1
|
Fragale N, Divvela SSK, Williams-Ward VC, Brand-Saberi B. Loss of Atoh8 Affects Neurocranial and Axial Skeleton Development in Zebrafish. FRONT BIOSCI-LANDMRK 2025; 30:26806. [PMID: 40152384 DOI: 10.31083/fbl26806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 03/29/2025]
Abstract
BACKGROUND The basic helix-loop-helix (bHLH) transcription factor atonal homologue 8 (Atoh8) has been implicated in various developmental and physiological processes by means of transient knockdown and conditional knockout approaches in zebrafish, chick and mouse. Despite its demonstrated involvement in multiple tissues, the role of Atoh8 remains elusive in zebrafish. A recent permanent knockout study in zebrafish investigated the role of Atoh8 on the background of previous morpholino studies which demonstrated various developmental defects but could not find any of the morpholino-based effects in the mutant. In mice, a knockout study demonstrated involvement of the transcription factor in skeletal development, showing that disruption of the atoh8 gene results in reduction of skeletal size. We investigated a mutant fish line generated using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9)-technology for possible phenotypic effects on zebrafish skeletogenesis. METHODS Here, we present a CRISPR/Cas9-generated atoh8 permanent zebrafish mutant and investigate the phenotypic effects of the knockout on the developing zebrafish craniofacial and axial skeleton. We investigated the expression pattern of the gene in wildtype and conducted detailed morphometric analysis for a variety of bone and cartilage elements of the developing skeleton at 12 days post fertilisation (dpf) in zebrafish siblings from a heterozygous mating using detailed morphometric measurements and statistical analysis of the results. RESULTS Homozygous mutants are viable into late adulthood and show no overt morphological phenotype. Despite the prominent appearance of atoh8 signal in various embryonic and larval craniofacial and axial skeletal structures, detailed morphometric analysis revealed only subtle phenotypic effects of the mutation on skeletal development in zebrafish. We found the formation of the orbital cartilages of the developing neurocranium and the progress of chordacentra mineralisation to be negatively affected by loss of the transcription factor. CONCLUSIONS Despite the very subtle phenotypic effect of our mutation, we were able to show involvement of atoh8 in the skeletal development of zebrafish. We attribute the mild phenotype to a compensatory mechanism induced by nonsense-mediated degradation of messenger ribonucleic acid (mRNA) as suggested in the recent literature. The effect of atoh8-disruption on zebrafish skeletal development suggests that the loss of atoh8 cannot be compensated for at interfaces where more than one embryonic cell lineage contributes to bone and cartilage formation.
Collapse
Affiliation(s)
- Ninfa Fragale
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr-University, 44801 Bochum, Germany
| | | | | | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr-University, 44801 Bochum, Germany
| |
Collapse
|
2
|
Li W, McCurdy S, Lopez-Ramirez MA, Lee HS, Ginsberg MH. Genetic inactivation of the β1 adrenergic receptor prevents cerebral cavernous malformations in zebrafish. eLife 2025; 13:RP99455. [PMID: 39991834 PMCID: PMC11849999 DOI: 10.7554/elife.99455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Previously, we showed that propranolol reduces experimental murine cerebral cavernous malformations (CCMs) and prevents embryonic caudal venous plexus (CVP) lesions in zebrafish that follow mosaic inactivation of ccm2 (Li et al., 2021). Because morpholino silencing of the β1 adrenergic receptor (adrb1) prevents the embryonic CVP lesion, we proposed that adrb1 plays a role in CCM pathogenesis. Here, we report that adrb1-/- zebrafish exhibited 86% fewer CVP lesions and 87% reduction of CCM lesion volume relative to wild type brood mates at 2dpf and 8-10 weeks stage, respectively. Treatment with metoprolol, a β1 selective antagonist, yielded a similar reduction in CCM lesion volume. Adrb1-/- zebrafish embryos exhibited reduced heart rate and contractility and reduced CVP blood flow. Similarly, slowing the heart and eliminating the blood flow in CVP by administration of 2,3-BDM suppressed the CVP lesion. In sum, our findings provide genetic and pharmacological evidence that the therapeutic effect of propranolol on CCM is achieved through β1 receptor antagonism.
Collapse
Affiliation(s)
- Wenqing Li
- Department of Medicine, University of California, San DiegoSan DiegoUnited States
| | - Sara McCurdy
- Department of Medicine, University of California, San DiegoSan DiegoUnited States
| | | | - Ho-Sup Lee
- Department of Medicine, University of California, San DiegoSan DiegoUnited States
| | - Mark H Ginsberg
- Department of Medicine, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
3
|
El Mir J, Nasrallah A, Thézé N, Cario M, Fayyad‐Kazan H, Thiébaud P, Rezvani H. Xenopus as a model system for studying pigmentation and pigmentary disorders. Pigment Cell Melanoma Res 2025; 38:e13178. [PMID: 38849973 PMCID: PMC11681847 DOI: 10.1111/pcmr.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024]
Abstract
Human pigmentary disorders encompass a broad spectrum of phenotypic changes arising from disruptions in various stages of melanocyte formation, the melanogenesis process, or the transfer of pigment from melanocytes to keratinocytes. A large number of pigmentation genes associated with pigmentary disorders have been identified, many of them awaiting in vivo confirmation. A more comprehensive understanding of the molecular basis of pigmentary disorders requires a vertebrate animal model where changes in pigmentation are easily observable in vivo and can be combined to genomic modifications and gain/loss-of-function tools. Here we present the amphibian Xenopus with its unique features that fulfill these requirements. Changes in pigmentation are particularly easy to score in Xenopus embryos, allowing whole-organism based phenotypic screening. The development and behavior of Xenopus melanocytes closely mimic those observed in mammals. Interestingly, both Xenopus and mammalian skins exhibit comparable reactions to ultraviolet radiation. This review highlights how Xenopus constitutes an alternative and complementary model to the more commonly used mouse and zebrafish, contributing to the advancement of knowledge in melanocyte cell biology and related diseases.
Collapse
Affiliation(s)
- Joudi El Mir
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
| | - Ali Nasrallah
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
| | - Nadine Thézé
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
| | - Muriel Cario
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
- Aquiderm, University of BordeauxBordeauxFrance
| | - Hussein Fayyad‐Kazan
- Laboratory of Cancer Biology and Molecular ImmunologyLebanese UniversityHadathLebanon
| | - Pierre Thiébaud
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
| | - Hamid‐Reza Rezvani
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
- Aquiderm, University of BordeauxBordeauxFrance
| |
Collapse
|
4
|
Neal ES, Xu W, Borges K. Metabolic aspects of genetic ion channel epilepsies. J Neurochem 2024; 168:3911-3935. [PMID: 37594756 PMCID: PMC11591411 DOI: 10.1111/jnc.15938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
Nowadays, particularly in countries with high incomes, individual mutations in people affected by genetic epilepsies are identified, and genetic therapies are being developed. In addition, drugs are being screened to directly target specific mutations, and personalised medicine is possible. However, people with epilepsy do not yet benefit from these advances, and many types of epilepsies are medication-resistant, including Dravet syndrome. Thus, in the meantime, alternative and effective treatment options are needed. There is increasing evidence that metabolic deficits contribute to epileptic seizures and that such metabolic impairments may be amenable to treatment, with metabolic treatment options like the ketogenic diet being employed with some success. However, the brain metabolic alterations that occur in ion channel epilepsies are not well-understood, nor how these may differ from epilepsies that are of acquired and unknown origins. Here, we provide an overview of studies investigating metabolic alterations in epilepsies caused by mutations in the SCN1A and KCNA1 genes, which are currently the most studied ion channel epilepsies in animal models. The metabolic changes found in these models are likely to contribute to seizures. A metabolic basis of these ion channel epilepsies is supported by human and/or animal studies that show beneficial effects of the ketogenic diet, which may be mediated by the provision of auxiliary brain fuel in the form of ketone bodies. Other potentially more preferred dietary therapies including medium-chain triglycerides and triheptanoin have also been tested in a limited number of studies, but their efficacies remain to be clearly established. The extent to which brain metabolism is affected in people with Dravet syndrome, KCNA1 epilepsy and the models thereof still requires clarification. This requires more experiments that yield functional insight into metabolism.
Collapse
Affiliation(s)
- Elliott S. Neal
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Weizhi Xu
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Karin Borges
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
5
|
Li W, McCurdy S, Lopez-Ramirez MA, Lee HS, Ginsberg MH. Genetic Inactivation of the β1 adrenergic receptor prevents Cerebral Cavernous Malformations in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592554. [PMID: 38746306 PMCID: PMC11092766 DOI: 10.1101/2024.05.05.592554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Propranolol reduces experimental murine cerebral cavernous malformations (CCMs) and prevents embryonic caudal venous plexus (CVP) lesions in zebrafish that follow mosaic inactivation of ccm2. Because morpholino silencing of the β1 adrenergic receptor (adrb1) prevents the embryonic CVP lesion, we proposed that adrb1 plays a role in CCM pathogenesis. Here we report that adrb1 -/- zebrafish exhibited 86% fewer CVP lesions and 87% reduction of CCM lesion volume relative to wild type brood mates at 2dpf and 8-10 weeks stage, respectively. Treatment with metoprolol, a β1 selective antagonist, yielded a similar reduction in CCM lesion volume. Adrb1 -/- zebrafish embryos exhibited reduced heart rate and contractility and reduced CVP blood flow. Similarly, slowing the heart and eliminating the blood flow in CVP by administration of 2,3-BDM suppressed the CVP lesion. In sum, our findings provide genetic and pharmacological evidence that the therapeutic effect of propranolol on CCM is achieved through β1 receptor antagonism.
Collapse
Affiliation(s)
- Wenqing Li
- Department of Medicine, University of California San Diego, CA, USA
- To whom correspondence should be addressed
| | - Sara McCurdy
- Department of Medicine, University of California San Diego, CA, USA
| | | | - Ho-Sup Lee
- Department of Medicine, University of California San Diego, CA, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, CA, USA
| |
Collapse
|
6
|
Tooke AK, Hodges RE, Pyrah JF, Bayles KW, Renshaw SA, Foster SJ. Tetracycline and Oxacillin Act Synergistically on Biofilms and Display Increased Efficacy In Vivo Against Staphylococcus aureus. Curr Microbiol 2024; 81:447. [PMID: 39505760 PMCID: PMC11541413 DOI: 10.1007/s00284-024-03959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024]
Abstract
Oxacillin (bactericidal) and tetracycline (bacteriostatic) are clinically relevant antibiotics that are routinely prescribed to treat Staphylococcus aureus infections but not conventionally used in combination. There is an urgent need for treatment regimens that can act upon biofilms during infection, associated with chronic infections on indwelling devices, as well as acute planktonic (systemic) infection. Here we show that in an in vitro model oxacillin and tetracycline act synergistically against S. aureus UAMS-1 biofilms, reducing the concentration of both antibiotics necessary to eradicate an established biofilm. Using an in vivo zebrafish larval infection model with S. aureus NewHG, they display improved bacterial clearance compared to each drug alone and can counteract a loss of host phagocytes, an important innate defence against S. aureus. In these cases, the bacteriostatic nature of tetracycline enhances rather than dampens the bactericidal action of oxacillin, although an exact mechanism remains to be elucidated. We suggest a dual therapy could be of clinical use against biofilm-forming S. aureus and has a potential use in patients with a compromised immune system.
Collapse
Affiliation(s)
- Amy K Tooke
- School of Biosciences, University of Sheffield, Sheffield, S10 2TH, UK
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Rebecca E Hodges
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Josie F Pyrah
- School of Biosciences, University of Sheffield, Sheffield, S10 2TH, UK
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Stephen A Renshaw
- The Bateson Centre, University of Sheffield, Western Bank, Sheffield, S10 2TH, UK
- School of Medicine and Population Health, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Simon J Foster
- School of Biosciences, University of Sheffield, Sheffield, S10 2TH, UK.
