1
|
Lu Y, Qin M, Qi X, Yang M, Zhai F, Zhang J, Yan Z, Yan L, Qiao J, Yuan P. Sex differences in human pre-gastrulation embryos. SCIENCE CHINA. LIFE SCIENCES 2025; 68:397-415. [PMID: 39327393 DOI: 10.1007/s11427-024-2721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
Human fetuses exhibit notable sex differences in growth rate and response to the intrauterine environment, yet their origins and underlying mechanisms remain uncertain. Here, we conduct a detailed investigation of sex differences in human pre-gastrulation embryos. The lower methylation and incomplete inactivation of the X chromosome in females, as well as the sex-specific cell-cell communication patterns, contribute to sex-differential transcription. Male trophectoderm is more inclined toward syncytiotrophoblast differentiation and exhibits a stronger hormone secretion capacity, while female trophectoderm tends to retain cytotrophoblast program with stronger mitochondrial function as well as higher vasculogenesis and immunotolerance signals. Male primitive endoderm initiates the anterior visceral endoderm transcriptional program earlier than females. The cell cycle activities of the epiblast and primitive endoderm are higher in males compared to females, while the situation is opposite in the trophectoderm. In conclusion, our study provides in-depth insights into the sex differences in human pre-gastrulation embryos and contributes to unraveling the origins of the sex differences in human fetal development.
Collapse
Affiliation(s)
- Yongjie Lu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Meng Qin
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xintong Qi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ming Yang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Fan Zhai
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jiaqi Zhang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Zhiqiang Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
| | - Liying Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Peng Yuan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
2
|
Ballasy N, Apantaku I, Dean W, Hemberger M. Off to a good start: The importance of the placental exchange surface - Lessons from the mouse. Dev Biol 2025; 517:248-264. [PMID: 39491740 DOI: 10.1016/j.ydbio.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The role of the chorio-allantoic placenta as the critical nutrient- and oxygen-supplying organ to nourish the demands of the fetus has been well recognized. This function relies on the successful establishment of the placental feto-maternal exchange unit, or interhaemal barrier, across which all nutrients as well as waste products must pass to cross from the maternal to the fetal blood circulation, or vice versa, respectively. As a consequence, defects in the establishment of this elaborate interface lead to fetal growth retardation or even embryonic lethality, depending on the severity of the defect. Beyond this essential role, however, it has also emerged that the functionality of the feto-maternal interface dictates the proper development of specific embryonic organs, with tightest links observed to the formation of the heart. In this article, we build on the foundational strength of the mouse as experimental model in which the placental causality of embryonic defects can be genetically proven. We discuss in detail the formation of the interhaemal barrier that makes up the labyrinth layer of the murine placenta, including insights into drivers of its formation and the interdependence of the cell types that make up this essential interface, from in vivo and in vitro data using mouse trophoblast stem cells. We highlight mouse genetic tools that enable the elucidation of cause-effect relationships between defects driven by either the trophoblast cells of the placenta or by embryonic cell types. We specifically emphasize gene knockouts for which a placental causality of embryonic heart defects has been demonstrated. This in-depth perspective provides much-needed insights while highlighting remaining gaps in knowledge that are essential for gaining a better understanding of the multi-facetted roles of the placenta in setting us up for a healthy start in life well beyond nutritional support alone.
