1
|
Sim J, Park CE, Cho I, Min K, Eom M, Han S, Jeon H, Cho ES, Lee Y, Yun YH, Lee S, Cheon DH, Kim J, Kim M, Cho HJ, Park JW, Kumar A, Chong Y, Kang JS, Piatkevich KD, Jung EE, Kang DS, Kwon SK, Kim J, Yoon KJ, Lee JS, Kim CH, Choi M, Kim JW, Song MR, Choi HJ, Boyden ES, Yoon YG, Chang JB. Nanoscale Resolution Imaging of Whole Mouse Embryos Using Expansion Microscopy. ACS NANO 2025; 19:7910-7927. [PMID: 39964913 DOI: 10.1021/acsnano.4c14791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Nanoscale imaging of whole vertebrates is essential for the systematic understanding of human diseases, yet this goal has not yet been achieved. Expansion microscopy (ExM) is an attractive option for accomplishing this aim; however, the expansion of even mouse embryos at mid- and late-developmental stages, which have fewer calcified body parts than adult mice, is yet to be demonstrated due to the challenges of expanding calcified tissues. Here, we introduce a state-of-the-art ExM technique, termed whole-body ExM, that utilizes cyclic digestion. This technique allows for the super-resolution, volumetric imaging of anatomical structures, proteins, and endogenous fluorescent proteins (FPs) within embryonic and neonatal mice by expanding them 4-fold. The key feature of whole-body ExM is the alternating application of two enzyme compositions repeated multiple times. Through the simple repetition of this digestion process with an increasing number of cycles, mouse embryos of various stages up to E18.5, and even neonatal mice, which display a dramatic difference in the content of calcified tissues compared to embryos, are expanded without further laborious optimization. Furthermore, the whole-body ExM's ability to retain FP signals allows the visualization of various neuronal structures in transgenic mice. Whole-body ExM could facilitate studies of molecular changes in various vertebrates.
Collapse
Affiliation(s)
- Jueun Sim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chan E Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - In Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Kyeongbae Min
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 21102, Republic of Korea
| | - Minho Eom
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seungjae Han
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyungju Jeon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Eun-Seo Cho
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yunjeong Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Young Hyun Yun
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sungho Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Deok-Hyeon Cheon
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jihyun Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Museong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyun-Ju Cho
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ji-Won Park
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ajeet Kumar
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yosep Chong
- Department of Hospital Pathology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu 11765, Republic of Korea
| | - Jeong Seuk Kang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Erica E Jung
- Department of Mechanical and Industrial Engineering, The University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Du-Seock Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seok-Kyu Kwon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jinhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea
- KIST-SKKU Brain Research Center, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Myunghwan Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyung Jin Choi
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Edward S Boyden
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, United States
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Young-Gyu Yoon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Bioimaging Data Curation Center, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Liao H, Wang F, Lu K, Ma X, Yan J, Luo L, Sun Y, Liang X. Requirement for PINCH in skeletal myoblast differentiation. Cell Tissue Res 2023; 391:205-215. [PMID: 36385586 PMCID: PMC9839796 DOI: 10.1007/s00441-022-03701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022]
Abstract
PINCH, an adaptor of focal adhesion complex, plays essential roles in multiple cellular processes and organogenesis. Here, we ablated PINCH1 or both of PINCH1 and PINCH2 in skeletal muscle progenitors using MyoD-Cre. Double ablation of PINCH1 and PINCH2 resulted in early postnatal lethality with reduced size of skeletal muscles and detachment of diaphragm muscles from the body wall. PINCH mutant myofibers failed to undergo multinucleation and exhibited disrupted sarcomere structures. The mutant myoblasts in culture were able to adhere to newly formed myotubes but impeded in cell fusion and subsequent sarcomere genesis and cytoskeleton organization. Consistent with this, expression of integrin β1 and some cytoskeleton proteins and phosphorylation of ERK and AKT were significantly reduced in PINCH mutants. However, N-cadherin was correctly expressed at cell adhesion sites in PINCH mutant cells, suggesting that PINCH may play a direct role in myoblast fusion. Expression of MRF4, the most highly expressed myogenic factor at late stages of myogenesis, was abolished in PINCH mutants that could contribute to observed phenotypes. In addition, mice with PINCH1 being ablated in myogenic progenitors exhibited only mild centronuclear myopathic changes, suggesting a compensatory role of PINCH2 in myogenic differentiation. Our results revealed a critical role of PINCH proteins in myogenic differentiation.
Collapse
Affiliation(s)
- Huimin Liao
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Fei Wang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Ke Lu
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xiaolei Ma
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Jie Yan
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Lina Luo
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yunfu Sun
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| | - Xingqun Liang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
3
|
Yamaguchi N, Knaut H. Focal adhesion-mediated cell anchoring and migration: from in vitro to in vivo. Development 2022; 149:dev200647. [PMID: 35587444 PMCID: PMC9188754 DOI: 10.1242/dev.200647] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell-extracellular matrix interactions have been studied extensively using cells cultured in vitro. These studies indicate that focal adhesion (FA)-based cell-extracellular matrix interactions are essential for cell anchoring and cell migration. Whether FAs play a similarly important role in vivo is less clear. Here, we summarize the formation and function of FAs in cultured cells and review how FAs transmit and sense force in vitro. Using examples from animal studies, we also describe the role of FAs in cell anchoring during morphogenetic movements and cell migration in vivo. Finally, we conclude by discussing similarities and differences in how FAs function in vitro and in vivo.
Collapse
Affiliation(s)
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
4
|
Maintenance of NAD+ Homeostasis in Skeletal Muscle during Aging and Exercise. Cells 2022; 11:cells11040710. [PMID: 35203360 PMCID: PMC8869961 DOI: 10.3390/cells11040710] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 12/20/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a versatile chemical compound serving as a coenzyme in metabolic pathways and as a substrate to support the enzymatic functions of sirtuins (SIRTs), poly (ADP-ribose) polymerase-1 (PARP-1), and cyclic ADP ribose hydrolase (CD38). Under normal physiological conditions, NAD+ consumption is matched by its synthesis primarily via the salvage pathway catalyzed by nicotinamide phosphoribosyltransferase (NAMPT). However, aging and muscular contraction enhance NAD+ utilization, whereas NAD+ replenishment is limited by cellular sources of NAD+ precursors and/or enzyme expression. This paper will briefly review NAD+ metabolic functions, its roles in regulating cell signaling, mechanisms of its degradation and biosynthesis, and major challenges to maintaining its cellular level in skeletal muscle. The effects of aging, physical exercise, and dietary supplementation on NAD+ homeostasis will be highlighted based on recent literature.
Collapse
|
5
|
Taylor L, Wankell M, Saxena P, McFarlane C, Hebbard L. Cell adhesion an important determinant of myogenesis and satellite cell activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119170. [PMID: 34763027 DOI: 10.1016/j.bbamcr.2021.119170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Skeletal muscles represent a complex and highly organised tissue responsible for all voluntary body movements. Developed through an intricate and tightly controlled process known as myogenesis, muscles form early in development and are maintained throughout life. Due to the constant stresses that muscles are subjected to, skeletal muscles maintain a complex course of regeneration to both replace and repair damaged myofibers and to form new functional myofibers. This process, made possible by a pool of resident muscle stem cells, termed satellite cells, and controlled by an array of transcription factors, is additionally reliant on a diverse range of cell adhesion molecules and the numerous signaling cascades that they initiate. This article will review the literature surrounding adhesion molecules and their roles in skeletal muscle myogenesis and repair.
Collapse
Affiliation(s)
- Lauren Taylor
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia
| | - Pankaj Saxena
- Department of Cardiothoracic Surgery, The Townsville University Hospital, Townsville, Queensland, Australia; College of Medicine, Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Craig McFarlane
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia.
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Esteves de Lima J, Bou Akar R, Mansour M, Rocancourt D, Buckingham M, Relaix F. M-Cadherin Is a PAX3 Target During Myotome Patterning. Front Cell Dev Biol 2021; 9:652652. [PMID: 33869209 PMCID: PMC8047199 DOI: 10.3389/fcell.2021.652652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
PAX3 belongs to the paired-homeobox family of transcription factors and plays a key role as an upstream regulator of muscle progenitor cells during embryonic development. Pax3-mutant embryos display impaired somite development, yet the consequences for myotome formation have not been characterized. The early myotome is formed by PAX3-expressing myogenic cells that delaminate from the dermomyotomal lips and migrate between the dermomyotome and sclerotome where they terminally differentiate. Here we show that in Pax3-mutant embryos, myotome formation is impaired, displays a defective basal lamina and the regionalization of the structural protein Desmin is lost. In addition, this phenotype is more severe in embryos combining Pax3-null and Pax3 dominant-negative alleles. We identify the adhesion molecule M-Cadherin as a PAX3 target gene, the expression of which is modulated in the myotome according to Pax3 gain- and loss-of-function alleles analyzed. Taken together, we identify M-Cadherin as a PAX3-target linked to the formation of the myotome.