- Florey Institute, University of Sheffield, Sheffield, S10 2TH, UK.
| |
Collapse
|
7
|
Lebenzon JE, Toxopeus J. Knock down to level up: Reframing RNAi for invertebrate ecophysiology. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111703. [PMID: 39029617 DOI: 10.1016/j.cbpa.2024.111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Comparative ecophysiologists strive to understand physiological problems in non-model organisms, but molecular tools such as RNA interference (RNAi) are under-used in our field. Here, we provide a framework for invertebrate ecophysiologists to use RNAi to answer questions focused on physiological processes, rather than as a tool to investigate gene function. We specifically focus on non-model invertebrates, in which the use of other genetic tools (e.g., genetic knockout lines) is less likely. We argue that because RNAi elicits a temporary manipulation of gene expression, and resources to carry out RNAi are technically and financially accessible, it is an effective tool for invertebrate ecophysiologists. We cover the terminology and basic mechanisms of RNA interference as an accessible introduction for "non-molecular" physiologists, include a suggested workflow for identifying RNAi gene targets and validating biologically relevant gene knockdowns, and present a hypothesis-testing framework for using RNAi to answer common questions in the realm of invertebrate ecophysiology. This review encourages invertebrate ecophysiologists to use these tools and workflows to explore physiological processes and bridge genotypes to phenotypes in their animal(s) of interest.
Collapse
Affiliation(s)
- Jacqueline E Lebenzon
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
| | - Jantina Toxopeus
- Department of Biology, St. Francis Xavier University, 2321 Notre Dame Ave, Antigonish, NS, Canada B2G 2W5
| |
Collapse
|
8
|
Lescouzères L, Patten SA. Promising animal models for amyotrophic lateral sclerosis drug discovery: a comprehensive update. Expert Opin Drug Discov 2024; 19:1213-1233. [PMID: 39115327 DOI: 10.1080/17460441.2024.2387791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/30/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Several animal models have been generated to understand ALS pathogenesis. They have provided valuable insight into disease mechanisms and the development of therapeutic strategies. AREAS COVERED In this review, the authors provide a concise overview of simple genetic model organisms, including C. elegans, Drosophila, zebrafish, and mouse genetic models that have been generated to study ALS. They emphasize the benefits of each model and their application in translational research for discovering new chemicals, gene therapy approaches, and antibody-based strategies for treating ALS. EXPERT OPINION Significant progress is being made in identifying new therapeutic targets for ALS. This progress is being enabled by promising animal models of the disease using increasingly effective genetic and pharmacological strategies. There are still challenges to be overcome in order to achieve improved success rates for translating drugs from animal models to clinics for treating ALS. Several promising future directions include the establishment of novel preclinical protocol standards, as well as the combination of animal models with human induced pluripotent stem cells (iPSCs).
Collapse
Affiliation(s)
- Léa Lescouzères
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Shunmoogum A Patten
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Departement de Neurosciences, Université de Montréal, Montreal, Canada
| |
Collapse
|
9
|
Arana ÁJ, Sánchez L. Knockout, Knockdown, and the Schrödinger Paradox: Genetic Immunity to Phenotypic Recapitulation in Zebrafish. Genes (Basel) 2024; 15:1164. [PMID: 39336755 PMCID: PMC11431394 DOI: 10.3390/genes15091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Previous research has highlighted significant phenotypic discrepancies between knockout and knockdown approaches in zebrafish, raising concerns about the reliability of these methods. However, our study suggests that these differences are not as pronounced as was once believed. By carefully examining the roles of maternal and zygotic gene contributions, we demonstrate that these factors significantly influence phenotypic outcomes, often accounting for the observed discrepancies. Our findings emphasize that morpholinos, despite their potential off-target effects, can be effective tools when used with rigorous controls. We introduce the concept of graded maternal contribution, which explains how the uneven distribution of maternal mRNA and proteins during gametogenesis impacts phenotypic variability. Our research categorizes genes into three types-susceptible, immune, and "Schrödinger" (conditional)-based on their phenotypic expression and interaction with genetic compensation mechanisms. This distinction provides new insights into the paradoxical outcomes observed in genetic studies. Ultimately, our work underscores the importance of considering both maternal and zygotic contributions, alongside rigorous experimental controls, to accurately interpret gene function and the mechanisms underlying disease. This study advocates for the continued use of morpholinos in conjunction with advanced genetic tools like CRISPR/Cas9, stressing the need for a meticulous experimental design to optimize the utility of zebrafish in genetic research and therapeutic development.
Collapse
|
10
|
Wan YX, Qi XW, Lian YY, Liu ZY, Wang H, Qiu YQ, Zhang CG, Li WN, Jiang HL, Yang DH, Zhao W, Chen ZS, Huang JC. Electroacupuncture facilitates vascular normalization by inhibiting Glyoxalase1 in endothelial cells to attenuate glycolysis and angiogenesis in triple-negative breast cancer. Cancer Lett 2024; 598:217094. [PMID: 38945204 DOI: 10.1016/j.canlet.2024.217094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Recent therapeutic strategies for the treatment of triple-negative breast cancer (TNBC) have shifted the focus from vascular growth factors to endothelial cell metabolism. This study highlights the underexplored therapeutic potential of peri-tumoral electroacupuncture, a globally accepted non-pharmacological intervention for TNBC, and molecular mechanisms. Our study showed that peri-tumoral electroacupuncture effectively reduced the density of microvasculature and enhanced vascular functionality in 4T1 breast cancer xenografts, with optimal effects on day 3 post-acupuncture. The timely integration of peri-tumoral electroacupuncture amplified the anti-tumor efficacy of paclitaxel. Multi-omics analysis revealed Glyoxalase 1 (Glo1) and the associated methylglyoxal-glycolytic pathway as key mediators of electroacupuncture-induced vascular normalization. Peri-tumoral electroacupuncture notably reduced Glo1 expression in the endothelial cells of 4T1 xenografts. Using an in vivo matrigel plug angiogenesis assay, we demonstrated that either Glo1 knockdown or electroacupuncture inhibited angiogenesis. In contrast, Glo1 overexpression increased blood vessel formation. In vitro pharmacological inhibition and genetic knockdown of Glo1 in human umbilical vein endothelial cells inhibited proliferation and promoted apoptosis via downregulating the methylglyoxal-glycolytic pathway. The study using the Glo1-silenced zebrafish model further supported the role of Glo1 in vascular development. This study underscores the pivotal role of Glo1 in peri-tumoral electroacupuncture, spotlighting a promising avenue for enhancing vascular normalization and improving TNBC treatment outcomes.
Collapse
Affiliation(s)
- Yu-Xiang Wan
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Wei Qi
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100029, China
| | - Yan-Yan Lian
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ze-Yu Liu
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hui Wang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu-Qin Qiu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chun-Guang Zhang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wen-Na Li
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hong-Lin Jiang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, USA
| | - Wei Zhao
- Guanganmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100029, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Jin-Chang Huang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
11
|
Li T, Li W, Li F, Lin J, Zhang Y, Zhang Q, Sun Y, Chen X, Zhou S, Li Q. Effects of two chd2-knockout strains on the morphology and behavior in zebrafish. Dev Genes Evol 2024:10.1007/s00427-024-00721-5. [PMID: 39190085 DOI: 10.1007/s00427-024-00721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
The chromodomain helicase DNA binding domain 2 (CHD2) gene is an ATPase and a member of the SNF2-like family of helicase-related enzymes. CHD2 plays critical roles in human brain development and function, and homozygous mutation of Chd2 in mice results in perinatal lethality. To further elucidate the effects of chd2, we used CRISPR/Cas9 to create two chd2-knockout strains (fdu901, 11,979-11982delGGGT, and fdu902, 27350delG) in zebrafish. We found that the deformity and mortality rates of fdu901 and fdu902 were higher than those of the wild type. Developmental delay was more obvious and embryo mortality was higher in fdu901 than in fdu902. However, the embryo deformity rate in fdu902 was higher than that in fdu901. Although there were no significant differences in behavior between the two knockout zebrafish and wild-type zebrafish at 7 days post fertilization (dpf), fdu901 and fdu902 zebrafish showed different alterations. The excitability of fdu902 was higher than that of fdu901. Overall, our data demonstrate that two homozygous chd2 knockout mutations were survivable and could be stably inherited and that fdu901 and fdu902 zebrafish differed in behavior and morphology. These two models might be good tools for understanding the functions of the different domains of chd2.
Collapse
Affiliation(s)
- Tingting Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Wenhui Li
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Fei Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Jia Lin
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yinglan Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Qi Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yanhe Sun
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xudong Chen
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
12
|
Wenzhi Y, Xiangyi L, Dongsheng F. The prion-like effect and prion-like protein targeting strategy in amyotrophic lateral sclerosis. Heliyon 2024; 10:e34963. [PMID: 39170125 PMCID: PMC11336370 DOI: 10.1016/j.heliyon.2024.e34963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Pathological proteins in amyotrophic lateral sclerosis (ALS), such as superoxide dismutase 1, TAR DNA-binding protein 43, and fused in sarcoma, exhibit a prion-like pattern. All these proteins have a low-complexity domain and seeding activity in cells. In this review, we summarize the studies on the prion-like effect of these proteins and list six prion-like protein targeting strategies that we believe have potential for ALS therapy, including antisense oligonucleotides, antibody-based technology, peptide, protein chaperone, autophagy enhancement, and heteromultivalent compounds. Considering the pathological complexity and heterogeneity of ALS, we believe that the final solution to ALS therapy is most likely to be an individualized cocktail therapy, including clearance of toxicity, blockage of pathological progress, and protection of neurons.
Collapse
Affiliation(s)
- Yang Wenzhi
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Liu Xiangyi
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Fan Dongsheng
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| |
Collapse
|
13
|
Patel K, Smith NJ. Primary cilia, A-kinase anchoring proteins and constitutive activity at the orphan G protein-coupled receptor GPR161: A tale about a tail. Br J Pharmacol 2024; 181:2182-2196. [PMID: 36772847 DOI: 10.1111/bph.16053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/22/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Primary cilia are non-motile antennae-like structures responsible for sensing environmental changes in most mammalian cells. Ciliary signalling is largely mediated by the Sonic Hedgehog (Shh) pathway, which acts as a master regulator of ciliary protein transit and is essential for normal embryonic development. One particularly important player in primary cilia is the orphan G protein-coupled receptor, GPR161. In this review, we introduce GPR161 in the context of Shh signalling and describe the unique features on its C-terminus such as PKA phosphorylation sites and an A-kinase anchoring protein motif, which may influence the function of the receptor, cAMP compartmentalisation and/or trafficking within primary cilia. We discuss the recent putative pairing of GPR161 and spexin-1, highlighting the additional steps needed before GPR161 could be considered 'deorphanised'. Finally, we speculate that the marked constitutive activity and unconventional regulation of GPR161 may indicate that the receptor may not require an endogenous ligand. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Kinjal Patel
- Orphan Receptor Laboratory, School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Nicola J Smith
- Orphan Receptor Laboratory, School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
14
|
Saumweber E, Mzoughi S, Khadra A, Werberger A, Schumann S, Guccione E, Schmeisser MJ, Kühl SJ. Prdm15 acts upstream of Wnt4 signaling in anterior neural development of Xenopus laevis. Front Cell Dev Biol 2024; 12:1316048. [PMID: 38444828 PMCID: PMC10912572 DOI: 10.3389/fcell.2024.1316048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Mutations in PRDM15 lead to a syndromic form of holoprosencephaly (HPE) known as the Galloway-Mowat syndrome (GAMOS). While a connection between PRDM15, a zinc finger transcription factor, and WNT/PCP signaling has been established, there is a critical need to delve deeper into their contributions to early development and GAMOS pathogenesis. We used the South African clawed frog Xenopus laevis as the vertebrate model organism and observed that prdm15 was enriched in the tissues and organs affected in GAMOS. Furthermore, we generated a morpholino oligonucleotide-mediated prdm15 knockdown model showing that the depletion of Prdm15 leads to abnormal eye, head, and brain development, effectively recapitulating the anterior neural features in GAMOS. An analysis of the underlying molecular basis revealed a reduced expression of key genes associated with eye, head, and brain development. Notably, this reduction could be rescued by the introduction of wnt4 RNA, particularly during the induction of the respective tissues. Mechanistically, our data demonstrate that Prdm15 acts upstream of both canonical and non-canonical Wnt4 signaling during anterior neural development. Our findings describe severe ocular and anterior neural abnormalities upon Prdm15 depletion and elucidate the role of Prdm15 in canonical and non-canonical Wnt4 signaling.
