1
|
Malinauskas T, Moore G, Rudolf AF, Eggington H, Belnoue-Davis HL, El Omari K, Griffiths SC, Woolley RE, Duman R, Wagner A, Leedham SJ, Baldock C, Ashe HL, Siebold C. Molecular mechanism of BMP signal control by Twisted gastrulation. Nat Commun 2024; 15:4976. [PMID: 38862520 PMCID: PMC11167000 DOI: 10.1038/s41467-024-49065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Twisted gastrulation (TWSG1) is an evolutionarily conserved secreted glycoprotein which controls signaling by Bone Morphogenetic Proteins (BMPs). TWSG1 binds BMPs and their antagonist Chordin to control BMP signaling during embryonic development, kidney regeneration and cancer. We report crystal structures of TWSG1 alone and in complex with a BMP ligand, Growth Differentiation Factor 5. TWSG1 is composed of two distinct, disulfide-rich domains. The TWSG1 N-terminal domain occupies the BMP type 1 receptor binding site on BMPs, whereas the C-terminal domain binds to a Chordin family member. We show that TWSG1 inhibits BMP function in cellular signaling assays and mouse colon organoids. This inhibitory function is abolished in a TWSG1 mutant that cannot bind BMPs. The same mutation in the Drosophila TWSG1 ortholog Tsg fails to mediate BMP gradient formation required for dorsal-ventral axis patterning of the early embryo. Our studies reveal the evolutionarily conserved mechanism of BMP signaling inhibition by TWSG1.
Collapse
Affiliation(s)
- Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.
| | - Gareth Moore
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Amalie F Rudolf
- Division of Structural Biology, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Holly Eggington
- Intestinal Stem Cell Biology Lab, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Hayley L Belnoue-Davis
- Intestinal Stem Cell Biology Lab, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Samuel C Griffiths
- Division of Structural Biology, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Evotec (UK) Ltd., 90 Innovation Drive, Milton Park, Abingdon, OX14 4RZ, UK
| | - Rachel E Woolley
- Division of Structural Biology, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Etcembly Ltd., Atlas Building, Harwell Campus, OX11 0QX, UK
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Hilary L Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
2
|
Mizoguchi T, Mikami S, Yatou M, Kondo Y, Omaru S, Kuwabara S, Okura W, Noda S, Tenno T, Hiroaki H, Itoh M. Small-Molecule-Mediated Suppression of BMP Signaling by Selective Inhibition of BMP1-Dependent Chordin Cleavage. Int J Mol Sci 2023; 24:4313. [PMID: 36901744 PMCID: PMC10001940 DOI: 10.3390/ijms24054313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
BMP signaling is critical for many biological processes. Therefore, small molecules that modulate BMP signaling are useful for elucidating the function of BMP signaling and treating BMP signaling-related diseases. Here, we performed a phenotypic screening in zebrafish to examine the in vivo effects of N-substituted-2-amino-benzoic acid analogs NPL1010 and NPL3008 and found that they affect BMP signaling-dependent dorsal-ventral (D-V) patterning and bone formation in zebrafish embryos. Furthermore, NPL1010 and NPL3008 suppressed BMP signaling upstream of BMP receptors. BMP1 cleaves Chordin, an antagonist of BMP, and negatively regulates BMP signaling. Docking simulations demonstrated that NPL1010 and NPL3008 bind BMP1. We found that NPL1010 and NPL3008 partially rescued the disruptions in the D-V phenotype caused by bmp1 overexpression and selectively inhibited BMP1-dependent Chordin cleavage. Therefore, NPL1010 and NPL3008 are potentially valuable inhibitors of BMP signaling that act through selective inhibition of Chordin cleavage.
Collapse
Affiliation(s)
- Takamasa Mizoguchi
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shohei Mikami
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mari Yatou
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yui Kondo
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shuhei Omaru
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shuhei Kuwabara
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Wataru Okura
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Syouta Noda
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Aichi, Japan
| | - Takeshi Tenno
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Aichi, Japan
- BeCerllBar, LLC., Business Incubation Building, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
| | - Hidekazu Hiroaki
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Aichi, Japan
- BeCerllBar, LLC., Business Incubation Building, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
- Department of Biological Sciences, Faculty of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Aichi, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Research Institute of Disaster Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
3
|
Suzuki E, Fukuda T. Multifaceted Functions of TWSG1: From Embryogenesis to Cancer Development. Int J Mol Sci 2022; 23:12755. [PMID: 36361543 PMCID: PMC9657663 DOI: 10.3390/ijms232112755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 01/21/2024] Open
Abstract
Bone morphogenetic proteins (BMPs) play an important role in development. Twisted gastrulation BMP signaling modulator 1 (TWSG1) was initially identified as a regulator of the dorsoventral axis formation in Drosophila. The mechanism of BMP signaling modulation by TWSG1 is complex. TWSG1 inhibits BMP signaling by binding to BMP ligands including BMP4, whereas it enhances signaling by interacting with Chordin, a BMP antagonist. Therefore, TWSG1 can act as both a BMP agonist and antagonist. TWSG1 has various functions ranging from embryogenesis to cancer progression. TWSG1 knockout mice showed neural, craniofacial, and mammary defects. TWSG1 also regulated erythropoiesis and thymocyte development. Furthermore, the relationship between TWSG1 and cancer has been elucidated. Allelic loss of TWSG1 was detected in colorectal cancer. TWSG1 expression was upregulated in papillary thyroid carcinoma and glioblastoma but downregulated in gastric and endometrial cancers. TWSG1 suppressed BMP7-enhanced sphere formation and migration in endometrial cancer cells, indicating its tumor-suppressive role. Further studies are required to clarify the TWSG1 function and its association with BMP signaling in cancer development. Finally, TWSG1 is abundantly expressed in human and mouse ovaries and sustains follicular growth in rodent ovaries. Thus, TWSG1 has various functions ranging from fertility to cancer. Therefore, TWSG1 signaling modulation may be beneficial in treating specific diseases such as cancer.
Collapse
Affiliation(s)
| | - Tomohiko Fukuda
- Department of Obstetrics and Gynecology, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
4
|
Jones WD, Mullins MC. Cell signaling pathways controlling an axis organizing center in the zebrafish. Curr Top Dev Biol 2022; 150:149-209. [DOI: 10.1016/bs.ctdb.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Dasgupta S, Cheng V, Volz DC. Utilizing Zebrafish Embryos to Reveal Disruptions in Dorsoventral Patterning. Curr Protoc 2021; 1:e179. [PMID: 34165923 DOI: 10.1002/cpz1.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dorsoventral (DV) patterning is a key landmark of embryonic development that is primarily regulated by bone morphogenetic protein (BMP) signaling. Disruption of DV patterning can result in downstream effects on cell specification and organogenesis. Zebrafish embryos have been extensively used to understand signaling pathways that regulate DV patterning because zebrafish embryos develop ex utero and, in contrast to mammalian embryos, which develop in utero, can be observed in real time using brightfield and fluorescence microscopy. Embryos with disrupted DV patterning are either dorsalized or ventralized, with lack of development of head or trunk/tail structures, respectively. Although these phenotypes are typically accompanied by effects on BMP signaling, exceptions exist where some drugs or environmental chemicals can disrupt DV patterning in the absence of effects on BMP signaling. Therefore, assessments of DV patterning should be accompanied by BMP signaling-specific readouts to confirm the role of BMP disruption. Here, we describe an exposure paradigm and steps for phenotyping zebrafish embryos for two types of DV defects, dorsalization and ventralization, with a range of severities. In addition, we describe a strategy for whole-mount immunohistochemistry of zebrafish embryos with an antibody specific for phospho-SMAD 1/5/9 (pSMAD 1/5/9), as disruption in pSMAD 1/5/9 localization is indicative of an effect on BMP signaling. Taken together, these protocols describe an initial strategy for evaluating DV patterning defects under various experimental conditions and confirming BMP-mediated DV patterning disruptions, which can be followed by additional studies that aim to uncover mechanisms leading to these adverse phenotypes. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Phenotyping for dorsalization and ventralization Basic Protocol 2: Whole-mount immunohistochemistry with antibody to phospho-SMAD 1/5/9.