Collapse
Affiliation(s)
- Joana Esteves de Lima
- Univ Paris Est Creteil, Institut National de la Santé et de la Recherche Médicale (INSERM), EnvA, Etablissement Français du Sang (EFS), Assistance Publique Hopitaux de Paris (AP-HP), Institut Mondor de Recherche Biomedicale (IMRB), Creteil, France
| | - Reem Bou Akar
- Univ Paris Est Creteil, Institut National de la Santé et de la Recherche Médicale (INSERM), EnvA, Etablissement Français du Sang (EFS), Assistance Publique Hopitaux de Paris (AP-HP), Institut Mondor de Recherche Biomedicale (IMRB), Creteil, France
| | - Myriam Mansour
- Univ Paris Est Creteil, Institut National de la Santé et de la Recherche Médicale (INSERM), EnvA, Etablissement Français du Sang (EFS), Assistance Publique Hopitaux de Paris (AP-HP), Institut Mondor de Recherche Biomedicale (IMRB), Creteil, France
| | - Didier Rocancourt
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Margaret Buckingham
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Frédéric Relaix
- Univ Paris Est Creteil, Institut National de la Santé et de la Recherche Médicale (INSERM), EnvA, Etablissement Français du Sang (EFS), Assistance Publique Hopitaux de Paris (AP-HP), Institut Mondor de Recherche Biomedicale (IMRB), Creteil, France
| |
Collapse
|
7
|
Bailey EC, Alrowaished SS, Kilroy EA, Crooks ES, Drinkert DM, Karunasiri CM, Belanger JJ, Khalil A, Kelley JB, Henry CA. NAD+ improves neuromuscular development in a zebrafish model of FKRP-associated dystroglycanopathy. Skelet Muscle 2019; 9:21. [PMID: 31391079 PMCID: PMC6685180 DOI: 10.1186/s13395-019-0206-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/17/2019] [Indexed: 01/26/2023] Open
Abstract
Background Secondary dystroglycanopathies are muscular dystrophies that result from mutations in genes that participate in Dystroglycan glycosylation. Glycosylation of Dystroglycan is essential for muscle fibers to adhere to the muscle extracellular matrix (myomatrix). Although the myomatrix is disrupted in a number of secondary dystroglycanopathies, it is unknown whether improving the myomatrix is beneficial for these conditions. We previously determined that either NAD+ supplementation or overexpression of Paxillin are sufficient to improve muscle structure and the myomatrix in a zebrafish model of primary dystroglycanopathy. Here, we investigate how these modulations affect neuromuscular phenotypes in zebrafish fukutin-related protein (fkrp) morphants modeling FKRP-associated secondary dystroglycanopathy. Results We found that NAD+ supplementation prior to muscle development improved muscle structure, myotendinous junction structure, and muscle function in fkrp morphants. However, Paxillin overexpression did not improve any of these parameters in fkrp morphants. As movement also requires neuromuscular junction formation, we examined early neuromuscular junction development in fkrp morphants. The length of neuromuscular junctions was disrupted in fkrp morphants. NAD+ supplementation prior to neuromuscular junction development improved length. We investigated NMJ formation in dystroglycan (dag1) morphants and found that although NMJ morphology is disrupted in dag1 morphants, NAD+ is not sufficient to improve NMJ morphology in dag1 morphants. Ubiquitous overexpression of Fkrp rescued the fkrp morphant phenotype but muscle-specific overexpression only improved myotendinous junction structure. Conclusions These data indicate that Fkrp plays an early and essential role in muscle, myotendinous junction, and neuromuscular junction development. These data also indicate that, at least in the zebrafish model, FKRP-associated dystroglycanopathy does not exactly phenocopy DG-deficiency. Paxillin overexpression improves muscle structure in dag1 morphants but not fkrp morphants. In contrast, NAD+ supplementation improves NMJ morphology in fkrp morphants but not dag1 morphants. Finally, these data show that muscle-specific expression of Fkrp is insufficient to rescue muscle development and homeostasis. Electronic supplementary material The online version of this article (10.1186/s13395-019-0206-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erin C Bailey
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA
| | | | - Elisabeth A Kilroy
- Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA
| | - Emma S Crooks
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| | - Daisy M Drinkert
- Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA
| | - Chaya M Karunasiri
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA.,Present Address: Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Joseph J Belanger
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA.,Present Address: Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
| | - Andre Khalil
- Chemical and Biomedical Engineering, University of Maine, Orono, ME, 04469, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA
| | - Joshua B Kelley
- Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA
| | - Clarissa A Henry
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA. .,Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA.
| |
Collapse
|
8
|
Chang CN, Singh AJ, Gross MK, Kioussi C. Requirement of Pitx2 for skeletal muscle homeostasis. Dev Biol 2019; 445:90-102. [PMID: 30414844 PMCID: PMC6289786 DOI: 10.1016/j.ydbio.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/24/2022]
Abstract
Skeletal muscle is generated by the successive incorporation of primary (embryonic), secondary (fetal), and tertiary (adult) fibers into muscle. Conditional excision of Pitx2 function by an MCKCre driver resulted in animals with histological and ultrastructural defects in P30 muscles and fibers, respectively. Mutant muscle showed severe reduction in mitochondria and FoxO3-mediated mitophagy. Both oxidative and glycolytic energy metabolism were reduced. Conditional excision was limited to fetal muscle fibers after the G1-G0 transition and resulted in altered MHC, Rac1, MEF2a, and alpha-tubulin expression within these fibers. The onset of excision, monitored by a nuclear reporter gene, was observed as early as E16. Muscle at this stage was already severely malformed, but appeared to recover by P30 by the expansion of adjoining larger fibers. Our studies demonstrate that the homeodomain transcription factor Pitx2 has a postmitotic role in maintaining skeletal muscle integrity and energy homeostasis in fetal muscle fibers.
Collapse
Affiliation(s)
- Chih-Ning Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA
| | - Arun J Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Michael K Gross
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
9
|
Khodabukus A, Prabhu N, Wang J, Bursac N. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease. Adv Healthc Mater 2018; 7:e1701498. [PMID: 29696831 PMCID: PMC6105407 DOI: 10.1002/adhm.201701498] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/18/2018] [Indexed: 12/18/2022]
Abstract
Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Neel Prabhu
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Jason Wang
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Nenad Bursac
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| |
Collapse
|
10
|
Rayagiri SS, Ranaldi D, Raven A, Mohamad Azhar NIF, Lefebvre O, Zammit PS, Borycki AG. Basal lamina remodeling at the skeletal muscle stem cell niche mediates stem cell self-renewal. Nat Commun 2018. [PMID: 29540680 PMCID: PMC5852002 DOI: 10.1038/s41467-018-03425-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A central question in stem cell biology is the relationship between stem cells and their niche. Although previous reports have uncovered how signaling molecules released by niche cells support stem cell function, the role of the extra-cellular matrix (ECM) within the niche is unclear. Here, we show that upon activation, skeletal muscle stem cells (satellite cells) induce local remodeling of the ECM and the deposition of laminin-α1 and laminin-α5 into the basal lamina of the satellite cell niche. Genetic ablation of laminin-α1, disruption of integrin-α6 signaling or blocking matrix metalloproteinase activity impairs satellite cell expansion and self-renewal. Collectively, our findings establish that remodeling of the ECM is an integral process of stem cell activity to support propagation and self-renewal, and may explain the effect laminin-α1-containing supports have on embryonic and adult stem cells, as well as the regenerative activity of exogenous laminin-111 therapy. Extracellular matrix (ECM) remodelling is thought to have effects on muscle stem cells that support muscle homeostasis. Here the authors show ECM remodeling controls satellite cell self-renewal through deposition of laminin-α1 into the satellite cell niche.
Collapse
Affiliation(s)
- Shantisree Sandeepani Rayagiri
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.,Biotherapeutics Development Unit, Cancer Research UK, Clare Hall laboratories, Blanche Lane, South Mimms, Hertfordshire, EN6 3LD, UK
| | - Daniele Ranaldi
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Alexander Raven
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.,MRC Centre for Regenerative Medicine, SCRM Building, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Nur Izzah Farhana Mohamad Azhar
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.,Oxford Publishing (Malaysia), Shah Alam, 40150, Selangor Darul Ehsan, Malaysia
| | - Olivier Lefebvre
- Inserm U1109 MN3T, F-67200, Strasbourg, France.,Université de Strasbourg, F-67000, Strasbourg, France.,LabEx Medalis Université de Strasbourg, F-67000, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000, Strasbourg, France
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Anne-Gaëlle Borycki
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
11
|
Abstract
Skeletal muscle enables posture, breathing, and locomotion. Skeletal muscle also impacts systemic processes such as metabolism, thermoregulation, and immunity. Skeletal muscle is energetically expensive and is a major consumer of glucose and fatty acids. Metabolism of fatty acids and glucose requires NAD+ function as a hydrogen/electron transfer molecule. Therefore, NAD+ plays a vital role in energy production. In addition, NAD+ also functions as a cosubstrate for post-translational modifications such as deacetylation and ADP-ribosylation. Therefore, NAD+ levels influence a myriad of cellular processes including mitochondrial biogenesis, transcription, and organization of the extracellular matrix. Clearly, NAD+ is a major player in skeletal muscle development, regeneration, aging, and disease. The vast majority of studies indicate that lower NAD+ levels are deleterious for muscle health and higher NAD+ levels augment muscle health. However, the downstream mechanisms of NAD+ function throughout different cellular compartments are not well understood. The purpose of this review is to highlight recent studies investigating NAD+ function in muscle development, homeostasis, disease, and regeneration. Emerging research areas include elucidating roles for NAD+ in muscle lysosome function and calcium mobilization, mechanisms controlling fluctuations in NAD+ levels during muscle development and regeneration, and interactions between targets of NAD+ signaling (especially mitochondria and the extracellular matrix). This knowledge should facilitate identification of more precise pharmacological and activity-based interventions to raise NAD+ levels in skeletal muscle, thereby promoting human health and function in normal and disease states.
