1
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Integration of Transcriptomics and Non-Targeted Metabolomics Reveals the Underlying Mechanism of Skeletal Muscle Development in Duck during Embryonic Stage. Int J Mol Sci 2023; 24:ijms24065214. [PMID: 36982289 PMCID: PMC10049352 DOI: 10.3390/ijms24065214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Skeletal muscle is an important economic trait in duck breeding; however, little is known about the molecular mechanisms of its embryonic development. Here, the transcriptomes and metabolomes of breast muscle of Pekin duck from 15 (E15_BM), 21 (E21_BM), and 27 (E27_BM) days of incubation were compared and analyzed. The metabolome results showed that the differentially accumulated metabolites (DAMs), including the up-regulated metabolites, l-glutamic acid, n-acetyl-1-aspartylglutamic acid, l-2-aminoadipic acid, 3-hydroxybutyric acid, bilirubin, and the significantly down-regulated metabolites, palmitic acid, 4-guanidinobutanoate, myristic acid, 3-dehydroxycarnitine, and s-adenosylmethioninamine, were mainly enriched in metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of cofactors, protein digestion and absorption, and histidine metabolism, suggesting that these pathways may play important roles in the muscle development of duck during the embryonic stage. Moreover, a total of 2142 (1552 up-regulated and 590 down-regulated), 4873 (3810 up-regulated and 1063 down-regulated), and 2401 (1606 up-regulated and 795 down-regulated) DEGs were identified from E15_BM vs. E21_BM, E15_BM vs. E27_BM and E21_BM vs. E27_BM in the transcriptome, respectively. The significantly enriched GO terms from biological processes were positive regulation of cell proliferation, regulation of cell cycle, actin filament organization, and regulation of actin cytoskeleton organization, which were associated with muscle or cell growth and development. Seven significant pathways, highly enriched by FYN, PTK2, PXN, CRK, CRKL, PAK, RHOA, ROCK, INSR, PDPK1, and ARHGEF, were focal adhesion, regulation of actin cytoskeleton, wnt signaling pathway, insulin signaling pathway, extracellular matrix (ECM)-receptor interaction, cell cycle, and adherens junction, which participated in regulating the development of skeletal muscle in Pekin duck during the embryonic stage. KEGG pathway analysis of the integrated transcriptome and metabolome indicated that the pathways, including arginine and proline metabolism, protein digestion and absorption, and histidine metabolism, were involved in regulating skeletal muscle development in embryonic Pekin duck. These findings suggested that the candidate genes and metabolites involved in crucial biological pathways may regulate muscle development in the Pekin duck at the embryonic stage, and increased our understanding of the molecular mechanisms underlying the avian muscle development.
Collapse
|
4
|
Bonansco C, Cerpa W, Inestrosa NC. How Are Synapses Born? A Functional and Molecular View of the Role of the Wnt Signaling Pathway. Int J Mol Sci 2022; 24:ijms24010708. [PMID: 36614149 PMCID: PMC9821221 DOI: 10.3390/ijms24010708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 01/03/2023] Open
Abstract
Synaptic transmission is a dynamic process that requires precise regulation. Early in life, we must be able to forge appropriate connections (add and remove) to control our behavior. Neurons must recognize appropriate targets, and external soluble factors that activate specific signaling cascades provide the regulation needed to achieve this goal. Wnt signaling has been implicated in several forms of synaptic plasticity, including functional and structural changes associated with brain development. The analysis of synapses from an electrophysiological perspective allows us to characterize the functional role of cellular signaling pathways involved in brain development. The application of quantal theory to principles of developmental plasticity offers the possibility of dissecting the function of structural changes associated with the birth of new synapses as well as the maturation of immature silent synapses. Here, we focus on electrophysiological and molecular evidence that the Wnt signaling pathway regulates glutamatergic synaptic transmission, specifically N-methyl-d-aspartate receptors (NMDARs), to control the birth of new synapses. We also focus on the role of Wnts in the conversion of silent synapses into functional synapses.
Collapse
Affiliation(s)
- Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Correspondence: (C.B.); (N.C.I.)
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Nibaldo C. Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (C.B.); (N.C.I.)
| |
Collapse
|
5
|
SFRP4 Is a Potential Biomarker for the Prognosis and Immunotherapy for Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:8829649. [PMID: 35847366 PMCID: PMC9277207 DOI: 10.1155/2022/8829649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022]
Abstract
Purpose Secreted frizzled-related protein 4 (SFRP4) is a member of the SFRP family, which functions as either a tumor suppressor or a prooncogenic factor in distinct tumor types. Our research aimed to explore the expression of SFRP4 in gastric cancer, its prognostic significance, and its relationship with immune cell infiltration. Materials and Methods Gastric cancer and paracancerous tissue specimens from surgically resected gastric cancer patients were collected to construct tissue microarrays, and immunohistochemistry was used to detect the expression of SFRP4, PD-L1, CD3+T, CD4+T, and CD8+T in these microarrays. The differential expression of SFRP4 and its relationship with the immune microenvironment were evaluated using the TIMER and TISIDB databases. Finally, patient survival was assessed. Results SFRP4 expression was elevated in gastric cancer tissues and linked to a poor prognosis (P=0.021). The 5-year survival rate for patients with high SFRP4 expression was only 39.81% but reached 60.02% for patients with low SFRP4 expression. Increased SFRP4 expression correlated with high CD8+ T-cell infiltration (P=0.015) and positive PD-L1 expression (P=0.036). High SFRP4 expression was an independent predictor of overall survival (P=0.024 in univariable analysis, P=0.011 in multivariable analysis). Using online databases, we found that SFRP4 expression was higher in gastric cancer tissues and substantially was associated with the immune microenvironment. Conclusion SFRP4 is an oncogenic driver that can predict patient survival time in gastric cancer, as well as an important immune-related factor. SFRP4 may be important for guiding immunotherapy in gastric cancer patients.
Collapse
|
6
|
Zannoni GF, Bragantini E, Castiglione F, Fassan M, Troncone G, Inzani F, Pesci A, Santoro A, Fraggetta F. Current Prognostic and Predictive Biomarkers for Endometrial Cancer in Clinical Practice: Recommendations/Proposal from the Italian Study Group. Front Oncol 2022; 12:805613. [PMID: 35463299 PMCID: PMC9024340 DOI: 10.3389/fonc.2022.805613] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Endometrial carcinoma (EC) is the most common gynecological malignant disease in high-income countries, such as European countries and the USA. The 2020 edition of the World Health Organization (WHO) Classification of Tumors of the Female Genital Tract underlines the important clinical implications of the proposed new histomolecular classification system for ECs. In view of the substantial genetic and morphological heterogeneity in ECs, both classical pthological parameters and molecular classifiers have to be integrated in the pathology report. This review will focus on the most commonly adopted immunohistochemical and molecular biomarkers in daily clinical characterization of EC, referring to the most recent published recommendations, guidelines, and expert opinions.
Collapse
Affiliation(s)
- Gian Franco Zannoni
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Emma Bragantini
- Department of Surgical Pathology, Ospedale S. Chiara, Trento, Italy
| | - Francesca Castiglione
- Histopathology and Molecular Diagnostics, Careggi University Hospital, Florence, Italy
| | - Matteo Fassan
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Frediano Inzani
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Anna Pesci
- Department of Pathology, Sacred Heart Hospital Don Calabria Negrar, Verona, Italy
| | - Angela Santoro
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Filippo Fraggetta
- Pathology Unit, “Cannizzaro” Hospital, Catania, Italy
- Pathology Unit, “Gravina” Hospital, Caltagirone, Italy
| |
Collapse
|
7
|
Teo S, Salinas PC. Wnt-Frizzled Signaling Regulates Activity-Mediated Synapse Formation. Front Mol Neurosci 2021; 14:683035. [PMID: 34194299 PMCID: PMC8236581 DOI: 10.3389/fnmol.2021.683035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/17/2021] [Indexed: 11/26/2022] Open
Abstract
The formation of synapses is a tightly regulated process that requires the coordinated assembly of the presynaptic and postsynaptic sides. Defects in synaptogenesis during development or in the adult can lead to neurodevelopmental disorders, neurological disorders, and neurodegenerative diseases. In order to develop therapeutic approaches for these neurological conditions, we must first understand the molecular mechanisms that regulate synapse formation. The Wnt family of secreted glycoproteins are key regulators of synapse formation in different model systems from invertebrates to mammals. In this review, we will discuss the role of Wnt signaling in the formation of excitatory synapses in the mammalian brain by focusing on Wnt7a and Wnt5a, two Wnt ligands that play an in vivo role in this process. We will also discuss how changes in neuronal activity modulate the expression and/or release of Wnts, resulting in changes in the localization of surface levels of Frizzled, key Wnt receptors, at the synapse. Thus, changes in neuronal activity influence the magnitude of Wnt signaling, which in turn contributes to activity-mediated synapse formation.
Collapse
Affiliation(s)
| | - Patricia C. Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
8
|
The crosstalk of hedgehog, PI3K and Wnt pathways in diabetes. Arch Biochem Biophys 2020; 698:108743. [PMID: 33382998 DOI: 10.1016/j.abb.2020.108743] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/03/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Hyperglycaemia causes pancreatic β-cells to release insulin that then attaches to a specific expression of receptor isoform and reverses high glucose concentrations. It is well known that insulin is capable of initiating insulin-receptor substrate (IRS)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling pathways in target cells; such as liver, adipose tissues, and muscles. However, recent discoveries indicate that many other pathways, such as the Hedgehog (Hh) and growth factor-stimulating Wingless-related integration (Wnt) signaling pathways; are activated in hyperglycaemia as well. Although these two pathways are traditionally thought to have a decisive role in cellular growth and differentiation only, recent reports show that they are involved in regulating cellular homeostasis and energy balance. While insulin-activated IRS/PI3K/PKB pathway cascades are primarily known to reduce glucose production, it was recently discovered to increase the Hh signaling pathway's stability, thereby activating the PI3K/PKB/mammalian target of rapamycin complex 2 (mTORC2) signaling pathway. The Hh signaling pathway not only plays a role in lipid metabolism, insulin sensitivity, inflammatory response, diabetes-related complications, but crosstalks with the Wnt signaling pathway resulting in improved insulin sensitivity and decrease inflammatory response in diabetes.