Collapse
Affiliation(s)
- Subham Dasgupta
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon
| | - Vanessa Cheng
- Department of Environmental Sciences, University of California, Riverside, California
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, California
| |
Collapse
|
6
|
Lin CY, Lu MYJ, Yue JX, Li KL, Le Pétillon Y, Yong LW, Chen YH, Tsai FY, Lyu YF, Chen CY, Hwang SPL, Su YH, Yu JK. Molecular asymmetry in the cephalochordate embryo revealed by single-blastomere transcriptome profiling. PLoS Genet 2021; 16:e1009294. [PMID: 33382716 PMCID: PMC7806126 DOI: 10.1371/journal.pgen.1009294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/13/2021] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Studies in various animals have shown that asymmetrically localized maternal transcripts play important roles in axial patterning and cell fate specification in early embryos. However, comprehensive analyses of the maternal transcriptomes with spatial information are scarce and limited to a handful of model organisms. In cephalochordates (amphioxus), an early branching chordate group, maternal transcripts of germline determinants form a compact granule that is inherited by a single blastomere during cleavage stages. Further blastomere separation experiments suggest that other transcripts associated with the granule are likely responsible for organizing the posterior structure in amphioxus; however, the identities of these determinants remain unknown. In this study, we used high-throughput RNA sequencing of separated blastomeres to examine asymmetrically localized transcripts in two-cell and eight-cell stage embryos of the amphioxus Branchiostoma floridae. We identified 111 and 391 differentially enriched transcripts at the 2-cell stage and the 8-cell stage, respectively, and used in situ hybridization to validate the spatial distribution patterns for a subset of these transcripts. The identified transcripts could be categorized into two major groups: (1) vegetal tier/germ granule-enriched and (2) animal tier/anterior-enriched transcripts. Using zebrafish as a surrogate model system, we showed that overexpression of one animal tier/anterior-localized amphioxus transcript, zfp665, causes a dorsalization/anteriorization phenotype in zebrafish embryos by downregulating the expression of the ventral gene, eve1, suggesting a potential function of zfp665 in early axial patterning. Our results provide a global transcriptomic blueprint for early-stage amphioxus embryos. This dataset represents a rich platform to guide future characterization of molecular players in early amphioxus development and to elucidate conservation and divergence of developmental programs during chordate evolution.
Collapse
Affiliation(s)
- Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kun-Lung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yann Le Pétillon
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Luok Wen Yong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Hua Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Fu-Yu Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Feng Lyu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Cheng-Yi Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Sheng-Ping L. Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (Y-HS); (J-KY)
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
- * E-mail: (Y-HS); (J-KY)
| |
Collapse
|
7
|
Burzawa L, Li L, Wang X, Buganza-Tepole A, Umulis DM. Acceleration of PDE-Based Biological Simulation Through the Development of Neural Network Metamodels. CURRENT PATHOBIOLOGY REPORTS 2020; 8:121-131. [PMID: 33968495 PMCID: PMC8104327 DOI: 10.1007/s40139-020-00216-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW Partial differential equation (PDE) mathematical models of biological systems and the simulation approaches used to solve them are widely used to test hypotheses and infer regulatory interactions based on optimization of the PDE model against the observed data. In this review, we discuss the ability of powerful machine learning methods to accelerate the parametric screening of biophysical informed- PDE systems. RECENT FINDINGS A major shortcoming in more broad adaptation of PDE-based models is the high computational complexity required to solve and optimize the models and it requires many simulations to traverse the very high-dimensional parameter spaces during model calibration and inference tasks. For instance, when scaling up to tens of millions of simulations for optimization and sensitivity analysis of the PDE models, compute times quickly extend from months to years for sufficient coverage to solve the problems. For many systems, this brute-force approach is simply not feasible. Recently, neural network metamodels have been shown to be an efficient way to accelerate PDE model calibration and here we look at the benefits and limitations in extending the PDE acceleration methods to improve optimization and sensitivity analysis. SUMMARY We use an example simulation to quantitatively and qualitatively show how neural network metamodels can be accurate and fast and demonstrate their potential for optimization of complex spatiotemporal problems in biology. We expect these approaches will be broadly applied to speed up scientific research and discovery in biology and other systems that can be described by complex PDE systems.
Collapse
Affiliation(s)
- Lukasz Burzawa
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907
| | - Linlin Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Xu Wang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Adrian Buganza-Tepole
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
| | - David M Umulis
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
- Department of Ag. and Biological Engineering, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
8
|
Hoeksma J, van der Zon GCM, Ten Dijke P, den Hertog J. Cercosporamide inhibits bone morphogenetic protein receptor type I kinase activity in zebrafish. Dis Model Mech 2020; 13:dmm045971. [PMID: 32820031 PMCID: PMC7522027 DOI: 10.1242/dmm.045971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Zebrafish models are well-established tools for investigating the underlying mechanisms of diseases. Here, we identified cercosporamide, a metabolite from the fungus Ascochyta aquiliqiae, as a potent bone morphogenetic protein receptor (BMPR) type I kinase inhibitor through a zebrafish embryo phenotypic screen. The developmental defects in zebrafish, including lack of the ventral fin, induced by cercosporamide were strikingly similar to the phenotypes caused by renowned small-molecule BMPR type I kinase inhibitors and inactivating mutations in zebrafish BMPRs. In mammalian cell-based assays, cercosporamide blocked BMP/SMAD-dependent transcriptional reporter activity and BMP-induced SMAD1/5-phosphorylation. Biochemical assays with a panel of purified recombinant kinases demonstrated that cercosporamide directly inhibited kinase activity of type I BMPRs [also called activin receptor-like kinases (ALKs)]. In mammalian cells, cercosporamide selectively inhibited constitutively active BMPR type I-induced SMAD1/5 phosphorylation. Importantly, cercosporamide rescued the developmental defects caused by constitutively active Alk2 in zebrafish embryos. We believe that cercosporamide could be the first of a new class of molecules with potential to be developed further for clinical use against diseases that are causally linked to overactivation of BMPR signaling, including fibrodysplasia ossificans progressiva and diffuse intrinsic pontine glioma.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jelmer Hoeksma
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Gerard C M van der Zon
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
- Oncode Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
- Oncode Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
- Institute Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
9
|
Halloran D, Durbano HW, Nohe A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J Dev Biol 2020; 8:E19. [PMID: 32933207 PMCID: PMC7557435 DOI: 10.3390/jdb8030019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the Transforming Growth Factor-Beta (TGF-β) superfamily. These proteins are essential to many developmental processes, including cardiogenesis, neurogenesis, and osteogenesis. Specifically, within the BMP family, Bone Morphogenetic Protein-2 (BMP-2) was the first BMP to be characterized and has been well-studied. BMP-2 has important roles during embryonic development, as well as bone remodeling and homeostasis in adulthood. Some of its specific functions include digit formation and activating osteogenic genes, such as Runt-Related Transcription Factor 2 (RUNX2). Because of its diverse functions and osteogenic potential, the Food and Drug Administration (FDA) approved usage of recombinant human BMP-2 (rhBMP-2) during spinal fusion surgery, tibial shaft repair, and maxillary sinus reconstructive surgery. However, shortly after initial injections of rhBMP-2, several adverse complications were reported, and alternative therapeutics have been developed to limit these side-effects. As the clinical application of BMP-2 is largely implicated in bone, we focus primarily on its role in bone. However, we also describe briefly the role of BMP-2 in development. We then focus on the structure of BMP-2, its activation and regulation signaling pathways, BMP-2 clinical applications, and limitations of using BMP-2 as a therapeutic. Further, this review explores other potential treatments that may be useful in treating bone disorders.
Collapse
Affiliation(s)
| | | | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (D.H.); (H.W.D.)
| |
Collapse
|
10
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
11
|
Große A, Perner B, Naumann U, Englert C. Zebrafish Wtx is a negative regulator of Wnt signaling but is dispensable for embryonic development and organ homeostasis. Dev Dyn 2019; 248:866-881. [PMID: 31290212 DOI: 10.1002/dvdy.84] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The X-chromosomally linked gene WTX is a human disease gene and a member of the AMER family. Mutations in WTX are found in Wilms tumor, a form of pediatric kidney cancer and in patients suffering from OSCS (Osteopathia striata with cranial sclerosis), a sclerosing bone disorder. Functional data suggest WTX to be an inhibitor of the Wnt/β-catenin signaling pathway. Deletion of Wtx in mouse leads to perinatal death, impeding the analysis of its physiological role. RESULTS To gain insights into the function of Wtx in development and homeostasis we have used zebrafish as a model and performed both knockdown and knockout studies using morpholinos and transcription activator-like effector nucleases (TALENs), respectively. Wtx knockdown led to increased Wnt activity and embryonic dorsalization. Also, wtx mutants showed a transient upregulation of Wnt target genes in the context of caudal fin regeneration. Surprisingly, however, wtx as well as wtx/amer2/amer3 triple mutants developed normally, were fertile and did not show any anomalies in organ maintenance. CONCLUSIONS Our data show that members of the zebrafish wtx/amer gene family, while sharing a partially overlapping expression pattern do not compensate for each other. This observation demonstrates a remarkable robustness during development and regeneration in zebrafish.