Collapse
Affiliation(s)
- Michelle F Goody
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| | - Clarissa A Henry
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA. .,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| |
Collapse
|
12
|
Nunes AM, Wuebbles RD, Sarathy A, Fontelonga TM, Deries M, Burkin DJ, Thorsteinsdóttir S. Impaired fetal muscle development and JAK-STAT activation mark disease onset and progression in a mouse model for merosin-deficient congenital muscular dystrophy. Hum Mol Genet 2017; 26:2018-2033. [PMID: 28334989 DOI: 10.1093/hmg/ddx083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/02/2017] [Indexed: 12/13/2022] Open
Abstract
Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a dramatic neuromuscular disease in which crippling muscle weakness is evident from birth. Here, we use the dyW mouse model for human MDC1A to trace the onset of the disease during development in utero. We find that myotomal and primary myogenesis proceed normally in homozygous dyW-/- embryos. Fetal dyW-/- muscles display the same number of myofibers as wildtype (WT) muscles, but by E18.5 dyW-/- muscles are significantly smaller and muscle size is not recovered post-natally. These results suggest that fetal dyW-/- myofibers fail to grow at the same rate as WT myofibers. Consistent with this hypothesis between E17.5 and E18.5 dyW-/- muscles display a dramatic drop in the number of Pax7- and myogenin-positive cells relative to WT muscles, suggesting that dyW-/- muscles fail to generate enough muscle cells to sustain fetal myofiber growth. Gene expression analysis of dyW-/- E17.5 muscles identified a significant increase in the expression of the JAK-STAT target gene Pim1 and muscles from 2-day and 3-week old dyW-/- mice demonstrate a dramatic increase in pSTAT3 relative to WT muscles. Interestingly, myotubes lacking integrin α7β1, a laminin-receptor, also show a significant increase in pSTAT3 levels compared with WT myotubes, indicating that α7β1 can act as a negative regulator of STAT3 activity. Our data reveal for the first time that dyW-/- mice exhibit a myogenesis defect already in utero. We propose that overactivation of JAK-STAT signaling is part of the mechanism underlying disease onset and progression in dyW-/- mice.
Collapse
Affiliation(s)
- Andreia M Nunes
- Departamento de Biologia Animal, Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.,Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Ryan D Wuebbles
- Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Apurva Sarathy
- Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Tatiana M Fontelonga
- Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Marianne Deries
- Departamento de Biologia Animal, Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Dean J Burkin
- Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Sólveig Thorsteinsdóttir
- Departamento de Biologia Animal, Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
13
|
Deries M, Thorsteinsdóttir S. Axial and limb muscle development: dialogue with the neighbourhood. Cell Mol Life Sci 2016; 73:4415-4431. [PMID: 27344602 PMCID: PMC11108464 DOI: 10.1007/s00018-016-2298-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/03/2016] [Accepted: 06/21/2016] [Indexed: 11/29/2022]
Abstract
Skeletal muscles are part of the musculoskeletal system which also includes nerves, tendons, connective tissue, bones and blood vessels. Here we review the development of axial and limb muscles in amniotes within the context of their surrounding tissues in vivo. We highlight the reciprocal dialogue mediated by signalling factors between cells of these adjacent tissues and developing muscles and also demonstrate its importance from the onset of muscle cell differentiation well into foetal development. Early embryonic tissues secrete factors which are important regulators of myogenesis. However, later muscle development relies on other tissue collaborators, such as developing nerves and connective tissue, which are in turn influenced by the developing muscles themselves. We conclude that skeletal muscle development in vivo is a compelling example of the importance of reciprocal interactions between developing tissues for the complete and coordinated development of a functional system.
Collapse
Affiliation(s)
- Marianne Deries
- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Sólveig Thorsteinsdóttir
- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Subramanian A, Schilling TF. Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development 2016; 142:4191-204. [PMID: 26672092 DOI: 10.1242/dev.114777] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tendons and ligaments are extracellular matrix (ECM)-rich structures that interconnect muscles and bones. Recent work has shown how tendon fibroblasts (tenocytes) interact with muscles via the ECM to establish connectivity and strengthen attachments under tension. Similarly, ECM-dependent interactions between tenocytes and cartilage/bone ensure that tendon-bone attachments form with the appropriate strength for the force required. Recent studies have also established a close lineal relationship between tenocytes and skeletal progenitors, highlighting the fact that defects in signals modulated by the ECM can alter the balance between these fates, as occurs in calcifying tendinopathies associated with aging. The dynamic fine-tuning of tendon ECM composition and assembly thus gives rise to the remarkable characteristics of this unique tissue type. Here, we provide an overview of the functions of the ECM in tendon formation and maturation that attempts to integrate findings from developmental genetics with those of matrix biology.
Collapse
Affiliation(s)
- Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| |
Collapse
|
15
|
Rapid and simple method for in vivo ex utero development of mouse embryo explants. Differentiation 2016; 91:57-67. [PMID: 26897458 DOI: 10.1016/j.diff.2015.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/04/2015] [Indexed: 01/17/2023]
Abstract
The in utero development of mammals drastically reduces the accessibility of the mammalian embryo and therefore limits the range of experimental manipulation that can be done to study functions of genes or signaling pathways during embryo development. Over the past decades, tissue and organ-like culture methods have been developed with the intention of reproducing in vivo situations. Developing accessible and simple techniques to study and manipulate embryos is an everlasting challenge. Herein, we describe a reliable and quick technique to culture mid-gestation explanted mouse embryos on top of a floating membrane filter in a defined medium. Viability of the cultured tissues was assessed by apoptosis and proliferation analysis showing that cell proliferation is normal and there is only a slight increase in apoptosis after 12h of culture compared to embryos developing in utero. Moreover, differentiation and morphogenesis proceed normally as assessed by 3D imaging of the transformation of the myotome into deep back muscles. Not only does muscle cell differentiation occur as expected, but so do extracellular matrix organization and the characteristic splitting of the myotome into the three epaxial muscle groups. Our culture method allows for the culture and manipulation of mammalian embryo explants in a very efficient way, and it permits the manipulation of in vivo developmental events in a controlled environment. Explants grown under these ex utero conditions simulate real developmental events that occur in utero.
Collapse
|
16
|
Han S, Shin Y, Jeong HE, Jeon JS, Kamm RD, Huh D, Sohn LL, Chung S. Constructive remodeling of a synthetic endothelial extracellular matrix. Sci Rep 2015; 5:18290. [PMID: 26687334 PMCID: PMC4685304 DOI: 10.1038/srep18290] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/16/2015] [Indexed: 12/28/2022] Open
Abstract
The construction of well-controllable in vitro models of physiological and pathological vascular endothelium remains a fundamental challenge in tissue engineering and drug development. Here, we present an approach for forming a synthetic endothelial extracellular matrix (ECM) that closely resembles that of the native structure by locally depositing basement membrane materials onto type 1 collagen nanofibers only in a region adjacent to the endothelial cell (EC) monolayer. Culturing the EC monolayer on this synthetic endothelial ECM remarkably enhanced its physiological properties, reducing its vascular permeability, and promoting a stabilized, quiescent phenotype. We demonstrated that the EC monolayer on the synthetic endothelial ECM neither creates non-physiological barriers to cell-cell or cell-ECM interactions, nor hinders molecular diffusion of growth factors and other molecules. The synthetic endothelial ECM and vascular endothelium on it may help us enter in a new phase of research in which various models of the biological barrier behavior can be tested experimentally.
