1
|
Nainu F, Ophinni Y, Shiratsuchi A, Nakanishi Y. Apoptosis and Phagocytosis as Antiviral Mechanisms. Subcell Biochem 2023; 106:77-112. [PMID: 38159224 DOI: 10.1007/978-3-031-40086-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Viruses are infectious entities that make use of the replication machinery of their hosts to produce more progenies, causing disease and sometimes death. To counter viral infection, metazoan hosts are equipped with various defense mechanisms, from the rapid-evoking innate immune responses to the most advanced adaptive immune responses. Previous research demonstrated that cells in fruit flies and mice infected with Drosophila C virus and influenza, respectively, undergo apoptosis, which triggers the engulfment of apoptotic virus-infected cells by phagocytes. This process involves the recognition of eat-me signals on the surface of virus-infected cells by receptors of specialized phagocytes, such as macrophages and neutrophils in mice and hemocytes in fruit flies, to facilitate the phagocytic elimination of virus-infected cells. Inhibition of phagocytosis led to severe pathologies and death in both species, indicating that apoptosis-dependent phagocytosis of virus-infected cells is a conserved antiviral mechanism in multicellular organisms. Indeed, our understanding of the mechanisms underlying apoptosis-dependent phagocytosis of virus-infected cells has shed a new perspective on how hosts defend themselves against viral infection. This chapter explores the mechanisms of this process and its potential for developing new treatments for viral diseases.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia.
| | - Youdiil Ophinni
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akiko Shiratsuchi
- Center for Medical Education, Sapporo Medical University, Sapporo, Japan
- Division of Biological Function and Regulation, Graduate School of Medicine, Sapporo Medical University, Sapporo, Japan
| | | |
Collapse
|
2
|
Almazán A, Çevrim Ç, Musser JM, Averof M, Paris M. Crustacean leg regeneration restores complex microanatomy and cell diversity. SCIENCE ADVANCES 2022; 8:eabn9823. [PMID: 36001670 PMCID: PMC9401613 DOI: 10.1126/sciadv.abn9823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Animals can regenerate complex organs, yet this process frequently results in imprecise replicas of the original structure. In the crustacean Parhyale, embryonic and regenerating legs differ in gene expression dynamics but produce apparently similar mature structures. We examine the fidelity of Parhyale leg regeneration using complementary approaches to investigate microanatomy, sensory function, cellular composition, and cell molecular profiles. We find that regeneration precisely replicates the complex microanatomy and spatial distribution of external sensory organs and restores their sensory function. Single-nuclei sequencing shows that regenerated and uninjured legs are indistinguishable in terms of cell-type composition and transcriptional profiles. This remarkable fidelity highlights the ability of organisms to achieve identical outcomes via distinct processes.
Collapse
Affiliation(s)
- Alba Almazán
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Centre National de la Recherche Scientifique (CNRS), École Normale Supérieure de Lyon and Université Claude Bernard Lyon 1, 69007 Lyon, France
| | - Çağrı Çevrim
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Centre National de la Recherche Scientifique (CNRS), École Normale Supérieure de Lyon and Université Claude Bernard Lyon 1, 69007 Lyon, France
| | - Jacob M. Musser
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Centre National de la Recherche Scientifique (CNRS), École Normale Supérieure de Lyon and Université Claude Bernard Lyon 1, 69007 Lyon, France
| | - Mathilde Paris
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Centre National de la Recherche Scientifique (CNRS), École Normale Supérieure de Lyon and Université Claude Bernard Lyon 1, 69007 Lyon, France
| |
Collapse
|
3
|
Molina-Pelayo C, Olguin P, Mlodzik M, Glavic A. The conserved Pelado/ZSWIM8 protein regulates actin dynamics by promoting linear actin filament polymerization. Life Sci Alliance 2022; 5:e202201484. [PMID: 35940847 PMCID: PMC9375228 DOI: 10.26508/lsa.202201484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Actin filament polymerization can be branched or linear, which depends on the associated regulatory proteins. Competition for actin monomers occurs between proteins that induce branched or linear actin polymerization. Cell specialization requires the regulation of actin filaments to allow the formation of cell type-specific structures, like cuticular hairs in <i>Drosophila</i>, formed by linear actin filaments. Here, we report the functional analysis of CG34401/<i>pelado</i>, a gene encoding a SWIM domain-containing protein, conserved throughout the animal kingdom, called ZSWIM8 in mammals. Mutant <i>pelado</i> epithelial cells display actin hair elongation defects. This phenotype is reversed by increasing actin monomer levels or by either pushing linear actin polymerization or reducing branched actin polymerization. Similarly, in hemocytes, Pelado is essential to induce filopodia, a linear actin-based structure. We further show that this function of Pelado/ZSWIM8 is conserved in human cells, where Pelado inhibits branched actin polymerization in a cell migration context. In summary, our data indicate that the function of Pelado/ZSWIM8 in regulating actin cytoskeletal dynamics is conserved, favoring linear actin polymerization at the expense of branched filaments.
Collapse
Affiliation(s)
- Claudia Molina-Pelayo
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departamento de Biología, Centro FONDAP de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Patricio Olguin
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departamento de Neurociencia, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marek Mlodzik
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alvaro Glavic
- Departamento de Biología, Centro FONDAP de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Molina E, Cataldo VF, Eggers C, Muñoz-Madrid V, Glavic Á. p53 Related Protein Kinase is Required for Arp2/3-Dependent Actin Dynamics of Hemocytes in Drosophila melanogaster. Front Cell Dev Biol 2022; 10:859105. [PMID: 35721516 PMCID: PMC9201722 DOI: 10.3389/fcell.2022.859105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Cells extend membrane protrusions like lamellipodia and filopodia from the leading edge to sense, to move and to form new contacts. The Arp2/3 complex sustains lamellipodia formation, and in conjunction with the actomyosin contractile system, provides mechanical strength to the cell. Drosophila p53-related protein kinase (Prpk), a Tsc5p ortholog, has been described as essential for cell growth and proliferation. In addition, Prpk interacts with proteins associated to actin filament dynamics such as α-spectrin and the Arp2/3 complex subunit Arpc4. Here, we investigated the role of Prpk in cell shape changes, specifically regarding actin filament dynamics and membrane protrusion formation. We found that reductions in Prpk alter cell shape and the structure of lamellipodia, mimicking the phenotypes evoked by Arp2/3 complex deficiencies. Prpk co-localize and co-immunoprecipitates with the Arp2/3 complex subunit Arpc1 and with the small GTPase Rab35. Importantly, expression of Rab35, known by its ability to recruit upstream regulators of the Arp2/3 complex, could rescue the Prpk knockdown phenotypes. Finally, we evaluated the requirement of Prpk in different developmental contexts, where it was shown to be essential for correct Arp2/3 complex distribution and actin dynamics required for hemocytes migration, recruitment, and phagocytosis during immune response.