Collapse
Affiliation(s)
- Noura Ballasy
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Ifeoluwa Apantaku
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Wendy Dean
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Dept. of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Myriam Hemberger
- Dept. of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
3
|
White M, Arif-Pardy J, Bloise E, Connor KL. Identification of novel nutrient sensitive human yolk sac functions required for embryogenesis. Sci Rep 2024; 14:29734. [PMID: 39613845 DOI: 10.1038/s41598-024-81061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
The human yolk sac (hYS) is essential for embryo nutrient biosynthesis/transport and development. However, there lacks a comprehensive study of hYS nutrient-gene interactions. Here we performed a secondary analysis of hYS transcript profiles (n = 9 samples) to identify nutrient-sensitive hYS genes and regulatory networks, including those that associate with adverse perinatal phenotypes with embryonic origins. Overall, 14.8% highly expressed hYS genes are nutrient-sensitive; the most common nutrient cofactors for hYS genes are metals and B vitamins. Functional analysis of highly expressed hYS genes reveals that nutrient-sensitive hYS genes are more likely to be involved in metabolic functions than hYS genes that are not nutrient-sensitive. Through nutrient-sensitive gene network analysis, we find that four nutrient-sensitive transcription regulators in the hYS (with zinc and/or magnesium cofactors) are predicted to collectively regulate 30.9% of highly expressed hYS genes. Lastly, we identify 117 nutrient-sensitive hYS genes that associate with an adverse perinatal outcome with embryonic origins. Among these, the greatest number of nutrient-sensitive hYS genes are linked to congenital heart defects (n = 54 genes), followed by microcephaly (n = 37). Collectively, our study characterises nutrient-sensitive hYS functions and improves understanding of the ways in which nutrient-gene interactions in the hYS may influence both typical and pathological development.
Collapse
Affiliation(s)
- Marina White
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Jayden Arif-Pardy
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Enrrico Bloise
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kristin L Connor
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Wang T, Ji Z, Xiao X, Zhu D, Li H, Li X. Identification of reproduction-related genes in the hypothalamus of sheep (Ovis aries) using the nanopore full-length transcriptome sequencing technology. Sci Rep 2024; 14:27884. [PMID: 39537852 PMCID: PMC11561102 DOI: 10.1038/s41598-024-79140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
The hypothalamus is the coordination center of the sheep (Ovis aries) endocrine system and plays an important role in the reproductive processes of sheep. However, the specific mechanism by which the hypothalamus affects sheep reproductive performance remains unclear. In this study, the hypothalamus tissues of high-reproduction small-tailed Han sheep and low-reproduction Wadi sheep were collected, and full-length transcriptome sequencing by Oxford Nanopore Technologies (ONT) was performed to explore the key functional genes associated with sheep fecundity. The differentially expressed genes (DEGs) were screened and enriched using DESeq2 software through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Approximately 41.75 million clean reads were obtained from the hypothalamus tissues of high- and low-reproduction sheep, after quality control, 32,194,872 high-quality full-length sequences and 2,114 DEGs were obtained, including 1,247 upregulated genes and 867 downregulated genes (P adjust < 0.05, |log2FC|>1). Some DEGs were enriched in oocyte meiosis, progesterone-mediated oocyte maturation, estrogen signaling pathway, GnRH signaling pathway and other development-related signaling pathways. The constructed protein-protein interaction (PPI) networks identified the reproduction-related genes, such as GSK3B, PPP2R1B, and PPP2CB. The results of this study will enrich and supplement the genomic information available for small-tailed Han sheep and Wadi sheep, as well as expand the understanding of the molecular mechanisms underlying the regulation of animal reproduction by the hypothalamus, and they also provided reference data for further investigations on the mechanism of high reproduction in sheep.
Collapse
Affiliation(s)
- Tong Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key laboratory for Livestock Germplasm Innovation and Utilization, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Road, Taian, 271018, Shandong, People's Republic of China
| | - Zhibin Ji
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key laboratory for Livestock Germplasm Innovation and Utilization, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Road, Taian, 271018, Shandong, People's Republic of China.