Collapse
Affiliation(s)
- Sewoon Han
- The California Institute for Quantitative Biosciences, Stanley Hall, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yoojin Shin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., CambridgeMA 02139, USA
| | - Hyo Eun Jeong
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu Daejeon 305-701, South Korea
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., CambridgeMA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge MA 02139, USA
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street Philadelphia PA 19104, USA
| | - Lydia L Sohn
- The California Institute for Quantitative Biosciences, Stanley Hall, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Mechanical Engineering, Etcheverry Hall, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Seok Chung
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| |
Collapse
|
17
|
Nakamura R, Nakamura F, Fukunaga S. Perlecan Diversely Regulates the Migration and Proliferation of Distinct Cell Types in vitro. Cells Tissues Organs 2015; 200:374-93. [PMID: 26562025 DOI: 10.1159/000440950] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 11/19/2022] Open
Abstract
Perlecan is a multifunctional component of the extracellular matrix. It shows different effects on distinct cell types, and therefore it is thought to show potential for therapies targeting multiple cell types. However, the full range of multifunctionality of perlecan remains to be elucidated. We cultured various cell types, which were derived from epithelial/endothelial, connective and muscle tissues, in the presence of either antiserum against perlecan or exogenous perlecan, and examined the effects of perlecan on cell migration and proliferation. Cell migration was determined using a scratch assay. Blocking of perlecan by anti-perlecan antiserum inhibited the migration of vascular endothelial cells (VECs) and bone marrow-derived mesenchymal stem cells, and exogenous perlecan added to the culture medium promoted the migration of these cell types. The migration of other cell types was inhibited or was not promoted by exogenous perlecan. Cell proliferation was measured using a water-soluble tetrazolium dye. When cells were cultured at low densities, perlecan blocking inhibited the proliferation of VECs, and exogenous perlecan promoted the proliferation of keratinocytes. In contrast, the proliferation of fibroblasts, pre-adipocytes and vascular smooth muscle cells cultured at low densities was inhibited by exogenous perlecan. When cells were cultured at high densities, perlecan blocking promoted the proliferation of most cell types, with the exception of skeletal system-derived cells (chondrocytes and osteoblasts), which were inhibited by exogenous perlecan. Our results provide an overview of the multiple functions of perlecan in various cell types, and implicate a potential role of perlecan to inhibit undesirable activities, such as fibrosis, obesity and intimal hyperplasia.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- Laboratory of Animal By-Product Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
18
|
Goody MF, Sher RB, Henry CA. Hanging on for the ride: adhesion to the extracellular matrix mediates cellular responses in skeletal muscle morphogenesis and disease. Dev Biol 2015; 401:75-91. [PMID: 25592225 DOI: 10.1016/j.ydbio.2015.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
Abstract
Skeletal muscle specification and morphogenesis during early development are critical for normal physiology. In addition to mediating locomotion, skeletal muscle is a secretory organ that contributes to metabolic homeostasis. Muscle is a highly adaptable tissue, as evidenced by the ability to increase muscle cell size and/or number in response to weight bearing exercise. Conversely, muscle wasting can occur during aging (sarcopenia), cancer (cancer cachexia), extended hospital stays (disuse atrophy), and in many genetic diseases collectively known as the muscular dystrophies and myopathies. It is therefore of great interest to understand the cellular and molecular mechanisms that mediate skeletal muscle development and adaptation. Muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction. This process requires carefully orchestrated interactions between cells and their extracellular matrix microenvironment. These interactions are dynamic, allowing muscle cells to sense biophysical, structural, organizational, and/or signaling changes within their microenvironment and respond appropriately. In many musculoskeletal diseases, these cell adhesion interactions are disrupted to such a degree that normal cellular adaptive responses are not sufficient to compensate for accumulating damage. Thus, one major focus of current research is to identify the cell adhesion mechanisms that drive muscle morphogenesis, with the hope that understanding how muscle cell adhesion promotes the intrinsic adaptability of muscle tissue during development may provide insight into potential therapeutic approaches for muscle diseases. Our objectives in this review are to highlight recent studies suggesting conserved roles for cell-extracellular matrix adhesion in vertebrate muscle morphogenesis and cellular adaptive responses in animal models of muscle diseases.
Collapse
Affiliation(s)
- Michelle F Goody
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States
| | - Roger B Sher
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States
| | - Clarissa A Henry
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States; Institute for Molecular Biophysics, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
19
|
Subramanian A, Schilling TF. Thrombospondin-4 controls matrix assembly during development and repair of myotendinous junctions. eLife 2014; 3. [PMID: 24941943 PMCID: PMC4096842 DOI: 10.7554/elife.02372] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022] Open
Abstract
Tendons are extracellular matrix (ECM)-rich structures that mediate muscle attachments with the skeleton, but surprisingly little is known about molecular mechanisms of attachment. Individual myofibers and tenocytes in Drosophila interact through integrin (Itg) ligands such as Thrombospondin (Tsp), while vertebrate muscles attach to complex ECM fibrils embedded with tenocytes. We show for the first time that a vertebrate thrombospondin, Tsp4b, is essential for muscle attachment and ECM assembly at myotendinous junctions (MTJs). Tsp4b depletion in zebrafish causes muscle detachment upon contraction due to defects in laminin localization and reduced Itg signaling at MTJs. Mutation of its oligomerization domain renders Tsp4b unable to rescue these defects, demonstrating that pentamerization is required for ECM assembly. Furthermore, injected human TSP4 localizes to zebrafish MTJs and rescues muscle detachment and ECM assembly in Tsp4b-deficient embryos. Thus Tsp4 functions as an ECM scaffold at MTJs, with potential therapeutic uses in tendon strengthening and repair. DOI:http://dx.doi.org/10.7554/eLife.02372.001 Tendons, the tough connective tissues that link muscles to bones, are essential for lifting, running and other movements in animals. A matrix of proteins, called the extracellular matrix, connects the cells in a tendon, giving it the strength it needs to prevent muscles from detaching from bones during strenuous activities. To achieve this strength, extracellular matrix proteins bind to one another and to receptors on the muscle cell surface that are linked to its internal scaffolding, thereby organizing other proteins into a structure called a myotendinous junction. However, despite the essential roles of tendons, scientists do not fully understand how this organization occurs, or how it can go awry. Subramanian and Schilling screened zebrafish for genes that are essential for proper muscle attachment, and zeroed in on a gene encoding a protein called Thrombospondin-4b (Tsp4b). A similar protein helps to connect muscle and tendon cells in fruit flies. Without Tsp4b, zebrafish are able to form connections between muscles and tendons, but the muscles detach easily during movement. This weakened connection is caused by disorganization of the proteins in the extracellular matrix, which results in reduced signaling from the muscle cell receptors. When a human form of this protein was injected into zebrafish embryos lacking Tsp4b, it settled into the junctions between muscle and tendon cells. The human protein repaired the detached muscles and restored the proper organization of the matrix. This improved the strength of the muscle-tendon attachment in the treated fish embryos, suggesting that similar injections could also help to strengthen and repair muscles and tendons in people. DOI:http://dx.doi.org/10.7554/eLife.02372.002
Collapse
Affiliation(s)
- Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
| |
Collapse
|
20
|
Narayanan K, Lim VY, Shen J, Tan ZW, Rajendran D, Luo SC, Gao S, Wan ACA, Ying JY. Extracellular matrix-mediated differentiation of human embryonic stem cells: differentiation to insulin-secreting beta cells. Tissue Eng Part A 2013; 20:424-33. [PMID: 24020641 DOI: 10.1089/ten.tea.2013.0257] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Stem cells have tremendous potential for treating various human diseases. Protocols have been established to differentiate stem cells into specific lineages through the provision of signals in the form of growth factors, cytokines, or small molecules. Herein we investigate an alternative strategy for directed differentiation of human embryonic stem cells (hESCs)--extracellular-matrix (ECM) mediated differentiation. Decellularized ECM and conditioned media from the appropriate committed cell lines are used to differentiate stem cells to the required phenotype. Applying this strategy to differentiate hESCs to pancreatic beta cells, we have obtained functional cells that secreted insulin in a glucose-responsive manner, and were able to recover normoglycemia in a streptozotocin (STZ)-induced diabetic mouse model. ECM-mediated differentiation was also demonstrated to be effective for the differentiation of hESCs into kidney tubule cells and cardiomyocytes. Gene expression studies suggested the involvement of integrins and catenins in the beta cell differentiation process; in particular, α1, αv, and β1 integrins, and β-catenin showed the highest upregulation. To further elucidate the biochemical and mechanical cues that have led to effective hESC differentiation to beta cells, we have employed an artificial system that allowed for variation of matrix stiffness and combination of individual ECM proteins at various ratios. The differentiation response of hESCs to the native ECM could be approximated by optimizing this system.
Collapse
|
21
|
Borycki AG. The myotomal basement membrane: insight into laminin-111 function and its control by Sonic hedgehog signaling. Cell Adh Migr 2013; 7:72-81. [PMID: 23287393 DOI: 10.4161/cam.23411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The importance of laminin-containing basement membranes (BM) for adult muscle function is well established, in particular due to the severe phenotype of congenital muscular dystrophies in patients with mutations disrupting the BM-muscle cell interaction. Developing muscles in the embryo are also dependent on an intact BM. However, the processes controlled by BM-muscle cell interactions in the embryo are only beginning to be elucidated. In this review, we focus on the myotomal BM to illustrate the critical role of laminin-111 in BM assembly and function at the surface of embryonic muscle cells. The myotomal BM provides also an interesting paradigm to study the complex interplay between laminins-containing BM and growth factor-mediated signaling and activity.