Collapse
Affiliation(s)
- Emiliano Molina
- FONDAP Center for Genome Regulation, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Vicente F. Cataldo
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristián Eggers
- Department for Chemistry and Biochemistry and Pharmaceutical Sciences, Faculty of Science, University of Bern, Bern, Switzerland
| | - Valentina Muñoz-Madrid
- FONDAP Center for Genome Regulation, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Álvaro Glavic
- FONDAP Center for Genome Regulation, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- *Correspondence: Álvaro Glavic,
| |
Collapse
|
5
|
Lehne F, Pokrant T, Parbin S, Salinas G, Großhans J, Rust K, Faix J, Bogdan S. Calcium bursts allow rapid reorganization of EFhD2/Swip-1 cross-linked actin networks in epithelial wound closure. Nat Commun 2022; 13:2492. [PMID: 35524157 PMCID: PMC9076686 DOI: 10.1038/s41467-022-30167-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Changes in cell morphology require the dynamic remodeling of the actin cytoskeleton. Calcium fluxes have been suggested as an important signal to rapidly relay information to the actin cytoskeleton, but the underlying mechanisms remain poorly understood. Here, we identify the EF-hand domain containing protein EFhD2/Swip-1 as a conserved lamellipodial protein strongly upregulated in Drosophila macrophages at the onset of metamorphosis when macrophage behavior shifts from quiescent to migratory state. Loss- and gain-of-function analysis confirm a critical function of EFhD2/Swip-1 in lamellipodial cell migration in fly and mouse melanoma cells. Contrary to previous assumptions, TIRF-analyses unambiguously demonstrate that EFhD2/Swip-1 proteins efficiently cross-link actin filaments in a calcium-dependent manner. Using a single-cell wounding model, we show that EFhD2/Swip-1 promotes wound closure in a calcium-dependent manner. Mechanistically, our data suggest that transient calcium bursts reduce EFhD2/Swip-1 cross-linking activity and thereby promote rapid reorganization of existing actin networks to drive epithelial wound closure.
Collapse
Affiliation(s)
- Franziska Lehne
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany
| | - Thomas Pokrant
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Sabnam Parbin
- NGS-Integrative Genomics Core Unit, Department of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Department of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Jörg Großhans
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Katja Rust
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Sven Bogdan
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
6
|
Abubaker D, Baassiri A, Ghannam M, Al Outa A, Ghais A, Rahal E, Nasr R, Shirinian M. Expression of chronic myeloid leukemia oncogenes BCR-ABL P210 and BCR-ABL T315I affect cellular and humoral innate immunity in Drosophila melanogaster. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000551. [PMID: 35622506 PMCID: PMC9008464 DOI: 10.17912/micropub.biology.000551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 11/06/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that results from a chromosomal translocation between chromosome 9 and chromosome 22. The resulting fusion gene ( BCR-ABL ) encodes a constitutively active BCR-ABL tyrosine kinase. Some mutations of this oncogene, especially the Threonine 315 to Isoleucine substitution of the ABL kinase is resistant to first and second-generation tyrosine kinase inhibitors (TKIs) conventionally used in CML therapy. We have previously validated a CML fruit fly model for drug screening using the adult fly compound eye. Here we expressed wild-type BCR-ABL P210 and mutated BCR-ABL T315I in Drosophila melanogaster hematopoietic system to understand the phenotypic consequences of this expression and its impact on innate immune pathways. Flies expressing both wild-type BCR-ABL P210 and mutant BCR-ABL T315I showed increased number of circulating hemocytes, disruption in sessile patterning of resident hemocytes, dysregulation in the humoral Toll, ImD, and JAK/STAT pathways at the mRNA level in both the 3 rd instar larva and adult stages. Of note, BCR-ABL T315I flies presented more severe phenotypes and a higher deviation in humoral dysregulation than BCR -ABL P210 flies pointing towards more complex oncogenic effect of this mutant which requires further investigation.
Collapse
Affiliation(s)
- Dana Abubaker
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amro Baassiri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Mirna Ghannam
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amani Al Outa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Ali Ghais
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Elias Rahal
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Margret Shirinian
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
7
|
Paterson N, Lämmermann T. Macrophage network dynamics depend on haptokinesis for optimal local surveillance. eLife 2022; 11:e75354. [PMID: 35343899 PMCID: PMC8963880 DOI: 10.7554/elife.75354] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
Macrophages are key immune cells with important roles for tissue surveillance in almost all mammalian organs. Cellular networks made up of many individual macrophages allow for optimal removal of dead cell material and pathogens in tissues. However, the critical determinants that underlie these population responses have not been systematically studied. Here, we investigated how cell shape and the motility of individual cells influences macrophage network responses in 3D culture settings and in mouse tissues. We show that surveying macrophage populations can tolerate lowered actomyosin contractility, but cannot easily compensate for a lack of integrin-mediated adhesion. Although integrins were dispensable for macrophage chemotactic responses, they were crucial to control cell movement and protrusiveness for optimal surveillance by a macrophage population. Our study reveals that β1 integrins are important for maintaining macrophage shape and network sampling efficiency in mammalian tissues, and sets macrophage motility strategies apart from the integrin-independent 3D migration modes of many other immune cell subsets.
Collapse
Affiliation(s)
- Neil Paterson
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM)FreiburgGermany
- Faculty of Biology, University of FreiburgFreiburgGermany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| |
Collapse
|
8
|
Hirschhäuser A, van Cann M, Bogdan S. CK1α protects WAVE from degradation to regulate cell shape and motility in immune response. J Cell Sci 2021; 134:272700. [PMID: 34730182 PMCID: PMC8714073 DOI: 10.1242/jcs.258891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
The WAVE regulatory complex (WRC) is the main activator of the Arp2/3 complex, promoting lamellipodial protrusions in migrating cells. The WRC is basally inactive but can be activated by Rac1 and phospholipids, and through phosphorylation. However, the in vivo relevance of the phosphorylation of WAVE proteins remains largely unknown. Here, we identified casein kinase I alpha (CK1α) as a regulator of WAVE, thereby controlling cell shape and cell motility in Drosophila macrophages. CK1α binds and phosphorylates WAVE in vitro. Phosphorylation of WAVE by CK1α appears not to be required for activation but, rather, regulates its stability. Pharmacologic inhibition of CK1α promotes ubiquitin-dependent degradation of WAVE. Consistently, loss of Ck1α but not ck2 function phenocopies the depletion of WAVE. Phosphorylation-deficient mutations in the CK1α consensus sequences within the VCA domain of WAVE can neither rescue mutant lethality nor lamellipodium defects. By contrast, phosphomimetic mutations rescue all cellular and developmental defects. Finally, RNAi-mediated suppression of 26S proteasome or E3 ligase complexes substantially rescues lamellipodia defects in CK1α-depleted macrophages. Therefore, we conclude that basal phosphorylation of WAVE by CK1α protects it from premature ubiquitin-dependent degradation, thus promoting WAVE function in vivo. This article has an associated First Person interview with the first author of the paper. Summary: We identified CK1α as a novel regulator of WAVE controlling cell shape and motility in immune response. Basal phosphorylation of WAVE by CK1α protects it from premature proteasomal degradation.