Collapse
Affiliation(s)
- Andreas Große
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Birgit Perner
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Uta Naumann
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Christoph Englert
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany.,Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
12
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
13
|
Esser JS, Steiner RE, Deckler M, Schmitt H, Engert B, Link S, Charlet A, Patterson C, Bode C, Zhou Q, Moser M. Extracellular bone morphogenetic protein modulator BMPER and twisted gastrulation homolog 1 preserve arterial-venous specification in zebrafish blood vessel development and regulate Notch signaling in endothelial cells. FEBS J 2018; 285:1419-1436. [PMID: 29473997 DOI: 10.1111/febs.14414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/26/2018] [Accepted: 02/19/2018] [Indexed: 01/16/2023]
Abstract
The bone morphogenetic protein (BMP) signaling pathway plays a central role during vasculature development. Mutations or dysregulation of the BMP pathway members have been linked to arteriovenous malformations. In the present study, we investigated the effect of the BMP modulators bone morphogenetic protein endothelial precursor-derived regulator (BMPER) and twisted gastrulation protein homolog 1 (TWSG1) on arteriovenous specification during zebrafish development and analyzed downstream Notch signaling pathway in human endothelial cells. Silencing of bmper and twsg1b in zebrafish embryos by morpholinos resulted in a pronounced enhancement of venous ephrinB4a marker expression and concomitant dysregulated arterial ephrinb2a marker expression detected by in situ hybridization. As arteriovenous specification was disturbed, we assessed the impact of BMPER and TWSG1 protein stimulation on the Notch signaling pathway on endothelial cells from different origin. Quantitative real-time PCR (qRT-PCR) and western blot analysis showed increased expression of Notch target gene hairy and enhancer of split, HEY1/2 and EPHRINB2. Consistently, silencing of BMPER in endothelial cells by siRNAs decreased Notch signaling and downstream effectors. BMP receptor antagonist DMH1 abolished BMPER and BMP4 induced Notch signaling pathway activation. In conclusion, we found that in endothelial cells, BMPER and TWSG1 are necessary for regular Notch signaling activity and in zebrafish embryos BMPER and TWSG1 preserve arteriovenous specification to prevent malformations.
Collapse
Affiliation(s)
- Jennifer Susanne Esser
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University Freiburg, Germany
| | - Rahel Elisabeth Steiner
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University Freiburg, Germany
| | - Meike Deckler
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University Freiburg, Germany
| | - Hannah Schmitt
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University Freiburg, Germany
| | - Bianca Engert
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University Freiburg, Germany
| | - Sandra Link
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University Freiburg, Germany
| | - Anne Charlet
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University Freiburg, Germany
| | - Cam Patterson
- Weill Cornell Medical Center, New York Presbyterian Hospital, NY, USA
| | - Christoph Bode
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University Freiburg, Germany
| | - Qian Zhou
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University Freiburg, Germany
| | - Martin Moser
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University Freiburg, Germany
| |
Collapse
|
14
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
15
|
Blum M, De Robertis EM, Wallingford JB, Niehrs C. Morpholinos: Antisense and Sensibility. Dev Cell 2016; 35:145-9. [PMID: 26506304 DOI: 10.1016/j.devcel.2015.09.017] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/16/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022]
Abstract
For over 15 years, antisense morpholino oligonucleotides (MOs) have allowed developmental biologists to make key discoveries regarding developmental mechanisms in numerous model organisms. Recently, serious concerns have been raised as to the specificity of MO effects, and it has been recommended to discontinue their usage, despite the long experience of the scientific community with the MO tool in thousands of studies. Reviewing the many advantages afforded by MOs, we conclude that adequately controlled MOs should continue to be accepted as generic loss-of-function approach, as otherwise progress in developmental biology will greatly suffer.
Collapse
Affiliation(s)
- Martin Blum
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Edward M De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - John B Wallingford
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Christof Niehrs
- Institute of Molecular Biology, 55128 Mainz, Germany; DKFZ-ZMBH Alliance, Division of Molecular Embryology, 69120 Heidelberg, Germany.
| |
Collapse
|
16
|
|
17
|
Tuazon FB, Mullins MC. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 2015; 42:118-33. [PMID: 26123688 PMCID: PMC4562868 DOI: 10.1016/j.semcdb.2015.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate body plan is established through the precise spatiotemporal coordination of morphogen signaling pathways that pattern the anteroposterior (AP) and dorsoventral (DV) axes. Patterning along the AP axis is directed by posteriorizing signals Wnt, fibroblast growth factor (FGF), Nodal, and retinoic acid (RA), while patterning along the DV axis is directed by bone morphogenetic proteins (BMP) ventralizing signals. This review addresses the current understanding of how Wnt, FGF, RA and BMP pattern distinct AP and DV cell fates during early development and how their signaling mechanisms are coordinated to concomitantly pattern AP and DV tissues.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States.
| |
Collapse
|
18
|
Hosen MJ, Vanakker OM, Willaert A, Huysseune A, Coucke P, De Paepe A. Zebrafish models for ectopic mineralization disorders: practical issues from morpholino design to post-injection observations. Front Genet 2013; 4:74. [PMID: 23760765 PMCID: PMC3669896 DOI: 10.3389/fgene.2013.00074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 04/15/2013] [Indexed: 01/06/2023] Open
Abstract
Zebrafish (ZF, Danio rerio) has emerged as an important and popular model species to study different human diseases. Key regulators of skeletal development and calcium metabolism are highly conserved between mammals and ZF. The corresponding orthologs share significant sequence similarities and an overlap in expression patterns when compared to mammals, making ZF a potential model for the study of mineralization-related disorders and soft tissue mineralization. To characterize the function of early mineralization-related genes in ZF, these genes can be knocked down by injecting morpholinos into early stage embryos. Validation of the morpholino needs to be performed and the concern of aspecific effects can be addressed by applying one or more independent techniques to knock down the gene of interest. Post-injection assessment of early mineralization defects can be done using general light microscopy, calcein staining, Alizarin red staining, Alizarin red-Alcian blue double staining, and by the use of transgenic lines. Examination of general molecular defects can be done by performing protein and gene expression analysis, and more specific processes can be explored by investigating ectopic mineralization-related mechanisms such as apoptosis and mitochondrial dysfunction. In this paper, we will discuss all details about the aforementioned techniques; shared knowledge will be very useful for the future investigation of ZF models for ectopic mineralization disorders and to understand the underlying pathways involved in soft tissue calcification.
Collapse
Affiliation(s)
- Mohammad Jakir Hosen
- Center for Medical Genetics, Ghent University Hospital Ghent, Belgium ; Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology Sylhet, Bangladesh
| | | | | | | | | | | |
Collapse
|
19
|
Heinke J, Juschkat M, Charlet A, Mnich L, Helbing T, Bode C, Patterson C, Moser M. Antagonism and synergy between extracellular BMP modulators Tsg and BMPER balance blood vessel formation. J Cell Sci 2013; 126:3082-94. [PMID: 23641068 DOI: 10.1242/jcs.122333] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth and regeneration of blood vessels are crucial processes during embryonic development and in adult disease. Members of the bone morphogenetic protein (BMP) family are growth factors known to play a key role in vascular development. The BMP pathway is controlled by extracellular BMP modulators such as BMP endothelial cell precursor derived regulator (BMPER), which we reported previously acts proangiogenically on endothelial cells in a concentration-dependent manner. Here, we explore the function of other BMP modulators, especially Tsg, on endothelial cell behaviour and compare them to BMPER. In Matrigel assays, BMP modulators chordin and noggin had no stimulatory effect; however, gremlin and Tsg enhanced human umbilical vein endothelial cell (HUVEC) sprouting. As the activation dynamics of Tsg were similar to those of BMPER, we further investigated the proangiogenic effect of Tsg on endothelial cells. Tsg enhanced endothelial cell ingrowth in the mouse Matrigel plug assay as well as HUVEC sprouting, migration and proliferation in vitro, dependent on Akt, Erk and Smad signalling pathway activation in a concentration-dependent manner. Surprisingly, silencing of Tsg also increased HUVEC sprouting, migration and proliferation, which is again associated with Akt, Erk and Smad signalling pathway activation. Furthermore, we reveal that Tsg and BMPER interfere with each other to enhance proangiogenic events. However, in vivo the presence of Tsg as well as of BMPER is mandatory for regular development of the zebrafish vasculature. Taken together, our results suggest that BMPER and Tsg maintain a fine-tuned equilibrium that controls BMP pathway activity and is necessary for vascular cell homeostasis.
Collapse
Affiliation(s)
- Jennifer Heinke
- Heart Center, Freiburg University, Cardiology and Angiology I, 79106 Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Vrijens K, Lin W, Cui J, Farmer D, Low J, Pronier E, Zeng FY, Shelat AA, Guy K, Taylor MR, Chen T, Roussel MF. Identification of small molecule activators of BMP signaling. PLoS One 2013; 8:e59045. [PMID: 23527084 PMCID: PMC3602516 DOI: 10.1371/journal.pone.0059045] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 02/11/2013] [Indexed: 12/13/2022] Open
Abstract
Bone Morphogenetic Proteins (BMPs) are morphogens that play a major role in regulating development and homeostasis. Although BMPs are used for the treatment of bone and kidney disorders, their clinical use is limited due to the supra-physiological doses required for therapeutic efficacy causing severe side effects. Because recombinant BMPs are expensive to produce, small molecule activators of BMP signaling would be a cost-effective alternative with the added benefit of being potentially more easily deliverable. Here, we report our efforts to identify small molecule activators of BMP signaling. We have developed a cell-based assay to monitor BMP signaling by stably transfecting a BMP-responsive human cervical carcinoma cell line (C33A) with a reporter construct in which the expression of luciferase is driven by a multimerized BMP-responsive element from the Id1 promoter. A BMP-responsive clone C33A-2D2 was used to screen a bioactive library containing ∼5,600 small molecules. We identified four small molecules of the family of flavonoids all of which induced luciferase activity in a dose-dependent manner and ventralized zebrafish embryos. Two of the identified compounds induced Smad1, 5 phosphorylation (P-Smad), Id1 and Id2 expression in a dose-dependent manner demonstrating that our assays identified small molecule activators of BMP signaling.
