1
|
Emili E, Pérez-Posada A, Vanni V, Salamanca-Díaz D, Ródriguez-Fernández D, Christodoulou MD, Solana J. Allometry of cell types in planarians by single-cell transcriptomics. SCIENCE ADVANCES 2025; 11:eadm7042. [PMID: 40333969 PMCID: PMC12057665 DOI: 10.1126/sciadv.adm7042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/02/2025] [Indexed: 05/09/2025]
Abstract
Allometry explores the relationship between an organism's body size and its various components, offering insights into ecology, physiology, metabolism, and disease. The cell is the basic unit of biological systems, and yet the study of cell-type allometry remains relatively unexplored. Single-cell RNA sequencing (scRNA-seq) provides a promising tool for investigating cell-type allometry. Planarians, capable of growing and degrowing following allometric scaling rules, serve as an excellent model for these studies. We used scRNA-seq to examine cell-type allometry in asexual planarians of different sizes, revealing that they consist of the same basic cell types but in varying proportions. Notably, the gut basal cells are the most responsive to changes in size, suggesting a role in energy storage. We capture the regulated gene modules of distinct cell types in response to body size. This research sheds light on the molecular and cellular aspects of cell-type allometry in planarians and underscores the utility of scRNA-seq in these investigations.
Collapse
Affiliation(s)
- Elena Emili
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Alberto Pérez-Posada
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | - Virginia Vanni
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | - David Salamanca-Díaz
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | | | | | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
2
|
Dai X, Li X, Tyshkovskiy A, Zuckerman C, Cheng N, Lin P, Paris D, Qureshi S, Kruglyak L, Mao X, Nandakumar J, Gladyshev VN, Pletcher S, Sobota J, Guo L. Regeneration leads to global tissue rejuvenation in aging sexual planarians. NATURE AGING 2025; 5:780-798. [PMID: 40181188 DOI: 10.1038/s43587-025-00847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/03/2025] [Indexed: 04/05/2025]
Abstract
The possibility of reversing the adverse impacts of aging could significantly reduce age-related diseases and improve quality of life in older populations. Here we report that the sexual lineage of the planarian Schmidtea mediterranea exhibits physiological decline within 18 months of birth, including altered tissue architecture, impaired fertility and motility, and increased oxidative stress. Single-cell profiling of young and older planarian heads uncovered loss of neurons and muscle, increase of glia, and revealed minimal changes in somatic pluripotent stem cells, along with molecular signatures of aging across tissues. Remarkably, amputation followed by regeneration of lost tissues in older planarians led to reversal of these age-associated changes in tissues both proximal and distal to the injury at physiological, cellular and molecular levels. Our work suggests mechanisms of rejuvenation in both new and old tissues concurring with planarian regeneration, which may provide valuable insights for antiaging interventions.
Collapse
Affiliation(s)
- Xiaoting Dai
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Xinghua Li
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cassandra Zuckerman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nan Cheng
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Peter Lin
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - David Paris
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Saad Qureshi
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Scott Pletcher
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Jacob Sobota
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Longhua Guo
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Ma K, Guo F, Li R, Song G, Zhang H, Lu Q, Ma K, Gong S. Knockdown of Atg1 Impairs Brain Regeneration and Downregulates ECM-Related Genes in the Planarian Dugesia japonica. Mol Neurobiol 2025:10.1007/s12035-025-04978-3. [PMID: 40281299 DOI: 10.1007/s12035-025-04978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Planarian regeneration is a complex process that involves the precise orchestration of cell proliferation, differentiation, migration, and autophagy. However, the role of autophagy in planarian regeneration remains poorly understood. In this study, we identified autophagy-related gene 1 from the planarian Dugesia japonica (designated as DjAtg1) and investigated its role in planarian brain regeneration. DjAtg1 transcripts are highly expressed in the cephalic ganglia of intact planarians. Following amputation, DjAtg1 is prominently expressed in the newly regenerated brain tissues. Knockdown of DjAtg1 via RNA interference (RNAi) induces head regression, with all RNAi-treated animals regenerating a small triangular-shaped head. Neoblast-marker labeling experiments demonstrate that DjAtg1 knockdown does not affect cell proliferation but impairs neoblast behavior. Notably, RNA-seq reveals that most of these down-regulated transcripts are linked to the extracellular matrix (ECM). Based on our findings and prior literature, we propose that the DjAtg1-mediated secretory pathway is essential for ECM remodeling. DjAtg1 knockdown disrupts the secretory pathway, which feedback-inhibits the expression of ECM-related genes. Our work provides new insights into the non-canonical role of autophagy in regulating of ECM remodeling during planarian regeneration.
Collapse
Affiliation(s)
- Kexue Ma
- Department of Basic Medicine, Luohe Medical College, Luohe, 462002, China.
- Henan Province Engineering Research Center of Nutrition and Health, Luohe, 462002, China.
| | - Fangying Guo
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Rui Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Gege Song
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hecai Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Qiong Lu
- Department of Basic Medicine, Luohe Medical College, Luohe, 462002, China
| | - Keshi Ma
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, 466001, China
| | - Shaoqing Gong
- Department of Basic Medicine, Luohe Medical College, Luohe, 462002, China.
| |
Collapse
|
4
|
Booth CLT, Stevens BC, Stubbert CA, Kallgren NT, Deihl EW, Davies EL. Developmental onset of planarian whole-body regeneration depends on axis reset. Curr Biol 2025:S0960-9822(25)00381-1. [PMID: 40239657 DOI: 10.1016/j.cub.2025.03.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/11/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Regenerative abilities vary across species and developmental stages of animal life cycles. Determining mechanisms that promote or limit regeneration in certain life cycle stages may pinpoint the most critical factors for successful regeneration and suggest strategies for reverse-engineering regenerative responses in therapeutic settings. In contrast to many mammalian systems, which typically show a loss of regenerative abilities with age, planarian flatworms remain highly regenerative throughout adulthood. The robust reproductive and regenerative capabilities of the planarian Schmidtea polychroa (S. polychroa) make them an ideal model to determine when and how regeneration competence is established during development. We report that S. polychroa gradually acquires whole-body regenerative abilities during late embryonic and early juvenile stages. Anterior fragments are capable of regenerating missing trunk and tail tissues from stage 6.5 onward. By contrast, the ability of posterior fragments to make new head tissue depends on the developmental stage, tissue composition of the amputated fragment, and axial position of the cut plane. Irradiation-sensitive cells are required, but not sufficient, for the onset of head regeneration ability. We propose that regulation of the main body axis reset, specifically the ability to remake an anterior organizing center, determines when whole-body regeneration competence arises during development. Supporting this hypothesis, knockdown of the canonical Wnt pathway effector Spol-β-catenin-1, a posterior determinant, induces precocious head regeneration under conditions that are normally head regeneration-incompetent. Our results suggest that regeneration competence emerges through interactions between irradiation-sensitive cells, the cellular source of new tissue, and developing adult tissue(s) harboring axial patterning information.
Collapse
Affiliation(s)
- Clare L T Booth
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21704, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Brian C Stevens
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21704, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Clover A Stubbert
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21704, USA; Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Neil T Kallgren
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21704, USA
| | - Ennis W Deihl
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21704, USA
| | - Erin L Davies
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21704, USA.
| |
Collapse
|
5
|
Guo L, Guo F, Zhang S, Zeng A, Yi K, McClain M, Kuhn CD, Parmely T, Alvarado AS. Oogenesis involves a novel nuclear envelop remodeling mechanism in Schmidtea mediterranea. Dev Biol 2025; 520:13-20. [PMID: 39732384 DOI: 10.1016/j.ydbio.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively. Besides closed mitosis in fungi and open mitosis in some animals, little is known about the evolution of nuclear envelope remodeling dynamics during oogenesis. Here, we uncovered a novel form of nuclear envelope remodeling as oocytes are formed in the flatworm Schmidtea mediterranea. From zygotene to metaphase II, both nuclear envelope (NE) and peripheral endoplasmic reticulum (ER) expand notably in size, likely involving de novo membrane synthesis. 3-D electron microscopy reconstructions demonstrated that the NE transforms itself into numerous double-membraned vesicles similar in membrane architecture to NE doublets in mammalian oocytes after germinal vesicle breakdown. The vesicles are devoid of nuclear pore complexes and DNA, yet are loaded with nuclear proteins, including a planarian homologue of PIWI, a protein essential for the maintenance of stem cells in this and other organisms. Our data contribute a new model to the canonical view of NE dynamics and suggest important roles of NE remodeling in planarian oogenesis.
Collapse
Affiliation(s)
- Longhua Guo
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA; Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Shasha Zhang
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - An Zeng
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Melainia McClain
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Claus-D Kuhn
- Gene Regulation by Non-coding RNA, Elite Network of Bavaria and University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95447, Germany
| | - Tari Parmely
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
| |
Collapse
|
6
|
Lu J, Xu H, Wang D, Chen Y, Inoue T, Gao L, Lei K. 3D reconstruction of neuronal allometry and neuromuscular projections in asexual planarians using expansion tiling light sheet microscopy. eLife 2025; 13:RP101103. [PMID: 40152910 PMCID: PMC11957544 DOI: 10.7554/elife.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
The intricate coordination of the neural network in planarian growth and regeneration has remained largely unrevealed, partly due to the challenges of imaging the CNS in three dimensions (3D) with high resolution and within a reasonable timeframe. To address this gap in systematic imaging of the CNS in planarians, we adopted high-resolution, nanoscale imaging by combining tissue expansion and tiling light-sheet microscopy, achieving up to fourfold linear expansion. Using an automatic 3D cell segmentation pipeline, we quantitatively profiled neurons and muscle fibers at the single-cell level in over 400 wild-type planarians during homeostasis and regeneration. We validated previous observations of neuronal cell number changes and muscle fiber distribution. We found that the increase in neuron cell number tends to lag behind the rapid expansion of somatic cells during the later phase of homeostasis. By imaging the planarian with up to 120 nm resolution, we also observed distinct muscle distribution patterns at the anterior and posterior poles. Furthermore, we investigated the effects of β-catenin-1 RNAi on muscle fiber distribution at the posterior pole, consistent with changes in anterior-posterior polarity. The glial cells were observed to be close in contact with dorsal-ventral muscle fibers. Finally, we observed disruptions in neural-muscular networks in inr-1 RNAi planarians. These findings provide insights into the detailed structure and potential functions of the neural-muscular system in planarians and highlight the accessibility of our imaging tool in unraveling the biological functions underlying their diverse phenotypes and behaviors.
