1
|
Kim SE, Robles-Lopez K, Cao X, Liu K, Chothani PJ, Bhavani N, Rahman L, Mukhopadhyay S, Wlodarczyk BJ, Finnell RH. Wnt1 Lineage Specific Deletion of Gpr161 Results in Embryonic Midbrain Malformation and Failure of Craniofacial Skeletal Development. Front Genet 2021; 12:761418. [PMID: 34887903 PMCID: PMC8650154 DOI: 10.3389/fgene.2021.761418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Sonic hedgehog (Shh) signaling regulates multiple morphogenetic processes during embryonic neurogenesis and craniofacial skeletal development. Gpr161 is a known negative regulator of Shh signaling. Nullizygous Gpr161 mice are embryonic lethal, presenting with structural defects involving the neural tube and the craniofacies. However, the lineage specific role of Gpr161 in later embryonic development has not been thoroughly investigated. We studied the Wnt1-Cre lineage specific role of Gpr161 during mouse embryonic development. We observed three major gross morphological phenotypes in Gpr161 cKO (Gpr161 f/f; Wnt1-Cre) fetuses; protrusive tectum defect, encephalocele, and craniofacial skeletal defect. The overall midbrain tissues were expanded and cell proliferation in ventricular zones of midbrain was increased in Gpr161 cKO fetuses, suggesting that protrusive tectal defects in Gpr161 cKO are secondary to the increased proliferation of midbrain neural progenitor cells. Shh signaling activity as well as upstream Wnt signaling activity were increased in midbrain tissues of Gpr161 cKO fetuses. RNA sequencing further suggested that genes in the Shh, Wnt, Fgf and Notch signaling pathways were differentially regulated in the midbrain of Gpr161 cKO fetuses. Finally, we determined that cranial neural crest derived craniofacial bone formation was significantly inhibited in Gpr161 cKO fetuses, which partly explains the development of encephalocele. Our results suggest that Gpr161 plays a distinct role in midbrain development and in the formation of the craniofacial skeleton during mouse embryogenesis.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Karla Robles-Lopez
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States.,Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Xuanye Cao
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Kristyn Liu
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Pooja J Chothani
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Nikitha Bhavani
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Lauren Rahman
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Bogdan J Wlodarczyk
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Richard H Finnell
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States.,Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Rapacioli M, Fiszer de Plazas S, Flores V. The developing optic tectum: An asymmetrically organized system and the need for a redefinition of the notion of sensitive period. Int J Dev Neurosci 2018; 73:1-9. [PMID: 30572015 DOI: 10.1016/j.ijdevneu.2018.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022] Open
Abstract
The present article summarizes the main events involved in the isthmic organizer and optic tectum determination and analyses how optic tectum patterning is translated, by the organized operation of several specific cell behaviors, into the terminally differentiated optic tectum. The paper proposes that this assembling of temporally/spatially organized cell behaviors could be incorporated into a wider notion of patterning and that, given the asymmetric organization of the developing optic tectum, the notion of "sensitive period" does not capture the whole complexity of midbrain development and the pathogenesis of congenital disorders. The cell behaviors involved in the optic tectum development are organized in time and space by the isthmic organizer. A comprehensive description of the normal optic tectum development, and also its alterations, should consider both domains. Significantly, the identity of each neuronal cohort depends critically on its "time and place of birth". Both parameters must be considered at once to explain how the structural and functional organization of the optic tectum is elaborated. The notion of "patterning" applies only to the early events of the optic tectum development. Besides, the notion of "sensitive period" considers only a temporal domain and disregards the asymmetric organization of the developing optic tectum. The present paper proposes that these notions might be re-defined: (a) a wider meaning of the term patterning and (b) a replacement of the term "sensitive period" by a more precise concept of "sensitive temporal/spatial window".
Collapse
Affiliation(s)
- Melina Rapacioli
- Grupo Interdisciplinario de Biología Teórica, Instituto de Neurociencia Cognitiva y Traslacional (INCyT), Universidad Favaloro-INECO-CONICET, Buenos Aires, Argentina.
| | - Sara Fiszer de Plazas
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Vladimir Flores
- Grupo Interdisciplinario de Biología Teórica, Instituto de Neurociencia Cognitiva y Traslacional (INCyT), Universidad Favaloro-INECO-CONICET, Buenos Aires, Argentina; Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
3
|
Yang C, Li X, Li Q, Li H, Qiao L, Guo Z, Lin J. Sonic Hedgehog Regulation of the Neural Precursor Cell Fate During Chicken Optic Tectum Development. J Mol Neurosci 2017; 64:287-299. [PMID: 29285739 DOI: 10.1007/s12031-017-1019-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022]
Abstract
During nervous system development, neurons project axons over long distances to reach the appropriate targets for correct neural circuit formation. Sonic hedgehog (Shh) is a secreted protein and plays a key role in regulating vertebrate embryogenesis, especially in central nervous system (CNS) patterning, including neuronal migration and axonal projection in the brain and spinal cord. In the developing ventral midbrain, Shh is sufficient to specify a striped pattern of cell fates. Little is known about the molecular mechanisms underlying the Shh regulation of the neural precursor cell fate during the optic tectum development. Here, we aimed at studying how Shh might regulate chicken optic tectum patterning. In the present study, in ovo electroporation methods were employed to achieve the overexpression of Shh in the optic tectum during chicken embryo development. Besides, the study combined in ovo electroporation and neuron isolation culturing to study the function of Shh in vivo and in vitro. The fluorescent immunohistochemistry methods were used to check the related indicators. The results showed that Shh overexpression caused 87.8% of cells to be distributed to the stratum griseum central (SGC) layer, while only 39.3% of the GFP-transfected cells resided in the SGC layer in the control group. Shh overexpression also reduced the axon length in vivo and in vitro. In conclusion, we provide evidence that Shh regulates the neural precursor cell fate during chicken optic tectum development. Shh overexpression impairs neuronal migration and may affect the fate determination of transfected neurons.
Collapse
Affiliation(s)
- Ciqing Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, 453003, China
| | - Xiaoying Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Qiuling Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Han Li
- Advanced Medical and Dental Institute, University Sains Malaysia, Bertam, 13200, Penang, Malaysia
| | - Liang Qiao
- Stem Cells and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, 453003, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, 453003, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China. .,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, 453003, China. .,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
4
|
Amarnath S, Agarwala S. Cell-cycle-dependent TGFβ-BMP antagonism regulates neural tube closure by modulating tight junctions. J Cell Sci 2016; 130:119-131. [PMID: 27034139 DOI: 10.1242/jcs.179192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/18/2016] [Indexed: 12/15/2022] Open
Abstract
Many organs form by invaginating and rolling flat epithelial cell sheets into tubes. Invagination of the ventral midline of the neural plate forms the median hinge point (MHP), an event that elevates the neural folds and is essential for neural tube closure (NTC). MHP formation involves dynamic spatiotemporal modulations of cell shape, but how these are achieved is not understood. Here, we show that cell-cycle-dependent BMP and TGFβ antagonism elicits MHP formation by dynamically regulating interactions between apical (PAR complex) and basolateral (LGL) polarity proteins. TGFβ and BMP-activated receptor (r)-SMADs [phosphorylated SMAD2 or SMAD3 (pSMAD2,3), or phosphorylated SMAD1, SMAD5 or SMAD8 (pSMAD1,5,8)] undergo cell-cycle-dependent modulations and nucleo-cytosolic shuttling along the apicobasal axis of the neural plate. Non-canonical TGFβ and BMP activity in the cytosol determines whether pSMAD2,3 or pSMAD1,5,8 associates with the tight junction (PAR complex) or with LGL, and whether cell shape changes can occur at the MHP. Thus, the interactions of BMP and TGFβ with polarity proteins dynamically modulate MHP formation by regulating r-SMAD competition for tight junctions and r-SMAD sequestration by LGL.
