1
|
Johal S, Elsayed R, Panfilio KA, Nelson AC. The molecular basis for functional divergence of duplicated SOX factors controlling endoderm formation and left-right patterning in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579092. [PMID: 39605568 PMCID: PMC11601245 DOI: 10.1101/2024.02.06.579092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Endoderm, one of three primary germ layers of vertebrate embryos, makes major contributions to the respiratory and gastrointestinal tracts and associated organs, including liver and pancreas. In mammals, the transcription factor SOX17 is vital for endoderm organ formation and can induce endoderm progenitor identity. Duplication of ancestral sox17 in the teleost lineage produced the paralogues sox32 and sox17 in zebrafish. Sox32 is required for specification of endoderm and progenitors of the left-right organiser (Kupffer's Vesicle, KV), with Sox17 a downstream target of Sox32 that is implicated in further KV development. Phenotypic evidence therefore suggests functional similarities between zebrafish Sox32 and Sox17 and mammalian SOX17. Here, we directly compare these orthologues and paralogues, using the early zebrafish embryo as a biological platform for functional testing. Our results indicate that, unlike Sox32, human SOX17 cannot induce endoderm specification in zebrafish. Furthermore, using hybrid protein functional analyses, we show that Sox32 specificity for the endoderm gene regulatory network is linked to evolutionary divergence in its DNA-binding HMG domain from its paralogue Sox17. Additionally, changes in the C-terminal regions of Sox32 and Sox17 underpin their differing target specificities. Finally, we establish that specific conserved peptides in the C-terminal domain are essential for the role of Sox17 in establishing correct organ asymmetry. Overall, our results illuminate the molecular basis for functional divergence of Sox32 and Sox17 in vertebrate endoderm development and left-right patterning, and the evolution of SoxF transcription factor function.
Collapse
|
2
|
Zeng T, Lv J, Liang J, Xie B, Liu L, Tan Y, Zhu J, Jiang J, Xie H. Zebrafish cobll1a regulates lipid homeostasis via the RA signaling pathway. Front Cell Dev Biol 2024; 12:1381362. [PMID: 38699158 PMCID: PMC11063382 DOI: 10.3389/fcell.2024.1381362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Background The COBLL1 gene has been implicated in human central obesity, fasting insulin levels, type 2 diabetes, and blood lipid profiles. However, its molecular mechanisms remain largely unexplored. Methods In this study, we established cobll1a mutant lines using the CRISPR/Cas9-mediated gene knockout technique. To further dissect the molecular underpinnings of cobll1a during early development, transcriptome sequencing and bioinformatics analysis was employed. Results Our study showed that compared to the control, cobll1a -/- zebrafish embryos exhibited impaired development of digestive organs, including the liver, intestine, and pancreas, at 4 days post-fertilization (dpf). Transcriptome sequencing and bioinformatics analysis results showed that in cobll1a knockout group, the expression level of genes in the Retinoic Acid (RA) signaling pathway was affected, and the expression level of lipid metabolism-related genes (fasn, scd, elovl2, elovl6, dgat1a, srebf1 and srebf2) were significantly changed (p < 0.01), leading to increased lipid synthesis and decreased lipid catabolism. The expression level of apolipoprotein genes (apoa1a, apoa1b, apoa2, apoa4a, apoa4b, and apoea) genes were downregulated. Conclusion Our study suggest that the loss of cobll1a resulted in disrupted RA metabolism, reduced lipoprotein expression, and abnormal lipid transport, therefore contributing to lipid accumulation and deleterious effects on early liver development.
Collapse
Affiliation(s)
- Ting Zeng
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Jinrui Lv
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Jiaxin Liang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Binling Xie
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Ling Liu
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Yuanyuan Tan
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Junwei Zhu
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Jifan Jiang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Huaping Xie
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| |
Collapse
|
3
|
Yasmin IA, Dharmarajan A, Warrier S. iPSC-Derived Glioblastoma Cells Have Enhanced Stemness Wnt/β-Catenin Activity Which Is Negatively Regulated by Wnt Antagonist sFRP4. Cancers (Basel) 2023; 15:3622. [PMID: 37509281 PMCID: PMC10377620 DOI: 10.3390/cancers15143622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Growing evidence indicates that cancer stem cells (CSCs) endow the tumor with stem-like properties. Recently, induced pluripotent stem cells (iPSCs) have gained increased attention because of their easy derivation and availability and their potential to differentiate into any cell type. A CSC model derived from iPSCs of human origin would help understand the driving force of tumor initiation and early progression. We report the efficient generation of feeder-free SSEA4, TRA-1-60 and TRA-1-81 positive iPSCs from amniotic membrane-derived mesenchymal stem cells (AMMSCs), which successfully differentiated into three germ layers. We then developed human iPSC-derived glioblastoma multiforme (GBM) model using conditioned media (CM) from U87MG cell line and CSCs derived from U87MG, which confer iPSCs with GBM and GSC-like phenotypes within five days. Both cell types overexpress MGMT and GLI2, but only GSCs overexpress CD133, CD44, ABCG2 and ABCC2. We also observed overexpression of LEF1 and β-catenin in both cell types. Down-regulation of Wnt antagonist secreted frizzled-related protein 4 (sFRP4) in GBM and GSCs, indicating activation of the Wnt/β-catenin pathway, which could be involved in the conversion of iPSCs to CSCs. From future perspectives, our study will help in the creation of a rapid cell-based platform for understanding the complexity of GBM.
Collapse
Affiliation(s)
- Ishmat Ara Yasmin
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, India
- School of Human Sciences, Faculty of Life and Physical Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| |
Collapse
|
4
|
Hawkins MR, Wingert RA. Zebrafish as a Model to Study Retinoic Acid Signaling in Development and Disease. Biomedicines 2023; 11:biomedicines11041180. [PMID: 37189798 DOI: 10.3390/biomedicines11041180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Retinoic acid (RA) is a metabolite of vitamin A (retinol) that plays various roles in development to influence differentiation, patterning, and organogenesis. RA also serves as a crucial homeostatic regulator in adult tissues. The role of RA and its associated pathways are well conserved from zebrafish to humans in both development and disease. This makes the zebrafish a natural model for further interrogation into the functions of RA and RA-associated maladies for the sake of basic research, as well as human health. In this review, we explore both foundational and recent studies using zebrafish as a translational model for investigating RA from the molecular to the organismal scale.
Collapse
Affiliation(s)
- Matthew R Hawkins
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
5
|
Hu B, Rodriguez JJ, Kakkerla Balaraju A, Gao Y, Nguyen NT, Steen H, Suhaib S, Chen S, Lin F. Glypican 4 mediates Wnt transport between germ layers via signaling filopodia. J Cell Biol 2021; 220:212673. [PMID: 34591076 PMCID: PMC8488972 DOI: 10.1083/jcb.202009082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/18/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022] Open
Abstract
Glypicans influence signaling pathways by regulating morphogen trafficking and reception. However, the underlying mechanisms in vertebrates are poorly understood. In zebrafish, Glypican 4 (Gpc4) is required for convergence and extension (C&E) of both the mesoderm and endoderm. Here, we show that transgenic expression of GFP-Gpc4 in the endoderm of gpc4 mutants rescued C&E defects in all germ layers. The rescue of mesoderm was likely mediated by Wnt5b and Wnt11f2 and depended on signaling filopodia rather than on cleavage of the Gpc4 GPI anchor. Gpc4 bound both Wnt5b and Wnt11f2 and regulated formation of the filopodia that transport Wnt5b and Wnt11f2 to neighboring cells. Moreover, this rescue was suppressed by blocking signaling filopodia that extend from endodermal cells. Thus, GFP-Gpc4–labeled protrusions that emanated from endodermal cells transported Wnt5b and Wnt11f2 to other germ layers, rescuing the C&E defects caused by a gpc4 deficiency. Our study reveals a new mechanism that could explain in vivo morphogen distribution involving Gpc4.
Collapse
Affiliation(s)
- Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Juan J Rodriguez
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Anurag Kakkerla Balaraju
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Nhan T Nguyen
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Heston Steen
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Saeb Suhaib
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Songhai Chen
- Department of Neuroscience and Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA
| |
Collapse
|
6
|
López-Pérez AR, Balwierz PJ, Lenhard B, Muller F, Wardle FC, Manfroid I, Voz ML, Peers B. Identification of downstream effectors of retinoic acid specifying the zebrafish pancreas by integrative genomics. Sci Rep 2021; 11:22717. [PMID: 34811400 PMCID: PMC8608873 DOI: 10.1038/s41598-021-02039-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022] Open
Abstract
Retinoic acid (RA) is a key signal for the specification of the pancreas. Still, the gene regulatory cascade triggered by RA in the endoderm remains poorly characterized. In this study, we investigated this regulatory network in zebrafish by combining RNA-seq, RAR ChIP-seq and ATAC-seq assays. By analysing the effect of RA and of the RA receptor (RAR) inverse-agonist BMS493 on the transcriptome and on the chromatin accessibility of endodermal cells, we identified a large set of genes and regulatory regions regulated by RA signalling. RAR ChIP-seq further defined the direct RAR target genes in zebrafish, including hox genes as well as several pancreatic regulators like mnx1, insm1b, hnf1ba and gata6. Comparison of zebrafish and murine RAR ChIP-seq data highlighted the conserved direct target genes and revealed that some RAR sites are under strong evolutionary constraints. Among them, a novel highly conserved RAR-induced enhancer was identified downstream of the HoxB locus and driving expression in the nervous system and in the gut in a RA-dependent manner. Finally, ATAC-seq data unveiled the role of the RAR-direct targets Hnf1ba and Gata6 in opening chromatin at many regulatory loci upon RA treatment.
