1
|
Beckröge T, Jux B, Seifert H, Theobald H, De Domenico E, Paulusch S, Beyer M, Schlitzer A, Mass E, Kolanus W. Impaired primitive erythropoiesis and defective vascular development in Trim71-KO embryos. Life Sci Alliance 2025; 8:e202402956. [PMID: 39909558 PMCID: PMC11799773 DOI: 10.26508/lsa.202402956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
The transition of an embryo from gastrulation to organogenesis requires precisely coordinated changes in gene expression, but the underlying mechanisms remain unclear. The RNA-binding protein Trim71 is essential for development and serves as a potent regulator of post-transcriptional gene expression. Here, we show that global deficiency of Trim71 induces severe defects in mesoderm-derived cells at the onset of organogenesis. Murine Trim71-KO embryos displayed impaired primitive erythropoiesis, yolk sac vasculature, heart function, and circulation, explaining the embryonic lethality of these mice. Tie2 Cre Trim71 conditional knockout did not induce strong defects, showing that Trim71 expression in endothelial cells and their immediate progenitors is dispensable for embryonic survival. scRNA-seq of E7.5 global Trim71-KO embryos revealed that transcriptomic changes arise already at gastrulation, showing a strong up-regulation of the mesodermal pioneer transcription factor Eomes. We identify Eomes as a direct target of Trim71-mediated mRNA repression via the NHL domain, demonstrating a functional link between these important regulatory genes. Taken together, our data suggest that Trim71-dependent control of gene expression at gastrulation establishes a framework for proper development during organogenesis.
Collapse
Affiliation(s)
- Tobias Beckröge
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Bettina Jux
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Hannah Seifert
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Hannah Theobald
- Quantitative Systems Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Elena De Domenico
- Genomics and Immunoregulation, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn and West German Genome Center, Bonn, Germany
| | - Stefan Paulusch
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn and West German Genome Center, Bonn, Germany
| | - Marc Beyer
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn and West German Genome Center, Bonn, Germany
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Boueya IL, Sandhow L, Albuquerque JRP, Znaidi R, Passaro D. Endothelial heterogeneity in bone marrow: insights across development, adult life and leukemia. Leukemia 2025; 39:8-24. [PMID: 39528790 PMCID: PMC11717709 DOI: 10.1038/s41375-024-02453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
The central role of the endothelial microenvironment in orchestrating bone marrow (BM) homeostasis and hematopoietic support has been confirmed at various developmental stages and in adult life. The BM vasculature is crucial in mediating communication between BM parenchyma and circulating blood, displaying remarkable heterogeneity in structure and function. While vascular cell diversity in other tissues has long been recognized, the molecular basis of this phenomenon in BM is just now emerging. Over the past decade, single-cell approaches and microscopic observations have expanded our understanding of BM vasculature. While solely characterized for their paracrine properties in the past, recent advances have revolutionized our perception of endothelial function, revealing distinct anatomical locations associated with diverse endothelial cell states. The identification of phenotypic differences between normal and pathological conditions has therefore deepened our understanding of vascular dynamics and their impact on hematopoiesis in health and disease. In this review, we highlight key milestones and recent advances in understanding vascular heterogeneity within BM microenvironment during development, adulthood and aging. We also explore how leukemia affects this heterogeneity and how we can take this knowledge forward to improve clinical practices. By synthesizing existing literature, we aim to address unresolved questions and outline future research directions.
Collapse
Affiliation(s)
- I L Boueya
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - L Sandhow
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - J R P Albuquerque
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - R Znaidi
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - D Passaro
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France.
| |
Collapse
|
3
|
Van Schoor K, Bruet E, Jones EAV, Migeotte I. Origin and flow-mediated remodeling of the murine and human extraembryonic circulation systems. Front Physiol 2024; 15:1395006. [PMID: 38818524 PMCID: PMC11137303 DOI: 10.3389/fphys.2024.1395006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024] Open
Abstract
The transduction of mechanical stimuli produced by blood flow is an important regulator of vascular development. The vitelline and umbilico-placental circulations are extraembryonic vascular systems that are required for proper embryonic development in mammalian embryos. The morphogenesis of the extraembryonic vasculature and the cardiovascular system of the embryo are hemodynamically and molecularly connected. Here we provide an overview of the establishment of the murine and human vitelline and umbilico-placental vascular systems and how blood flow influences various steps in their development. A deeper comprehension of extraembryonic vessel development may aid the establishment of stem-cell based embryo models and provide novel insights to understanding pregnancy complications related to the umbilical cord and placenta.
Collapse
Affiliation(s)
- Kristof Van Schoor
- Institut de Recherche Interdisciplinaire Jacques E. Dumont, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Emmanuel Bruet
- Institut de Recherche Interdisciplinaire Jacques E. Dumont, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Elizabeth Anne Vincent Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
- Department of Cardiology CARIM School for Cardiovascular Diseases Maastricht University, Maastricht, Netherlands
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire Jacques E. Dumont, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
4
|
Hayashida K, Aquino RS, Park PW. Coreceptor Functions of Cell Surface Heparan Sulfate Proteoglycans. Am J Physiol Cell Physiol 2022; 322:C896-C912. [PMID: 35319900 PMCID: PMC9109798 DOI: 10.1152/ajpcell.00050.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Receptor-ligand interactions play an important role in many biological processes by triggering specific cellular responses. These interactions are frequently regulated by coreceptors that facilitate, alter, or inhibit signaling. Coreceptors work in parallel with other specific and accessory molecules to coordinate receptor-ligand interactions. Cell surface heparan sulfate proteoglycans (HSPGs) function as unique coreceptors because they can bind to many ligands and receptors through their HS and core protein motifs. Cell surface HSPGs are typically expressed in abundance of the signaling receptors and, thus, are capable of mediating the initial binding of ligands to the cell surface. HSPG coreceptors do not possess kinase domains or intrinsic enzyme activities and, for the most part, binding to cell surface HSPGs does not directly stimulate intracellular signaling. Because of these features, cell surface HSPGs primarily function as coreceptors for many receptor-ligand interactions. Given that cell surface HSPGs are widely conserved, they likely serve fundamental functions to preserve basic physiological processes. Indeed, cell surface HSPGs can support specific cellular interactions with growth factors, morphogens, chemokines, extracellular matrix (ECM) components, and microbial pathogens and their secreted virulence factors. Through these interactions, HSPG coreceptors regulate cell adhesion, proliferation, migration and differentiation, and impact the onset, progression, and outcome of pathophysiological processes, such as development, tissue repair, inflammation, infection, and tumorigenesis. This review seeks to provide an overview of the various mechanisms of how cell surface HSPGs function as coreceptors.
Collapse
Affiliation(s)
- Kazutaka Hayashida
- Department of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Rafael S Aquino
- Department of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Pyong Woo Park
- Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Nappi F, Avtaar Singh SS. Endothelial Dysfunction in SARS-CoV-2 Infection. Biomedicines 2022; 10:654. [PMID: 35327455 PMCID: PMC8945463 DOI: 10.3390/biomedicines10030654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
One of the hallmarks of the SARS-CoV-2 infection has been the inflammatory process that played a role in its pathogenesis, resulting in mortality within susceptible individuals. This uncontrolled inflammatory process leads to severe systemic symptoms via multiple pathways; however, the role of endothelial dysfunction and thrombosis have not been truly explored. This review aims to highlight the pathogenic mechanisms of these inflammatory triggers leading to thrombogenic complications. There are direct and indirect pathogenic pathways of the infection that are examined in detail. We also describe the case of carotid artery thrombosis in a patient following SARS-CoV-2 infection while reviewing the literature on the role of ACE2, the endothelium, and the different mechanisms by which SARS-CoV-2 may manifest both acutely and chronically. We also highlight differences from the other coronaviruses that have made this infection a pandemic with similarities to the influenza virus.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | | |
Collapse
|
6
|
Fantin A, Ruhrberg C. The Embryonic Mouse Hindbrain and Postnatal Retina as In Vivo Models to Study Angiogenesis. Methods Mol Biol 2022; 2475:275-287. [PMID: 35451765 DOI: 10.1007/978-1-0716-2217-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Angiogenesis, the growth of new blood vessels from pre-existing ones, is a fundamental process for organ development, exercise-induced muscle growth, and wound healing, but is also associated with different diseases such as cancer and neovascular eye disease. Accordingly, elucidating the molecular and cellular mechanisms of angiogenesis has the potential to identify new therapeutic targets to stimulate new vessel formation in ischemic tissues or inhibit pathological vessel growth in disease. This chapter describes the mouse embryo hindbrain and postnatal retina as models to study physiological angiogenesis and provides detailed protocols for tissue dissection, sample staining and analysis.
Collapse
|
7
|
Azzoni E, Frontera V, Anselmi G, Rode C, James C, Deltcheva EM, Demian AS, Brown J, Barone C, Patelli A, Harman JR, Nicholls M, Conway SJ, Morrissey E, Jacobsen SEW, Sparrow DB, Harris AL, Enver T, de Bruijn MFTR. The onset of circulation triggers a metabolic switch required for endothelial to hematopoietic transition. Cell Rep 2021; 37:110103. [PMID: 34910918 PMCID: PMC8692754 DOI: 10.1016/j.celrep.2021.110103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) emerge during development from the vascular wall of the main embryonic arteries. The onset of circulation triggers several processes that provide critical external factors for HSC generation. Nevertheless, it is not fully understood how and when the onset of circulation affects HSC emergence. Here we show that in Ncx1-/- mouse embryos devoid of circulation the HSC lineage develops until the phenotypic pro-HSC stage. However, these cells reside in an abnormal microenvironment, fail to activate the hematopoietic program downstream of Runx1, and are functionally impaired. Single-cell transcriptomics shows that during the endothelial-to-hematopoietic transition, Ncx1-/- cells fail to undergo a glycolysis to oxidative phosphorylation metabolic switch present in wild-type cells. Interestingly, experimental activation of glycolysis results in decreased intraembryonic hematopoiesis. Our results suggest that the onset of circulation triggers metabolic changes that allow HSC generation to proceed.
Collapse
Affiliation(s)
- Emanuele Azzoni
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Vincent Frontera
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Giorgio Anselmi
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Christina Rode
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Chela James
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Elitza M Deltcheva
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Atanasiu S Demian
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - John Brown
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Cristiana Barone
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, 20900, Italy
| | - Arianna Patelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, 20900, Italy
| | - Joe R Harman
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew Nicholls
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, IN 46033, USA
| | - Edward Morrissey
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Sten Eirik W Jacobsen
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK; Hematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK; Department of Cell and Molecular Biology, Wallenberg Institute for Regenerative Medicine and Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet and Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Duncan B Sparrow
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, OX1 3PT, UK
| | - Adrian L Harris
- Department of Oncology, Molecular Oncology Laboratories, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Tariq Enver
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK; Division of Molecular Medicine and Gene Therapy, Lund University, Lund, 22184, Sweden
| | - Marella F T R de Bruijn
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
8
|
Schimmel L, Chew KY, Stocks CJ, Yordanov TE, Essebier P, Kulasinghe A, Monkman J, Dos Santos Miggiolaro AFR, Cooper C, de Noronha L, Schroder K, Lagendijk AK, Labzin LI, Short KR, Gordon EJ. Endothelial cells are not productively infected by SARS-CoV-2. Clin Transl Immunology 2021; 10:e1350. [PMID: 34721846 PMCID: PMC8542944 DOI: 10.1002/cti2.1350] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/24/2021] [Accepted: 10/03/2021] [Indexed: 12/16/2022] Open
Abstract
Objectives Thrombotic and microvascular complications are frequently seen in deceased COVID‐19 patients. However, whether this is caused by direct viral infection of the endothelium or inflammation‐induced endothelial activation remains highly contentious. Methods Here, we use patient autopsy samples, primary human endothelial cells and an in vitro model of the pulmonary epithelial–endothelial cell barrier. Results We show that primary human endothelial cells express very low levels of the SARS‐CoV‐2 receptor ACE2 and the protease TMPRSS2, which blocks their capacity for productive viral infection, and limits their capacity to produce infectious virus. Accordingly, endothelial cells can only be infected when they overexpress ACE2, or are exposed to very high concentrations of SARS‐CoV‐2. We also show that SARS‐CoV‐2 does not infect endothelial cells in 3D vessels under flow conditions. We further demonstrate that in a co‐culture model endothelial cells are not infected with SARS‐CoV‐2. Endothelial cells do however sense and respond to infection in the adjacent epithelial cells, increasing ICAM‐1 expression and releasing pro‐inflammatory cytokines. Conclusions Taken together, these data suggest that in vivo, endothelial cells are unlikely to be infected with SARS‐CoV‐2 and that infection may only occur if the adjacent pulmonary epithelium is denuded (basolateral infection) or a high viral load is present in the blood (apical infection). In such a scenario, whilst SARS‐CoV‐2 infection of the endothelium can occur, it does not contribute to viral amplification. However, endothelial cells may still play a key role in SARS‐CoV‐2 pathogenesis by sensing adjacent infection and mounting a pro‐inflammatory response to SARS‐CoV‐2.