Collapse
Affiliation(s)
- Karen Vrijens
- Departments of Tumor Cell Biology, Memphis, Tennessee, United States of America
| | - Wenwei Lin
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jimmy Cui
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Dana Farmer
- Departments of Tumor Cell Biology, Memphis, Tennessee, United States of America
| | - Jonathan Low
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Elodie Pronier
- Departments of Tumor Cell Biology, Memphis, Tennessee, United States of America
- Institut National de la Santé et de la Recherche Medicale, U1009, Institut Gustave Roussy, Villejuif, France
| | - Fu-Yue Zeng
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Anang A. Shelat
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Kiplin Guy
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Michael R. Taylor
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Taosheng Chen
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Martine F. Roussel
- Departments of Tumor Cell Biology, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
21
|
Effendi K, Yamazaki K, Mori T, Masugi Y, Makino S, Sakamoto M. Involvement of hepatocellular carcinoma biomarker, cyclase-associated protein 2 in zebrafish body development and cancer progression. Exp Cell Res 2013; 319:35-44. [DOI: 10.1016/j.yexcr.2012.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/20/2012] [Accepted: 09/10/2012] [Indexed: 11/16/2022]
|
22
|
Forsman CL, Ng BC, Heinze RK, Kuo C, Sergi C, Gopalakrishnan R, Yee D, Graf D, Schwertfeger KL, Petryk A. BMP-binding protein twisted gastrulation is required in mammary gland epithelium for normal ductal elongation and myoepithelial compartmentalization. Dev Biol 2013; 373:95-106. [PMID: 23103586 PMCID: PMC3508155 DOI: 10.1016/j.ydbio.2012.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 10/02/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
Bone morphogenetic proteins (BMPs) are involved in embryonic mammary gland (MG) development and can be dysregulated in breast cancer. However, the role BMPs play in the postnatal MG remains virtually unknown. BMPs are potent morphogens that are involved in cell fate determination, proliferation, apoptosis and adult tissue homeostasis. Twisted gastrulation (TWSG1) is a secreted BMP binding protein that modulates BMP ligand availability in the extracellular space. Here we investigate the consequences of TWSG1 deletion on development of the postnatal MG. At puberty, Twsg1 is expressed in the myoepithelium and in a subset of body cells of the terminal end buds. In the mature duct, Twsg1 expression is primarily restricted to the myoepithelial layer. Global deletion of Twsg1 leads to a delay in ductal elongation, reduced secondary branching, enlarged terminal end buds, and occluded lumens. This is associated with an increase in luminal epithelial cell number and a decrease in apoptosis. In the MG, pSMAD1/5/8 level and the expression of BMP target genes are reduced, consistent with a decrease in BMP signaling. GATA-3, which is required for luminal identity, is reduced in Twsg1(-/-) MGs, which may explain why K14 positive cells, which are normally restricted to the myoepithelial layer, are found within the luminal compartment and shed into the lumen. In summary, regulation of BMP signaling by TWSG1 is required for normal ductal elongation, branching of the ductal tree, lumen formation, and myoepithelial compartmentalization in the postnatal MG.
Collapse
Affiliation(s)
- Cynthia L. Forsman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brandon C. Ng
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachel K. Heinze
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Claire Kuo
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Consolato Sergi
- Department of Laboratory Medicine & Pathology, University of Alberta, Alberta, Canada T6G 2B7
| | - Rajaram Gopalakrishnan
- Diagnostic/Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Daniel Graf
- Institute of Oral Biology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Kathryn L. Schwertfeger
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anna Petryk
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
23
|
Araujo H, Fontenele MR, da Fonseca RN. Position matters: variability in the spatial pattern of BMP modulators generates functional diversity. Genesis 2012; 49:698-718. [PMID: 21671348 DOI: 10.1002/dvg.20778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bone morphogenetic proteins (BMPs) perform a variety of functions during development. Considering a single BMP, what enables its multiple roles in tissues of varied sizes and shapes? What regulates the spatial distribution and activity patterns of the BMP in these different developmental contexts? Some BMP functions require controlling spread of the BMP morphogen, while others require formation of localized, high concentration peaks of BMP activity. Here we review work in Drosophila that describes spatial regulation of the BMP encoded by decapentaplegic (dpp) in different developmental contexts. We concentrate on extracellular modulation of BMP function and discuss the mechanisms that generate concentrated peaks of Dpp activity, subdivide territories of different activity levels or regulate spread of the Dpp morphogen from a point source. We compare these findings with data from vertebrates and non-model organisms to discuss how changes in the regulation of Dpp distribution by extracellular modulators may lead to variability in dpp function in different species.
Collapse
Affiliation(s)
- Helena Araujo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
24
|
The role of glypicans in Wnt inhibitory factor-1 activity and the structural basis of Wif1's effects on Wnt and Hedgehog signaling. PLoS Genet 2012; 8:e1002503. [PMID: 22383891 PMCID: PMC3285576 DOI: 10.1371/journal.pgen.1002503] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 12/11/2011] [Indexed: 01/03/2023] Open
Abstract
Proper assignment of cellular fates relies on correct interpretation of Wnt and Hedgehog (Hh) signals. Members of the Wnt Inhibitory Factor-1 (WIF1) family are secreted modulators of these extracellular signaling pathways. Vertebrate WIF1 binds Wnts and inhibits their signaling, but its Drosophila melanogaster ortholog Shifted (Shf) binds Hh and extends the range of Hh activity in the developing D. melanogaster wing. Shf activity is thought to depend on reinforcing interactions between Hh and glypican HSPGs. Using zebrafish embryos and the heterologous system provided by D. melanogaster wing, we report on the contribution of glypican HSPGs to the Wnt-inhibiting activity of zebrafish Wif1 and on the protein domains responsible for the differences in Wif1 and Shf specificity. We show that Wif1 strengthens interactions between Wnt and glypicans, modulating the biphasic action of glypicans towards Wnt inhibition; conversely, glypicans and the glypican-binding “EGF-like” domains of Wif1 are required for Wif1's full Wnt-inhibiting activity. Chimeric constructs between Wif1 and Shf were used to investigate their specificities for Wnt and Hh signaling. Full Wnt inhibition required the “WIF” domain of Wif1, and the HSPG-binding EGF-like domains of either Wif1 or Shf. Full promotion of Hh signaling requires both the EGF-like domains of Shf and the WIF domains of either Wif1 or Shf. That the Wif1 WIF domain can increase the Hh promoting activity of Shf's EGF domains suggests it is capable of interacting with Hh. In fact, full-length Wif1 affected distribution and signaling of Hh in D. melanogaster, albeit weakly, suggesting a possible role for Wif1 as a modulator of vertebrate Hh signaling. In developing organisms, cells choose between alternative fates in order to make appropriately patterned tissues, and misregulation of those choices can underlie both developmental defects and cancers. Cells often make these decisions because of signals received from neighboring cells, such as those mediated by the secreted signaling proteins of the Wnt and Hedgehog (Hh) families. While signaling can be regulated by the levels of signaling or receptor proteins expressed by cells, another level of control is exerted by proteins that bind signaling proteins outside of cells and either inhibit or promote the signaling process. In the fruitfly Drosophilamelanogaster, the secreted Shifted protein has been shown to bind Hh and to increase Hh signaling, likely by reinforcing interactions between Hh and cell surface proteins of the glypican family. We provide evidence that the vertebrate homolog of Shifted, Wnt Inhibitory Factor-1 (Wif1), inhibits Wnt activity by a similar mechanism, reinforcing interactions between Wnts and glypicans in a manner that sequesters Wnts from their receptors. We also examine the structural basis for the specificities of Wif1 and Shifted for Wnt and Hh signaling, respectively, and provide evidence that Wif1, although a potent inhibitor of Wnt activity, influences D. melanogaster Hh signaling.
