA repair glycosylases (NEIL1, NEIL3, and OGG1) in brain and liver were measured. Hypoxic pigs displayed increased urinary 8-oxodG levels: mean (SD) 8-oxodG/creatinine was 3.55 (1.46) vs. control 2.02 (0.53), p<0.05, but levels were not affected by hyperoxia or hypothermia. Accumulation of 8-oxodG in the brain and liver did not differ across groups. Post-hypoxic transcription of DNA glycosylases was down-regulated by hypothermia: OGG1 in hippocampus and liver (p<0.01); NEIL1 in hippocampus (p<0.01), cortex and striatum (p<0.05) and liver (p<0.001); and NEIL3 in hippocampus (p<0.01) and cerebellum (p<0.001). Hyperoxia did not affect transcription of glycosylases in the brain. We confirm increased oxidative stress after hypoxia. DNA repair glycosylases were down-regulated by hypothermia but with no effect on accumulation of oxidative damage in genomic DNA.
Collapse
Affiliation(s)
- Marit Lunde Dalen
- Department of Paediatric Research, University of Oslo, Oslo University Hospital, N-0027 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
25
|
Finch AS, Moldovan M, Frank J, Bagnell R, Katz LM, Pearlstein RD. Transient mild hypothermia differentially alters mitotic activity in normal and post-ischemic hippocampal slices from neonatal rats. J Therm Biol 2010. [DOI: 10.1016/j.jtherbio.2010.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|