Collapse
Affiliation(s)
- Lilian Schimmel
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology The University of Queensland Brisbane QLD Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane QLD Australia
| | - Claudia J Stocks
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology The University of Queensland Brisbane QLD Australia.,Institute for Molecular Bioscience, IMB Centre for Inflammation and Disease Research The University of Queensland Brisbane QLD Australia
| | - Teodor E Yordanov
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology The University of Queensland Brisbane QLD Australia
| | - Patricia Essebier
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology The University of Queensland Brisbane QLD Australia
| | - Arutha Kulasinghe
- The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - James Monkman
- School of Biomedical Science, Faculty of Health Queensland University of Technology Brisbane QLD Australia
| | | | - Caroline Cooper
- Pathology Queensland Princess Alexandra Hospital Brisbane QLD Australia.,Faculty of Medicine The University of Queensland Brisbane QLD Australia
| | - Lucia de Noronha
- School of Medicine & Center of Education, Research and Innovation Hospital Marcelino Champagnat - Pontifícia Universidade Católica do Paraná (PUCPR) Curitiba Brazil
| | - Kate Schroder
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology The University of Queensland Brisbane QLD Australia.,Institute for Molecular Bioscience, IMB Centre for Inflammation and Disease Research The University of Queensland Brisbane QLD Australia
| | - Anne Karine Lagendijk
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology The University of Queensland Brisbane QLD Australia
| | - Larisa I Labzin
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology The University of Queensland Brisbane QLD Australia.,Institute for Molecular Bioscience, IMB Centre for Inflammation and Disease Research The University of Queensland Brisbane QLD Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane QLD Australia
| | - Emma J Gordon
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology The University of Queensland Brisbane QLD Australia.,School of Chemistry and Molecular Biosciences The University of Queensland Brisbane QLD Australia
| |
Collapse
|
9
|
Abberger H, Barthel R, Bahr J, Thiel J, Luppus S, Buer J, Westendorf AM, Hansen W. Neuropilin-1 Is Expressed on Highly Activated CD4 + Effector T Cells and Dysfunctional CD4 + Conventional T Cells from Naive Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1288-1297. [PMID: 34341169 DOI: 10.4049/jimmunol.2100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
Neuropilin-1 (Nrp-1) is a well described marker molecule for CD4+Foxp3+ thymus-derived regulatory T cells (Tregs). In addition, a small population of CD4+Foxp3- conventional (conv) T cells expresses Nrp-1 in naive mice, and Nrp-1 expression has been described to be upregulated on activated CD4+ T cells. However, the function of Nrp-1 expression on CD4+ non-Tregs still remains elusive. In this study, we demonstrate that Nrp-1 expression was induced upon stimulation of CD4+Foxp3- T cells in vitro and during an ongoing immune response in vivo. This activation-induced Nrp-1+CD4+ T cell subset (iNrp-1+) showed a highly activated phenotype in terms of elevated CD25 and CD44 expression, enhanced production of proinflammatory cytokines, and increased proliferation compared with the Nrp-1-CD4+ counterpart. In contrast, Nrp-1+CD4+Foxp3- conv T cells from naive mice (nNrp-1+) were dysfunctional. nNrp-1+CD4+ conv T cells upregulated activation-associated molecules to a lesser extent, exhibited impaired proliferation and produced fewer proinflammatory cytokines than Nrp-1-CD4+ conv T cells upon stimulation in vitro. Moreover, the expression of PD-1 and CTLA-4 was significantly higher on nNrp-1+CD4+Foxp3- T cells compared with iNrp-1+CD4+Foxp3- T cells and Nrp-1-CD4+Foxp3- T cells after stimulation and under homeostatic conditions. Strikingly, transfer of Ag-specific iNrp-1+CD4+ conv T cells aggravated diabetes development, whereas Ag-specific nNrp-1+CD4+ conv T cells failed to induce disease in a T cell transfer model of diabetes. Overall, our results indicate that Nrp-1 expression has opposite functions in recently activated CD4+ non-Tregs compared with CD4+ non-Tregs from naive mice.
Collapse
Affiliation(s)
- Hanna Abberger
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Romy Barthel
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jasmin Bahr
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jacqueline Thiel
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sina Luppus
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Neuropilin 1 Regulation of Vascular Permeability Signaling. Biomolecules 2021; 11:biom11050666. [PMID: 33947161 PMCID: PMC8146136 DOI: 10.3390/biom11050666] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium acts as a selective barrier to regulate macromolecule exchange between the blood and tissues. However, the integrity of the endothelium barrier is compromised in an array of pathological settings, including ischemic disease and cancer, which are the leading causes of death worldwide. The resulting vascular hyperpermeability to plasma molecules as well as leukocytes then leads to tissue damaging edema formation and inflammation. The vascular endothelial growth factor A (VEGFA) is a potent permeability factor, and therefore a desirable target for impeding vascular hyperpermeability. However, VEGFA also promotes angiogenesis, the growth of new blood vessels, which is required for reperfusion of ischemic tissues. Moreover, edema increases interstitial pressure in poorly perfused tumors, thereby affecting the delivery of therapeutics, which could be counteracted by stimulating the growth of new functional blood vessels. Thus, targets must be identified to accurately modulate the barrier function of blood vessels without affecting angiogenesis, as well as to develop more effective pro- or anti-angiogenic therapies. Recent studies have shown that the VEGFA co-receptor neuropilin 1 (NRP1) could be playing a fundamental role in steering VEGFA-induced responses of vascular endothelial cells towards angiogenesis or vascular permeability. Moreover, NRP1 is involved in mediating permeability signals induced by ligands other than VEGFA. This review therefore focuses on current knowledge on the role of NRP1 in the regulation of vascular permeability signaling in the endothelium to provide an up-to-date landscape of the current knowledge in this field.
Collapse
|
11
|
Zhao L, Chen H, Lu L, Wang L, Zhang X, Guo X. New insights into the role of co-receptor neuropilins in tumour angiogenesis and lymphangiogenesis and targeted therapy strategies. J Drug Target 2020; 29:155-167. [PMID: 32838575 DOI: 10.1080/1061186x.2020.1815210] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Local tumour sites lead to pathological angiogenesis and lymphangiogenesis due to malignant conditions such as hypoxia. Although VEGF and VEGFR are considered to be the main anti-tumour treatment targets, the problems of limited efficacy and observable side effects of some drugs relevant to this target still remain to be solved. Therefore, it is necessary to identify new therapeutic targets for angiogenesis or lymphangiogenesis. The neuropilin family is a class of single transmembrane glycoprotein receptors, including neuropilin1 (NRP1) and neuropilin2 (NRP2), which could act as co-receptors of VEGFA-165 and VEGFC and play a key role in promoting tumour proliferation, invasion and metastasis. In this review, we introduced the schematic diagram to visually reveal the function of NRP1 and NRP2 in enhancing the binding affinity of VEGFR2 to VEGFA-165 and VEGFR3 to VEGFC, respectively. We also discussed the signalling pathways that depend on the co-receptors NRP1 and NRP2 and some existing targeted therapeutic strategies, such as monoclonal antibodies, targeted peptides, microRNAs and small molecule inhibitors. It will contribute a vital foundation for the future research and development of new drugs targeting NRPs. HIGHLIGHTS NRP1 acts as a co-receptor with VEGFR2 and the pro-angiogenic factor VEGFA-165 to up-regulate tumour angiogenesis by promoting endothelial cells proliferation, survival, migration, invasion and by preventing of apoptosis. NRP2 acts as a co-receptor with VEGFR3 and the pro-lymphogenic factor VEGFC to facilitate tumour metastasis by promoting lymphangiogenesis. Although NRP1 and NRP2 do not have enzymatic signalling activity, the affinity of VEGFR2 for VEGFA-165 and VEGFR3 for VEGFC can increase in a co-receptor manner, as detailed in the schematic. The exclusive roles of NRP1 and NRP2 in signalling pathways are specifically described to emphasise the molecular regulatory mechanisms involved in co-receptors. Various studies have shown that the co-receptors NRP1 and NRP2 can be directly or indirectly targeted by different methods to prevent tumour angiogenesis and lymphangiogenesis. Therapeutic strategies targeting NRPs look promising soon as evidenced by preclinical and clinical studies.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hongyuan Chen
- Department of General Surgery, Shandong University Affiliated Shandong Provincial Hospital, Jinan, China
| | - Lu Lu
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Lei Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiuli Guo
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
12
|
Mehta V, Fields L, Evans IM, Yamaji M, Pellet-Many C, Jones T, Mahmoud M, Zachary I. VEGF (Vascular Endothelial Growth Factor) Induces NRP1 (Neuropilin-1) Cleavage via ADAMs (a Disintegrin and Metalloproteinase) 9 and 10 to Generate Novel Carboxy-Terminal NRP1 Fragments That Regulate Angiogenic Signaling. Arterioscler Thromb Vasc Biol 2019; 38:1845-1858. [PMID: 29880492 PMCID: PMC6092111 DOI: 10.1161/atvbaha.118.311118] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective- NRP1(neuropilin-1) acts as a coreceptor for VEGF (vascular endothelial growth factor) with an essential role in angiogenesis. Recent findings suggest that posttranslational proteolytic cleavage of VEGF receptors may be an important mechanism for regulating angiogenesis, but the role of NRP1 proteolysis and the NRP1 species generated by cleavage in endothelial cells is not known. Here, we characterize NRP1 proteolytic cleavage in endothelial cells, determine the mechanism, and investigate the role of NRP1 cleavage in regulation of endothelial cell function. Approach and Results- NRP1 species comprising the carboxy (C)-terminal and transmembrane NRP1 domains but lacking the ligand-binding A and B regions are constitutively expressed in endothelial cells. Generation of these C-terminal domain NRP1 proteins is upregulated by phorbol ester and Ca2+ ionophore, and reduced by pharmacological inhibition of metalloproteinases, by small interfering RNA-mediated knockdown of 2 members of ADAM (a disintegrin and metalloproteinase) family, ADAMs 9 and 10, and by a specific ADAM10 inhibitor. Furthermore, VEGF upregulates expression of these NRP1 species in an ADAM9/10-dependent manner. Transduction of endothelial cells with adenoviral constructs expressing NRP1 C-terminal domain fragments inhibited VEGF-induced phosphorylation of VEGFR2 (VEGF receptor tyrosine kinase)/KDR (kinase domain insert receptor) and decreased VEGF-stimulated endothelial cell motility and angiogenesis in coculture and aortic ring sprouting assays. Conclusions- These findings identify novel NRP1 species in endothelial cells and demonstrate that regulation of NRP1 proteolysis via ADAMs 9 and 10 is a new regulatory pathway able to modulate VEGF angiogenic signaling.