Collapse
Affiliation(s)
- Ana R López-Pérez
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Avenue de l'Hôpital 1, B34, 4000, Liège, Belgium.,Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - Piotr J Balwierz
- Institute of Clinical Sciences and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Boris Lenhard
- Institute of Clinical Sciences and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Ferenc Muller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Fiona C Wardle
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Isabelle Manfroid
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Avenue de l'Hôpital 1, B34, 4000, Liège, Belgium
| | - Marianne L Voz
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Avenue de l'Hôpital 1, B34, 4000, Liège, Belgium
| | - Bernard Peers
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Avenue de l'Hôpital 1, B34, 4000, Liège, Belgium.
| |
Collapse
|
7
|
Dalgin G, Prince VE. Midline morphogenesis of zebrafish foregut endoderm is dependent on Hoxb5b. Dev Biol 2020; 471:1-9. [PMID: 33290819 DOI: 10.1016/j.ydbio.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
During vertebrate embryonic development complex morphogenetic events drive the formation of internal organs associated with the developing digestive tract. The foregut organs derive from hepatopancreatic precursor cells that originate bilaterally within the endoderm monolayer, and subsequently converge toward the midline where they coalesce to produce the gut tube from which the liver and pancreas form. The progenitor cells of these internal organs are influenced by the lateral plate mesoderm (LPM), which helps direct them towards their specific fates. However, it is not completely understood how the bilateral organ precursors move toward the embryonic midline and ultimately coalesce to form functional organs. Here we demonstrate that the zebrafish homeobox gene hoxb5b regulates morphogenesis of the foregut endoderm at the midline. At early segmentation stages, hoxb5b is expressed in the LPM adjacent to the developing foregut endoderm. By 24 hpf hoxb5b is expressed directly in the endoderm cells of the developing gut tube. When Hoxb5b function is disrupted, either by morpholino knockdown or sgRNA/Cas9 somatic disruption, the process of foregut morphogenesis is disrupted, resulting in a bifurcated foregut. By contrast, knockdown of the paralogous hoxb5a gene does not alter gut morphology. Further analysis has indicated that Hoxb5b knockdown specimens produce endocrine pancreas cell types, but liver cells are absent. Finally, cell transplantation experiments revealed that Hoxb5b function in the endoderm is not needed for proper coalescence of the foregut at the midline. Together, our findings imply that midline morphogenesis of foregut endoderm is guided by a hoxb5b-mediated mechanism that functions extrinsically, likely within the LPM. Loss of hoxb5b function prevents normal coalescence of endoderm cells at the midline and thus disrupts gut morphogenesis.
Collapse
Affiliation(s)
- Gökhan Dalgin
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL, 60637, USA
| | - Victoria E Prince
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
8
|
Anderson RA, Schwalbach KT, Mui SR, LeClair EE, Topczewska JM, Topczewski J. Zebrafish models of skeletal dysplasia induced by cholesterol biosynthesis deficiency. Dis Model Mech 2020; 13:dmm042549. [PMID: 32430393 PMCID: PMC7328163 DOI: 10.1242/dmm.042549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/27/2020] [Indexed: 12/23/2022] Open
Abstract
Human disorders of the post-squalene cholesterol biosynthesis pathway frequently result in skeletal abnormalities, yet our understanding of the mechanisms involved is limited. In a forward-genetic approach, we have found that a late-onset skeletal mutant, named kolibernu7 , is the result of a cis-acting regulatory mutation leading to loss of methylsterol monooxygenase 1 (msmo1) expression within pre-hypertrophic chondrocytes. Generated msmo1nu81 knockdown mutation resulted in lethality at larval stage. We demonstrated that this is a result of both cholesterol deprivation and sterol intermediate accumulation by creating a mutation eliminating activity of Lanosterol synthase (Lss). Our results indicate that double lssnu60;msmo1nu81 and single lssnu60 mutants survive significantly longer than msmo1nu81 homozygotes. Liver-specific restoration of either Msmo1 or Lss in corresponding mutant backgrounds suppresses larval lethality. Rescued mutants develop dramatic skeletal abnormalities, with a loss of Msmo1 activity resulting in a more-severe patterning defect of a near-complete loss of hypertrophic chondrocytes marked by col10a1a expression. Our analysis suggests that hypertrophic chondrocytes depend on endogenous cholesterol synthesis, and blocking C4 demethylation exacerbates the cholesterol deficiency phenotype. Our findings offer new insight into the genetic control of bone development and provide new zebrafish models for human disorders of the cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Rebecca A Anderson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kevin T Schwalbach
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Stephanie R Mui
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Elizabeth E LeClair
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Jolanta M Topczewska
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Jacek Topczewski
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| |
Collapse
|
9
|
Villasenor A, Gauvrit S, Collins MM, Maischein HM, Stainier DYR. Hhex regulates the specification and growth of the hepatopancreatic ductal system. Dev Biol 2019; 458:228-236. [PMID: 31697936 DOI: 10.1016/j.ydbio.2019.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 10/08/2019] [Accepted: 10/20/2019] [Indexed: 02/07/2023]
Abstract
Significant efforts have advanced our understanding of foregut-derived organ development; however, little is known about the molecular mechanisms that underlie the formation of the hepatopancreatic ductal (HPD) system. Here, we report a role for the homeodomain transcription factor Hhex in directing HPD progenitor specification in zebrafish. Loss of Hhex function results in impaired HPD system formation. We found that Hhex specifies a distinct population of HPD progenitors that gives rise to the cystic duct, common bile duct, and extra-pancreatic duct. Since hhex is not uniquely expressed in the HPD region but is also expressed in endothelial cells and the yolk syncytial layer (YSL), we tested the role of blood vessels as well as the YSL in HPD formation. We found that blood vessels are required for HPD patterning, but not for HPD progenitor specification. In addition, we found that Hhex is required in both the endoderm and the YSL for HPD development. Our results shed light on the mechanisms directing endodermal progenitors towards the HPD fate and emphasize the tissue specific requirement of Hhex during development.
Collapse
Affiliation(s)
- Alethia Villasenor
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.
| | - Sébastien Gauvrit
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Michelle M Collins
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.
| |
Collapse
|
10
|
Mullapudi ST, Helker CS, Boezio GL, Maischein HM, Sokol AM, Guenther S, Matsuda H, Kubicek S, Graumann J, Yang YHC, Stainier DY. Screening for insulin-independent pathways that modulate glucose homeostasis identifies androgen receptor antagonists. eLife 2018; 7:42209. [PMID: 30520733 PMCID: PMC6300353 DOI: 10.7554/elife.42209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Pathways modulating glucose homeostasis independently of insulin would open new avenues to combat insulin resistance and diabetes. Here, we report the establishment, characterization, and use of a vertebrate ‘insulin-free’ model to identify insulin-independent modulators of glucose metabolism. insulin knockout zebrafish recapitulate core characteristics of diabetes and survive only up to larval stages. Utilizing a highly efficient endoderm transplant technique, we generated viable chimeric adults that provide the large numbers of insulin mutant larvae required for our screening platform. Using glucose as a disease-relevant readout, we screened 2233 molecules and identified three that consistently reduced glucose levels in insulin mutants. Most significantly, we uncovered an insulin-independent beneficial role for androgen receptor antagonism in hyperglycemia, mostly by reducing fasting glucose levels. Our study proposes therapeutic roles for androgen signaling in diabetes and, more broadly, offers a novel in vivo model for rapid screening and decoupling of insulin-dependent and -independent mechanisms. Diabetes is a disease that affects the ability of the body to control the level of sugar in the blood. Individuals with diabetes are unable to make a hormone called insulin – which normally stimulates certain cells to absorb sugar from the blood – or their cells are less able to respond to this hormone. Most treatments for diabetes involve replacing the lost insulin or boosting the hormone’s activity in the body. However, these treatments can also cause individuals to gain weight or become more resistant to insulin, making it harder to control blood sugar levels. In addition to insulin, several other factors regulate the levels of sugar in the blood and some of them may operate independently of insulin. However, little is known about such factors because it is impractical to carry out large-scale screens to identify drugs that target them in humans or mice, which are often used as experimental models for human biology. To overcome this challenge, Mullapudi et al. turned to another animal known as the zebrafish and generated mutant fish that lack insulin. The mutant zebrafish had similar problems with regulating sugar levels as those observed in humans and mice with diabetes. This observation suggests that insulin is just as important in zebrafish as it is in humans and other mammals. The mutant zebrafish did not survive into adulthood, and so Mullapudi et al. transplanted healthy tissue into the zebrafish to allow them to produce enough insulin to survive. These adult zebrafish produced many offspring that still carried the insulin mutation. Mullapudi et al. used these mutant offspring to screen over 2,000 drugs for their ability to decrease blood sugar levels in the absence of insulin. The screen identified three promising candidate drugs, including a molecule that interferes with a receptor for a signal known as androgen. These findings will help researchers investigate new ways to treat diabetes. In the future, the screening approach developed by Mullapudi et al. could be adapted to search for new drugs to treat other human metabolic conditions.
Collapse
Affiliation(s)
- Sri Teja Mullapudi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Sm Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Giulia Lm Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anna M Sokol
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Guenther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hiroki Matsuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,German Centre for Cardiovascular Research, Berlin, Germany
| | - Yu Hsuan Carol Yang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
11
|
Hu B, Gao Y, Davies L, Woo S, Topczewski J, Jessen JR, Lin F. Glypican 4 and Mmp14 interact in regulating the migration of anterior endodermal cells by limiting extracellular matrix deposition. Development 2018; 145:dev.163303. [PMID: 30082271 DOI: 10.1242/dev.163303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/16/2018] [Indexed: 01/30/2023]
Abstract
During embryogenesis, the germ layers, including the endoderm, undergo convergence and extension movements to narrow and elongate the body plan. In zebrafish, the dorsal migration of endodermal cells during gastrulation is controlled by chemokine signaling, but little is known about how they migrate during segmentation. Here, we show that glypican 4 (Gpc4), a member of the heparin sulfate proteoglycan family, is required for efficient migration of anterior endodermal cells during early segmentation, regulating Rac activation to maintain polarized actin-rich lamellipodia. An endoderm transplantation assay showed that Gpc4 regulates endoderm migration in a non-cell-autonomous fashion. Further analyses revealed that the impaired endoderm migration in gpc4 mutants results from increases in the expression and assembly of fibronectin and laminin, major components of the extracellular matrix (ECM). Notably, we found that matrix metalloproteinase 14 (Mmp14a/b) is required for the control of ECM expression during endoderm migration, with Gpc4 acting through Mmp14a/b to limit ECM expression. Our results suggest that Gpc4 is crucial for generating the environment required for efficient migration of endodermal cells, uncovering a novel function of Gpc4 during development.
Collapse
Affiliation(s)
- Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lauren Davies
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Stephanie Woo
- School of Natural Sciences, Merced, University of California Merced, Merced, CA 95340, USA
| | - Jacek Topczewski
- Northwestern University, Feinberg School of Medicine, Stanley Manne Children's Research Institute, Chicago, IL 60611, USA.,Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
12
|
Ndlovu R, Deng LC, Wu J, Li XK, Zhang JS. Fibroblast Growth Factor 10 in Pancreas Development and Pancreatic Cancer. Front Genet 2018; 9:482. [PMID: 30425728 PMCID: PMC6219204 DOI: 10.3389/fgene.2018.00482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 09/28/2018] [Indexed: 01/03/2023] Open
Abstract
The tenacious prevalence of human pancreatic diseases such as diabetes mellitus and adenocarcinoma has prompted huge research interest in better understanding of pancreatic organogenesis. The plethora of signaling pathways involved in pancreas development is activated in a highly coordinated manner to assure unmitigated development and morphogenesis in vertebrates. Therefore, a complex mesenchymal-epithelial signaling network has been implicated to play a pivotal role in organogenesis through its interactions with other germ layers, specifically the endoderm. The Fibroblast Growth Factor Receptor FGFR2-IIIb splicing isoform (FGFR2b) and its high affinity ligand Fibroblast Growth Factor 10 (FGF10) are expressed in the epithelium and mesenchyme, respectively, and therefore are well positioned to transmit mesenchymal to epithelial signaling. FGF10 is a typical paracrine FGF and chiefly mediates biological responses by activating FGFR2b with heparin/heparan sulfate (HS) as cofactor. A substantial number of studies using genetically engineered mouse models have demonstrated an essential role of FGF10 in the development of many organs and tissues including the pancreas. During mouse embryonic development, FGF10 signaling is crucial for epithelial cell proliferation, maintenance of progenitor cell fate and branching morphogenesis in the pancreas. FGF10 is also implicated in pancreatic cancer, and that overexpression of FGFR2b is associated with metastatic invasion. A thorough understanding of FGF10 signaling machinery and its crosstalk with other pathways in development and pathological states may provide novel opportunities for pancreatic cancer targeted therapy and regenerative medicine.