Collapse
Affiliation(s)
- Smita Amarnath
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Seema Agarwala
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA .,Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.,Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
5
|
Rapacioli M, Palma V, Flores V. Morphogenetic and Histogenetic Roles of the Temporal-Spatial Organization of Cell Proliferation in the Vertebrate Corticogenesis as Revealed by Inter-specific Analyses of the Optic Tectum Cortex Development. Front Cell Neurosci 2016; 10:67. [PMID: 27013978 PMCID: PMC4794495 DOI: 10.3389/fncel.2016.00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/01/2016] [Indexed: 12/11/2022] Open
Abstract
The central nervous system areas displaying the highest structural and functional complexity correspond to the so called cortices, i.e., concentric alternating neuronal and fibrous layers. Corticogenesis, i.e., the development of the cortical organization, depends on the temporal-spatial organization of several developmental events: (a) the duration of the proliferative phase of the neuroepithelium, (b) the relative duration of symmetric (expansive) versus asymmetric (neuronogenic) sub phases, (c) the spatial organization of each kind of cell division, (e) the time of determination and cell cycle exit and (f) the time of onset of the post-mitotic neuronal migration and (g) the time of onset of the neuronal structural and functional differentiation. The first five events depend on molecular mechanisms that perform a fine tuning of the proliferative activity. Changes in any of them significantly influence the cortical size or volume (tangential expansion and radial thickness), morphology, architecture and also impact on neuritogenesis and synaptogenesis affecting the cortical wiring. This paper integrates information, obtained in several species, on the developmental roles of cell proliferation in the development of the optic tectum (OT) cortex, a multilayered associative area of the dorsal (alar) midbrain. The present review (1) compiles relevant information on the temporal and spatial organization of cell proliferation in different species (fish, amphibians, birds, and mammals), (2) revises the main molecular events involved in the isthmic organizer (IsO) determination and localization, (3) describes how the patterning installed by IsO is translated into spatially organized neural stem cell proliferation (i.e., by means of growth factors, receptors, transcription factors, signaling pathways, etc.) and (4) describes the morpho- and histogenetic effect of a spatially organized cell proliferation in the above mentioned species. A brief section on the OT evolution is also included. This section considers how the differential operation of cell proliferation could explain differences among species.
Collapse
Affiliation(s)
- Melina Rapacioli
- Interdisciplinary Group in Theoretical Biology, Department of Biostructural Sciences, Favaloro UniversityBuenos Aires, Argentina
| | - Verónica Palma
- Laboratory of Stem Cell and Developmental Biology, Faculty of Science, University of ChileSantiago, Chile
| | - Vladimir Flores
- Interdisciplinary Group in Theoretical Biology, Department of Biostructural Sciences, Favaloro UniversityBuenos Aires, Argentina
| |
Collapse
|
6
|
Klafke R, Prem Anand AA, Wurst W, Prakash N, Wizenmann A. Differences in the spatiotemporal expression and epistatic gene regulation of the mesodiencephalic dopaminergic precursor marker PITX3 during chicken and mouse development. Development 2016; 143:691-702. [DOI: 10.1242/dev.126748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 01/05/2016] [Indexed: 11/20/2022]
Abstract
Mesodiencephalic dopaminergic (mdDA) neurons are located in the ventral mesencephalon and caudal diencephalon of all tetrapod species studied so far. They are the most prominent DA neuronal population and are implicated in control and modulation of motor, cognitive and rewarding/affective behaviors. Their degeneration or dysfunction is intimately linked to several neurological and neuropsychiatric human diseases. To gain further insights into their generation, we studied spatiotemporal expression patterns and epistatic interactions in chick embryos of selected marker genes and signaling pathways associated with mdDA neuron development in mouse. We detected striking differences in the expression patterns of the chick orthologs of the mouse mdDA marker genes Pitx3 and Aldh1a1, which suggests important differences between the species in the generation/generating of these cells. We also discovered that the Sonic hedgehog signaling pathway is both, necessary and sufficient for the induction of ectopic PITX3 expression in chick mesencephalon downstream of WNT9A induced LMX1a transcription. These aspects of early chicken development resemble the ontogeny of zebrafish diencephalic DA neuronal populations, and suggest a divergence between birds and mammals during evolution.
Collapse
Affiliation(s)
- Ruth Klafke
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - A. Alwin Prem Anand
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Oesterbergstrasse 3, 72074 Tuebingen, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Standort München, Schillerstr. 44, 80336 München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstrasse 44, 80336 München, Germany
| | - Nilima Prakash
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Andrea Wizenmann
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Oesterbergstrasse 3, 72074 Tuebingen, Germany
| |
Collapse
|
7
|
Moreno N, Joven A, Morona R, Bandín S, López JM, González A. Conserved localization of Pax6 and Pax7 transcripts in the brain of representatives of sarcopterygian vertebrates during development supports homologous brain regionalization. Front Neuroanat 2014; 8:75. [PMID: 25147506 PMCID: PMC4123791 DOI: 10.3389/fnana.2014.00075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/21/2014] [Indexed: 11/20/2022] Open
Abstract
Many of the genes involved in brain patterning during development are highly conserved in vertebrates and similarities in their expression patterns help to recognize homologous cell types or brain regions. Among these genes, Pax6 and Pax7 are expressed in regionally restricted patterns in the brain and are essential for its development. In the present immunohistochemical study we analyzed the distribution of Pax6 and Pax7 cells in the brain of six representative species of tetrapods and lungfishes, the closest living relatives of tetrapods, at several developmental stages. The distribution patterns of these transcription factors were largely comparable across species. In all species only Pax6 was expressed in the telencephalon, including the olfactory bulbs, septum, striatum, and amygdaloid complex. In the diencephalon, Pax6 and Pax7 were distinct in the alar and basal parts, mainly in prosomeres 1 and 3. Pax7 specifically labeled cells in the optic tectum (superior colliculus) and Pax6, but not Pax7, cells were found in the tegmentum. Pax6 was found in most granule cells of the cerebellum and Pax7 labeling was detected in cells of the ventricular zone of the rostral alar plate and in migrated cells in the basal plate, including the griseum centrale and the interpeduncular nucleus. Caudally, Pax6 cells formed a column, whereas the ventricular zone of the alar plate expressed Pax7. Since the observed Pax6 and Pax7 expression patterns are largely conserved they can be used to identify subdivisions in the brain across vertebrates that are not clearly discernible with classical techniques.