Collapse
Affiliation(s)
- Vedanta Mehta
- From the Centre for Cardiovascular Biology and Medicine, Division of Medicine, The Rayne Building, University College London, United Kingdom
| | - Laura Fields
- From the Centre for Cardiovascular Biology and Medicine, Division of Medicine, The Rayne Building, University College London, United Kingdom
| | - Ian M Evans
- From the Centre for Cardiovascular Biology and Medicine, Division of Medicine, The Rayne Building, University College London, United Kingdom
| | - Maiko Yamaji
- From the Centre for Cardiovascular Biology and Medicine, Division of Medicine, The Rayne Building, University College London, United Kingdom
| | - Caroline Pellet-Many
- From the Centre for Cardiovascular Biology and Medicine, Division of Medicine, The Rayne Building, University College London, United Kingdom
| | - Timothy Jones
- From the Centre for Cardiovascular Biology and Medicine, Division of Medicine, The Rayne Building, University College London, United Kingdom
| | - Marwa Mahmoud
- From the Centre for Cardiovascular Biology and Medicine, Division of Medicine, The Rayne Building, University College London, United Kingdom
| | | |
Collapse
|
13
|
Albonici L, Giganti MG, Modesti A, Manzari V, Bei R. Multifaceted Role of the Placental Growth Factor (PlGF) in the Antitumor Immune Response and Cancer Progression. Int J Mol Sci 2019; 20:ijms20122970. [PMID: 31216652 PMCID: PMC6627047 DOI: 10.3390/ijms20122970] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
The sharing of molecules function that affects both tumor growth and neoangiogenesis with cells of the immune system creates a mutual interplay that impairs the host’s immune response against tumor progression. Increasing evidence shows that tumors are able to create an immunosuppressive microenvironment by recruiting specific immune cells. Moreover, molecules produced by tumor and inflammatory cells in the tumor microenvironment create an immunosuppressive milieu able to inhibit the development of an efficient immune response against cancer cells and thus fostering tumor growth and progression. In addition, the immunoediting could select cancer cells that are less immunogenic or more resistant to lysis. In this review, we summarize recent findings regarding the immunomodulatory effects and cancer progression of the angiogenic growth factor namely placental growth factor (PlGF) and address the biological complex effects of this cytokine. Different pathways of the innate and adaptive immune response in which, directly or indirectly, PlGF is involved in promoting tumor immune escape and metastasis will be described. PlGF is important for building up vascular structures and functions. Although PlGF effects on vascular and tumor growth have been widely summarized, its functions in modulating the immune intra-tumoral microenvironment have been less highlighted. In agreement with PlGF functions, different antitumor strategies can be envisioned.
Collapse
Affiliation(s)
- Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
14
|
Corti F, Wang Y, Rhodes JM, Atri D, Archer-Hartmann S, Zhang J, Zhuang ZW, Chen D, Wang T, Wang Z, Azadi P, Simons M. N-terminal syndecan-2 domain selectively enhances 6-O heparan sulfate chains sulfation and promotes VEGFA 165-dependent neovascularization. Nat Commun 2019; 10:1562. [PMID: 30952866 PMCID: PMC6450910 DOI: 10.1038/s41467-019-09605-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 03/19/2019] [Indexed: 01/26/2023] Open
Abstract
The proteoglycan Syndecan-2 (Sdc2) has been implicated in regulation of cytoskeleton organization, integrin signaling and developmental angiogenesis in zebrafish. Here we report that mice with global and inducible endothelial-specific deletion of Sdc2 display marked angiogenic and arteriogenic defects and impaired VEGFA165 signaling. No such abnormalities are observed in mice with deletion of the closely related Syndecan-4 (Sdc4) gene. These differences are due to a significantly higher 6-O sulfation level in Sdc2 versus Sdc4 heparan sulfate (HS) chains, leading to an increase in VEGFA165 binding sites and formation of a ternary Sdc2-VEGFA165-VEGFR2 complex which enhances VEGFR2 activation. The increased Sdc2 HS chains 6-O sulfation is driven by a specific N-terminal domain sequence; the insertion of this sequence in Sdc4 N-terminal domain increases 6-O sulfation of its HS chains and promotes Sdc2-VEGFA165-VEGFR2 complex formation. This demonstrates the existence of core protein-determined HS sulfation patterns that regulate specific biological activities.
Collapse
Affiliation(s)
- Federico Corti
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Yingdi Wang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - John M Rhodes
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Deepak Atri
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Stephanie Archer-Hartmann
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Jiasheng Zhang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Zhen W Zhuang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Dongying Chen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Tianyun Wang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Zhirui Wang
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
15
|
Red-Horse K, Siekmann AF. Veins and Arteries Build Hierarchical Branching Patterns Differently: Bottom-Up versus Top-Down. Bioessays 2019; 41:e1800198. [PMID: 30805984 PMCID: PMC6478158 DOI: 10.1002/bies.201800198] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/20/2018] [Indexed: 12/13/2022]
Abstract
A tree-like hierarchical branching structure is present in many biological systems, such as the kidney, lung, mammary gland, and blood vessels. Most of these organs form through branching morphogenesis, where outward growth results in smaller and smaller branches. However, the blood vasculature is unique in that it exists as two trees (arterial and venous) connected at their tips. Obtaining this organization might therefore require unique developmental mechanisms. As reviewed here, recent data indicate that arterial trees often form in reverse order. Accordingly, initial arterial endothelial cell differentiation occurs outside of arterial vessels. These pre-artery cells then build trees by following a migratory path from smaller into larger arteries, a process guided by the forces imparted by blood flow. Thus, in comparison to other branched organs, arteries can obtain their structure through inward growth and coalescence. Here, new information on the underlying mechanisms is discussed, and how defects can lead to pathologies, such as hypoplastic arteries and arteriovenous malformations.
Collapse
Affiliation(s)
- Kristy Red-Horse
- Department of Biology, Stanford University, Stanford 94305 California,
| | - Arndt F. Siekmann
- Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia 19104 Pennsylvania,
| |
Collapse
|
16
|
Padget RL, Mohite SS, Hoog TG, Justis BS, Green BE, Udan RS. Hemodynamic force is required for vascular smooth muscle cell recruitment to blood vessels during mouse embryonic development. Mech Dev 2019; 156:8-19. [PMID: 30796970 DOI: 10.1016/j.mod.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/16/2019] [Accepted: 02/16/2019] [Indexed: 12/13/2022]
Abstract
Blood vessel maturation, which is characterized by the investment of vascular smooth muscle cells (vSMCs) around developing blood vessels, begins when vessels remodel into a hierarchy of proximal arteries and proximal veins that branch into smaller distal capillaries. The ultimate result of maturation is formation of the tunica media-the middlemost layer of a vessel that is composed of vSMCs and acts to control vessel integrity and vascular tone. Though many studies have implicated the role of various signaling molecules in regulating maturation, no studies have determined a role for hemodynamic force in the regulation of maturation in the mouse. In the current study, we provide evidence that a hemodynamic force-dependent mechanism occurs in the mouse because reduced blood flow mouse embryos exhibited a diminished or absent coverage of vSMCs around vessels, and in normal-flow embryos, extent of coverage correlated to the amount of blood flow that vessels were exposed to. We also determine that the cellular mechanism of force-induced maturation was not by promoting vSMC differentiation/proliferation, but instead involved the recruitment of vSMCs away from neighboring low-flow distal capillaries towards high-flow vessels. Finally, we hypothesize that hemodynamic force may regulate expression of specific signaling molecules to control vSMC recruitment to high-flow vessels, as reduction of flow results in the misexpression of Semaphorin 3A, 3F, 3G, and the Notch target gene Hey1, all of which are implicated in controlling vessel maturation. This study reveals another role for hemodynamic force in regulating blood vessel development of the mouse, and opens up a new model to begin elucidating mechanotransduction pathways regulating vascular maturation.
Collapse
Affiliation(s)
- Rachel L Padget
- Department of Biology, Missouri State University, United States of America
| | - Shilpa S Mohite
- Department of Biology, Missouri State University, United States of America
| | - Tanner G Hoog
- Department of Biology, Missouri State University, United States of America
| | - Blake S Justis
- Department of Biology, Missouri State University, United States of America
| | - Bruce E Green
- Department of Biology, Missouri State University, United States of America
| | - Ryan S Udan
- Department of Biology, Missouri State University, United States of America.
| |
Collapse
|
17
|
Boardman R, Pang V, Malhi N, Lynch AP, Leach L, Benest AV, Bates DO, Machado MJC. Activation of Notch signaling by soluble Dll4 decreases vascular permeability via a cAMP/PKA-dependent pathway. Am J Physiol Heart Circ Physiol 2019; 316:H1065-H1075. [PMID: 30681366 DOI: 10.1152/ajpheart.00610.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Notch ligand delta-like ligand 4 (Dll4), upregulated by VEGF, is a key regulator of vessel morphogenesis and function, controlling tip and stalk cell selection during sprouting angiogenesis. Inhibition of Dll4 results in hypersprouting, nonfunctional, poorly perfused vessels, suggesting a role for Dll4 in the formation of mature, reactive, functional vessels, with low permeability and able to restrict fluid and solute exchange. We tested the hypothesis that Dll4 controls transvascular fluid exchange. A recombinant protein expressing only the extracellular portion of Dll4 [soluble Dll4 (sDll4)] induced Notch signaling in endothelial cells (ECs), resulting in increased expression of vascular-endothelial cadherin, but not the tight junctional protein zonula occludens 1, at intercellular junctions. sDll4 decreased the permeability of FITC-labeled albumin across EC monolayers, and this effect was abrogated by coculture with the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester. One of the known molecular effectors responsible for strengthening EC-EC contacts is PKA, so we tested the effect of modulation of PKA on the sDll4-mediated reduction of permeability. Inhibition of PKA reversed the sDll4-mediated reduction in permeability and reduced expression of the Notch target gene Hey1. Knockdown of PKA reduced sDLL4-mediated vascular-endothelial cadherin junctional expression. sDll4 also caused a significant decrease in the hydraulic conductivity of rat mesenteric microvessels in vivo. This reduction was abolished upon coperfusion with the PKA inhibitor H89 dihydrochloride. These results indicate that Dll4 signaling through Notch activation acts through a cAMP/PKA pathway upon intercellular adherens junctions, but not tight junctions, to regulate endothelial barrier function. NEW & NOTEWORTHY Notch signaling reduces vascular permeability through stimulation of cAMP-dependent protein kinase A.