Collapse
Affiliation(s)
- Alexander Hirschhäuser
- Institute of Physiology and Pathophysiology, Dept. of Molecular Cell Physiology, Philipps-University Marburg, Germany
| | | | - Sven Bogdan
- Institute of Physiology and Pathophysiology, Dept. of Molecular Cell Physiology, Philipps-University Marburg, Germany.,Institute for Neurobiology, University of Münster, Germany
| |
Collapse
|
9
|
Kang X, Deng Y, Cao Y, Huo Y, Luo J. Zyxin Mediates Vascular Repair via Endothelial Migration Promoted by Forskolin in Mice. Front Physiol 2021; 12:741699. [PMID: 34690814 PMCID: PMC8531502 DOI: 10.3389/fphys.2021.741699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Endothelial repair upon vascular injury is critical for the protection of vessel integrity and prevention of the development of vascular disorders, but the underlying mechanisms remain poorly understood. In this study, we investigated the role of zyxin and its associated cyclic adenosine monophosphate (cAMP) signaling in the regulation of re-endothelialization after vascular injury. Experimental Approach: In zyxin-/- and wild-type mice, wire injury of the carotid artery was carried out, followed by Evans blue staining, to evaluate the re-endothelialization. Mice with endothelium-specific zyxin knockout were used to further determine its role. An in vitro wound-healing assay was performed in primary human endothelial cells (ECs) expressing zyxin-specific short-hairpin RNAs (shRNAs) or scrambled controls by measuring cell migration and proliferation. The effects of the cAMP signaling agonist forskolin were assessed. Key Results: The re-endothelialization of the injured carotid artery was impaired in zyxin-deficient mice, whereas the rate of cell proliferation was comparable with that in wild-type controls. Furthermore, endothelium-specific deletion of zyxin led to similar phenotypes. Knockdown of zyxin by shRNAs in primary human ECs significantly reduced cell migration in the wound-healing assay. Notably, forskolin enhanced endothelial migration in a dose-dependent manner, and this was dependent on zyxin through its interaction with vasodilator-stimulated phosphoprotein. In addition, forskolin promoted the re-endothelialization of the injured carotid artery, and this was compromised by zyxin deficiency. Conclusion and Implications: This study reveals zyxin as a new player in endothelial repair, which is promoted by forskolin, after vascular injury. Thus, zyxin-mediated signaling might be a potential treatment target for diseases involving vascular injury.
Collapse
Affiliation(s)
- Xuya Kang
- Laboratory of Vascular Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, School of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yanan Deng
- Laboratory of Vascular Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, School of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yang Cao
- Laboratory of Vascular Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, School of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yingqing Huo
- Laboratory of Vascular Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, School of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jincai Luo
- Laboratory of Vascular Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, School of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
10
|
Wan B, Belghazi M, Lemauf S, Poirié M, Gatti JL. Proteomics of purified lamellocytes from Drosophila melanogaster HopT um-l identifies new membrane proteins and networks involved in their functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103584. [PMID: 34033897 DOI: 10.1016/j.ibmb.2021.103584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
In healthy Drosophila melanogaster larvae, plasmatocytes and crystal cells account for 95% and 5% of the hemocytes, respectively. A third type of hemocytes, lamellocytes, are rare, but their number increases after oviposition by parasitoid wasps. The lamellocytes form successive layers around the parasitoid egg, leading to its encapsulation and melanization, and finally the death of this intruder. However, the total number of lamellocytes per larva remains quite low even after parasitoid infestation, making direct biochemical studies difficult. Here, we used the HopTum-l mutant strain that constitutively produces large numbers of lamellocytes to set up a purification method and analyzed their major proteins by 2D gel electrophoresis and their plasma membrane surface proteins by 1D SDS-PAGE after affinity purification. Mass spectrometry identified 430 proteins from 2D spots and 344 affinity-purified proteins from 1D bands, for a total of 639 unique proteins. Known lamellocyte markers such as PPO3 and the myospheroid integrin were among the components identified with specific chaperone proteins. Affinity purification detected other integrins, as well as a wide range of integrin-associated proteins involved in the formation and function of cell-cell junctions. Overall, the newly identified proteins indicate that these cells are highly adapted to the encapsulation process (recognition, motility, adhesion, signaling), but may also have several other physiological functions (such as secretion and internalization of vesicles) under different signaling pathways. These results provide the basis for further in vivo and in vitro studies of lamellocytes, including the development of new markers to identify coexisting populations and their respective origins and functions in Drosophila immunity.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Maya Belghazi
- Institute of NeuroPhysiopathology (INP), UMR7051, CNRS, Aix-Marseille Université, Marseille, 13015, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France.
| |
Collapse
|
11
|
Edwards-Jorquera SS, Bosveld F, Bellaïche YA, Lennon-Duménil AM, Glavic Á. Trpml controls actomyosin contractility and couples migration to phagocytosis in fly macrophages. J Cell Biol 2020; 219:133603. [PMID: 31940424 PMCID: PMC7055000 DOI: 10.1083/jcb.201905228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/13/2019] [Accepted: 12/07/2019] [Indexed: 12/29/2022] Open
Abstract
Phagocytes use their actomyosin cytoskeleton to migrate as well as to probe their environment by phagocytosis or macropinocytosis. Although migration and extracellular material uptake have been shown to be coupled in some immune cells, the mechanisms involved in such coupling are largely unknown. By combining time-lapse imaging with genetics, we here identify the lysosomal Ca2+ channel Trpml as an essential player in the coupling of cell locomotion and phagocytosis in hemocytes, the Drosophila macrophage-like immune cells. Trpml is needed for both hemocyte migration and phagocytic processing at distinct subcellular localizations: Trpml regulates hemocyte migration by controlling actomyosin contractility at the cell rear, whereas its role in phagocytic processing lies near the phagocytic cup in a myosin-independent fashion. We further highlight that Vamp7 also regulates phagocytic processing and locomotion but uses pathways distinct from those of Trpml. Our results suggest that multiple mechanisms may have emerged during evolution to couple phagocytic processing to cell migration and facilitate space exploration by immune cells.