Collapse
Affiliation(s)
- Nerea Moreno
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Alberto Joven
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Sandra Bandín
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid Madrid, Spain
| |
Collapse
|
8
|
Kwon YR, Jeong MH, Leem YE, Lee SJ, Kim HJ, Bae GU, Kang JS. The Shh coreceptor Cdo is required for differentiation of midbrain dopaminergic neurons. Stem Cell Res 2014; 13:262-74. [PMID: 25117422 DOI: 10.1016/j.scr.2014.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 07/12/2014] [Accepted: 07/16/2014] [Indexed: 11/16/2022] Open
Abstract
Sonic hedgehog (Shh) signaling is required for numerous developmental processes including specification of ventral cell types in the central nervous system such as midbrain dopaminergic (DA) neurons. The multifunctional coreceptor Cdo increases the signaling activity of Shh which is crucial for development of forebrain and neural tube. In this study, we investigated the role of Cdo in midbrain DA neurogenesis. Cdo and Shh signaling components are induced during neurogenesis of embryonic stem (ES) cells. Cdo(-/-) ES cells show reduced neuronal differentiation accompanied by increased cell death upon neuronal induction. In addition, Cdo(-/-) ES cells form fewer tyrosine hydroxylase (TH) and microtubule associated protein 2 (MAP2)-positive DA neurons correlating with the decreased expression of key regulators of DA neurogenesis, such as Shh, Neurogenin2, Mash1, Foxa2, Lmx1a, Nurr1 and Pitx3, relative to the Cdo(+/+) ES cells. Consistently, the Cdo(-/-) embryonic midbrain displays a reduction in expression of TH and Nurr1. Furthermore, activation of Shh signaling by treatment with Purmorphamine (Pur) restores the DA neurogenesis of Cdo(-/-) ES cells, suggesting that Cdo is required for the full Shh signaling activation to induce efficient DA neurogenesis.
Collapse
Affiliation(s)
- Yu-Rim Kwon
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Myong-Ho Jeong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Sang-Jin Lee
- Research Center for Cell Fate Control, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Hyun-Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control, Sookmyung Women's University, Seoul 140-742, Republic of Korea.
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea.
| |
Collapse
|
9
|
Joksimovic M, Awatramani R. Wnt/ -catenin signaling in midbrain dopaminergic neuron specification and neurogenesis. J Mol Cell Biol 2013; 6:27-33. [DOI: 10.1093/jmcb/mjt043] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
10
|
Joven A, Morona R, González A, Moreno N. Expression patterns of Pax6 and Pax7 in the adult brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol 2013; 521:2088-124. [PMID: 23224769 DOI: 10.1002/cne.23276] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/21/2012] [Accepted: 11/27/2012] [Indexed: 01/04/2023]
Abstract
Expression patterns of Pax6, Pax7, and, to a lesser extent, Pax3 genes were analyzed by a combination of immunohistochemical techniques in the central nervous system of adult specimens of the urodele amphibian Pleurodeles waltl. Only Pax6 was found in the telencephalon, specifically the olfactory bulbs, striatum, septum, and lateral and central parts of the amygdala. In the diencephalon, Pax6 and Pax7 were distinct in the alar and basal parts, respectively, of prosomere 3. The distribution of Pax6, Pax7, and Pax3 cells correlated with the three pretectal domains. Pax7 specifically labeled cells in the dorsal mesencephalon, mainly in the optic tectum, and Pax6 cells were the only cells found in the tegmentum. Large populations of Pax7 cells occupied the rostral rhombencephalon, along with lower numbers of Pax6 and Pax3 cells. Pax6 was found in most granule cells of the cerebellum. Pax6 cells also formed a column of scattered neurons in the reticular formation and were found in the octavolateral area. The rhombencephalic ventricular zone of the alar plate expressed Pax7. Dorsal Pax7 cells and ventral Pax6 cells were found along the spinal cord. Our results show that the expression of Pax6 and Pax7 is widely maintained in the brains of adult urodeles, in contrast to the situation in other tetrapods. This discrepancy could be due to the generally pedomorphic features of urodele brains. Although the precise role of these transcription factors in adult brains remains to be determined, our findings support the idea that they may also function in adult urodeles.
Collapse
Affiliation(s)
- Alberto Joven
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Tang M, Luo SX, Tang V, Huang EJ. Temporal and spatial requirements of Smoothened in ventral midbrain neuronal development. Neural Dev 2013; 8:8. [PMID: 23618354 PMCID: PMC3680293 DOI: 10.1186/1749-8104-8-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/05/2013] [Indexed: 11/11/2022] Open
Abstract
Background Several studies have indicated that Sonic hedgehog (Shh) regulates the expansion of dopaminergic (DA) progenitors and the subsequent generation of mature DA neurons. This prevailing view has been based primarily on in vitro culture results, and the exact in vivo function of Shh signaling in the patterning and neurogenesis of the ventral midbrain (vMB) remains unclear. Methods We characterized the transcriptional codes for the vMB progenitor domains, and correlated them with the expression patterns of Shh signaling effectors, including Shh, Smoothened, Patched, Gli1, Gli2 and Gli3. Results While Shh and its downstream effectors showed robust expression in the neurogenic niche for DA progenitors at embryonic day (E)8 to E8.5, their expression shifted to the lateral domains from E9.5 to E12.5. Consistent with this dynamic change, conditional mutants with region-specific removal of the Shh receptor Smoothened in the vMB progenitors (Shh-Cre;Smofl/fl) showed a transient reduction in DA progenitors and DA neurons at E10.5, but had more profound defects in neurons derived from the more lateral domains, including those in the red nucleus, oculomotor nucleus, and raphe nuclei. Conversely, constitutive activation of Smoothened signaling in vMB (Shh-Cre;SmoM2) showed transient expansion of the same progenitor population. To further characterize the nature of Shh-Smoothened signaling in vMB, we examined the BAT-GAL reporter and the expression of Wnt1 in vMB, and found that the antagonistic effects of Shh and Wnt signaling critically regulate the development of DA progenitors and DA neurons. Conclusion These results highlight previously unrecognized effects of Shh-Smoothened signaling in the region-specific neurogenesis within the vMB.
Collapse
Affiliation(s)
- Mianzhi Tang
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
12
|
Miyake A, Itoh N. Fgf22 regulated by Fgf3/Fgf8 signaling is required for zebrafish midbrain development. Biol Open 2013; 2:515-24. [PMID: 23789101 PMCID: PMC3654271 DOI: 10.1242/bio.20134226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/01/2013] [Indexed: 12/24/2022] Open
Abstract
Fibroblast growth factor (Fgf) signaling plays important roles in various developmental processes including brain development. Here, we identified zebrafish fgf22 predominantly expressed in the posterior midbrain and anterior midbrain-hindbrain boundary (MHB) primordia during early embryonic brain development. To examine roles of Fgf22 in midbrain development, we analyzed fgf22 knockdown embryos. The fgf22 morphants were defective in proper formation of the MHB constriction and the midbrain. The knockdown of fgf22 caused decreased cell proliferation in the midbrain, expanded expression of roof plate and tegmental marker genes, and decreased expression of tectal marker genes, indicating that Fgf22 is required for cell proliferation, roof plate formation, and tectum specification in the midbrain. Fgf receptor 2b (Fgfr2b), a potential receptor for Fgf22, was also required, indicating that Fgf22 signaling is mediated through Fgfr2b. The floor plate and the MHB are crucial for the dorsoventral patterning of the midbrain through Hedgehog (Hh) and Fgf signaling, respectively. The fgf3/fgf8 double morphant phenotype was essentially similar to that of fgf22 morphants, whereas the phenotype caused by inhibition of Hh signaling was not. fgf3 and fgf8 were expressed earlier than fgf22 in the MHB primordium and Fgf3/Fgf8 signaling was required for fgf22 expression in the posterior midbrain. Furthermore, fgf22 partially rescued the fgf3/fgf8 double morphant phenotype. The present results indicate Fgf22 to be involved in midbrain development downstream of Fgf3 and Fgf8 in the MHB but not of Hh in the floor plate.