Collapse
Affiliation(s)
- Rachel Boardman
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom
| | - Vincent Pang
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom
| | - Naseeb Malhi
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom
| | - Amy P Lynch
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom
| | - Lopa Leach
- Division of Physiology Pharmacology and Neuroscience, School of Life Sciences, The Medical School , Nottingham , United Kingdom
| | - Andrew V Benest
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom.,The Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom.,The Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Maria J C Machado
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham , Nottingham , United Kingdom
| |
Collapse
|
18
|
Caolo V, Peacock HM, Kasaai B, Swennen G, Gordon E, Claesson-Welsh L, Post MJ, Verhamme P, Jones EA. Shear Stress and VE-Cadherin. Arterioscler Thromb Vasc Biol 2018; 38:2174-2183. [DOI: 10.1161/atvbaha.118.310823] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Vascular fusion represents an important mechanism of vessel enlargement during development; however, its significance in postnatal vessel enlargement is still unknown. During fusion, 2 adjoining vessels merge to share 1 larger lumen. The aim of this research was to identify the molecular mechanism responsible for vascular fusion.
Approach and Results—
We previously showed that both low shear stress and DAPT (
N
-[
N
-(3,5-difluorophenacetyl)-L-alanyl]-
S
-phenylglycine t-butyl ester) treatment in the embryo result in a hyperfused vascular plexus and that increasing shear stress levels could prevent DAPT-induced fusion. We, therefore, investigated vascular endothelial-cadherin (VEC) phosphorylation because this is a common downstream target of low shear stress and DAPT treatment. VEC phosphorylation increases after DAPT treatment and decreased shear stress. The increased phosphorylation occurred independent of the cleavage of the Notch intracellular domain. Increasing shear stress rescues hyperfusion by DAPT treatment by causing the association of the phosphatase vascular endothelial-protein tyrosine phosphatase with VEC, counteracting VEC phosphorylation. Finally, Src (proto-oncogene tyrosine-protein kinase Src) inhibition prevents VEC phosphorylation in endothelial cells and can rescue hyperfusion induced by low shear stress and DAPT treatment. Moesin, a VEC target that was previously reported to mediate endothelial cell rearrangement during lumenization, relocalizes to cell membranes in vascular beds undergoing hyperfusion.
Conclusions—
This study provides the first evidence that VEC phosphorylation, induced by DAPT treatment and low shear stress, is involved in the process of fusion during vascular remodeling.
Collapse
Affiliation(s)
- Vincenza Caolo
- From the Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium (V.C., H.M.P., B.K., P.V., E.A.V.J.)
| | - Hanna M. Peacock
- From the Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium (V.C., H.M.P., B.K., P.V., E.A.V.J.)
| | - Bahar Kasaai
- From the Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium (V.C., H.M.P., B.K., P.V., E.A.V.J.)
| | - Geertje Swennen
- Department of Physiology, CARIM, Maastricht University, The Netherlands (G.S., M.J.P.)
| | - Emma Gordon
- Department of Immunology, Genetics, and Pathology, Uppsala University, Rudbeck Laboratory, Sweden (E.G., L.C.-W.)
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics, and Pathology, Uppsala University, Rudbeck Laboratory, Sweden (E.G., L.C.-W.)
| | - Mark J. Post
- Department of Physiology, CARIM, Maastricht University, The Netherlands (G.S., M.J.P.)
| | - Peter Verhamme
- From the Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium (V.C., H.M.P., B.K., P.V., E.A.V.J.)
| | - Elizabeth A.V. Jones
- From the Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium (V.C., H.M.P., B.K., P.V., E.A.V.J.)
| |
Collapse
|
19
|
Abstract
The development processes of arteries and veins are fundamentally different, leading to distinct differences in anatomy, structure, and function as well as molecular profiles. Understanding the complex interaction between genetic and epigenetic pathways, as well as extracellular and biomechanical signals that orchestrate arterial venous differentiation, is not only critical for the understanding of vascular diseases of arteries and veins but also valuable for vascular tissue engineering strategies. Recent research has suggested that certain transcriptional factors not only control arterial venous differentiation during development but also play a critical role in adult vessel function and disease processes. This review summarizes the signaling pathways and critical transcription factors that are important for arterial versus venous specification. We focus on those signals that have a direct relation to the structure and function of arteries and veins, and have implications for vascular disease processes and tissue engineering applications.
Collapse
Affiliation(s)
- Laura Niklason
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Departments of Anesthesiology and Biomedical Engineering, Yale University, New Haven, Connecticut 06519, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA;
| |
Collapse
|
20
|
Fan SH, Shen ZY, Xiao YM. Functional polymorphisms of the neuropilin 1 gene are associated with the risk of tetralogy of Fallot in a Chinese Han population. Gene 2018; 653:72-79. [PMID: 29432830 DOI: 10.1016/j.gene.2018.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/22/2018] [Accepted: 02/08/2018] [Indexed: 01/07/2023]
Abstract
Tetralogy of Fallot (TOF) is one of the most severe forms of cyanotic congenital heart disease (CHD) and is also the most common. Previous genome-wide association study (GWAS) and replication studies have suggested that a polymorphism in the neuropilin 1 (NRP1) gene is significantly associated with the risk of TOF. To further confirm the association between the NRP1 polymorphism and the risk of TOF and to identify additional positive functional single-nucleotide polymorphisms (SNPs) for TOF risk, we systematically screened for functional polymorphisms throughout the regulatory and coding regions of the NRP1 gene. A total of 11 functional SNPs in 747 Chinese Han individuals, including 314 TOF patients and 433 healthy controls, were genotyped using the MassARRAY system and GeneScan. The results revealed that the allelic and genotypic frequencies of the NRP1 polymorphism rs2228638 were strongly associated with the risk of TOF (p = 0.002 and 0.001, respectively). To increase the robustness of rs2228638 as a TOF risk SNP, we conducted a meta-analysis that combined published studies and our current case-control study. The meta-analysis showed that the T allele of the NRP1 polymorphism rs2228638 was significantly associated with an increased risk of TOF in the combined population, which included European and Chinese Han individuals [combined p < 0.00001, odds ratio (OR) = 1.53, 95% confidence interval (95% CI) = 1.35-1.73]. In addition, the association analysis suggested for the first time that there is a strong association between the allele distribution of rs10080 and susceptibility to TOF (p = 0.001). Our data provide further evidence of the association between NRP1 polymorphisms and TOF risk, and suggest that rs2228638 may be an excellent marker for TOF risk in European and Chinese Han populations.
Collapse
Affiliation(s)
- Sai-Hou Fan
- Department of Adult Cardiac Surgery Center, Shanghai Yodak Cardiothoracic Hospital, Shanghai, PR China
| | - Zhen-Ya Shen
- Department of cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, PR China.
| | - Yi-Min Xiao
- Department of Adult Cardiac Surgery Center, Shanghai Yodak Cardiothoracic Hospital, Shanghai, PR China
| |
Collapse
|
21
|
Salehi P, Ge MX, Gundimeda U, Michelle Baum L, Lael Cantu H, Lavinsky J, Tao L, Myint A, Cruz C, Wang J, Nikolakopoulou AM, Abdala C, Kelley MW, Ohyama T, Coate TM, Friedman RA. Role of Neuropilin-1/Semaphorin-3A signaling in the functional and morphological integrity of the cochlea. PLoS Genet 2017; 13:e1007048. [PMID: 29059194 PMCID: PMC5695633 DOI: 10.1371/journal.pgen.1007048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 11/02/2017] [Accepted: 09/28/2017] [Indexed: 11/18/2022] Open
Abstract
Neuropilin-1 (Nrp1) encodes the transmembrane cellular receptor neuropilin-1, which is associated with cardiovascular and neuronal development and was within the peak SNP interval on chromosome 8 in our prior GWAS study on age-related hearing loss (ARHL) in mice. In this study, we generated and characterized an inner ear-specific Nrp1 conditional knockout (CKO) mouse line because Nrp1 constitutive knockouts are embryonic lethal. In situ hybridization demonstrated weak Nrp1 mRNA expression late in embryonic cochlear development, but increased expression in early postnatal stages when cochlear hair cell innervation patterns have been shown to mature. At postnatal day 5, Nrp1 CKO mice showed disorganized outer spiral bundles and enlarged microvessels of the stria vascularis (SV) but normal spiral ganglion cell (SGN) density and presynaptic ribbon body counts; however, we observed enlarged SV microvessels, reduced SGN density, and a reduction of presynaptic ribbons in the outer hair cell region of 4-month-old Nrp1 CKO mice. In addition, we demonstrated elevated hearing thresholds of the 2-month-old and 4-month-old Nrp1 CKO mice at frequencies ranging from 4 to 32kHz when compared to 2-month-old mice. These data suggest that conditional loss of Nrp1 in the inner ear leads to progressive hearing loss in mice. We also demonstrated that mice with a truncated variant of Nrp1 show cochlear axon guidance defects and that exogenous semaphorin-3A, a known neuropilin-1 receptor agonist, repels SGN axons in vitro. These data suggest that Neuropilin-1/Semaphorin-3A signaling may also serve a role in neuronal pathfinding in the developing cochlea. In summary, our results here support a model whereby Neuropilin-1/Semaphorin-3A signaling is critical for the functional and morphological integrity of the cochlea and that Nrp1 may play a role in ARHL. Neuropilin-1 is a member of the neuropilin family acting as an essential cell surface receptor involved in semaphorin-dependent axon guidance and VEGF-dependent angiogenesis and lies within our previously identified ARHL GWAS interval. In this study, we investigated the role of Neuropilin-1/Semaphorin-3A signaling in the functional and morphological integrity of the cochlea, specifically the innervation and vascularization patterns. Detailed analyses of the cochleae of 4-month-old Nrp1 CKO mice showed abnormalities in ribbon synapses, innervation of the hair cells, and microvessels of the stria vascularis. We show also that Neuropilin-1/Semaphorin-3A signaling plays an important role in cochlear innervation.
Collapse
Affiliation(s)
- Pezhman Salehi
- USC-Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Zilkha Neurogenetic Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Marshall X. Ge
- USC-Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Zilkha Neurogenetic Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Usha Gundimeda
- USC-Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Zilkha Neurogenetic Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Leah Michelle Baum
- Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Homero Lael Cantu
- Department of Biology, Georgetown University, Washington, D.C., United States of America
| | - Joel Lavinsky
- USC-Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Zilkha Neurogenetic Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Graduate Program in Surgical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Litao Tao
- Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Anthony Myint
- USC-Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Zilkha Neurogenetic Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Charlene Cruz
- USC-Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Zilkha Neurogenetic Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Juemei Wang
- USC-Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Zilkha Neurogenetic Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Angeliki Maria Nikolakopoulou
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Carolina Abdala
- USC-Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Zilkha Neurogenetic Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Matthew William Kelley
- National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland, United States of America
| | - Takahiro Ohyama
- USC-Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Zilkha Neurogenetic Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Thomas Matthew Coate
- Department of Biology, Georgetown University, Washington, D.C., United States of America
- * E-mail: (TMC); (RAF)
| | - Rick A. Friedman
- USC-Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Zilkha Neurogenetic Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (TMC); (RAF)
| |
Collapse
|
22
|
Roy S, Bag AK, Singh RK, Talmadge JE, Batra SK, Datta K. Multifaceted Role of Neuropilins in the Immune System: Potential Targets for Immunotherapy. Front Immunol 2017; 8:1228. [PMID: 29067024 PMCID: PMC5641316 DOI: 10.3389/fimmu.2017.01228] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
Neuropilins (NRPs) are non-tyrosine kinase cell surface glycoproteins expressed in all vertebrates and widely conserved across species. The two isoforms, such as neuropilin-1 (NRP1) and neuropilin-2 (NRP2), mainly act as coreceptors for class III Semaphorins and for members of the vascular endothelial growth factor family of molecules and are widely known for their role in a wide array of physiological processes, such as cardiovascular, neuronal development and patterning, angiogenesis, lymphangiogenesis, as well as various clinical disorders. Intriguingly, additional roles for NRPs occur with myeloid and lymphoid cells, in normal physiological as well as different pathological conditions, including cancer, immunological disorders, and bone diseases. However, little is known concerning the molecular pathways that govern these functions. In addition, NRP1 expression has been characterized in different immune cellular phenotypes including macrophages, dendritic cells, and T cell subsets, especially regulatory T cell populations. By contrast, the functions of NRP2 in immune cells are less well known. In this review, we briefly summarize the genomic organization, structure, and binding partners of the NRPs and extensively discuss the recent advances in their role and function in different immune cell subsets and their clinical implications.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Arup K Bag
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Rakesh K Singh
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, United States
| | - James E Talmadge
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
23
|
Hwa JJ, Beckouche N, Huang L, Kram Y, Lindskog H, Wang RA. Abnormal arterial-venous fusions and fate specification in mouse embryos lacking blood flow. Sci Rep 2017; 7:11965. [PMID: 28931948 PMCID: PMC5607254 DOI: 10.1038/s41598-017-12353-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/25/2017] [Indexed: 02/08/2023] Open
Abstract
The functions of blood flow in the morphogenesis of mammalian arteries and veins are not well understood. We examined the development of the dorsal aorta (DA) and the cardinal vein (CV) in Ncx1 -/- mutants, which lack blood flow due to a deficiency in a sodium calcium ion exchanger expressed specifically in the heart. The mutant DA and CV were abnormally connected. The endothelium of the Ncx1 -/- mutant DA lacked normal expression of the arterial markers ephrin-B2 and Connexin-40. Notch1 activation, known to promote arterial specification, was decreased in mutant DA endothelial cells (ECs), which ectopically expressed the venous marker Coup-TFII. These findings suggest that flow has essential functions in the DA by promoting arterial and suppressing venous marker expression. In contrast, flow plays a lesser role in the CV, because expression of arterial-venous markers in CV ECs was not as dramatically affected in Ncx1 -/- mutants. We propose a molecular mechanism by which blood flow mediates DA and CV morphogenesis, by regulating arterial-venous specification of DA ECs to ensure proper separation of the developing DA and CV.