Collapse
|
9
|
Morenilla-Palao C, López-Cascales MT, López-Atalaya JP, Baeza D, Calvo-Díaz L, Barco A, Herrera E. A Zic2-regulated switch in a noncanonical Wnt/βcatenin pathway is essential for the formation of bilateral circuits. SCIENCE ADVANCES 2020; 6:6/46/eaaz8797. [PMID: 33188033 PMCID: PMC7673756 DOI: 10.1126/sciadv.aaz8797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 09/30/2020] [Indexed: 05/06/2023]
Abstract
The Wnt pathway is involved in a wide array of biological processes during development and is deregulated in many pathological scenarios. In neurons, Wnt proteins promote both axon extension and repulsion, but the molecular mechanisms underlying these opposing axonal responses are unknown. Here, we show that Wnt5a is expressed at the optic chiasm midline and promotes the crossing of retinal axons by triggering an alternative Wnt pathway that depends on the accumulation of βcatenin but does not activate the canonical pathway. In ipsilateral neurons, the transcription factor Zic2 switches this alternative Wnt pathway by regulating the expression of a set of Wnt receptors and intracellular proteins. In combination with this alternative Wnt pathway, the asymmetric activation of EphB1 receptors at the midline phosphorylates βcatenin and elicits a repulsive response. This alternative Wnt pathway and its Zic2-triggered switch may operate in other contexts that require a two-way response to Wnt ligands.
Collapse
Affiliation(s)
- Cruz Morenilla-Palao
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - María Teresa López-Cascales
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - José P López-Atalaya
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Diana Baeza
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Luís Calvo-Díaz
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Angel Barco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Eloísa Herrera
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain.
| |
Collapse
|
10
|
Huang JY, Krebs BB, Miskus ML, Russell ML, Duffy EP, Graf JM, Lu HC. Enhanced FGFR3 activity in postmitotic principal neurons during brain development results in cortical dysplasia and axonal tract abnormality. Sci Rep 2020; 10:18508. [PMID: 33116259 PMCID: PMC7595096 DOI: 10.1038/s41598-020-75537-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Abnormal levels of fibroblast growth factors (FGFs) and FGF receptors (FGFRs) have been detected in various neurological disorders. The potent impact of FGF-FGFR in multiple embryonic developmental processes makes it challenging to elucidate their roles in postmitotic neurons. Taking an alternative approach to examine the impact of aberrant FGFR function on glutamatergic neurons, we generated a FGFR gain-of-function (GOF) transgenic mouse, which expresses constitutively activated FGFR3 (FGFR3K650E) in postmitotic glutamatergic neurons. We found that GOF disrupts mitosis of radial-glia neural progenitors (RGCs), inside-out radial migration of post-mitotic glutamatergic neurons, and axonal tract projections. In particular, late-born CUX1-positive neurons are widely dispersed throughout the GOF cortex. Such a cortical migration deficit is likely caused, at least in part, by a significant reduction of the radial processes projecting from RGCs. RNA-sequencing analysis of the GOF embryonic cortex reveals significant alterations in several pathways involved in cell cycle regulation and axonal pathfinding. Collectively, our data suggest that FGFR3 GOF in postmitotic neurons not only alters axonal growth of postmitotic neurons but also impairs RGC neurogenesis and radial glia processes.
Collapse
Affiliation(s)
- Jui-Yen Huang
- Department of Psychological and Brain Sciences, the Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| | - Bruna Baumgarten Krebs
- Department of Psychological and Brain Sciences, the Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - Marisha Lynn Miskus
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - May Lin Russell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Eamonn Patrick Duffy
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Jason Michael Graf
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Hui-Chen Lu
- Department of Psychological and Brain Sciences, the Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
11
|
Wnt antagonist FRZB is a muscle biomarker of denervation atrophy in amyotrophic lateral sclerosis. Sci Rep 2020; 10:16679. [PMID: 33028902 PMCID: PMC7541525 DOI: 10.1038/s41598-020-73845-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle and the neuromuscular junction are the earliest sites to manifest pathological changes in amyotrophic lateral sclerosis (ALS). Based on prior studies, we have identified a molecular signature in muscle that develops early in ALS and parallels disease progression. This signature represents an intersection of signaling pathways including Smads, TGF-β, and vitamin D. Here, we show that the Wnt antagonist, Frizzled Related Protein (FRZB), was increased in ALS muscle samples and to a variable extent other denervating disease but only minimally in acquired myopathies. In the SOD1G93A mouse, FRZB was upregulated in the early stages of disease (between 40 and 60 days) until end-stage. By immunohistochemistry, FRZB was predominantly localized to endomysial connective tissue and to a lesser extent muscle membrane. There was a significant increase in immunoreactivity surrounding atrophied myofibers. Because FRZB is a Wnt antagonist, we assessed β-catenin, the canonical transducer of Wnt signaling, and found increased levels mainly at the muscle membrane. In summary, we show that FRZB is part of a molecular signature of muscle denervation that may reflect disease progression in ALS. Our findings open up avenues for future investigation as to what roles FRZB and Wnt signaling might be playing in muscle denervation/reinnervation.
Collapse
|
12
|
Arredondo SB, Valenzuela-Bezanilla D, Mardones MD, Varela-Nallar L. Role of Wnt Signaling in Adult Hippocampal Neurogenesis in Health and Disease. Front Cell Dev Biol 2020; 8:860. [PMID: 33042988 PMCID: PMC7525004 DOI: 10.3389/fcell.2020.00860] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Neurogenesis persists during adulthood in the dentate gyrus of the hippocampus. Signals provided by the local hippocampal microenvironment support neural stem cell proliferation, differentiation, and maturation of newborn neurons into functional dentate granule cells, that integrate into the neural circuit and contribute to hippocampal function. Increasing evidence indicates that Wnt signaling regulates multiple aspects of adult hippocampal neurogenesis. Wnt ligands bind to Frizzled receptors and co-receptors to activate the canonical Wnt/β-catenin signaling pathway, or the non-canonical β-catenin-independent signaling cascades Wnt/Ca2+ and Wnt/planar cell polarity. Here, we summarize current knowledge on the roles of Wnt signaling components including ligands, receptors/co-receptors and soluble modulators in adult hippocampal neurogenesis. Also, we review the data suggesting distinctive roles for canonical and non-canonical Wnt signaling cascades in regulating different stages of neurogenesis. Finally, we discuss the evidence linking the dysfunction of Wnt signaling to the decline of neurogenesis observed in aging and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Lorena Varela-Nallar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
13
|
Zannoni GF, Angelico G, Santoro A. Aberrant non-canonical WNT pathway as key-driver of high-grade serous ovarian cancer development. Virchows Arch 2020; 477:321-322. [PMID: 31993773 DOI: 10.1007/s00428-020-02760-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Gian Franco Zannoni
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Unità di Gineco-patologia e Patologia Mammaria, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go Francesco Vito, 1, 00168, Rome, Italy. .,Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Giuseppe Angelico
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Unità di Gineco-patologia e Patologia Mammaria, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go Francesco Vito, 1, 00168, Rome, Italy
| | - Angela Santoro
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Unità di Gineco-patologia e Patologia Mammaria, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go Francesco Vito, 1, 00168, Rome, Italy
| |
Collapse
|
14
|
Gonzalez-Fernandez C, González P, Rodríguez FJ. New insights into Wnt signaling alterations in amyotrophic lateral sclerosis: a potential therapeutic target? Neural Regen Res 2020; 15:1580-1589. [PMID: 32209757 PMCID: PMC7437582 DOI: 10.4103/1673-5374.276320] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disorder characterized by upper and lower motor neuron degeneration, which leads to progressive paralysis of skeletal muscles and, ultimately, respiratory failure between 2–5 years after symptom onset. Unfortunately, currently accepted treatments for amyotrophic lateral sclerosis are extremely scarce and only provide modest benefit. As a consequence, a great effort is being done by the scientific community in order to achieve a better understanding of the different molecular and cellular processes that influence the progression and/or outcome of this neuropathological condition and, therefore, unravel new potential targets for therapeutic intervention. Interestingly, a growing number of experimental evidences have recently shown that, besides its well-known physiological roles in the developing and adult central nervous system, the Wnt family of proteins is involved in different neuropathological conditions, including amyotrophic lateral sclerosis. These proteins are able to modulate, at least, three different signaling pathways, usually known as canonical (β-catenin dependent) and non-canonical (β-catenin independent) signaling pathways. In the present review, we aim to provide a general overview of the current knowledge that supports the relationship between the Wnt family of proteins and its associated signaling pathways and amyotrophic lateral sclerosis pathology, as well as their possible mechanisms of action. Altogether, the currently available knowledge suggests that Wnt signaling modulation might be a promising therapeutic approach to ameliorate the histopathological and functional deficits associated to amyotrophic lateral sclerosis, and thus improve the progression and outcome of this neuropathology.