Collapse
|
22
|
Sheveleva ON, Payushina OV, Starostin VI. Cellular and molecular basis of skeletal muscle hystogenesis. BIOL BULL+ 2012. [DOI: 10.1134/s1062359012060118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Wilschut KJ, Ling VB, Bernstein HS. Concise review: stem cell therapy for muscular dystrophies. Stem Cells Transl Med 2012. [PMID: 23197695 DOI: 10.5966/sctm.2012-0071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Muscular dystrophy comprises a group of genetic diseases that cause progressive weakness and degeneration of skeletal muscle resulting from defective proteins critical to muscle structure and function. This leads to premature exhaustion of the muscle stem cell pool that maintains muscle integrity during normal use and exercise. Stem cell therapy holds promise as a treatment for muscular dystrophy by providing cells that can both deliver functional muscle proteins and replenish the stem cell pool. Here, we review the current state of research on myogenic stem cells and identify the important challenges that must be addressed as stem cell therapy is brought to the clinic.
Collapse
|
24
|
NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy. PLoS Biol 2012; 10:e1001409. [PMID: 23109907 PMCID: PMC3479101 DOI: 10.1371/journal.pbio.1001409] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/06/2012] [Indexed: 01/27/2023] Open
Abstract
NAD+ improves muscle tissue structure and function in dystrophic zebrafish by increasing basement membrane organization. Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin alpha6 to reduce muscle degeneration. Taken together, these results define a novel cell adhesion pathway that may have future therapeutic relevance for a broad spectrum of muscular dystrophies. A variety of diseases, both inherited and acquired, affect muscle tissues in humans. Critical to muscle homeostasis is the anchoring of muscle fibers to their surrounding microenvironment through cell adhesion complexes that help to resist the repeated stress experienced during muscle contraction. Genetic mutations in these complexes weaken this mechanical attachment, making fibers more susceptible to damage and death. The resulting increased fiber degeneration can eventually lead to progressive muscle-wasting diseases, known collectively as muscular dystrophies. Although clinical trials are ongoing, there is presently no way to cure the loss of muscle structure and function associated with these diseases. We identified a novel cell adhesion pathway involving integrin alpha6 that promotes adhesion of muscle cells to their microenvironment. Here, we show that activation of this pathway not only significantly reduces muscle degeneration but also improves the swimming ability of dystrophic zebrafish. We explore the likely benefits and limitations of this pathway in treating symptoms of congenital muscular dystrophies. Our findings suggest that activation of this pathway (for example, by boosting levels of NAD+) has the potential to ameliorate loss of muscle structure and function in multiple muscular dystrophies.
Collapse
|
25
|
Deries M, Gonçalves AB, Vaz R, Martins GG, Rodrigues G, Thorsteinsdóttir S. Extracellular matrix remodeling accompanies axial muscle development and morphogenesis in the mouse. Dev Dyn 2011; 241:350-64. [PMID: 22127770 DOI: 10.1002/dvdy.23703] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2011] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Skeletal myogenesis is extensively influenced by the surrounding environment. However, how the extracellular matrix (ECM) affects morphogenesis of muscles is not well understood. RESULTS We mapped the three-dimensional (3D) organization of fibronectin, tenascin, and laminin by immunofluorescence during early epaxial myogenesis in mouse embryos. We define four stages of dermomyotome/myotome development and reveal the 3D organization of myogenic cells within their ECM during those stages. Fibronectin is abundant in all interstitial tissues, while tenascin is restricted to intersegmental borders. Bundles of fibronectin and tenascin also penetrate into the myotome, possibly promoting myocyte alignment. A laminin matrix delineates the dermomyotome and myotome and undergoes dynamic changes, correlating with key developmental events. CONCLUSION Our observations cast new light on how myotomal cells interact with their environment and suggest that, as the segmented myotomes transform into the epaxial muscle masses, the laminin matrix disassembles and myocytes use the abundant fibronectin matrix to reach their final organization.
Collapse
Affiliation(s)
- Marianne Deries
- Centro de Biologia Ambiental/Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
26
|
Ben-Yair R, Kahane N, Kalcheim C. LGN-dependent orientation of cell divisions in the dermomyotome controls lineage segregation into muscle and dermis. Development 2011; 138:4155-66. [PMID: 21852400 DOI: 10.1242/dev.065169] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plane of cell divisions is pivotal for differential fate acquisition. Dermomyotome development provides an excellent system with which to investigate the link between these processes. In the central sheet of the early dermomyotome, single epithelial cells divide with a planar orientation. Here, we report that in the avian embryo, in addition to self-renewing, a subset of progenitors translocates into the myotome where they generate differentiated myocytes. By contrast, in the late epithelium, individual progenitors divide perpendicularly to produce both mitotic myoblasts and dermis. To examine whether spindle orientations influence fate segregation, early planar divisions were randomized and/or shifted to a perpendicular orientation by interfering with LGN function or by overexpressing inscuteable. Clones derived from single transfected cells exhibited an enhanced proportion of mixed dermomyotome/myotome progeny at the expense of `like' daughter cells in either domain. Loss of LGN or Gαi1 function in the late epithelium randomized otherwise perpendicular mitoses and favored muscle development at the expense of dermis. Hence, LGN-dependent early planar divisions are required for the proper allocation of progenitors into either dermomyotome or myotome, whereas late perpendicular divisions are necessary for the normal balance between muscle and dermis production.
Collapse
Affiliation(s)
- Raz Ben-Yair
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
27
|
Wilschut KJ, van Tol HTA, Arkesteijn GJA, Haagsman HP, Roelen BAJ. Alpha 6 integrin is important for myogenic stem cell differentiation. Stem Cell Res 2011; 7:112-23. [PMID: 21763619 DOI: 10.1016/j.scr.2011.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 04/17/2011] [Accepted: 05/02/2011] [Indexed: 12/17/2022] Open
Abstract
A muscle progenitor cell population, other than muscle satellite cells, can be isolated and purified from porcine muscle tissue. We show the presence of at least two types of stem cells in porcine muscle: those that express α6 integrin and those that lack expression of this integrin type. By flow cytometry, we could select for myogenic stem cell populations expressing the neural cell adhesion molecule in the presence and absence of α6 integrin. The expression of α6 integrin showed an advantage in the formation of myotubes, possibly by an improved cell fusion capacity. This notion was strengthened by qRT-PCR analysis showing sustained PAX7, MYF5 and DESMIN expression and a strong myogenic differentiation capacity of this stem cell population. Selective inhibition of α6 integrin function, both by blocking antibodies and RNA interference, showed the importance of α6 integrin in myogenic differentiation of muscle stem cells. It is concluded that α6 integrin expression can be used as biomarker to select for highly myogenic cell populations in muscle tissue.
Collapse
Affiliation(s)
- Karlijn J Wilschut
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Yalelaan 104, 3584 CM, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
28
|
The extracellular matrix dimension of skeletal muscle development. Dev Biol 2011; 354:191-207. [PMID: 21420400 DOI: 10.1016/j.ydbio.2011.03.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 12/25/2022]
Abstract
Cells anchor to substrates by binding to extracellular matrix (ECM). In addition to this anchoring function however, cell-ECM binding is a mechanism for cells to sense their surroundings and to communicate and coordinate behaviour amongst themselves. Several ECM molecules and their receptors play essential roles in muscle development and maintenance. Defects in these proteins are responsible for some of the most severe muscle dystrophies at every stage of life from neonates to adults. However, recent studies have also revealed a role of cell-ECM interactions at much earlier stages of development as skeletal muscle forms. Here we review which ECM molecules are present during the early phases of myogenesis, how myogenic cells interact with the ECM that surrounds them and the potential consequences of those interactions. We conclude that cell-ECM interactions play significant roles during all stages of skeletal muscle development in the embryo and suggest that this "extracellular matrix dimension" should be added to our conceptual network of factors contributing to skeletal myogenesis.
Collapse
|
29
|
Lagha M, Sato T, Regnault B, Cumano A, Zuniga A, Licht J, Relaix F, Buckingham M. Transcriptome analyses based on genetic screens for Pax3 myogenic targets in the mouse embryo. BMC Genomics 2010; 11:696. [PMID: 21143873 PMCID: PMC3018477 DOI: 10.1186/1471-2164-11-696] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 12/08/2010] [Indexed: 01/21/2023] Open
Abstract
Background Pax3 is a key upstream regulator of the onset of myogenesis, controlling progenitor cell survival and behaviour as well as entry into the myogenic programme. It functions in the dermomyotome of the somite from which skeletal muscle derives and in progenitor cell populations that migrate from the somite such as those of the limbs. Few Pax3 target genes have been identified. Identifying genes that lie genetically downstream of Pax3 is therefore an important endeavour in elucidating the myogenic gene regulatory network. Results We have undertaken a screen in the mouse embryo which employs a Pax3GFP allele that permits isolation of Pax3 expressing cells by flow cytometry and a Pax3PAX3-FKHR allele that encodes PAX3-FKHR in which the DNA binding domain of Pax3 is fused to the strong transcriptional activation domain of FKHR. This constitutes a gain of function allele that rescues the Pax3 mutant phenotype. Microarray comparisons were carried out between Pax3GFP/+ and Pax3GFP/PAX3-FKHR preparations from the hypaxial dermomyotome of somites at E9.5 and forelimb buds at E10.5. A further transcriptome comparison between Pax3-GFP positive and negative cells identified sequences specific to myogenic progenitors in the forelimb buds. Potential Pax3 targets, based on changes in transcript levels on the gain of function genetic background, were validated by analysis on loss or partial loss of function Pax3 mutant backgrounds. Sequences that are up- or down-regulated in the presence of PAX3-FKHR are classified as somite only, somite and limb or limb only. The latter should not contain sequences from Pax3 positive neural crest cells which do not invade the limbs. Verification by whole mount in situ hybridisation distinguishes myogenic markers. Presentation of potential Pax3 target genes focuses on signalling pathways and on transcriptional regulation. Conclusions Pax3 orchestrates many of the signalling pathways implicated in the activation or repression of myogenesis by regulating effectors and also, notably, inhibitors of these pathways. Important transcriptional regulators of myogenesis are candidate Pax3 targets. Myogenic determination genes, such as Myf5 are controlled positively, whereas the effect of Pax3 on genes encoding inhibitors of myogenesis provides a potential brake on differentiation. In the progenitor cell population, Pax7 and also Hdac5 which is a potential repressor of Foxc2, are subject to positive control by Pax3.