Collapse
Affiliation(s)
| | - Floris Bosveld
- Institut Curie, PSL Research University, Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique UMR 3215, Institut National de la Santé et de la Recherche Médicale U934, Paris, France
| | - Yohanns A Bellaïche
- Institut Curie, PSL Research University, Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique UMR 3215, Institut National de la Santé et de la Recherche Médicale U934, Paris, France
| | - Ana-María Lennon-Duménil
- Institut Curie, PSL Research University, Institut National de la Santé et de la Recherche Médicale U932 Immunité et Cancer, Paris, France
| | - Álvaro Glavic
- Centro de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Leprêtre M, Almunia C, Armengaud J, Le Guernic A, Salvador A, Geffard A, Palos-Ladeiro M. Identification of immune-related proteins of Dreissena polymorpha hemocytes and plasma involved in host-microbe interactions by differential proteomics. Sci Rep 2020; 10:6226. [PMID: 32277127 PMCID: PMC7148315 DOI: 10.1038/s41598-020-63321-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/27/2020] [Indexed: 12/04/2022] Open
Abstract
Biological responses of zebra mussel Dreissena polymorpha are investigated to assess the impact of contaminants on aquatic organisms and ecosystems. In addition to concentrate chemical contaminants in their tissues, zebra mussels accumulate several microorganisms such as viruses, protozoa and bacteria. In order to understand the molecular mechanisms involved in the defence against microorganisms this study aims at identifying immune proteins from D. polymorpha hemolymph involved in defence against protozoa and viruses. For this purpose, hemolymph were exposed ex vivo to Cryptosporidium parvum and RNA poly I:C. Differential proteomics on both hemocytes and plasma revealed immune proteins modulated under exposures. Different patterns of response were observed after C. parvum and RNA poly I:C exposures. The number of modulated proteins per hemolymphatic compartments suggest that C. parvum is managed in cells while RNA poly I:C is managed in plasma after 4 h exposure. BLAST annotation and GO terms enrichment analysis revealed further characteristics of immune mechanisms. Results showed that many proteins involved in the recognition and destruction of microorganisms were modulated in both exposure conditions, while proteins related to phagocytosis and apoptosis were exclusively modulated by C. parvum. This differential proteomic analysis highlights in zebra mussels modulated proteins involved in the response to microorganisms, which reflect a broad range of immune mechanisms such as recognition, internalization and destruction of microorganisms. This study paves the way for the identification of new markers of immune processes that can be used to assess the impact of both chemical and biological contaminations on the health status of aquatic organisms.
Collapse
Affiliation(s)
- Maxime Leprêtre
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100, Villeurbanne, France
| | - Christine Almunia
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Antoine Le Guernic
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France
| | - Arnaud Salvador
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100, Villeurbanne, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France.
| |
Collapse
|
13
|
García-Reina A, Rodríguez-García MJ, Cuello F, Galián J. Immune transcriptome analysis in predatory beetles reveals two cecropin genes overexpressed in mandibles. J Invertebr Pathol 2020; 171:107346. [PMID: 32067979 DOI: 10.1016/j.jip.2020.107346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/22/2022]
Abstract
The great complexity and variety of the innate immune system and the production of antimicrobial peptides in insects is correlated with their evolutionary success and adaptation to different environments. Tiger beetles are an example of non-pest species with a cosmopolitan distribution, but the immune system is barely known and its study could provide useful information about the humoral immunity of predatory insects. Suppression subtractive hybridization (SSH) was performed in Calomera littoralis beetles to obtain a screening of those genes that were overexpressed after an injection with Escherichia coli lipopolysaccharide (LPS). Several genes were identified to be related to immune defense. Among those genes, two members of the cecropin antimicrobial peptides were characterized and identified as CliCec-A and CliCec-B2. Both protein sequences showed cecropin characteristics including 37 and 38 residue mature peptides, composed by two α-helices structures with amphipathic and hydrophobic nature, as shown in their predicted three-dimensional structure. Chemically synthesized CliCec-B2 confirmed cecropin antimicrobial activity against some Gram (+) and Gram (-) bacteria, but not against yeast. Expression of both cecropin genes was assessed by qPCR and showed increases after a LPS injection and highlighted their overexpression in adult beetle mandibles, which could be related to their alimentary habits.
Collapse
Affiliation(s)
- Andrés García-Reina
- University of Murcia Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain.
| | - María Juliana Rodríguez-García
- University of Murcia Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain
| | - Francisco Cuello
- University of Murcia, Departament of Animal Health, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain
| | - José Galián
- University of Murcia Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain
| |
Collapse
|
14
|
Leprêtre M, Almunia C, Armengaud J, Salvador A, Geffard A, Palos-Ladeiro M. The immune system of the freshwater zebra mussel, Dreissena polymorpha, decrypted by proteogenomics of hemocytes and plasma compartments. J Proteomics 2019; 202:103366. [PMID: 31015035 DOI: 10.1016/j.jprot.2019.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/20/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022]
Abstract
The immune system of bivalves is of great interest since it reflects the health status of these organisms during stressful conditions. While immune molecular responses are well documented for marine bivalves, few information is available for continental bivalves such as the zebra mussel, Dreissena polymorpha. A proteogenomic approach was conducted on both hemocytes and plasma to identified immune proteins of this non-model species. Combining transcriptomic sequences with mass spectrometry data acquired on proteins is a relevant strategy since 3020 proteins were identified, representing the largest protein inventory for this sentinel organism. Functional annotation and gene ontology (GO) analysis performed on the identified proteins described the main molecular players of hemocytes and plasma in immunity. GO analysis highlights the complementary immune functions of these two compartments in the management of micro-organisms. Functional annotation revealed new mechanisms in the immune defence of the zebra mussel. Proteins rarely observed in the hemolymph of bivalves were pinpointed such as natterin-like and thaumatin-like proteins. Furthermore, the high abundance of complement-related proteins observed in plasma suggested a strong implication of the complement system in the immune defence of D. polymorpha. This work brings a better understanding of the molecular mechanisms involved in zebra mussel immunity. SIGNIFICANCE: Although the molecular mechanisms of marine bivalves are widely investigated, little information is known for continental bivalves. Moreover, few proteomic studies described the complementarity of both hemolymphatic compartments (cellular and plasmatic) in the immune defence of invertebrates. The recent proteogenomics concept made it possible to discover proteins in non-model organisms. Here, we propose a proteogenomic strategy with the zebra mussel, a key sentinel species for biomonitoring of freshwater, to identify and describe the molecular actors involved in the immune system in both hemocytes and plasma compartments. More widely, this study provided new insight into bivalve immunity.