Collapse
|
25
|
Chang X, Lu Y, Shibata Y, Tsukazaki T, Yamaguchi A. Role of Bone Morphogenetic Proteins and Their Antagonists during Fracture Healing. J HARD TISSUE BIOL 2012. [DOI: 10.2485/jhtb.21.203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Plouhinec JL, Zakin L, De Robertis EM. Systems control of BMP morphogen flow in vertebrate embryos. Curr Opin Genet Dev 2011; 21:696-703. [PMID: 21937218 PMCID: PMC3224208 DOI: 10.1016/j.gde.2011.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/04/2011] [Indexed: 02/04/2023]
Abstract
Embryonic morphogenetic programs coordinate cell behavior to ensure robust pattern formation. Having identified components of those programs by molecular genetics, developmental biology is now borrowing concepts and tools from systems biology to decode their regulatory logic. Dorsal-ventral (D-V) patterning of the frog gastrula by Bone Morphogenetic Proteins (BMPs) is one of the best studied examples of a self-regulating embryonic patterning system. Embryological analyses and mathematical modeling are revealing that the BMP activity gradient is maintained by a directed flow of BMP ligands towards the ventral side. Pattern robustness is ensured through feedback control of the levels of extracellular BMP pathway modulators that adjust the flow to the dimensions of the embryonic field.
Collapse
Affiliation(s)
- Jean-Louis Plouhinec
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|
27
|
Abstract
Vertebrate development begins with precise molecular, cellular, and morphogenetic controls to establish the basic body plan of the embryo. In zebrafish, these tightly regulated processes begin during oogenesis and proceed through gastrulation to establish and pattern the axes of the embryo. During oogenesis a maternal factor is localized to the vegetal pole of the oocyte that is a determinant of dorsal tissues. Following fertilization this vegetally localized dorsal determinant is asymmetrically translocated in the egg and initiates formation of the dorsoventral axis. Dorsoventral axis formation and patterning is then mediated by maternal and zygotic factors acting through Wnt, BMP (bone morphogenetic protein), Nodal, and FGF (fibroblast growth factor) signaling pathways, each of which is required to establish and/or pattern the dorsoventral axis. This review addresses recent advances in our understanding of the molecular factors and mechanisms that establish and pattern the dorsoventral axis of the zebrafish embryo, including establishment of the animal-vegetal axis as it relates to formation of the dorsoventral axis.
Collapse
Affiliation(s)
- Yvette G Langdon
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
28
|
Kauvar EF, Hu P, Pineda-Alvarez DE, Solomon BD, Dutra A, Pak E, Blessing B, Proud V, Shanske AL, Stevens CA, Rosenfeld JA, Shaffer LG, Roessler E, Muenke M. Minimal evidence for a direct involvement of twisted gastrulation homolog 1 (TWSG1) gene in human holoprosencephaly. Mol Genet Metab 2011; 102:470-80. [PMID: 21227728 PMCID: PMC3152819 DOI: 10.1016/j.ymgme.2010.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/14/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
Holoprosencephaly (HPE) is the most common disorder of human forebrain and facial development. Presently understood etiologies include both genetic and environmental factors, acting either alone, or more likely, in combination. The majority of patients without overt chromosomal abnormalities or recognizable associated syndromes have unidentified etiologies. A potential candidate gene, Twisted Gastrulation Homolog 1 (TWSG1), was previously suggested as a contributor to the complex genetics of human HPE based on (1) cytogenetic studies of patients with 18p deletions, (2) animal studies of TWSG1 deficient mice, and (3) the relationship of TWSG1 to bone morphogenetic protein (BMP) signaling, which modulates the primary pathway implicated in HPE, Sonic Hedgehog (SHH) signaling. Here we present the first analysis of a large cohort of patients with HPE for coding sequence variations in TWSG1. We also performed fine mapping of 18p for a subset of patients with partial 18p deletions. Surprisingly, minimal evidence for alterations of TWSG1 was found, suggesting that sequence alterations of TWSG1 are neither a common direct cause nor a frequent modifying factor for human HPE pathologies.
Collapse
Affiliation(s)
- Emily F. Kauvar
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Howard Hughes Medical Institute – National Institutes of Health Research Scholars Program, Bethesda, MD, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel E. Pineda-Alvarez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin D. Solomon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amalia Dutra
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Evgenia Pak
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brooke Blessing
- Division of Medical Genetics, Children’s Hospital of The King’s Daughters, Norfolk, VA, USA
| | - Virginia Proud
- Division of Medical Genetics, Children’s Hospital of The King’s Daughters, Norfolk, VA, USA
| | - Alan L. Shanske
- Center for Craniofacial Disorders, Children’s Hospital at Montefiore Medical Center, Bronx, NY, USA
| | - Cathy A. Stevens
- Department of Pediatrics, University of Tennessee College of Medicine, Chattanooga, TN, USA
| | | | | | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Corresponding author: Address: 35 Convent Drive, MSC 3717, Bldg 35, Rm 1B-203, Bethesda, MD, 20892-3717, USA. Tel: (301) 402-8167. Fax: (301) 480-7876. (M. Muenke)
| |
Collapse
|
29
|
Yao S, Qian M, Deng S, Xie L, Yang H, Xiao C, Zhang T, Xu H, Zhao X, Wei YQ, Mo X. Kzp controls canonical Wnt8 signaling to modulate dorsoventral patterning during zebrafish gastrulation. J Biol Chem 2010; 285:42086-96. [PMID: 20978132 DOI: 10.1074/jbc.m110.161554] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During vertebrate embryonic development, the body axis formation requires the action of Wnt signals and their antagonists. Zygotic canonical wnt8 expression appears exclusively at the ventrolateral margin and mediates Wnt/β-catenin activities to promote posterior and ventral cell fate. However, the mechanisms involved in the initiation of zygotic wnt8 signals are poorly understood. Here, we identify a novel, maternally derived transcription factor, Kzp (Kaiso zinc finger-containing protein), as an important determinant for the initiation of zygotic Wnt signals in zebrafish. Kzp is a DNA-binding transcription factor that recognizes specific consensus DNA sequences, 5'-(t/a/g)t(a/t/g)nctgcca-3', through zinc fingers and controls the initiation of zygotic wnt8 expression by directly binding to the wnt8 promoter during zebrafish embryonic development. Depletion of Kzp strongly dorsalized embryos, which was characterized by the expansion of dorsal gene expression. Overexpression of Kzp caused posteriorization. These phenotypes were highly similar to ones induced by wnt8 depletion or overexpression and were rescued by alteration of wnt8 activity. Thus, our results provide the first insight into the mechanism involved in the initiation of zygotic canonical Wnt signals by a maternally derived transcription factor.
Collapse
Affiliation(s)
- Shaohua Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang JL, Patterson LJ, Qiu LY, Graziussi D, Sebald W, Hammerschmidt M. Binding between Crossveinless-2 and Chordin von Willebrand factor type C domains promotes BMP signaling by blocking Chordin activity. PLoS One 2010; 5:e12846. [PMID: 20886103 PMCID: PMC2944808 DOI: 10.1371/journal.pone.0012846] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/24/2010] [Indexed: 12/04/2022] Open
Abstract
Background Crossveinless-2 (CV2) is an extracellular BMP modulator protein of the Chordin family, which can either enhance or inhibit BMP activity. CV2 binds to BMP2 via subdomain 1 of the first of its five N-terminal von Willebrand factor type C domains (VWC1). Previous studies showed that this BMP binding is required for the anti-, but not for the pro-BMP effect of CV2. More recently, it was shown that CV2 can also bind to the BMP inhibitor Chordin. However, it remained unclear which domains mediate this binding, and whether it accounts for an anti- or pro-BMP effect. Principal Findings Here we report that a composite interface of CV2 consisting of subdomain 2 of VWC1 and of VWC2-4, which are dispensable for BMP binding, binds to the VWC2 domain of Chordin. Functional data obtained in zebrafish embryos indicate that this binding of Chordin is required for CV2's pro-BMP effect, which actually is an anti-Chordin effect and, at least to a large extent, independent of Tolloid-mediated Chordin degradation. We further demonstrate that CV2 mutant versions that per se are incapable of BMP binding can attenuate the Chordin/BMP interaction. Conclusions We have physically dissected the anti- and pro-BMP effects of CV2. Its anti-BMP effect is obtained by binding to BMP via subdomain1 of the VWC1 domain, a binding that occurs in competition with Chordin. In contrast, its pro-BMP effect is achieved by direct binding to Chordin via subdomain 2 of VWC1 and VWC2-4. This binding seems to induce conformational changes within the Chordin protein that weaken Chordin's affinity to BMP. We propose that in ternary Chordin-CV2-BMP complexes, both BMP and Chordin are directly associated with CV2, whereas Chordin is pushed away from BMP, ensuring that BMPs can be more easily delivered to their receptors.