Collapse
Affiliation(s)
- Ayumi Miyake
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences , Sakyo, Kyoto 606-8501 , Japan
| | | |
Collapse
|
13
|
Rapacioli M, Botelho J, Cerda G, Duarte S, Elliot M, Palma V, Flores V. Sonic hedgehog (Shh)/Gli modulates the spatial organization of neuroepithelial cell proliferation in the developing chick optic tectum. BMC Neurosci 2012. [PMID: 23031710 DOI: 10.1186/1471‐2202‐13‐117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sonic hedgehog (Shh)/Gli pathway plays an important regulatory role on the neuroepithelial cells (NEc) proliferation in the dorsal regions of the developing vertebrate Central Nervous System. The aim of this paper was to analyze the effect of the Shh/Gli signaling pathway activation on the proliferation dynamics and/or the spatial organization of the NEc proliferation activity during early stages of the developing chick optic tectum (OT). In ovo pharmacological gain and loss of hedgehog function approaches were complemented with in vivo electroporation experiments in order to create ectopic sources of either Shh or Gli activator (GliA) proteins in the OT. NEc proliferating activity was analyzed at ED 4/4.5 by recording the spatial co-ordinates of the entire population of mitotic NEc (mNEc) located along OT dorsal-ventral sections. Several space signals (numerical sequences) were derived from the mNEc spatial co-ordinate records and analyzed by different standardized non-linear methods of signal analysis. RESULTS In ovo pharmacologic treatment with cyclopamine resulted in dramatic failure in the OT expansion while the agonist purmorphamine produced the opposite result, a huge expansion of the OT vesicle. Besides, GliA and Shh misexpressions interfere with the formation of the intertectal fissure located along the dorsal midline. This morphogenetic alteration is accompanied by an increase in the mNEc density. There is a gradient in the response of NEcs to Shh and GliA: the increase in mNEc density is maximal near the dorsal regions and decrease towards the OT-tegmental boundary. Biomathematical analyses of the signals derived from the mNEc records show that both Shh and GliA electroporations change the proliferation dynamics and the spatial organization of the mNEc as revealed by the changes in the scaling index estimated by these methods. CONCLUSIONS The present results show that the Shh/Gli signaling pathway plays a critical role in the OT expansion and modelling. This effect is probably mediated by a differential mitogenic effect that increases the NEc proliferation and modulates the spatial organization of the NEc proliferation activity.
Collapse
Affiliation(s)
- Melina Rapacioli
- Interdisciplinary Group in Theoretical Biology, Department Biostructural Sciences, Favaloro University, Solís 453 (1078), Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
14
|
Rapacioli M, Botelho J, Cerda G, Duarte S, Elliot M, Palma V, Flores V. Sonic hedgehog (Shh)/Gli modulates the spatial organization of neuroepithelial cell proliferation in the developing chick optic tectum. BMC Neurosci 2012; 13:117. [PMID: 23031710 PMCID: PMC3564940 DOI: 10.1186/1471-2202-13-117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 09/26/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Sonic hedgehog (Shh)/Gli pathway plays an important regulatory role on the neuroepithelial cells (NEc) proliferation in the dorsal regions of the developing vertebrate Central Nervous System. The aim of this paper was to analyze the effect of the Shh/Gli signaling pathway activation on the proliferation dynamics and/or the spatial organization of the NEc proliferation activity during early stages of the developing chick optic tectum (OT). In ovo pharmacological gain and loss of hedgehog function approaches were complemented with in vivo electroporation experiments in order to create ectopic sources of either Shh or Gli activator (GliA) proteins in the OT. NEc proliferating activity was analyzed at ED 4/4.5 by recording the spatial co-ordinates of the entire population of mitotic NEc (mNEc) located along OT dorsal-ventral sections. Several space signals (numerical sequences) were derived from the mNEc spatial co-ordinate records and analyzed by different standardized non-linear methods of signal analysis. RESULTS In ovo pharmacologic treatment with cyclopamine resulted in dramatic failure in the OT expansion while the agonist purmorphamine produced the opposite result, a huge expansion of the OT vesicle. Besides, GliA and Shh misexpressions interfere with the formation of the intertectal fissure located along the dorsal midline. This morphogenetic alteration is accompanied by an increase in the mNEc density. There is a gradient in the response of NEcs to Shh and GliA: the increase in mNEc density is maximal near the dorsal regions and decrease towards the OT-tegmental boundary. Biomathematical analyses of the signals derived from the mNEc records show that both Shh and GliA electroporations change the proliferation dynamics and the spatial organization of the mNEc as revealed by the changes in the scaling index estimated by these methods. CONCLUSIONS The present results show that the Shh/Gli signaling pathway plays a critical role in the OT expansion and modelling. This effect is probably mediated by a differential mitogenic effect that increases the NEc proliferation and modulates the spatial organization of the NEc proliferation activity.
Collapse
Affiliation(s)
- Melina Rapacioli
- Interdisciplinary Group in Theoretical Biology, Department Biostructural Sciences, Favaloro University, Solís 453 (1078), Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
15
|
Salti A, Nat R, Neto S, Puschban Z, Wenning G, Dechant G. Expression of early developmental markers predicts the efficiency of embryonic stem cell differentiation into midbrain dopaminergic neurons. Stem Cells Dev 2012; 22:397-411. [PMID: 22889265 DOI: 10.1089/scd.2012.0238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dopaminergic neurons derived from pluripotent stem cells are among the best investigated products of in vitro stem cell differentiation owing to their potential use for neurorestorative therapy of Parkinson's disease. However, the classical differentiation protocols for both mouse and human pluripotent stem cells generate a limited percentage of dopaminergic neurons and yield a considerable cellular heterogeneity comprising numerous scarcely characterized cell populations. To improve pluripotent stem cell differentiation protocols for midbrain dopaminergic neurons, we established extensive and strictly quantitative gene expression profiles, including markers for pluripotent cells, neural progenitors, non-neural cells, pan-neuronal and glial cells, neurotransmitter phenotypes, midbrain and nonmidbrain populations, floor plate and basal plate populations, as well as for Hedgehog, Fgf, and Wnt signaling pathways. The profiles were applied to discrete stages of in vitro differentiation of mouse embryonic stem cells toward the dopaminergic lineage and after transplantation into the striatum of 6-hydroxy-dopamine-lesioned rats. The comparison of gene expression in vitro with stages in the developing ventral midbrain between embryonic day 11.5 and 13.5 ex vivo revealed dynamic changes in the expression of transcription factors and signaling molecules. Based on these profiles, we propose quantitative gene expression milestones that predict the efficiency of dopaminergic differentiation achieved at the end point of the protocol, already at earlier stages of differentiation.