Collapse
Affiliation(s)
- Mounia Lagha
- CNRS URA 2578, Département de Biologie du Développement, Institut Pasteur, 25 Rue du Dr Roux, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Peterson MT, Henry CA. Hedgehog signaling and laminin play unique and synergistic roles in muscle development. Dev Dyn 2010; 239:905-13. [PMID: 20063418 DOI: 10.1002/dvdy.22204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hedgehog (Hh) signaling and laminin-111, a basement membrane protein, are required for early muscle development. Hh signaling specifies different populations of muscle fibers and laminin-111 is critical for early muscle morphogenesis. However, additional requirements for Hh signaling and laminin during later phases of muscle development are not known. Furthermore, interactions between Hh signaling and laminin in this context are unknown. We used laminin gamma1 mutant zebrafish and cyclopamine to block Hh signal transduction separately and in combination to investigate their functions and interactions. We found that both Hh signaling and laminin are required for normal myosin chain expression. In addition, Hh signaling and laminin act synergistically during fast-twitch fiber elongation: fast muscle cells do not elongate in embryos deficient for both Hh signaling and laminin. Finally, we present evidence that suggests that Hh signaling is indirectly required via slow fiber specification for recovery of fast fiber elongation in laminin gamma1 mutant embryos.
Collapse
Affiliation(s)
- Matthew T Peterson
- School of Biology and Ecology, University of Maine, Orono, Maine 04469, USA
| | | |
Collapse
|
31
|
Dolez M, Nicolas JF, Hirsinger E. Laminins, via heparan sulfate proteoglycans, participate in zebrafish myotome morphogenesis by modulating the pattern of Bmp responsiveness. Development 2010; 138:97-106. [PMID: 21115608 DOI: 10.1242/dev.053975] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In zebrafish, Hedgehog-induced Engrailed expression defines a muscle fibre population that includes both slow and fast fibre types and exhibits an organisational role on myotome and surrounding tissues, such as motoneurons and lateral line. This Engrailed-positive population is restricted in the myotome to a central domain. To understand how this population is established, we have analysed the phenotype of the sly/lamc1 mutation in the Laminin γ1 chain that was shown to specifically affect Engrailed expression in pioneers. We find that the sly mutation affects Engrailed expression in the entire central domain and that Hedgehog signalling does not mediate this effect. We show that Bmp-responding cells are excluded from the central domain and that this pattern is modulated by laminins, but not by Hedgehog signalling. Knockdown of Bmp signalling rescues Engrailed expression in the sly mutant and ectopically activates Engrailed expression in slow and fast lineages in wild-type embryos. Last, extracellular matrix-associated heparan sulfate proteoglycans are absent in sly and their enzymatic removal mimics the sly phenotype. Our results therefore show that laminins, via heparan sulfate proteoglycans, are instrumental in patterning Bmp responsiveness and that Bmp signalling restricts Engrailed expression to the central domain. This study underlines the importance of extracellular cues for the precise spatial modulation of cell response to morphogens.
Collapse
Affiliation(s)
- Morgane Dolez
- Institut Pasteur, Unit of Molecular Biology of Development, Department of Developmental Biology, 25 rue du Docteur Roux, CNRS, URA2578, F-75015 Paris, France
| | | | | |
Collapse
|
32
|
Kruegel J, Miosge N. Basement membrane components are key players in specialized extracellular matrices. Cell Mol Life Sci 2010; 67:2879-95. [PMID: 20428923 PMCID: PMC2921489 DOI: 10.1007/s00018-010-0367-x] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/17/2010] [Accepted: 03/24/2010] [Indexed: 01/11/2023]
Abstract
More than three decades ago, basement membranes (BMs) were described as membrane-like structures capable of isolating a cell from and connecting a cell to its environment. Since this time, it has been revealed that BMs are specialized extracellular matrices (sECMs) with unique components that support important functions including differentiation, proliferation, migration, and chemotaxis of cells during development. The composition of these sECM is as unique as the tissues to which they are localized, opening the possibility that such matrices can fulfill distinct functions. Changes in BM composition play significant roles in facilitating the development of various diseases. Furthermore, tissues have to provide sECM for their stem cells during development and for their adult life. Here, we briefly review the latest research on these unique sECM and their components with a special emphasis on embryonic and adult stem cells and their niches.
Collapse
Affiliation(s)
- Jenny Kruegel
- Tissue Regeneration Work Group, Department of Prosthodontics, Georg August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Nicolai Miosge
- Tissue Regeneration Work Group, Department of Prosthodontics, Georg August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
33
|
Abstract
Duchenne muscular dystrophy (DMD) still needs effective treatments, and myoblast transplantation (MT) is considered as an approach to repair damaged skeletal muscles. DMD is due to the complete loss of dystrophin from muscles. The lack of link between the contracting apparatus and the extracellular matrix leads to frequent damage to the sarcolemma triggering muscle fiber necrosis. Laminins are major proteins in the extracellular matrix. Laminin-111 is normally present in skeletal and cardiac muscles in mice and humans but only during embryonic development. In this study, we showed that intramuscular injection of laminin-111 increased muscle strength and resistance in mdx mice. We also used laminin-111 as a coadjuvant in MT, and we showed this protein decreased considerably the repetitive cycles of degeneration, inflammatory reaction, and regeneration. Moreover, MT is significantly improved. To explain the improvement, we confirmed with the same myoblast cell batch that laminin-111 improves proliferation and drastically increases migration in vitro. These results are extremely important because DMD could be treated only by the injection of a recombinant protein, a simple and safe therapy to prevent loss of muscle function. Moreover, the improvement in MT would be significant to treat the muscles of DMD patients who are already weak.
Collapse
|
34
|
Sato T, Rocancourt D, Marques L, Thorsteinsdóttir S, Buckingham M. A Pax3/Dmrt2/Myf5 regulatory cascade functions at the onset of myogenesis. PLoS Genet 2010; 6:e1000897. [PMID: 20368965 PMCID: PMC2848553 DOI: 10.1371/journal.pgen.1000897] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 03/04/2010] [Indexed: 12/04/2022] Open
Abstract
All skeletal muscle progenitor cells in the body derive from the dermomyotome, the dorsal epithelial domain of developing somites. These multipotent stem cells express Pax3, and this expression is maintained in the myogenic lineage where Pax3 plays an important role. Identification of Pax3 targets is therefore important for understanding the mechanisms that underlie the onset of myogenesis. In a microarray screen of Pax3-GFP sorted cells, with analysis on Pax3 gain and loss of function genetic backgrounds, we identify Dmrt2, expressed in the dermomyotome, as a Pax3 target. In vitro gel shift analysis and chromatin immunoprecipitation with in vivo extracts show that Pax3 binds to a conserved 286 bp sequence, situated at −18 kb from Dmrt2. This sequence directs reporter transgene expression to the somite, and this is severely affected when the Pax3 site is mutated in the context of the locus. In Dmrt2 mutant embryos, somite maturation is perturbed and the skeletal muscle of the myotome is abnormal. We now report that the onset of myogenesis is also affected. This depends on activation, in the epaxial dermomyotome, of the myogenic determination gene, Myf5, through its early epaxial enhancer. This sequence contains sites that bind Dmrt2, which belongs to the DM class of DNA–binding proteins. Mutation of these sites compromises activity of the enhancer in transgenic embryos where the reporter transgene is under the control of the Myf5 epaxial enhancer. Transactivation of this site by Dmrt2 is demonstrated in vitro, and conditional overexpression of Dmrt2 in Pax3 expressing cells in the somite confirms the role of this factor in the activation of Myf5. These results reveal a novel genetic network, comprising a Pax3/Dmrt2/Myf5 regulatory cascade that operates in stem cells of the epaxial dermomyotome to initiate skeletal muscle formation. It is well established that skeletal muscle derives from segmented structures called somites that form on either side of the axis of the embryo. The part of the somite that contains muscle stem cells is called the dermomyotome. These cells express the transcription factor Pax3, which regulates muscle stem cell behaviour. We now show that the Dmrt2 gene, also expressed in the dermomyotome, is directly controlled by Pax3. Since Dmrt2 has been implicated in maintaining the integrity of the dermomyotome, this therefore indicates an upstream role for Pax3 in this structure as well as in controlling cells that form skeletal muscle. Furthermore Dmrt2 directly regulates early activation of the myogenic determination gene, Myf5, required for the formation of the first skeletal muscle in the somite. This is a novel function for Dmrt2 and shows that this transcription factor controls both structure and cell fate. Our results reveal a Pax3/Dmrt2/Myf5 regulatory cascade through which Pax3 orchestrates the onset of myogenesis in the muscle stem cells of the dermomyotome.