Collapse
Affiliation(s)
- Rodrick Ndlovu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Lian-Cheng Deng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jin Wu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xiao-Kun Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiao-Kun Li, Jin-San Zhang, ;
| | - Jin-San Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Centre for Precision Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiao-Kun Li, Jin-San Zhang, ;
| |
Collapse
|
13
|
Zhang D, Gates KP, Barske L, Wang G, Lancman JJ, Zeng XXI, Groff M, Wang K, Parsons MJ, Crump JG, Dong PDS. Endoderm Jagged induces liver and pancreas duct lineage in zebrafish. Nat Commun 2017; 8:769. [PMID: 28974684 PMCID: PMC5626745 DOI: 10.1038/s41467-017-00666-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/15/2017] [Indexed: 12/17/2022] Open
Abstract
Liver duct paucity is characteristic of children born with Alagille Syndrome (ALGS), a disease associated with JAGGED1 mutations. Here, we report that zebrafish embryos with compound homozygous mutations in two Notch ligand genes, jagged1b (jag1b) and jagged2b (jag2b) exhibit a complete loss of canonical Notch activity and duct cells within the liver and exocrine pancreas, whereas hepatocyte and acinar pancreas development is not affected. Further, animal chimera studies demonstrate that wild-type endoderm cells within the liver and pancreas can rescue Notch activity and duct lineage specification in adjacent cells lacking jag1b and jag2b expression. We conclude that these two Notch ligands are directly and solely responsible for all duct lineage specification in these organs in zebrafish. Our study uncovers genes required for lineage specification of the intrahepatopancreatic duct cells, challenges the role of duct cells as progenitors, and suggests a genetic mechanism for ALGS ductal paucity.The hepatopancreatic duct cells connect liver hepatocytes and pancreatic acinar cells to the intestine, but the mechanism for their lineage specification is unclear. Here, the authors reveal that Notch ligands Jagged1b and Jagged2b induce duct cell lineage in the liver and pancreas of the zebrafish.
Collapse
Affiliation(s)
- Danhua Zhang
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Graduate School of Biomedical, Science, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Keith P Gates
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Lindsey Barske
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Guangliang Wang
- Department of Surgery, and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733N. Broadway, Baltimore, MD, 21205, USA
| | - Joseph J Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Xin-Xin I Zeng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Megan Groff
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Kasper Wang
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Michael J Parsons
- Department of Surgery, and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733N. Broadway, Baltimore, MD, 21205, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - P Duc Si Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
- Graduate School of Biomedical, Science, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
14
|
Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM. Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Biol Rev Camb Philos Soc 2017. [DOI: 10.1111/brv.12349] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sara Al-Khawaga
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Alexandra E. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine; University of California; Los Angeles CA 90095 U.S.A
| | - Shahrad Taheri
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Abdul B. Abou-Samra
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Essam M. Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| |
Collapse
|
15
|
Liu X, Pitarresi JR, Cuitiño MC, Kladney RD, Woelke SA, Sizemore GM, Nayak SG, Egriboz O, Schweickert PG, Yu L, Trela S, Schilling DJ, Halloran SK, Li M, Dutta S, Fernandez SA, Rosol TJ, Lesinski GB, Shakya R, Ludwig T, Konieczny SF, Leone G, Wu J, Ostrowski MC. Genetic ablation of Smoothened in pancreatic fibroblasts increases acinar-ductal metaplasia. Genes Dev 2016; 30:1943-55. [PMID: 27633013 PMCID: PMC5066238 DOI: 10.1101/gad.283499.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022]
Abstract
Liu et al. show that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a KrasG12D mouse model increased acinar-to-ductal metaplasia (ADM). Smo-deleted fibroblasts had higher expression of transforming growth factor-α (Tgfα) mRNA and secreted higher levels of TGFα, leading to activation of EGFR signaling in acinar cells and increased ADM. The contribution of the microenvironment to pancreatic acinar-to-ductal metaplasia (ADM), a preneoplastic transition in oncogenic Kras-driven pancreatic cancer progression, is currently unclear. Here we show that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a KrasG12D mouse model increased ADM. Smo-deleted fibroblasts had higher expression of transforming growth factor-α (Tgfa) mRNA and secreted higher levels of TGFα, leading to activation of EGFR signaling in acinar cells and increased ADM. The mechanism involved activation of AKT and noncanonical activation of the GLI family transcription factor GLI2. GLI2 was phosphorylated at Ser230 in an AKT-dependent fashion and directly regulated Tgfa expression in fibroblasts lacking Smo. Additionally, Smo-deleted fibroblasts stimulated the growth of KrasG12D/Tp53R172H pancreatic tumor cells in vivo and in vitro. These results define a non-cell-autonomous mechanism modulating KrasG12D-driven ADM that is balanced by cross-talk between Hedgehog/SMO and AKT/GLI2 pathways in stromal fibroblasts.
Collapse
Affiliation(s)
- Xin Liu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jason R Pitarresi
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Maria C Cuitiño
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Raleigh D Kladney
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sarah A Woelke
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gina M Sizemore
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sunayana G Nayak
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Onur Egriboz
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Patrick G Schweickert
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA; the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA; the Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Lianbo Yu
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Stefan Trela
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Daniel J Schilling
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shannon K Halloran
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Maokun Li
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shourik Dutta
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Soledad A Fernandez
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas J Rosol
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gregory B Lesinski
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Reena Shakya
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas Ludwig
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Stephen F Konieczny
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA; the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA; the Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Gustavo Leone
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jinghai Wu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael C Ostrowski
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
16
|
BMP and retinoic acid regulate anterior-posterior patterning of the non-axial mesoderm across the dorsal-ventral axis. Nat Commun 2016; 7:12197. [PMID: 27406002 PMCID: PMC4947171 DOI: 10.1038/ncomms12197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 06/09/2016] [Indexed: 11/23/2022] Open
Abstract
Despite the fundamental importance of patterning along the dorsal–ventral (DV) and anterior–posterior (AP) axes during embryogenesis, uncertainty exists in the orientation of these axes for the mesoderm. Here we examine the origin and formation of the zebrafish kidney, a ventrolateral mesoderm derivative, and show that AP patterning of the non-axial mesoderm occurs across the classic gastrula stage DV axis while DV patterning aligns along the animal–vegetal pole. We find that BMP signalling acts early to establish broad anterior and posterior territories in the non-axial mesoderm while retinoic acid (RA) functions later, but also across the classic DV axis. Our data support a model in which RA on the dorsal side of the embryo induces anterior kidney fates while posterior kidney progenitors are protected ventrally by the RA-catabolizing enzyme Cyp26a1. This work clarifies our understanding of vertebrate axis orientation and establishes a new paradigm for how the kidney and other mesodermal derivatives arise during embryogenesis. It is unclear how the dorsal-ventral (DV) and anterior-posterior (AP) axes established in the gastrula affect tissues. Here, the authors show that in zebrafish kidney development, with regard to non-axial mesoderm, the classic DV axis corresponds to the AP axis, and is regulated by BMP and retinoic acid.
Collapse
|
17
|
Abstract
The endoderm is the innermost embryonic germ layer, and in zebrafish, it gives rise to the lining of the gut, the gills, liver, pancreas, gallbladder, and derivatives of the pharyngeal pouch. These organs form the gastrointestinal tract and are involved with the absorption, delivery, and metabolism of nutrients. The liver has a central role in regulating these processes because it controls carbohydrate and lipid metabolism, protein synthesis, and breakdown of endogenous and xenobiotic products. Liver dysfunction frequently leads to significant morbidity and mortality; however, in most settings of organ injury, the liver exhibits remarkable regenerative capacity. In this chapter, we review the principal mechanisms of endoderm and liver formation and provide protocols to assess liver formation and liver regeneration.
Collapse
|
18
|
McCarthy N, Sidik A, Bertrand JY, Eberhart JK. An Fgf-Shh signaling hierarchy regulates early specification of the zebrafish skull. Dev Biol 2016; 415:261-277. [PMID: 27060628 PMCID: PMC4967541 DOI: 10.1016/j.ydbio.2016.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 02/03/2023]
Abstract
The neurocranium generates most of the craniofacial skeleton and consists of prechordal and postchordal regions. Although development of the prechordal is well studied, little is known of the postchordal region. Here we characterize a signaling hierarchy necessary for postchordal neurocranial development involving Fibroblast growth factor (Fgf) signaling for early specification of mesodermally-derived progenitor cells. The expression of hyaluron synthetase 2 (has2) in the cephalic mesoderm requires Fgf signaling and Has2 function, in turn, is required for postchordal neurocranial development. While Hedgehog (Hh)-deficient embryos also lack a postchordal neurocranium, this appears primarily due to a later defect in chondrocyte differentiation. Inhibitor studies demonstrate that postchordal neurocranial development requires early Fgf and later Hh signaling. Collectively, our results provide a mechanistic understanding of early postchordal neurocranial development and demonstrate a hierarchy of signaling between Fgf and Hh in the development of this structure.