Collapse
Affiliation(s)
- Ahmad Salti
- Institute for Neuroscience, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
16
|
Eom DS, Amarnath S, Fogel JL, Agarwala S. Bone morphogenetic proteins regulate hinge point formation during neural tube closure by dynamic modulation of apicobasal polarity. ACTA ACUST UNITED AC 2012; 94:804-16. [PMID: 22865775 DOI: 10.1002/bdra.23052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/23/2012] [Accepted: 06/07/2012] [Indexed: 01/23/2023]
Abstract
BACKGROUND A critical event in neural tube closure is the formation of median hinge points (MHPs) and dorsolateral hinge points (DLHPs). Together, they buckle the ventral midline and elevate and juxtapose the neural folds for proper neural tube closure. Dynamic cell behaviors occur at hinge points (HPs), but their molecular regulation is largely unexplored. Bone morphogenetic proteins (BMPs) have been implicated in a variety of neural tube closure defects, although the underlying mechanisms are poorly understood. METHODS In this study, we used in vivo electroporations, high-resolution microscopy, and biochemical analyses to explore the role of BMP signaling in chick midbrain neural tube closure. RESULTS We identified a cell-cycle-dependent BMP gradient in the midbrain neural plate, which results in low-level BMP activity at the MHP. We show that although BMP signaling does not have a role in midbrain cell-fate specification, its attenuation is necessary and sufficient for MHP formation and midbrain closure. BMP blockade induces MHP formation by regulating apical constriction and basal nuclear migration. Furthermore, BMP signaling is critically important for maintaining epithelial organization by biochemically interacting with apicobasal polarity proteins (e.g., PAR3). As a result, prolonged BMP blockade disrupts apical junctions, desegregating the apical (PAR3(+), ZO1(+)) and basolateral (LGL(+)) compartments. Direct apical LGL-GFP misexpression in turn is sufficient to induce ectopic HPs. CONCLUSIONS BMPs have a critical role in maintaining epithelial organization, a role that is conserved across species and tissue types. Its cell-cycle-dependent modulation in the neural plate dynamically regulates apicobasal polarity and helps to bend, shape, and close the neural tube.
Collapse
Affiliation(s)
- Dae Seok Eom
- Institute for Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
17
|
Brown CY, Eom DS, Amarnath S, Agarwala S. In vivo electroporation of E1 chick embryos. Cold Spring Harb Protoc 2012; 2012:2012/8/pdb.prot069708. [PMID: 22854566 DOI: 10.1101/pdb.prot069708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In ovo electroporation of chick embryos at ages ≥ E2 is simple to conduct and widely used to manipulate gene function. However, in ovo electroporation at early E1 stages has so far been unsuccessful because of unacceptable levels of tissue damage and embryonic lethality. Early E1 manipulations in the chick have therefore relied on in vitro electroporation, posing problems for morphogenetic studies in which the long-term preservation (>24 h) of three-dimensional tissue organization is critical. This article describes a simple technique for in vivo electroporation of E1 embryos as young as Hamburger-Hamilton stage 4 (HH4). It uses thin microelectrodes and low voltages, which permit precise localization of gene misexpression while causing minimal tissue damage and embryonic lethality. Critically, it does not depend on the presence of a lumen for DNA injections and can easily be adapted for a wide variety of tissues.
Collapse
Affiliation(s)
- Charmaine Y Brown
- Institute for Cellular and Molecular Biology, University of Texas at Austin, 78712, USA
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Clemens Kiecker
- Medical Research Council (MRC) Center for Developmental Neurobiology, King's College, London SE1 1UL, United Kingdom; ,
| | - Andrew Lumsden
- Medical Research Council (MRC) Center for Developmental Neurobiology, King's College, London SE1 1UL, United Kingdom; ,
| |
Collapse
|
19
|
Bayly RD, Brown CY, Agarwala S. A novel role for FOXA2 and SHH in organizing midbrain signaling centers. Dev Biol 2012; 369:32-42. [PMID: 22750257 DOI: 10.1016/j.ydbio.2012.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 06/06/2012] [Accepted: 06/20/2012] [Indexed: 02/04/2023]
Abstract
The floor plate (FP) is a midline signaling center, known to direct ventral cell fates and axon guidance in the neural tube. The recent identification of midbrain FP as a source of dopaminergic neurons has renewed interest in its specification and organization, which remain poorly understood. In this study, we have examined the chick midbrain and spinal FP and show that both can be partitioned into medial (MFP) and lateral (LFP) subdivisions. Although Hedgehog (HH) signaling is necessary and sufficient for LFP specification, it is not sufficient for MFP induction. By contrast, the transcription factor FOXA2 can execute the full midbrain and spinal cord FP program via HH-independent and dependent mechanisms. Interestingly, although HH-independent FOXA2 activity is necessary and sufficient for inducing MFP-specific gene expression (e.g., LMX1B, BMP7), it cannot confer ventral identity to midline cells without also turning on Sonic hedgehog (SHH). We also note that the signaling centers of the midbrain, the FP, roof plate (RP) and the midbrain-hindbrain boundary (MHB) are physically contiguous, with each expressing LMX1B and BMP7. Possibly as a result, SHH or FOXA2 misexpression can transform the MHB into FP and also suppress RP induction. Conversely, HH or FOXA2 knockdown expands the endogenous RP and transforms the MFP into a RP and/or MHB fate. Finally, combined HH blockade and FOXA2 misexpression in ventral midbrain induces LMX1B expression, which triggers the specification of the RP, rather than the MFP. Thus we identify HH-independent and dependent roles for FOXA2 in specifying the FP. In addition, we elucidate for the first time, a novel role for SHH in determining whether a midbrain signaling center will become the FP, MHB or RP.
Collapse
Affiliation(s)
- Roy D Bayly
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712-0248, USA
| | | | | |
Collapse
|
20
|
Lance-Jones C, Shah V, Noden DM, Sours E. Intrinsic properties guide proximal abducens and oculomotor nerve outgrowth in avian embryos. Dev Neurobiol 2012; 72:167-85. [PMID: 21739615 DOI: 10.1002/dneu.20948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proper movement of the vertebrate eye requires the formation of precisely patterned axonal connections linking cranial somatic motoneurons, located at defined positions in the ventral midbrain and hindbrain, with extraocular muscles. The aim of this research was to assess the relative contributions of intrinsic, population-specific properties and extrinsic, outgrowth site-specific cues during the early stages of abducens and oculomotor nerve development in avian embryos. This was accomplished by surgically transposing midbrain and caudal hindbrain segments, which had been pre-labeled by electroporation with an EGFP construct. Graft-derived EGFP+ oculomotor axons entering a hindbrain microenvironment often mimicked an abducens initial pathway and coursed cranially. Similarly, some EGFP+ abducens axons entering a midbrain microenvironment mimicked an oculomotor initial pathway and coursed ventrally. Many but not all of these axons subsequently projected to extraocular muscles that they would not normally innervate. Strikingly, EGFP+ axons also took initial paths atypical for their new location. Upon exiting from a hindbrain position, most EGFP+ oculomotor axons actually coursed ventrally and joined host branchiomotor nerves, whose neurons share molecular features with oculomotor neurons. Similarly, upon exiting from a midbrain position, some EGFP+ abducens axons turned caudally, elongated parallel to the brainstem, and contacted the lateral rectus muscle, their originally correct target. These data reveal an interplay between intrinsic properties that are unique to oculomotor and abducens populations and shared ability to recognize and respond to extrinsic directional cues. The former play a prominent role in initial pathway choices, whereas the latter appear more instructive during subsequent directional choices.