Collapse
Affiliation(s)
- Jin-Li Zhang
- Institute for Developmental Biology, Cologne Biocenter, University of Cologne, Cologne, Germany
- Department of Physiological Chemistry II, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- * E-mail: (MH); (JLZ)
| | - Lucy J. Patterson
- Institute for Developmental Biology, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Li-Yan Qiu
- Department of Physiological Chemistry II, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Daria Graziussi
- Institute for Developmental Biology, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Walter Sebald
- Department of Physiological Chemistry II, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Matthias Hammerschmidt
- Institute for Developmental Biology, Cologne Biocenter, University of Cologne, Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CEDAD), University of Cologne, Cologne, Germany
- * E-mail: (MH); (JLZ)
| |
Collapse
|
31
|
Zakin L, Chang EY, Plouhinec JL, De Robertis EM. Crossveinless-2 is required for the relocalization of Chordin protein within the vertebral field in mouse embryos. Dev Biol 2010; 347:204-15. [PMID: 20807528 DOI: 10.1016/j.ydbio.2010.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 08/21/2010] [Accepted: 08/23/2010] [Indexed: 11/26/2022]
Abstract
Bone morphogenetic proteins (BMPs), as well as the BMP-binding molecules Chordin (Chd), Crossveinless-2 (CV2) and Twisted Gastrulation (Tsg), are essential for axial skeletal development in the mouse embryo. We previously reported a strong genetic interaction between CV2 and Tsg and proposed a role for this interaction in the shaping of the BMP morphogenetic field during vertebral development. In the present study we investigated the roles of CV2 and Chd in the formation of the vertebral morphogenetic field. We performed immunostainings for CV2 and Chd protein on wild-type, CV2(-/-) or Chd(-/-) mouse embryo sections at the stage of onset of the vertebral phenotypes. By comparing mRNA and protein localizations we found that CV2 does not diffuse away from its place of synthesis, the vertebral body. The most interesting finding of this study was that Chd synthesized in the intervertebral disc accumulates in the vertebral body. This relocalization does not take place in CV2(-/-) mutants. Instead, Chd was found to accumulate at its site of synthesis in CV2(-/-) embryos. These results indicate a CV2-dependent flow of Chd protein from the intervertebral disc to the vertebral body. Smad1/5/8 phosphorylation was decreased in CV2(-/-)vertebral bodies. This impaired BMP signaling may result from the decreased levels of Chd/BMP complexes diffusing from the intervertebral region. The data indicate a role for CV2 and Chd in the establishment of the vertebral morphogenetic field through the long-range relocalization of Chd/BMP complexes. The results may have general implications for the formation of embryonic organ-forming morphogenetic fields.
Collapse
Affiliation(s)
- Lise Zakin
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | | | | | | |
Collapse
|
32
|
Nunes da Fonseca R, van der Zee M, Roth S. Evolution of extracellular Dpp modulators in insects: The roles of tolloid and twisted-gastrulation in dorsoventral patterning of the Tribolium embryo. Dev Biol 2010; 345:80-93. [PMID: 20510683 DOI: 10.1016/j.ydbio.2010.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 05/09/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
Abstract
The formation of the BMP gradient which patterns the DV axis in flies and vertebrates requires several extracellular modulators like the inhibitory protein Sog/Chordin, the metalloprotease Tolloid (Tld), which cleaves Sog/Chordin, and the CR domain protein Twisted gastrulation (Tsg). While flies and vertebrates have only one sog/chordin gene they possess several paralogues of tld and tsg. A simpler and probably ancestral situation is observed in the short-germ beetle Tribolium castaneum (Tc), which possesses only one tld and one tsg gene. Here we show that in T. castaneum tld is required for early BMP signalling except in the head region and Tc-tld function is, as expected, dependent on Tc-sog. In contrast, Tc-tsg is required for all aspects of early BMP signalling and acts in a Tc-sog-independent manner. For comparison with Drosophila melanogaster we constructed fly embryos lacking all early Tsg activity (tsg;;srw double mutants) and show that they still establish a BMP signalling gradient. Thus, our results suggest that the role of Tsg proteins for BMP gradient formation has changed during insect evolution.
Collapse
Affiliation(s)
- Rodrigo Nunes da Fonseca
- Institute of Developmental Biology, University of Cologne, Cologne, Gyrhofstrasse 17, D-50931, Germany
| | | | | |
Collapse
|
33
|
Nifuji A, Ideno H, Takanabe R, Noda M. Extracellular Modulators Regulate Bone Morphogenic Proteins in Skeletal Tissue. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Tse WKF, Eisenhaber B, Ho SHK, Ng Q, Eisenhaber F, Jiang YJ. Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development. BMC Genomics 2009; 10:637. [PMID: 20040115 PMCID: PMC2809080 DOI: 10.1186/1471-2164-10-637] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 12/30/2009] [Indexed: 02/02/2023] Open
Abstract
Background Deconjugation of ubiquitin and/or ubiquitin-like modified protein substrates is essential to modulate protein-protein interactions and, thus, signaling processes in cells. Although deubiquitylating (deubiquitinating) enzymes (DUBs) play a key role in this process, however, their function and regulation remain insufficiently understood. The "loss-of-function" phenotype studies can provide important information to elucidate the gene function, and zebrafish is an excellent model for this goal. Results From an in silico genome-wide search, we found more than 90 putative DUBs encoded in the zebrafish genome belonging to six different subclasses. Out of them, 85 from five classical subclasses have been tested with morpholino (MO) knockdown experiments and 57 of them were found to be important in early development of zebrafish. These DUB morphants resulted in a complex and pleiotropic phenotype that, regardless of gene target, always affected the notochord. Based on the huC neuronal marker expression, we grouped them into five sets (groups I to V). Group I DUBs (otud7b, uchl3 and bap1) appear to be involved in the Notch signaling pathway based on the neuronal hyperplasia, while group IV DUBs (otud4, usp5, usp15 and usp25) play a critical role in dorsoventral patterning through the BMP pathway. Conclusion We have identified an exhaustive list of genes in the zebrafish genome belonging to the five established classes of DUBs. Additionally, we performed the corresponding MO knockdown experiments in zebrafish as well as functional studies for a subset of the predicted DUB genes. The screen results in this work will stimulate functional follow-up studies of potential DUB genes using the zebrafish model system.
Collapse
Affiliation(s)
- William K F Tse
- Laboratory of Developmental Signalling and Patterning, Genes and Development Division, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.
| | | | | | | | | | | |
Collapse
|
35
|
Plouhinec JL, De Robertis EM. Systems biology of the self-regulating morphogenetic gradient of the Xenopus gastrula. Cold Spring Harb Perspect Biol 2009; 1:a001701. [PMID: 20066084 PMCID: PMC2742089 DOI: 10.1101/cshperspect.a001701] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The morphogenetic field concept was proposed by experimental embryologists to account for the self-regulative behavior of embryos. Such fields have remained an abstract concept until the recent identification of their molecular components using a combination of genetics, biochemistry, and theoretical modeling. One of the best studied models of a morphogenetic field is the Dorsal-Ventral (D-V) patterning of the early frog embryo. This patterning system is regulated by the bone morphogenetic protein (BMP) signaling pathway and an intricate network of secreted protein antagonists. This biochemical pathway of interacting proteins functions in the extracellular space to generate a D-V gradient of BMP signaling, which is maintained during extensive morphogenetic movements of cell layers during gastrulation. The D-V field is divided into a dorsal and a ventral center, in regions of low and high BMP signaling respectively, under opposite transcriptional control by BMPs. The robustness of the patterning is assured at two different levels. First, in the extracellular space by secreted BMP antagonists that generate a directional flow of BMP ligands to the ventral side. The flow is driven by the regulated proteolysis of the Chordin inhibitor and by the presence of a molecular sink on the ventral side that concentrates BMP signals. The tolloid metalloproteinases and the Chordin-binding protein Crossveinless-2 (CV2) are key components of this ventral sink. Second, by transcriptional feedback at the cellular level: The dorsal and ventral signaling centers adjust their size and level of BMP signaling by transcriptional feedback. This allows cells on one side of a gastrula containing about 10,000 cells to communicate with cells in the opposite pole of the embryo.
Collapse
Affiliation(s)
| | - E. M. De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, California 90095-1662
| |
Collapse
|
36
|
Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat Cell Biol 2009; 11:637-43. [PMID: 19377468 PMCID: PMC2757091 DOI: 10.1038/ncb1870] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 02/09/2009] [Indexed: 02/07/2023]
Abstract
Patterning the embryonic dorsoventral (DV) axis of both vertebrates and invertebrates requires signaling via Bone Morphogenetic Proteins (BMPs)1. Although a well studied process, the physiologically relevant BMP signaling complex in the Drosophila embryo is controversial2, 3 and generally inferred from cell culture studies, and has not been investigated in vertebrates. Here, we demonstrate that DV patterning in zebrafish requires two classes of nonredundant type I BMP receptors, Alk3/6 and Alk8. We show under physiologic conditions in the embryo that these two type I receptor classes form a complex in a manner that depends on both Bmp2 and Bmp7. We found that both Bmp2/7 heterodimers, as well as Bmp2 and Bmp7 homodimers, form in the embryo. However, only recombinant ligand heterodimers can activate BMP signaling in the early embryo, whereas a combination of Bmp2 and Bmp7 homodimers cannot. We propose that only heterodimers, signaling via two distinct classes of type I receptor, possess sufficient receptor affinity in an environment of extracellular antagonists to elicit the signaling response required for DV patterning.