Collapse
Affiliation(s)
| | - Pau González
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos (HNP), Toledo, Spain
| | | |
Collapse
|
15
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
16
|
Teliewubai J, Ji H, Lu Y, Bai B, Yu S, Chi C, Xu Y, Zhang Y. SFRP5 serves a beneficial role in arterial aging by inhibiting the proliferation, migration and inflammation of smooth muscle cells. Mol Med Rep 2018; 18:4682-4690. [PMID: 30221661 DOI: 10.3892/mmr.2018.9467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 07/17/2018] [Indexed: 11/05/2022] Open
Abstract
Secreted frizzled-related protein 5 (SFRP5) is one of the anti-inflammatory adipokines secreted from white adipose tissue. However, little is known about the effect of SFRP5 on the cardiovascular system. The aim of the present study was to determine the effect of SFRP5 on smooth muscle cell (SMC) proliferation, migration and inflammation. The plasma levels of SFRP5 were evaluated in a cohort‑based elderly population using ELISA, and the expression of SFRP5 in Sprague‑Dawley rat aortas was detected using immunohistochemistry. SMC proliferation and migration were evaluated in vitro using 5‑ethynyl‑2'‑deoxyuridine cell proliferation and wound‑healing assays, respectively, while reactive oxygen species (ROS) production and cell signaling were assessed using a 2',7'‑dichlorodihydrofluorescein diacetate assay and immunoblotting, respectively. The results revealed that plasma levels of SFRP5 were positively correlated with age in the elderly Chinese cohort. Similarly, aorta SFRP5 expression was significantly higher in 15‑month‑old rats compared with 6‑month‑old rats. In vitro, SFRP5 significantly inhibited rat aortic SMC proliferation and migration that were induced by platelet‑derived growth factor (PDGF)‑BB, as well as inhibiting ROS generation. Compared with the effect of PDGF‑BB on SMCs, SFRP5 at 100 and 200 ng/ml significantly decreased SMC proliferation by 31.5 and 34.8%, respectively (P<0.05). SFRP5 at 100 and 200 ng/ml also inhibited the migration of SMCs by 24.9 and 28.4%, respectively, when compared with the effects of PDGF‑BB. SFRP5 attenuated the PDGF‑BB‑induced expression of β‑catenin and proliferating cell nuclear antigen, while p38 phosphorylation was significantly attenuated. Together, the present results suggested that SFRP5 may inhibit SMC proliferation, migration and inflammation by suppressing the Wnt/β‑catenin and p38/mitogen‑activated protein kinase signaling pathways.
Collapse
Affiliation(s)
- Jiadela Teliewubai
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hongwei Ji
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yuyan Lu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Bin Bai
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Shikai Yu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Chen Chi
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yi Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
17
|
Donnem T, Reynolds AR, Kuczynski EA, Gatter K, Vermeulen PB, Kerbel RS, Harris AL, Pezzella F. Non-angiogenic tumours and their influence on cancer biology. Nat Rev Cancer 2018; 18:323-336. [PMID: 29520090 DOI: 10.1038/nrc.2018.14] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid tumours need a blood supply, and a large body of evidence has previously suggested that they can grow only if they induce the development of new blood vessels, a process known as tumour angiogenesis. On the basis of this hypothesis, it was proposed that anti-angiogenic drugs should be able to suppress the growth of all solid tumours. However, clinical experience with anti-angiogenic agents has shown that this is not always the case. Reports of tumours growing without the formation of new vessels can be found in the literature dating back to the 1800s, yet no formal recognition, description and demonstration of their special biological status was made until recently. In 1996, we formally recognized and described non-angiogenic tumours in lungs where the only blood vessels present were those originating from normal lung tissue. This is far from an isolated scenario, as non-angiogenic tumour growth has now been observed in tumours of many different organs in both humans and preclinical animal models. In this Opinion article, we summarize how these tumours were discovered and discuss what we know so far about their biology and the potential implications of this knowledge for cancer treatment.
Collapse
Affiliation(s)
- Tom Donnem
- Department of Oncology, University Hospital of North Norway, Tromso, Norway
- Institute of Clinical Medicine, The Arctic University of Norway, Tromso, Norway
| | - Andrew R Reynolds
- Tumour Biology Team, Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Oncology Translational Medicine Unit, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Elizabeth A Kuczynski
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Kevin Gatter
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Peter B Vermeulen
- Tumour Biology Team, Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Translational Cancer Research Unit, GZA, Hospitals St Augustinus, University of Antwerp, Wilrijk-Antwerp, Belgium
- HistoGeneX, Antwerp, Belgium
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Adrian L Harris
- Molecular Oncology Laboratories, Oxford University Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Francesco Pezzella
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
18
|
Transient activation of Wnt/β-catenin signaling reporter in fibrotic scar formation after compression spinal cord injury in adult mice. Biochem Biophys Res Commun 2018; 496:1302-1307. [PMID: 29410176 DOI: 10.1016/j.bbrc.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/01/2018] [Indexed: 11/23/2022]
Abstract
After traumatic spinal cord injury (SCI), a scar may form with a fibrotic core (fibrotic scar) and surrounding reactive astrocytes (glial scar) at the lesion site. The scar tissue is considered a major obstacle preventing regeneration both as a physical barrier and as a source for secretion of inhibitors of axonal regeneration. Understanding the mechanism of scar formation and how to control it may lead to effective SCI therapies. Using a compression-SCI model on adult transgenic mice, we demonstrate that the canonical Wnt/β-catenin signaling reporter TOPgal (TCF/Lef1-lacZ) positive cells appeared at the lesion site by 5 days, peaked on 7 days, and diminished by 14 days post injury. Using various representative cell lineage markers, we demonstrate that, these transiently TOPgal positive cells are a group of Fibronectin(+);GFAP(-) fibroblast-like cells in the core scar region. Some of them are proliferative. These results indicate that Wnt/β-catenin signaling may play a key role in fibrotic scar formation after traumatic spinal cord injury.
Collapse
|
19
|
Owens DA, Butler AM, Aguero TH, Newman KM, Van Booven D, King ML. High-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration. Development 2017; 144:292-304. [PMID: 28096217 DOI: 10.1242/dev.139220] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/25/2016] [Indexed: 01/10/2023]
Abstract
During oogenesis, hundreds of maternal RNAs are selectively localized to the animal or vegetal pole, including determinants of somatic and germline fates. Although microarray analysis has identified localized determinants, it is not comprehensive and is limited to known transcripts. Here, we utilized high-throughput RNA-sequencing analysis to comprehensively interrogate animal and vegetal pole RNAs in the fully grown Xenopus laevis oocyte. We identified 411 (198 annotated) and 27 (15 annotated) enriched mRNAs at the vegetal and animal pole, respectively. Ninety were novel mRNAs over 4-fold enriched at the vegetal pole and six were over 10-fold enriched at the animal pole. Unlike mRNAs, microRNAs were not asymmetrically distributed. Whole-mount in situ hybridization confirmed that all 17 selected mRNAs were localized. Biological function and network analysis of vegetally enriched transcripts identified protein-modifying enzymes, receptors, ligands, RNA-binding proteins, transcription factors and co-factors with five defining hubs linking 47 genes in a network. Initial functional studies of maternal vegetally localized mRNAs show that sox7 plays a novel and important role in primordial germ cell (PGC) development and that ephrinB1 (efnb1) is required for proper PGC migration. We propose potential pathways operating at the vegetal pole that highlight where future investigations might be most fruitful.
Collapse
Affiliation(s)
- Dawn A Owens
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Amanda M Butler
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Tristan H Aguero
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Karen M Newman
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Derek Van Booven
- The Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| |
Collapse
|
20
|
Nyström-Persson J, Natsume-Kitatani Y, Igarashi Y, Satoh D, Mizuguchi K. Interactive Toxicogenomics: Gene set discovery, clustering and analysis in Toxygates. Sci Rep 2017; 7:1390. [PMID: 28469246 PMCID: PMC5431224 DOI: 10.1038/s41598-017-01500-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/29/2017] [Indexed: 01/08/2023] Open
Abstract
Toxygates was originally released as a user-friendly interface to enhance the accessibility of the large-scale toxicogenomics database, Open TG-GATEs, generated by the Japanese Toxicogenomics Project. Since the original release, significant new functionality has been added to enable users to perform sophisticated computational analysis with only modest bioinformatics skills. The new features include an orthologous mode for data comparison among different species, interactive clustering and heatmap visualisation, enrichment analysis of gene sets, and user data uploading. In a case study, we use these new functions to study the hepatotoxicity of peroxisome proliferator-activated receptor alpha (PPARα) agonist WY-14643. Our findings suggest that WY-14643 caused hypertrophy in the bile duct by intracellular Ca2+ dysregulation, which resulted in the induction of genes in a non-canonical WNT/Ca2+ signalling pathway. With this new release of Toxygates, we provide a suite of tools that allow anyone to carry out in-depth analysis of toxicogenomics in Open TG-GATEs, and of any other dataset that is uploaded.
Collapse
Affiliation(s)
- Johan Nyström-Persson
- Level Five Co., Ltd., GYB Akihabara 3F, 2-25, Kanda-Sudacho, Chiyoda-ku, Tokyo, 101-0041, Japan.
| | - Yayoi Natsume-Kitatani
- Bioinformatics Project, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8, Asagi, Saito, Ibaraki-shi, Osaka, 567-0085, Japan.
| | - Yoshinobu Igarashi
- Toxicogenomics-informatics Project, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8, Asagi, Saito, Ibaraki-shi, Osaka, 567-0085, Japan
| | - Daisuke Satoh
- Level Five Co., Ltd., GYB Akihabara 3F, 2-25, Kanda-Sudacho, Chiyoda-ku, Tokyo, 101-0041, Japan
| | - Kenji Mizuguchi
- Bioinformatics Project, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8, Asagi, Saito, Ibaraki-shi, Osaka, 567-0085, Japan.
| |
Collapse
|
21
|
de Ramon Francàs G, Zuñiga NR, Stoeckli ET. The spinal cord shows the way - How axons navigate intermediate targets. Dev Biol 2016; 432:43-52. [PMID: 27965053 DOI: 10.1016/j.ydbio.2016.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/26/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022]
Abstract
Functional neural circuits depend on the establishment of specific connections between neurons and their target cells. To this end, many axons have to travel long distances to reach their target cells during development. Studies addressing the molecular mechanisms of axon guidance have to overcome the complexity of subpopulation-specific requirements with respect to pathways, guidance cues, and target recognition. Compared to the brain, the relatively simple structure of the spinal cord provides an advantage for experimental studies of axon guidance mechanisms. Therefore, the so far best understood model for axon guidance is the dI1 population of dorsal interneurons of the spinal cord. They extend their axons ventrally towards the floor plate. After midline crossing, they turn rostrally along the contralateral floor-plate border. Despite the fact that the trajectory of dI1 axons seems to be rather simple, the number of axon guidance molecules involved in the decisions taken by these axons is bewildering. Because guidance molecules and mechanisms are conserved throughout the developing nervous system, we can generalize what we have learned about the navigation of the floor plate as an intermediate target for commissural axons to the brain.