| | - Xue Xiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key laboratory for Livestock Germplasm Innovation and Utilization, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Road, Taian, 271018, Shandong, People's Republic of China
| | - Dejie Zhu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key laboratory for Livestock Germplasm Innovation and Utilization, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Road, Taian, 271018, Shandong, People's Republic of China
| | - Hengyi Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key laboratory for Livestock Germplasm Innovation and Utilization, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Road, Taian, 271018, Shandong, People's Republic of China
| | - Xinyu Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key laboratory for Livestock Germplasm Innovation and Utilization, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Road, Taian, 271018, Shandong, People's Republic of China
| |
Collapse
|
5
|
Chen J, Sun Q, Wang Y, Yin W. Revealing the key role of cuproptosis in osteoporosis via the bioinformatic analysis and experimental validation of cuproptosis-related genes. Mamm Genome 2024; 35:414-431. [PMID: 38904833 DOI: 10.1007/s00335-024-10049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
The incidence of osteoporosis has rapidly increased owing to the ageing population. Cuproptosis, a novel mechanism that regulates cell death, may be a new therapeutic approach. However, the relevance of cuproptosis in the immune microenvironment and osteoporosis immunotherapy is still unknown. We intersected the differentially expressed genes from osteoporotic samples with 75 cuproptosis-related genes to identify 16 significantly expressed cuproptosis genes. We further explored the connection between the cuproptosis pattern, immune microenvironment, and immunotherapy. The weighted gene co-expression network analysis algorithm was used to identify cuproptosis phenotype-associated genes, and we used quantitative real-time PCR and immunohistochemistry in mouse femur tissues to verify hub gene (MAP2K2, FDX1, COX19, VEGFA, CDKN2A, and NFE2L2) expression. Six hub genes and 59 cuproptosis phenotype-associated genes involved in immunisation were identified among the osteoporosis and control groups, and the majority of these 59 genes were enriched in the inflammatory response, as well as in signal transducers, Janus kinase, and transcription pathway activators. In addition, two different clusters of cuproptosis were found, and immune infiltration analysis showed that gene Cluster 1 had a greater immune score and immune infiltration level. Further analysis revealed that three key genes (COX19, MAP2K2, and FDX1) were highly correlated with immune cell infiltration, and external experiments validated the association of these three genes with the prognosis of osteoporosis. We used the three key mRNAs COX19, MAP2K2, and FDX1 as a classification model that may systematically elucidate the complex connection between cuproptosis and the immune microenvironment of osteoporosis. New insights into osteoporosis pathogenesis and immunotherapy prospects may be gained from this study.
Collapse
Affiliation(s)
- Jianxing Chen
- Department of Joint Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Qifeng Sun
- Department of Joint Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Yi Wang
- Department of Joint Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Wenzhe Yin
- Department of Joint Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|
6
|
Zhang Y, Wei Z, Zhang M, Wang S, Gao T, Huang H, Zhang T, Cai H, Liu X, Fu T, Liang D. Population Structure and Selection Signal Analysis of Nanyang Cattle Based on Whole-Genome Sequencing Data. Genes (Basel) 2024; 15:351. [PMID: 38540410 PMCID: PMC10970060 DOI: 10.3390/genes15030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 06/14/2024] Open
Abstract
With a rich breeding history, Nanyang cattle (NY cattle) have undergone extensive natural and artificial selection, resulting in distinctive traits such as high fertility, excellent meat quality, and disease resistance. This makes them an ideal model for studying the mechanisms of environmental adaptability. To assess the population structure and genetic diversity of NY cattle, we performed whole-genome resequencing on 30 individuals. These data were then compared with published whole-genome resequencing data from 432 cattle globally. The results indicate that the genetic structure of NY cattle is significantly different from European commercial breeds and is more similar to North-Central Chinese breeds. Furthermore, among all breeds, NY cattle exhibit the highest genetic diversity and the lowest population inbreeding levels. A genome-wide selection signal analysis of NY cattle and European commercial breeds using Fst, θπ-ratio, and θπ methods revealed significant selection signals in genes associated with reproductive performance and immunity. Our functional annotation analysis suggests that these genes may be responsible for reproduction (MAP2K2, PGR, and GSE1), immune response (NCOA2, HSF1, and PAX5), and olfaction (TAS1R3). We provide a comprehensive overview of sequence variations in the NY cattle genome, revealing insights into the population structure and genetic diversity of NY cattle. Additionally, we identify candidate genes associated with important economic traits, offering valuable references for future conservation and breeding efforts of NY cattle.