Collapse
Affiliation(s)
- Maxime Leprêtre
- Université de Reims Champagne-Ardenne UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France; Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100 Villeurbanne, France
| | - Christine Almunia
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols-sur-Cèze, France
| | - Arnaud Salvador
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100 Villeurbanne, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France.
| |
Collapse
|
15
|
Park SH, Lee CW, Lee JH, Park JY, Roshandell M, Brennan CA, Choe KM. Requirement for and polarized localization of integrin proteins during Drosophila wound closure. Mol Biol Cell 2018; 29:2137-2147. [PMID: 29995573 PMCID: PMC6249799 DOI: 10.1091/mbc.e17-11-0635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/19/2018] [Accepted: 07/05/2018] [Indexed: 01/06/2023] Open
Abstract
Wound reepithelialization is an evolutionarily conserved process in which skin cells migrate as sheets to heal the breach and is critical to prevent infection but impaired in chronic wounds. Integrin heterodimers mediate attachment between epithelia and underlying extracellular matrix and also act in large signaling complexes. The complexity of the mammalian wound environment and evident redundancy among integrins has impeded determination of their specific contributions to reepithelialization. Taking advantage of the genetic tools and smaller number of integrins in Drosophila, we undertook a systematic in vivo analysis of integrin requirements in the reepithelialization of skin wounds in the larva. We identify αPS2-βPS and αPS3-βPS as the crucial integrin dimers and talin as the only integrin adhesion component required for reepithelialization. The integrins rapidly accumulate in a JNK-dependent manner in a few rows of cells surrounding a wound. Intriguingly, the integrins localize to the distal margin in these cells, instead of the frontal or lamellipodial distribution expected for proteins providing traction and recruit nonmuscle myosin II to the same location. These findings indicate that signaling roles of integrins may be important for epithelial polarization around wounds and lay the groundwork for using Drosophila to better understand integrin contributions to reepithelialization.
Collapse
Affiliation(s)
- Si-Hyoung Park
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Chan-wool Lee
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Ji-Hyun Lee
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Jin Young Park
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Mobina Roshandell
- Department of Biological Science, California State University, Fullerton, Fullerton, CA 92831
| | - Catherine A. Brennan
- Department of Biological Science, California State University, Fullerton, Fullerton, CA 92831
| | - Kwang-Min Choe
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
16
|
Edwards SS, Delgado MG, Nader GPDF, Piel M, Bellaïche Y, Lennon-Duménil AM, Glavic Á. An in vitro method for studying subcellular rearrangements during cell polarization in Drosophila melanogaster hemocytes. Mech Dev 2018; 154:277-286. [PMID: 30096416 DOI: 10.1016/j.mod.2018.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022]
Abstract
Thanks to the power of Drosophila genetics, this animal model has been a precious tool for scientists to uncover key processes associated to innate immunity. The fly immune system relies on a population of macrophage-like cells, also referred to as hemocytes, which are highly migratory and phagocytic, and can easily be followed in vivo. These cells have shown to play important roles in fly development, both at the embryonic and pupal stages. However, there is no robust assay for the study of hemocyte migration in vitro, which limits our understanding of the molecular mechanisms involved. Here, we contribute to fill this gap by showing that hemocytes adopt a polarized morphology upon ecdysone stimulation, allowing the study of the cytoskeleton rearrangements and organelle reorganization that take place during the first step of cell locomotion.
Collapse
Affiliation(s)
- Sandra Sofía Edwards
- Centro de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago 7800024, Chile.
| | - María Graciela Delgado
- Institut Curie, PSL Research University, INSERM U932 Immunité et Cancer, F-75248 Paris Cedex 05, France.
| | - Guilherme Pedreira de Freitas Nader
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France; Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France.
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France; Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France.
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 3215, INSERM U934, F-75005, France.
| | - Ana María Lennon-Duménil
- Institut Curie, PSL Research University, INSERM U932 Immunité et Cancer, F-75248 Paris Cedex 05, France.
| | - Álvaro Glavic
- Centro de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago 7800024, Chile.
| |
Collapse
|
17
|
Thuma L, Carter D, Weavers H, Martin P. Drosophila immune cells extravasate from vessels to wounds using Tre1 GPCR and Rho signaling. J Cell Biol 2018; 217:3045-3056. [PMID: 29941473 PMCID: PMC6122984 DOI: 10.1083/jcb.201801013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/04/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022] Open
Abstract
In contrast to vertebrates, adult Drosophila melanogaster have an open cardiovascular system. However, Thuma et al. find that in late pupation, hemolymph flows through Drosophila wing veins, providing a unique genetic and live-imaging opportunity to investigate the mechanisms driving immune cell extravasation from vessels to wounds and reveal new roles for Tre1 and Rho signaling in this process. Inflammation is pivotal to fight infection, clear debris, and orchestrate repair of injured tissues. Although Drosophila melanogaster have proven invaluable for studying extravascular recruitment of innate immune cells (hemocytes) to wounds, they have been somewhat neglected as viable models to investigate a key rate-limiting component of inflammation—that of immune cell extravasation across vessel walls—due to their open circulation. We have now identified a period during pupal development when wing hearts pulse hemolymph, including circulating hemocytes, through developing wing veins. Wounding near these vessels triggers local immune cell extravasation, enabling live imaging and correlative light-electron microscopy of these events in vivo. We show that RNAi knockdown of immune cell integrin blocks diapedesis, just as in vertebrates, and we uncover a novel role for Rho-like signaling through the GPCR Tre1, a gene previously implicated in the trans-epithelial migration of germ cells. We believe this new Drosophila model complements current murine models and provides new mechanistic insight into immune cell extravasation.
Collapse
Affiliation(s)
- Leila Thuma
- Department of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Deborah Carter
- Department of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Helen Weavers
- School of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, Bristol, UK .,School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Paul Martin
- Department of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK .,School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, UK.,School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
18
|
Rüder M, Nagel BM, Bogdan S. Analysis of Cell Shape and Cell Migration of Drosophila Macrophages In Vivo. Methods Mol Biol 2018; 1749:227-238. [PMID: 29526001 DOI: 10.1007/978-1-4939-7701-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The most abundant immune cells in Drosophila are macrophage-like plasmatocytes that fulfill central roles in morphogenesis, immune and tissue damage response. The various genetic tools available in Drosophila together with high-resolution and live-imaging microscopy techniques make Drosophila macrophages an excellent model system that combines many advantages of cultured cells with in vivo genetics. Here, we describe the isolation and staining of macrophages from larvae for ex vivo structured illumination microscopy (SIM), the preparation of white prepupae for in vivo 2D random cell migration analysis, and the preparation of pupae (18 h after puparium formation, APF) for in vivo 3D directed cell migration analysis upon wounding using spinning disk microscopy.