Collapse
Affiliation(s)
- Gemma de Ramon Francàs
- University of Zurich, Department of Molecular Life Sciences and Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nikole R Zuñiga
- University of Zurich, Department of Molecular Life Sciences and Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Esther T Stoeckli
- University of Zurich, Department of Molecular Life Sciences and Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
22
|
The non-canonical Wnt receptor Ryk regulates hematopoietic stem cell repopulation in part by controlling proliferation and apoptosis. Cell Death Dis 2016; 7:e2479. [PMID: 27882948 PMCID: PMC5260899 DOI: 10.1038/cddis.2016.380] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/27/2022]
Abstract
The development of blood and immune cells requires strict control by various signaling pathways in order to regulate self-renewal, differentiation and apoptosis in stem and progenitor cells. Recent evidence indicates critical roles for the canonical and non-canonical Wnt pathways in hematopoiesis. The non-canonical Wnt pathway is important for establishment of cell polarity and cell migration and regulates apoptosis in the thymus. We here investigate the role of the non-canonical Wnt receptor Ryk in hematopoiesis and lymphoid development. We show that there are dynamic changes in Ryk expression during development and in different hematopoietic tissues. Functionally, Ryk regulates NK cell development in a temporal fashion. Moreover, Ryk-deficient mice show diminished, but not absent self-renewal of hematopoietic stem cells (HSC), via effects on mildly increased proliferation and apoptosis. Thus, Ryk deficiency in HSCs from fetal liver reduces their quiescence, leading to proliferation-induced apoptosis and decreased self-renewal.
Collapse
|
23
|
The Involvement of the Decrease of Astrocytic Wnt5a in the Cognitive Decline in Minimal Hepatic Encephalopathy. Mol Neurobiol 2016; 54:7949-7963. [PMID: 27878554 DOI: 10.1007/s12035-016-0216-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/11/2016] [Indexed: 01/06/2023]
Abstract
Wnt signaling plays a key role in neuroprotection and synaptic plasticity. We speculate that the impairment of Wnt signaling may mediate astrocytic neurotrophins (NTs) production and the impairment of Wnt signaling to astrocytic NTs production contributes to the pathogenesis of minimal hepatic encephalopathy (MHE). Here, we found that induction of astrocytic NTs synthesis was by Wnt5a via the calcium/calmodulin-sensitive protein kinase II (CaMK II)-cAMP-response element-binding protein (CREB) pathway in PCAs. The decrease of spatial learning and memory and downregulation of astrocytic BDNF and NT-3 were reversed by Wnt5a in MHE rat model. The increased association between CaMK II and CREB followed by phosphorylation of CREB in response to Wnt5a stimulation was suppressed in the MHE rat model. Our results highlight a novel pathogenesis of the contribution of downregulation of NTs to the inhibition of the interaction between Wnt5a and Frizzled-2 in astrocytes in MHE.
Collapse
|
24
|
Li X, Wang Y, Wang H, Liu T, Guo J, Yi W, Li Y. Epithelia-derived wingless regulates dendrite directional growth of drosophila ddaE neuron through the Fz-Fmi-Dsh-Rac1 pathway. Mol Brain 2016; 9:46. [PMID: 27129721 PMCID: PMC4850637 DOI: 10.1186/s13041-016-0228-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/21/2016] [Indexed: 11/23/2022] Open
Abstract
Background Proper dendrite patterning is critical for the receiving and processing of information in the nervous system. Cell-autonomous molecules have been extensively studied in dendrite morphogenesis; however, the regulatory mechanisms of environmental factors in dendrite growth remain to be elucidated. Results By evaluating the angle between two primary dendrites (PD-Angle), we found that the directional growth of the primary dendrites of a Drosophila periphery sensory neuron ddaE is regulated by the morphogen molecule Wingless (Wg). During the early stage of dendrite growth, Wg is expressed in a group of epithelial cells posteriorly adjacent to ddaE. When Wg expression is reduced or shifted anteriorly, the PD-Angle is markedly decreased. Furthermore, Wg receptor Frizzled functions together with Flamingo and Dishevelled in transducing the Wg signal into ddaE neuron, and the downstream signal is mediated by non-canonical Wnt pathway through Rac1. Conclusions In conclusion, we reveal that epithelia-derived Wg plays a repulsive role in regulating the directional growth of dendrites through the non-canonical Wnt pathway. Thus, our findings provide strong in vivo evidence on how environmental signals serve as spatial cues for dendrite patterning. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0228-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoting Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huan Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongtong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Guo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Yi
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
25
|
Moschouris P, Retzepi M, Petrie A, Donos N. Effect of Wnt3a delivery on early healing events during guided bone regeneration. Clin Oral Implants Res 2016; 28:283-290. [DOI: 10.1111/clr.12796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 12/21/2022]
Affiliation(s)
- P Moschouris
- Periodontology Unit; Department of Clinical Research; UCL Eastman Dental Institute; London UK
| | - M Retzepi
- Periodontology Unit; Department of Clinical Research; UCL Eastman Dental Institute; London UK
| | - A Petrie
- Biostatistics Unit; UCL Eastman Dental Institute; London UK
| | - N Donos
- Periodontology Unit; Department of Clinical Research; UCL Eastman Dental Institute; London UK
- Centre for Oral Clinical Research; Institute of Dentistry; Barts & The London School of Medicine & Dentistry; London UK
| |
Collapse
|
26
|
Pathways on demand: automated reconstruction of human signaling networks. NPJ Syst Biol Appl 2016; 2:16002. [PMID: 28725467 PMCID: PMC5516854 DOI: 10.1038/npjsba.2016.2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 12/13/2022] Open
Abstract
Signaling pathways are a cornerstone of systems biology. Several databases store high-quality representations of these pathways that are amenable for automated analyses. Despite painstaking and manual curation, these databases remain incomplete. We present PATHLINKER, a new computational method to reconstruct the interactions in a signaling pathway of interest. PATHLINKER efficiently computes multiple short paths from the receptors to transcriptional regulators (TRs) in a pathway within a background protein interaction network. We use PATHLINKER to accurately reconstruct a comprehensive set of signaling pathways from the NetPath and KEGG databases. We show that PATHLINKER has higher precision and recall than several state-of-the-art algorithms, while also ensuring that the resulting network connects receptor proteins to TRs. PATHLINKER’s reconstruction of the Wnt pathway identified CFTR, an ABC class chloride ion channel transporter, as a novel intermediary that facilitates the signaling of Ryk to Dab2, which are known components of Wnt/β-catenin signaling. In HEK293 cells, we show that the Ryk–CFTR–Dab2 path is a novel amplifier of β-catenin signaling specifically in response to Wnt 1, 2, 3, and 3a of the 11 Wnts tested. PATHLINKER captures the structure of signaling pathways as represented in pathway databases better than existing methods. PATHLINKER’s success in reconstructing pathways from NetPath and KEGG databases point to its applicability for complementing manual curation of these databases. PATHLINKER may serve as a promising approach for prioritizing proteins and interactions for experimental study, as illustrated by its discovery of a novel pathway in Wnt/β-catenin signaling. Our supplementary website at http://bioinformatics.cs.vt.edu/~murali/supplements/2016-sys-bio-applications-pathlinker/ provides links to the PATHLINKER software, input datasets, PATHLINKER reconstructions of NetPath pathways, and links to interactive visualizations of these reconstructions on GraphSpace.
Collapse
|
27
|
Rahimi S, Kenward S, Glaysher S, Marani C, Brennan PA. Immunohistochemical expression of secreted frizzled receptor protein 1 in the invasive front of tongue squamous cell carcinoma. Eur J Oral Sci 2016; 124:158-63. [DOI: 10.1111/eos.12252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Siavash Rahimi
- Pathology Centre-Histopathology; Queen Alexandra Hospital; Portsmouth UK
| | - Susan Kenward
- Pathology Centre-Histopathology; Queen Alexandra Hospital; Portsmouth UK
| | - Sharon Glaysher
- Research and Innovation; Queen Alexandra Hospital; Portsmouth UK
| | - Carla Marani
- Division of Histopathology; Ospedale San Carlo di Nancy; Rome Italy
| | - Peter A. Brennan
- Department of Oral and Maxillofacial Surgery; Queen Alexandra Hospital; Portsmouth UK
| |
Collapse
|
28
|
Coullery RP, Ferrari ME, Rosso SB. Neuronal development and axon growth are altered by glyphosate through a WNT non-canonical signaling pathway. Neurotoxicology 2016; 52:150-61. [PMID: 26688330 DOI: 10.1016/j.neuro.2015.12.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 01/25/2023]
Abstract
The growth and morphological differentiation of neurons are critical events in the establishment of proper neuronal connectivity and functioning. The developing nervous system is highly susceptible to damage caused by exposure to environmental contaminants. Glyphosate-containing herbicides are the most used agrochemicals in the world, particularly on genetically modified plants. Previous studies have demonstrated that glyphosate induces neurotoxicity in mammals. Therefore, its action mechanism on the nervous system needs to be determined. In this study, we report about impaired neuronal development caused by glyphosate exposure. Particularly, we observed that the initial axonal differentiation and growth of cultured neurons is affected by glyphosate since most treated cells remained undifferentiated after 1 day in culture. Although they polarized at 2 days in vitro, they elicited shorter and unbranched axons and they also developed less complex dendritic arbors compared to controls. To go further, we attempted to identify the cellular mechanism by which glyphosate affected neuronal morphology. Biochemical approaches revealed that glyphosate led to a decrease in Wnt5a level, a key factor for the initial neurite development and maturation, as well as inducing a down-regulation of CaMKII activity. This data suggests that the morphological defects would likely be a consequence of the decrease in both Wnt5a expression and CaMKII activity induced by glyphosate. Additionally, these changes might be reflected in a subsequent neuronal dysfunction. Therefore, our findings highlight the importance of establishing rigorous control on the use of glyphosate-based herbicides in order to protect mammals' health.