Collapse
Affiliation(s)
- Yan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| | - Zhitong Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| | - Man Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| | - Shiwei Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| | - Tengyun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| | - Hetian Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| | - Tianliu Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| | - Xian Liu
- Henan Animal Husbandry Station, Zhengzhou 450008, China;
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| | - Dong Liang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| |
Collapse
|
7
|
Ghosh A, Kumar R, Kumar RP, Ray S, Saha A, Roy N, Dasgupta P, Marsh C, Paul S. The GATA transcriptional program dictates cell fate equilibrium to establish the maternal-fetal exchange interface and fetal development. Proc Natl Acad Sci U S A 2024; 121:e2310502121. [PMID: 38346193 PMCID: PMC10895349 DOI: 10.1073/pnas.2310502121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The placenta establishes a maternal-fetal exchange interface to transport nutrients and gases between the mother and the fetus. Establishment of this exchange interface relies on the development of multinucleated syncytiotrophoblasts (SynT) from trophoblast progenitors, and defect in SynT development often leads to pregnancy failure and impaired embryonic development. Here, we show that mouse embryos with conditional deletion of transcription factors GATA2 and GATA3 in labyrinth trophoblast progenitors (LaTPs) have underdeveloped placenta and die by ~embryonic day 9.5. Single-cell RNA sequencing analysis revealed excessive accumulation of multipotent LaTPs upon conditional deletion of GATA factors. The GATA factor-deleted multipotent progenitors were unable to differentiate into matured SynTs. We also show that the GATA factor-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. Loss of either GATA2 or GATA3 in cytotrophoblast-derived human trophoblast stem cells (human TSCs) drastically inhibits SynT differentiation potential. Identification of GATA2 and GATA3 target genes along with comparative bioinformatics analyses revealed that GATA factors directly regulate hundreds of common genes in human TSCs, including genes that are essential for SynT development and implicated in preeclampsia and fetal growth retardation. Thus, our study uncovers a conserved molecular mechanism, in which coordinated function of GATA2 and GATA3 promotes trophoblast progenitor-to-SynT commitment, ensuring establishment of the maternal-fetal exchange interface.
Collapse
Affiliation(s)
- Ananya Ghosh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Rajnish Kumar
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ram P Kumar
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
| | - Soma Ray
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Abhik Saha
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Namrata Roy
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Purbasa Dasgupta
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Courtney Marsh
- Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
8
|
Islam M, Samal A, Davis DJ, Behura SK. Ablation of placental REST deregulates fetal brain metabolism and impacts gene expression of the offspring brain at the postnatal and adult stages. FASEB J 2024; 38:e23349. [PMID: 38069914 DOI: 10.1096/fj.202301344r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
In this study, the transcriptional repressor REST (Repressor Element 1 Silencing Transcription factor) was ablated in the mouse placenta to investigate molecular and cellular impacts on the offspring brain at different life stages. Ablation of placental REST deregulated several brain metabolites, including glucose and lactate that fuel brain energy, vitamin C (ascorbic acid) that functions in the epigenetic programming of the brain during postnatal development, and glutamate and creatine that help the brain to respond to stress conditions during adult life. Bulk RNA-seq analysis showed that a lack of placental REST persistently altered multiple transport genes, including those related to oxygen transportation in the offspring brain. While metabolic genes were impacted in the postnatal brain, different stress response genes were activated in the adult brain. DNA methylation was also impacted in the adult brain due to the loss of placental REST, but in a sex-biased manner. Single-nuclei RNA-seq analysis showed that specific cell types of the brain, particularly those of the choroid plexus and ependyma, which play critical roles in producing cerebrospinal fluid and maintaining metabolic homeostasis, were significantly impacted due to the loss of placental REST. These cells showed significant differential expression of genes associated with the metabotropic (G coupled protein) and ionotropic (ligand-gated ion channel) glutamate receptors, suggesting an impact of ablation of placental REST on the glutamatergic signaling of the offspring brain. The study expands our understanding of placental influences on the offspring brain.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Ananya Samal
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Daniel J Davis
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
- Animal Modeling Core, University of Missouri, Columbia, Missouri, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
- Interdisciplnary Reproductive and Health Group, University of Missouri, Columbia, Missouri, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