Collapse
Affiliation(s)
- Jennifer J Hwa
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Nathan Beckouche
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lawrence Huang
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Yoseph Kram
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Henrik Lindskog
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Rong A Wang
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
24
|
Lilly AJ, Mazan A, Scott DA, Lacaud G, Kouskoff V. SOX7 expression is critically required in FLK1-expressing cells for vasculogenesis and angiogenesis during mouse embryonic development. Mech Dev 2017; 146:31-41. [PMID: 28577909 PMCID: PMC5496588 DOI: 10.1016/j.mod.2017.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/27/2017] [Accepted: 05/31/2017] [Indexed: 01/01/2023]
Abstract
The transcriptional program that regulates the differentiation of endothelial precursor cells into a highly organized vascular network is still poorly understood. Here we explore the role of SOX7 during this process, performing a detailed analysis of the vascular defects resulting from either a complete deficiency in Sox7 expression or from the conditional deletion of Sox7 in FLK1-expressing cells. We analysed the consequence of Sox7 deficiency from E7.5 onward to determine from which stage of development the effect of Sox7 deficiency can be observed. We show that while Sox7 is expressed at the onset of endothelial specification from mesoderm, Sox7 deficiency does not impact the emergence of the first endothelial progenitors. However, by E8.5, clear signs of defective vascular development are already observed with the presence of highly unorganised endothelial cords rather than distinct paired dorsal aorta. By E10.5, both Sox7 complete knockout and FLK1-specific deletion of Sox7 lead to widespread vascular defects. In contrast, while SOX7 is expressed in the earliest specified blood progenitors, the VAV-specific deletion of Sox7 does not affect the hematopoietic system. Together, our data reveal the unique role of SOX7 in vasculogenesis and angiogenesis during embryonic development.
Collapse
Affiliation(s)
- Andrew J Lilly
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, M20 4BX, UK
| | - Andrzej Mazan
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, M20 4BX, UK
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, BCM227, Houston, TX 77030, USA
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, M20 4BX, UK.
| | - Valerie Kouskoff
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, M20 4BX, UK; Division of Developmental Biology and Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
25
|
Kasaai B, Caolo V, Peacock HM, Lehoux S, Gomez-Perdiguero E, Luttun A, Jones EAV. Erythro-myeloid progenitors can differentiate from endothelial cells and modulate embryonic vascular remodeling. Sci Rep 2017; 7:43817. [PMID: 28272478 PMCID: PMC5341067 DOI: 10.1038/srep43817] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
Erythro-myeloid progenitors (EMPs) were recently described to arise from the yolk sac endothelium, just prior to vascular remodeling, and are the source of adult/post-natal tissue resident macrophages. Questions remain, however, concerning whether EMPs differentiate directly from the endothelium or merely pass through. We provide the first evidence in vivo that EMPs can emerge directly from endothelial cells (ECs) and demonstrate a role for these cells in vascular development. We find that EMPs express most EC markers but late EMPs and EMP-derived cells do not take up acetylated low-density lipoprotein (AcLDL), as ECs do. When the endothelium is labelled with AcLDL before EMPs differentiate, EMPs and EMP-derived cells arise that are AcLDL+. If AcLDL is injected after the onset of EMP differentiation, however, the majority of EMP-derived cells are not double labelled. We find that cell division precedes entry of EMPs into circulation, and that blood flow facilitates the transition of EMPs from the endothelium into circulation in a nitric oxide-dependent manner. In gain-of-function studies, we inject the CSF1-Fc ligand in embryos and found that this increases the number of CSF1R+ cells, which localize to the venous plexus and significantly disrupt venous remodeling. This is the first study to definitively establish that EMPs arise from the endothelium in vivo and show a role for early myeloid cells in vascular development.
Collapse
Affiliation(s)
- Bahar Kasaai
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49 - box 911, 3000 Leuven, Belgium.,Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Vincenza Caolo
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49 - box 911, 3000 Leuven, Belgium
| | - Hanna M Peacock
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49 - box 911, 3000 Leuven, Belgium
| | - Stephanie Lehoux
- Lady Davis Institute, Department of Experimental Medicine, McGill University, 3755 Ch. Côte-Ste-Catherine, Montréal, QC, H3T 1E2, Canada
| | | | - Aernout Luttun
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49 - box 911, 3000 Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49 - box 911, 3000 Leuven, Belgium
| |
Collapse
|
26
|
Abstract
Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are uniquely required to balance the formation of new blood vessels with the maintenance and remodelling of existing ones, during development and in adult tissues. Recent advances have greatly expanded our understanding of the tight and multi-level regulation of VEGFR2 signalling, which is the primary focus of this Review. Important insights have been gained into the regulatory roles of VEGFR-interacting proteins (such as neuropilins, proteoglycans, integrins and protein tyrosine phosphatases); the dynamics of VEGFR2 endocytosis, trafficking and signalling; and the crosstalk between VEGF-induced signalling and other endothelial signalling cascades. A clear understanding of this multifaceted signalling web is key to successful therapeutic suppression or stimulation of vascular growth.
Collapse
|
27
|
Azizoglu DB, Cleaver O. Blood vessel crosstalk during organogenesis-focus on pancreas and endothelial cells. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:598-617. [PMID: 27328421 DOI: 10.1002/wdev.240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/23/2016] [Accepted: 04/16/2016] [Indexed: 01/02/2023]
Abstract
Blood vessels form a highly branched, interconnected, and largely stereotyped network of tubes that sustains every organ and tissue in vertebrates. How vessels come to take on their particular architecture, or how they are 'patterned,' and in turn, how they influence surrounding tissues are fundamental questions of organogenesis. Decades of work have begun to elucidate how endothelial progenitors arise and home to precise locations within tissues, integrating attractive and repulsive cues to build vessels where they are needed. Conversely, more recent findings have revealed an exciting facet of blood vessel interaction with tissues, where vascular cells provide signals to developing organs and progenitors therein. Here, we discuss the exchange of reciprocal signals between endothelial cells and neighboring tissues during embryogenesis, with a special focus on the developing pancreas. Understanding the mechanisms driving both sides of these interactions will be crucial to the development of therapies, from improving organ regeneration to efficient production of cell based therapies. Specifically, elucidating the interface of the vasculature with pancreatic lineages, including endocrine cells, will instruct approaches such as generation of replacement beta cells for Type I diabetes. WIREs Dev Biol 2016, 5:598-617. doi: 10.1002/wdev.240 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- D Berfin Azizoglu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
28
|
Raimondi C, Brash JT, Fantin A, Ruhrberg C. NRP1 function and targeting in neurovascular development and eye disease. Prog Retin Eye Res 2016; 52:64-83. [PMID: 26923176 PMCID: PMC4854174 DOI: 10.1016/j.preteyeres.2016.02.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 12/19/2022]
Abstract
Neuropilin 1 (NRP1) is expressed by neurons, blood vessels, immune cells and many other cell types in the mammalian body and binds a range of structurally and functionally diverse extracellular ligands to modulate organ development and function. In recent years, several types of mouse knockout models have been developed that have provided useful tools for experimental investigation of NRP1 function, and a multitude of therapeutics targeting NRP1 have been designed, mostly with the view to explore them for cancer treatment. This review provides a general overview of current knowledge of the signalling pathways that are modulated by NRP1, with particular focus on neuronal and vascular roles in the brain and retina. This review will also discuss the potential of NRP1 inhibitors for the treatment for neovascular eye diseases.
Collapse
Affiliation(s)
- Claudio Raimondi
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - James T Brash
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Alessandro Fantin
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
29
|
Li X, Parker MW, Vander Kooi CW. Control of cellular motility by neuropilin-mediated physical interactions. Biomol Concepts 2015; 5:157-66. [PMID: 25018786 DOI: 10.1515/bmc-2013-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The neuropilin (Nrp) family consists of multifunctional cell surface receptors with critical roles in a number of different cell and tissue types. A core aspect of Nrp function is in ligand-dependent cellular migration, where it controls the multistep process of cellular motility through integration of ligand binding and receptor signaling. At a molecular level, the role of Nrp in migration is intimately connected to the control of adhesive interactions and cytoskeletal reorganization. Here, we review the physiological role of Nrp in cellular adhesion and motility in the cardiovascular and nervous systems. We also discuss the emerging pathological role of Nrp in tumor cell migration and metastasis, providing motivation for continued efforts toward developing Nrp inhibitors.
Collapse
|
30
|
Guo HF, Vander Kooi CW. Neuropilin Functions as an Essential Cell Surface Receptor. J Biol Chem 2015; 290:29120-6. [PMID: 26451046 DOI: 10.1074/jbc.r115.687327] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Neuropilins (Nrps) are a family of essential cell surface receptors involved in multiple fundamental cellular signaling cascades. Nrp family members have key functions in VEGF-dependent angiogenesis and semaphorin-dependent axon guidance, controlling signaling and cross-talk between these fundamental physiological processes. More recently, Nrp function has been found in diverse signaling and adhesive functions, emphasizing their role as pleiotropic co-receptors. Pathological Nrp function has been shown to be important in aberrant activation of both canonical and alternative pathways. Here we review key recent insights into Nrp function in human health and disease.