Collapse
Affiliation(s)
- Romina P Coullery
- Experimental Toxicology Laboratory, School of Biochemical and Pharmaceutical Sciences, National University of Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - María E Ferrari
- Experimental Toxicology Laboratory, School of Biochemical and Pharmaceutical Sciences, National University of Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Silvana B Rosso
- Experimental Toxicology Laboratory, School of Biochemical and Pharmaceutical Sciences, National University of Rosario, Suipacha 531, S2002LRK Rosario, Argentina.
| |
Collapse
|
29
|
Nie D, Wang Z, Zhang Y, Pang D, Ouyang H, Li LI. Fat-1 gene inhibits human oral squamous carcinoma cell proliferation through downregulation of β-catenin signaling pathways. Exp Ther Med 2015; 11:191-196. [PMID: 26889238 DOI: 10.3892/etm.2015.2847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 10/13/2015] [Indexed: 11/05/2022] Open
Abstract
The ω-3 fatty acid desaturase (fat-1) gene encodes the enzyme that converts ω-6 polyunsaturated fatty acids (PUFAs) to ω-3 PUFAs. Numerous studies have suggested that the ratio of ω-6/ω-3 PUFAs has an impact on tumorigenesis. To investigate the biological function of the fat-1 gene in human oral squamous cell carcinoma (OSCC), the fat-1 gene was introduced into OSCC cells by transfection. The uptake of the gene was confirmed by reverse transcription-polymerase chain reaction and analyzed using gas chromatography. The antitumor effects and mechanisms of the fat-1 gene were evaluated by studying cell survival and tumor growth in vitro and in vivo. Gas chromatography results revealed that the cells transfected with the fat-1 gene had a higher ω-3/ω-6 PUFA ratio than cells transfected with the control vector. An MTT and DNA fragmentation assay indicated that the presence of the fat-1 gene in vitro significantly decreased OSCC cell proliferation and significantly increased the rate of apoptosis. Similar antitumor effects of the fat-1 gene were also observed in vivo. Immunohistochemistry analysis confirmed that Tca8113 cell tumors displayed a significant reduction in cell growth and cell survival following the introduction of the fat-1 gene. The current study suggests that the inhibitory effect of the fat-1 gene on tumor growth may be a result of a reduction in the expression of the tumor survival protein β-catenin. The results also support the theory that the ratio of ω-3/ω-6 PUFAs has an impact on OSCC tumor growth. The findings of the study provide notable molecular insight into the theory suggesting that ω-3 PUFAs are an intermediate for the chemoprevention and treatment of human OSCC.
Collapse
Affiliation(s)
- Daibang Nie
- College of Animal Science, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Zuozhao Wang
- College of Chemistry, Jilin University, Changchun, Jilin 130062, P.R. China; College of Quartermaster Technology, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Ying Zhang
- College of Animal Science, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Daxin Pang
- College of Animal Science, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Hongsheng Ouyang
- College of Animal Science, Jilin University, Changchun, Jilin 130062, P.R. China
| | - L I Li
- College of Animal Science, Jilin University, Changchun, Jilin 130062, P.R. China
| |
Collapse
|
30
|
González-Fernández C, Fernández-Martos CM, Shields SD, Arenas E, Javier Rodríguez F. Wnts are expressed in the spinal cord of adult mice and are differentially induced after injury. J Neurotrauma 2014; 31:565-81. [PMID: 24367909 DOI: 10.1089/neu.2013.3067] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Wnt family of proteins plays key roles during central nervous system development and has been involved in several neuropathologies during adulthood, including spinal cord injury (SCI). However, Wnts expression knowledge is relatively limited during adult stages. Here, we sought to define the Wnt family expression pattern after SCI in adult mice by using quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). Under physiological conditions, the messenger RNAs (mRNAs) of most Wnt ligands, inhibitors, receptors, and coreceptors are constitutively expressed in healthy adult mice. After dorsal hemisection, we found significant time-dependent variations, with a prominent up-regulation of Wnt inhibitory factor 1 (Wif1). IHC against Frizzled (Fz) 1 and Fz4, as representatives of late and acute up-regulated receptors, showed a differential expression in the uninjured spinal cord of Fz1 by neurons and oligodendrocytes and Fz4 by astrocytes. After injury, both receptors were maintained in the same type of cells. Finally, by using BATgal reporter mice, our results revealed active β-catenin signaling in neurons of the dorsal horn and cells of the central canal of uninjured spinal cords, besides a lack of additional SCI-induced activation. In conclusion, we demonstrate Wnt expression in the adult spinal cord of mice that is modulated by SCI, which differs from that previously described in rats. Further, Fz receptors are differentially expressed by neurons and glial cells, suggestive for cell-specific patterns and thus diverse physiological roles. Further studies will help toward in-depth characterization of the role of all Wnt factors and receptors described and eventually allow for the design of novel therapies.
Collapse
|
31
|
Wnt signalling in neuronal differentiation and development. Cell Tissue Res 2014; 359:215-23. [PMID: 25234280 DOI: 10.1007/s00441-014-1996-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/25/2014] [Indexed: 12/15/2022]
Abstract
Wnts are secreted glycoproteins that play multiple roles in early development, including the differentiation of precursor cells. During this period, gradients of Wnts and other morphogens are formed and regulate the differentiation and migration of neural progenitor cells. Afterwards, Wnt signalling cascades participate in the formation of neuronal circuits, playing roles in dendrite and axon development, dendritic spine formation and synaptogenesis. Finally, in the adult brain, Wnts control hippocampal plasticity, regulating synaptic transmission and neurogenesis. In this review, we summarize the reported roles of Wnt signalling cascades in these processes with a particular emphasis on the role of Wnts in neuronal differentiation and development.
Collapse
|
32
|
Tourette C, Farina F, Vazquez-Manrique RP, Orfila AM, Voisin J, Hernandez S, Offner N, Parker JA, Menet S, Kim J, Lyu J, Choi SH, Cormier K, Edgerly CK, Bordiuk OL, Smith K, Louise A, Halford M, Stacker S, Vert JP, Ferrante RJ, Lu W, Neri C. The Wnt receptor Ryk reduces neuronal and cell survival capacity by repressing FOXO activity during the early phases of mutant huntingtin pathogenicity. PLoS Biol 2014; 12:e1001895. [PMID: 24960609 PMCID: PMC4068980 DOI: 10.1371/journal.pbio.1001895] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/15/2014] [Indexed: 12/19/2022] Open
Abstract
The Wnt receptor Ryk is an evolutionary-conserved protein important during neuronal differentiation through several mechanisms, including γ-secretase cleavage and nuclear translocation of its intracellular domain (Ryk-ICD). Although the Wnt pathway may be neuroprotective, the role of Ryk in neurodegenerative disease remains unknown. We found that Ryk is up-regulated in neurons expressing mutant huntingtin (HTT) in several models of Huntington's disease (HD). Further investigation in Caenorhabditis elegans and mouse striatal cell models of HD provided a model in which the early-stage increase of Ryk promotes neuronal dysfunction by repressing the neuroprotective activity of the longevity-promoting factor FOXO through a noncanonical mechanism that implicates the Ryk-ICD fragment and its binding to the FOXO co-factor β-catenin. The Ryk-ICD fragment suppressed neuroprotection by lin-18/Ryk loss-of-function in expanded-polyQ nematodes, repressed FOXO transcriptional activity, and abolished β-catenin protection of mutant htt striatal cells against cell death vulnerability. Additionally, Ryk-ICD was increased in the nucleus of mutant htt cells, and reducing γ-secretase PS1 levels compensated for the cytotoxicity of full-length Ryk in these cells. These findings reveal that the Ryk-ICD pathway may impair FOXO protective activity in mutant polyglutamine neurons, suggesting that neurons are unable to efficiently maintain function and resist disease from the earliest phases of the pathogenic process in HD.