Collapse
Affiliation(s)
- Neil McCarthy
- Department of Molecular Biosciences; Institute of Cell and Molecular Biology, Waggoner Center for Alcohol and Alcohol Addiction Research, University of Texas, Austin, TX, United States
| | - Alfire Sidik
- Department of Molecular Biosciences; Institute of Cell and Molecular Biology, Waggoner Center for Alcohol and Alcohol Addiction Research, University of Texas, Austin, TX, United States
| | - Julien Y Bertrand
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Johann K Eberhart
- Department of Molecular Biosciences; Institute of Cell and Molecular Biology, Waggoner Center for Alcohol and Alcohol Addiction Research, University of Texas, Austin, TX, United States; Department of Molecular Biosciences; Institute of Neurobiology, University of Texas, Austin, TX, United States.
| |
Collapse
|
19
|
Takahashi Y, Takebe T, Taniguchi H. Engineering pancreatic tissues from stem cells towards therapy. Regen Ther 2016; 3:15-23. [PMID: 31245468 PMCID: PMC6581807 DOI: 10.1016/j.reth.2016.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/17/2015] [Accepted: 01/20/2016] [Indexed: 12/20/2022] Open
Abstract
Pancreatic islet transplantation is performed as a potential treatment for type 1 diabetes mellitus. However, this approach is significantly limited due to the critical shortage of islet sources. Recently, a number of publications have developed protocols for directed β-cell differentiation of pluripotent cells, such as embryonic stem (ES) or induced pluripotent stem (iPS) cells. Decades of studies have led to the development of modified protocols that recapitulate molecular developmental cues by combining various growth factors and small molecules with improved efficiency. However, the later step of pancreatic differentiation into functional β-cells has yet to be satisfactory in vitro, highlighting alternative approach by recapitulating spatiotemporal multicellular interaction in three-dimensional (3D) culture. Here, we summarize recent progress in the directed differentiation into pancreatic β-cells with a focus on both two-dimensional (2D) and 3D differentiation settings. We also discuss the potential transplantation strategies in combination with current bioengineering approaches towards diabetes therapy. Transplantation of stem cell derived pancreatic progenitors is a possible approach for generating mature β-cell in vivo. Promise of 3-D (or 4-D) culture has started to be explored by reconstituting pancreatic tissue structures. Self-condensation culture is a basic technique of integrating multiple heterotypic lineages including vasculatures. Bioengineering approach has been combined for developing effective transplant strategies.
Collapse
Key Words
- 2D, two-dimensional
- 3D, three-dimensional
- BMP, bone morphogenic protein
- Diabetes
- ES, embryonic stem
- FGF, fibroblast growth factors
- Heterotypic cellular interaction
- IBMIR, instant blood-mediated reaction
- ILV, indolactam V
- Ngn3, neurogenin 3
- PEG, polyethylene glycol
- PI3K, phosphatidylinositol-3 kinase
- PIPAAm, poly-N-isopropylacrylamide
- PVA, polyvinyl alcohol
- Pancreas
- Pdx1, pancreatic and duodenal homeobox 1
- Ptf1a, pancreatic transcription factor 1a
- Regenerative medicine
- VEGF, vascular endothelial growth factor
- Vascularization
- iPS, induced pluripotent stem
- iPS/ES cell
Collapse
Affiliation(s)
- Yoshinobu Takahashi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan
| | - Takanori Takebe
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan.,Advanced Medical Research Center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229- 3039, USA
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan.,Advanced Medical Research Center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan
| |
Collapse
|
20
|
Ye L, Robertson MA, Mastracci TL, Anderson RM. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration. Dev Biol 2015; 409:354-69. [PMID: 26658317 DOI: 10.1016/j.ydbio.2015.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/12/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023]
Abstract
As one of the key nutrient sensors, insulin signaling plays an important role in integrating environmental energy cues with organism growth. In adult organisms, relative insufficiency of insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. However, little is known about how insulin signaling feedback might influence neogenesis of β cells during embryonic development. Using genetic approaches and a unique cell transplantation system in developing zebrafish, we have uncovered a novel role for insulin signaling in the negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling promoted β cell regeneration and destabilization of alpha cell character. These data indicate that insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell mass in the host. Altogether, our results indicate that modulation of insulin signaling will be crucial for the development of β cell restoration therapies for diabetics; further clarification of the mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in vivo and in vitro β cell generation.
Collapse
Affiliation(s)
- Lihua Ye
- Herman B Wells Center for Pediatric Research in the Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Van Nuys Medical Sciences Building MS2043, Indianapolis, IN 46202, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Van Nuys Medical Sciences Building MS2043, Indianapolis, IN 46202, USA
| | - Morgan A Robertson
- Herman B Wells Center for Pediatric Research in the Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Van Nuys Medical Sciences Building MS2043, Indianapolis, IN 46202, USA
| | - Teresa L Mastracci
- Herman B Wells Center for Pediatric Research in the Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Van Nuys Medical Sciences Building MS2043, Indianapolis, IN 46202, USA
| | - Ryan M Anderson
- Herman B Wells Center for Pediatric Research in the Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Van Nuys Medical Sciences Building MS2043, Indianapolis, IN 46202, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Van Nuys Medical Sciences Building MS2043, Indianapolis, IN 46202, USA.
| |
Collapse
|
21
|
|
22
|
Dalgin G, Prince VE. Differential levels of Neurod establish zebrafish endocrine pancreas cell fates. Dev Biol 2015; 402:81-97. [PMID: 25797153 DOI: 10.1016/j.ydbio.2015.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 03/02/2015] [Accepted: 03/10/2015] [Indexed: 11/27/2022]
Abstract
During development a network of transcription factors functions to differentiate foregut cells into pancreatic endocrine cells. Differentiation of appropriate numbers of each hormone-expressing endocrine cell type is essential for the normal development of the pancreas and ultimately for effective maintenance of blood glucose levels. A fuller understanding of the details of endocrine cell differentiation may contribute to development of cell replacement therapies to treat diabetes. In this study, by using morpholino and gRNA/Cas9 mediated knockdown we establish that differential levels of the basic-helix loop helix (bHLH) transcription factor Neurod are required for the differentiation of distinct endocrine cell types in developing zebrafish. While Neurod plays a role in the differentiation of all endocrine cells, we find that differentiation of glucagon-expressing alpha cells is disrupted by a minor reduction in Neurod levels, whereas differentiation of insulin-expressing beta cells is less sensitive to Neurod depletion. The endocrine cells that arise during embryonic stages to produce the primary islet, and those that arise subsequently during larval stages from the intra-pancreatic duct (IPD) to ultimately contribute to the secondary islets, show similar dependence on differential Neurod levels. Intriguingly, Neurod-deficiency triggers premature formation of endocrine precursors from the IPD during early larval stages. However, the Neurod-deficient endocrine precursors fail to differentiate appropriately, and the larvae are unable to maintain normal glucose levels. In summary, differential levels of Neurod are required to generate endocrine pancreas subtypes from precursors during both embryonic and larval stages, and Neurod function is in turn critical to endocrine function.
Collapse
Affiliation(s)
- Gökhan Dalgin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| | - Victoria E Prince
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Huang W, Wang G, Delaspre F, Vitery MDC, Beer RL, Parsons MJ. Retinoic acid plays an evolutionarily conserved and biphasic role in pancreas development. Dev Biol 2014; 394:83-93. [PMID: 25127993 PMCID: PMC4623430 DOI: 10.1016/j.ydbio.2014.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 07/22/2014] [Accepted: 07/30/2014] [Indexed: 02/06/2023]
Abstract
As the developing zebrafish pancreas matures, hormone-producing endocrine cells differentiate from pancreatic Notch-responsive cells (PNCs) that reside within the ducts. These new endocrine cells form small clusters known as secondary (2°) islets. We use the formation of 2° islets in the pancreatic tail of the larval zebrafish as a model of β-cell neogenesis. Pharmacological inhibition of Notch signaling leads to precocious endocrine differentiation and the early appearance of 2° islets in the tail of the pancreas. Following a chemical screen, we discovered that blocking the retinoic acid (RA)-signaling pathway also leads to the induction of 2° islets. Conversely, the addition of exogenous RA blocks the differentiation caused by Notch inhibition. In this report we characterize the interaction of these two pathways. We first verified that signaling via both RA and Notch ligands act together to regulate pancreatic progenitor differentiation. We produced a transgenic RA reporter, which demonstrated that PNCs directly respond to RA signaling through the canonical transcriptional pathway. Next, using a genetic lineage tracing approach, we demonstrated these progenitors produce endocrine cells following inhibition of RA signaling. Lastly, inhibition of RA signaling using a cell-type specific inducible cre/lox system revealed that RA signaling acts cell-autonomously in PNCs to regulate their differentiation. Importantly, the action of RA inhibition on endocrine formation is evolutionarily conserved, as shown by the differentiation of human embryonic stem cells in a model of human pancreas development. Together, these results revealed a biphasic function for RA in pancreatogenesis. As previously shown by others, RA initially plays an essential role during embryogenesis as it patterns the endoderm and specifies the pancreatic field. We reveal here that later in development RA is involved in negatively regulating the further differentiation of pancreatic progenitors and expands upon the developmental mechanisms by which this occurs.
Collapse
Affiliation(s)
- Wei Huang
- Department of Surgery, and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Guangliang Wang
- Department of Surgery, and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Fabien Delaspre
- Department of Surgery, and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Maria Del Carmen Vitery
- Department of Surgery, and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Rebecca L Beer
- Department of Surgery, and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Michael J Parsons
- Department of Surgery, and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| |
Collapse
|
24
|
Zhang D, Golubkov VS, Han W, Correa RG, Zhou Y, Lee S, Strongin AY, Dong PDS. Identification of Annexin A4 as a hepatopancreas factor involved in liver cell survival. Dev Biol 2014; 395:96-110. [PMID: 25176043 DOI: 10.1016/j.ydbio.2014.08.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 01/27/2023]
Abstract
To gain insight into liver and pancreas development, we investigated the target of 2F11, a monoclonal antibody of unknown antigen, widely used in zebrafish studies for labeling hepatopancreatic ducts. Utilizing mass spectrometry and in vivo assays, we determined the molecular target of 2F11 to be Annexin A4 (Anxa4), a calcium binding protein. We further found that in both zebrafish and mouse endoderm, Anxa4 is broadly expressed in the developing liver and pancreas, and later becomes more restricted to the hepatopancreatic ducts and pancreatic islets, including the insulin producing ß-cells. Although Anxa4 is a known target of several monogenic diabetes genes and its elevated expression is associated with chemoresistance in malignancy, its in vivo role is largely unexplored. Knockdown of Anxa4 in zebrafish leads to elevated expression of caspase 8 and Δ113p53, and liver bud specific activation of Caspase 3 and apoptosis. Mosaic knockdown reveal that Anxa4 is required cell-autonomously in the liver bud for cell survival. This finding is further corroborated with mosaic anxa4 knockout studies using the CRISPR/Cas9 system. Collectively, we identify Anxa4 as a new, evolutionarily conserved hepatopancreatic factor that is required in zebrafish for liver progenitor viability, through inhibition of the extrinsic apoptotic pathway. A role for Anxa4 in cell survival may have implications for the mechanism of diabetic ß-cell apoptosis and cancer cell chemoresistance.