Collapse
Affiliation(s)
- Jing Lu
- College of Life Sciences, Zhejiang UniversityHangzhouChina
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
| | - Hao Xu
- College of Life Sciences, Zhejiang UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
| | - Dongyue Wang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Institute of Biology, Westlake Institute for Advanced StudyHangzhouChina
| | - Yanlu Chen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Institute of Biology, Westlake Institute for Advanced StudyHangzhouChina
| | - Takeshi Inoue
- Division of Adaptation Physiology, Faculty of Medicine, Tottori UniversityYonagoJapan
| | - Liang Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Biology, Westlake Institute for Advanced StudyHangzhouChina
| | - Kai Lei
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Institute of Biology, Westlake Institute for Advanced StudyHangzhouChina
| |
Collapse
|
7
|
Saad LO, Cooke TF, Atabay KD, Reddien PW, Brown FD. Reduced adult stem cell fate specification led to eye reduction in cave planarians. Nat Commun 2025; 16:304. [PMID: 39746937 PMCID: PMC11696554 DOI: 10.1038/s41467-024-54478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025] Open
Abstract
Eye loss occurs convergently in numerous animal phyla as an adaptation to dark environments. We investigate the cave planarian Girardia multidiverticulata (Gm), a representative species of the Spiralian clade, to study mechanisms of eye loss. We found that Gm, which was previously described as an eyeless species, retains rudimentary and functional eyes. Eyes are maintained in homeostasis and regenerated in adult planarians by stem cells, called neoblasts, through their fate specification to eye progenitors. The reduced number of eye cells in cave planarians is associated with a decreased rate of stem cell fate specification to eye progenitors during homeostasis and regeneration. Conversely, the homeostatic formation of new cells from stem cell-derived progenitors for other tissues, including for neurons, pharynx, and epidermis, is comparable between cave and surface species. These findings reveal a mode of evolutionary trait loss, with change in rate of fate specification in adult stem cells leading to tissue size reduction.
Collapse
Affiliation(s)
- Luiza O Saad
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Thomas F Cooke
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kutay D Atabay
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Federico D Brown
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
8
|
Ghosh P, Wadsworth BC, Terry L, Evans TA. Evolutionary conservation of midline axon guidance activity between Drosophila and Tribolium Frazzled. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629797. [PMID: 39763719 PMCID: PMC11702761 DOI: 10.1101/2024.12.20.629797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The regulation of midline crossing of axons is of fundamental importance for the proper development of nervous system connectivity in bilaterian animals. A number of conserved axon guidance signaling pathways coordinate to attract or repel axons at the nervous system midline to ensure the proper regulation of midline crossing. The attractive Netrin-Frazzled/DCC (Net-Fra) signaling pathway is widely conserved among bilaterians, but it is not clear whether the mechanisms by which Net and Fra promote midline crossing are also conserved. In Drosophila, Fra can promote midline crossing via Netrin-dependent and Netrin-independent mechanisms, by acting as a canonical midline attractive receptor and also through a non-canonical pathway to inhibit midline repulsion via transcriptional regulation. To examine the conservation of Fra-dependent axon guidance mechanisms among insects, in this paper we compare the midline attractive roles of the Frazzled receptor in the fruit fly (Drosophila melanogaster) and flour beetle (Tribolium castaneum) using CRISPR/Cas9-mediated gene editing. We replace the Drosophila fra gene with sequences encoding Drosophila Fra (DmFra) or Tribolium Fra (TcFra) and examine midline crossing of axons in the ventral nerve cord of embryos carrying these modified alleles. We show that Tribolium Fra can fully substitute for Drosophila Fra to promote midline crossing of axons in the embryonic nervous system, suggesting that the mechanisms by which Frazzled regulates midline axon guidance may be evolutionarily conserved within insects.
Collapse
Affiliation(s)
- Piyasi Ghosh
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701
| | | | - Logan Terry
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701
| | - Timothy A. Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701
| |
Collapse
|
9
|
Medlock-Lanier T, Clay KB, Roberts-Galbraith RH. Planarian LDB and SSDP proteins scaffold transcriptional complexes for regeneration and patterning. Dev Biol 2024; 515:67-78. [PMID: 38968988 PMCID: PMC11361279 DOI: 10.1016/j.ydbio.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Sequence-specific transcription factors often function as components of large regulatory complexes. LIM-domain binding protein (LDB) and single-stranded DNA-binding protein (SSDP) function as core scaffolds of transcriptional complexes in animals and plants. Little is known about potential partners and functions for LDB/SSDP complexes in the context of tissue regeneration. In this work, we find that planarian LDB1 and SSDP2 promote tissue regeneration, with a particular function in anterior regeneration and mediolateral polarity reestablishment. We find that LDB1 and SSDP2 interact with one another and with characterized planarian LIM-HD proteins Arrowhead, Islet1, and Lhx1/5-1. We also show that SSDP2 and LDB1 function with islet1 in polarity reestablishment and with lhx1/5-1 in serotonergic neuron maturation. Finally, we find new roles for LDB1 and SSDP2 in regulating gene expression in the planarian intestine and parenchyma; these functions are likely LIM-HD-independent. Together, our work provides insight into LDB/SSDP complexes in a highly regenerative organism. Further, our work provides a strong starting point for identifying and characterizing potential binding partners of LDB1 and SSDP2 and for exploring roles for these proteins in diverse aspects of planarian physiology.
Collapse
Affiliation(s)
| | - Kendall B Clay
- Neuroscience Program, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
10
|
Ross KG, Alvarez Zepeda S, Auwal MA, Garces AK, Roman S, Zayas RM. The Role of Polycystic Kidney Disease-Like Homologs in Planarian Nervous System Regeneration and Function. Integr Org Biol 2024; 6:obae035. [PMID: 39364443 PMCID: PMC11448475 DOI: 10.1093/iob/obae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 10/05/2024] Open
Abstract
Planarians are an excellent model for investigating molecular mechanisms necessary for regenerating a functional nervous system. Numerous studies have led to the generation of extensive genomic resources, especially whole-animal single-cell RNA-seq resources. These have facilitated in silico predictions of neuronal subtypes, many of which have been anatomically mapped by in situ hybridization. However, our knowledge of the function of dozens of neuronal subtypes remains poorly understood. Previous investigations identified that polycystic kidney disease (pkd)-like genes in planarians are strongly expressed in sensory neurons and have roles in mechanosensation. Here, we examine the expression and function of all the pkd genes found in the Schmidtea mediterranea genome and map their expression in the asexual and hermaphroditic strains. Using custom behavioral assays, we test the function of pkd genes in response to mechanical stimulation and in food detection. Our work provides insight into the physiological function of sensory neuron populations and protocols for creating inexpensive automated setups for acquiring and analyzing mechanosensory stimulation in planarians.
Collapse
Affiliation(s)
- K G Ross
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - S Alvarez Zepeda
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - M A Auwal
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - A K Garces
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - S Roman
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - R M Zayas
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| |
Collapse
|
11
|
Hulett RE, Rivera-López C, Gehrke AR, Gompers A, Srivastava M. A wound-induced differentiation trajectory for neurons. Proc Natl Acad Sci U S A 2024; 121:e2322864121. [PMID: 38976727 PMCID: PMC11260127 DOI: 10.1073/pnas.2322864121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/03/2024] [Indexed: 07/10/2024] Open
Abstract
Animals capable of whole-body regeneration can replace any missing cell type and regenerate fully functional new organs, including new brains, de novo. The regeneration of a new brain requires the formation of diverse neural cell types and their assembly into an organized structure with correctly wired circuits. Recent work in various regenerative animals has revealed transcriptional programs required for the differentiation of distinct neural subpopulations, however, how these transcriptional programs are initiated in response to injury remains unknown. Here, we focused on the highly regenerative acoel worm, Hofstenia miamia, to study wound-induced transcriptional regulatory events that lead to the production of neurons and subsequently a functional brain. Footprinting analysis using chromatin accessibility data on a chromosome-scale genome assembly revealed that binding sites for the Nuclear Factor Y (NFY) transcription factor complex were significantly bound during regeneration, showing a dynamic increase in binding within one hour upon amputation specifically in tail fragments, which will regenerate a new brain. Strikingly, NFY targets were highly enriched for genes with neuronal function. Single-cell transcriptome analysis combined with functional studies identified soxC+ stem cells as a putative progenitor population for multiple neural subtypes. Further, we found that wound-induced soxC expression is likely under direct transcriptional control by NFY, uncovering a mechanism for the initiation of a neural differentiation pathway by early wound-induced binding of a transcriptional regulator.
Collapse
Affiliation(s)
- Ryan E. Hulett
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Carlos Rivera-López
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA02138
| | - Andrew R. Gehrke
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Annika Gompers
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| |
Collapse
|
12
|
Issigonis M, Browder KL, Chen R, Collins JJ, Newmark PA. A niche-derived nonribosomal peptide triggers planarian sexual development. Proc Natl Acad Sci U S A 2024; 121:e2321349121. [PMID: 38889152 PMCID: PMC11214079 DOI: 10.1073/pnas.2321349121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Germ cells are regulated by local microenvironments (niches), which secrete instructive cues. Conserved developmental signaling molecules act as niche-derived regulatory factors, yet other types of niche signals remain to be identified. Single-cell RNA-sequencing of sexual planarians revealed niche cells expressing a nonribosomal peptide synthetase (nrps). Inhibiting nrps led to loss of female reproductive organs and testis hyperplasia. Mass spectrometry detected the dipeptide β-alanyl-tryptamine (BATT), which is associated with reproductive system development and requires nrps and a monoamine-transmitter-synthetic enzyme Aromatic L-amino acid decarboxylase (AADC) for its production. Exogenous BATT rescued the reproductive defects after nrps or aadc inhibition, restoring fertility. Thus, a nonribosomal, monoamine-derived peptide provided by niche cells acts as a critical signal to trigger planarian reproductive development. These findings reveal an unexpected function for monoamines in niche-germ cell signaling. Furthermore, given the recently reported role for BATT as a male-derived factor required for reproductive maturation of female schistosomes, these results have important implications for the evolution of parasitic flatworms and suggest a potential role for nonribosomal peptides as signaling molecules in other organisms.
Collapse
Affiliation(s)
- Melanie Issigonis
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI53715
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI53715
| | - Katherine L. Browder
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI53715
- HMI, University of Wisconsin-Madison, Madison, WI53715
| | - Rui Chen
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - James J. Collins
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Phillip A. Newmark
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI53715
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI53715
- HMI, University of Wisconsin-Madison, Madison, WI53715
| |
Collapse
|
13
|
Jimenez-Guri E, Paganos P, La Vecchia C, Annona G, Caccavale F, Molina MD, Ferrández-Roldán A, Donnellan RD, Salatiello F, Johnstone A, Eliso MC, Spagnuolo A, Cañestro C, Albalat R, Martín-Durán JM, Williams EA, D'Aniello E, Arnone MI. Developmental toxicity of pre-production plastic pellets affects a large swathe of invertebrate taxa. CHEMOSPHERE 2024; 356:141887. [PMID: 38583530 DOI: 10.1016/j.chemosphere.2024.141887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Microplastics pose risks to marine organisms through ingestion, entanglement, and as carriers of toxic additives and environmental pollutants. Plastic pre-production pellet leachates have been shown to affect the development of sea urchins and, to some extent, mussels. The extent of those developmental effects on other animal phyla remains unknown. Here, we test the toxicity of environmental mixed nurdle samples and new PVC pellets for the embryonic development or asexual reproduction by regeneration of animals from all the major animal superphyla (Lophotrochozoa, Ecdysozoa, Deuterostomia and Cnidaria). Our results show diverse, concentration-dependent impacts in all the species sampled for new pellets, and for molluscs and deuterostomes for environmental samples. Embryo axial formation, cell specification and, specially, morphogenesis seem to be the main processes affected by plastic leachate exposure. Our study serves as a proof of principle for the potentially catastrophic effects that increasing plastic concentrations in the oceans and other ecosystems can have across animal populations from all major animal superphyla.