Collapse
Affiliation(s)
- Cendrine Tourette
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
- Assistance Publique-Hopitaux de Paris (AP-HP), Charles Foix Hospital, Functional Exploration Unit, Ivry-sur-Seine, France
| | - Francesca Farina
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Rafael P. Vazquez-Manrique
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Anne-Marie Orfila
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Jessica Voisin
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Sonia Hernandez
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Nicolas Offner
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - J. Alex Parker
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Sophie Menet
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Jinho Kim
- Neurological Surgery Department, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jungmok Lyu
- University of Southern California Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Los Angeles, California, United States of America
| | - Si Ho Choi
- University of Southern California Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Los Angeles, California, United States of America
| | - Kerry Cormier
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Christina K. Edgerly
- Neurological Surgery Department, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Olivia L. Bordiuk
- Neurological Surgery Department, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Karen Smith
- VA Bedford Geriatric Research Education and Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, Massachusetts, United States of America
| | - Anne Louise
- Pasteur Institute, Cytometry Platform, Paris, France
| | - Michael Halford
- Peter MacCallum Cancer Center, East Melbourne, Victoria, Australia
| | - Steven Stacker
- Peter MacCallum Cancer Center, East Melbourne, Victoria, Australia
| | - Jean-Philippe Vert
- Mines ParisTech, Center for Computational Biology, Fontainebleau, France
- Curie Institute, Research Center, Paris, France
- INSERM, Unit 900, Paris, France
| | - Robert J. Ferrante
- Neurological Surgery Department, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Wange Lu
- University of Southern California Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Los Angeles, California, United States of America
| | - Christian Neri
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
- * E-mail:
| |
Collapse
|
33
|
Peng C, Xiao X, Kang B, He S, Li J. Serum secreted frizzled-related protein 5 levels differentially decrease in patients with hepatitis B virus-associated chronic infection and hepatocellular carcinoma. Oncol Lett 2014; 8:1340-1344. [PMID: 25120720 PMCID: PMC4114713 DOI: 10.3892/ol.2014.2256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 05/29/2014] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the characteristics of serum secreted frizzled-related protein 5 (SFRP5), an inhibitor of Wnt signaling, in hepatitis B virus (HBV)-associated infections and hepatocellular carcinoma (HCC) patients. Serum SFRP5 levels were detected in 147 patients with HBV-associated chronic infection or HCC. Compared with the non-HBV-infected and non-HCC group, the HBV-associated chronic infection and HCC groups exhibited decreased serum SFRP5 levels. A significant inverse correlation between serum SFRP5 levels and HBV DNA levels was identified in the HBV-associated chronic infection and HCC groups. Furthermore, SFRP5 levels differentially decreased in patients with HBV-associated diseases, in a manner which was dependent on liver disease status. Compared with patients exhibiting HBV-associated chronic infection, patients with HCC were found to exhibit lower serum SFRP5 levels. The results of the present study indicated that patients with HBV-associated liver infection and HCC exhibited significantly deceased serum SFRP5 levels, which were found to negatively correlate with HBV DNA levels. Serum SFRP5 levels may present a biomarker for the severity of HBV-associated liver infection, and the risk of HCC initiation and progression.
Collapse
Affiliation(s)
- Chuan Peng
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaoqiu Xiao
- Laboratory of Lipid and Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bing Kang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jibin Li
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
34
|
Peng C, Xiao X, Kang B, He S, Li J. Serum secreted frizzled-related protein 5 levels differentially decrease in patients with hepatitis B virus-associated chronic infection and hepatocellular carcinoma. Oncol Lett 2014; 35:5777-86. [PMID: 25120720 DOI: 10.1007/s13277-014-1767-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/17/2014] [Indexed: 01/28/2023] Open
Abstract
The aim of this study was to investigate the characteristics of serum secreted frizzled-related protein 5 (SFRP5), an inhibitor of Wnt signaling, in hepatitis B virus (HBV)-associated infections and hepatocellular carcinoma (HCC) patients. Serum SFRP5 levels were detected in 147 patients with HBV-associated chronic infection or HCC. Compared with the non-HBV-infected and non-HCC group, the HBV-associated chronic infection and HCC groups exhibited decreased serum SFRP5 levels. A significant inverse correlation between serum SFRP5 levels and HBV DNA levels was identified in the HBV-associated chronic infection and HCC groups. Furthermore, SFRP5 levels differentially decreased in patients with HBV-associated diseases, in a manner which was dependent on liver disease status. Compared with patients exhibiting HBV-associated chronic infection, patients with HCC were found to exhibit lower serum SFRP5 levels. The results of the present study indicated that patients with HBV-associated liver infection and HCC exhibited significantly deceased serum SFRP5 levels, which were found to negatively correlate with HBV DNA levels. Serum SFRP5 levels may present a biomarker for the severity of HBV-associated liver infection, and the risk of HCC initiation and progression.
Collapse
Affiliation(s)
- Chuan Peng
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaoqiu Xiao
- Laboratory of Lipid and Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bing Kang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jibin Li
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
35
|
Wong CT, Ahmad E, Li H, Crawford DA. Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: implications for autism spectrum disorders. Cell Commun Signal 2014; 12:19. [PMID: 24656144 PMCID: PMC4233645 DOI: 10.1186/1478-811x-12-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 03/13/2014] [Indexed: 01/30/2023] Open
Abstract
Prostaglandin E2 (PGE2) is a natural lipid-derived molecule that is involved in important physiological functions. Abnormal PGE2 signalling has been associated with pathologies of the nervous system. Previous studies provide evidence for the interaction of PGE2 and canonical Wnt signalling pathways in non-neuronal cells. Since the Wnt pathway is crucial in the development and organization of the brain, the main goal of this study is to determine whether collaboration between these pathways exists in neuronal cell types. We report that PGE2 interacts with canonical Wnt signalling through PKA and PI-3K in neuroectodermal (NE-4C) stem cells. We used time-lapse microscopy to determine that PGE2 increases the final distance from origin, path length travelled, and the average speed of migration in Wnt-activated cells. Furthermore, PGE2 alters distinct cellular phenotypes that are characteristic of Wnt-induced NE-4C cells, which corresponds to the modified splitting behaviour of the cells. We also found that in Wnt-induced cells the level of β-catenin protein was increased and the expression levels of Wnt-target genes (Ctnnb1, Ptgs2, Ccnd1, Mmp9) was significantly upregulated in response to PGE2 treatment. This confirms that PGE2 activated the canonical Wnt signalling pathway. Furthermore, the upregulated genes have been previously associated with ASD. Our findings show, for the first time, evidence for cross-talk between PGE2 and Wnt signalling in neuronal cells, where PKA and PI-3K might act as mediators between the two pathways. Given the importance of PGE2 and Wnt signalling in prenatal development of the nervous system, our study provides insight into how interaction between these two pathways may influence neurodevelopment.
Collapse
Affiliation(s)
| | | | | | - Dorota A Crawford
- School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
36
|
Slater PG, Ramirez VT, Gonzalez-Billault C, Varela-Nallar L, Inestrosa NC. Frizzled-5 receptor is involved in neuronal polarity and morphogenesis of hippocampal neurons. PLoS One 2013; 8:e78892. [PMID: 24205342 PMCID: PMC3800132 DOI: 10.1371/journal.pone.0078892] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 09/17/2013] [Indexed: 01/09/2023] Open
Abstract
The Wnt signaling pathway plays important roles during different stages of neuronal development, including neuronal polarization and dendritic and axonal outgrowth. However, little is known about the identity of the Frizzled receptors mediating these processes. In the present study, we investigated the role of Frizzled-5 (Fzd5) on neuronal development in cultured Sprague-Dawley rat hippocampal neurons. We found that Fzd5 is expressed early in cultured neurons on actin-rich structures localized at minor neurites and axonal growth cones. At 4 DIV, Fzd5 polarizes towards the axon, where its expression is detected mainly at the peripheral zone of axonal growth cones, with no obvious staining at dendrites; suggesting a role of Fzd5 in neuronal polarization. Overexpression of Fzd5 during the acquisition of neuronal polarity induces mislocalization of the receptor and a loss of polarized axonal markers. Fzd5 knock-down leads to loss of axonal proteins, suggesting an impaired neuronal polarity. In contrast, overexpression of Fzd5 in neurons that are already polarized did not alter polarity, but decreased the total length of axons and increased total dendrite length and arborization. Fzd5 activated JNK in HEK293 cells and the effects triggered by Fzd5 overexpression in neurons were partially prevented by inhibition of JNK, suggesting that a non-canonical Wnt signaling mechanism might be involved. Our results suggest that, Fzd5 has a role in the establishment of neuronal polarity, and in the morphogenesis of neuronal processes, in part through the activation of the non-canonical Wnt mechanism involving JNK.
Collapse
Affiliation(s)
- Paula G. Slater
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Valerie T. Ramirez
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | | | - Lorena Varela-Nallar
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
- * . E-mail:
| |
Collapse
|
37
|
Zhao X, Huang H, Chen Y, Liu Y, Zhang Z, Ma Q, Qiu M. Dynamic expression of secreted Frizzled-related protein 3 (sFRP3) in the developing mouse spinal cord and dorsal root ganglia. Neuroscience 2013; 248:594-601. [PMID: 23827310 DOI: 10.1016/j.neuroscience.2013.06.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
Wnt proteins have been implicated in regulating a variety of developmental processes in the CNS. Secreted Frizzled-related protein 3 (sFRP3) is a member of the sFRP family that can inhibit the Wnt signaling by binding directly to Wnts via their regions of homology to the Wnt-binding domain of Frizzleds. Recent studies suggested that sFRP3 plays an important role in cell proliferation and differentiation in various tissues. To understand the role of sFRP3 in neural development, we carried out detailed studies on the expression of sFRP3 in the developing nervous system. Our results revealed that sFRP3 is initially expressed in the ventricular zone of the spinal cord and dorsal root ganglia (DRG), and later in the dorsal horn of spinal cord and subpopulation of DRG neurons. The spatiotemporally dynamic expression ofsFRP3 strongly suggests that sFRP3 has potential functions in the sensory neuron genesis and sensory circuitry formation.
Collapse
Affiliation(s)
- X Zhao
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310029, PR China
| | - H Huang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310029, PR China
| | - Y Chen
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310029, PR China
| | - Y Liu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310029, PR China
| | - Z Zhang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310029, PR China
| | - Q Ma
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115, USA
| | - M Qiu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310029, PR China; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
38
|
Toyama R, Kim MH, Rebbert ML, Gonzales J, Burgess H, Dawid IB. Habenular commissure formation in zebrafish is regulated by the pineal gland-specific gene unc119c. Dev Dyn 2013; 242:1033-42. [PMID: 23749482 DOI: 10.1002/dvdy.23994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The zebrafish pineal gland (epiphysis) is a site of melatonin production, contains photoreceptor cells, and functions as a circadian clock pacemaker. Since it is located on the surface of the forebrain, it is accessible for manipulation and, therefore, is a useful model system to analyze pineal gland function and development. We previously analyzed the pineal transcriptome during development and showed that many genes exhibit a highly dynamic expression pattern in the pineal gland. RESULTS Among genes preferentially expressed in the zebrafish pineal gland, we identified a tissue-specific form of the unc119 gene family, unc119c, which is highly preferentially expressed in the pineal gland during day and night at all stages examined from embryo to adult. When expression of unc119c was inhibited, the formation of the habenular commissure (HC) was specifically compromised. The Unc119c interacting factors Arl3l1 and Arl3l2 as well as Wnt4a also proved indispensible for HC formation. CONCLUSIONS We suggest that Unc119c, together with Arl3l1/2, plays an important role in modulating Wnt4a production and secretion during HC formation in the forebrain of the zebrafish embryo.