Collapse
Affiliation(s)
- Danhua Zhang
- Sanford Children's Health Research Center, Programs in Genetic Disease, Development and Aging, and Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA; Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Vladislav S Golubkov
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Wenlong Han
- NCI-Designated Cancer Center, Tumor Microenvironment Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ricardo G Correa
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Ying Zhou
- Sanford Children's Health Research Center, Programs in Genetic Disease, Development and Aging, and Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA; Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Sunyoung Lee
- NCI-Designated Cancer Center, Tumor Microenvironment Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alex Y Strongin
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - P Duc Si Dong
- Sanford Children's Health Research Center, Programs in Genetic Disease, Development and Aging, and Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA; Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA.
| |
Collapse
|
25
|
Tsuji N, Ninov N, Delawary M, Osman S, Roh AS, Gut P, Stainier DYR. Whole organism high content screening identifies stimulators of pancreatic beta-cell proliferation. PLoS One 2014; 9:e104112. [PMID: 25117518 PMCID: PMC4130527 DOI: 10.1371/journal.pone.0104112] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/04/2014] [Indexed: 12/21/2022] Open
Abstract
Inducing beta-cell mass expansion in diabetic patients with the aim to restore glucose homeostasis is a promising therapeutic strategy. Although several in vitro studies have been carried out to identify modulators of beta-cell mass expansion, restoring endogenous beta-cell mass in vivo has yet to be achieved. To identify potential stimulators of beta-cell replication in vivo, we established transgenic zebrafish lines that monitor and allow the quantification of cell proliferation by using the fluorescent ubiquitylation-based cell cycle indicator (FUCCI) technology. Using these new reagents, we performed an unbiased chemical screen, and identified 20 small molecules that markedly increased beta-cell proliferation in vivo. Importantly, these structurally distinct molecules, which include clinically-approved drugs, modulate three specific signaling pathways: serotonin, retinoic acid and glucocorticoids, showing the high sensitivity and robustness of our screen. Notably, two drug classes, retinoic acid and glucocorticoids, also promoted beta-cell regeneration after beta-cell ablation. Thus, this study establishes a proof of principle for a high-throughput small molecule-screen for beta-cell proliferation in vivo, and identified compounds that stimulate beta-cell proliferation and regeneration.
Collapse
Affiliation(s)
- Naoki Tsuji
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, the Diabetes Center, Institute for Regeneration Medicine and Liver Center, University of California San Francisco, San Francisco, California, United States of America
| | - Nikolay Ninov
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, the Diabetes Center, Institute for Regeneration Medicine and Liver Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DFG Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, German Center for Diabetes Research, Dresden, Germany
| | - Mina Delawary
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, the Diabetes Center, Institute for Regeneration Medicine and Liver Center, University of California San Francisco, San Francisco, California, United States of America
| | - Sahar Osman
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, the Diabetes Center, Institute for Regeneration Medicine and Liver Center, University of California San Francisco, San Francisco, California, United States of America
| | - Alex S. Roh
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, the Diabetes Center, Institute for Regeneration Medicine and Liver Center, University of California San Francisco, San Francisco, California, United States of America
| | - Philipp Gut
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, the Diabetes Center, Institute for Regeneration Medicine and Liver Center, University of California San Francisco, San Francisco, California, United States of America
| | - Didier Y. R. Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, the Diabetes Center, Institute for Regeneration Medicine and Liver Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail:
| |
Collapse
|
26
|
Shahjalal HM, Shiraki N, Sakano D, Kikawa K, Ogaki S, Baba H, Kume K, Kume S. Generation of insulin-producing β-like cells from human iPS cells in a defined and completely xeno-free culture system. J Mol Cell Biol 2014; 6:394-408. [PMID: 24970864 DOI: 10.1093/jmcb/mju029] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human induced pluripotent stem (hiPS) cells are considered a potential source for the generation of insulin-producing pancreatic β-cells because of their differentiation capacity. In this study, we have developed a five-step xeno-free culture system to efficiently differentiate hiPS cells into insulin-producing cells in vitro. We found that a high NOGGIN concentration is crucial for specifically inducing the differentiation first into pancreatic and duodenal homeobox-1 (PDX1)-positive pancreatic progenitors and then into neurogenin 3 (NGN3)-expressing pancreatic endocrine progenitors, while suppressing the differentiation into hepatic or intestinal cells. We also found that a combination of 3-isobutyl-1-methylxanthine (IBMX), exendin-4, and nicotinamide was important for the differentiation into insulin single-positive cells that expressed various pancreatic β-cell markers. Most notably, the differentiated cells contained endogenous C-peptide pools that were released in response to various insulin secretagogues and high levels of glucose. Therefore, our results demonstrate the feasibility of generating hiPS-derived pancreatic β-cells under xeno-free conditions and highlight their potential to treat patients with type 1 diabetes.
Collapse
Affiliation(s)
- Hussain Md Shahjalal
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-Ku, Kumamoto 860-0811, Japan Global-Center of Excellence (G-COE), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan
| | - Nobuaki Shiraki
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-Ku, Kumamoto 860-0811, Japan
| | - Daisuke Sakano
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-Ku, Kumamoto 860-0811, Japan Global-Center of Excellence (G-COE), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kazuhide Kikawa
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-Ku, Kumamoto 860-0811, Japan Global-Center of Excellence (G-COE), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-Ku, Kumamoto 860-8556, Japan
| | - Soichiro Ogaki
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-Ku, Kumamoto 860-0811, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-Ku, Kumamoto 860-8556, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe Street, Mizuho, Nagoya 467-8603, Japan
| | - Shoen Kume
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-Ku, Kumamoto 860-0811, Japan Global-Center of Excellence (G-COE), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan Program for Leading Graduate Schools 'HIGO (Health Life Science; Interdisciplinary and Glocal Oriented) Program,' Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan
| |
Collapse
|
27
|
Schiesser JV, Micallef SJ, Hawes S, Elefanty AG, Stanley EG. Derivation of insulin-producing beta-cells from human pluripotent stem cells. Rev Diabet Stud 2014; 11:6-18. [PMID: 25148364 DOI: 10.1900/rds.2014.11.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human embryonic stem cells have been advanced as a source of insulin-producing cells that could potentially replace cadaveric-derived islets in the treatment of type 1 diabetes. To this end, protocols have been developed that promote the formation of pancreatic progenitors and endocrine cells from human pluripotent stem cells, encompassing both embryonic stem cells and induced pluripotent stem cells. In this review, we examine these methods and place them in the context of the developmental and embryological studies upon which they are based. In particular, we outline the stepwise differentiation of cells towards definitive endoderm, pancreatic endoderm, endocrine lineages and the emergence of functional beta-cells. In doing so, we identify key factors common to many such protocols and discuss the proposed action of these factors in the context of cellular differentiation and ongoing development. We also compare strategies that entail transplantation of progenitor populations with those that seek to develop fully functional hormone expressing cells in vitro. Overall, our survey of the literature highlights the significant progress already made in the field and identifies remaining deficiencies in developing a pluripotent stem cell based treatment for type 1 diabetes.
Collapse
Affiliation(s)
- Jacqueline V Schiesser
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Suzanne J Micallef
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Susan Hawes
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Andrew G Elefanty
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Edouard G Stanley
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
28
|
Bose B, Katikireddy KR, Shenoy PS. Regenerative medicine for diabetes: differentiation of human pluripotent stem cells into functional β-cells in vitro and their proposed journey to clinical translation. VITAMINS AND HORMONES 2014; 95:223-48. [PMID: 24559920 DOI: 10.1016/b978-0-12-800174-5.00009-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Diabetes is a group of metabolic diseases, rising globally at an alarming rate. Type 1 (juvenile diabetes) is the autoimmune version of diabetes where the pancreas is unable to produce insulin, whereas type 2 (adult onset diabetes) is caused due to insulin resistance of the cells. In either of the cases, elevated blood glucose levels are observed which leads to progressive comorbidity like renal failure, cardiovascular disease, retinopathy, etc. Metformin, sulphonyl urea group of drugs, as well as insulin injections are the available therapies. In advanced cases of diabetes, the drug alone or drug in combination with insulin injections are not able to maintain a steady level of blood glucose. Moreover, frequent insulin injections are rather cumbersome for the patient. So, regenerative medicine could be a permanent solution for fighting diabetes. Islet transplantation has been tried with a limited amount of success on a large population of diabetics because of the shortage of cadaveric pancreas. Therefore, the best proposed alternative is regenerative medicine involving human pluripotent stem cell (hPSC)-derived beta islet transplantation which can be obtained in large quantities. Efficient protocols for in vitro differentiation of hPSC into a large number of sustained insulin-producing beta cells for transplantation will be considered to be a giant leap to address global rise in diabetic cases. Although most of the protocols mimic in vivo pancreatic development in humans, considerable amount of lacuna persists for near-perfect differentiation strategies. Moreover, beta islets differentiated from hPSC have not yet been successfully translated under clinical scenario.
Collapse
Affiliation(s)
- Bipasha Bose
- Nanyang Technological University, School of Biological Sciences, NTU Lab Location @ Level 2 Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, Singapore, Singapore.
| | | | - P Sudheer Shenoy
- Nanyang Technological University, School of Biological Sciences, NTU Lab Location @ Level 2 Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, Singapore, Singapore
| |
Collapse
|
29
|
Nolte C, Jinks T, Wang X, Martinez Pastor MT, Krumlauf R. Shadow enhancers flanking the HoxB cluster direct dynamic Hox expression in early heart and endoderm development. Dev Biol 2013; 383:158-73. [PMID: 24055171 DOI: 10.1016/j.ydbio.2013.09.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/03/2013] [Accepted: 09/11/2013] [Indexed: 11/29/2022]
Abstract
The products of Hox genes function in assigning positional identity along the anterior-posterior body axis during animal development. In mouse embryos, Hox genes located at the 3' end of HoxA and HoxB complexes are expressed in nested patterns in the progenitors of the secondary heart field during early cardiogenesis and the combined activities of both of these clusters are required for proper looping of the heart. Using Hox bacterial artificial chromosomes (BACs), transposon reporters, and transgenic analyses in mice, we present the identification of several novel enhancers flanking the HoxB complex which can work over a long range to mediate dynamic reporter expression in the endoderm and embryonic heart during development. These enhancers respond to exogenously added retinoic acid and we have identified two retinoic acid response elements (RAREs) within these control modules that play a role in potentiating their regulatory activity. Deletion analysis in HoxB BAC reporters reveals that these control modules, spread throughout the flanking intergenic region, have regulatory activities that overlap with other local enhancers. This suggests that they function as shadow enhancers to modulate the expression of genes from the HoxB complex during cardiac development. Regulatory analysis of the HoxA complex reveals that it also has enhancers in the 3' flanking region which contain RAREs and have the potential to modulate expression in endoderm and heart tissues. Together, the similarities in their location, enhancer output, and dependence on retinoid signaling suggest that a conserved cis-regulatory cassette located in the 3' proximal regions adjacent to the HoxA and HoxB complexes evolved to modulate Hox gene expression during mammalian cardiac and endoderm development. This suggests a common regulatory mechanism, whereby the conserved control modules act over a long range on multiple Hox genes to generate nested patterns of HoxA and HoxB expression during cardiogenesis.