Collapse
Affiliation(s)
- Ernestine Saumweber
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Slim Mzoughi
- Center of OncoGenomics and Innovative Therapeutics (COGIT), Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New-York, NY, United States
| | - Arin Khadra
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Anja Werberger
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ernesto Guccione
- Center of OncoGenomics and Innovative Therapeutics (COGIT), Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New-York, NY, United States
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne J. Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
15
|
Prescott MA, Moulton H, Pastey MK. An alternative strategy to increasing influenza virus replication for vaccine production in chicken embryo fibroblast (DF-1) cells by inhibiting interferon alpha and beta using peptide-conjugated phosphorodiamidate morpholino oligomers. J Med Microbiol 2024; 73. [PMID: 38353513 DOI: 10.1099/jmm.0.001807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Introduction. Influenza is a global health issue causing substantial health and economic burdens on affected populations. Routine, annual vaccination for influenza virus is recommended for all persons older than 6 months of age. The propagation of the influenza virus for vaccine production is predominantly through embryonated chicken eggs.Hypothesis/Gap Statement. Many challenges face the propagation of the virus, including but not limited to low yields and lengthy production times. The development of a method to increase vaccine production in eggs or cell lines by suppressing cellular gene expression would be helpful to overcome some of the challenges facing influenza vaccine production.Aims. This study aimed to increase influenza virus titres by using a peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO), an antisense molecule, to suppress protein expression of the host genes interferon alpha (IFN-α) and interferon beta (IFN-β) in chicken embryo fibroblast (DF-1) cells.Methods. The toxicity of PPMOs was evaluated by cytotoxicity assays, and their specificity to inhibit IFN-α and IFN-β proteins was measured by ELISA. We evaluated the potential of anti-IFN-α and anti-IFN-β PPMOs to reduce the antiviral proteins in influenza virus-infected DF-1 cells and compared the virus titres to untreated controls, nonsense-PPMO and JAK/STAT inhibitors. The effects of complementation and reconstitution of IFN-α and IFN-β proteins in PPMO-treated-infected cells were evaluated, and the virus titres were compared between treatment groups.Results. Suppression of IFN-α by PPMO resulted in significantly reduced levels of IFN-α protein in treated wells, as measured by ELISA and was shown to not have any cytotoxicity to DF-1 cells at the effective concentrations tested. Treatment of the self-directing PPMOs increased the ability of the influenza virus to replicate in DF-1 cells. Over a 2-log10 increase in viral production was observed in anti-IFN-α and IFN-β PPMO-treated wells compared to those of untreated controls at the initial viral input of 0.1 multiplicity of infection. The data from complementation and reconstitution of IFN-α and IFN-β proteins in PPMO-treated-infected cells was about 82 and 97% compared to the combined PPMO-treated but uncomplemented group and untreated group, respectively. There was a 0.5-log10 increase in virus titre when treated with anti-IFN-α and IFN-β PPMO compared to virus titre when treated with JAK/STAT inhibitors.Conclusions. This study emphasizes the utility of PPMO in allowing cell cultures to produce increased levels of influenza for vaccine production or alternatively, as a screening tool to cheaply test targets prior to the development of permanent knockouts of host gene expression.
Collapse
Affiliation(s)
- Meagan A Prescott
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis Oregon 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis Oregon 97331, USA
| | - Hong Moulton
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis Oregon 97331, USA
| | - Manoj K Pastey
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis Oregon 97331, USA
| |
Collapse
|
16
|
Henderson ML, Zieba JK, Li X, Campbell DB, Williams MR, Vogt DL, Bupp CP, Edgerly YM, Rajasekaran S, Hartog NL, Prokop JW, Krueger JM. Gene Therapy for Genetic Syndromes: Understanding the Current State to Guide Future Care. BIOTECH 2024; 13:1. [PMID: 38247731 PMCID: PMC10801589 DOI: 10.3390/biotech13010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Gene therapy holds promise as a life-changing option for individuals with genetic variants that give rise to disease. FDA-approved gene therapies for Spinal Muscular Atrophy (SMA), cerebral adrenoleukodystrophy, β-Thalassemia, hemophilia A/B, retinal dystrophy, and Duchenne Muscular Dystrophy have generated buzz around the ability to change the course of genetic syndromes. However, this excitement risks over-expansion into areas of genetic disease that may not fit the current state of gene therapy. While in situ (targeted to an area) and ex vivo (removal of cells, delivery, and administration of cells) approaches show promise, they have a limited target ability. Broader in vivo gene therapy trials have shown various continued challenges, including immune response, use of immune suppressants correlating to secondary infections, unknown outcomes of overexpression, and challenges in driving tissue-specific corrections. Viral delivery systems can be associated with adverse outcomes such as hepatotoxicity and lethality if uncontrolled. In some cases, these risks are far outweighed by the potentially lethal syndromes for which these systems are being developed. Therefore, it is critical to evaluate the field of genetic diseases to perform cost-benefit analyses for gene therapy. In this work, we present the current state while setting forth tools and resources to guide informed directions to avoid foreseeable issues in gene therapy that could prevent the field from continued success.
Collapse
Affiliation(s)
- Marian L. Henderson
- The Department of Biology, Calvin University, Grand Rapids, MI 49546, USA;
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
| | - Jacob K. Zieba
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
| | - Daniel B. Campbell
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
| | - Michael R. Williams
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
| | - Daniel L. Vogt
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
| | - Caleb P. Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
- Medical Genetics, Corewell Health, Grand Rapids, MI 49503, USA
| | | | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA;
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Corewell Health, Grand Rapids, MI 49503, USA
| | - Nicholas L. Hartog
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
- Allergy & Immunology, Corewell Health, Grand Rapids, MI 49503, USA
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA;
| | - Jena M. Krueger
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
- Department of Neurology, Helen DeVos Children’s Hospital, Corewell Health, Grand Rapids, MI 49503, USA
| |
Collapse
|
17
|
Zappa F, Intartaglia D, Guarino AM, De Cegli R, Wilson C, Salierno FG, Polishchuk E, Sorrentino NC, Conte I, De Matteis MA. Role of trafficking protein particle complex 2 in medaka development. Traffic 2024; 25:e12924. [PMID: 37963679 DOI: 10.1111/tra.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023]
Abstract
The skeletal dysplasia spondyloepiphyseal dysplasia tarda (SEDT) is caused by mutations in the TRAPPC2 gene, which encodes Sedlin, a component of the trafficking protein particle (TRAPP) complex that we have shown previously to be required for the export of type II collagen (Col2) from the endoplasmic reticulum. No vertebrate model for SEDT has been generated thus far. To address this gap, we generated a Sedlin knockout animal by mutating the orthologous TRAPPC2 gene (olSedl) of Oryzias latipes (medaka) fish. OlSedl deficiency leads to embryonic defects, short size, diminished skeletal ossification and altered Col2 production and secretion, resembling human defects observed in SEDT patients. Moreover, SEDT knock-out animals display photoreceptor degeneration and gut morphogenesis defects, suggesting a key role for Sedlin in the development of these organs. Thus, by studying Sedlin function in vivo, we provide evidence for a mechanistic link between TRAPPC2-mediated membrane trafficking, Col2 export, and developmental disorders.
Collapse
Affiliation(s)
- Francesca Zappa
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli (Naples), Italy
| | - Daniela Intartaglia
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli (Naples), Italy
| | - Andrea M Guarino
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli (Naples), Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli (Naples), Italy
| | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli (Naples), Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli (Naples), Italy
| | - Nicolina Cristina Sorrentino
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli (Naples), Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli (Naples), Italy
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli (Naples), Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
18
|
Cabasso O, Kuppuramalingam A, Lelieveld L, Van der Lienden M, Boot R, Aerts JM, Horowitz M. Animal Models for the Study of Gaucher Disease. Int J Mol Sci 2023; 24:16035. [PMID: 38003227 PMCID: PMC10671165 DOI: 10.3390/ijms242216035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
In Gaucher disease (GD), a relatively common sphingolipidosis, the mutant lysosomal enzyme acid β-glucocerebrosidase (GCase), encoded by the GBA1 gene, fails to properly hydrolyze the sphingolipid glucosylceramide (GlcCer) in lysosomes, particularly of tissue macrophages. As a result, GlcCer accumulates, which, to a certain extent, is converted to its deacylated form, glucosylsphingosine (GlcSph), by lysosomal acid ceramidase. The inability of mutant GCase to degrade GlcSph further promotes its accumulation. The amount of mutant GCase in lysosomes depends on the amount of mutant ER enzyme that shuttles to them. In the case of many mutant GCase forms, the enzyme is largely misfolded in the ER. Only a fraction correctly folds and is subsequently trafficked to the lysosomes, while the rest of the misfolded mutant GCase protein undergoes ER-associated degradation (ERAD). The retention of misfolded mutant GCase in the ER induces ER stress, which evokes a stress response known as the unfolded protein response (UPR). GD is remarkably heterogeneous in clinical manifestation, including the variant without CNS involvement (type 1), and acute and subacute neuronopathic variants (types 2 and 3). The present review discusses animal models developed to study the molecular and cellular mechanisms underlying GD.
Collapse
Affiliation(s)
- Or Cabasso
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel; (O.C.); (A.K.)
| | - Aparna Kuppuramalingam
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel; (O.C.); (A.K.)
| | - Lindsey Lelieveld
- Leiden Institute of Chemistry, Leiden University, 9502 Leiden, The Netherlands; (L.L.); (M.V.d.L.); (R.B.)
| | - Martijn Van der Lienden
- Leiden Institute of Chemistry, Leiden University, 9502 Leiden, The Netherlands; (L.L.); (M.V.d.L.); (R.B.)
| | - Rolf Boot
- Leiden Institute of Chemistry, Leiden University, 9502 Leiden, The Netherlands; (L.L.); (M.V.d.L.); (R.B.)
| | - Johannes M. Aerts
- Leiden Institute of Chemistry, Leiden University, 9502 Leiden, The Netherlands; (L.L.); (M.V.d.L.); (R.B.)
| | - Mia Horowitz
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel; (O.C.); (A.K.)
| |
Collapse
|
19
|
Yang S, Xu X, Yin Z, Liu Y, Wang H, Guo J, Wang F, Bao Y, Zhang T, Sun S. nkx2.3 is responsible for posterior pharyngeal cartilage formation by inhibiting Fgf signaling. Heliyon 2023; 9:e21915. [PMID: 38034615 PMCID: PMC10682621 DOI: 10.1016/j.heliyon.2023.e21915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Nkx2.3, a transcription factor, plays important roles in various developmental processes. However, the mechanisms underlying nkx2.3's regulation of pouch and pharyngeal arch development in zebrafish remain unclear. In this study, we demonstrated that knockdown or knockout of nkx2.3 resulted in the absence of posterior ceratobranchial cartilages in zebrafish. The absence of posterior pharyngeal cartilages is a consequence of the compromised proliferation and differentiation and survival of cranial neural crest cells (CNCCs). Notably, we found that nkx2.3 was not involved in endoderm pouch formation. Additionally, our findings suggested that nkx2.3 negatively regulated Fibroblast growth factor (Fgf) signaling, as overexpression of fgf8 could mimic the phenotype observed in nkx2.3 morphants, suppressing CNCC differentiation. Moreover, inhibiting Fgf signaling restored the abnormalities in posterior cartilages induced by nkx2.3 knockdown. These findings establish the essential role of nkx2.3 in the development of posterior ceratobranchial cartilages through the inhibition of fgf8.