Collapse
Affiliation(s)
- Reiko Toyama
- Program in Genomics of Development, NICHD, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
39
|
Blakely BD, Bye CR, Fernando CV, Prasad AA, Pasterkamp RJ, Macheda ML, Stacker SA, Parish CL. Ryk, a receptor regulating Wnt5a-mediated neurogenesis and axon morphogenesis of ventral midbrain dopaminergic neurons. Stem Cells Dev 2013; 22:2132-44. [PMID: 23517308 DOI: 10.1089/scd.2013.0066] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ryk is an atypical transmembrane receptor tyrosine kinase that has been shown to play multiple roles in development through the modulation of Wnt signaling. Within the developing ventral midbrain (VM), Wnts have been shown to contribute to the proliferation, differentiation, and connectivity of dopamine (DA) neurons; however, the Wnt-related receptors regulating these events remain less well described. In light of the established roles of Wnt5a in dopaminergic development (regulating DA differentiation as well as axonal growth and repulsion), and its interaction with Ryk elsewhere within the central nervous system, we investigated the potential role of Ryk in VM development. Here we show temporal and spatial expression of Ryk within the VM, suggestive of a role in DA neurogenesis and axonal plasticity. In VM primary cultures, we show that the effects of Wnt5a on VM progenitor proliferation, DA differentiation, and DA axonal connectivity can be inhibited using an Ryk-blocking antibody. In support, Ryk knockout mice showed reduced VM progenitors and DA precursor populations, resulting in a significant decrease in DA cells. However, Ryk(-/-) mice displayed no defects in DA axonal growth, guidance, or fasciculation of the MFB, suggesting other receptors may be involved and/or compensate for the loss of this receptor. These findings identify for the first time Ryk as an important receptor for midbrain DA development.
Collapse
Affiliation(s)
- Brette D Blakely
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang Z, Rankin SA, Zorn AM. Different thresholds of Wnt-Frizzled 7 signaling coordinate proliferation, morphogenesis and fate of endoderm progenitor cells. Dev Biol 2013; 378:1-12. [PMID: 23562607 DOI: 10.1016/j.ydbio.2013.02.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/06/2013] [Accepted: 02/22/2013] [Indexed: 11/27/2022]
Abstract
Wnt signaling has multiple dynamic roles during development of the gastrointestinal and respiratory systems. Differential Wnt signaling is thought to be a critical step in Xenopus endoderm patterning such that during late gastrula and early somite stages of embryogenesis, Wnt activity must be suppressed in the anterior to allow the specification of foregut progenitors. However, the foregut endoderm also expresses the Wnt-receptor Frizzled 7 (Fzd7) as well as several Wnt ligands suggesting that the current model may be too simple. In this study, we show that Fzd7 is required to transduce a low level of Wnt signaling that is essential to maintain foregut progenitors. Foregut-specific Fzd7-depletion from the Xenopus foregut resulted in liver and pancreas agenesis. Fzd7-depleted embryos failed to maintain the foregut progenitor marker hhex and exhibited decreased proliferation; in addition the foregut cells were enlarged with a randomized orientation. We show that in the foregut Fzd7 signals via both the Wnt/β-catenin and Wnt/JNK pathways and that different thresholds of Wnt-Fzd7 activity coordinate progenitor cell fate, proliferation and morphogenesis.
Collapse
Affiliation(s)
- Zheng Zhang
- Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and the College of Medicine, University of Cincinnati, Cincinnati OH 45229, USA
| | | | | |
Collapse
|
41
|
Greer YE, Fields AP, Brown AMC, Rubin JS. Atypical protein kinase Cι is required for Wnt3a-dependent neurite outgrowth and binds to phosphorylated dishevelled 2. J Biol Chem 2013; 288:9438-46. [PMID: 23396968 DOI: 10.1074/jbc.m112.448282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we reported that Wnt3a-dependent neurite outgrowth in Ewing sarcoma family tumor cell lines was mediated by Frizzled3, Dishevelled (Dvl), and c-Jun N-terminal kinase (Endo, Y., Beauchamp, E., Woods, D., Taylor, W. G., Toretsky, J. A., Uren, A., and Rubin, J. S. (2008) Mol. Cell. Biol. 28, 2368-2379). Subsequently, we observed that Dvl2/3 phosphorylation correlated with neurite outgrowth and that casein kinase 1δ, one of the enzymes that mediate Wnt3a-dependent Dvl phosphorylation, was required for neurite extension (Greer, Y. E., and Rubin, J. S. (2011) J. Cell Biol. 192, 993-1004). However, the functional relevance of Dvl phosphorylation in neurite outgrowth was not established. Dvl1 has been shown by others to be important for axon specification in hippocampal neurons via an interaction with atypical PKCζ, but the role of Dvl phosphorylation was not evaluated. Here we report that Ewing sarcoma family tumor cells express PKCι but not PKCζ. Wnt3a stimulated PKCι activation and caused a punctate distribution of pPKCι in the neurites and cytoplasm, with a particularly intense signal at the centrosome. Knockdown of PKCι expression with siRNA reagents blocked neurite formation in response to Wnt3a. Aurothiomalate, a specific inhibitor of PKCι/Par6 binding, also suppressed neurite extension. Wnt3a enhanced the co-immunoprecipitation of endogenous PKCι and Dvl2. Although FLAG-tagged wild-type Dvl2 immunoprecipitated with PKCι, a phosphorylation-deficient Dvl2 derivative did not. This derivative also was unable to rescue neurite outgrowth when endogenous Dvl2/3 was suppressed by siRNA (González-Sancho, J. M., Greer, Y. E., Abrahams, C. L., Takigawa, Y., Baljinnyam, B., Lee, K. H., Lee, K. S., Rubin, J. S., and Brown, A. M. (2013) J. Biol. Chem. 288, 9428-9437). Taken together, these results suggest that site-specific Dvl2 phosphorylation is required for Dvl2 association with PKCι. This interaction is likely to be one of the mechanisms essential for Wnt3a-dependent neurite outgrowth.
Collapse
Affiliation(s)
- Yoshimi Endo Greer
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
42
|
Inestrosa NC, Montecinos-Oliva C, Fuenzalida M. Wnt signaling: role in Alzheimer disease and schizophrenia. J Neuroimmune Pharmacol 2012; 7:788-807. [PMID: 23160851 DOI: 10.1007/s11481-012-9417-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/30/2012] [Indexed: 12/16/2022]
Abstract
Wnt signaling function starts during the development of the nervous system and is crucial for synaptic plasticity in the adult brain. Clearly Wnt effects in synaptic and plastic processes are relevant, however the implication of this pathway in the prevention of neurodegenerative diseases that produce synaptic impairment, is even more interesting. Several years ago our laboratory found a relationship between the loss of Wnt signaling and the neurotoxicity of the amyloid-β-peptide (Aβ), one of the main players in Alzheimer's disease (AD). Moreover, the activation of the Wnt signaling cascade prevents Aβ-dependent cytotoxic effects. In fact, disrupted Wnt signaling may be a direct link between Aβ-toxicity and tau hyperphosphorylation, ultimately leading to impaired synaptic plasticity and/or neuronal degeneration, indicating that a single pathway can account for both neuro-pathological lesions and altered synaptic function. These observations, suggest that a sustained loss of Wnt signaling function may be a key relevant factor in the pathology of AD. On the other hand, Schizophrenia remains one of the most debilitating and intractable illness in psychiatry. Since Wnt signaling is important in organizing the developing brain, it is reasonable to propose that defects in Wnt signaling could contribute to Schizophrenia, particularly since the neuro-developmental hypothesis of the disease implies subtle dys-regulation of brain development, including some core components of the Wnt signaling pathways such as GSK-3β or Disrupted in Schizophrenia-1 (DISC-1). This review focuses on the relationship between Wnt signaling and its potential relevance for the treatment of neurodegenerative and neuropsychiatric diseases including AD and Schizophrenia.
Collapse
Affiliation(s)
- Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile.
| | | | | |
Collapse
|
43
|
Choe Y, Siegenthaler JA, Pleasure SJ. A cascade of morphogenic signaling initiated by the meninges controls corpus callosum formation. Neuron 2012; 73:698-712. [PMID: 22365545 DOI: 10.1016/j.neuron.2011.11.036] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2011] [Indexed: 12/30/2022]
Abstract
The corpus callosum is the most prominent commissural connection between the cortical hemispheres, and numerous neurodevelopmental disorders are associated with callosal agenesis. By using mice either with meningeal overgrowth or selective loss of meninges, we have identified a cascade of morphogenic signals initiated by the meninges that regulates corpus callosum development. The meninges produce BMP7, an inhibitor of callosal axon outgrowth. This activity is overcome by the induction of expression of Wnt3 by the callosal pathfinding neurons, which antagonize the inhibitory effects of BMP7. Wnt3 expression in the cingulate callosal pathfinding axons is developmentally regulated by another BMP family member, GDF5, which is produced by the adjacent Cajal-Retzius neurons and turns on before outgrowth of the callosal axons. The effects of GDF5 are in turn under the control of a soluble GDF5 inhibitor, Dan, made by the meninges. Thus, the meninges and medial neocortex use a cascade of signals to regulate corpus callosum development.