Collapse
Affiliation(s)
- Marike Rüder
- Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, Marburg, Germany
| | - Benedikt M Nagel
- Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, Marburg, Germany
| | - Sven Bogdan
- Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, Marburg, Germany.
| |
Collapse
|
19
|
Nagel BM, Bechtold M, Rodriguez LG, Bogdan S. Drosophila WASH is required for integrin-mediated cell adhesion, cell motility and lysosomal neutralization. J Cell Sci 2016; 130:344-359. [PMID: 27884932 DOI: 10.1242/jcs.193086] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
The Wiskott-Aldrich syndrome protein and SCAR homolog (WASH; also known as Washout in flies) is a conserved actin-nucleation-promoting factor controlling Arp2/3 complex activity in endosomal sorting and recycling. Previous studies have identified WASH as an essential regulator in Drosophila development. Here, we show that homozygous wash mutant flies are viable and fertile. We demonstrate that Drosophila WASH has conserved functions in integrin receptor recycling and lysosome neutralization. WASH generates actin patches on endosomes and lysosomes, thereby mediating both aforementioned functions. Consistently, loss of WASH function results in cell spreading and cell migration defects of macrophages, and an increased lysosomal acidification that affects efficient phagocytic and autophagic clearance. WASH physically interacts with the vacuolar (V)-ATPase subunit Vha55 that is crucial to establish and maintain lysosome acidification. As a consequence, starved flies that lack WASH function show a dramatic increase in acidic autolysosomes, causing a reduced lifespan. Thus, our data highlight a conserved role for WASH in the endocytic sorting and recycling of membrane proteins, such as integrins and the V-ATPase, that increase the likelihood of survival under nutrient deprivation.
Collapse
Affiliation(s)
- Benedikt M Nagel
- Institut für Neurobiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany.,Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, Emil-Mannkopff-Straße 2, 35037 Marburg, Germany
| | - Meike Bechtold
- Institut für Neurobiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | | | - Sven Bogdan
- Institut für Neurobiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany .,Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, Emil-Mannkopff-Straße 2, 35037 Marburg, Germany
| |
Collapse
|
20
|
League GP, Hillyer JF. Functional integration of the circulatory, immune, and respiratory systems in mosquito larvae: pathogen killing in the hemocyte-rich tracheal tufts. BMC Biol 2016; 14:78. [PMID: 27643786 PMCID: PMC5027632 DOI: 10.1186/s12915-016-0305-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As both larvae and adults, mosquitoes encounter a barrage of immune insults, ranging from microbe-rich communities in larval habitats to ingested blood-borne pathogens in adult blood meals. Given that mosquito adults have evolved an efficient means of eliminating infections in their hemocoel (body cavity) via the coordinated action of their immune and circulatory systems, the goal of the present study was to determine whether such functional integration is also present in larvae. RESULTS By fluorescently labeling hemocytes (immune cells), pericardial cells, and the heart, we discovered that fourth instar larvae, unlike adults, contain segmental hemocytes but lack the periostial hemocytes that surround the ostia (heart valves) in abdominal segments 2-7. Instead, larvae contain an abundance of sessile hemocytes at the tracheal tufts, which are respiratory structures that are unique to larvae, are located in the posterior-most abdominal segment, and surround what in larvae are the sole incurrent openings for hemolymph entry into the heart. Injection of fluorescent immune elicitors and bacteria into the larval hemocoel then showed that tracheal tuft hemocytes mount rapid and robust immune responses against foreign insults. Indeed, green fluorescent protein-labeled Escherichia coli flowing with the hemolymph rapidly aggregate exclusively at the tracheal tufts, where they are killed within 24 h post-infection via both phagocytosis and melanization. CONCLUSION Together, these findings show that the functional integration of the circulatory, respiratory, and immune systems of mosquitoes varies drastically across life stages.
Collapse
Affiliation(s)
- Garrett P League
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-1634, Nashville, TN, 37235, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-1634, Nashville, TN, 37235, USA.
| |
Collapse
|
21
|
Gold KS, Brückner K. Macrophages and cellular immunity in Drosophila melanogaster. Semin Immunol 2016; 27:357-68. [PMID: 27117654 DOI: 10.1016/j.smim.2016.03.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/08/2016] [Indexed: 12/16/2022]
Abstract
The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell development and immunity. Drosophila is a holometabolous insect, which transitions through a series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable parallels exist between Drosophila and vertebrate macrophages, both in terms of development and function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), making this highly tractable genetic system attractive for studying a variety of questions in macrophage biology. In vertebrates, recent findings revealed that macrophages have two independent origins: self-renewing macrophages, which reside and proliferate in local microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage of the Drosophila model when investigating macrophage lineage specification, maintenance and amplification, and the induction of macrophages and their progenitors by local microenvironments and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for understanding the mechanisms underlying macrophage function and cellular immunity in infection, tissue homeostasis and cancer, throughout development and adult life.
Collapse
Affiliation(s)
| | - Katja Brückner
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; Department of Cell and Tissue Biology; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
22
|
Brüser L, Bogdan S. Molecular Control of Actin Dynamics In Vivo: Insights from Drosophila. Handb Exp Pharmacol 2016; 235:285-310. [PMID: 27757759 DOI: 10.1007/164_2016_33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The actin cytoskeleton provides mechanical support for cells and generates forces to drive cell shape changes and cell migration in morphogenesis. Molecular understanding of actin dynamics requires a genetically traceable model system that allows interdisciplinary experimental approaches to elucidate the regulatory network of cytoskeletal proteins in vivo. Here, we will discuss some examples of how advances in Drosophila genetics and high-resolution imaging techniques contribute to the discovery of new actin functions, signaling pathways, and mechanisms of actin regulation in vivo.
Collapse
Affiliation(s)
- Lena Brüser
- Institute for Neurobiology, University of Muenster, Badestrasse 9, 48149, Muenster, Germany
| | - Sven Bogdan
- Institute for Neurobiology, University of Muenster, Badestrasse 9, 48149, Muenster, Germany.
| |
Collapse
|
23
|
Brinkmann K, Winterhoff M, Önel SF, Schultz J, Faix J, Bogdan S. WHAMY is a novel actin polymerase promoting myoblast fusion, macrophage cell motility and sensory organ development in Drosophila. J Cell Sci 2015; 129:604-20. [PMID: 26675239 DOI: 10.1242/jcs.179325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/09/2015] [Indexed: 01/06/2023] Open
Abstract
Wiskott-Aldrich syndrome proteins (WASPs) are nucleation-promoting factors (NPF) that differentially control the Arp2/3 complex. In Drosophila, three different family members, SCAR (also known as WAVE), WASP and WASH (also known as CG13176), have been analyzed so far. Here, we characterized WHAMY, the fourth Drosophila WASP family member. whamy originated from a wasp gene duplication and underwent a sub-neofunctionalization. Unlike WASP, we found that WHAMY specifically interacted with activated Rac1 through its two CRIB domains, which were sufficient for targeting WHAMY to lamellipodial and filopodial tips. Biochemical analyses showed that WHAMY promoted exceptionally fast actin filament elongation, although it did not activate the Arp2/3 complex. Loss- and gain-of-function studies revealed an important function of WHAMY in membrane protrusions and cell migration in macrophages. Genetic data further implied synergistic functions between WHAMY and WASP during morphogenesis. Double mutants were late-embryonic lethal and showed severe defects in myoblast fusion. Trans-heterozygous mutant animals showed strongly increased defects in sensory cell fate specification. Thus, WHAMY is a novel actin polymerase with an initial partitioning of ancestral WASP functions in development and subsequent acquisition of a new function in cell motility during evolution.