Collapse
Affiliation(s)
- Shuyan Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xin Xu
- Department of Biochemistry and Molecular Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zheng Yin
- Department of Biochemistry and Molecular Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yuelin Liu
- Department of Biochemistry and Molecular Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Handong Wang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yihua Bao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shaoguang Sun
- Department of Biochemistry and Molecular Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| |
Collapse
|
20
|
Zhao L, Fong SH, Yang Q, Jiang YJ, Korzh V, Liou YC. The prolyl isomerase Pin1 stabilizes NeuroD during differentiation of mechanoreceptors. Front Cell Dev Biol 2023; 11:1225128. [PMID: 37791075 PMCID: PMC10543749 DOI: 10.3389/fcell.2023.1225128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/11/2023] [Indexed: 10/05/2023] Open
Abstract
The peptidyl prolyl cis-trans isomerase Pin1 plays vital roles in diverse cellular processes and pathological conditions. NeuroD is a differentiation and survival factor for a subset of neurons and pancreatic endocrine cells. Although multiple phosphorylation events are known to be crucial for NeuroD function, their mechanisms remain elusive. In this study, we demonstrate that zebrafish embryos deficient in Pin1 displayed phenotypes resembling those associated with NeuroD depletion, characterized by defects in formation of mechanosensory hair cells. Furthermore, zebrafish Pin1 interacts with NeuroD in a phosphorylation-dependent manner. In Pin1-deficient cell lines, NeuroD is rapidly degraded. However, the protein stability of NeuroD is restored upon overexpression of Pin1. These findings suggest that Pin1 functionally regulates NeuroD protein levels by post-phosphorylation cis-trans isomerization during neuronal specification.
Collapse
Affiliation(s)
- Liqun Zhao
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Steven H. Fong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Genes and Development Division, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Qiaoyun Yang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Vladimir Korzh
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Genes and Development Division, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Parast SM, Yu D, Chen C, Dickinson AJ, Chang C, Wang H. Recognition of H2AK119ub plays an important role in RSF1-regulated early Xenopus development. Front Cell Dev Biol 2023; 11:1168643. [PMID: 37529237 PMCID: PMC10389277 DOI: 10.3389/fcell.2023.1168643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023] Open
Abstract
Polycomb group (PcG) proteins are key regulators of gene expression and developmental programs via covalent modification of histones, but the factors that interpret histone modification marks to regulate embryogenesis are less studied. We previously identified Remodeling and Spacing Factor 1 (RSF1) as a reader of histone H2A lysine 119 ubiquitination (H2AK119ub), the histone mark deposited by Polycomb Repressive Complex 1 (PRC1). In the current study, we used Xenopus laevis as a model to investigate how RSF1 affects early embryonic development and whether recognition of H2AK119ub is important for the function of RSF1. We showed that knockdown of Xenopus RSF1, rsf1, not only induced gastrulation defects as reported previously, but specific targeted knockdown in prospective neural precursors induced neural and neural crest defects, with reductions of marker genes. In addition, similar to knockdown of PRC1 components in Xenopus, the anterior-posterior neural patterning was affected in rsf1 knockdown embryos. Binding of H2AK119ub appeared to be crucial for rsf1 function, as a construct with deletion of the UAB domain, which is required for RSF1 to recognize the H2AK119ub nucleosomes, failed to rescue rsf1 morphant embryos and was less effective in interfering with early Xenopus development when ectopically expressed. Furthermore, ectopic deposition of H2AK119ub on the Smad2 target gene gsc using a ring1a-smad2 fusion protein led to ectopic recruitment of RSF1. The fusion protein was inefficient in inducing mesodermal markers in the animal region or a secondary axis when expressed in the ventral tissues. Taken together, our results reveal that rsf1 modulates similar developmental processes in early Xenopus embryos as components of PRC1 do, and that RSF1 acts at least partially through binding to the H2AK119ub mark via the UAB domain during development.
Collapse
Affiliation(s)
- Saeid Mohammad Parast
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Deli Yu
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Chunxu Chen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Amanda J. Dickinson
- Department of Biology, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
22
|
Knittel LM, Swanson TL, Lee HJ, Copenhaver PF. Fasciclin 2 plays multiple roles in promoting cell migration within the developing nervous system of Manduca sexta. Dev Biol 2023; 499:31-46. [PMID: 37121309 PMCID: PMC10247491 DOI: 10.1016/j.ydbio.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The coordination of neuronal and glial migration is essential to the formation of most nervous systems, requiring a complex interplay of cell-intrinsic responses and intercellular guidance cues. During the development of the enteric nervous system (ENS) in Manduca sexta (tobacco hornworm), the IgCAM Fasciclin 2 (Fas2) serves several distinct functions to regulate these processes. As the ENS forms, a population of 300 neurons (EP cells) undergoes sequential phases of migration along well-defined muscle pathways on the visceral mesoderm to form a branching Enteric Plexus, closely followed by a trailing wave of proliferating glial cells that enwrap the neurons. Initially, both the neurons and glial cells express a GPI-linked form of Fas2 (GPI-Fas2), which helps maintain cell-cell contact among the pre-migratory neurons and later promotes glial ensheathment. The neurons then switch isoforms, predominantly expressing a combination of transmembrane isoforms lacking an intracellular PEST domain (TM-Fas2 PEST-), while their muscle band pathways on the midgut transiently express transmembrane isoforms containing this domain (TM-Fas2 PEST+). Using intracellular injection protocols to manipulate Fas2 expression in cultured embryos, we found that TM-Fas2 promotes the directed migration and outgrowth of individual neurons in the developing ENS. Concurrently, TM-Fas2 expression by the underlying muscle bands is also required as a substrate cue to support normal migration, while glial expression of GPI-Fas2 helps support their ensheathment of the migratory neurons. These results demonstrate how a specific IgCAM can play multiple roles that help coordinate neuronal and glial migration in the developing nervous system.
Collapse
Affiliation(s)
- Laura M Knittel
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Tracy L Swanson
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Hun Joo Lee
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
23
|
Guille M, Grainger R. Genetics and Gene Editing Methods in Xenopus laevis and Xenopus tropicalis. Cold Spring Harb Protoc 2023; 2023:pdb.top107045. [PMID: 36283837 DOI: 10.1101/pdb.top107045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Our understanding of biological systems has for many years been heavily influenced by experimental approaches that exploit genetic methods. These include gain-of-function experiments that overexpress transgenes or ectopically express injected RNA and loss-of-function experiments that knock out genes or knock down RNAs. Here, we review how these methods have been applied in Xenopus frogs and introduce a variety of protocols for genetic manipulation of Xenopus laevis and Xenopus tropicalis.
Collapse
Affiliation(s)
- Matthew Guille
- European Xenopus Resource Centre, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2UP, United Kingdom
| | - Robert Grainger
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| |
Collapse
|
24
|
Gaillard AL, Mohamad T, Quan FB, de Cian A, Mosimann C, Tostivint H, Pézeron G. Urp1 and Urp2 act redundantly to maintain spine shape in zebrafish larvae. Dev Biol 2023; 496:36-51. [PMID: 36736605 DOI: 10.1016/j.ydbio.2023.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Urp1 and Urp2 are two neuropeptides, members of the Urotensin 2 family, that have been recently involved in the control of body axis morphogenesis in zebrafish. They are produced by a population of sensory spinal neurons, called cerebrospinal fluid contacting neurons (CSF-cNs), under the control of signals relying on the Reissner fiber, an extracellular thread bathing in the CSF. Here, we have investigated further the function of Urp1 and Urp2 (Urp1/2) in body axis formation and maintenance. We showed that urp1;urp2 double mutants develop strong body axis defects during larval growth, revealing the redundancy between the two neuropeptides. These defects were similar to those previously reported in uts2r3 mutants. We observed that this phenotype is not associated with congenital defects in vertebrae formation, but by using specific inhibitors, we found that, at least in the embryo, the action of Urp1/2 signaling depends on myosin II contraction. Finally, we provide evidence that while the Urp1/2 signaling is functioning during larval growth, it is dispensable for embryonic development. Taken together, our results show that Urp1/2 signaling is required in larvae to promote correct vertebral body axis, most likely by regulating muscle tone.
Collapse
Affiliation(s)
- Anne-Laure Gaillard
- Molecular Physiology and Adaptation (PhyMA - UMR7221), Muséum National d'Histoire naturelle, CNRS, Paris, France
| | - Teddy Mohamad
- Molecular Physiology and Adaptation (PhyMA - UMR7221), Muséum National d'Histoire naturelle, CNRS, Paris, France
| | - Feng B Quan
- Molecular Physiology and Adaptation (PhyMA - UMR7221), Muséum National d'Histoire naturelle, CNRS, Paris, France
| | - Anne de Cian
- Structure and Instability of Genomes (String - UMR 7196 - U1154), Muséum National d'Histoire naturelle, CNRS, INSERM, Paris, France
| | - Christian Mosimann
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Hervé Tostivint
- Molecular Physiology and Adaptation (PhyMA - UMR7221), Muséum National d'Histoire naturelle, CNRS, Paris, France
| | - Guillaume Pézeron
- Molecular Physiology and Adaptation (PhyMA - UMR7221), Muséum National d'Histoire naturelle, CNRS, Paris, France.
| |
Collapse
|
25
|
Burgess HA, Burton EA. A Critical Review of Zebrafish Neurological Disease Models-1. The Premise: Neuroanatomical, Cellular and Genetic Homology and Experimental Tractability. OXFORD OPEN NEUROSCIENCE 2023; 2:kvac018. [PMID: 37649777 PMCID: PMC10464506 DOI: 10.1093/oons/kvac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/13/2022] [Indexed: 09/01/2023]
Abstract
The last decade has seen a dramatic rise in the number of genes linked to neurological disorders, necessitating new models to explore underlying mechanisms and to test potential therapies. Over a similar period, many laboratories adopted zebrafish as a tractable model for studying brain development, defining neural circuits and performing chemical screens. Here we discuss strengths and limitations of using the zebrafish system to model neurological disorders. The underlying premise for many disease models is the high degree of homology between human and zebrafish genes, coupled with the conserved vertebrate Bauplan and repertoire of neurochemical signaling molecules. Yet, we caution that important evolutionary divergences often limit the extent to which human symptoms can be modeled meaningfully in zebrafish. We outline advances in genetic technologies that allow human mutations to be reproduced faithfully in zebrafish. Together with methods that visualize the development and function of neuronal pathways at the single cell level, there is now an unprecedented opportunity to understand how disease-associated genetic changes disrupt neural circuits, a level of analysis that is ideally suited to uncovering pathogenic changes in human brain disorders.
Collapse
Affiliation(s)
- Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA,15260, USA
- Geriatric Research, Education, and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, 15240, USA
| |
Collapse
|
26
|
Sopel N, Müller-Deile J. Zebrafish Model to Study Podocyte Function Within the Glomerular Filtration Barrier. Methods Mol Biol 2023; 2664:145-157. [PMID: 37423988 DOI: 10.1007/978-1-0716-3179-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The zebrafish model has been used in many different fields of research because of its high homology to the human genome, its easy genetic manipulation, its high fecundity, and its rapid development. For glomerular diseases, zebrafish larvae have proven to be a versatile tool to study the contribution of different genes, because the zebrafish pronephros is very comparable to the human kidney in function and ultrastructure. Here we describe the principle and use of a simple screening assay based on the measurement of the fluorescence in the retinal vessel plexus of the Tg(l-fabp:DBP:eGFP) zebrafish line ("eye assay") to indirectly determine proteinuria as a hallmark of podocyte dysfunction. Furthermore, we illustrate how to analyze the obtained data and outline methods to attribute the findings to podocyte impairment.