Collapse
Affiliation(s)
- Youngshik Choe
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
44
|
John A, Brylka H, Wiegreffe C, Simon R, Liu P, Jüttner R, Crenshaw EB, Luyten FP, Jenkins NA, Copeland NG, Birchmeier C, Britsch S. Bcl11a is required for neuronal morphogenesis and sensory circuit formation in dorsal spinal cord development. Development 2012; 139:1831-41. [PMID: 22491945 DOI: 10.1242/dev.072850] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dorsal spinal cord neurons receive and integrate somatosensory information provided by neurons located in dorsal root ganglia. Here we demonstrate that dorsal spinal neurons require the Krüppel-C(2)H(2) zinc-finger transcription factor Bcl11a for terminal differentiation and morphogenesis. The disrupted differentiation of dorsal spinal neurons observed in Bcl11a mutant mice interferes with their correct innervation by cutaneous sensory neurons. To understand the mechanism underlying the innervation deficit, we characterized changes in gene expression in the dorsal horn of Bcl11a mutants and identified dysregulated expression of the gene encoding secreted frizzled-related protein 3 (sFRP3, or Frzb). Frzb mutant mice show a deficit in the innervation of the spinal cord, suggesting that the dysregulated expression of Frzb can account in part for the phenotype of Bcl11a mutants. Thus, our genetic analysis of Bcl11a reveals essential functions of this transcription factor in neuronal morphogenesis and sensory wiring of the dorsal spinal cord and identifies Frzb, a component of the Wnt pathway, as a downstream acting molecule involved in this process.
Collapse
Affiliation(s)
- Anita John
- Institute of Molecular and Cellular Anatomy, Ulm University, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lahaye LL, Wouda RR, de Jong AWM, Fradkin LG, Noordermeer JN. WNT5 interacts with the Ryk receptors doughnut and derailed to mediate muscle attachment site selection in Drosophila melanogaster. PLoS One 2012; 7:e32297. [PMID: 22403643 PMCID: PMC3293800 DOI: 10.1371/journal.pone.0032297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 01/24/2012] [Indexed: 01/12/2023] Open
Abstract
In recent years a number of the genes that regulate muscle formation and maintenance in higher organisms have been identified. Studies employing invertebrate and vertebrate model organisms have revealed that many of the genes required for early mesoderm specification are highly conserved throughout evolution. Less is known about the molecules that mediate the steps subsequent to myogenesis, e. g. myotube guidance and attachment to tendon cells. We use the stereotypic pattern of the Drosophila embryonic body wall musculature in genetic approaches to identify novel factors required for muscle attachment site selection. Here, we show that Wnt5 is needed in this process. The lateral transverse muscles frequently overshoot their target attachment sites and stably attach at novel epidermal sites in Wnt5 mutant embryos. Restoration of WNT5 expression in either the muscle or the tendon cell rescues the mutant phenotype. Surprisingly, the novel attachment sites in Wnt5 mutants frequently do not express the Stripe (SR) protein which has been shown to be required for terminal tendon cell differentiation. A muscle bypass phenotype was previously reported for embryos lacking the WNT5 receptor Derailed (DRL). drl and Wnt5 mutant embryos also exhibit axon path finding errors. DRL belongs to the conserved Ryk receptor tyrosine kinase family which includes two other Drosophila orthologs, the Doughnut on 2 (DNT) and Derailed-2 (DRL-2) proteins. We generated a mutant allele of dnt and find that dnt, but not Drl-2, mutant embryos also show a muscle bypass phenotype. Genetic interaction experiments indicate that drl and dnt act together, likely as WNT5 receptors, to control muscle attachment site selection. These results extend previous findings that at least some of the molecular pathways that guide axons towards their targets are also employed for guidance of muscle fibers to their appropriate attachment sites.
Collapse
Affiliation(s)
| | | | | | - Lee G. Fradkin
- Laboratory of Developmental Neurobiology, Department of Molecular and Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail: (JNN); (LGF)
| | - Jasprina N. Noordermeer
- Laboratory of Developmental Neurobiology, Department of Molecular and Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail: (JNN); (LGF)
| |
Collapse
|
46
|
Peradziryi H, Tolwinski NS, Borchers A. The many roles of PTK7: a versatile regulator of cell-cell communication. Arch Biochem Biophys 2012; 524:71-6. [PMID: 22230326 DOI: 10.1016/j.abb.2011.12.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/15/2022]
Abstract
PTK7 (protein tyrosine kinase 7) is an evolutionarily conserved transmembrane receptor with functions in various processes ranging from embryonic morphogenesis to epidermal wound repair. Here, we review recent findings indicating that PTK7 is a versatile co-receptor that functions as a molecular switch in Wnt, Semaphorin/Plexin and VEGF signaling pathways. We focus in particular on the role of PTK7 in Wnt signaling, as recent data indicate that PTK7 acts as a Wnt co-receptor, which activates the planar cell polarity pathway, but inhibits canonical Wnt signaling.
Collapse
Affiliation(s)
- Hanna Peradziryi
- Department of Developmental Biochemistry, Center for Molecular Physiology of the Brain (CMPB), GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
47
|
Sanchez-Roige S, Peña-Oliver Y, Stephens DN. Measuring impulsivity in mice: the five-choice serial reaction time task. Psychopharmacology (Berl) 2012; 219:253-70. [PMID: 22089700 DOI: 10.1007/s00213-011-2560-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/24/2011] [Indexed: 02/05/2023]
Abstract
RATIONALE Mice are useful tools for dissecting genetic and environmental factors in relation to the study of attention and impulsivity. The five-choice serial reaction time task (5CSRTT) paradigm has been well established in rats, but its transferability to mice is less well documented. OBJECTIVES This study aims to summarise the main results of the 5CSRTT in mice, with special focus on impulsivity. METHODS The 5CSRTT can be used to explore aspects of both attentional and inhibitory control mechanisms. RESULTS Different manipulations of the task parameters can lead to different results; adjusting the protocol as a function of the main variable of interest or the standardisation of the protocol to be applied to a large set of strains will be desirable. CONCLUSIONS The 5CSRTT has proven to be a useful tool to investigate impulsivity in mice.
Collapse
|
48
|
Sánchez-Camacho C, Ortega JA, Ocaña I, Alcántara S, Bovolenta P. Appropriate Bmp7 levels are required for the differentiation of midline guidepost cells involved in corpus callosum formation. Dev Neurobiol 2011; 71:337-50. [PMID: 21485009 DOI: 10.1002/dneu.20865] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Guidepost cells are essential structures for the establishment of major axonal tracts. How these structures are specified and acquire their axon guidance properties is still poorly understood. Here, we show that in mouse embryos appropriate levels of Bone Morphogenetic Protein 7 (Bmp7), a member of the TGF-β superfamily of secreted proteins, are required for the correct development of the glial wedge, the indusium griseum, and the subcallosal sling, three groups of cells that act as guidepost cells for growing callosal axons. Bmp7 is expressed in the region occupied by these structures and its genetic inactivation in mouse embryos caused a marked reduction and disorganization of these cell populations. On the contrary, infusion of recombinant Bmp7 in the developing forebrain induced their premature differentiation. In both cases, changes were associated with the disruption of callosal axon growth and, in most animals fibers did not cross the midline forming typical Probst bundles. Addition of Bmp7 to cortical explants did not modify the extent of their outgrowth nor their directionality, when explants were exposed to a focalized source of the protein. Together, these results indicate that Bmp7 is indirectly required for corpus callosum formation by controlling the timely differentiation of its guidepost cells.
Collapse
Affiliation(s)
- Cristina Sánchez-Camacho
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal (CSIC) and CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | | | | | | |
Collapse
|
49
|
En1 and Wnt signaling in midbrain dopaminergic neuronal development. Neural Dev 2011; 6:23. [PMID: 21569278 PMCID: PMC3104484 DOI: 10.1186/1749-8104-6-23] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/10/2011] [Indexed: 12/21/2022] Open
Abstract
Dopaminergic neurons of the ventral mesodiencephalon are affected in significant health disorders such as Parkinson's disease, schizophrenia, and addiction. The ultimate goal of current research endeavors is to improve the clinical treatment of such disorders, such as providing a protocol for cell replacement therapy in Parkinson's disease that will successfully promote the specific differentiation of a stem cell into a dopaminergic neuronal phenotype. Decades of research on the developmental mechanisms of the mesodiencephalic dopaminergic (mdDA) system have led to the identification of many signaling pathways and transcription factors critical in its development. The unraveling of these pathways will help fill in the pieces of the puzzle that today dominates neurodevelopment research: how to make and maintain a mdDA neuron. In the present review, we provide an overview of the mdDA system, the processes and signaling molecules involved in its genesis, with a focus on the transcription factor En1 and the canonical Wnt pathway, highlighting recent findings on their relevance--and interplay--in the development and maintenance of the mdDA system.
Collapse
|
50
|
Synaptic Wnt signaling-a contributor to major psychiatric disorders? J Neurodev Disord 2011; 3:162-74. [PMID: 21533542 PMCID: PMC3180925 DOI: 10.1007/s11689-011-9083-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 04/05/2011] [Indexed: 02/08/2023] Open
Abstract
Wnt signaling is a key pathway that helps organize development of the nervous system. It influences cell proliferation, cell fate, and cell migration in the developing nervous system, as well as axon guidance, dendrite development, and synapse formation. Given this wide range of roles, dysregulation of Wnt signaling could have any number of deleterious effects on neural development and thereby contribute in many different ways to the pathogenesis of neurodevelopmental disorders. Some major psychiatric disorders, including schizophrenia, bipolar disorder, and autism spectrum disorders, are coming to be understood as subtle dysregulations of nervous system development, particularly of synapse formation and maintenance. This review will therefore touch on the importance of Wnt signaling to neurodevelopment generally, while focusing on accumulating evidence for a synaptic role of Wnt signaling. These observations will be discussed in the context of current understanding of the neurodevelopmental bases of major psychiatric diseases, spotlighting schizophrenia, bipolar disorder, and autism spectrum disorder. In short, this review will focus on the potential role of synapse formation and maintenance in major psychiatric disorders and summarize evidence that defective Wnt signaling could contribute to their pathogenesis via effects on these late neural differentiation processes.
Collapse
|