Collapse
Affiliation(s)
- Hou-Fu Guo
- From the Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Craig W Vander Kooi
- From the Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
31
|
Vandersmissen I, Craps S, Depypere M, Coppiello G, van Gastel N, Maes F, Carmeliet G, Schrooten J, Jones EAV, Umans L, Devlieger R, Koole M, Gheysens O, Zwijsen A, Aranguren XL, Luttun A. Endothelial Msx1 transduces hemodynamic changes into an arteriogenic remodeling response. J Cell Biol 2015; 210:1239-56. [PMID: 26391659 PMCID: PMC4586738 DOI: 10.1083/jcb.201502003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/18/2015] [Indexed: 12/25/2022] Open
Abstract
During peripheral arterial disease, MSX1 acts downstream of BMP–SMAD signaling to transduce the arterial shear stimulus into an arteriogenic remodeling response. MSX1 activates collateral endothelium into a proinflammatory state through ICAM1/VCAM1 up-regulation, resulting in increased leukocyte infiltration and collateral remodeling. Collateral remodeling is critical for blood flow restoration in peripheral arterial disease and is triggered by increasing fluid shear stress in preexisting collateral arteries. So far, no arterial-specific mediators of this mechanotransduction response have been identified. We show that muscle segment homeobox 1 (MSX1) acts exclusively in collateral arterial endothelium to transduce the extrinsic shear stimulus into an arteriogenic remodeling response. MSX1 was specifically up-regulated in remodeling collateral arteries. MSX1 induction in collateral endothelial cells (ECs) was shear stress driven and downstream of canonical bone morphogenetic protein–SMAD signaling. Flow recovery and collateral remodeling were significantly blunted in EC-specific Msx1/2 knockout mice. Mechanistically, MSX1 linked the arterial shear stimulus to arteriogenic remodeling by activating the endothelial but not medial layer to a proinflammatory state because EC but not smooth muscle cellMsx1/2 knockout mice had reduced leukocyte recruitment to remodeling collateral arteries. This reduced leukocyte infiltration in EC Msx1/2 knockout mice originated from decreased levels of intercellular adhesion molecule 1 (ICAM1)/vascular cell adhesion molecule 1 (VCAM1), whose expression was also in vitro driven by promoter binding of MSX1.
Collapse
Affiliation(s)
- Ine Vandersmissen
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Sander Craps
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Maarten Depypere
- Department of Electrical Engineering/Processing Speech and Images, Medical Image Computing, KU Leuven, 3000 Leuven, Belgium
| | - Giulia Coppiello
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
| | - Nick van Gastel
- Laboratory of Clinical and Experimental Endocrinology, Division of Skeletal Tissue Engineering, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Frederik Maes
- Department of Electrical Engineering/Processing Speech and Images, Medical Image Computing, KU Leuven, 3000 Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Division of Skeletal Tissue Engineering, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Jan Schrooten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium Department of Materials Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Umans
- Laboratory of Developmental Signaling, VIB Center for the Biology of Disease, KU Leuven, 3000 Leuven, Belgium Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Roland Devlieger
- Department of Gynecology and Obstetrics, University Hospital Leuven, 3000 Leuven, Belgium Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Michel Koole
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Olivier Gheysens
- Department of Nuclear Medicine University Hospital Leuven, 3000 Leuven, Belgium Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - An Zwijsen
- Laboratory of Developmental Signaling, VIB Center for the Biology of Disease, KU Leuven, 3000 Leuven, Belgium Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Xabier L Aranguren
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
| | - Aernout Luttun
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
32
|
Cao J, Wang R, Gao N, Li M, Tian X, Yang W, Ruan Y, Zhou C, Wang G, Liu X, Tang S, Yu Y, Liu Y, Sun G, Peng H, Wang Q. A7RC peptide modified paclitaxel liposomes dually target breast cancer. Biomater Sci 2015; 3:1545-54. [PMID: 26291480 DOI: 10.1039/c5bm00161g] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A7R peptide (ATWLPPR), a ligand of the NRP-1 receptor, regulates the intracellular signal transduction related to tumor vascularization and tumor growth. Here, we designed A7R-cysteine peptide (A7RC) surface modified paclitaxel liposomes (A7RC-LIPs) to achieve targeting delivery and inhibition of tumor growth and angiogenesis simultaneously. The cytotoxicity, inhibiting angiogenesis, and internalization of various liposomes by cells were assessed in vitro to confirm the influence of the peptide modification. The accumulations of A7RC-LIPs in various xenografts in mice were tracked to further identify the function of the peptide on the liposomes' surface. The results confirmed that A7RC peptides could enhance the uptake of vesicles by MDA-MB-231 cells, leading to stronger cytotoxicity in vitro and higher accumulation of vesicles in MDA-MB-231 xenografts in vivo. In addition, A7RC peptides enhanced the inhibitory effects of LIPs on the HUVEC tubular formation on Matrigel. The A7RC-LIPs may be promising drug carriers for anticancer therapy.
Collapse
Affiliation(s)
- Jingyan Cao
- Department of Medical Oncology, The Tumor Hospital of Harbin Medical University, 150 Hapin Road, Harbin, 150086, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Blood vessel formation during vertebrate development relies on a process called angiogenesis and is essential for organ growth and tissue viability. In addition, angiogenesis leads to pathological blood vessel growth in diseases with tissue ischaemia, such as neovascular eye disease and cancer. Neuropilin 1 (NRP1) is a transmembrane protein that serves as a receptor for the VEGF₁₆₅ isoform of the vascular endothelial growth factor (VEGF) to enhance cell migration during angiogenesis via VEGF receptor 2 (VEGFR2), and it is also essential for VEGF-induced vascular permeability and arteriogenesis. In addition, NRP1 activation affects angiogenesis independently of VEGF signalling by activating the intracellular kinase ABL1. NRP1 also acts as a receptor for the class 3 semaphorin (SEMA3A) to regulate vessel maturation during tumour angiogenesis and vascular permeability in eye disease. In the present paper, we review current knowledge of NRP1 regulation during angiogenesis and vascular pathology.
Collapse
|
34
|
Whitlock KE. The loss of scents: do defects in olfactory sensory neuron development underlie human disease? ACTA ACUST UNITED AC 2015; 105:114-25. [PMID: 26111003 DOI: 10.1002/bdrc.21094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022]
Abstract
The olfactory system is a fascinating and beguiling sensory system: olfactory sensory neurons detect odors underlying behaviors essential for mate choice, food selection, and escape from predators, among others. These sensory neurons are unique in that they have dendrites contacting the outside world, yet their first synapse lies in the central nervous system. The information entering the central nervous system is used to create odor memories that play a profound role in recognition of individuals, places, and appropriate foods. Here, the structure of the olfactory epithelium is given as an overview to discuss the origin of the olfactory placode, the plasticity of the olfactory sensory neurons, and finally the origins of the gonadotropin-releasing hormone neuroendocrine cells. For the purposes of this review, the development of the peripheral sensory system will be analyzed, incorporating recently published studies highlighting the potential novelties in development mechanisms. Specifically, an emerging model where the olfactory epithelium and olfactory bulb develop simultaneously from a continuous neurectoderm patterned at the end of gastrulation, and the multiple origins of the gonadotropin-releasing hormone neuroendocrine cells associated with the olfactory sensory system development will be presented. Advances in the understanding of the basic mechanisms underlying olfactory sensory system development allows for a more thorough understanding of the potential causes of human disease.
Collapse
Affiliation(s)
- Kathleen E Whitlock
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaiso, Valparaiso, Chile
| |
Collapse
|
35
|
Bondeva T, Wolf G. Role of Neuropilin-1 in Diabetic Nephropathy. J Clin Med 2015; 4:1293-311. [PMID: 26239560 PMCID: PMC4485001 DOI: 10.3390/jcm4061293] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/28/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) often develops in patients suffering from type 1 or type 2 diabetes mellitus. DN is characterized by renal injury resulting in proteinuria. Neuropilin-1 (NRP-1) is a single-pass transmembrane receptor protein devoid of enzymatic activity. Its large extracellular tail is structured in several domains, thereby allowing the molecule to interact with multiple ligands linking NRP-1 to different pathways through its signaling co-receptors. NRP-1’s role in nervous system development, immunity, and more recently in cancer, has been extensively investigated. Although its relation to regulation of apoptosis and cytoskeleton organization of glomerular vascular endothelial cells was reported, its function in diabetes mellitus and the development of DN is less clear. Several lines of evidence demonstrate a reduced NRP-1 expression in glycated-BSA cultured differentiated podocytes as well as in glomeruli from db/db mice (a model of type 2 Diabetes) and in diabetic patients diagnosed with DN. In vitro studies of podocytes implicated NRP-1 in the regulation of podocytes’ adhesion to extracellular matrix proteins, cytoskeleton reorganization, and apoptosis via not completely understood mechanisms. However, the exact role of NRP-1 during the onset of DN is not yet understood. This review intends to shed more light on NRP-1 and to present a link between NRP-1 and its signaling complexes in the development of DN.
Collapse
Affiliation(s)
- Tzvetanka Bondeva
- Department of Internal Medicine III, University Hospital Jena, Jena, 07747, Germany.
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, Jena, 07747, Germany.
| |
Collapse
|
36
|
Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat Commun 2015; 6:7264. [PMID: 26081042 PMCID: PMC4557308 DOI: 10.1038/ncomms8264] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 04/14/2015] [Indexed: 02/07/2023] Open
Abstract
Sprouting angiogenesis drives blood vessel growth in healthy and diseased tissues. Vegf and Dll4/Notch signalling cooperate in a negative feedback loop that specifies endothelial tip and stalk cells to ensure adequate vessel branching and function. Current concepts posit that endothelial cells default to the tip-cell phenotype when Notch is inactive. Here we identify instead that the stalk-cell phenotype needs to be actively repressed to allow tip-cell formation. We show this is a key endothelial function of neuropilin-1 (Nrp1), which suppresses the stalk-cell phenotype by limiting Smad2/3 activation through Alk1 and Alk5. Notch downregulates Nrp1, thus relieving the inhibition of Alk1 and Alk5, thereby driving stalk-cell behaviour. Conceptually, our work shows that the heterogeneity between neighbouring endothelial cells established by the lateral feedback loop of Dll4/Notch utilizes Nrp1 levels as the pivot, which in turn establishes differential responsiveness to TGF-β/BMP signalling. Notch signals are crucial for organization of angiogenic sprouting cells into the leading ‘tip' and trailing ‘stalk' cells. Here the authors show that endothelial neuropilin-1 quantitatively inhibits TGF-β/BMP signalling, explaining how Notch-mediated regulation of neuropilin-1 specifies endothelial tip and stalk cells.
Collapse
|
37
|
Rama N, Dubrac A, Mathivet T, Ní Chárthaigh RA, Genet G, Cristofaro B, Pibouin-Fragner L, Ma L, Eichmann A, Chédotal A. Slit2 signaling through Robo1 and Robo2 is required for retinal neovascularization. Nat Med 2015; 21:483-91. [PMID: 25894826 PMCID: PMC4819398 DOI: 10.1038/nm.3849] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/25/2015] [Indexed: 02/07/2023]
Abstract
Ocular neovascular diseases are a leading cause of blindness. Vascular endothelial growth factor (VEGF) blockade improves vision, but not all individuals respond to anti-VEGF treatment, making additional means to prevent neovascularization necessary. Slit-family proteins (Slits) are ligands of Roundabout (Robo) receptors that repel developing axons in the nervous system. Robo1 expression is altered in ocular neovascular diseases, and previous in vitro studies have reported both pro- and anti-angiogenic effects of Slits. However, genetic evidence supporting a role for Slits in ocular neovascularization is lacking. Here we generated conditional knockout mice deficient in various Slit and Robo proteins and found that Slit2 potently and selectively promoted angiogenesis via Robo1 and Robo2 in mouse postnatal retina and in a model of ocular neovascular disease. Mechanistically, Slit2 acting through Robo1 and Robo2 promoted the migration of endothelial cells. These receptors are required for both Slit2- and VEGF-induced Rac1 activation and lamellipodia formation. Thus, Slit2 blockade could potentially be used therapeutically to inhibit angiogenesis in individuals with ocular neovascular disease.