Collapse
Affiliation(s)
- Eva Jimenez-Guri
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy; Center for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK.
| | - Periklis Paganos
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Claudia La Vecchia
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Giovanni Annona
- Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological Resources, Naples, Italy
| | - Filomena Caccavale
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Maria Dolores Molina
- Department of Genetica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Catalunya, Spain
| | - Alfonso Ferrández-Roldán
- Department of Genetica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain; Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain
| | - Rory Daniel Donnellan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Federica Salatiello
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Adam Johnstone
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Maria Concetta Eliso
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Antonietta Spagnuolo
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Cristian Cañestro
- Department of Genetica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain; Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain
| | - Ricard Albalat
- Department of Genetica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain; Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain
| | - José María Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Elizabeth A Williams
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Enrico D'Aniello
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| |
Collapse
|
14
|
Avalos PN, Wong LL, Forsthoefel DJ. Extracellular vesicles promote proliferation in an animal model of regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586206. [PMID: 38712279 PMCID: PMC11071309 DOI: 10.1101/2024.03.22.586206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Extracellular vesicles (EVs) are secreted nanoparticles composed of a lipid bilayer that carry lipid, protein, and nucleic acid cargo between cells as a mode of intercellular communication. Although EVs can promote tissue repair in mammals, their roles in animals with greater regenerative capacity are not well understood. Planarian flatworms are capable of whole body regeneration due to pluripotent somatic stem cells called neoblasts that proliferate in response to injury. Here, using transmission electron microscopy, nanoparticle tracking analysis, and protein content examination, we showed that EVs enriched from the tissues of the planarian Schmidtea mediterranea had similar morphology and size as other eukaryotic EVs, and that these EVs carried orthologs of the conserved EV biogenesis regulators ALIX and TSG101. PKH67-labeled EVs were taken up more quickly by S/G2 neoblasts than G1 neoblasts/early progeny and differentiated cells. When injected into living planarians, EVs from regenerating tissue fragments enhanced upregulation of neoblast-associated transcripts. In addition, EV injection increased the number of F-ara-EdU-labelled cells by 49% as compared to buffer injection only. Our findings demonstrate that regenerating planarians produce EVs that promote stem cell proliferation, and suggest the planarian as an amenable in vivo model for the study of EV function during regeneration.
Collapse
Affiliation(s)
- Priscilla N. Avalos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Lily L. Wong
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - David J. Forsthoefel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| |
Collapse
|
15
|
Issigonis M, Browder KL, Chen R, Collins JJ, Newmark PA. A niche-derived non-ribosomal peptide triggers planarian sexual development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570471. [PMID: 38106172 PMCID: PMC10723454 DOI: 10.1101/2023.12.06.570471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Germ cells are regulated by local microenvironments (niches), which secrete instructive cues. Conserved developmental signaling molecules act as niche-derived regulatory factors, yet other types of niche signals remain to be identified. Single-cell RNA-sequencing of sexual planarians revealed niche cells expressing a non-ribosomal peptide synthetase (nrps). Inhibiting nrps led to loss of female reproductive organs and testis hyperplasia. Mass spectrometry detected the dipeptide β-alanyl-tryptamine (BATT), which is associated with reproductive system development and requires nrps and a monoamine-transmitter-synthetic enzyme (AADC) for its production. Exogenous BATT rescued the reproductive defects after nrps or aadc inhibition, restoring fertility. Thus, a non-ribosomal, monoamine-derived peptide provided by niche cells acts as a critical signal to trigger planarian reproductive development. These findings reveal an unexpected function for monoamines in niche-germ cell signaling. Furthermore, given the recently reported role for BATT as a male-derived factor required for reproductive maturation of female schistosomes, these results have important implications for the evolution of parasitic flatworms and suggest a potential role for non-ribosomal peptides as signaling molecules in other organisms.
Collapse
Affiliation(s)
- Melanie Issigonis
- Morgridge Institute for Research, University of Wisconsin-Madison; Madison, WI 53715
- Department of Integrative Biology, University of Wisconsin-Madison; Madison, WI 53715
| | - Katherine L. Browder
- Department of Integrative Biology, University of Wisconsin-Madison; Madison, WI 53715
- Howard Hughes Medical Institute, University of Wisconsin-Madison; Madison, WI 53715
| | - Rui Chen
- Department of Pharmacology, UT Southwestern Medical Center; Dallas, TX 75390
| | - James J. Collins
- Department of Pharmacology, UT Southwestern Medical Center; Dallas, TX 75390
| | - Phillip A. Newmark
- Morgridge Institute for Research, University of Wisconsin-Madison; Madison, WI 53715
- Department of Integrative Biology, University of Wisconsin-Madison; Madison, WI 53715
- Howard Hughes Medical Institute, University of Wisconsin-Madison; Madison, WI 53715
| |
Collapse
|
16
|
Molina MD, Abduljabbar D, Guixeras A, Fraguas S, Cebrià F. LIM-HD transcription factors control axial patterning and specify distinct neuronal and intestinal cell identities in planarians. Open Biol 2023; 13:230327. [PMID: 38086422 PMCID: PMC10715919 DOI: 10.1098/rsob.230327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Adult planarians can regenerate the gut, eyes and even a functional brain. Proper identity and patterning of the newly formed structures require signals that guide and commit their adult stem cells. During embryogenesis, LIM-homeodomain (LIM-HD) transcription factors act in a combinatorial 'LIM code' to control cell fate determination and differentiation. However, our understanding about the role these genes play during regeneration and homeostasis is limited. Here, we report the full repertoire of LIM-HD genes in Schmidtea mediterranea. We found that lim homeobox (lhx) genes appear expressed in complementary patterns along the cephalic ganglia and digestive system of the planarian, with some of them being co-expressed in the same cell types. We have identified that Smed-islet1, -lhx1/5-1, -lhx2/9-3, -lhx6/8, -lmx1a/b-2 and -lmx1a/b-3 are essential to pattern and size the planarian brain as well as for correct regeneration of specific subpopulations of dopaminergic, serotonergic, GABAergic and cholinergic neurons, while Smed-lhx1/5.2 and -lhx2/9.2 are required for the proper expression of intestinal cell type markers, specifically the goblet subtype. LIM-HD are also involved in controlling axonal pathfinding (lhx6/8), axial patterning (islet1, lhx1/5-1, lmx1a/b-3), head/body proportions (islet2) and stem cell proliferation (lhx3/4, lhx2/9-3, lmx1a/b-2, lmx1a/b-3). Altogether, our results suggest that planarians might present a combinatorial LIM code that controls axial patterning and axonal growing and specifies distinct neuronal and intestinal cell identities.
Collapse
Affiliation(s)
- M. Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Dema Abduljabbar
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Anna Guixeras
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Susanna Fraguas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
17
|
Chandra B, Voas MG, Davies EL, Roberts-Galbraith RH. Ets-1 transcription factor regulates glial cell regeneration and function in planarians. Development 2023; 150:dev201666. [PMID: 37665145 PMCID: PMC10508700 DOI: 10.1242/dev.201666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Glia play multifaceted roles in nervous systems in response to injury. Depending on the species, extent of injury and glial cell type in question, glia can help or hinder the regeneration of neurons. Studying glia in the context of successful regeneration could reveal features of pro-regenerative glia that could be exploited for new human therapies. Planarian flatworms completely regenerate their nervous systems after injury - including glia - and thus provide a strong model system for exploring glia in the context of regeneration. Here, we report that planarian glia regenerate after neurons, and that neurons are required for correct glial numbers and localization during regeneration. We also identify the planarian transcription factor-encoding gene ets-1 as a key regulator of glial cell maintenance and regeneration. Using ets-1 (RNAi) to perturb glia, we show that glial loss is associated with altered neuronal gene expression, impeded animal movement and impaired nervous system architecture - particularly within the neuropil. Importantly, our work reveals the inter-relationships of glia and neurons in the context of robust neural regeneration.
Collapse
Affiliation(s)
- Bidushi Chandra
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew G. Voas
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Erin L. Davies
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | |
Collapse
|
18
|
Clark EG, Petersen CP. BMP suppresses WNT to integrate patterning of orthogonal body axes in adult planarians. PLoS Genet 2023; 19:e1010608. [PMID: 37729232 PMCID: PMC10545109 DOI: 10.1371/journal.pgen.1010608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 10/02/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Adult regeneration restores patterning of orthogonal body axes after damage in a post-embryonic context. Planarians regenerate using distinct body-wide signals primarily regulating each axis dimension: anteroposterior Wnts, dorsoventral BMP, and mediolateral Wnt5 and Slit determinants. How regeneration can coordinate perpendicular tissue axes without symmetry-breaking embryonic events is not fully understood. Here, we report that the planarian dorsoventral regulator bmp4 suppresses the posterior determinant wnt1 to provide patterning input to the anteroposterior axis. Double-FISH identified distinct anteroposterior domains within dorsal midline muscle that express either bmp4 or wnt1. Homeostatic inhibition bmp4 and smad1 expanded the wnt1 expression anteriorly, while elevation of BMP signaling through nog1;nog2 RNAi reduced the wnt1 expression domain and elevated bmp4 expression. Homeostatic BMP signal perturbation broadly affected anteroposterior identity as measured by expression of posterior Wnt pathway factors, and caused mislocalization of AP-regionalized pharynx progenitors, without strongly affecting expression domains of anterior regulators. Additionally, wnt1 inhibition elevated bmp4 expression in the tip of the tail. Therefore, dorsal BMP signals and posterior wnt1 mutually antagonize for patterning the tail. Furthermore, homeostatic bmp4 RNAi caused medial expansion of the lateral determinant wnt5 and reduced expression of the medial regulator slit. By contrast, nog1;nog2 RNAi restricted wnt5 expression. Double RNAi of bmp4 and wnt5 resulted in lateral ectopic eye phenotypes, suggesting bmp4 acts upstream of wnt5 to pattern the mediolateral axis. These results indicate bmp4 controls dorsoventral information and also, through suppression of Wnt signals, influences anteroposterior and mediolateral identity. Based on related functions across vertebrates and Cnidarians, Wnt and BMP cross-regulation could form an ancient mechanism for coordinating orthogonal axis patterning.