Collapse
|
37
|
Crossveinless-2 Is a BMP feedback inhibitor that binds Chordin/BMP to regulate Xenopus embryonic patterning. Dev Cell 2008; 15:248-60. [PMID: 18694564 DOI: 10.1016/j.devcel.2008.06.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/14/2008] [Accepted: 06/25/2008] [Indexed: 11/24/2022]
Abstract
Vertebrate Crossveinless-2 (CV2) is a secreted protein that can potentiate or antagonize BMP signaling. Through embryological and biochemical experiments we find that: (1) CV2 functions as a BMP4 feedback inhibitor in ventral regions of the Xenopus embryo; (2) CV2 complexes with Twisted gastrulation and BMP4; (3) CV2 is not a substrate for tolloid proteinases; (4) CV2 binds to purified Chordin protein with high affinity (K(D) in the 1 nM range); (5) CV2 binds even more strongly to Chordin proteolytic fragments resulting from Tolloid digestion or to full-length Chordin/BMP complexes; (6) CV2 depletion causes the Xenopus embryo to become hypersensitive to the anti-BMP effects of Chordin overexpression or tolloid inhibition. We propose that the CV2/Chordin interaction may help coordinate BMP diffusion to the ventral side of the embryo, ensuring that BMPs liberated from Chordin inhibition by tolloid proteolysis cause peak signaling levels.
Collapse
|
38
|
Eisen JS, Smith JC. Controlling morpholino experiments: don't stop making antisense. Development 2008; 135:1735-43. [PMID: 18403413 DOI: 10.1242/dev.001115] [Citation(s) in RCA: 469] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the most significant problems facing developmental biologists who do not work on an organism with well-developed genetics - and even for some who do - is how to inhibit the action of a gene of interest during development so as to learn about its normal biological function. A widely adopted approach is to use antisense technologies, and especially morpholino antisense oligonucleotides. In this article, we review the use of such reagents and present examples of how they have provided insights into developmental mechanisms. We also discuss how the use of morpholinos can lead to misleading results, including off-target effects, and we suggest controls that will allow researchers to interpret morpholino experiments correctly.
Collapse
Affiliation(s)
- Judith S Eisen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | | |
Collapse
|
39
|
Yu PB, Hong CC, Sachidanandan C, Babitt JL, Deng DY, Hoyng SA, Lin HY, Bloch KD, Peterson RT. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol 2007; 4:33-41. [PMID: 18026094 DOI: 10.1038/nchembio.2007.54] [Citation(s) in RCA: 842] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 09/28/2007] [Indexed: 12/17/2022]
Abstract
Bone morphogenetic protein (BMP) signals coordinate developmental patterning and have essential physiological roles in mature organisms. Here we describe the first known small-molecule inhibitor of BMP signaling-dorsomorphin, which we identified in a screen for compounds that perturb dorsoventral axis formation in zebrafish. We found that dorsomorphin selectively inhibits the BMP type I receptors ALK2, ALK3 and ALK6 and thus blocks BMP-mediated SMAD1/5/8 phosphorylation, target gene transcription and osteogenic differentiation. Using dorsomorphin, we examined the role of BMP signaling in iron homeostasis. In vitro, dorsomorphin inhibited BMP-, hemojuvelin- and interleukin 6-stimulated expression of the systemic iron regulator hepcidin, which suggests that BMP receptors regulate hepcidin induction by all of these stimuli. In vivo, systemic challenge with iron rapidly induced SMAD1/5/8 phosphorylation and hepcidin expression in the liver, whereas treatment with dorsomorphin blocked SMAD1/5/8 phosphorylation, normalized hepcidin expression and increased serum iron levels. These findings suggest an essential physiological role for hepatic BMP signaling in iron-hepcidin homeostasis.
Collapse
Affiliation(s)
- Paul B Yu
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Stickney HL, Imai Y, Draper B, Moens C, Talbot WS. Zebrafish bmp4 functions during late gastrulation to specify ventroposterior cell fates. Dev Biol 2007; 310:71-84. [PMID: 17727832 PMCID: PMC2683675 DOI: 10.1016/j.ydbio.2007.07.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/03/2007] [Accepted: 07/19/2007] [Indexed: 11/16/2022]
Abstract
Bone morphogenetic proteins (BMPs) are key mediators of dorsoventral patterning in vertebrates and are required for the induction of ventral fates in fish and frogs. A widely accepted model of dorsoventral patterning postulates that a morphogenetic BMP activity gradient patterns cell fates along the dorsoventral axis. Recent work in zebrafish suggests that the role of BMP signaling changes over time, with BMPs required for global dorsoventral patterning during early gastrulation and for tail patterning during late gastrulation and early somitogenesis. Key questions remain about the late phase, including which BMP ligands are required and how the functions of BMPs differ during the early and late gastrula stages. In a screen for dominant enhancers of mutations in the homeobox genes vox and vent, which function in parallel to bmp signaling, we identified an insertion mutation in bmp4. We then performed a reverse genetic screen to isolate a null allele of bmp4. We report the characterization of these two alleles and demonstrate that BMP4 is required during the later phase of BMP signaling for the specification of ventroposterior cell fates. Our results indicate that different bmp genes are essential at different stages. In addition, we present genetic evidence supporting a role for a morphogenetic BMP gradient in establishing mesodermal fates during the later phase of BMP signaling.
Collapse
Affiliation(s)
- Heather L Stickney
- Stanford University School of Medicine, Department of Developmental Biology, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
41
|
Arakawa A, Matsuo-Takasaki M, Takai A, Inomata H, Matsumura M, Ikeya M, Takahashi K, Miyachi Y, Sasai N, Sasai Y. The secreted EGF-Discoidin factor xDel1 is essential for dorsal development of the Xenopus embryo. Dev Biol 2007; 306:160-9. [PMID: 17433289 DOI: 10.1016/j.ydbio.2007.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 03/06/2007] [Accepted: 03/07/2007] [Indexed: 11/24/2022]
Abstract
We show here that a secreted EGF-Discoidin-domain protein, Xenopus Del1 (xDel1), is an essential factor for dorsal development in the early Xenopus embryo. Knockdown of the xDel1 function causes obvious ventralization of the embryo. Conversely, overexpression of xDel1 expands dorsal-marker expression and suppresses ventral-marker expression in the gastrula embryo. Forced expression of xDel1 dorsalizes ventral marginal zone explants, whereas it weakly induces neural differentiation but not mesodermal differentiation in animal caps. The dorsalizing activity of xDel1 is dependent on the Discoidin domains and not on the RGD motif (which is implicated in its angiogenic activity) or EGF repeats. Luciferase assays show that xDel1 attenuates BMP-signaling reporter activity by interfering with the pathway downstream of the BMP receptor. Thus, xDel1 functions as a unique extracellular regulatory factor of DV patterning in early vertebrate embryogenesis.
Collapse
Affiliation(s)
- Akiko Arakawa
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Bone morphogenetic proteins (BMPs) are known to be widely involved in various biological processes. Many of the members of the BMP family, as well as related factors, receptors and molecules in the BMP signaling pathway, have been isolated, but their precise functions are still unclear. In addition to the 'classical' model organism Xenopus, zebrafish, Danio rerio, is now considered to be a suitable model organism to study the roles of the BMP signaling pathway during embryogenesis. Mutagenesis screens have identified a number of mutants in the pathway. Although they do not cover the entire members of the BMP signaling cascade that are currently known, they serve as a powerful tool to broaden our understanding of BMP functions, in combination with other experimental techniques.
Collapse
Affiliation(s)
- Mariko Kondo
- Department of Biological Sciences, The University of Tokyo, Japan.
| |
Collapse
|
43
|
Connors SA, Tucker JA, Mullins MC. Temporal and spatial action of Tolloid (Mini fin) and Chordin to pattern tail tissues. Dev Biol 2006; 293:191-202. [PMID: 16530746 DOI: 10.1016/j.ydbio.2006.01.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 01/05/2006] [Accepted: 01/30/2006] [Indexed: 11/28/2022]
Abstract
In vertebrates, a bone morphogenetic protein (BMP) signaling pathway patterns all ventral cell fates along the embryonic axis. BMP activity is positively regulated by Tolloid, a metalloprotease, that can eliminate the activity of the BMP antagonist Chordin. A tolloid mutant in zebrafish, mini fin (mfn), exhibits a specific loss of ventral tail tissues. Here, we investigate the spatial and temporal requirements for Tolloid (Mfn) in dorsoventral patterning of the tail. Through chimeric analyses, we found that Tolloid (Mfn) functions cell non-autonomously in the ventral-most vegetal cells of the gastrula or their derivatives. We generated a tolloid transgene under the control of the inducible hsp70 promoter and demonstrate that tolloid (mfn) is first required at the completion of gastrulation. Although tolloid is expressed during gastrulation and dorsally and ventrally within the tail bud, our results indicate that Tolloid (Mfn) acts specifically in the ventral tail bud during a approximately 4 h period extending from the completion of gastrulation to early somitogenesis stages to regulate BMP signaling. Examination of the temporal requirements of Chordin activity by overexpression of the hsp70-tolloid transgene indicates that Chordin is required both during and after gastrulation for proper patterning of the tail, contrasting Tld's requirement only during post-gastrula stages. We hypothesize that the gastrula role of Chordin in tail patterning is to generate the proper size domains of cells to enter the ventral and dorsal tail bud, whereas post-gastrula Chordin activity patterns the derivatives of the tail bud. Thus, fine modulation of BMP signaling levels through the negative and positive actions of Chordin and Tolloid, respectively, patterns tail tissues.