Collapse
Affiliation(s)
- Christof Nolte
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | |
Collapse
|
30
|
Aldh1-expressing endocrine progenitor cells regulate secondary islet formation in larval zebrafish pancreas. PLoS One 2013; 8:e74350. [PMID: 24147152 PMCID: PMC3798260 DOI: 10.1371/journal.pone.0074350] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/31/2013] [Indexed: 12/03/2022] Open
Abstract
Aldh1 expression is known to mark candidate progenitor populations in adult and embryonic mouse pancreas, and Aldh1 enzymatic activity has been identified as a potent regulator of pancreatic endocrine differentiation in zebrafish. However, the location and identity of Aldh1-expressing cells in zebrafish pancreas remain unknown. In this study we demonstrate that Aldh1-expressing cells are located immediately adjacent to 2F11-positive pancreatic ductal epithelial cells, and that their abundance dramatically increases during zebrafish secondary islet formation. These cells also express neurod, a marker of endocrine progenitor cells, but do not express markers of more mature endocrine cells such as pax6b or insulin. Using formal cre/lox-based lineage tracing, we further show that Aldh1-expressing pancreatic epithelial cells are the direct progeny of pancreatic notch-responsive progenitor cells, identifying them as a critical intermediate between multi-lineage progenitors and mature endocrine cells. Pharmacologic manipulation of Aldh1 enzymatic activity accelerates cell entry into the Aldh1-expressing endocrine progenitor pool, and also leads to the premature maturation of these cells, as evidenced by accelerated pax6b expression. Together, these findings suggest that Aldh1-expressing cells act as both participants and regulators of endocrine differentiation during zebrafish secondary islet formation.
Collapse
|
31
|
Hepatocyte growth factor signaling in intrapancreatic ductal cells drives pancreatic morphogenesis. PLoS Genet 2013; 9:e1003650. [PMID: 23935514 PMCID: PMC3723531 DOI: 10.1371/journal.pgen.1003650] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 06/04/2013] [Indexed: 12/17/2022] Open
Abstract
In a forward genetic screen for regulators of pancreas development in zebrafish, we identified donut(s908) , a mutant which exhibits failed outgrowth of the exocrine pancreas. The s908 mutation leads to a leucine to arginine substitution in the ectodomain of the hepatocyte growth factor (HGF) tyrosine kinase receptor, Met. This missense mutation impedes the proteolytic maturation of the receptor, its trafficking to the plasma membrane, and diminishes the phospho-activation of its kinase domain. Interestingly, during pancreatogenesis, met and its hgf ligands are expressed in pancreatic epithelia and mesenchyme, respectively. Although Met signaling elicits mitogenic and migratory responses in varied contexts, normal proliferation rates in donut mutant pancreata together with dysmorphic, mislocalized ductal cells suggest that met primarily functions motogenically in pancreatic tail formation. Treatment with PI3K and STAT3 inhibitors, but not with MAPK inhibitors, phenocopies the donut pancreatic defect, further indicating that Met signals through migratory pathways during pancreas development. Chimera analyses showed that Met-deficient cells were excluded from the duct, but not acinar, compartment in the pancreatic tail. Conversely, wild-type intrapancreatic duct and "tip cells" at the leading edge of the growing pancreas rescued the donut phenotype. Altogether, these results reveal a novel and essential role for HGF signaling in the intrapancreatic ducts during exocrine morphogenesis.
Collapse
|
32
|
Stanger BZ, Hebrok M. Control of cell identity in pancreas development and regeneration. Gastroenterology 2013; 144:1170-9. [PMID: 23622126 PMCID: PMC3639438 DOI: 10.1053/j.gastro.2013.01.074] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/05/2013] [Accepted: 01/14/2013] [Indexed: 02/07/2023]
Abstract
The endocrine and exocrine cells in the adult pancreas are not static, but can change their differentiation state in response to injury or stress. This concept of cells in flux means that there may be ways to generate certain types of cells (such as insulin-producing β-cells) and prevent formation of others (such as transformed neoplastic cells). We review different aspects of cell identity in the pancreas, discussing how cells achieve their identity during embryonic development and maturation, and how this identity remains plastic, even in the adult pancreas.
Collapse
Affiliation(s)
- Ben Z. Stanger
- Division of Gastroenterology, Department of Medicine, Department of Cell and Developmental Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
33
|
Woo S, Housley MP, Weiner OD, Stainier DYR. Nodal signaling regulates endodermal cell motility and actin dynamics via Rac1 and Prex1. ACTA ACUST UNITED AC 2013; 198:941-52. [PMID: 22945937 PMCID: PMC3432772 DOI: 10.1083/jcb.201203012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nodal, acting through Prex1 and Rac1, promotes dynamic actin and random motility in endodermal cells during early gastrulation. Embryo morphogenesis is driven by dynamic cell behaviors, including migration, that are coordinated with fate specification and differentiation, but how such coordination is achieved remains poorly understood. During zebrafish gastrulation, endodermal cells sequentially exhibit first random, nonpersistent migration followed by oriented, persistent migration and finally collective migration. Using a novel transgenic line that labels the endodermal actin cytoskeleton, we found that these stage-dependent changes in migratory behavior correlated with changes in actin dynamics. The dynamic actin and random motility exhibited during early gastrulation were dependent on both Nodal and Rac1 signaling. We further identified the Rac-specific guanine nucleotide exchange factor Prex1 as a Nodal target and showed that it mediated Nodal-dependent random motility. Reducing Rac1 activity in endodermal cells caused them to bypass the random migration phase and aberrantly contribute to mesodermal tissues. Together, our results reveal a novel role for Nodal signaling in regulating actin dynamics and migration behavior, which are crucial for endodermal morphogenesis and cell fate decisions.
Collapse
Affiliation(s)
- Stephanie Woo
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | | | |
Collapse
|
34
|
Ye D, Lin F. S1pr2/Gα13 signaling controls myocardial migration by regulating endoderm convergence. Development 2013; 140:789-99. [PMID: 23318642 DOI: 10.1242/dev.085340] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A key process during vertebrate heart development is the migration of bilateral populations of myocardial precursors towards the midline to form the primitive heart tube. In zebrafish, signaling mediated by sphingosine-1-phosphate (S1P) and its cognate G protein-coupled receptor (S1pr2/Mil) is essential for myocardial migration, but the underlying mechanisms remain undefined. Here, we show that suppression of Gα(13) signaling disrupts myocardial migration, leading to the formation of two bilaterally located hearts (cardia bifida). Genetic studies indicate that Gα(13) acts downstream of S1pr2 to regulate myocardial migration through a RhoGEF-dependent pathway. Furthermore, disrupting any component of the S1pr2/Gα(13)/RhoGEF pathway impairs endoderm convergence during segmentation, and the endodermal defects correlate with the extent of cardia bifida. Moreover, endoderm transplantation reveals that the presence of wild-type anterior endodermal cells in Gα(13)-deficient embryos is sufficient to rescue the endoderm convergence defect and cardia bifida, and, conversely, that the presence of anterior endodermal cells defective for S1pr2 or Gα(13) in wild-type embryos causes such defects. Thus, S1pr2/Gα(13) signaling probably acts in the endoderm to regulate myocardial migration. In support of this notion, cardiac-specific expression of Gα(13) fails to rescue cardia bifida in the context of global Gα(13) inhibition. Our data demonstrate for the first time that the Gα(13)/RhoGEF-dependent pathway functions downstream of S1pr2 to regulate convergent movement of the endoderm, an event that is crucial for coordinating myocardial migration.
Collapse
Affiliation(s)
- Ding Ye
- Department of Anatomy and Cell Biology, Carver College of Medicine, the University of Iowa, 1-400 Bowen Science Building, Iowa City, IA 52242-1109, USA
| | | |
Collapse
|
35
|
Love CE, Prince VE. Expression and retinoic acid regulation of the zebrafish nr2f orphan nuclear receptor genes. Dev Dyn 2012; 241:1603-15. [PMID: 22836912 DOI: 10.1002/dvdy.23838] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The vertebrate nuclear receptor subfamily 2, group f (nr2f) genes encode orphan receptors that have the capacity to act as negative regulators of retinoic acid (RA) signaling. RESULTS We describe embryonic and larval expression of four of the six zebrafish nr2f genes, nr2f1a, nr2f1b, nr2f2, and nr2f5. These genes show highly regulated patterns of expression within the central nervous system, including in the developing hindbrain, as well as in the mesoderm and endoderm. We also investigated the role of RA and fibroblast growth factor (Fgf) signaling in regulating early nr2f gene expression. RA is not required for nr2f expression in the hindbrain; however, exogenous RA can repress this expression. Conversely, we find that RA positively regulates nr2f1a expression in trunk endoderm and mesoderm. Fgf signaling is not required for nr2f expression onset in the hindbrain; however, it may play a role in maintaining rhombomere-specific expression. CONCLUSIONS We report detailed expression analysis of four nr2f genes in all three germ layers. The onset of nr2f expression in the hindbrain does not require RA or Fgf signals. Our finding that RA positively regulates nr2f1a expression in the trunk supports the possibility that Nr2fs function in a negative feedback loop to modulate RA signaling in this region.
Collapse
Affiliation(s)
- Crystal E Love
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
36
|
McCracken KW, Wells JM. Molecular pathways controlling pancreas induction. Semin Cell Dev Biol 2012; 23:656-62. [PMID: 22743233 DOI: 10.1016/j.semcdb.2012.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/13/2012] [Indexed: 01/02/2023]
Abstract
Recent advances in generating pancreatic cell types from human pluripotent stem cells has depended on our knowledge of the developmental processes that regulate pancreas development in vivo. The developmental events between gastrulation and formation of the embryonic pancreatic primordia are both rapid and dynamic and studies in frog, fish, chick, and mouse have identified the molecular basis of how the pancreas develops from multipotent endoderm progenitors. Here, we review the current status of our understanding of molecular mechanisms that control endoderm formation, endoderm patterning, and pancreas specification and highlight how these discoveries have allowed for the development of robust methods to generate pancreatic cells from human pluripotent stem cells.
Collapse
Affiliation(s)
- Kyle W McCracken
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| | | |
Collapse
|
37
|
Kam RKT, Deng Y, Chen Y, Zhao H. Retinoic acid synthesis and functions in early embryonic development. Cell Biosci 2012; 2:11. [PMID: 22439772 PMCID: PMC3325842 DOI: 10.1186/2045-3701-2-11] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/22/2012] [Indexed: 01/08/2023] Open
Abstract
Retinoic acid (RA) is a morphogen derived from retinol (vitamin A) that plays important roles in cell growth, differentiation, and organogenesis. The production of RA from retinol requires two consecutive enzymatic reactions catalyzed by different sets of dehydrogenases. The retinol is first oxidized into retinal, which is then oxidized into RA. The RA interacts with retinoic acid receptor (RAR) and retinoic acid X receptor (RXR) which then regulate the target gene expression. In this review, we have discussed the metabolism of RA and the important components of RA signaling pathway, and highlighted current understanding of the functions of RA during early embryonic development.