Collapse
Affiliation(s)
- Nina Sopel
- Department of Medicine 4 - Nephrology and Hypertension, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander Universiät Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
27
|
Pugliese A, Holland SH, Rodolico C, Lochmüller H, Spendiff S. Presynaptic Congenital Myasthenic Syndromes: Understanding Clinical Phenotypes through In vivo Models. J Neuromuscul Dis 2023; 10:731-759. [PMID: 37212067 PMCID: PMC10578258 DOI: 10.3233/jnd-221646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 05/23/2023]
Abstract
Presynaptic congenital myasthenic syndromes (CMS) are a group of genetic disorders affecting the presynaptic side of the neuromuscular junctions (NMJ). They can result from a dysfunction in acetylcholine (ACh) synthesis or recycling, in its packaging into synaptic vesicles, or its subsequent release into the synaptic cleft. Other proteins involved in presynaptic endplate development and maintenance can also be impaired.Presynaptic CMS usually presents during the prenatal or neonatal period, with a severe phenotype including congenital arthrogryposis, developmental delay, and apnoeic crisis. However, milder phenotypes with proximal muscle weakness and good response to treatment have been described. Finally, many presynaptic genes are expressed in the brain, justifying the presence of additional central nervous system symptoms.Several animal models have been developed to study CMS, providing the opportunity to identify disease mechanisms and test treatment options. In this review, we describe presynaptic CMS phenotypes with a focus on in vivo models, to better understand CMS pathophysiology and define new causative genes.
Collapse
Affiliation(s)
- Alessia Pugliese
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Stephen H. Holland
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Medicine, Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Sally Spendiff
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
28
|
Rodríguez-Arrizabalaga M, Hernández-Núñez I, Candal E, Barreiro-Iglesias A. Use of vivo-morpholinos for gene knockdown in the postnatal shark retina. Exp Eye Res 2023; 226:109333. [PMID: 36436570 DOI: 10.1016/j.exer.2022.109333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
Abstract
Work in the catshark Scyliorhinus canicula has shown that the evolutionary origin of postnatal neurogenesis in vertebrates is earlier than previously thought. Thus, the catshark can serve as a model of interest to understand postnatal neurogenic processes and their evolution in vertebrates. One of the best characterized neurogenic niches of the catshark CNS is found in the peripheral region of the retina. Unfortunately, the lack of genetic tools in sharks limits the possibilities to deepen in the study of genes involved in the neurogenic process. Here, we report a method for gene knockdown in the juvenile catshark retina based on the use of Vivo-Morpholinos. To establish the method, we designed Vivo-Morpholinos against the proliferation marker PCNA. We first evaluated the possible toxicity of 3 different intraocular administration regimes. After this optimization step, we show that a single intraocular injection of the PCNA Vivo-Morpholino decreases the expression of PCNA in the peripheral retina, which leads to reduced mitotic activity in this region. This method will help in deciphering the role of other genes potentially involved in postnatal neurogenesis in this animal model.
Collapse
Affiliation(s)
- Mariña Rodríguez-Arrizabalaga
- Departament of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Ismael Hernández-Núñez
- Departament of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Eva Candal
- Departament of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Departament of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
29
|
Grossi I, Schiavone M, Cannone E, Grejdan OA, Tobia C, Bonomini F, Rezzani R, Salvi A, De Petro G. Lasp1 Expression Is Implicated in Embryonic Development of Zebrafish. Genes (Basel) 2022; 14:genes14010035. [PMID: 36672776 PMCID: PMC9858601 DOI: 10.3390/genes14010035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The LIM and SH3 domain protein 1 (LASP1) was originally identified in metastatic breast cancer and mainly characterized as a cytoskeleton protein overexpressed in various cancer types. At present, little is known about LASP1 expression in physiological conditions, and its function during embryonic development has not been elucidated. Here, we focused on Lasp1 and embryonic development, choosing zebrafish as a vertebrate model. For the first time, we identified and determined the expression of Lasp1 protein at various stages of development, at 48 and 72 h post-fertilization (hpf), at 6 days pf and in different organs of zebrafish adults by Western blotting, 3D light-sheet microscopy and fluorescent immunohistochemistry. Further, we showed that specific lasp1 morpholino (MO) led to (i) abnormal morphants with alterations in several organs, (ii) effective knockdown of endogenous Lasp1 protein and (iii) an increase in lasp1 mRNA, as detected by ddPCR. The co-injection of lasp1 mRNA with lasp1 MO partially rescued morphant phenotypes, thus confirming the specificity of the MO oligonucleotide-induced defects. We also detected an increase in apoptosis following lasp1 MO treatment. Our results suggest a significant role for Lasp1 in embryonic development, highlighting zebrafish as a vertebrate model suitable for studying Lasp1 function in developmental biology and organogenesis.
Collapse
Affiliation(s)
- Ilaria Grossi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy
| | - Marco Schiavone
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy
| | - Elena Cannone
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy
| | - Oana Andreea Grejdan
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy
| | - Chiara Tobia
- Department of Molecular and Translational Medicine, Division of Experimental Oncology and Immunology, University of Brescia, 25123 Brescia, Italy
| | - Francesca Bonomini
- Department of Clinical and Experimental Sciences, Division of Anatomy and Physiopathology, University of Brescia, 25123 Brescia, Italy
| | - Rita Rezzani
- Department of Clinical and Experimental Sciences, Division of Anatomy and Physiopathology, University of Brescia, 25123 Brescia, Italy
| | - Alessandro Salvi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy
- Correspondence:
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
30
|
Lescouzères L, Bordignon B, Bomont P. Development of a high-throughput tailored imaging method in zebrafish to understand and treat neuromuscular diseases. Front Mol Neurosci 2022; 15:956582. [PMID: 36204134 PMCID: PMC9530744 DOI: 10.3389/fnmol.2022.956582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
The zebrafish (Danio rerio) is a vertebrate species offering multitude of advantages for the study of conserved biological systems in human and has considerably enriched our knowledge in developmental biology and physiology. Being equally important in medical research, the zebrafish has become a critical tool in the fields of diagnosis, gene discovery, disease modeling, and pharmacology-based therapy. Studies on the zebrafish neuromuscular system allowed for deciphering key molecular pathways in this tissue, and established it as a model of choice to study numerous motor neurons, neuromuscular junctions, and muscle diseases. Starting with the similarities of the zebrafish neuromuscular system with the human system, we review disease models associated with the neuromuscular system to focus on current methodologies employed to study them and outline their caveats. In particular, we put in perspective the necessity to develop standardized and high-resolution methodologies that are necessary to deepen our understanding of not only fundamental signaling pathways in a healthy tissue but also the changes leading to disease phenotype outbreaks, and offer templates for high-content screening strategies. While the development of high-throughput methodologies is underway for motility assays, there is no automated approach to quantify the key molecular cues of the neuromuscular junction. Here, we provide a novel high-throughput imaging methodology in the zebrafish that is standardized, highly resolutive, quantitative, and fit for drug screening. By providing a proof of concept for its robustness in identifying novel molecular players and therapeutic drugs in giant axonal neuropathy (GAN) disease, we foresee that this new tool could be useful for both fundamental and biomedical research.
Collapse
Affiliation(s)
- Léa Lescouzères
- ERC Team, Institut NeuroMyoGéne-PGNM, Inserm U1315, CNRS UMR 5261, Claude Bernard University Lyon 1, Lyon, France
| | - Benoît Bordignon
- Montpellier Ressources Imagerie, BioCampus, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Pascale Bomont
- ERC Team, Institut NeuroMyoGéne-PGNM, Inserm U1315, CNRS UMR 5261, Claude Bernard University Lyon 1, Lyon, France
| |
Collapse
|
31
|
Erkhembaatar M, Yamamoto I, Inoguchi F, Taki K, Yamagishi S, Delaney L, Nishibe M, Abe T, Kiyonari H, Hanashima C, Naka‐kaneda H, Ihara D, Katsuyama Y. Involvement of Strawberry Notch homologue 1 in neurite outgrowth of cortical neurons. Dev Growth Differ 2022; 64:379-394. [DOI: 10.1111/dgd.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Munkhsoyol Erkhembaatar
- Division of Neuroanatomy, Department of Anatomy Shiga University of Medical Science Shiga Japan
| | - Iroha Yamamoto
- Division of Neuroanatomy, Department of Anatomy Shiga University of Medical Science Shiga Japan
| | - Fuduki Inoguchi
- Division of Neuroanatomy, Department of Anatomy Shiga University of Medical Science Shiga Japan
| | - Kosuke Taki
- Division of Neuroanatomy, Department of Anatomy Shiga University of Medical Science Shiga Japan
| | - Satoru Yamagishi
- Department of Anatomy & Neuroscience Hamamatsu University School of Medicine, Hamamatsu Shizuoka Japan
- Preeminent Medical Photonics Education & Research Center Hamamatsu University School of Medicine, Hamamatsu Shizuoka Japan
| | - Leanne Delaney
- Division of Neuroanatomy, Department of Anatomy Shiga University of Medical Science Shiga Japan
- Department of Microbiology and Immunology Dalhousie University, PO Box 15000 Halifax Nova Scotia Canada
| | - Mariko Nishibe
- Division of Neuroanatomy, Department of Anatomy Shiga University of Medical Science Shiga Japan
| | - Takaya Abe
- Animal Resource Development Unit, Biosystem Dynamics Group, Division of Bio‐Function Dynamics Imaging Center for Life Science Technologies CDB RIKEN Kobe Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, Biosystem Dynamics Group, Division of Bio‐Function Dynamics Imaging Center for Life Science Technologies CDB RIKEN Kobe Japan
| | - Carina Hanashima
- Department of Biology, Faculty of Education and Integrated Arts and Sciences Waseda University Tokyo Japan
| | - Hayato Naka‐kaneda
- Division of Neuroanatomy, Department of Anatomy Shiga University of Medical Science Shiga Japan
| | - Dai Ihara
- Division of Neuroanatomy, Department of Anatomy Shiga University of Medical Science Shiga Japan
| | - Yu Katsuyama
- Division of Neuroanatomy, Department of Anatomy Shiga University of Medical Science Shiga Japan
| |
Collapse
|
32
|
Dougnon G, Matsui H. Modelling Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) Using Mice and Zebrafish. Int J Mol Sci 2022; 23:ijms23147550. [PMID: 35886894 PMCID: PMC9319972 DOI: 10.3390/ijms23147550] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two debilitating neurodevelopmental disorders. The former is associated with social impairments whereas the latter is associated with inattentiveness, hyperactivity, and impulsivity. There is recent evidence that both disorders are somehow related and that genes may play a large role in these disorders. Despite mounting human and animal research, the neurological pathways underlying ASD and ADHD are still not well understood. Scientists investigate neurodevelopmental disorders by using animal models that have high similarities in genetics and behaviours with humans. Mice have been utilized in neuroscience research as an excellent animal model for a long time; however, the zebrafish has attracted much attention recently, with an increasingly large number of studies using this model. In this review, we first discuss ASD and ADHD aetiology from a general point of view to their characteristics and treatments. We also compare mice and zebrafish for their similarities and discuss their advantages and limitations in neuroscience. Finally, we summarize the most recent and existing research on zebrafish and mouse models of ASD and ADHD. We believe that this review will serve as a unique document providing interesting information to date about these models, thus facilitating research on ASD and ADHD.