Collapse
Affiliation(s)
- Klaus Brinkmann
- Institut für Neurobiologie, Universität Münster, Badestr. 9, Münster 48149, Germany
| | - Moritz Winterhoff
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Strasse 1, Hannover 30625, Germany
| | - Susanne-Filiz Önel
- Fachbereich Biologie, Entwicklungsbiologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, Marburg 35043, Germany
| | - Jörg Schultz
- Center for Computational and Theoretical Biology, Campus Nord and Bioinformatik, Biozentrum, Am Hubland, Universität Würzburg, Würzburg 97074, Germany
| | - Jan Faix
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Strasse 1, Hannover 30625, Germany
| | - Sven Bogdan
- Institut für Neurobiologie, Universität Münster, Badestr. 9, Münster 48149, Germany
| |
Collapse
|
24
|
Hillyer JF. Integrated Immune and Cardiovascular Function in Pancrustacea: Lessons from the Insects. Integr Comp Biol 2015; 55:843-55. [DOI: 10.1093/icb/icv021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
25
|
Verboon JM, Rahe TK, Rodriguez-Mesa E, Parkhurst SM. Wash functions downstream of Rho1 GTPase in a subset of Drosophila immune cell developmental migrations. Mol Biol Cell 2015; 26:1665-74. [PMID: 25739458 PMCID: PMC4436778 DOI: 10.1091/mbc.e14-08-1266] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/25/2015] [Indexed: 01/12/2023] Open
Abstract
Drosophila immune cells undergo four stereotypical developmental migrations to populate the embryo. Wash is a downstream effector of Rho1 and establishes Rho1>Wash>Arp2/3 as the regulatory pathway controlling the cytoskeleton during one of these developmental hemocyte migrations in a WASH regulatory complex–independent manner. Drosophila immune cells, the hemocytes, undergo four stereotypical developmental migrations to populate the embryo, where they provide immune reconnoitering, as well as a number of non–immune-related functions necessary for proper embryogenesis. Here, we describe a role for Rho1 in one of these developmental migrations in which posteriorly located hemocytes migrate toward the head. This migration requires the interaction of Rho1 with its downstream effector Wash, a Wiskott–Aldrich syndrome family protein. Both Wash knockdown and a Rho1 transgene harboring a mutation that prevents Wash binding exhibit the same developmental migratory defect as Rho1 knockdown. Wash activates the Arp2/3 complex, whose activity is needed for this migration, whereas members of the WASH regulatory complex (SWIP, Strumpellin, and CCDC53) are not. Our results suggest a WASH complex–independent signaling pathway to regulate the cytoskeleton during a subset of hemocyte developmental migrations.
Collapse
Affiliation(s)
- Jeffrey M Verboon
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Travis K Rahe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Evelyn Rodriguez-Mesa
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Susan M Parkhurst
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
26
|
Tavares L, Pereira E, Correia A, Santos MA, Amaral N, Martins T, Relvas JB, Pereira PS. Drosophila PS2 and PS3 integrins play distinct roles in retinal photoreceptors-glia interactions. Glia 2015; 63:1155-65. [PMID: 25731761 DOI: 10.1002/glia.22806] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/28/2015] [Indexed: 11/09/2022]
Abstract
Cellular migration and differentiation are important developmental processes that require dynamic cellular adhesion. Integrins are heterodimeric transmembrane receptors that play key roles in adhesion plasticity. Here, we explore the developing visual system of Drosophila to study the roles of integrin heterodimers in glia development. Our data show that αPS2 is essential for retinal glia migration from the brain into the eye disc and that glial cells have a role in the maintenance of the fenestrated membrane (Laminin-rich ECM layer) in the disc. Interestingly, the absence of glial cells in the eye disc did not affect the targeting of retinal axons to the optic stalk. In contrast, αPS3 is not required for retinal glia migration, but together with Talin, it functions in glial cells to allow photoreceptor axons to target the optic stalk. Thus, we present evidence that αPS2 and αPS3 integrin have different and specific functions in the development of retinal glia.
Collapse
Affiliation(s)
- Lígia Tavares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Maartens AP, Brown NH. Anchors and signals: the diverse roles of integrins in development. Curr Top Dev Biol 2015; 112:233-72. [PMID: 25733142 DOI: 10.1016/bs.ctdb.2014.11.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Integrins mediate cell adhesion by providing a link between the actin cytoskeleton and the extracellular matrix. As well as acting to anchor cells, integrin adhesions provide sensory input via mechanotransduction and synergism with signaling pathways, and provide the cell with the conditions necessary for differentiation in a permissive manner. In this review, we explore how integrins contribute to development, and what this tells us about how they work. From a signaling perspective, the influence of integrins on cell viability and fate is muted in a developmental context as compared to cell culture. Integrin phenotypes tend to arise from a failure of normally specified cells to create tissues properly, due to defective adhesion. The diversity of integrin functions in development shows how cell adhesion is continuously adjusted, both within and between animals, to fit developmental purpose.
Collapse
Affiliation(s)
- Aidan P Maartens
- Department of Physiology, Development and Neuroscience, The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience, The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
28
|
Zhang K, Xu M, Su J, Yu S, Sun Z, Li Y, Zhang W, Hou J, Shang L, Cui H. Characterization and identification of the integrin family in silkworm, Bombyx mori. Gene 2014; 549:149-55. [DOI: 10.1016/j.gene.2014.07.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/13/2014] [Accepted: 07/23/2014] [Indexed: 11/29/2022]
|
29
|
Evans CJ, Liu T, Banerjee U. Drosophila hematopoiesis: Markers and methods for molecular genetic analysis. Methods 2014; 68:242-51. [PMID: 24613936 PMCID: PMC4051208 DOI: 10.1016/j.ymeth.2014.02.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 01/09/2023] Open
Abstract
Analyses of the Drosophila hematopoietic system are becoming more and more prevalent as developmental and functional parallels with vertebrate blood cells become more evident. Investigative work on the fly blood system has, out of necessity, led to the identification of new molecular markers for blood cell types and lineages and to the refinement of useful molecular genetic tools and analytical methods. This review briefly describes the Drosophila hematopoietic system at different developmental stages, summarizes the major useful cell markers and tools for each stage, and provides basic protocols for practical analysis of circulating blood cells and of the lymph gland, the larval hematopoietic organ.