Collapse
Affiliation(s)
- Takahiko Sato
- Department of Developmental Biology, Centre National de la Recherche Scientifique, Unité de Recherche Associée 2578, Institut Pasteur, Paris, France
| | - Didier Rocancourt
- Department of Developmental Biology, Centre National de la Recherche Scientifique, Unité de Recherche Associée 2578, Institut Pasteur, Paris, France
| | - Luís Marques
- Department of Animal Biology and Centre for Environmental Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Gulbenkian Institute of Science, Oeiras, Portugal
| | - Sólveig Thorsteinsdóttir
- Department of Animal Biology and Centre for Environmental Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Gulbenkian Institute of Science, Oeiras, Portugal
| | - Margaret Buckingham
- Department of Developmental Biology, Centre National de la Recherche Scientifique, Unité de Recherche Associée 2578, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
35
|
Wilschut KJ, Haagsman HP, Roelen BA. Extracellular matrix components direct porcine muscle stem cell behavior. Exp Cell Res 2010; 316:341-52. [DOI: 10.1016/j.yexcr.2009.10.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 10/02/2009] [Accepted: 10/16/2009] [Indexed: 01/29/2023]
|
36
|
Sonic hedgehog regulates integrin activity, cadherin contacts, and cell polarity to orchestrate neural tube morphogenesis. J Neurosci 2009; 29:12506-20. [PMID: 19812326 DOI: 10.1523/jneurosci.2003-09.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In vertebrates, the embryonic nervous system is shaped and patterned by a series of temporally and spatially regulated cell divisions, cell specifications, and cell adhesions and movements. Morphogens of the Hedgehog, Wnt, and bone morphogenetic protein families have been shown to play a crucial role in the control of cell division and specification in the trunk neural tube, but their possible implication in the regulation of adhesive events has been poorly documented. In the present study, we demonstrate that Sonic hedgehog regulates neural epithelial cell adhesion and polarity through regulation of integrin activity, cadherin cell-cell contact, and cell polarity genes in immature neural epithelial cells before the specification of neuronal cells. We propose that Sonic hedgehog orchestrates neural tube morphogenesis by coordinating adhesive and motility events with cell proliferation and differentiation.
Collapse
|
37
|
Anderson C, Thorsteinsdóttir S, Borycki AG. Sonic hedgehog-dependent synthesis of laminin alpha1 controls basement membrane assembly in the myotome. Development 2009; 136:3495-504. [PMID: 19783738 DOI: 10.1242/dev.036087] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Basement membranes have essential structural and signalling roles in tissue morphogenesis during embryonic development, but the mechanisms that control their formation are still poorly understood. Laminins are key components of basement membranes and are thought to be essential for initiation of basement membrane assembly. Here, we report that muscle progenitor cells populating the myotome migrate aberrantly in the ventral somite in the absence of sonic hedgehog (Shh) signalling, and we show that this defect is due to the failure to form a myotomal basement membrane. We reveal that expression of Lama1, which encodes laminin alpha1, a subunit of laminin-111, is not activated in Shh(-/-) embryos. Recovery of Lama1 expression or addition of exogenous laminin-111 to Shh(-/-);Gli3(-/-) embryos restores the myotomal basement membrane, demonstrating that laminin-111 is necessary and sufficient to initiate assembly of the myotomal basement membrane. This study uncovers an essential role for Shh signalling in the control of laminin-111 synthesis and in the initiation of basement membrane assembly in the myotome. Furthermore, our data indicate that laminin-111 function cannot be compensated by laminin-511.
Collapse
Affiliation(s)
- Claire Anderson
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
38
|
Hidalgo M, Sirour C, Bello V, Moreau N, Beaudry M, Darribère T. In vivo analyzes of dystroglycan function during somitogenesis in Xenopus laevis. Dev Dyn 2009; 238:1332-45. [PMID: 19086027 DOI: 10.1002/dvdy.21814] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Dystroglycan (Dg) is a cell adhesion receptor for laminin that has been reported to play a role in skeletal muscle cell stability, cytoskeletal organization, cell polarity, and signaling. Here we show that Dg is expressed at both the notochord/somite and the intersomitic boundaries, where laminin and fibronectin are accumulated during somitogenesis. Inhibition of Dg function with morpholino antisense oligonucleotides or a dominant negative mutant results in the normal segmentation of the presomitic mesoderm but affects the number, the size, and the integrity of somites. Depletion of Dg disrupts proliferation and alignment of myoblasts without affecting XMyoD and XMRF4 expression. It also leads to defects in laminin deposition at the intersomitic junctions, whereas expression of integrin beta1 subunits and fibronectin assembly occur normally. Our results show that Dg is critical for both proliferation and elongation of somitic cells and that the Dg-cytoplasmic domain is required for the laminin assembly at the intersomitic boundaries. Developmental Dynamics 238:1332-1345, 2009. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Magdalena Hidalgo
- Université Pierre et Marie Curie Paris 6 UMR CNRS 7622, Laboratoire de Biologie du Développement, équipe Matrice Extracellulaire et Développement, Paris, France
| | | | | | | | | | | |
Collapse
|
39
|
Shoji H, Deltour L, Nakamura T, Tajbakhsh S, Poirier F. Expression pattern and role of Galectin1 during early mouse myogenesis. Dev Growth Differ 2009; 51:607-15. [DOI: 10.1111/j.1440-169x.2009.01122.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Gayraud-Morel B, Chrétien F, Tajbakhsh S. Skeletal muscle as a paradigm for regenerative biology and medicine. Regen Med 2009; 4:293-319. [PMID: 19317647 DOI: 10.2217/17460751.4.2.293] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tissue development and regeneration share common features, since modules of regulatory pathways and transcription factors that are crucial for prenatal development are redeployed for tissue reconstruction after trauma. Regenerative medicine has therefore gained important insights through the study of developmental and regenerative biology. Moreover, diverse experimental models have been used to investigate the regeneration process in different tissues and organs. Paradoxically, little is known regarding the relative contribution of stem cells with respect to the supporting tissue during tissue regeneration. Particular attention will be given to mouse models using distinct injury paradigms to investigate the regenerative biology of skeletal muscle. An understanding of the response of stem and parenchymal cells is crucial for the development of clinical strategies to combat the normal decline in tissue performance during aging or its reconstitution after trauma and during disease. This review addresses these issues, focusing on muscle regeneration and how different factors, including genes, cells and the environment, impinge on this process.
Collapse
Affiliation(s)
- Barbara Gayraud-Morel
- Stem Cells & Development, Department of Developmental Biology, Pasteur Institute, CNRS URA 2578, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
41
|
Snow CJ, Goody M, Kelly MW, Oster EC, Jones R, Khalil A, Henry CA. Time-lapse analysis and mathematical characterization elucidate novel mechanisms underlying muscle morphogenesis. PLoS Genet 2008; 4:e1000219. [PMID: 18833302 PMCID: PMC2543113 DOI: 10.1371/journal.pgen.1000219] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 09/09/2008] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction (MTJ). In vertebrates, a great deal is known about muscle specification as well as how somitic cells, as a cohort, generate the early myotome. However, the cellular mechanisms that generate long muscle fibers from short cells and the molecular factors that limit elongation are unknown. We show that zebrafish fast muscle fiber morphogenesis consists of three discrete phases: short precursor cells, intercalation/elongation, and boundary capture/myotube formation. In the first phase, cells exhibit randomly directed protrusive activity. The second phase, intercalation/elongation, proceeds via a two-step process: protrusion extension and filling. This repetition of protrusion extension and filling continues until both the anterior and posterior ends of the muscle fiber reach the MTJ. Finally, both ends of the muscle fiber anchor to the MTJ (boundary capture) and undergo further morphogenetic changes as they adopt the stereotypical, cylindrical shape of myotubes. We find that the basement membrane protein laminin is required for efficient elongation, proper fiber orientation, and boundary capture. These early muscle defects in the absence of either lamininβ1 or lamininγ1 contrast with later dystrophic phenotypes in lamininα2 mutant embryos, indicating discrete roles for different laminin chains during early muscle development. Surprisingly, genetic mosaic analysis suggests that boundary capture is a cell-autonomous phenomenon. Taken together, our results define three phases of muscle fiber morphogenesis and show that the critical second phase of elongation proceeds by a repetitive process of protrusion extension and protrusion filling. Furthermore, we show that laminin is a novel and critical molecular cue mediating fiber orientation and limiting muscle cell length. Despite the importance of muscle fiber development and tendon attachment, this process is incompletely understood in vertebrates. One critical step is muscle fiber elongation; muscle precursor cells are short and subsequent elongation/fusion generates long, multinucleate muscle fibers. Using a vertebrate model organism, the zebrafish, we find that single round myoblasts elongate to span the entire width of the myotome prior to fusion. Using rigorous and objective mathematical characterization techniques, we can further divide muscle development into three stages: short precursor cells, intercalation/elongation, and boundary capture/myotube formation. The second phase, elongation, occurs via a two-step mechanism of protrusion extension and filling. Myotube formation involves boundary capture, where the ends of muscle fibers anchor themselves to the myotome boundary and stop elongating. We show that the protein laminin is required for boundary capture, normal fiber length, and proper fiber orientation. Genetic mosaic experiments in laminin-deficient embryos reveal that boundary capture is a cell autonomous phenomenon. Wild-type (normal) cells capture the boundary appropriately and stop elongating in laminin-deficient embryos. Although adhesion to laminin has been implicated in muscular dystrophies where the attachment between muscle cells and tendons fails, no early developmental requirements for laminin in fast muscle morphogenesis have been shown until now.