Collapse
Affiliation(s)
- Eleanor G. Clark
- Department of Molecular Biosciences, Northwestern University; Evanston Illinois, United States of America
| | - Christian P. Petersen
- Department of Molecular Biosciences, Northwestern University; Evanston Illinois, United States of America
- Robert Lurie Comprehensive Cancer Center, Northwestern University; Evanston, Illinois, United States of America
| |
Collapse
|
19
|
Jones S, Matos B, Dennison S, Fardilha M, Howl J. Stem Cell Bioengineering with Bioportides: Inhibition of Planarian Head Regeneration with Peptide Mimetics of Eyes Absent Proteins. Pharmaceutics 2023; 15:2018. [PMID: 37631231 PMCID: PMC10458859 DOI: 10.3390/pharmaceutics15082018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Djeya1 (RKLAFRYRRIKELYNSYR) is a very effective cell penetrating peptide (CPP) that mimics the α5 helix of the highly conserved Eya domain (ED) of eyes absent (Eya) proteins. The objective of this study was to bioengineer analogues of Djeya1 that, following effective translocation into planarian tissues, would reduce the ability of neoblasts (totipotent stem cells) and their progeny to regenerate the anterior pole in decapitated S. mediterranea. As a strategy to increase the propensity for helix formation, molecular bioengineering of Djeya1 was achieved by the mono-substitution of the helicogenic aminoisobutyric acid (Aib) at three species-variable sites: 10, 13, and 16. CD analyses indicated that Djeya1 is highly helical, and that Aib-substitution had subtle influences upon the secondary structures of bioengineered analogues. Aib-substituted Djeya1 analogues are highly efficient CPPs, devoid of influence upon cell viability or proliferation. All three peptides increase the migration of PC-3 cells, a prostate cancer line that expresses high concentrations of Eya. Two peptides, [Aib13]Djeya1 and [Aib16]Djeya1, are bioportides which delay planarian head regeneration. As neoblasts are the only cell population capable of division in planaria, these data indicate that bioportide technologies could be utilised to directly manipulate other stem cells in situ, thus negating any requirement for genetic manipulation.
Collapse
Affiliation(s)
- Sarah Jones
- Research Institute in Healthcare Science, Faculty of Science & Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
| | - Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (B.M.); (M.F.)
| | - Sarah Dennison
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (B.M.); (M.F.)
| | - John Howl
- Research Institute in Healthcare Science, Faculty of Science & Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
| |
Collapse
|
20
|
Hulett RE, Gehrke AR, Gompers A, Rivera-López C, Srivastava M. A wound-induced differentiation trajectory for neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540286. [PMID: 37214981 PMCID: PMC10197691 DOI: 10.1101/2023.05.10.540286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Animals capable of whole-body regeneration can replace any missing cell type and regenerate fully-functional new organs, de novo . The regeneration of a new brain requires the formation of diverse neuronal cell types and their assembly into an organized structure and correctly-wired circuits. Recent work in various regenerative animals has revealed transcriptional programs required for the differentiation of distinct neuronal subpopulations, however how these transcriptional programs are initiated upon amputation remains unknown. Here, we focused on the highly regenerative acoel worm, Hofstenia miamia , to study wound-induced transcriptional regulatory events that lead to the production of neurons. Footprinting analysis using chromatin accessibility data on an improved genome assembly revealed that binding sites for the NFY transcription factor complex were significantly bound during regeneration, showing a dynamic increase in binding within one hour upon amputation specifically in tail fragments, which will regenerate a new brain. Strikingly, NFY targets were highly enriched for genes with neuronal functional. Single-cell transcriptome analysis combined with functional studies identified sox4 + stem cells as the likely progenitor population for multiple neuronal subtypes. Further, we found that wound-induced sox4 expression is likely under direct transcriptional control by NFY, uncovering a mechanism for how early wound-induced binding of a transcriptional regulator results in the initiation of a neuronal differentiation pathway. Highlights A new chromosome-scale assembly for Hofstenia enables comprehensive analysis of transcription factor binding during regeneration NFY motifs become dynamically bound by 1hpa in regenerating tail fragments, particularly in the loci of neural genes A sox4 + neural-specialized stem cell is identified using scRNA-seq sox4 is wound-induced and required for differentiation of multiple neural cell types NFY regulates wound-induced expression of sox4 during regeneration.
Collapse
|
21
|
Campillo N, Ireland D, Patel Y, Collins EMS. A Simple Method for Quantifying Blastema Growth in Regenerating Planarians. Curr Protoc 2023; 3:e684. [PMID: 36877155 PMCID: PMC10558012 DOI: 10.1002/cpz1.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Due to their strong regenerative capabilities, freshwater planarians are a well-suited model system for studying the effects of chemicals on stem cell biology and regeneration. After amputation, a planarian will regenerate the missing body parts within 1 to 2 weeks. Because planarians have a distinct head morphology that can be easily identified, head and eye regeneration has been a popular qualitative measure of toxicity. However, qualitative measures can only detect strong defects. Here, we present protocols for quantifying the rate of blastema growth to measure regeneration defects for assessment of chemical toxicity. Following amputation, a regenerative blastema forms at the wound site. Over the course of several days, the blastema grows and subsequently re-forms the missing anatomical structures. This growth can be measured by imaging the regenerating planarian. As the blastema tissue is unpigmented, it can be easily distinguished from the remaining pigmented body using standard image analysis techniques. Basic Protocol 1 provides a step-by-step guide for imaging regenerating planarians over several days of regeneration. Basic Protocol 2 describes the necessary steps for the quantification of blastema size using freeware. It is accompanied by video tutorials to facilitate adaptation. Basic Protocol 3 shows how to calculate the growth rate using linear curve fitting in a spreadsheet. The ease of implementation and low cost make this procedure suitable for an undergraduate laboratory teaching setting, in addition to typical research settings. Although we focus on head regeneration in Dugesia japonica, these protocols are adaptable to other wound sites and planarian species. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Imaging planarians during regeneration Basic Protocol 2: Quantitative analysis of blastema size with ImageJ Basic Protocol 3: Quantification of blastema growth rate.
Collapse
Affiliation(s)
- Natali Campillo
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
- These authors contributed equally to this work
| | - Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
- These authors contributed equally to this work
| | - Yashvi Patel
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Physics, University of California San Diego, La Jolla, California
| |
Collapse
|
22
|
McClain ML, Nowotarski SH. Serial block-face scanning electron microscopy of Schmidtea mediterranea. Methods Cell Biol 2023; 177:213-240. [PMID: 37451768 DOI: 10.1016/bs.mcb.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
The flatworm planarian, Schmidtea mediterranea (Smed) is a master at regenerating and rebuilding whole animals from fragments. A full understanding of Smed's regenerative capabilities requires a high-resolution characterization of organs, tissues, and the adult stem cells necessary for regeneration in their native environment. Here, we describe a serial block face scanning electron microscopy (SBF-SEM) protocol, optimized for Smed specifically, for visualizing the ultrastructure of membranes and condensed chromosomes in this model organism.
Collapse
Affiliation(s)
| | - Stephanie H Nowotarski
- Stowers Institute for Medical Research, Kansas City, MO, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
23
|
Lei K, Zhang W, Chen J, McKinney SA, Ross EJ, Lee HC, Sánchez Alvarado A. Pluripotency retention and exogenous mRNA introduction in planarian stem cells in culture. iScience 2023; 26:106001. [PMID: 36866042 PMCID: PMC9971864 DOI: 10.1016/j.isci.2023.106001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Planarians possess naturally occurring pluripotent adult somatic stem cells (neoblasts) required for homeostasis and whole-body regeneration. However, no reliable neoblast culture methods are currently available, hindering mechanistic studies of pluripotency and the development of transgenic tools. We report robust methods for neoblast culture and delivery of exogenous mRNAs. We identify optimal culture media for the short-term maintenance of neoblasts in vitro and show via transplantation that cultured stem cells retain pluripotency for two days. We developed a procedure that significantly improves neoblast yield and purity by modifying standard flow cytometry methods. These methods enable the introduction and expression of exogenous mRNAs in neoblasts, overcoming a key hurdle impeding the application of transgenics in planarians. The advances in cell culture reported here create new opportunities for mechanistic studies of planarian adult stem cell pluripotency, and provide a systematic framework to develop cell culture techniques in other emerging research organisms.
Collapse
Affiliation(s)
- Kai Lei
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Wenya Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Jiajia Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Sean A. McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Eric J. Ross
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Heng-Chi Lee
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| |
Collapse
|
24
|
Medlock-Lanier T, Clay KB, Roberts-Galbraith RH. Planarian LDB and SSDP proteins scaffold transcriptional complexes for regeneration and patterning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527523. [PMID: 36798167 PMCID: PMC9934679 DOI: 10.1101/2023.02.07.527523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Sequence-specific transcription factors often function as components of large regulatory complexes. LIM-domain binding protein (LDB) and single-stranded DNA-binding protein (SSDP) function as core scaffolds of transcriptional complexes in animals and plants. Little is known about potential partners and functions for LDB/SSDP complexes in the context of tissue regeneration. In this work, we find that planarian LDB1 and SSDP2 promote tissue regeneration, with a particular function in mediolateral polarity reestablishment. We find that LDB1 and SSDP2 interact with one another and with characterized planarian LIM-HD proteins Arrowhead, Islet1, and Lhx1/5-1. SSDP2 and LDB1 also function with islet1 in polarity reestablishment and with lhx1/5-1 in serotonergic neuron maturation. Finally, we show new roles for LDB1 and SSDP2 in regulating gene expression in the planarian intestine and parenchyma; these functions may be LIM-HD-independent. Together, our work provides insight into LDB/SSDP complexes in a highly regenerative organism. Further, our work provides a strong starting point for identifying and characterizing potential binding partners of LDB1 and SSDP2 and for exploring roles for these proteins in diverse aspects of planarian physiology.
Collapse
Affiliation(s)
| | - Kendall B Clay
- Neuroscience Program, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
25
|
Guo Y, Sun Y, Ma M, Huang Y, Zhang S, Tian Q. Djsnon, a downstream gene of Djfoxk1, is required for the regeneration of the planarian central nervous system. Biochem Biophys Res Commun 2023; 643:8-15. [PMID: 36584589 DOI: 10.1016/j.bbrc.2022.12.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Regulators of adult neurogenesis are crucial targets for neuronal repair. Freshwater planarians are ideal model systems for studying neuronal regeneration as they can regenerate their entire central nervous system (CNS) using pluripotent adult stem cells. Here, we identified Djfoxk1 in planarian Dugesia japonica to be required for planarian CNS regeneration. Knockdown of Djfoxk1 inhibits the regeneration of the cephalic ganglia, resulting in the failure of eye regeneration. By RNAi screening of Djfoxk1 downstream genes, we identified Djsnon as another regulator of planarian neuronal regeneration. Inhibition of Djsnon with RNA interference (RNAi) results in similar phenotypes caused by Djfoxk1 RNAi without affecting cell proliferation and wound healing. Our findings show that Djsnon as a downstream gene of Djfoxk1 regulates the regeneration of the planarian CNS.