9
|
Opichka MA, Livergood MC, Balapattabi K, Ritter ML, Brozoski DT, Wackman KK, Lu KT, Kozak KN, Wells C, Fogo AB, Gibson-Corley KN, Kwitek AE, Sigmund CD, McIntosh JJ, Grobe JL. Mitochondrial-targeted antioxidant attenuates preeclampsia-like phenotypes induced by syncytiotrophoblast-specific Gαq signaling. SCIENCE ADVANCES 2023; 9:eadg8118. [PMID: 38039359 PMCID: PMC10691776 DOI: 10.1126/sciadv.adg8118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023]
Abstract
Syncytiotrophoblast stress is theorized to drive development of preeclampsia, but its molecular causes and consequences remain largely undefined. Multiple hormones implicated in preeclampsia signal via the Gαq cascade, leading to the hypothesis that excess Gαq signaling within the syncytiotrophoblast may contribute. First, we present data supporting increased Gαq signaling and antioxidant responses within villous and syncytiotrophoblast samples of human preeclamptic placenta. Second, Gαq was activated in mouse placenta using Cre-lox and DREADD methodologies. Syncytiotrophoblast-restricted Gαq activation caused hypertension, kidney damage, proteinuria, elevated circulating proinflammatory factors, decreased placental vascularization, diminished spiral artery diameter, and augmented responses to mitochondrial-derived superoxide. Administration of the mitochondrial-targeted antioxidant Mitoquinone attenuated maternal proteinuria, lowered circulating inflammatory and anti-angiogenic mediators, and maintained placental vascularization. These data demonstrate a causal relationship between syncytiotrophoblast stress and the development of preeclampsia and identify elevated Gαq signaling and mitochondrial reactive oxygen species as a cause of this stress.
Collapse
Affiliation(s)
- Megan A. Opichka
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
| | | | | | | | | | - Kelsey K. Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
| | - Ko-Ting Lu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
| | - Kaleigh N. Kozak
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, USA
| | - Clive Wells
- Electron Microscopy Core Facility, Medical College of Wisconsin, Milwaukee, USA
| | - Agnes B. Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Katherine N. Gibson-Corley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Anne E. Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, USA
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, USA
| | - Jennifer J. McIntosh
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, USA
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
10
|
Bi S, Tu Z, Chen D, Zhang S. Histone modifications in embryo implantation and placentation: insights from mouse models. Front Endocrinol (Lausanne) 2023; 14:1229862. [PMID: 37600694 PMCID: PMC10436591 DOI: 10.3389/fendo.2023.1229862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Embryo implantation and placentation play pivotal roles in pregnancy by facilitating crucial maternal-fetal interactions. These dynamic processes involve significant alterations in gene expression profiles within the endometrium and trophoblast lineages. Epigenetics regulatory mechanisms, such as DNA methylation, histone modification, chromatin remodeling, and microRNA expression, act as regulatory switches to modulate gene activity, and have been implicated in establishing a successful pregnancy. Exploring the alterations in these epigenetic modifications can provide valuable insights for the development of therapeutic strategies targeting complications related to pregnancy. However, our current understanding of these mechanisms during key gestational stages remains incomplete. This review focuses on recent advancements in the study of histone modifications during embryo implantation and placentation, while also highlighting future research directions in this field.
Collapse
Affiliation(s)
- Shilei Bi
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Zhaowei Tu
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Dunjin Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Shuang Zhang
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| |
Collapse
|
11
|
A Comparison of the Immunometabolic Effect of Antibiotics and Plant Extracts in a Chicken Macrophage-like Cell Line during a Salmonella Enteritidis Challenge. Antibiotics (Basel) 2023; 12:antibiotics12020357. [PMID: 36830268 PMCID: PMC9952652 DOI: 10.3390/antibiotics12020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Immunometabolic modulation of macrophages can play an important role in the innate immune response of chickens triggered with a multiplicity of insults. In this study, the immunometabolic role of two antibiotics (oxytetracycline and gentamicin) and four plant extracts (thyme essential oil, grape seed extract, garlic oil, and capsicum oleoresin) were investigated on a chicken macrophage-like cell line (HD11) during a Salmonella Enteritidis infection. To study the effect of these substances, kinome peptide array analysis, Seahorse metabolic assay, and gene expression techniques were employed. Oxytetracycline, to which the bacterial strain was resistant, thyme essential oil, and capsicum oleoresin did not show any noteworthy immunometabolic effect. Garlic oil affected glycolysis, but this change was not detected by the kinome analysis. Gentamicin and grape seed extract showed the best immunometabolic profile among treatments, being able to both help the host with the activation of immune response pathways and with maintaining a less inflammatory status from a metabolic point of view.