Collapse
|
33
|
Rusterholz TDS, Hofmann C, Bachmann-Gagescu R. Insights Gained From Zebrafish Models for the Ciliopathy Joubert Syndrome. Front Genet 2022; 13:939527. [PMID: 35846153 PMCID: PMC9280682 DOI: 10.3389/fgene.2022.939527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Cilia are quasi-ubiquitous microtubule-based sensory organelles, which play vital roles in signal transduction during development and cell homeostasis. Dysfunction of cilia leads to a group of Mendelian disorders called ciliopathies, divided into different diagnoses according to clinical phenotype constellation and genetic causes. Joubert syndrome (JBTS) is a prototypical ciliopathy defined by a diagnostic cerebellar and brain stem malformation termed the “Molar Tooth Sign” (MTS), in addition to which patients display variable combinations of typical ciliopathy phenotypes such as retinal dystrophy, fibrocystic renal disease, polydactyly or skeletal dystrophy. Like most ciliopathies, JBTS is genetically highly heterogeneous with ∼40 associated genes. Zebrafish are widely used to model ciliopathies given the high conservation of ciliary genes and the variety of specialized cilia types similar to humans. In this review, we compare different existing JBTS zebrafish models with each other and describe their contributions to our understanding of JBTS pathomechanism. We find that retinal dystrophy, which is the most investigated ciliopathy phenotype in zebrafish ciliopathy models, is caused by distinct mechanisms according to the affected gene. Beyond this, differences in phenotypes in other organs observed between different JBTS-mutant models suggest tissue-specific roles for proteins implicated in JBTS. Unfortunately, the lack of systematic assessment of ciliopathy phenotypes in the mutants described in the literature currently limits the conclusions that can be drawn from these comparisons. In the future, the numerous existing JBTS zebrafish models represent a valuable resource that can be leveraged in order to gain further insights into ciliary function, pathomechanisms underlying ciliopathy phenotypes and to develop treatment strategies using small molecules.
Collapse
Affiliation(s)
- Tamara D. S. Rusterholz
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Claudia Hofmann
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- *Correspondence: Ruxandra Bachmann-Gagescu,
| |
Collapse
|
34
|
New Therapeutics Targeting Arterial Media Calcification: Friend or Foe for Bone Mineralization? Metabolites 2022; 12:metabo12040327. [PMID: 35448514 PMCID: PMC9027727 DOI: 10.3390/metabo12040327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 01/27/2023] Open
Abstract
The presence of arterial media calcification, a highly complex and multifactorial disease, puts patients at high risk for developing serious cardiovascular consequences and mortality. Despite the numerous insights into the mechanisms underlying this pathological mineralization process, there is still a lack of effective treatment therapies interfering with the calcification process in the vessel wall. Current anti-calcifying therapeutics may induce detrimental side effects at the level of the bone, as arterial media calcification is regulated in a molecular and cellular similar way as physiological bone mineralization. This especially is a complication in patients with chronic kidney disease and diabetes, who are the prime targets of this pathology, as they already suffer from a disturbed mineral and bone metabolism. This review outlines recent treatment strategies tackling arterial calcification, underlining their potential to influence the bone mineralization process, including targeting vascular cell transdifferentiation, calcification inhibitors and stimulators, vascular smooth muscle cell (VSMC) death and oxidative stress: are they a friend or foe? Furthermore, this review highlights nutritional additives and a targeted, local approach as alternative strategies to combat arterial media calcification. Paving a way for the development of effective and more precise therapeutic approaches without inducing osseous side effects is crucial for this highly prevalent and mortal disease.
Collapse
|
35
|
Doyle JM, Croll RP. A Critical Review of Zebrafish Models of Parkinson's Disease. Front Pharmacol 2022; 13:835827. [PMID: 35370740 PMCID: PMC8965100 DOI: 10.3389/fphar.2022.835827] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
A wide variety of human diseases have been modelled in zebrafish, including various types of cancer, cardiovascular diseases and neurodegenerative diseases like Alzheimer’s and Parkinson’s. Recent reviews have summarized the currently available zebrafish models of Parkinson’s Disease, which include gene-based, chemically induced and chemogenetic ablation models. The present review updates the literature, critically evaluates each of the available models of Parkinson’s Disease in zebrafish and compares them with similar models in invertebrates and mammals to determine their advantages and disadvantages. We examine gene-based models, including ones linked to Early-Onset Parkinson’s Disease: PARKIN, PINK1, DJ-1, and SNCA; but we also examine LRRK2, which is linked to Late-Onset Parkinson’s Disease. We evaluate chemically induced models like MPTP, 6-OHDA, rotenone and paraquat, as well as chemogenetic ablation models like metronidazole-nitroreductase. The article also reviews the unique advantages of zebrafish, including the abundance of behavioural assays available to researchers and the efficiency of high-throughput screens. This offers a rare opportunity for assessing the potential therapeutic efficacy of pharmacological interventions. Zebrafish also are very amenable to genetic manipulation using a wide variety of techniques, which can be combined with an array of advanced microscopic imaging methods to enable in vivo visualization of cells and tissue. Taken together, these factors place zebrafish on the forefront of research as a versatile model for investigating disease states. The end goal of this review is to determine the benefits of using zebrafish in comparison to utilising other animals and to consider the limitations of zebrafish for investigating human disease.
Collapse
Affiliation(s)
- Jillian M Doyle
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
36
|
Habicher J, Varshney GK, Waldmann L, Snitting D, Allalou A, Zhang H, Ghanem A, Öhman Mägi C, Dierker T, Kjellén L, Burgess SM, Ledin J. Chondroitin/dermatan sulfate glycosyltransferase genes are essential for craniofacial development. PLoS Genet 2022; 18:e1010067. [PMID: 35192612 PMCID: PMC8896900 DOI: 10.1371/journal.pgen.1010067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/04/2022] [Accepted: 02/01/2022] [Indexed: 11/29/2022] Open
Abstract
Chondroitin/dermatan sulfate (CS/DS) proteoglycans are indispensable for animal development and homeostasis but the large number of enzymes involved in their biosynthesis have made CS/DS function a challenging problem to study genetically. In our study, we generated loss-of-function alleles in zebrafish genes encoding CS/DS biosynthetic enzymes and characterized the effect on development in single and double mutants. Homozygous mutants in chsy1, csgalnact1a, csgalnat2, chpfa, ust and chst7, respectively, develop to adults. However, csgalnact1a-/- fish develop distinct craniofacial defects while the chsy1-/- skeletal phenotype is milder and the remaining mutants display no gross morphological abnormalities. These results suggest a high redundancy for the CS/DS biosynthetic enzymes and to further reduce CS/DS biosynthesis we combined mutant alleles. The craniofacial phenotype is further enhanced in csgalnact1a-/-;chsy1-/- adults and csgalnact1a-/-;csgalnact2-/- larvae. While csgalnact1a-/-;csgalnact2-/- was the most affected allele combination in our study, CS/DS is still not completely abolished. Transcriptome analysis of chsy1-/-, csgalnact1a-/-and csgalnact1a-/-;csgalnact2-/- larvae revealed that the expression had changed in a similar way in the three mutant lines but no differential expression was found in any of fifty GAG biosynthesis enzymes identified. Thus, zebrafish larvae do not increase transcription of GAG biosynthesis genes as a consequence of decreased CS/DS biosynthesis. The new zebrafish lines develop phenotypes similar to clinical characteristics of several human congenital disorders making the mutants potentially useful to study disease mechanisms and treatment. The components of the extracellular matrix are crucial for interactions and communication between cells during animal development and disease progression. One major component of the extracellular matrix is chondroitin sulfate/dermatan sulfate (CS/DS) proteoglycans, which support and modify cell functions and tissue homeostasis. The biosynthesis of CS/DS is complex and no genetic models have been developed to specifically reduce CS/DS in the zebrafish model organism. We have used CRISPR/Cas9 technology to knock out key CS/DS biosynthesis genes. We find that knocking out single genes rarely causes major effects on zebrafish morphology and viability, but by combining several knockout alleles we could observe malformations in the zebrafish craniofacial skeleton. In addition, one combination of alleles was embryonic lethal. Our findings describe the role of CS/DS in the development of the head skeleton and give insights in the regulation of genes involved in CS/DS biosynthesis. The zebrafish mutants generated in this study can be used as tools to further study human diseases caused by mutations in CS/DS biosynthesis enzymes.
Collapse
Affiliation(s)
- Judith Habicher
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- * E-mail: (JH); (JL)
| | - Gaurav K. Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Laura Waldmann
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Daniel Snitting
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Amin Allalou
- Department of Information Technology, and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Hanqing Zhang
- Department of Immunology, Genetics and Pathology, Medical Genetics and Genomics, Uppsala University, Uppsala, Sweden
| | - Abdurrahman Ghanem
- Department for Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Caroline Öhman Mägi
- Department for Engineering Sciences, Applied Materials Science, Uppsala University, Uppsala, Sweden
| | - Tabea Dierker
- Department for Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department for Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Shawn M. Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Johan Ledin
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- * E-mail: (JH); (JL)
| |
Collapse
|
37
|
White RJ, Mackay E, Wilson SW, Busch-Nentwich EM. Allele-specific gene expression can underlie altered transcript abundance in zebrafish mutants. eLife 2022; 11:72825. [PMID: 35175196 PMCID: PMC8884726 DOI: 10.7554/elife.72825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
In model organisms, RNA-sequencing (RNA-seq) is frequently used to assess the effect of genetic mutations on cellular and developmental processes. Typically, animals heterozygous for a mutation are crossed to produce offspring with different genotypes. Resultant embryos are grouped by genotype to compare homozygous mutant embryos to heterozygous and wild-type siblings. Genes that are differentially expressed between the groups are assumed to reveal insights into the pathways affected by the mutation. Here we show that in zebrafish, differentially expressed genes are often over-represented on the same chromosome as the mutation due to different levels of expression of alleles from different genetic backgrounds. Using an incross of haplotype-resolved wild-type fish, we found evidence of widespread allele-specific expression, which appears as differential expression when comparing embryos homozygous for a region of the genome to their siblings. When analysing mutant transcriptomes, this means that the differential expression of genes on the same chromosome as a mutation of interest may not be caused by that mutation. Typically, the genomic location of a differentially expressed gene is not considered when interpreting its importance with respect to the phenotype. This could lead to pathways being erroneously implicated or overlooked due to the noise of spurious differentially expressed genes on the same chromosome as the mutation. These observations have implications for the interpretation of RNA-seq experiments involving outbred animals and non-inbred model organisms.
Collapse
Affiliation(s)
- Richard J White
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eirinn Mackay
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Elisabeth M Busch-Nentwich
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
38
|
Pluripotency factors determine gene expression repertoire at zygotic genome activation. Nat Commun 2022; 13:788. [PMID: 35145080 PMCID: PMC8831532 DOI: 10.1038/s41467-022-28434-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Awakening of zygotic transcription in animal embryos relies on maternal pioneer transcription factors. The interplay of global and specific functions of these proteins remains poorly understood. Here, we analyze chromatin accessibility and time-resolved transcription in single and double mutant zebrafish embryos lacking pluripotency factors Pou5f3 and Sox19b. We show that two factors modify chromatin in a largely independent manner. We distinguish four types of direct enhancers by differential requirements for Pou5f3 or Sox19b. We demonstrate that changes in chromatin accessibility of enhancers underlie the changes in zygotic expression repertoire in the double mutants. Pou5f3 or Sox19b promote chromatin accessibility of enhancers linked to the genes involved in gastrulation and ventral fate specification. The genes regulating mesendodermal and dorsal fates are primed for activation independently of Pou5f3 and Sox19b. Strikingly, simultaneous loss of Pou5f3 and Sox19b leads to premature expression of genes, involved in regulation of organogenesis and differentiation. Zygotic genome activation in zebrafish relies on pluripotency transcription factors Pou5f3 and Sox19b. Here the authors investigate how these factors interact in vivo by analyzing the changes in chromatin state and time-resolved transcription in Pou5f3 and Sox19b single and double mutant embryos.