Collapse
Affiliation(s)
- Yajun Guo
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yujia Sun
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengwen Ma
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongding Huang
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shoutao Zhang
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China.
| | - Qingnan Tian
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
26
|
Djck1α Is Required for Proper Regeneration and Maintenance of the Medial Tissues in Planarians. Cells 2023; 12:cells12030473. [PMID: 36766815 PMCID: PMC9913719 DOI: 10.3390/cells12030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
CK1α (Casein kinase 1α) is a member of the casein kinase 1(CK1) family that is involved in diverse cellular processes, but its functions remain unclear in stem cell development. Freshwater planarians are capable of whole-body regeneration, making it a classic model for the study of regeneration, tissue homeostasis, and polarity in vivo. To investigate the roles of CK1α in regeneration and homeostasis progress, we characterize a homolog of CK1α from planarian Dugesia japonica. We find that Djck1α, which shows an enriched expression pattern in the nascent tissues, is widely expressed especially in the medial regions of planarians. Knockdown of CK1α by RNAi presents a thicker body due to dorsal hyperplasia, along with defects in the medial tissues including nerve proliferation, missing epidermis, intestine disturbance, and hyper-proliferation during the progression of regeneration and homeostasis. Moreover, we find that the ck1α RNAi animals exhibit expansion of the midline marker slit. The eye deficiency induced by slit RNAi can be rescued by ck1α and slit double RNAi. These results suggest that ck1α is required for the medial tissue regeneration and maintenance in planarian Dugesia japonica by regulating the expression of slit, which helps to further investigate the regulation of planarian mediolateral axis.
Collapse
|
27
|
Rabeler C, Gong T, Ireland D, Cochet-Escartin O, Collins EMS. Acetylcholinesterase Activity Staining in Freshwater Planarians. Curr Protoc 2023; 3:e674. [PMID: 36799654 PMCID: PMC9942112 DOI: 10.1002/cpz1.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The serine hydrolase acetylcholinesterase (AChE) is an important neuronal enzyme which catalyzes the hydrolysis of the neurotransmitter acetylcholine and other choline esters. The breakdown of acetylcholine by AChE terminates synaptic transmission and regulates neuromuscular communication. AChE inhibition is a common mode of action of various insecticides, such as carbamates and organophosphorus pesticides. Freshwater planarians, especially the species Dugesia japonica, have been shown to possess AChE activity and to be a suitable alternative model for studying the effects of pesticides in vivo. AChE activity can be quantified in homogenates using the Ellman assay. However, this biochemical assay requires specialized equipment and large numbers of planarians. Here, we present a protocol for visualizing AChE activity in individual planarians. Activity staining can be completed in several hours and can be executed using standard laboratory equipment (a fume hood, nutator, and light microscope with imaging capability). We describe the steps for preparing the reagents, and the staining and imaging of the planarians. Planarians are treated with 10% acetic acid and fixed with 4% paraformaldehyde and then incubated in a staining solution containing the substrate acetylthiocholine. After incubation in the staining solution for 3.5 hr on a nutator at 4°C, or stationary on ice, planarians are washed and mounted for imaging. Using exposure to an organophosphorus pesticide as an example, we show how AChE inhibition leads to a loss of staining. Thus, this simple method can be used to qualitatively evaluate AChE inhibition due to chemical exposure or RNA interference, providing a new tool for mechanistic studies of effects on the cholinergic system. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Preparing the staining solution Basic Protocol 2: Fixing, staining, and imaging whole-mount planarian specimens for visualization of acetylcholinesterase activity.
Collapse
Affiliation(s)
- Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - TaiXi Gong
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Olivier Cochet-Escartin
- Department of Physics, University of California San Diego, La Jolla, CA, United States of America
- Institut Lumière Matière, UMR5306, Lyon, France
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
- Department of Physics, University of California San Diego, La Jolla, CA, United States of America
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
28
|
Fraguas S, Molina MD, Cebrià F. Colorimetric Whole-Mount In Situ Hybridization in Planarians. Methods Mol Biol 2023; 2680:81-91. [PMID: 37428372 DOI: 10.1007/978-1-0716-3275-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Whole-mount in situ hybridization (WISH) is an extremely useful technique for visualizing specific mRNA targets and solving many biological questions. In planarians, this method is really valuable, for example, for determining gene expression profiles during whole-body regeneration and analyzing the effects of silencing any gene to determine their functions. In this chapter, we present in detail the WISH protocol routinely used in our lab, using a digoxigenin-labelled RNA probe and developing with NBT-BCIP. This protocol is basically that already described in Currie et al. (EvoDevo 7:7, 2016), which put together several modifications developed from several laboratories in recent years that improved the original protocol developed in the laboratory of Kiyokazu Agata in 1997. Although this protocol, or slight modifications of it, is the most common protocol in the planarian field for NBT-BCIP WISH, our results show that key steps such as the use and time of NAC treatment to remove the mucus need to be taken into account depending on the nature of the gene analyzed, especially for the epidermal markers.
Collapse
Affiliation(s)
- Susanna Fraguas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Catalunya, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Catalunya, Spain
| | - Mª Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Catalunya, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Catalunya, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Catalunya, Spain.
- Institute of Biomedicine of the University of Barcelona (IBUB), Catalunya, Spain.
| |
Collapse
|
29
|
Font-Martín D, Pascual-Carreras E, Saló E. Combining Fluorescent In Situ Hybridization with Immunofluorescence and Lectin Staining in Planarians. Methods Mol Biol 2023; 2680:67-79. [PMID: 37428371 DOI: 10.1007/978-1-0716-3275-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The capability to simultaneously apply different molecular tools to visualize a wide variety of changes in genetic expression and tissue composition in Schmidtea mediterranea has always been of great interest. The most commonly used techniques are fluorescent in situ hybridization (FISH) and immunofluorescence (IF) detection. Here, we describe a novel way to perform both protocols together adding the possibility to combine them with fluorescent-conjugated lectin staining to further broaden the detection of tissues. We also present a novel lectin fixation protocol to enhance the signal, which could be useful when single-cell resolution is required.
Collapse
Affiliation(s)
- Daniel Font-Martín
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Eudald Pascual-Carreras
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Emili Saló
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalunya, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain.
| |
Collapse
|
30
|
Gittin DI, Petersen CP. A Wnt11 and Dishevelled signaling pathway acts prior to injury to control wound polarization for the onset of planarian regeneration. Curr Biol 2022; 32:5262-5273.e2. [PMID: 36495871 PMCID: PMC9901562 DOI: 10.1016/j.cub.2022.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 12/13/2022]
Abstract
Regeneration is initiated by wounding, but it is unclear how injury-induced signals precisely convey the identity of the tissues requiring replacement. In the planarian Schmidtea mediterranea, the first event in head regeneration is the asymmetric activation of the Wnt inhibitor notum in longitudinal body-wall muscle cells, preferentially at anterior-facing versus posterior-facing wound sites. However, the mechanism driving this early symmetry-breaking event is unknown. We identify a noncanonical Wnt11 and Dishevelled pathway regulating notum polarization, which opposes injury-induced notum-activating Wnt/β-catenin signals and regulates muscle orientation. Using expression analysis and experiments to define a critical time of action, we demonstrate that Wnt11 and Dishevelled signals act prior to injury and in a growth-dependent manner to orient the polarization of notum induced by wounding. In turn, injury-induced notum dictates polarization used in the next round of regeneration. These results identify a self-reinforcing feedback system driving the polarization of blastema outgrowth and indicate that regeneration uses pre-existing tissue information to determine the outcome of wound-induced signals.
Collapse
Affiliation(s)
- David I Gittin
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
31
|
Laws KM, Bashaw GJ. Diverse roles for axon guidance pathways in adult tissue architecture and function. NATURAL SCIENCES (WEINHEIM, GERMANY) 2022; 2:e20220021. [PMID: 37456985 PMCID: PMC10346896 DOI: 10.1002/ntls.20220021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Classical axon guidance ligands and their neuronal receptors were first identified due to their fundamental roles in regulating connectivity in the developing nervous system. Since their initial discovery, it has become clear that these signaling molecules play important roles in the development of a broad array of tissue and organ systems across phylogeny. In addition to these diverse developmental roles, there is a growing appreciation that guidance signaling pathways have important functions in adult organisms, including the regulation of tissue integrity and homeostasis. These roles in adult organisms include both tissue-intrinsic activities of guidance molecules, as well as systemic effects on tissue maintenance and function mediated by the nervous and vascular systems. While many of these adult functions depend on mechanisms that mirror developmental activities, such as regulating adhesion and cell motility, there are also examples of adult roles that may reflect signaling activities that are distinct from known developmental mechanisms, including the contributions of guidance signaling pathways to lineage commitment in the intestinal epithelium and bone remodeling in vertebrates. In this review, we highlight studies of guidance receptors and their ligands in adult tissues outside of the nervous system, focusing on in vivo experimental contexts. Together, these studies lay the groundwork for future investigation into the conserved and tissue-specific mechanisms of guidance receptor signaling in adult tissues.
Collapse
Affiliation(s)
- Kaitlin M. Laws
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Current address: Department of Biology, Randolph-Macon College, Ashland, VA 23005, USA
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Wendt GR, Shiroor DA, Adler CE, Collins JJ. Convergent evolution of a genotoxic stress response in a parasite-specific p53 homolog. Proc Natl Acad Sci U S A 2022; 119:e2205201119. [PMID: 36067283 PMCID: PMC9478680 DOI: 10.1073/pnas.2205201119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
P53 is a widely studied tumor suppressor that plays important roles in cell-cycle regulation, cell death, and DNA damage repair. P53 is found throughout metazoans, even in invertebrates that do not develop malignancies. The prevailing theory for why these invertebrates possess a tumor suppressor is that P53 originally evolved to protect the germline of early metazoans from genotoxic stress such as ultraviolet radiation. This theory is largely based upon functional data from only three invertebrates, omitting important groups of animals including flatworms. Previous studies in the freshwater planarian flatworm Schmidtea mediterranea suggested that flatworm P53 plays an important role in stem cell maintenance and skin production, but these studies did not directly test for any tumor suppressor functions. To better understand the function of P53 homologs across diverse flatworms, we examined the function of two different P53 homologs in the parasitic flatworm Schistosoma mansoni. The first P53 homolog (p53-1) is orthologous to S. mediterranea P53(Smed-p53) and human TP53 and regulates flatworm stem cell maintenance and skin production. The second P53 homolog (p53-2) is a parasite-specific paralog that is conserved across parasitic flatworms and is required for the normal response to genotoxic stress in S. mansoni. We then found that Smed-p53 does not seem to play any role in the planarian response to genotoxic stress. The existence of this parasite-specific paralog that bears a tumor suppressor-like function in parasitic flatworms implies that the ability to respond to genotoxic stress in parasitic flatworms may have arisen from convergent evolution.