Collapse
Affiliation(s)
- Richard Kin Ting Kam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P, R, China.
| | | | | | | |
Collapse
|
38
|
Arkhipova V, Wendik B, Devos N, Ek O, Peers B, Meyer D. Characterization and regulation of the hb9/mnx1 beta-cell progenitor specific enhancer in zebrafish. Dev Biol 2012; 365:290-302. [PMID: 22426004 PMCID: PMC3327876 DOI: 10.1016/j.ydbio.2012.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 11/06/2022]
Abstract
Differentiation of insulin producing beta-cells is a genetically well defined process that involves functions of various conserved transcription factors. Still, the transcriptional mechanisms underlying specification and determination of beta-cell fate are poorly defined. Here we provide the description of a beta-cell progenitor specific enhancer as a model to study initial steps of beta-cell differentiation. We show that evolutionary non-conserved upstream sequences of the zebrafish hb9 gene are required and sufficient for regulating expression in beta-cells prior to the onset of insulin expression. This enhancer contains binding sites for paired-box transcription factors and two E-boxes that in EMSA studies show interaction with Pax6b and NeuroD, respectively. We show that Pax6b is a potent activator of endodermal hb9 expression and that this activation depends on the beta-cell enhancer. Using genetic approaches we show that pax6b is crucial for maintenance but not induction of pancreatic hb9 transcription. As loss of Pax6b or Hb9 independently results in the loss of insulin expression, the data reveal a novel cross-talk between the two essential regulators of early beta-cell differentiation. While we find that the known pancreatic E-box binding proteins NeuroD and Ngn3 are not required for hb9 expression we also show that removal of both E-boxes selectively eliminates pancreatic specific reporter expression. The data provide evidence for an Ngn3 independent pathway of beta-cell specification that requires function of currently not specified E-box binding factors.
Collapse
Affiliation(s)
- Valeriya Arkhipova
- Institute for Molecular Biology/CMBI, Technikerstr. 25, University of Innsbruck, 6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
39
|
Dalgin G, Ward AB, Hao LT, Beattie CE, Nechiporuk A, Prince VE. Zebrafish mnx1 controls cell fate choice in the developing endocrine pancreas. Development 2011; 138:4597-608. [PMID: 21989909 DOI: 10.1242/dev.067736] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The vertebrate endocrine pancreas has the crucial function of maintaining blood sugar homeostasis. This role is dependent upon the development and maintenance of pancreatic islets comprising appropriate ratios of hormone-producing cells. In all vertebrate models studied, an initial precursor population of Pdx1-expressing endoderm cells gives rise to separate endocrine and exocrine cell lineages. Within the endocrine progenitor pool a variety of transcription factors influence cell fate decisions, such that hormone-producing differentiated cell types ultimately arise, including the insulin-producing beta cells and the antagonistically acting glucagon-producing alpha cells. In previous work, we established that the development of all pancreatic lineages requires retinoic acid (RA) signaling. We have used the zebrafish to uncover genes that function downstream of RA signaling, and here we identify mnx1 (hb9) as an RA-regulated endoderm transcription factor-encoding gene. By combining manipulation of gene function, cell transplantation approaches and transgenic reporter analysis we establish that Mnx1 functions downstream of RA within the endoderm to control cell fate decisions in the endocrine pancreas progenitor lineage. We confirm that Mnx1-deficient zebrafish lack beta cells, and, importantly, we make the novel observation that they concomitantly gain alpha cells. In Mnx1-deficient embryos, precursor cells that are normally destined to differentiate as beta cells instead take on an alpha cell fate. Our findings suggest that Mnx1 functions to promote beta and suppress alpha cell fates.
Collapse
Affiliation(s)
- Gokhan Dalgin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
40
|
Kunisada Y, Tsubooka-Yamazoe N, Shoji M, Hosoya M. Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res 2011; 8:274-84. [PMID: 22056147 DOI: 10.1016/j.scr.2011.10.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/28/2011] [Accepted: 10/01/2011] [Indexed: 12/24/2022] Open
Abstract
Human induced pluripotent stem (hiPS) cells have potential uses for drug discovery and cell therapy, including generation of pancreatic β-cells for diabetes research and treatment. In this study, we developed a simple protocol for generating insulin-producing cells from hiPS cells. Treatment with activin A and a GSK3β inhibitor enhanced efficient endodermal differentiation, and then combined treatment with retinoic acid, a bone morphogenic protein inhibitor, and a transforming growth factor-β (TGF-β) inhibitor induced efficient differentiation of pancreatic progenitor cells from definitive endoderm. Expression of the pancreatic progenitor markers PDX1 and NGN3 was significantly increased at this step and most cells were positive for anti-PDX1 antibody. Moreover, several compounds, including forskolin, dexamethasone, and a TGF-β inhibitor, were found to induce the differentiation of insulin-producing cells from pancreatic progenitor cells. By combined treatment with these compounds, more than 10% of the cells became insulin positive. The differentiated cells secreted human c-peptide in response to various insulin secretagogues. In addition, all five hiPS cell lines that we examined showed efficient differentiation into insulin-producing cells with this protocol.
Collapse
Affiliation(s)
- Yuya Kunisada
- Biology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraokahigashi 2, Fujisawa, Kanagawa, Japan.
| | | | | | | |
Collapse
|
41
|
Landsman L, Nijagal A, Whitchurch TJ, VanderLaan RL, Zimmer WE, MacKenzie TC, Hebrok M. Pancreatic mesenchyme regulates epithelial organogenesis throughout development. PLoS Biol 2011; 9:e1001143. [PMID: 21909240 PMCID: PMC3167782 DOI: 10.1371/journal.pbio.1001143] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 07/28/2011] [Indexed: 01/10/2023] Open
Abstract
Genetic disruption of the pancreatic mesenchyme reveals that it is critical for the expansion of epithelial progenitors and for the proliferation of insulin-producing beta cells. The developing pancreatic epithelium gives rise to all endocrine and exocrine cells of the mature organ. During organogenesis, the epithelial cells receive essential signals from the overlying mesenchyme. Previous studies, focusing on ex vivo tissue explants or complete knockout mice, have identified an important role for the mesenchyme in regulating the expansion of progenitor cells in the early pancreas epithelium. However, due to the lack of genetic tools directing expression specifically to the mesenchyme, the potential roles of this supporting tissue in vivo, especially in guiding later stages of pancreas organogenesis, have not been elucidated. We employed transgenic tools and fetal surgical techniques to ablate mesenchyme via Cre-mediated mesenchymal expression of Diphtheria Toxin (DT) at the onset of pancreas formation, and at later developmental stages via in utero injection of DT into transgenic mice expressing the Diphtheria Toxin receptor (DTR) in this tissue. Our results demonstrate that mesenchymal cells regulate pancreatic growth and branching at both early and late developmental stages by supporting proliferation of precursors and differentiated cells, respectively. Interestingly, while cell differentiation was not affected, the expansion of both the endocrine and exocrine compartments was equally impaired. To further elucidate signals required for mesenchymal cell function, we eliminated β-catenin signaling and determined that it is a critical pathway in regulating mesenchyme survival and growth. Our study presents the first in vivo evidence that the embryonic mesenchyme provides critical signals to the epithelium throughout pancreas organogenesis. The findings are novel and relevant as they indicate a critical role for the mesenchyme during late expansion of endocrine and exocrine compartments. In addition, our results provide a molecular mechanism for mesenchymal expansion and survival by identifying β-catenin signaling as an essential mediator of this process. These results have implications for developing strategies to expand pancreas progenitors and β-cells for clinical transplantation. Embryonic development is a highly complex process that requires tight orchestration of cellular proliferation, differentiation, and migration as cells grow within loosely aggregated mesenchyme and more organized epithelial sheets to form organs and tissues. In addition to intrinsic cell-autonomous signals, these events are further regulated by environmental cues provided by neighboring cells. Prior work demonstrated a critical role for the surrounding mesenchyme in guiding epithelial growth during the early stages of pancreas development. However, it remained unclear whether the mesenchyme also guided the later stages of pancreas organogenesis when the functional exocrine and endocrine cells are formed. Here, we show that specific genetic ablation of the mesenchyme at distinct developmental stages in vivo results in the formation of a smaller, misshapen pancreas. Loss of the mesenchyme profoundly impairs the expansion of both endocrine and exocrine pancreatic progenitors, as well as the proliferative capacity of maturing cells, including insulin-producing beta-cells. Thus, our studies reveal unappreciated roles for the mesenchyme in guiding the formation of the epithelial pancreas throughout development. The results suggest that identifying the specific mesenchymal signals might help to optimize cell culture protocols that aim to achieve the differentiation of stem cells into insulin-producing beta cells.
Collapse
Affiliation(s)
- Limor Landsman
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Amar Nijagal
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Theresa J. Whitchurch
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Renee L. VanderLaan
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Warren E. Zimmer
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Tippi C. MacKenzie
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Abstract
Pancreas oganogenesis comprises a coordinated and highly complex interplay of signaling events and transcriptional networks that guide a step-wise process of organ development from early bud specification all the way to the final mature organ state. Extensive research on pancreas development over the last few years, largely driven by a translational potential for pancreatic diseases (diabetes, pancreatic cancer, and so on), is markedly advancing our knowledge of these processes. It is a tenable goal that we will one day have a clear, complete picture of the transcriptional and signaling codes that control the entire organogenetic process, allowing us to apply this knowledge in a therapeutic context, by generating replacement cells in vitro, or perhaps one day to the whole organ in vivo. This review summarizes findings in the past 5 years that we feel are amongst the most significant in contributing to the deeper understanding of pancreas development. Rather than try to cover all aspects comprehensively, we have chosen to highlight interesting new concepts, and to discuss provocatively some of the more controversial findings or proposals. At the end of the review, we include a perspective section on how the whole pancreas differentiation process might be able to be unwound in a regulated fashion, or redirected, and suggest linkages to the possible reprogramming of other pancreatic cell-types in vivo, and to the optimization of the forward-directed-differentiation of human embryonic stem cells (hESC), or induced pluripotential cells (iPSC), towards mature β-cells.