Collapse
Affiliation(s)
- Stephanie A Connors
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 1211 BRBII, 421 Curie Blvd., Philadelphia, PA 19104-6058, USA
| | | | | |
Collapse
|
44
|
Abstract
In 1924, Spemann and Mangold demonstrated the induction of Siamese twins in transplantation experiments with salamander eggs. Recent work in amphibian embryos has followed their lead and uncovered that cells in signalling centres that are located at the dorsal and ventral poles of the gastrula embryo communicate with each other through a network of secreted growth-factor antagonists, a protease that degrades them, a protease inhibitor and bone-morphogenic-protein signals.
Collapse
Affiliation(s)
- Edward M De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, California 90095-1662, USA.
| |
Collapse
|
45
|
O’Connor MB, Umulis D, Othmer HG, Blair SS. Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing. Development 2006; 133:183-93. [PMID: 16368928 PMCID: PMC6469686 DOI: 10.1242/dev.02214] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the early Drosophila embryo, BMP-type ligands act as morphogens to suppress neural induction and to specify the formation of dorsal ectoderm and amnioserosa. Likewise, during pupal wing development, BMPs help to specify vein versus intervein cell fate. Here, we review recent data suggesting that these two processes use a related set of extracellular factors, positive feedback, and BMP heterodimer formation to achieve peak levels of signaling in spatially restricted patterns. Because these signaling pathway components are all conserved, these observations should shed light on how BMP signaling is modulated in vertebrate development.
Collapse
Affiliation(s)
- Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- The Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Authors for correspondence ( and )
| | - David Umulis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hans G. Othmer
- School of Mathematics and Digital Technology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seth S. Blair
- Department of Zoology, 250 North Mills Street, University of Wisconsin, Madison, WI 53706, USA
- Authors for correspondence ( and )
| |
Collapse
|
46
|
Abstract
The basic vertebrate body plan of the zebrafish embryo is established in the first 10 hours of development. This period is characterized by the formation of the anterior-posterior and dorsal-ventral axes, the development of the three germ layers, the specification of organ progenitors, and the complex morphogenetic movements of cells. During the past 10 years a combination of genetic, embryological, and molecular analyses has provided detailed insights into the mechanisms underlying this process. Maternal determinants control the expression of transcription factors and the location of signaling centers that pattern the blastula and gastrula. Bmp, Nodal, FGF, canonical Wnt, and retinoic acid signals generate positional information that leads to the restricted expression of transcription factors that control cell type specification. Noncanonical Wnt signaling is required for the morphogenetic movements during gastrulation. We review how the coordinated interplay of these molecules determines the fate and movement of embryonic cells.
Collapse
Affiliation(s)
- Alexander F Schier
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016-6497, USA.
| | | |
Collapse
|
47
|
Challa AK, McWhorter ML, Wang C, Seeger MA, Beattie CE. Robo3 isoforms have distinct roles during zebrafish development. Mech Dev 2006; 122:1073-86. [PMID: 16129585 DOI: 10.1016/j.mod.2005.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 06/17/2005] [Indexed: 11/16/2022]
Abstract
Roundabout (Robo) receptors and their secreted ligand Slits have been shown to function in a number of developmental events both inside and outside of the nervous system. We previously cloned zebrafish robo orthologs to gain a better understanding of Robo function in vertebrates. Further characterization of one of these orthologs, robo3, has unveiled the presence of two distinct isoforms, robo3 variant 1 (robo3var1) and robo3 variant 2 (robo3var2). These two isoforms differ only in their 5'-ends with robo3var1, but not robo3var2, containing a canonical signal sequence. Despite this difference, both forms accumulate on the cell surface. Both isoforms are contributed maternally and exhibit unique and dynamic gene expression patterns during development. Functional analysis of robo3 isoforms using an antisense gene knockdown strategy suggests that Robo3var1 functions in motor axon pathfinding, whereas Robo3var2 appears to function in dorsoventral cell fate specification. This study reveals a novel function for Robo receptors in specifying ventral cell fates during vertebrate development.
Collapse
Affiliation(s)
- Anil K Challa
- Center for Molecular Neurobiology, Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
48
|
Rentzsch F, Zhang J, Kramer C, Sebald W, Hammerschmidt M. Crossveinless 2 is an essential positive feedback regulator of Bmp signaling during zebrafish gastrulation. Development 2006; 133:801-11. [PMID: 16439480 DOI: 10.1242/dev.02250] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Signaling by bone morphogenetic proteins (Bmps) plays a pivotal role in developmental and pathological processes, and is regulated by a complex interplay with secreted Bmp binding factors, including Crossveinless 2 (Cvl2). Although structurally related to the Bmp antagonist Chordin, Crossveinless 2 has been described to be both a Bmp agonist and antagonist. Here, we present the first loss-of-function study of a vertebrate cvl2 homologue, showing that zebrafish cvl2 is required in a positive feedback loop to promote Bmp signaling during embryonic dorsoventral patterning. In vivo, Cvl2 protein undergoes proteolytic cleavage and this cleavage converts Cvl2 from an anti- to a pro-Bmp factor. Embryonic epistasis analyses and protein interaction assays indicate that the pro-Bmp function of Cvl2 is partly accomplished by competing with Chordin for binding to Bmps. Studies in cell culture and embryos further suggest that the anti-Bmp effect of uncleaved Cvl2 is due to its association with the extracellular matrix, which is not found for cleaved Cvl2. Our data identify Cvl2 as an essential pro-Bmp factor during zebrafish embryogenesis, emphasizing the functional diversity of Bmp binding CR-domain proteins. Differential proteolytic processing as a mode of regulation might account for anti-Bmp effects in other contexts.
Collapse
Affiliation(s)
- Fabian Rentzsch
- Max-Planck-Institute of Immunobiology, Stuebeweg 51,79108 Freiburg, Germany
| | | | | | | | | |
Collapse
|
49
|
Little SC, Mullins MC. Extracellular modulation of BMP activity in patterning the dorsoventral axis. ACTA ACUST UNITED AC 2006; 78:224-42. [PMID: 17061292 DOI: 10.1002/bdrc.20079] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Signaling via bone morphogenetic proteins (BMPs) regulates a vast array of diverse biological processes in the developing embryo and in postembryonic life. Many insights into BMP signaling derive from studies of the BMP signaling gradients that pattern cell fates along the embryonic dorsal-ventral (DV) axis of both vertebrates and invertebrates. This review examines recent developments in the field of DV patterning by BMP signaling, focusing on extracellular modulation as a key mechanism in the formation of BMP signaling gradients in Drosophila, Xenopus, and zebrafish.
Collapse
Affiliation(s)
- Shawn C Little
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA
| | | |
Collapse
|
50
|
Wills A, Harland RM, Khokha MK. Twisted gastrulation is required for forebrain specification and cooperates with Chordin to inhibit BMP signaling during X. tropicalis gastrulation. Dev Biol 2006; 289:166-78. [PMID: 16321373 DOI: 10.1016/j.ydbio.2005.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 10/12/2005] [Accepted: 10/19/2005] [Indexed: 10/25/2022]
Abstract
In the developing vertebrate embryo, proper dorsal-ventral patterning relies on BMP antagonists secreted by the organizer during gastrulation. The BMP antagonist chordin has a complex interaction with BMPs that is governed in part by its interaction with the secreted protein twisted gastrulation (tsg). In different contexts, tsg has activity as either a BMP agonist or as a BMP antagonist. Using morpholino oligonucleotides in Xenopus tropicalis, we show that reducing tsg gene product results in a ventralized embryo, and that tsg morphants specifically lack a forebrain. We provide new evidence that tsg acts as a BMP antagonist during X. tropicalis gastrulation since the tsg depletion phenotype can be rescued in two ways: by chordin overexpression and by BMP depletion. We conclude that tsg acts as a BMP antagonist in the context of the frog gastrula, and that it acts cooperatively with chordin to establish dorsal structures and particularly forebrain tissue during development.
Collapse
Affiliation(s)
- Andrea Wills
- Department of Molecular and Cell Biology, University of California - Berkeley, 94720-3204, USA
| | | | | |
Collapse
|