Collapse
Affiliation(s)
- Cynthia Lance-Jones
- Department of Neurobiology and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | |
Collapse
|
21
|
Brown CY, Eom DS, Amarnath S, Agarwala S. A simple technique for early in vivo electroporation of E1 chick embryos. Dev Dyn 2012; 241:545-52. [PMID: 22274994 DOI: 10.1002/dvdy.23747] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The amenability of the chick embryo to a variety of manipulations has made it an ideal experimental model organism for over 100 years. The ability to manipulate gene function via in ovo electroporations has further revolutionized its value as an experimental model in the last 15 years. Although in ovo electroporations are simple to conduct in embryos ≥ E2, in ovo electroporations at early E1 stages have proven to be technically challenging due to the tissue damage and embryonic lethality such electroporations produce. RESULTS AND CONCLUSIONS Here we report our success with in vivo microelectroporations of E1 embryos as young as Hamburger-Hamilton Stage 4 (HH4). We provide evidence that such electroporations can be varied in size and can be spatially targeted. They cause minimal disruption of tissue-size, 3-dimensional morphology, cell survival, proliferation, and cell-fate specification. Our paradigm is easily adapted to a variety of experimental conditions since it does not depend upon the presence of a lumen to enclose the DNA solution during electroporation. It is thus compatible with the in vivo examination of E1 morphogenetic events (e.g., neural tube closure) where preservation of 3-dimensional morphology is critical.
Collapse
Affiliation(s)
- Charmaine Y Brown
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
22
|
Waite MR, Skidmore JM, Billi AC, Martin JF, Martin DM. GABAergic and glutamatergic identities of developing midbrain Pitx2 neurons. Dev Dyn 2011; 240:333-46. [PMID: 21246650 PMCID: PMC3079949 DOI: 10.1002/dvdy.22532] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2010] [Indexed: 12/18/2022] Open
Abstract
Pitx2, a paired-like homeodomain transcription factor, is expressed in post-mitotic neurons within highly restricted domains of the embryonic mouse brain. Previous reports identified critical roles for PITX2 in histogenesis of the hypothalamus and midbrain, but the cellular identities of PITX2-positive neurons in these regions were not fully explored. This study characterizes Pitx2 expression with respect to midbrain transcription factor and neurotransmitter phenotypes in mid-to-late mouse gestation. In the dorsal midbrain, we identified Pitx2-positive neurons in the stratum griseum intermedium (SGI) as GABAergic and observed a requirement for PITX2 in GABAergic differentiation. We also identified two Pitx2-positive neuronal populations in the ventral midbrain, the red nucleus, and a ventromedial population, both of which contain glutamatergic precursors. Our data suggest that PITX2 is present in regionally restricted subpopulations of midbrain neurons and may have unique functions that promote GABAergic and glutamatergic differentiation.
Collapse
Affiliation(s)
- MR Waite
- Cellular & Molecular Biology Program, The University of Michigan, Ann Arbor, MI 48109
| | - JM Skidmore
- Department of Pediatrics, The University of Michigan, Ann Arbor, MI 48109
| | - AC Billi
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI 48109
| | - JF Martin
- Institute of Biosciences and Technology, Texas A&M System Health Science Center, Houston, TX 77030
| | - DM Martin
- Department of Pediatrics, The University of Michigan, Ann Arbor, MI 48109
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
23
|
Jeong Y, Dolson DK, Waclaw RR, Matise MP, Sussel L, Campbell K, Kaestner KH, Epstein DJ. Spatial and temporal requirements for sonic hedgehog in the regulation of thalamic interneuron identity. Development 2011; 138:531-41. [PMID: 21205797 DOI: 10.1242/dev.058917] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In caudal regions of the diencephalon, sonic hedgehog (Shh) is expressed in the ventral midline of prosomeres 1-3 (p1-p3), which underlie the pretectum, thalamus and prethalamus, respectively. Shh is also expressed in the zona limitans intrathalamica (zli), a dorsally projecting spike that forms at the p2-p3 boundary. The presence of two Shh signaling centers in the thalamus has made it difficult to determine the specific roles of either one in regional patterning and neuronal fate specification. To investigate the requirement of Shh from a focal source of expression in the ventral midline of the diencephalon, we used a newly generated mouse line carrying a targeted deletion of the 525 bp intronic sequence mediating Shh brain enhancer-1 (SBE1) activity. In SBE1 mutant mice, Shh transcription was initiated but not maintained in the ventral midline of the rostral midbrain and caudal diencephalon, yet expression in the zli was unaffected. In the absence of ventral midline Shh, rostral thalamic progenitors (pTH-R) adopted the molecular profile of a more caudal thalamic subtype (pTH-C). Surprisingly, despite their early mis-specification, neurons derived from the pTH-R domain continued to migrate to their proper thalamic nucleus, extended axons along their normal trajectory and expressed some, but not all, of their terminal differentiation markers. Our results, and those of others, suggest a model whereby Shh signaling from distinct spatial and temporal domains in the diencephalon exhibits unique and overlapping functions in the development of discrete classes of thalamic interneurons.
Collapse
Affiliation(s)
- Yongsu Jeong
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cotterell J, Sharpe J. An atlas of gene regulatory networks reveals multiple three-gene mechanisms for interpreting morphogen gradients. Mol Syst Biol 2010; 6:425. [PMID: 21045819 PMCID: PMC3010108 DOI: 10.1038/msb.2010.74] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 08/04/2010] [Indexed: 11/15/2022] Open
Abstract
The interpretation of morphogen gradients is a pivotal concept in developmental biology, and several mechanisms have been proposed to explain how gene regulatory networks (GRNs) achieve concentration-dependent responses. However, the number of different mechanisms that may exist for cells to interpret morphogens, and the importance of design features such as feedback or local cell-cell communication, is unclear. A complete understanding of such systems will require going beyond a case-by-case analysis of real morphogen interpretation mechanisms and mapping out a complete GRN 'design space.' Here, we generate a first atlas of design space for GRNs capable of patterning a homogeneous field of cells into discrete gene expression domains by interpreting a fixed morphogen gradient. We uncover multiple very distinct mechanisms distributed discretely across the atlas, thereby expanding the repertoire of morphogen interpretation network motifs. Analyzing this diverse collection of mechanisms also allows us to predict that local cell-cell communication will rarely be responsible for the basic dose-dependent response of morphogen interpretation networks.
Collapse
Affiliation(s)
- James Cotterell
- EMBL-CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), UPF, Barcelona, Spain
- MRC Human Genetics Unit, Edinburgh, Scotland, UK
| | - James Sharpe
- EMBL-CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), UPF, Barcelona, Spain
- ICREA, Centre for Genomic Regulation (CRG), UPF, Barcelona, Spain
| |
Collapse
|
25
|
Hasan KB, Agarwala S, Ragsdale CW. PHOX2A regulation of oculomotor complex nucleogenesis. Development 2010; 137:1205-13. [PMID: 20215354 PMCID: PMC2835333 DOI: 10.1242/dev.041251] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2010] [Indexed: 11/20/2022]
Abstract
Brain nuclei are spatially organized collections of neurons that share functional properties. Despite being central to vertebrate brain circuitry, little is known about how nuclei are generated during development. We have chosen the chick midbrain oculomotor complex (OMC) as a model with which to study the developmental mechanisms of nucleogenesis. The chick OMC comprises two distinct cell groups: a dorsal Edinger-Westphal nucleus of visceral oculomotor neurons and a ventral nucleus of somatic oculomotor neurons. Genetic studies in mice and humans have established that the homeobox transcription factor gene PHOX2A is required for midbrain motoneuron development. We probed, in forced expression experiments, the capacity of PHOX2A to generate a spatially organized midbrain OMC. We found that exogenous Phox2a delivery to embryonic chick midbrain can drive a complete OMC molecular program, including the production of visceral and somatic motoneurons. Phox2a overexpression was also able to generate ectopic motor nerves. The exit points of such auxiliary nerves were invested with ectopic boundary cap cells and, in four examples, the ectopic nerves were seen to innervate extraocular muscle directly. Finally, Phox2a delivery was able to direct ectopic visceral and somatic motoneurons to their correct native spatial positions, with visceral motoneurons settling close to the ventricular surface and somatic motoneurons migrating deeper into the midbrain. These findings establish that in midbrain, a single transcription factor can both specify motoneuron cell fates and orchestrate the construction of a spatially organized motoneuron nuclear complex.