Collapse
|
39
|
Tayanloo-Beik A, Hamidpour SK, Abedi M, Shojaei H, Tavirani MR, Namazi N, Larijani B, Arjmand B. Zebrafish Modeling of Autism Spectrum Disorders, Current Status and Future Prospective. Front Psychiatry 2022; 13:911770. [PMID: 35911241 PMCID: PMC9329562 DOI: 10.3389/fpsyt.2022.911770] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a complicated range of childhood neurodevelopmental disorders which can occur via genetic or non-genetic factors. Clinically, ASD is associated with problems in relationships, social interactions, and behaviors that pose many challenges for children with ASD and their families. Due to the complexity, heterogeneity, and association of symptoms with some neuropsychiatric disorders such as ADHD, anxiety, and sleep disorders, clinical trials have not yielded reliable results and there still remain challenges in drug discovery and development pipeline for ASD patients. One of the main steps in promoting lead compounds to the suitable drug for commercialization is preclinical animal testing, in which the efficacy and toxicity of candidate drugs are examined in vivo. In recent years, zebrafish have been able to attract the attention of many researchers in the field of neurological disorders such as ASD due to their outstanding features. The presence of orthologous genes for ASD modeling, the anatomical similarities of parts of the brain, and similar neurotransmitter systems between zebrafish and humans are some of the main reasons why scientists draw attention to zebrafish as a prominent animal model in preclinical studies to discover highly effective treatment approaches for the ASD through genetic and non-genetic modeling methods.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayesteh Kokabi Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abedi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamide Shojaei
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Abstract
Apical constriction refers to the active, actomyosin-driven process that reduces apical cell surface area in epithelial cells. Apical constriction is utilized in epithelial morphogenesis during embryonic development in multiple contexts, such as gastrulation, neural tube closure, and organogenesis. Defects in apical constriction can result in congenital birth defects, yet our understanding of the molecular control of apical constriction is relatively limited. To uncover new genetic regulators of apical constriction and gain mechanistic insight into the cell biology of this process, we need reliable assay systems that allow real-time observation and quantification of apical constriction as it occurs and permit gain- and loss-of-function analyses to explore gene function and interaction during apical constriction. In this chapter, we describe using the early Xenopus embryo as an assay system to investigate molecular mechanisms involved in apical constriction during both gastrulation and neurulation.
Collapse
Affiliation(s)
- Austin T Baldwin
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Ivan K Popov
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
41
|
Marí-Beffa M, Mesa-Román AB, Duran I. Zebrafish Models for Human Skeletal Disorders. Front Genet 2021; 12:675331. [PMID: 34490030 PMCID: PMC8418114 DOI: 10.3389/fgene.2021.675331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
In 2019, the Nosology Committee of the International Skeletal Dysplasia Society provided an updated version of the Nosology and Classification of Genetic Skeletal Disorders. This is a reference list of recognized diseases in humans and their causal genes published to help clinician diagnosis and scientific research advances. Complementary to mammalian models, zebrafish has emerged as an interesting species to evaluate chemical treatments against these human skeletal disorders. Due to its versatility and the low cost of experiments, more than 80 models are currently available. In this article, we review the state-of-art of this “aquarium to bedside” approach describing the models according to the list provided by the Nosology Committee. With this, we intend to stimulate research in the appropriate direction to efficiently meet the actual needs of clinicians under the scope of the Nosology Committee.
Collapse
Affiliation(s)
- Manuel Marí-Beffa
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| | - Ana B Mesa-Román
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
| | - Ivan Duran
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| |
Collapse
|
42
|
Bek JW, Shochat C, De Clercq A, De Saffel H, Boel A, Metz J, Rodenburg F, Karasik D, Willaert A, Coucke PJ. Lrp5 Mutant and Crispant Zebrafish Faithfully Model Human Osteoporosis, Establishing the Zebrafish as a Platform for CRISPR-Based Functional Screening of Osteoporosis Candidate Genes. J Bone Miner Res 2021; 36:1749-1764. [PMID: 33957005 DOI: 10.1002/jbmr.4327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
Genomewide association studies (GWAS) have improved our understanding of the genetic architecture of common complex diseases such as osteoporosis. Nevertheless, to attribute functional skeletal contributions of candidate genes to osteoporosis-related traits, there is a need for efficient and cost-effective in vivo functional testing. This can be achieved through CRISPR-based reverse genetic screens, where phenotyping is traditionally performed in stable germline knockout (KO) mutants. Recently it was shown that first-generation (F0) mosaic mutant zebrafish (so-called crispants) recapitulate the phenotype of germline KOs. To demonstrate feasibility of functional validation of osteoporosis candidate genes through crispant screening, we compared a crispant to a stable KO zebrafish model for the lrp5 gene. In humans, recessive loss-of-function mutations in LRP5, a co-receptor in the Wnt signaling pathway, cause osteoporosis-pseudoglioma syndrome. In addition, several GWAS studies identified LRP5 as a major risk locus for osteoporosis-related phenotypes. In this study, we showed that early stage lrp5 KO larvae display decreased notochord mineralization and malformations of the head cartilage. Quantitative micro-computed tomography (micro-CT) scanning and mass-spectrometry element analysis of the adult skeleton revealed decreased vertebral bone volume and bone mineralization, hallmark features of osteoporosis. Furthermore, regenerating fin tissue displayed reduced Wnt signaling activity in lrp5 KO adults. We next compared lrp5 mutants with crispants. Next-generation sequencing analysis of adult crispant tissue revealed a mean out-of-frame mutation rate of 76%, resulting in strongly reduced levels of Lrp5 protein. These crispants generally showed a milder but nonetheless highly comparable skeletal phenotype and a similarly reduced Wnt pathway response compared with lrp5 KO mutants. In conclusion, we show through faithful modeling of LRP5-related primary osteoporosis that crispant screening in zebrafish is a promising approach for rapid functional screening of osteoporosis candidate genes. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jan Willem Bek
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Chen Shochat
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Adelbert De Clercq
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Hanna De Saffel
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annekatrien Boel
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Department for Reproductive Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Juriaan Metz
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - Frans Rodenburg
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Institute of Biology, Leiden University, Leiden, The Netherlands.,Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA
| | - Andy Willaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Paul J Coucke
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
43
|
Olivier G, Corton M, Intartaglia D, Verbakel SK, Sergouniotis PI, Le Meur G, Dhaenens CM, Naacke H, Avila-Fernández A, Hoyng CB, Klevering J, Bocquet B, Roubertie A, Sénéchal A, Banfi S, Muller A, Hamel CL, Black GC, Conte I, Roosing S, Zanlonghi X, Ayuso C, Meunier I, Manes G. Pathogenic variants in IMPG1 cause autosomal dominant and autosomal recessive retinitis pigmentosa. J Med Genet 2021; 58:570-578. [PMID: 32817297 DOI: 10.1136/jmedgenet-2020-107150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/09/2020] [Accepted: 06/24/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Inherited retinal disorders are a clinically and genetically heterogeneous group of conditions and a major cause of visual impairment. Common disease subtypes include vitelliform macular dystrophy (VMD) and retinitis pigmentosa (RP). Despite the identification of over 90 genes associated with RP, conventional genetic testing fails to detect a molecular diagnosis in about one third of patients with RP. METHODS Exome sequencing was carried out for identifying the disease-causing gene in a family with autosomal dominant RP. Gene panel testing and exome sequencing were performed in 596 RP and VMD families to identified additional IMPG1 variants. In vivo analysis in the medaka fish system by knockdown assays was performed to screen IMPG1 possible pathogenic role. RESULTS Exome sequencing of a family with RP revealed a splice variant in IMPG1. Subsequently, the same variant was identified in individuals from two families with either RP or VMD. A retrospective study of patients with RP or VMD revealed eight additional families with different missense or nonsense variants in IMPG1. In addition, the clinical diagnosis of the IMPG1 retinopathy-associated variant, originally described as benign concentric annular macular dystrophy, was also revised to RP with early macular involvement. Using morpholino-mediated ablation of Impg1 and its paralog Impg2 in medaka fish, we confirmed a phenotype consistent with that observed in the families, including a decreased length of rod and cone photoreceptor outer segments. CONCLUSION This study discusses a previously unreported association between monoallelic or biallelic IMPG1 variants and RP. Notably, similar observations have been reported for IMPG2.
Collapse
Affiliation(s)
- Guillaume Olivier
- Institute for Neurosciences of Montpellier, University of Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier, INSERM U1051, Montpellier, France
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM)-Center for Biomedical Network Research on Rare Diseases-(CIBERER), Madrid, Spain
| | - Daniela Intartaglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Telethon Institute of Genetics and Medicine, Pozzuoli (NA), and Medical Genetics, Naples, Italy
| | - Sanne K Verbakel
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Panagiotis I Sergouniotis
- Manchester Royal Eye Hospital, Manchester Academic Health Science Centre, Central Manchester NHS Foundation Trust, Manchester Royal Eye Hospital, Manchester, M13 9WL, UK
| | - Guylène Le Meur
- Service Ophtalmologie, CHU Nantes, Nantes Université, Nantes, France
| | - Claire-Marie Dhaenens
- University Lille-Nord de France, INSERM U837, Lille, France
- Lille Neuroscience & Cognition, LilNCog, Lille, France
| | - Hélène Naacke
- Service d'ophtalmologie, Clinique Saint Joseph, Angouleme, Nouvelle Aquitaine, France
| | - Almudena Avila-Fernández
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM)-Center for Biomedical Network Research on Rare Diseases-(CIBERER), Madrid, Spain
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen Klevering
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Béatrice Bocquet
- Institute for Neurosciences of Montpellier, University of Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier, INSERM U1051, Montpellier, France
| | - Agathe Roubertie
- Département de Neuropédiatrie, CHU Montpellier, Hôpital Gui de Chauliac, Montpellier, Hérault, France
- Institute for Neurosciences of Montpellier, INSERM U1051, Montpellier, Hérault, France
| | - Audrey Sénéchal
- Institute for Neurosciences of Montpellier, University of Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier, INSERM U1051, Montpellier, France
| | - Sandro Banfi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Agnès Muller
- Institute for Neurosciences of Montpellier, University of Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier, INSERM U1051, Montpellier, France
| | - Christian L Hamel
- Service d'ophtalmologie, Hôpital Gui de Chauliac, CHU Montpellier, Montpellier, France
| | - Graeme C Black
- Department of Genetic Medicine, University of Manchester, Manchester, UK
| | - Ivan Conte
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Telethon Institute of Genetics and Medicine, Pozzuoli (NA), and Medical Genetics, Naples, Italy
- Department of Biology, University of Naples Federico II, Napoli, Campania, Italy
| | - Susanne Roosing
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xavier Zanlonghi
- Institut Ophtalmologique de l'Ouest, Eye Clinic Jules Verne, Nantes, France
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM)-Center for Biomedical Network Research on Rare Diseases-(CIBERER), Madrid, Spain
- Department of Genetics & Genomics, Centro de Investigacion Biomedica en Red (CIBER) de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier, University of Montpellier, Montpellier, France
- National Centre in Rare Diseases, Genetics of Sensory Diseases, CHU Montpellier, Montpellier, Languedoc-Roussillon, France
| | - Gaël Manes
- Institute for Neurosciences of Montpellier, University of Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier, INSERM U1051, Montpellier, France
| |
Collapse
|
44
|
Jakutis G, Stainier DYR. Genotype-Phenotype Relationships in the Context of Transcriptional Adaptation and Genetic Robustness. Annu Rev Genet 2021; 55:71-91. [PMID: 34314597 DOI: 10.1146/annurev-genet-071719-020342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic manipulations with a robust and predictable outcome are critical to investigate gene function, as well as for therapeutic genome engineering. For many years, knockdown approaches and reagents including RNA interference and antisense oligonucleotides dominated functional studies; however, with the advent of precise genome editing technologies, CRISPR-based knockout systems have become the state-of-the-art tools for such studies. These technologies have helped decipher the role of thousands of genes in development and disease. Their use has also revealed how limited our understanding of genotype-phenotype relationships is. The recent discovery that certain mutations can trigger the transcriptional modulation of other genes, a phenomenon called transcriptional adaptation, has provided an additional explanation for the contradicting phenotypes observed in knockdown versus knockout models and increased awareness about the use of each of these approaches. In this review, we first cover the strengths and limitations of different gene perturbation strategies. Then we highlight the diverse ways in which the genotype-phenotype relationship can be discordant between these different strategies. Finally, we review the genetic robustness mechanisms that can lead to such discrepancies, paying special attention to the recently discovered phenomenon of transcriptional adaptation. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gabrielius Jakutis
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany;
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; .,German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, 60590 Frankfurt am Main, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
| |
Collapse
|
45
|
Vettorazzi S, Nalbantoglu D, Gebhardt JCM, Tuckermann J. A guide to changing paradigms of glucocorticoid receptor function-a model system for genome regulation and physiology. FEBS J 2021; 289:5718-5743. [PMID: 34213830 DOI: 10.1111/febs.16100] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
The glucocorticoid receptor (GR) is a bona fide ligand-regulated transcription factor. Cloned in the 80s, the GR has become one of the best-studied and clinically most relevant members of the nuclear receptor superfamily. Cooperative activity of GR with other transcription factors and a plethora of coregulators contribute to the tissue- and context-specific response toward the endogenous and pharmacological glucocorticoids (GCs). Furthermore, nontranscriptional activities in the cytoplasm are emerging as an additional function of GR. Over the past 40 years, the concepts of GR mechanisms of action had been constantly changing. Different methodologies in the pregenomic and genomic era of molecular biological research and recent cutting-edge technology in single-cell and single-molecule analysis are steadily evolving the views, how the GR in particular and transcriptional regulation in general act in physiological and pathological processes. In addition to the development of technologies for GR analysis, the use of model organisms provides insights how the GR in vivo executes GC action in tissue homeostasis, inflammation, and energy metabolism. The model organisms, namely the mouse, but also rats, zebrafish, and recently fruit flies carrying mutations of the GR became a major driving force to analyze the molecular function of GR in disease models. This guide provides an overview of the exciting research and paradigm shifts in the GR field from past to present with a focus on GR transcription factor networks, GR DNA-binding and single-cell analysis, and model systems.