Collapse
Affiliation(s)
- George R. Wendt
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Divya A. Shiroor
- Department of Molecular Medicine, Cornell University College of Veterinary Medicine, Ithaca, NY 14853
| | - Carolyn E. Adler
- Department of Molecular Medicine, Cornell University College of Veterinary Medicine, Ithaca, NY 14853
| | - James J. Collins
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| |
Collapse
|
33
|
A Krüppel-like factor is required for development and regeneration of germline and yolk cells from somatic stem cells in planarians. PLoS Biol 2022; 20:e3001472. [PMID: 35839223 PMCID: PMC9286257 DOI: 10.1371/journal.pbio.3001472] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Sexually reproducing animals segregate their germline from their soma. In addition to gamete-producing gonads, planarian and parasitic flatworm reproduction relies on yolk cell–generating accessory reproductive organs (vitellaria) supporting development of yolkless oocytes. Despite the importance of vitellaria for flatworm reproduction (and parasite transmission), little is known about this unique evolutionary innovation. Here, we examine reproductive system development in the planarian Schmidtea mediterranea, in which pluripotent stem cells generate both somatic and germ cell lineages. We show that a homolog of the pluripotency factor Klf4 is expressed in primordial germ cells (PGCs), presumptive germline stem cells (GSCs), and yolk cell progenitors. Knockdown of this klf4-like (klf4l) gene results in animals that fail to specify or maintain germ cells; surprisingly, they also fail to maintain yolk cells. We find that yolk cells display germ cell–like attributes and that vitellaria are structurally analogous to gonads. In addition to identifying a new proliferative cell population in planarians (yolk cell progenitors) and defining its niche, our work provides evidence supporting the hypothesis that flatworm germ cells and yolk cells share a common evolutionary origin.
Collapse
|
34
|
Wong LL, Bruxvoort CG, Cejda NI, Delaney MR, Otero JR, Forsthoefel DJ. Intestine-enriched apolipoprotein b orthologs are required for stem cell progeny differentiation and regeneration in planarians. Nat Commun 2022; 13:3803. [PMID: 35778403 PMCID: PMC9249923 DOI: 10.1038/s41467-022-31385-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/16/2022] [Indexed: 02/08/2023] Open
Abstract
Lipid metabolism plays an instructive role in regulating stem cell state and differentiation. However, the roles of lipid mobilization and utilization in stem cell-driven regeneration are unclear. Planarian flatworms readily restore missing tissue due to injury-induced activation of pluripotent somatic stem cells called neoblasts. Here, we identify two intestine-enriched orthologs of apolipoprotein b, apob-1 and apob-2, which mediate transport of neutral lipid stores from the intestine to target tissues including neoblasts, and are required for tissue homeostasis and regeneration. Inhibition of apob function by RNAi causes head regression and lysis in uninjured animals, and delays body axis re-establishment and regeneration of multiple organs in amputated fragments. Furthermore, apob RNAi causes expansion of the population of differentiating neoblast progeny and dysregulates expression of genes enriched in differentiating and mature cells in eight major cell type lineages. We conclude that intestine-derived lipids serve as a source of metabolites required for neoblast progeny differentiation.
Collapse
Affiliation(s)
- Lily L Wong
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Christina G Bruxvoort
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Veteran Affairs Medical Center - Research Services, Oklahoma City, OK, USA
| | - Nicholas I Cejda
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Center for Biomedical Data Science, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Matthew R Delaney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jannette Rodriguez Otero
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Education, Universidad Interamericana de Puerto Rico, San Juan, Puerto Rico, USA
| | - David J Forsthoefel
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
35
|
Djhsp60 Is Required for Planarian Regeneration and Homeostasis. Biomolecules 2022; 12:biom12060808. [PMID: 35740934 PMCID: PMC9221281 DOI: 10.3390/biom12060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
HSP60, a well-known mitochondrial chaperone, is essential for mitochondrial homeostasis. HSP60 deficiency causes dysfunction of the mitochondria and is lethal to animal survival. Here, we used freshwater planarian as a model system to investigate and uncover the roles of HSP60 in tissue regeneration and homeostasis. HSP60 protein is present in all types of cells in planarians, but it is relatively rich in stem cells and head neural cells. Knockdown of HSP60 by RNAi causes head regression and the loss of regenerating abilities, which is related to decrease in mitotic cells and inhibition of stem cell-related genes. RNAi-HSP60 disrupts the structure of the mitochondria and inhibits the mitochondrial-related genes, which mainly occur in intestinal tissues. RNAi-HSP60 also damages the integrity of intestinal tissues and downregulates intestine-expressed genes. More interestingly, RNAi-HSP60 upregulates the expression of the cathepsin L-like gene, which may be the reason for head regression and necrotic-like cell death. Taking these points together, we propose a model illustrating the relationship between neoblasts and intestinal cells, and also highlight the essential role of the intestinal system in planarian regeneration and tissue homeostasis.
Collapse
|
36
|
Schmidtea happens: Re-establishing the planarian as a model for studying the mechanisms of regeneration. Curr Top Dev Biol 2022; 147:307-344. [PMID: 35337453 DOI: 10.1016/bs.ctdb.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Understanding the remarkable regenerative abilities of freshwater planarians was a classic problem of developmental biology. These animals were widely studied until the late 1960s, when their use as experimental subjects declined precipitously after some infamous experiments on memory transfer. By the mid-1990s, only a handful of laboratories worldwide were investigating the mechanisms of planarian regeneration. Here, we provide the personal stories behind our work to reinvigorate studies of these fascinating animals. We recount many of the challenges that had to be overcome and reflect on some of the fortuitous events that helped launch the planarian Schmidtea mediterranea as a model organism for studying the molecular basis of regeneration.
Collapse
|
37
|
Khan UW, Newmark PA. Somatic regulation of female germ cell regeneration and development in planarians. Cell Rep 2022; 38:110525. [PMID: 35294875 PMCID: PMC8994625 DOI: 10.1016/j.celrep.2022.110525] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 12/23/2022] Open
Abstract
Female germ cells develop into oocytes, with the capacity for totipotency. In most animals, these remarkable cells are specified during development and cannot be regenerated. By contrast, planarians, known for their regenerative prowess, can regenerate germ cells. To uncover mechanisms required for female germ cell development and regeneration, we generated gonad-specific transcriptomes and identified genes whose expression defines progressive stages of female germ cell development. Strikingly, early female germ cells share molecular signatures with the pluripotent stem cells driving planarian regeneration. We observe spatial heterogeneity within somatic ovarian cells and find that a regionally enriched foxL homolog is required for oocyte differentiation, but not specification, suggestive of functionally distinct somatic compartments. Unexpectedly, a neurotransmitter-biosynthetic enzyme, aromatic L-amino acid decarboxylase (AADC), is also expressed in somatic gonadal cells, and plays opposing roles in female and male germ cell development. Thus, somatic gonadal cells deploy conserved factors to regulate germ cell development and regeneration in planarians.
Collapse
Affiliation(s)
- Umair W Khan
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA; Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Phillip A Newmark
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA; Howard Hughes Medical Institute, Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
38
|
Allen JM, Balagtas M, Barajas E, Cano Macip C, Alvarez Zepeda S, Iberkleid I, Duncan EM, Zayas RM. RNAi Screen of RING/U-Box Domain Ubiquitin Ligases Identifies Critical Regulators of Tissue Regeneration in Planarians. Front Cell Dev Biol 2022; 9:803419. [PMID: 35127720 PMCID: PMC8807557 DOI: 10.3389/fcell.2021.803419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Regenerative processes depend on the interpretation of signals to coordinate cell behaviors. The role of ubiquitin-mediated signaling is known to be important in many cellular and biological contexts, but its role in regeneration is not well understood. To investigate how ubiquitylation impacts tissue regeneration in vivo, we are studying planarians that are capable of regenerating after nearly any injury using a population of stem cells. Here we used RNAi to screen RING/U-box E3 ubiquitin ligases that are highly expressed in planarian stem cells and stem cell progeny. RNAi screening identified nine genes with functions in regeneration, including the spliceosomal factor prpf19 and histone modifier rnf2; based on their known roles in developmental processes, we further investigated these two genes. We found that prpf19 was required for animal survival but not for stem cell maintenance, suggesting a role in promoting cell differentiation. Because RNF2 is the catalytic subunit of the Polycomb Repressive Complex 1 (PRC1), we also examined other putative members of this complex (CBX and PHC). We observed a striking phenotype of regional tissue misspecification in cbx and phc RNAi planarians. To identify genes regulated by PRC1, we performed RNA-seq after knocking down rnf2 or phc. Although these proteins are predicted to function in the same complex, we found that the set of genes differentially expressed in rnf2 versus phc RNAi were largely non-overlapping. Using in situ hybridization, we showed that rnf2 regulates gene expression levels within a tissue type, whereas phc is necessary for the spatial restriction of gene expression, findings consistent with their respective in vivo phenotypes. This work not only uncovered roles for RING/U-box E3 ligases in stem cell regulation and regeneration, but also identified differential gene targets for two putative PRC1 factors required for maintaining cell-type-specific gene expression in planarians.