Collapse
Affiliation(s)
- Nicolas Rama
- 1] INSERM UMR S968, Institut de la Vision, Paris, France. [2] Université Pierre et Marie Curie, Sorbonne Universités, Paris, France. [3] UMR 7210, CNRS, Paris, France
| | - Alexandre Dubrac
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thomas Mathivet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France
| | - Róisín-Ana Ní Chárthaigh
- 1] INSERM UMR S968, Institut de la Vision, Paris, France. [2] Université Pierre et Marie Curie, Sorbonne Universités, Paris, France. [3] UMR 7210, CNRS, Paris, France
| | - Gael Genet
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brunella Cristofaro
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France
| | | | - Le Ma
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Anne Eichmann
- 1] Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France. [3] Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alain Chédotal
- 1] INSERM UMR S968, Institut de la Vision, Paris, France. [2] Université Pierre et Marie Curie, Sorbonne Universités, Paris, France. [3] UMR 7210, CNRS, Paris, France
| |
Collapse
|
38
|
Jahnsen ED, Trindade A, Zaun HC, Lehoux S, Duarte A, Jones EAV. Notch1 is pan-endothelial at the onset of flow and regulated by flow. PLoS One 2015; 10:e0122622. [PMID: 25830332 PMCID: PMC4382190 DOI: 10.1371/journal.pone.0122622] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 02/23/2015] [Indexed: 11/18/2022] Open
Abstract
Arteriovenous differentiation is a key event during vascular development and hemodynamic forces play an important role. Arteriovenous gene expression is present before the onset of flow, however it remains plastic and flow can alter arteriovenous identity. Notch signaling is especially important in the genetic determination of arteriovenous identity. Nevertheless, the effect of the onset of circulation on Notch expression and signaling has not been studied. The aim of this study is therefore to investigate the interaction of Notch1 signaling and hemodynamic forces during early vascular development. We find that the onset of Notch1 expression coincides with the onset of flow, and that expression is pan-endothelial at the onset of circulation in mouse embryos and only becomes arterial-specific after remodeling has occurred. When we ablate flow in the early embryo, endothelial cells fail to express Notch1. We show that low and disturbed flow patterns upregulate Notch1 expression in endothelial cells in vitro, but that higher shear stress levels do not (≥10 dynes/cm2). Using siRNA, we knocked down Notch1 to investigate the role of Notch1 in mechanotransduction. When we applied shear stress levels similar to those found in embryonic arteries, we found an upregulation of Klf2, Dll1, Dll4, Jag1, Hey1, Nrp1 and CoupTFII but that only Dll4, Hey1, Nrp1 and EphB4 required Notch1 for flow-induced expression. Our results therefore indicate that Notch1 can modulate mechanotransduction but is not a critical mediator of the process since many genes mechanotransduce normally in the absence of Notch1, including genes involved in arteriovenous differentiation.
Collapse
Affiliation(s)
- Espen D. Jahnsen
- Lady Davis Institute for Medical Research, McGill University, 3755 Côte Ste Catherine, Montreal, Quebec, H3T 1E2, Canada
- Department of Biomedical Engineering, McGill University, 3775 University St, Montreal, QC, H3A 2B4, Canada
| | - Alexandre Trindade
- Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, University of Lisbon, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Hans C. Zaun
- Lady Davis Institute for Medical Research, McGill University, 3755 Côte Ste Catherine, Montreal, Quebec, H3T 1E2, Canada
| | - Stéphanie Lehoux
- Lady Davis Institute for Medical Research, McGill University, 3755 Côte Ste Catherine, Montreal, Quebec, H3T 1E2, Canada
| | - António Duarte
- Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, University of Lisbon, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Elizabeth A. V. Jones
- Lady Davis Institute for Medical Research, McGill University, 3755 Côte Ste Catherine, Montreal, Quebec, H3T 1E2, Canada
- Department of Biomedical Engineering, McGill University, 3775 University St, Montreal, QC, H3A 2B4, Canada
- Department of Cardiovascular Science, KU Leuven, UZ Herestraat 49—box 911, 3000, Leuven, Belgium
- * E-mail:
| |
Collapse
|
39
|
Plein A, Fantin A, Ruhrberg C. Neuropilin regulation of angiogenesis, arteriogenesis, and vascular permeability. Microcirculation 2015; 21:315-23. [PMID: 24521511 PMCID: PMC4230468 DOI: 10.1111/micc.12124] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/05/2014] [Indexed: 12/11/2022]
Abstract
The formation of the cardiovasculature, consisting of both the heart and blood vessels, is a critical step in embryonic development and relies on three processes termed vasculogenesis, angiogenesis, and vascular remodeling. The transmembrane protein NRP1 is an essential modulator of embryonic angiogenesis with additional roles in vessel remodeling and arteriogenesis. NRP1 also enhances arteriogenesis in adults to alleviate pathological tissue ischemia. However, in certain circumstances, vascular NRP1 signaling can be detrimental, as it may promote cancer by enhancing tumor angiogenesis or contribute to tissue edema by increasing vascular permeability. Understanding the mechanisms of NRP1 signaling is, therefore, of profound importance for the design of therapies aiming to control vascular functions. Previous work has shown that vascular NRP1 can variably serve as a receptor for two secreted glycoproteins, the VEGF-A and SEMA3A, but it also has a poorly understood role as an adhesion receptor. Here, we review current knowledge of NRP1 function during blood vessel growth and homeostasis, with special emphasis on the vascular roles of its multiple ligands and signaling partners.
Collapse
Affiliation(s)
- Alice Plein
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | | |
Collapse
|
40
|
Abstract
Vascular endothelial growth factor receptor-1 (VEGFR-1)/Flt-1 is a transmembrane tyrosine kinase receptor for VEGF-A, VEGF-B, and placental growth factor (PlGF). VEGFR-1 is an enigmatic molecule whose precise role in postnatal angiogenesis remains controversial. Although many postnatal and adult studies have been performed by manipulating VEGFR-1 ligands, including competitive binding by truncated VEGFR-1 protein, neutralization by antibodies, or specific ligand overexpression or knockout, much less is known at the level of the receptor per se, especially in vivo. Perplexingly, while VEGFR-1 negatively regulates endothelial cell differentiation during development, it has been implied in promoting angiogenesis under certain conditions in adult tissues, especially in tumors and ischemic tissues. Additionally, it is unclear how VEGFR-1 is involved in vascular maturation and maintenance of vascular quiescence in adult tissues. To facilitate further investigation, we generated a conditional knockout mouse line for VEGFR-1 and characterized angiogenesis in postnatal and adult mice, including angiogenesis in ischemic myocardium. These methods are briefly outlined in this chapter. We also discuss these findings in the context of the interplay between VEGF family members and their receptors, and summarize various mouse models in the VEGF pathway.
Collapse
|
41
|
Fantin A, Ruhrberg C. The Embryonic Mouse Hindbrain and Postnatal Retina as In Vivo Models to Study Angiogenesis. Methods Mol Biol 2015; 1332:177-188. [PMID: 26285754 DOI: 10.1007/978-1-4939-2917-7_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Angiogenesis, the growth of new blood vessels from preexisting ones, is a fundamental process for organ development, exercise-induced muscle growth, and wound healing, but is also associated with different diseases such as cancer and neovascular eye disease. Accordingly, elucidating the molecular and cellular mechanisms of angiogenesis has the potential to identify new therapeutic targets to stimulate new vessel formation in ischemic tissues or inhibit pathological vessel growth in disease. This chapter describes the mouse embryo hindbrain and postnatal retina as models to study physiological angiogenesis and provides detailed protocols for tissue dissection, sample staining, and analysis.
Collapse
Affiliation(s)
- Alessandro Fantin
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK,
| | | |
Collapse
|
42
|
Blois SM, Conrad ML, Freitag N, Barrientos G. Galectins in angiogenesis: consequences for gestation. J Reprod Immunol 2014; 108:33-41. [PMID: 25622880 DOI: 10.1016/j.jri.2014.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 12/25/2022]
Abstract
Members of the galectin family have been shown to exert several roles in the context of reproduction. They contribute to placentation, maternal immune regulation and facilitate angiogenesis encompassing decidualisation and placenta formation during pregnancy. In the context of neo-vascularisation, galectins have been shown to augment signalling pathways that lead to endothelial cell activation, cell proliferation, migration and tube formation in vitro in addition to angiogenesis in vivo. Angiogenesis during gestation ensures not only proper foetal growth and development, but also maternal health. Consequently, restriction of placental blood flow has major consequences for both foetus and mother, leading to pregnancy diseases. In this review we summarise both the established and the emerging roles of galectin in angiogenesis and discuss the possible implications during healthy and pathological gestation.
Collapse
Affiliation(s)
- Sandra M Blois
- Universitätsmedizin Berlin, Charité-Center 12 Internal Medicine and Dermatology, Medizinische Klinik mit Schwerpunkt Psychosomatik, Reproductive Medicine Research Group, Berlin, Germany.
| | - Melanie L Conrad
- Universitätsmedizin Berlin, Charité-Center 12 Internal Medicine and Dermatology, Medizinische Klinik mit Schwerpunkt Psychosomatik, Reproductive Medicine Research Group, Berlin, Germany
| | - Nancy Freitag
- Universitätsmedizin Berlin, Charité-Center 12 Internal Medicine and Dermatology, Medizinische Klinik mit Schwerpunkt Psychosomatik, Reproductive Medicine Research Group, Berlin, Germany
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán, Buenos Aires, Argentina
| |
Collapse
|
43
|
Michaelis UR. Mechanisms of endothelial cell migration. Cell Mol Life Sci 2014; 71:4131-48. [PMID: 25038776 PMCID: PMC11113960 DOI: 10.1007/s00018-014-1678-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/23/2014] [Accepted: 07/07/2014] [Indexed: 01/13/2023]
Abstract
Cell migration plays a central role in a variety of physiological and pathological processes during our whole life. Cellular movement is a complex, tightly regulated multistep process. Although the principle mechanisms of migration follow a defined general motility cycle, the cell type and the context of moving influences the detailed mode of migration. Endothelial cells migrate during vasculogenesis and angiogenesis but also in a damaged vessel to restore vessel integrity. Depending on the situation they migrate individually, in chains or sheets and complex signaling, intercellular signals as well as environmental cues modulate the process. Here, the different modes of cell migration, the peculiarities of endothelial cell migration and specific guidance molecules controlling this process will be reviewed.
Collapse
Affiliation(s)
- U Ruth Michaelis
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany,
| |
Collapse
|
44
|
Morrison AR, Yarovinsky TO, Young BD, Moraes F, Ross TD, Ceneri N, Zhang J, Zhuang ZW, Sinusas AJ, Pardi R, Schwartz MA, Simons M, Bender JR. Chemokine-coupled β2 integrin-induced macrophage Rac2-Myosin IIA interaction regulates VEGF-A mRNA stability and arteriogenesis. J Exp Med 2014; 211:1957-68. [PMID: 25180062 PMCID: PMC4172219 DOI: 10.1084/jem.20132130] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 08/01/2014] [Indexed: 12/14/2022] Open
Abstract
Myeloid cells are important contributors to arteriogenesis, but their key molecular triggers and cellular effectors are largely unknown. We report, in inflammatory monocytes, that the combination of chemokine receptor (CCR2) and adhesion receptor (β2 integrin) engagement leads to an interaction between activated Rac2 and Myosin 9 (Myh9), the heavy chain of Myosin IIA, resulting in augmented vascular endothelial growth factor A (VEGF-A) expression and induction of arteriogenesis. In human monocytes, CCL2 stimulation coupled to ICAM-1 adhesion led to rapid nuclear-to-cytosolic translocation of the RNA-binding protein HuR. This activation of HuR and its stabilization of VEGF-A mRNA were Rac2-dependent, and proteomic analysis for Rac2 interactors identified the 226 kD protein Myh9. The level of induced Rac2-Myh9 interaction strongly correlated with the degree of HuR translocation. CCL2-coupled ICAM-1 adhesion-driven HuR translocation and consequent VEGF-A mRNA stabilization were absent in Myh9(-/-) macrophages. Macrophage VEGF-A production, ischemic tissue VEGF-A levels, and flow recovery to hind limb ischemia were impaired in myeloid-specific Myh9(-/-) mice, despite preserved macrophage recruitment to the ischemic muscle. Micro-CT arteriography determined the impairment to be defective induced arteriogenesis, whereas developmental vasculogenesis was unaffected. These results place the macrophage at the center of ischemia-induced arteriogenesis, and they establish a novel role for Myosin IIA in signal transduction events modulating VEGF-A expression in tissue.