Collapse
Affiliation(s)
- Cory J Evans
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ting Liu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Stramer BM, Dionne MS. Unraveling tissue repair immune responses in flies. Semin Immunol 2014; 26:310-4. [PMID: 24856462 DOI: 10.1016/j.smim.2014.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/24/2014] [Indexed: 11/29/2022]
Abstract
Drosophila melanogaster has emerged as a powerful model to understand innate immune responses to infection (note the 2011 Nobel Prize in Physiology or Medicine), and in recent years this system has begun to inform on the role and regulation of immune responses during tissue injury. Due to the speed and complexity of inflammation signals upon damage, a complete understanding of the immune responses during repair requires a combination of live imaging at high temporal resolution and genetic dissection, which is possible in a number of different injury models in the fly. Here we discuss the range of wound-induced immune responses that can be modeled in flies. These wound models have revealed the most immediate signals leading to immune cell activation, and highlighted a number of complex signaling cascades required for subsequent injury-associated inflammatory responses. What has emerged from this system are a host of both local acting signals, and surprisingly, more systemic tissue repair immune responses.
Collapse
Affiliation(s)
- Brian M Stramer
- King's College London, Randall Division of Cell and Molecular Biophysics, London SE1 1UL, United Kingdom.
| | - Marc S Dionne
- King's College London, Centre for the Molecular and Cellular Biology of Inflammation, London SE1 1UL, United Kingdom.
| |
Collapse
|
31
|
Abstract
Integrin-mediated adhesion used by Drosophila blood cells to migrate in vivo. SCAR/WAVE is required for lamellipodia but also for clearance of apoptotic cells. The formins Fhos and Diaphanous regulate Drosophila macrophage migration and morphology. Calcium waves drive hydrogen peroxide production to regulate inflammatory migrations. The steroid hormone Ecdysone controls the onset of immune competence.
Drosophila melanogaster contains a population of blood cells called hemocytes that represent the functional equivalent of vertebrate macrophages. These cells undergo directed migrations to disperse during development and reach sites of tissue damage or altered self. These chemotactic behaviors are controlled by the expression of PDGF/Vegf-related ligands in developing embryos and local production of hydrogen peroxide at wounds. Recent work reveals that many molecules important in vertebrate cell motility, including integrins, formins, Ena/VASP proteins and the SCAR/WAVE complex, have a conserved function in these innate immune cells. The use of this model organism has elucidated how damage signals are activated by calcium signaling during inflammation and that the steroid hormone ecdysone activates immune competence at key developmental stages.
Collapse
Affiliation(s)
- Iwan Robert Evans
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; The Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Will Wood
- Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
32
|
Lammel U, Bechtold M, Risse B, Berh D, Fleige A, Bunse I, Jiang X, Klämbt C, Bogdan S. The Drosophila FHOD1-like formin Knittrig acts through Rok to promote stress fiber formation and directed macrophage migration during the cellular immune response. Development 2014; 141:1366-80. [PMID: 24553290 DOI: 10.1242/dev.101352] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A tight spatiotemporal control of actin polymerization is important for many cellular processes that shape cells into a multicellular organism. The formation of unbranched F-actin is induced by several members of the formin family. Drosophila encodes six formin genes, representing six of the seven known mammalian subclasses. Knittrig, the Drosophila homolog of mammalian FHOD1, is specifically expressed in the developing central nervous system midline glia, the trachea, the wing and in macrophages. knittrig mutants exhibit mild tracheal defects but survive until late pupal stages and mainly die as pharate adult flies. knittrig mutant macrophages are smaller and show reduced cell spreading and cell migration in in vivo wounding experiments. Rescue experiments further demonstrate a cell-autonomous function of Knittrig in regulating actin dynamics and cell migration. Knittrig localizes at the rear of migrating macrophages in vivo, suggesting a cellular requirement of Knittrig in the retraction of the trailing edge. Supporting this notion, we found that Knittrig is a target of the Rho-dependent kinase Rok. Co-expression with Rok or expression of an activated form of Knittrig induces actin stress fibers in macrophages and in epithelial tissues. Thus, we propose a model in which Rok-induced phosphorylation of residues within the basic region mediates the activation of Knittrig in controlling macrophage migration.
Collapse
Affiliation(s)
- Uwe Lammel
- Institute for Neurobiology, University of Münster, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang L, Kounatidis I, Ligoxygakis P. Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer. Front Cell Infect Microbiol 2014; 3:113. [PMID: 24409421 PMCID: PMC3885817 DOI: 10.3389/fcimb.2013.00113] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/21/2013] [Indexed: 01/07/2023] Open
Abstract
Drosophila has a primitive yet effective blood system with three types of haemocytes which function throughout different developmental stages and environmental stimuli. Haemocytes play essential roles in tissue modeling during embryogenesis and morphogenesis, and also in innate immunity. The open circulatory system of Drosophila makes haemocytes ideal signal mediators to cells and tissues in response to events such as infection and wounding. The application of recently developed and sophisticated genetic tools to the relatively simple genome of Drosophila has made the fly a popular system for modeling human tumorigensis and metastasis. Drosophila is now used for screening and investigation of genes implicated in human leukemia and also in modeling development of solid tumors. This second line of research offers promising opportunities to determine the seemingly conflicting roles of blood cells in tumor progression and invasion. This review provides an overview of the signaling pathways conserved in Drosophila during haematopoiesis, haemostasis, innate immunity, wound healing and inflammation. We also review the most recent progress in the use of Drosophila as a cancer research model with an emphasis on the roles haemocytes can play in various cancer models and in the links between inflammation and cancer.
Collapse
Affiliation(s)
- Lihui Wang
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford Oxford, UK
| | - Ilias Kounatidis
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford Oxford, UK
| | - Petros Ligoxygakis
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford Oxford, UK
| |
Collapse
|
34
|
Abstract
Drosophila hemocytes compose the cellular arm of the fly's innate immune system. Plasmatocytes, putative homologues to mammalian macrophages, represent ∼95% of the migratory hemocyte population in circulation and are responsible for the phagocytosis of bacteria and apoptotic tissues that arise during metamorphosis. It is not known as to how hemocytes become activated from a sessile state in response to such infectious and developmental cues, although the hormone ecdysone has been suggested as the signal that shifts hemocyte behaviour from quiescent to migratory at metamorphosis. Here, we corroborate this hypothesis by showing the activation of hemocyte motility by ecdysone. We induce motile behaviour in larval hemocytes by culturing them with 20-hydroxyecdysone ex vivo. Moreover, we also determine that motile cell behaviour requires the ecdysone receptor complex and leads to asymmetrical redistribution of both actin and tubulin cytoskeleton.
Collapse
|