Collapse
Affiliation(s)
- John M Allen
- Department of Biology, San Diego State University, San Diego, CA, United States
- Deparment of Biology, University of Kentucky, Lexington, KY, United States
| | - Madison Balagtas
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Elizabeth Barajas
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Carolina Cano Macip
- Department of Biology, San Diego State University, San Diego, CA, United States
| | | | - Ionit Iberkleid
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Elizabeth M Duncan
- Deparment of Biology, University of Kentucky, Lexington, KY, United States
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA, United States
| |
Collapse
|
39
|
Bar Yaacov D. Functional analysis of ADARs in planarians supports a bilaterian ancestral role in suppressing double-stranded RNA-response. PLoS Pathog 2022; 18:e1010250. [PMID: 35041722 PMCID: PMC8797187 DOI: 10.1371/journal.ppat.1010250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 01/06/2022] [Indexed: 11/18/2022] Open
Abstract
ADARs (adenosine deaminases acting on RNA) are known for their adenosine-to-inosine RNA editing activity, and most recently, for their role in preventing aberrant dsRNA-response by activation of dsRNA sensors (i.e., RIG-I-like receptor homologs). However, it is still unclear whether suppressing spurious dsRNA-response represents the ancestral role of ADARs in bilaterians. As a first step to address this question, we identified ADAR1 and ADAR2 homologs in the planarian Schmidtea mediterranea, which is evolutionarily distant from canonical lab models (e.g., flies and nematodes). Our results indicate that knockdown of either planarian adar1 or adar2 by RNA interference (RNAi) resulted in upregulation of dsRNA-response genes, including three planarian rig-I-like receptor (prlr) homologs. Furthermore, independent knockdown of adar1 and adar2 reduced the number of infected cells with a dsRNA virus, suggesting they suppress a bona fide anti-viral dsRNA-response activity. Knockdown of adar1 also resulted in lesion formation and animal lethality, thus attesting to its essentiality. Simultaneous knockdown of adar1 and prlr1 rescued adar1(RNAi)-dependent animal lethality and rescued the dsRNA-response, suggesting that it contributes to the deleterious effect of adar1 knockdown. Finally, we found that ADAR2, but not ADAR1, mediates mRNA editing in planarians, suggesting at least in part non-redundant activities for planarians ADARs. Our results underline the essential role of ADARs in suppressing activation of harmful dsRNA-response in planarians, thus supporting it as their ancestral role in bilaterians. Our work also set the stage to study further and better understand the regulatory mechanisms governing anti-viral dsRNA-responses from an evolutionary standpoint using planarians as a model. Today, more than ever, it is crucial to gain a deep understating of our anti-viral defenses. One of the ways to accomplish it is to study the principles governing anti-viral responses across various organisms. ADARs are a group of proteins that act on RNA molecules and alter their sequence compared to the genes that encode them (a process termed RNA editing). In recent years, ADARs have been shown to suppress abnormal anti-viral responses triggered by self-components of the cell (RNA encoded by the cell). Here, we show that the involvement of ADARs in anti-viral response regulation is conserved in planarians (free-living flatworms). We identified two ADAR proteins in planarians and showed that eliminating one (ADAR1) results in animal death and that an anti-viral response commenced in the absence of either ADAR1 or ADAR2. We further identified one of the proteins (PRLR1) that participate in initiating this anti-viral response in planarians, which its mammalian homolog (MDA5) serves a similar role. Thus, our work suggests that ADARs involvement in suppressing aberrant anti-viral response is an ancient evolutionary invention and is likely shared across multicellular organisms with bilateral symmetry.
Collapse
Affiliation(s)
- Dan Bar Yaacov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
40
|
Analysis of Morphogenesis and Flagellar Assembly During Spermatogenesis in Planarian Flatworms. Methods Mol Biol 2022; 2364:199-216. [PMID: 34542855 DOI: 10.1007/978-1-0716-1661-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spermatogenesis is one of the most dramatic cellular differentiation events observed in animals. In particular, spermiogenesis (the final stage of spermatogenesis) involves extensive shedding of cytoplasmic organelles, dramatic nuclear rearrangements, and assembly of long flagellar structures. In planarian flatworms, the spherical nucleus present in round spermatids elongates to produce the filamentous nucleus of mature sperm. Newly formed cortical microtubules participate in cytoskeletal rearrangements observed during spermiogenesis and remain present in sperm. In addition, a pair of flagella assemble at one end of each spermatid in a process that likely involves de novo formation of centrioles. This chapter includes a brief introduction to planarian spermatogenesis and current tools for the analysis of molecular players in this process. Step-by-step protocols for isolating and imaging spermatogenic cells are provided with enough detail to be carried out by newcomers to the field who would like to study this unique organism in the laboratory.
Collapse
|
41
|
Inoue T, Agata K. Quantification of planarian behaviors. Dev Growth Differ 2021; 64:16-37. [PMID: 34866186 DOI: 10.1111/dgd.12765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 11/30/2022]
Abstract
Research on individual behaviors can help to reveal the processes and mechanisms that mediate an animal's habits and interactions with the environment. Importantly, individual behaviors arise as outcomes of genetic programs, morphogenesis, physiological processes, and neural functions; thus, behavioral analyses can be used to detect disorders in these processes. Planarians belong to an early branching bilateral group of organisms that possess a simple central nervous system. Furthermore, planarians display various behavioral responses to the environment via their nervous system. Planarians also have remarkable regenerative abilities, including whole-brain regeneration. Therefore, the combination of planarians' phylogenetic position, behavioral properties, regenerative ability, and genetic accessibility provides a unique opportunity to understand the basic mechanisms underlying the anatomical properties of neural morphogenesis and the dynamic physiological processes and neural function. Here, we describe a step-by-step protocol for conducting simple behavioral analyses in planarians with the aim of helping to introduce researchers to the utility of performing behavioral analyses in planarians. Since the conditions of planarians impact experimental results and reproducibility, this protocol begins with a method for maintaining planarians. Next, we introduce the behavioral tests as well as the methods for quantifying them using minimal and cost-effective equipment and materials. Finally, we present a unique RNAi technique that enables conditional silencing of neural activity in the brain of planarians.
Collapse
Affiliation(s)
- Takeshi Inoue
- Division of Adaptation Physiology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kiyokazu Agata
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| |
Collapse
|
42
|
Almazan EMP, Ryan JF, Rouhana L. Regeneration of Planarian Auricles and Reestablishment of Chemotactic Ability. Front Cell Dev Biol 2021; 9:777951. [PMID: 34901022 PMCID: PMC8662385 DOI: 10.3389/fcell.2021.777951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Detection of chemical stimuli is crucial for living systems and also contributes to quality of life in humans. Since loss of olfaction becomes more prevalent with aging, longer life expectancies have fueled interest in understanding the molecular mechanisms behind the development and maintenance of chemical sensing. Planarian flatworms possess an unsurpassed ability for stem cell-driven regeneration that allows them to restore any damaged or removed part of their bodies. This includes anteriorly-positioned lateral flaps known as auricles, which have long been thought to play a central role in chemotaxis. The contribution of auricles to the detection of positive chemical stimuli was tested in this study using Girardia dorotocephala, a North American planarian species known for its morphologically prominent auricles. Behavioral experiments staged under laboratory conditions revealed that removal of auricles by amputation leads to a significant decrease in the ability of planarians to find food. However, full chemotactic capacity is observed as early as 2 days post-amputation, which is days prior from restoration of auricle morphology, but correlative with accumulation of ciliated cells in the position of auricle regeneration. Planarians subjected to x-ray irradiation prior to auricle amputation were unable to restore auricle morphology, but were still able to restore chemotactic capacity. These results indicate that although regeneration of auricle morphology requires stem cells, some restoration of chemotactic ability can still be achieved in the absence of normal auricle morphology, corroborating with the initial observation that chemotactic success is reestablished 2-days post-amputation in our assays. Transcriptome profiles of excised auricles were obtained to facilitate molecular characterization of these structures, as well as the identification of genes that contribute to chemotaxis and auricle development. A significant overlap was found between genes with preferential expression in auricles of G. dorotocephala and genes with reduced expression upon SoxB1 knockdown in Schmidtea mediterranea, suggesting that SoxB1 has a conserved role in regulating auricle development and function. Models that distinguish between possible contributions to chemotactic behavior obtained from cellular composition, as compared to anatomical morphology of the auricles, are discussed.
Collapse
Affiliation(s)
| | - Joseph F. Ryan
- Whitney Laboratory of Marine Biosciences, University of Florida, St. Augustine, FL, United States
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Labib Rouhana
- Department of Biological Sciences, Wright State University, Dayton, OH, United States
| |
Collapse
|
43
|
Le D, Sabry Z, Chandra A, Kristan WB, Collins EMS, Kristan WB. Planarian fragments behave as whole animals. Curr Biol 2021; 31:5111-5117.e4. [PMID: 34624209 DOI: 10.1016/j.cub.2021.09.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022]
Abstract
Behavioral responses of freshwater planarians have been studied for over a century.1 In recent decades, behavior has been used as a readout to study planarian development and regeneration,2-6 wound healing,7,8 molecular evolution,4,9,10 neurotoxicology,11-13 and learning and memory.14-17The planarian nervous system is among the simplest of the bilaterally symmetric animals,18 with an anterior brain attached to two ventral nerve cords interconnected by multiple commissures. We found that, in response to mechanical and near-UV stimulation, head stimulation produces turning, tail stimulation produces contraction, and trunk stimulation produces midbody elongation in the planarian Dugesia japonica. When cut into two or three pieces, the anterior end of each headless piece switched its behavior to turning instead of elongation; i.e., it responded as though it were the head. In addition, posterior ends of the head and midbody pieces sometimes produced contraction instead of elongation. Thus, each severed piece acts like an intact animal, with each midbody region having nearly complete behavioral capabilities. These observations show that each midbody region reads the global state of the organism and adapts its response to incoming signals from the remaining tissue. Selective lateral incisions showed that the changes in behavior are not due to nonselective pain responses and that the ventral nerve cords and cross-connectives are responsible for coordinating local behaviors. Our findings highlight a fast functional reorganization of the planarian nervous system that complements the slower repairs provided by regeneration. This reorganization provides needed behavioral responses for survival as regeneration proceeds.
Collapse
Affiliation(s)
- Dylan Le
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ziad Sabry
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| | - Aarav Chandra
- The Bishop's School, 7607 La Jolla Boulevard, La Jolla, CA 92037, USA
| | - William B Kristan
- Department of Biological Sciences, California State University San Marcos, 333 South Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Eva-Maria S Collins
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA; Department of Physics and Astronomy, 500 College Avenue, Swarthmore College, Swarthmore, PA 19081, USA; Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA, USA.
| | - William B Kristan
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
44
|
Goel T, Ireland D, Shetty V, Rabeler C, Diamond PH, Collins EMS. Let it rip: the mechanics of self-bisection in asexual planarians determines their population reproductive strategies. Phys Biol 2021; 19. [PMID: 34638110 DOI: 10.1088/1478-3975/ac2f29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/12/2021] [Indexed: 11/11/2022]
Abstract
Asexual freshwater planarians reproduce by transverse bisection (binary fission) into two pieces. This process produces a head and a tail, which fully regenerate within 1-2 weeks. How planarians split into two offspring-using only their musculature and substrate traction-is a challenging biomechanics problem. We found that three different species,Dugesia japonica,Girardia tigrinaandSchmidtea mediterranea, have evolved three different mechanical solutions to self-bisect. Using time lapse imaging of the fission process, we quantitatively characterize the main steps of division in the three species and extract the distinct and shared key features. Across the three species, planarians actively alter their body shape, regulate substrate traction, and use their muscles to generate tensile stresses large enough to overcome the ultimate tensile strength of the tissue. Moreover, we show thathoweach planarian species divides dictates how resources are split among its offspring. This ultimately determines offspring survival and reproductive success. Thus, heterospecific differences in the mechanics of self-bisection of individual worms explain the observed differences in the population reproductive strategies of different planarian species.