Collapse
Affiliation(s)
- Alan R Morrison
- Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511 Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511 Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511
| | - Timur O Yarovinsky
- Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511 Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511 Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511
| | - Bryan D Young
- Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511 Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511 Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511
| | - Filipa Moraes
- Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511 Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511
| | - Tyler D Ross
- Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511 Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511
| | - Nicolle Ceneri
- Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511 Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511 Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511
| | - Jiasheng Zhang
- Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511
| | - Zhen W Zhuang
- Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511
| | - Albert J Sinusas
- Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511
| | - Ruggero Pardi
- Department of Molecular Pathology, Universita Vita Salute School of Medicine, San Raffaele Scientific Institute, 20123 Milan, Italy
| | - Martin A Schwartz
- Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511 Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511
| | - Michael Simons
- Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511 Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511
| | - Jeffrey R Bender
- Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511 Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511 Section of Cardiovascular Medicine, Department of Internal Medicine and the Yale Cardiovascular Research Center, Department of Immunobiology, Department of Cell Biology, and the Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University School of Medicine, New Haven, CT 06511
| |
Collapse
|
45
|
Corada M, Morini MF, Dejana E. Signaling pathways in the specification of arteries and veins. Arterioscler Thromb Vasc Biol 2014; 34:2372-7. [PMID: 25169934 DOI: 10.1161/atvbaha.114.303218] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The establishment of arterial and venous identity of endothelial cells is critical for the proper anatomic configuration and function of the vascular tree. Arterial and venous specification of endothelial cells is determined by genetic factors, although surrounding cells and hemodynamic forces may also contribute to vascular remodeling. This review provides an overview of the signaling pathways and related transcription factors implicated in differentiation of endothelial cells. We will discuss, in particular, the role of upstream and downstream effectors of Wnt, Sox, and Notch pathways. The understanding of the molecular mechanisms that orchestrate endothelial differentiation may have therapeutic relevance for diseases such as atherosclerosis, arteriovenous malformations, aneurysms, and others.
Collapse
Affiliation(s)
- Monica Corada
- From the IFOM, FIRC Institute of Molecular Oncology, Milan, Italy (M.C., M.F.M., E.D.); and Department of Biosciences, University of Milan, Milan, Italy (E.D.)
| | - Marco Francesco Morini
- From the IFOM, FIRC Institute of Molecular Oncology, Milan, Italy (M.C., M.F.M., E.D.); and Department of Biosciences, University of Milan, Milan, Italy (E.D.)
| | - Elisabetta Dejana
- From the IFOM, FIRC Institute of Molecular Oncology, Milan, Italy (M.C., M.F.M., E.D.); and Department of Biosciences, University of Milan, Milan, Italy (E.D.).
| |
Collapse
|
46
|
The H2.0-Like Homeobox Transcription Factor Modulates Yolk Sac Vascular Remodeling in Mouse Embryos. Arterioscler Thromb Vasc Biol 2014; 34:1468-76. [DOI: 10.1161/atvbaha.114.303626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objective—
The H2.0-like homeobox transcription factor (HLX) plays an essential role in visceral organogenesis in mice and has been shown to regulate angiogenic sprouting in vitro and in zebrafish embryos. We therefore examined the role of HLX in vascular development in mouse and avian embryos.
Approach and Results—
In situ hybridization showed that
Hlx
is expressed in a subset of sprouting blood vessels in postnatal mouse retinas and embryos.
Hlx
expression was conserved in quail embryos and upregulated in blood vessels at the onset of circulation. In vitro assays showed that
Hlx
is dynamically regulated by growth factors and shear stress alterations. Proangiogenic vascular endothelial growth factor induces
Hlx
expression in cultured endothelial cells, whereas signals that induce stalk cell identity lead to a reduction in
Hlx
expression. HLX was also downregulated in embryos in which flow was ablated, whereas injection of a starch solution, which increases blood viscosity and therefore shear stress, causes an upregulation in HLX. HLX knockdown in vitro resulted in a reduction in tip cell marker expression and in reduced angiogenic sprouting, but
Hlx
−/−
embryos showed no defect in vascular sprouting at E8.5, E9.5, or E11.5 in vivo. Vascular remodeling of the capillary plexus was altered in
Hlx
−/−
embryos, with a modestly enlarged venous plexus and reduction of the arterial plexus.
Conclusions—
Our findings indicate not only that
Hlx
regulates sprouting in vitro, but that its role in sprouting is nonessential in vivo. We find HLX is regulated by shear stress and a subtle defect in vascular remodeling is present in knockout embryos.
Collapse
|
47
|
Fantin A, Herzog B, Mahmoud M, Yamaji M, Plein A, Denti L, Ruhrberg C, Zachary I. Neuropilin 1 (NRP1) hypomorphism combined with defective VEGF-A binding reveals novel roles for NRP1 in developmental and pathological angiogenesis. Development 2014; 141:556-62. [PMID: 24401374 PMCID: PMC3899814 DOI: 10.1242/dev.103028] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuropilin 1 (NRP1) is a receptor for class 3 semaphorins and vascular endothelial growth factor (VEGF) A and is essential for cardiovascular development. Biochemical evidence supports a model for NRP1 function in which VEGF binding induces complex formation between NRP1 and VEGFR2 to enhance endothelial VEGF signalling. However, the relevance of VEGF binding to NRP1 for angiogenesis in vivo has not yet been examined. We therefore generated knock-in mice expressing Nrp1 with a mutation of tyrosine (Y) 297 in the VEGF binding pocket of the NRP1 b1 domain, as this residue was previously shown to be important for high affinity VEGF binding and NRP1-VEGFR2 complex formation. Unexpectedly, this targeting strategy also severely reduced NRP1 expression and therefore generated a NRP1 hypomorph. Despite the loss of VEGF binding and attenuated NRP1 expression, homozygous Nrp1Y297A/Y297A mice were born at normal Mendelian ratios, arguing against NRP1 functioning exclusively as a VEGF164 receptor in embryonic angiogenesis. By overcoming the mid-gestation lethality of full Nrp1-null mice, homozygous Nrp1Y297A/Y297A mice revealed essential roles for NRP1 in postnatal angiogenesis and arteriogenesis in the heart and retina, pathological neovascularisation of the retina and angiogenesis-dependent tumour growth.
Collapse
Affiliation(s)
- Alessandro Fantin
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Neuron-derived semaphorin 3A is an early inducer of vascular permeability in diabetic retinopathy via neuropilin-1. Cell Metab 2013; 18:505-18. [PMID: 24093675 DOI: 10.1016/j.cmet.2013.09.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/20/2013] [Accepted: 08/23/2013] [Indexed: 01/01/2023]
Abstract
The deterioration of the inner blood-retinal barrier and consequent macular edema is a cardinal manifestation of diabetic retinopathy (DR) and the clinical feature most closely associated with loss of sight. We provide evidence from both human and animal studies for the critical role of the classical neuronal guidance cue, semaphorin 3A, in instigating pathological vascular permeability in diabetic retinas via its cognate receptor neuropilin-1. We reveal that semaphorin 3A is induced in early hyperglycemic phases of diabetes within the neuronal retina and precipitates initial breakdown of endothelial barrier function. We demonstrate, by a series of orthogonal approaches, that neutralization of semaphorin 3A efficiently prevents diabetes-induced retinal vascular leakage in a stage of the disease when vascular endothelial growth factor neutralization is inefficient. These observations were corroborated in Tg(Cre-Esr1)/Nrp1(flox/flox) conditional knockout mice. Our findings identify a therapeutic target for macular edema and provide further evidence for neurovascular crosstalk in the pathogenesis of DR.
Collapse
|
49
|
Chauvet S, Burk K, Mann F. Navigation rules for vessels and neurons: cooperative signaling between VEGF and neural guidance cues. Cell Mol Life Sci 2013; 70:1685-703. [PMID: 23475066 PMCID: PMC11113827 DOI: 10.1007/s00018-013-1278-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
Abstract
Many organs, such as lungs, nerves, blood and lymphatic vessels, consist of complex networks that carry flows of information, gases, and nutrients within the body. The morphogenetic patterning that generates these organs involves the coordinated action of developmental signaling cues that guide migration of specialized cells. Precision guidance of endothelial tip cells by vascular endothelial growth factors (VEGFs) is well established, and several families of neural guidance molecules have been identified to exert guidance function in both the nervous and the vascular systems. This review discusses recent advances in VEGF research, focusing on the emerging role of neural guidance molecules as key regulators of VEGF function during vascular development and on the novel role of VEGFs in neural cell migration and nerve wiring.
Collapse
Affiliation(s)
- Sophie Chauvet
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France
| | - Katja Burk
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France
| | - Fanny Mann
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France
| |
Collapse
|
50
|
Transcriptional corepressors HIPK1 and HIPK2 control angiogenesis via TGF-β-TAK1-dependent mechanism. PLoS Biol 2013; 11:e1001527. [PMID: 23565059 PMCID: PMC3614511 DOI: 10.1371/journal.pbio.1001527] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 02/15/2013] [Indexed: 01/10/2023] Open
Abstract
Several critical events dictate the successful establishment of nascent vasculature in yolk sac and in the developing embryos. These include aggregation of angioblasts to form the primitive vascular plexus, followed by the proliferation, differentiation, migration, and coalescence of endothelial cells. Although transforming growth factor-β (TGF-β) is known to regulate various aspects of vascular development, the signaling mechanism of TGF-β remains unclear. Here we show that homeodomain interacting protein kinases, HIPK1 and HIPK2, are transcriptional corepressors that regulate TGF-β-dependent angiogenesis during embryonic development. Loss of HIPK1 and HIPK2 leads to marked up-regulations of several potent angiogenic genes, including Mmp10 and Vegf, which result in excessive endothelial proliferation and poor adherens junction formation. This robust phenotype can be recapitulated by siRNA knockdown of Hipk1 and Hipk2 in human umbilical vein endothelial cells, as well as in endothelial cell-specific TGF-β type II receptor (TβRII) conditional mutants. The effects of HIPK proteins are mediated through its interaction with MEF2C, and this interaction can be further enhanced by TGF-β in a TAK1-dependent manner. Remarkably, TGF-β-TAK1 signaling activates HIPK2 by phosphorylating a highly conserved tyrosine residue Y-361 within the kinase domain. Point mutation in this tyrosine completely eliminates the effect of HIPK2 as a transcriptional corepressor in luciferase assays. Our results reveal a previously unrecognized role of HIPK proteins in connecting TGF-β signaling pathway with the transcriptional programs critical for angiogenesis in early embryonic development.
Collapse
|