Collapse
Affiliation(s)
- Khaleda B. Hasan
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Seema Agarwala
- Section of Neurobiology, University of Texas at Austin, Austin TX 78712, USA
| | - Clifton W. Ragsdale
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
26
|
Wakamatsu Y. Overlapped and differential expression of cAMP-dependent kinase-inhibitor isoforms during avian organogenesis period. Dev Growth Differ 2009; 51:707-14. [DOI: 10.1111/j.1440-169x.2009.01130.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Prakash N, Puelles E, Freude K, Trümbach D, Omodei D, Di Salvio M, Sussel L, Ericson J, Sander M, Simeone A, Wurst W. Nkx6-1 controls the identity and fate of red nucleus and oculomotor neurons in the mouse midbrain. Development 2009; 136:2545-55. [PMID: 19592574 PMCID: PMC2729334 DOI: 10.1242/dev.031781] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2009] [Indexed: 11/20/2022]
Abstract
Little is known about the cues controlling the generation of motoneuron populations in the mammalian ventral midbrain. We show that Otx2 provides the crucial anterior-posterior positional information for the generation of red nucleus neurons in the murine midbrain. Moreover, the homeodomain transcription factor Nkx6-1 controls the proper development of the red nucleus and of the oculomotor and trochlear nucleus neurons. Nkx6-1 is expressed in ventral midbrain progenitors and acts as a fate determinant of the Brn3a(+) (also known as Pou4f1) red nucleus neurons. These progenitors are partially dorsalized in the absence of Nkx6-1, and a fraction of their postmitotic offspring adopts an alternative cell fate, as revealed by the activation of Dbx1 and Otx2 in these cells. Nkx6-1 is also expressed in postmitotic Isl1(+) oculomotor and trochlear neurons. Similar to hindbrain visceral (branchio-) motoneurons, Nkx6-1 controls the proper migration and axon outgrowth of these neurons by regulating the expression of at least three axon guidance/neuronal migration molecules. Based on these findings, we provide additional evidence that the developmental mechanism of the oculomotor and trochlear neurons exhibits more similarity with that of special visceral motoneurons than with that controlling the generation of somatic motoneurons located in the murine caudal hindbrain and spinal cord.
Collapse
Affiliation(s)
- Nilima Prakash
- Helmholtz Centre Munich, German Research Centre for Environmental Health (GmbH) and Technical University Munich, Institute of Developmental Genetics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich/Neuherberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Perez-Balaguer A, Puelles E, Wurst W, Martinez S. Shh dependent and independent maintenance of basal midbrain. Mech Dev 2009; 126:301-13. [DOI: 10.1016/j.mod.2009.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 12/21/2022]
|
29
|
Wnt antagonism of Shh facilitates midbrain floor plate neurogenesis. Nat Neurosci 2009; 12:125-31. [PMID: 19122665 DOI: 10.1038/nn.2243] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 11/20/2008] [Indexed: 01/07/2023]
Abstract
The floor plate, an essential ventral midline organizing center that produces the morphogen Shh, has distinct properties along the neuraxis. The neurogenic potential of the floor plate and its underlying mechanisms remain unknown. Using Shh as a driver for lineage analysis, we found that the mouse midbrain, but not the hindbrain, floor plate is neurogenic, giving rise to dopamine (DA) neurons. Distinct spatiotemporal Shh and Wnt expression may distinguish the neurogenetic potential of these structures. We discovered an inhibitory role for Shh: removal of Shh resulted in neurogenesis from the hindbrain midline and, conversely, high doses of Shh inhibited proliferation and DA neuron production in midbrain cultures. We found that Wnt/beta-catenin signaling is necessary and sufficient for antagonizing Shh, DA progenitor marker induction and promotion of dopaminergic neurogenesis. These findings demonstrate how the dynamic interplay of canonical Wnt/beta-catenin signaling and Shh may orchestrate floor plate neurogenesis or a lack thereof.
Collapse
|
30
|
Gale E, Li M. Midbrain dopaminergic neuron fate specification: Of mice and embryonic stem cells. Mol Brain 2008; 1:8. [PMID: 18826576 PMCID: PMC2569927 DOI: 10.1186/1756-6606-1-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 09/30/2008] [Indexed: 01/08/2023] Open
Abstract
The midbrain dopaminergic (mDA) neurons of the substantia nigra and the ventral tegmental area play a fundamental role in the control of voluntary movement and the regulation of emotion, and are severely affected in Parkinson's disease. Recent advances in mouse genetics and vertebrate development have provided us with insight into the genetic cascades involved in the development of mDA neurons, including the induction of mDA neuron progenitors in the ventral mesencephalon, the specification of the mDA neuronal fate and the maintenance of postmitotic mDA neurons. In parallel, rapid progress has been made in the generation of DA neurons from pluripotent stem cells and the development of stem cell-based therapies for Parkinson's disease. Here, we summarize the new findings via the developmental progression of mDA neurons and outline how this knowledge has been exploited to develop novel paradigms for the in vitro generation of these neurons from embryonic stem cells.
Collapse
Affiliation(s)
- Emily Gale
- MRC Clinical Sciences Centre, Imperial College London, London, UK
| | - Meng Li
- MRC Clinical Sciences Centre, Imperial College London, London, UK
| |
Collapse
|
31
|
Blaess S, Stephen D, Joyner AL. Gli3 coordinates three-dimensional patterning and growth of the tectum and cerebellum by integrating Shh and Fgf8 signaling. Development 2008; 135:2093-103. [PMID: 18480159 PMCID: PMC2673693 DOI: 10.1242/dev.015990] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The coordination of anterior-posterior (AP) and dorsal-ventral (DV) patterning of the mesencephalon (mes) and rhombomere 1 (r1) is instrumental for the development of three distinct brain structures: the tectum and cerebellum dorsally and the tegmentum ventrally. Patterning of the mes/r1 is primarily mediated by signaling molecules secreted from two organizers: sonic hedgehog (Shh) from the floor plate (DV) and Fgf8 from the isthmus (AP). Gli3, a zinc-finger transcription factor in the Shh signaling pathway, has been implicated in regulating Fgf8 expression and is therefore a potential candidate for coordinating the action of the two organizers. By inactivating mouse Gli3 at successive embryonic time points in vivo, we uncovered the extent and the underlying mechanism of Gli3 function in the mes/r1. We demonstrate that before E9.0, Gli3 is required for establishing a distinct posterior tectum, isthmus and cerebellum, but does not play a role in the development of the tegmentum. Between E9.0 and E11.0, Gli3 continues to be required for isthmus and cerebellum development, but primarily for defining the cerebellar foliation pattern. We show that Gli3 regulates patterning of the isthmus and cerebellar anlage by confining Fgf8 expression to the isthmus, and attenuates growth of dorsal r1 (before E11.0) and the dorsal mes and isthmus (beyond E11.0) through regulation of cell proliferation and viability. In conclusion, our results show that Gli3 is essential for the coordinated three-dimensional patterning and growth of the dorsal mes/r1.