Collapse
Affiliation(s)
- Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | - Denis Nalbantoglu
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | | | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| |
Collapse
|
46
|
Pimentel Falcao MA, Banderó Walker CI, Rodrigo Disner G, Batista-Filho J, Silva Soares AB, Balan-Lima L, Lima C, Lopes-Ferreira M. Knockdown of miR-26a in zebrafish leads to impairment of the anti-inflammatory function of TnP in the control of neutrophilia. FISH & SHELLFISH IMMUNOLOGY 2021; 114:301-310. [PMID: 33984485 DOI: 10.1016/j.fsi.2021.04.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Our recent data show the valuable potential of TnP for the development of a new and safe anti-inflammatory drug due to its ability to control the traffic and activation of leukocytes in response to inflammation. Although there is considerable knowledge surrounding the cellular mechanisms of TnP, less is known about the mechanistic molecular role of TnP underlying its immunomodulatory functions. Here, we conducted investigations to identify whether miRNAs could be one of the molecular bases of the therapeutic effect of TnP. Using a zebrafish model of neutrophilic inflammation with a combination of genetic gain- and loss-of-function approaches, we showed that TnP treatment was followed by up-regulation of only four known miRNAs, and mature dre-miR-26a-1, herein referred just as miR-26a was the first most highly expressed. The knockdown of miR-26a ubiquitously resulted in a significant reduction of miR-26a in embryos, accompanied by impaired TnP immunomodulatory function observed by the loss of the control of the removal of neutrophils in response to inflammation, while the overexpression increased the inhibition of neutrophilic inflammation promoted by TnP. The striking importance of miR-26a was confirmed when rescue strategies were used (morpholino and mimic combination). Our results identified miR-26a as an essential molecular regulator of the therapeutic action of TnP, and suggest that miR-26a or its targets could be used as promising therapeutic candidates for enhancing the resolution of inflammation.
Collapse
Affiliation(s)
- Maria Alice Pimentel Falcao
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil; Laboratory of Neuropharmacological Studies (LABEN), Post-Graduation Program of Pharmaceutical Science, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Cristiani Isabel Banderó Walker
- Laboratory of Neuropharmacological Studies (LABEN), Post-Graduation Program of Pharmaceutical Science, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Geonildo Rodrigo Disner
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil
| | - João Batista-Filho
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil; Post-Graduation Program of Toxinology, Butantan Institute, São Paulo, SP, Brazil
| | - Amanda Beatriz Silva Soares
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil
| | - Leticia Balan-Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil
| | - Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil.
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil
| |
Collapse
|
47
|
Hu X, Gao S, Wang P, Zhou Y, Chen K, Chen Q, Wang B, Hu W, Cheng P, Eid R, Giraud-Panis MJ, Wang L, Gilson E, Ye J, Lu Y. The knockdown efficiency of telomere associated genes with specific methodology in a zebrafish cell line. Biochimie 2021; 190:12-19. [PMID: 34214617 DOI: 10.1016/j.biochi.2021.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
Zebrafish is broadly used as a model organism in gene loss-of-function studies in vivo, but its employment in vitro is greatly limited by the lack of efficient gene knockdown approaches in zebrafish cell lines such as ZF4. In this article, we attempted to induce silencing of telomere associated genes in ZF4 by applying the frequently-used siRNA transfection technology and a novel moiety-linked morpholino (vivo-MO). By proceeding with integrated optimization of siRNAs transfection and vivo-MOs treatment, we compared five transfection reagents and vivo-MOs simultaneously to evaluate the efficiency of terfa silencing in ZF4. 48 h after siRNAs transfection, Lipofectamine™ 3000 and X-tremeGENE™ HP leaded to knockdown in 35% and 43% of terfa transcription, respectively, while vivo-MO-terfa modulated 58% down-expression of zfTRF2 in contrast to vivo-MO-ctrl 72 h after treatment. Further siRNAs transfection targeting telomere associated genes by X-tremeGENE™ HP showed silencing in 40-68% of these genes without significant cytotoxicity and off-target effect. Our results confirmed the feasibility of gene loss-of-function studies in a zebrafish cell line, offered a systematic optimizing strategy to employ gene silencing experiments, and presented Lipofectamine™ 3000, X-tremeGENE™ HP and vivo-morpholinos as candidate gene silencing approaches for zebrafish in vitro gene loss-of-function studies. Successfully knockdown of shelterin genes further opened a new field for telomeric study in zebrafish.
Collapse
Affiliation(s)
- Xuefei Hu
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; The State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherche en Sciences Du Vivant et Génomique, Shanghai, 200025, China; Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuaiyun Gao
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; The State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherche en Sciences Du Vivant et Génomique, Shanghai, 200025, China; Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Peng Wang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; The State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherche en Sciences Du Vivant et Génomique, Shanghai, 200025, China; Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yulin Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kehua Chen
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; The State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherche en Sciences Du Vivant et Génomique, Shanghai, 200025, China; Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiaowen Chen
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; The State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherche en Sciences Du Vivant et Génomique, Shanghai, 200025, China; Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bo Wang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; The State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherche en Sciences Du Vivant et Génomique, Shanghai, 200025, China; Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiguo Hu
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Peng Cheng
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; The State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherche en Sciences Du Vivant et Génomique, Shanghai, 200025, China; Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rita Eid
- University Côte D'Azur, CHU, IRCAN, Faculty of Medicine, 28 Avenue de Valombrose, 06107, Nice Cedex 2, France
| | - Marie-Josèph Giraud-Panis
- University Côte D'Azur, CHU, IRCAN, Faculty of Medicine, 28 Avenue de Valombrose, 06107, Nice Cedex 2, France
| | - Lei Wang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Eric Gilson
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; University Côte D'Azur, CHU, IRCAN, Faculty of Medicine, 28 Avenue de Valombrose, 06107, Nice Cedex 2, France
| | - Jing Ye
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; The State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherche en Sciences Du Vivant et Génomique, Shanghai, 200025, China; Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yiming Lu
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; The State Key Laboratory of Medical Genomics, Pôle Sino-Français de Recherche en Sciences Du Vivant et Génomique, Shanghai, 200025, China; Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
48
|
Boender AJ, Bontempi L, Nava L, Pelloux Y, Tonini R. Striatal Astrocytes Shape Behavioral Flexibility via Regulation of the Glutamate Transporter EAAT2. Biol Psychiatry 2021; 89:1045-1057. [PMID: 33516457 DOI: 10.1016/j.biopsych.2020.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/21/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Striatal circuits must be modulated for behavioral flexibility, the ability to adapt to environmental changes. Striatal astrocytes contribute to circuit neuromodulation by controlling the activity of ambient neurotransmitters. In particular, extracellular glutamate levels are tightly controlled by the astrocytic glutamate transporter EAAT2, influencing synaptic functioning and neural network activity. However, it remains unclear if EAAT2 responds to environmental cues to specifically shape action control. METHODS To investigate the relationship between behavioral flexibility and experience-dependent regulation of EAAT2 expression in the dorsal striatum, mice were trained on an instrumental task. We manipulated EAAT2 expression using chemogenetic activation of astrocytic Gq signaling or in vivo morpholinos and determined the ability to adapt to novel environmental contingencies. RESULTS The loss of behavioral flexibility with task overtraining is associated with the upregulation of EAAT2, which results in enhanced glutamate clearance and altered modulation of glutamatergic neurotransmission in the lateral part of the dorsal striatum. Interfering with EAAT2 upregulation in this striatal area preserves behavioral flexibility. CONCLUSIONS Astrocytes are emerging as critical regulators of striatal functions. This work demonstrates that plasticity of EAAT2 expression in the lateral part of the dorsal striatum shapes behavior, thus providing novel mechanistic insights into how flexibility in action control is regulated.
Collapse
Affiliation(s)
- Arjen J Boender
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Leonardo Bontempi
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Luca Nava
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Yann Pelloux
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Raffaella Tonini
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
49
|
Wang H, Wang C, Long Q, Zhang Y, Wang M, Liu J, Qi X, Cai D, Lu G, Sun J, Yao YG, Chan WY, Chan WY, Deng Y, Zhao H. Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway. Development 2021; 148:264926. [PMID: 33999995 DOI: 10.1242/dev.199441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022]
Abstract
The focal adhesion protein Kindlin2 is essential for integrin activation, a process that is fundamental to cell-extracellular matrix adhesion. Kindlin 2 (Fermt2) is widely expressed in mouse embryos, and its absence causes lethality at the peri-implantation stage due to the failure to trigger integrin activation. The function of kindlin2 during embryogenesis has not yet been fully elucidated as a result of this early embryonic lethality. Here, we showed that kindlin2 is essential for neural crest (NC) formation in Xenopus embryos. Loss-of-function assays performed with kindlin2-specific morpholino antisense oligos (MOs) or with CRISPR/Cas9 techniques in Xenopus embryos severely inhibit the specification of the NC. Moreover, integrin-binding-deficient mutants of Kindlin2 rescued the phenotype caused by loss of kindlin2, suggesting that the function of kindlin2 during NC specification is independent of integrins. Mechanistically, we found that Kindlin2 regulates the fibroblast growth factor (FGF) pathway, and promotes the stability of FGF receptor 1. Our study reveals a novel function of Kindlin2 in regulating the FGF signaling pathway and provides mechanistic insights into the function of Kindlin2 during NC specification.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chengdong Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Long
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Zhang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Meiling Wang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Gunadong 518055, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Jie Liu
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Gunadong 518055, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gang Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianmin Sun
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Yong-Gang Yao
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Yee Chan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Yi Deng
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Gunadong 518055, China.,Shenzhen Key Laboratory of Cell Microenvironment, Department of Chemistry, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| |
Collapse
|
50
|
|