Collapse
Affiliation(s)
- Chelsi J. Snow
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America
| | - Michelle Goody
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America
| | - Meghan W. Kelly
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America
| | - Emma C. Oster
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America
| | - Robert Jones
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America
| | - Andre Khalil
- Department of Mathematics and Statistics, University of Maine, Orono, Maine, United States of America
- Institute for Molecular Biophysics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Clarissa A. Henry
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America
- Institute for Molecular Biophysics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
42
|
Abstract
The molecular, genetic and cellular bases for skeletal muscle growth and regeneration have been recently documented in a number of vertebrate species. These studies highlight the role of transient subcompartments of the early somite as a source of distinct waves of myogenic precursors. Individual myogenic progenitor populations undergo a complex series of cell rearrangements and specification events in different regions of the body, all of which are controlled by distinct gene regulatory networks. Collectively, these studies have opened a window into the morphogenetic and molecular bases of the different phases of vertebrate myogenesis, from embryo to adult.
Collapse
Affiliation(s)
- Robert J Bryson-Richardson
- Victor Chang Cardiac Research Institute, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia.
| | | |
Collapse
|
43
|
Laird DJ, von Andrian UH, Wagers AJ. Stem cell trafficking in tissue development, growth, and disease. Cell 2008; 132:612-30. [PMID: 18295579 DOI: 10.1016/j.cell.2008.01.041] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Regulated movement of stem cells is critical for organogenesis during development and for homeostasis and repair in adulthood. Here we analyze the biological significance and molecular mechanisms underlying stem cell trafficking in the generation of the germline, and the generation and regeneration of blood and muscle. Comparison across organisms and lineages reveals remarkable conservation as well as specialization in homing and migration mechanisms used by mature leukocytes, adult and fetal stem cells, and cancer stem cells. In vivo trafficking underpins the successful therapeutic application of hematopoietic stem cells for bone-marrow transplant, and further elucidation of homing and migration pathways in other systems will enable broader application of stem cells for targeted cell therapy and drug delivery.
Collapse
Affiliation(s)
- Diana J Laird
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10058, USA
| | | | | |
Collapse
|
44
|
|
45
|
Fujiwara H, Hayashi Y, Sanzen N, Kobayashi R, Weber CN, Emoto T, Futaki S, Niwa H, Murray P, Edgar D, Sekiguchi K. Regulation of mesodermal differentiation of mouse embryonic stem cells by basement membranes. J Biol Chem 2007; 282:29701-11. [PMID: 17690109 DOI: 10.1074/jbc.m611452200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Basement membranes (BMs) have been implicated in cell fate determination during development. Embryoid bodies (EBs) derived from mouse embryonic stem cells deficient in the laminin gamma1 chain are incapable of depositing a BM, resulting in failure of primitive ectoderm epithelialization. To elucidate the mechanisms involved in this phenomenon, we compared the gene expression profiles of EBs with or without a BM to identify the genes showing BM-dependent expression. We found that the expressions of marker genes for the epithelial-mesenchymal transition (EMT), including the transcription factor Snai2, were up-regulated in LAMC1(-/-) EBs, whereas restoration of a BM to LAMC1(-/-) EBs suppressed the up-regulation of these genes. Overexpression of Snai2 induced the EMT in control EBs by molecular and morphological criteria, suggesting that suppression of the EMT regulatory genes is involved in BM-dependent epithelialization of primitive ectoderm. Despite the failure of primitive ectoderm epithelialization in BM-deficient EBs, mesodermal differentiation was not compromised, but rather accelerated. Furthermore, at later stages of control EB differentiation, the BM was disrupted at the gastrulation site where mesodermal markers were strongly expressed only in cells that had lost contact with the BM. Taken together, these results indicate that the BM prevents the EMT and precocious differentiation of primitive ectoderm toward mesoderm in EBs, implying that BMs are important for the control of mammalian gastrulation.
Collapse
Affiliation(s)
- Hironobu Fujiwara
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kahane N, Ben-Yair R, Kalcheim C. Medial pioneer fibers pattern the morphogenesis of early myoblasts derived from the lateral somite. Dev Biol 2007; 305:439-50. [PMID: 17382923 DOI: 10.1016/j.ydbio.2007.02.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 02/11/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
The first wave of myoblasts which constitutes the post-mitotic myotome stems from the medial epithelial somite. Whereas medial pioneers extend throughout the entire mediolateral myotome at cervical and limb levels, at flank regions they are complemented laterally by a population of early myoblasts emerging from the lateral epithelial somite. These myoblasts delaminate underneath the nascent dermomyotome and become post-mitotic. They are Myf5-positive but express MyoD and desmin only a day later while differentiating into fibers. Overexpression of Noggin in the lateral somite triggers their premature differentiation suggesting that lateral plate-BMP4 maintains them in an undifferentiated state. Moreover, directly accelerating their differentiation by MyoD overexpression prior to arrival of medial fibers, generates a severely mispatterned lateral myotome. This is in contrast to medial pioneers that have the capacity for self-organization. Furthermore, inhibiting differentiation of medial pioneers with dominant-negative MyoD also disrupts lateral myoblast patterning and differentiation. Thus, we propose that medial pioneers are needed for proper morphogenesis of the lateral population which is kept as undifferentiated mesenchyme by BMP4 until their arrival. In addition, medial pioneers also organize dermomyotome lip-derived fibers suggesting that they have a general role in patterning myotome development.
Collapse
Affiliation(s)
- Nitza Kahane
- Department of Anatomy and Cell Biology, Hebrew University-Hadassah Medical School, Jerusalem 91120, PO Box 12272, Israel
| | | | | |
Collapse
|
47
|
Lathia JD, Rao MS, Mattson MP, ffrench-Constant C. The microenvironment of the embryonic neural stem cell: Lessons from adult niches? Dev Dyn 2007; 236:3267-82. [DOI: 10.1002/dvdy.21319] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
48
|
Anderson C, Winder SJ, Borycki AG. Dystroglycan protein distribution coincides with basement membranes and muscle differentiation during mouse embryogenesis. Dev Dyn 2007; 236:2627-35. [PMID: 17676646 DOI: 10.1002/dvdy.21259] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Using immunohistochemistry, we have examined beta-Dystroglycan protein distribution in the mouse embryo at embryonic stages E9.5 to E11.5. Our data show that Dystroglycan expression correlates with basement membranes in many tissues, such as the notochord, neural tube, promesonephros, and myotome. In the myotome, we describe the timing of Dystroglycan protein re-distribution at the surface of myogenic precursor cells as basement membrane assembles into a continuous sheet. We also report on non-basement-membrane-associated Dystroglycan expression in the floor plate and the myocardium. This distribution often corresponds to sites of expression previously reported in adults, suggesting that Dystroglycan is continuously produced during development.
Collapse
Affiliation(s)
- Claire Anderson
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | | | | |
Collapse
|
49
|
Buckingham M. Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev 2006; 16:525-32. [PMID: 16930987 DOI: 10.1016/j.gde.2006.08.008] [Citation(s) in RCA: 324] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 08/03/2006] [Indexed: 01/21/2023]
Abstract
Continuing research on the onset of skeletal myogenesis in the somite is providing new insights into the behaviour of early myogenic progenitor cells and how signalling molecules affect cell fate decisions, in addition to subsequent muscle growth. Genetic manipulations have revealed new regulatory aspects, including the role of Six transcription factors and the CXCR4 cytokine receptor during embryonic myogenesis. An important recent development is the identification of a novel population of somite-derived cells that make a major contribution to muscle growth. These cells, which are characterised by the expression of Pax3 and Pax7, also give rise to the satellite cells of postnatal muscle. The relationship between Pax and Myogenic regulatory factors has been explored. Furthermore, Pax7 is now shown to be required for the maintenance of satellite cells. New approaches that permit the grafting of purified satellite cells demonstrate their capacity for efficient muscle repair and for self-renewal. Regeneration in amphibians is now also shown to involve Pax-positive progenitor cells.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental Biology, CNRS URA2578, Pasteur Institute, 25 Rue du Docteur Roux, 75015 Paris Cedex, France.
| |
Collapse
|