Collapse
|
43
|
Schwend T, Loucks EJ, Snyder D, Ahlgren SC. Requirement of Npc1 and availability of cholesterol for early embryonic cell movements in zebrafish. J Lipid Res 2011; 52:1328-44. [PMID: 21576600 PMCID: PMC3122913 DOI: 10.1194/jlr.m012377] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 05/15/2011] [Indexed: 12/20/2022] Open
Abstract
Niemann-Pick disease, type C (NP-C), often associated with Niemann-Pick disease, type C1 (NPC1) mutations, is a cholesterol-storage disorder characterized by cellular lipid accumulation, neurodegeneration, and reduced steroid production. To study NPC1 function in vivo, we cloned zebrafish npc1 and analyzed its gene expression and activity by reducing Npc1 protein with morpholino (MO)-oligonucleotides. Filipin staining in npc1-morphant cells was punctate, suggesting abnormal accumulation of cholesterol. Developmentally, reducing Npc1 did not disrupt early cell fate or survival; however, early morphogenetic movements were delayed, and the actin cytoskeleton network was abnormal. MO-induced defects were rescued with ectopic expression of mouse NPC1, demonstrating functional gene conservation, and by treatments with steroids pregnenolone or dexamethasone, suggesting that reduced steroidogenesis contributed to abnormal cell movements. Cell death was found in anterior tissues of npc1 morphants at later stages, consistent with findings in mammals. Collectively, these studies show that npc1 is required early for proper cell movement and cholesterol localization and later for cell survival.
Collapse
Affiliation(s)
- Tyler Schwend
- Department of Pediatrics
- Integrated Graduate Program,Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Evyn J. Loucks
- Developmental Biology Program,Children's Memorial Research Center, Chicago, IL
| | - Diana Snyder
- Developmental Biology Program,Children's Memorial Research Center, Chicago, IL
| | - Sara C. Ahlgren
- Department of Pediatrics
- Developmental Biology Program,Children's Memorial Research Center, Chicago, IL
| |
Collapse
|
44
|
Waxman JS, Yelon D. Zebrafish retinoic acid receptors function as context-dependent transcriptional activators. Dev Biol 2011; 352:128-40. [PMID: 21276787 PMCID: PMC3207040 DOI: 10.1016/j.ydbio.2011.01.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 11/17/2022]
Abstract
RA receptors (RARs) have been thought to function through a binary repressor-activator mechanism: in the absence of ligand, they function as transcriptional repressors, and, in the presence of ligand, they function as transcriptional activators. This prevailing model of RAR mechanism has been derived mostly from in vitro studies and has not been widely tested in developmental contexts. Here, we investigate whether zebrafish RARs function as transcriptional activators or repressors during early embryonic anterior-posterior patterning. Ectopic expression of wild-type zebrafish RARs does not disrupt embryonic patterning and does not sensitize embryos to RA treatment, indicating that RAR availability is not limiting in the embryo. In contrast, ectopic expression of hyperactive zebrafish RARs induces expression of a RA-responsive reporter transgene as well as ectopic expression of endogenous RA-responsive target genes. However, ectopic expression of dominant negative zebrafish RARs fails to induce embryonic phenotypes that are consistent with loss of RA signaling, despite their ability to function as transcriptional repressors in heterologous cell culture assays. Together, our studies suggest that zebrafish RAR function is context-dependent and that, during early patterning, zebrafish RARs function primarily as transcriptional activators and may only have minimal ability to act as transcriptional repressors. Thus, it seems that the binary model for RAR function does not apply to all in vivo scenarios. Taking into account studies of RA signaling in tunicates and tetrapods, we propose a parsimonious model of the evolution of RAR function during chordate anterior-posterior patterning.
Collapse
Affiliation(s)
| | - Deborah Yelon
- Correspondence: , Phone: (858) 534-1822; Fax: (858) 822-4612
| |
Collapse
|
45
|
Thatava T, Nelson TJ, Edukulla R, Sakuma T, Ohmine S, Tonne JM, Yamada S, Kudva Y, Terzic A, Ikeda Y. Indolactam V/GLP-1-mediated differentiation of human iPS cells into glucose-responsive insulin-secreting progeny. Gene Ther 2011; 18:283-93. [PMID: 21048796 PMCID: PMC3060028 DOI: 10.1038/gt.2010.145] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/20/2010] [Accepted: 09/23/2010] [Indexed: 12/11/2022]
Abstract
Nuclear reprogramming of somatic tissue enables derivation of induced pluripotent stem (iPS) cells from an autologous, non-embryonic origin. The purpose of this study was to establish efficient protocols for lineage specification of human iPS cells into functional glucose-responsive, insulin-producing progeny. We generated human iPS cells, which were then guided with recombinant growth factors that mimic the essential signaling for pancreatic development. Reprogrammed with four stemness factors, human fibroblasts were here converted into authentic iPS cells. Under feeder-free conditions, fate specification was initiated with activin A and Wnt3a that triggered engagement into definitive endoderm, followed by priming with fibroblast growth factor 10 (FGF10) and KAAD-cyclopamine. Addition of retinoic acid, boosted by the pancreatic endoderm inducer indolactam V (ILV), yielded pancreatic progenitors expressing pancreatic and duodenal homeobox 1 (PDX1), neurogenin 3 (NGN3) and neurogenic differentiation 1 (NEUROD1) markers. Further guidance, under insulin-like growth factor 1 (IGF-1), hepatocyte growth factor (HGF) and N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), was enhanced by glucagon-like peptide-1 (GLP-1) to generate islet-like cells that expressed pancreas-specific markers including insulin and glucagon. Derived progeny demonstrated sustained expression of PDX1, and functional responsiveness to glucose challenge secreting up to 230 pM of C-peptide. A pancreatogenic cocktail enriched with ILV/GLP-1 offers a proficient means to specify human iPS cells into glucose-responsive hormone-producing progeny, refining the development of a personalized platform for islet-like cell generation.
Collapse
Affiliation(s)
| | - Timothy J. Nelson
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN, USA
| | | | - Toshie Sakuma
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Seiga Ohmine
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jason M. Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Satsuki Yamada
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN, USA
| | - Yogish Kudva
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Andre Terzic
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN, USA
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
46
|
Abstract
Retinoids are ubiquitous signaling molecules that influence nearly every cell type, exert profound effects on development, and complement cancer chemotherapeutic regimens. All-trans retinoic acid (RA) and other active retinoids are generated from vitamin A (retinol), but key aspects of the signaling pathways required to produce active retinoids remain unclear. Retinoids generated by one cell type can affect nearby cells, so retinoids also function in intercellular communication. RA induces differentiation primarily by binding to RARs, transcription factors that associate with RXRs and bind RAREs in the nucleus. Binding of RA: (1) initiates changes in interactions of RAR/RXRs with co-repressor and co-activator proteins, activating transcription of primary target genes; (2) alters interactions with proteins that induce epigenetic changes; (3) induces transcription of genes encoding transcription factors and signaling proteins that further modify gene expression (e.g., FOX03A, Hoxa1, Sox9, TRAIL, UBE2D3); and (4) results in alterations in estrogen receptor α signaling. Proteins that bind at or near RAREs include Sin3a, N-CoR1, PRAME, Trim24, NRIP1, Ajuba, Zfp423, and MN1/TEL. Interactions among retinoids, RARs/RXRs, and these proteins explain in part the powerful effects of retinoids on stem cell differentiation. Studies of this retinol signaling cascade enhance our ability to understand and regulate stem cell differentiation for therapeutic and scientific purposes. In cancer chemotherapeutic regimens retinoids can promote tumor cell differentiation and/or induce proteins that sensitize tumors to drug combinations. Mechanistic studies of retinoid signaling continue to suggest novel drug targets and will improve therapeutic strategies for cancer and other diseases, such as immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York 10065, USA.
| | | |
Collapse
|
47
|
Tehrani Z, Lin S. Antagonistic interactions of hedgehog, Bmp and retinoic acid signals control zebrafish endocrine pancreas development. Development 2011; 138:631-40. [PMID: 21228001 DOI: 10.1242/dev.050450] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreatic organogenesis is promoted or restricted by different signaling pathways. In amniotes, inhibition of hedgehog (Hh) activity in the early embryonic endoderm is a prerequisite for pancreatic specification. However, in zebrafish, loss of Hh signaling leads to a severe reduction of β-cells, leading to some ambiguity as to the role of Hh during pancreas development and whether its function has completely diverged between species. Here, we have employed genetic and pharmacological manipulations to temporally delineate the role of Hh in zebrafish endocrine pancreas development and investigate its relationship with the Bmp and retinoic acid (RA) signaling pathways. We found that Hh is required at the start of gastrulation for the medial migration and differentiation of pdx1-expressing pancreatic progenitors at later stages. This early positive role of Hh promotes β-cell lineage differentiation by restricting the repressive effects of Bmp. Inhibition of Bmp signaling in the early gastrula leads to increased β-cell numbers and partially rescued β-cell formation in Hh-deficient embryos. By the end of gastrulation, Hh switches to a negative role by antagonizing RA-mediated specification of the endocrine pancreas, but continues to promote differentiation of exocrine progenitors. We show that RA downregulates the Hh signaling components ptc1 and smo in endodermal explants, indicating a possible molecular mechanism for blocking axial mesoderm-derived Hh ligands from the prepancreatic endoderm during the specification stage. These results identify multiple sequential roles for Hh in pancreas development and highlight an unexpected antagonistic relationship between Hh and other signaling pathways to control pancreatic specification and differentiation.
Collapse
Affiliation(s)
- Zahra Tehrani
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095-1606, USA
| | | |
Collapse
|
48
|
Abstract
The endoderm is the innermost germ layer that gives rise to the lining of the gut, the gills, liver, pancreas, gallbladder, and derivatives of the pharyngeal pouch. These organs form the gastrointestinal tract and are involved with the absorption, delivery, and metabolism of nutrients. The liver has a central role in regulating these processes because it controls lipid metabolism, protein synthesis, and breakdown of endogenous and xenobiotic products. Liver dysfunction frequently leads to significant morbidity and mortality; however, in most settings of organ injury, the liver exhibits remarkable regenerative capacity.
Collapse
Affiliation(s)
- Trista E North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
49
|
Turkish A, Husain SZ. Pancreatic Development. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2011:878-889.e5. [DOI: 10.1016/b978-1-4377-0774-8.10080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
50
|
Katsumoto K, Shiraki N, Miki R, Kume S. Embryonic and adult stem cell systems in mammals: ontology and regulation. Dev Growth Differ 2010; 52:115-29. [PMID: 20078654 DOI: 10.1111/j.1440-169x.2009.01160.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cells are defined as having the ability to self-renew and to generate differentiated cells. During embryogenesis, cells are initially proliferative and pluripotent and then they gradually become restricted to different cell fates. In the adult, tissue stem cells are normally quiescent, but become proliferative upon injury. Knowledge from developmental biology and insights into the properties of stem cells are keys to further understanding and successful manipulation. Here, we first focus on ES cells, then on embryonic development, and then on tissue stem cells of endodermally derived tissues, particularly the liver and pancreas.
Collapse
Affiliation(s)
- Keiichi Katsumoto
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | | | |
Collapse
|