Collapse
Affiliation(s)
- Sandra Blaess
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center 1275 York Avenue, Box 511, New York, NY 10021, Tel: 1 212-639-3962, Fax: 1 212-717-3738
| | - Daniel Stephen
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center 1275 York Avenue, Box 511, New York, NY 10021, Tel: 1 212-639-3962, Fax: 1 212-717-3738
| | - Alexandra L. Joyner
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center 1275 York Avenue, Box 511, New York, NY 10021, Tel: 1 212-639-3962, Fax: 1 212-717-3738
| |
Collapse
|
32
|
Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T, Jakobsen KS, Cavalier-Smith T. Multigene phylogeny of choanozoa and the origin of animals. PLoS One 2008; 3:e2098. [PMID: 18461162 PMCID: PMC2346548 DOI: 10.1371/journal.pone.0002098] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 04/07/2008] [Indexed: 11/19/2022] Open
Abstract
Animals are evolutionarily related to fungi and to the predominantly unicellular protozoan phylum Choanozoa, together known as opisthokonts. To establish the sequence of events when animals evolved from unicellular ancestors, and understand those key evolutionary transitions, we need to establish which choanozoans are most closely related to animals and also the evolutionary position of each choanozoan group within the opisthokont phylogenetic tree. Here we focus on Ministeria vibrans, a minute bacteria-eating cell with slender radiating tentacles. Single-gene trees suggested that it is either the closest unicellular relative of animals or else sister to choanoflagellates, traditionally considered likely animal ancestors. Sequencing thousands of Ministeria protein genes now reveals about 14 with domains of key significance for animal cell biology, including several previously unknown from deeply diverging Choanozoa, e.g. domains involved in hedgehog, Notch and tyrosine kinase signaling or cell adhesion (cadherin). Phylogenetic trees using 78 proteins show that Ministeria is not sister to animals or choanoflagellates (themselves sisters to animals), but to Capsaspora, another protozoan with thread-like (filose) tentacles. The Ministeria/Capsaspora clade (new class Filasterea) is sister to animals and choanoflagellates, these three groups forming a novel clade (filozoa) whose ancestor presumably evolved filose tentacles well before they aggregated as a periciliary collar in the choanoflagellate/sponge common ancestor. Our trees show ichthyosporean choanozoans as sisters to filozoa; a fusion between ubiquitin and ribosomal small subunit S30 protein genes unifies all holozoa (filozoa plus Ichthyosporea), being absent in earlier branching eukaryotes. Thus, several successive evolutionary innovations occurred among their unicellular closest relatives prior to the origin of the multicellular body-plan of animals.
Collapse
|
33
|
Fogel JL, Chiang C, Huang X, Agarwala S. Ventral specification and perturbed boundary formation in the mouse midbrain in the absence of Hedgehog signaling. Dev Dyn 2008; 237:1359-72. [PMID: 18429041 PMCID: PMC2586936 DOI: 10.1002/dvdy.21536] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although Hedgehog (HH) signaling plays a critical role in patterning the ventral midbrain, its role in early midbrain specification is not known. We examined the midbrains of sonic hedgehog (Shh) and smoothened (Smo) mutant mice where HH signaling is respectively attenuated and eliminated. We show that some ventral (Evx1+) cell fates are specified in the Shh-/- mouse in a Ptc1- and Gli1-independent manner. HH-independent ventral midbrain induction was further confirmed by the presence of a Pax7-negative ventral midbrain territory in both Shh-/- and Smo-/- mice at and before embryonic day (E) 8.5. Midbrain signaling centers are severely disrupted in the Shh-/- mutant. Interestingly, dorsal markers are up-regulated (Wnt1, Gdf7, Pax7), down-regulated (Lfng), or otherwise altered (Zic1) in the Shh-/- midbrain. Together with the increased cell death seen specifically in Shh-/- dorsal midbrains (E8.5-E9), our results suggest specific regulation of dorsal patterning by SHH, rather than a simple deregulation due to its absence.
Collapse
Affiliation(s)
- Jennifer L Fogel
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712-0248, USA
| | | | | | | |
Collapse
|
34
|
Fedtsova N, Quina LA, Wang S, Turner EE. Regulation of the development of tectal neurons and their projections by transcription factors Brn3a and Pax7. Dev Biol 2008; 316:6-20. [PMID: 18280463 PMCID: PMC2396191 DOI: 10.1016/j.ydbio.2007.12.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 12/17/2007] [Accepted: 12/17/2007] [Indexed: 11/18/2022]
Abstract
The rostral part of the dorsal midbrain, known as the superior colliculus in mammals or the optic tectum in birds, receives a substantial retinal input and plays a diverse and important role in sensorimotor integration. However, little is known about the development of specific subtypes of neurons in the tectum, particularly those which contribute tectofugal projections to the thalamus, isthmic region, and hindbrain. Here we show that two homeodomain transcription factors, Brn3a and Pax7, are expressed in mutually exclusive patterns in the developing and mature avian midbrain. Neurons expressing these factors are generated at characteristic developmental times, and have specific laminar fates within the tectum. In mice expressing betagalactosidase targeted to the Pou4f1 (Brn3a) locus, Brn3a-expressing neurons contribute to the ipsilateral but not the contralateral tectofugal projections to the hindbrain. Using misexpression of Brn3a and Pax7 by electroporation in the chick tectum, combined with GFP reporters, we show that Brn3a determines the laminar fate of subsets of tectal neurons. Furthermore, Brn3a regulates the development of neurons contributing to specific ascending and descending tectofugal pathways, while Pax7 globally represses the development of tectofugal projections to nearly all brain structures.
Collapse
Affiliation(s)
- Natalia Fedtsova
- Department of Psychiatry, University of California, San Diego, CA 92093-0603, USA
| | | | | | | |
Collapse
|
35
|
Aglyamova GV, Agarwala S. Gene expression analysis of the hedgehog signaling cascade in the chick midbrain and spinal cord. Dev Dyn 2007; 236:1363-73. [PMID: 17436280 DOI: 10.1002/dvdy.21146] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The signaling molecule Sonic Hedgehog (SHH) plays a critical role in patterning the ventral midbrain of vertebrates. Our recent studies have established that the requirement for Hedgehog (HH) signaling in the chick midbrain is modulated spatially and temporally in a complex manner across the midbrain anlage. Unfortunately, the patterns of expression of downstream regulators that might modulate the HH signal in the midbrain are not currently known. To fill this gap, we have examined across time, the expression pattern of 14 genes that function in the HH signaling cascade in the midbrain and spinal cord. Our results suggest that SHH expression in the axial mesendoderm begins before the expression of known HH receptors/HH-binding proteins (e.g., PTC1, PTC2, HHIP, BOC, MEGALIN). In the midbrain, PTC and GLI genes are expressed and then eliminated very early from the ventral midline. However, they exhibit high and persistent expression in the midbrain region circumscribing the SHH source. Intriguingly, multiple HH-binding proteins (BOC, MEGALIN) and HH effectors (GLI1-3, SMO, SUFU, DZIP) are expressed in the dorsal midbrain and the midbrain-hindbrain boundary. Finally, we report for the first time that IHH is expressed in intermediate regions of the spinal cord, where its expression does not overlap with that of SHH.
Collapse
Affiliation(s)
- Galina V Aglyamova
- Section of Neurobiology, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|