Collapse
Affiliation(s)
- Tapan Goel
- Physics Department, UC San Diego, La Jolla, CA, United States of America
| | - Danielle Ireland
- Biology Department, Swarthmore College, Swarthmore, PA, United States of America
| | - Vir Shetty
- Physics and Astronomy Department, Swarthmore College, Swarthmore, PA, United States of America
| | - Christina Rabeler
- Biology Department, Swarthmore College, Swarthmore, PA, United States of America
| | - Patrick H Diamond
- Physics Department, UC San Diego, La Jolla, CA, United States of America
| | - Eva-Maria S Collins
- Physics Department, UC San Diego, La Jolla, CA, United States of America.,Biology Department, Swarthmore College, Swarthmore, PA, United States of America.,Physics and Astronomy Department, Swarthmore College, Swarthmore, PA, United States of America
| |
Collapse
|
45
|
Tian Q, Sun Y, Gao T, Li J, Fang H, Zhang S. Djnedd4L Is Required for Head Regeneration by Regulating Stem Cell Maintenance in Planarians. Int J Mol Sci 2021; 22:ijms222111707. [PMID: 34769140 PMCID: PMC8583885 DOI: 10.3390/ijms222111707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/02/2022] Open
Abstract
SUMOylation and ubiquitylation are homologous processes catalyzed by homologous enzymes, and they are involved in nearly all aspects of eukaryotic biology. Planarians, which have the remarkable ability to regenerate their central nervous system (CNS), provide an excellent opportunity to investigate the molecular processes of CNS regeneration in vivo. In this study, we analyzed gene expression profiles during head regeneration with an RNA-seq-based screening approach and found that Djnedd4L and Djubc9 were required for head regeneration in planarians. RNA interference targeting of Djubc9 caused the phospho-H3 mitotic cells to decrease in quantity, or even become absent as a part of the Djubc9 RNAi phenotype, which also showed the collapse of the stem cell lineage along with the reduced expression of epidermal differentiation markers. Furthermore, we found that Djnedd4L RNAi induced increased cell division and promoted the premature differentiation during regeneration. Taken together, our findings show that Djubc9 and Djnedd4L are required for stem cell maintenance in the planarian Dugesia japonica, which helps to elucidate the role of SUMOylation and ubiquitylation in regulating the regeneration process.
Collapse
Affiliation(s)
- Qingnan Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Yujia Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Tingting Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Jiaxin Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Huimin Fang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
- Correspondence: (H.F.); (S.Z.)
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou 450001, China
- Correspondence: (H.F.); (S.Z.)
| |
Collapse
|
46
|
Subramanian SP, Lakshmanan V, Palakodeti D, Subramanian R. Glycomic and glycotranscriptomic profiling of mucin-type O-glycans in planarian Schmidtea mediterranea. Glycobiology 2021; 32:36-49. [PMID: 34499167 DOI: 10.1093/glycob/cwab097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 11/14/2022] Open
Abstract
O-Glycans on cell surfaces play important roles in cell-cell, cell-matrix, and receptor-ligand interaction. Therefore, glycan-based interactions are important for tissue regeneration and homeostasis. Free-living flatworm Schmidtea mediterranea, because of its robust regenerative potential, is of great interest in the field of stem cell biology and tissue regeneration. Nevertheless, information on the composition and structure of O-glycans in planaria is unknown. Using mass spectrometry and in silico approaches, we characterized the glycome and the related transcriptome of mucin-type O-glycans of planarian S. mediterranea. Mucin-type O-glycans were composed of multiple isomeric, methylated, and unusually extended mono- and di-substituted O-GalNAc structures. Extensions made of hexoses and 3-O methyl hexoses were the glycoforms observed. From glycotranscriptomic analysis, sixty genes belonging to five distinct enzyme classes were identified to be involved in mucin-type O-glycan biosynthesis. These genes shared homology with those in other invertebrate systems. While a majority of the genes involved in mucin-type O-glycan biosynthesis was highly expressed during organogenesis and in differentiated cells, a few select genes in each enzyme class were specifically enriched during early embryogenesis. Our results indicate a unique temporal and spatial role for mucin-type O-glycans during embryogenesis and organogenesis and in adulthood. In summary, this is the first report on O-glycans in planaria. This study expands the structural and biosynthetic possibilities in cellular glycosylation in the invertebrate glycome and provides a framework towards understanding the biological role of mucin-type O-glycans in tissue regeneration using planarians.
Collapse
Affiliation(s)
- Sabarinath Peruvemba Subramanian
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Office, Bellary Road, Bangalore-560065, Karnataka, India
| | - Vairavan Lakshmanan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Office, Bellary Road, Bangalore-560065, Karnataka, India
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Office, Bellary Road, Bangalore-560065, Karnataka, India
| | - Ramaswamy Subramanian
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Office, Bellary Road, Bangalore-560065, Karnataka, India.,Department of Biological Sciences and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
47
|
Christman DA, Curry HN, Rouhana L. Heterotrimeric Kinesin II is required for flagellar assembly and elongation of nuclear morphology during spermiogenesis in Schmidtea mediterranea. Dev Biol 2021; 477:191-204. [PMID: 34090925 PMCID: PMC8277772 DOI: 10.1016/j.ydbio.2021.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 05/08/2021] [Accepted: 05/22/2021] [Indexed: 11/19/2022]
Abstract
Development of sperm requires microtubule-based movements that drive assembly of a compact head and flagellated tails. Much is known about how flagella are built given their shared molecular core with motile cilia, but less is known about the mechanisms that shape the sperm head. The Kinesin Superfamily Protein 3A (KIF3A) pairs off with a second motor protein (KIF3B) and the Kinesin Associated Protein 3 (KAP3) to form Heterotrimeric Kinesin II. This complex drives intraflagellar transport (IFT) along microtubules during ciliary assembly. We show that KIF3A and KAP3 orthologs in Schmidtea mediterranea are required for axonemal assembly and nuclear elongation during spermiogenesis. Expression of Smed-KAP3 is enriched during planarian spermatogenesis with transcript abundance peaking in spermatocyte and spermatid cells. Disruption of Smed-kif3A or Smed-KAP3 expression by RNA-interference results in loss of spermatozoa and accumulation of unelongated spermatids. Confocal microscopy of planarian testis lobes stained with alpha-tubulin antibodies revealed that spermatids with disrupted Kinesin II function fail to assemble flagella, and visualization with 4',6-diamidino-2-phenylindole (DAPI) revealed reduced nuclear elongation. Disruption of Smed-kif3A or Smed-KAP3 expression also resulted in edema, reduced locomotion, and loss of epidermal cilia, which corroborates with somatic phenotypes previously reported for Smed-kif3B. These findings demonstrate that heterotrimeric Kinesin II drives assembly of cilia and flagella, as well as rearrangements of nuclear morphology in developing sperm. Prolonged activity of heterotrimeric Kinesin II in manchette-like structures with extended presence during spermiogenesis is hypothesized to result in the exaggerated nuclear elongation observed in sperm of turbellarians and other lophotrochozoans.
Collapse
Affiliation(s)
- Donovan A Christman
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435-0001, USA
| | - Haley N Curry
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435-0001, USA
| | - Labib Rouhana
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435-0001, USA.
| |
Collapse
|
48
|
Unraveling Axon Guidance during Axotomy and Regeneration. Int J Mol Sci 2021; 22:ijms22158344. [PMID: 34361110 PMCID: PMC8347220 DOI: 10.3390/ijms22158344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
During neuronal development and regeneration axons extend a cytoskeletal-rich structure known as the growth cone, which detects and integrates signals to reach its final destination. The guidance cues “signals” bind their receptors, activating signaling cascades that result in the regulation of the growth cone cytoskeleton, defining growth cone advance, pausing, turning, or collapse. Even though much is known about guidance cues and their isolated mechanisms during nervous system development, there is still a gap in the understanding of the crosstalk between them, and about what happens after nervous system injuries. After neuronal injuries in mammals, only axons in the peripheral nervous system are able to regenerate, while the ones from the central nervous system fail to do so. Therefore, untangling the guidance cues mechanisms, as well as their behavior and characterization after axotomy and regeneration, are of special interest for understanding and treating neuronal injuries. In this review, we present findings on growth cone guidance and canonical guidance cues mechanisms, followed by a description and comparison of growth cone pathfinding mechanisms after axotomy, in regenerative and non-regenerative animal models.
Collapse
|
49
|
Gutiérrez-Gutiérrez Ó, Felix DA, Salvetti A, Amro EM, Thems A, Pietsch S, Koeberle A, Rudolph KL, González-Estévez C. Regeneration in starved planarians depends on TRiC/CCT subunits modulating the unfolded protein response. EMBO Rep 2021; 22:e52905. [PMID: 34190393 PMCID: PMC8344900 DOI: 10.15252/embr.202152905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Planarians are able to stand long periods of starvation by maintaining adult stem cell pools and regenerative capacity. The molecular pathways that are needed for the maintenance of regeneration during starvation are not known. Here, we show that down‐regulation of chaperonin TRiC/CCT subunits abrogates the regeneration capacity of planarians during starvation, but TRiC/CCT subunits are dispensable for regeneration in fed planarians. Under starvation, they are required to maintain mitotic fidelity and for blastema formation. We show that TRiC subunits modulate the unfolded protein response (UPR) and are required to maintain ATP levels in starved planarians. Regenerative defects in starved CCT‐depleted planarians can be rescued by either chemical induction of mild endoplasmic reticulum stress, which leads to induction of the UPR, or by the supplementation of fatty acids. Together, these results indicate that CCT‐dependent UPR induction promotes regeneration of planarians under food restriction.
Collapse
Affiliation(s)
| | - Daniel A Felix
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Elias M Amro
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Anne Thems
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Stefan Pietsch
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany.,Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - K Lenhard Rudolph
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | | |
Collapse
|
50
|
Bohr TE, Shiroor DA, Adler CE. Planarian stem cells sense the identity of the missing pharynx to launch its targeted regeneration. eLife 2021; 10:e68830. [PMID: 34156924 PMCID: PMC8219383 DOI: 10.7554/elife.68830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/22/2021] [Indexed: 12/25/2022] Open
Abstract
In order to regenerate tissues successfully, stem cells must detect injuries and restore missing cell types through largely unknown mechanisms. Planarian flatworms have an extensive stem cell population responsible for regenerating any organ after amputation. Here, we compare planarian stem cell responses to different injuries by either amputation of a single organ, the pharynx, or removal of tissues from other organs by decapitation. We find that planarian stem cells adopt distinct behaviors depending on what tissue is missing to target progenitor and tissue production towards missing tissues. Loss of non-pharyngeal tissues only increases non-pharyngeal progenitors, while pharynx removal selectively triggers division and expansion of pharynx progenitors. By pharmacologically inhibiting either mitosis or activation of the MAP kinase ERK, we identify a narrow window of time during which stem cell division and ERK signaling produces pharynx progenitors necessary for regeneration. These results indicate that planarian stem cells can tailor their output to match the regenerative needs of the animal.
Collapse
Affiliation(s)
- Tisha E Bohr
- Department of Molecular Medicine, Cornell University College of Veterinary MedicineIthacaUnited States
| | - Divya A Shiroor
- Department of Molecular Medicine, Cornell University College of Veterinary MedicineIthacaUnited States
| | - Carolyn E Adler
- Department of Molecular Medicine, Cornell University College of Veterinary MedicineIthacaUnited States
| |
Collapse
|