Collapse
|
12
|
Sallais J, Park C, Alahari S, Porter T, Liu R, Kurt M, Farrell A, Post M, Caniggia I. HIF1 inhibitor acriflavine rescues early-onset preeclampsia phenotype in mice lacking placental prolyl hydroxylase domain protein 2. JCI Insight 2022; 7:158908. [PMID: 36227697 PMCID: PMC9746916 DOI: 10.1172/jci.insight.158908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia is a serious pregnancy disorder that lacks effective treatments other than delivery. Improper sensing of oxygen changes during placentation by prolyl hydroxylases (PHDs), specifically PHD2, causes placental hypoxia-inducible factor-1 (HIF1) buildup and abnormal downstream signaling in early-onset preeclampsia, yet therapeutic targeting of HIF1 has never been attempted. Here we generated a conditional (placenta-specific) knockout of Phd2 in mice (Phd2-/- cKO) to reproduce HIF1 excess and to assess anti-HIF therapy. Conditional deletion of Phd2 in the junctional zone during pregnancy increased placental HIF1 content, resulting in abnormal placentation, impaired remodeling of the uterine spiral arteries, and fetal growth restriction. Pregnant dams developed new-onset hypertension at midgestation (E9.5) in addition to proteinuria and renal and cardiac pathology, hallmarks of severe preeclampsia in humans. Daily injection of acriflavine, a small molecule inhibitor of HIF1, to pregnant Phd2-/- cKO mice from E7.5 (prior to hypertension) or E10.5 (after hypertension had been established) to E14.5 corrected placental dysmorphologies and improved fetal growth. Moreover, it reduced maternal blood pressure and reverted renal and myocardial pathology. Thus, therapeutic targeting of the HIF pathway may improve placental development and function, as well as maternal and fetal health, in preeclampsia.
Collapse
Affiliation(s)
- Julien Sallais
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Institute of Medical Sciences, and
| | - Chanho Park
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Ontario, Canada
| | - Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Ontario, Canada
| | - Tyler Porter
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Ruizhe Liu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Ontario, Canada
| | - Merve Kurt
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Abby Farrell
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Institute of Medical Sciences, and
| | - Martin Post
- Institute of Medical Sciences, and,Department of Physiology, University of Toronto, Ontario, Canada.,Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Institute of Medical Sciences, and,Department of Physiology, University of Toronto, Ontario, Canada.,Department of Obstetrics & Gynaecology, University of Toronto, Ontario, Canada
| |
Collapse
|
13
|
Cao C, Fleming MD. Loss of the placental iron exporter ferroportin 1 causes embryonic demise in late-gestation mouse pregnancy. Development 2022; 149:285826. [PMID: 36398730 DOI: 10.1242/dev.201160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Fetal development relies on adequate iron supply by the placenta. The placental syncytiotrophoblasts (SCTB) express high levels of iron transporters, including ferroportin1 (Fpn1). Whether they are essential in the placenta has not been tested directly, mainly due to the lack of gene manipulation tools in SCTB. Here, we aimed to generate a SCTB-specific Cre mouse and use it to determine the role of placental Fpn1. Using CRISPR/Cas9 technology, we created a syncytin b (Synb) Cre line (SynbCre) targeting the fetal-facing SCTB layer in mouse placental labyrinth. SynbCre deleted Fpn1 in late gestation mouse placentas reliably with high efficiency. Embryos without placental Fpn1 were pale and runted, and died before birth. Fpn1 null placentas had reduced transferrin receptor expression, increased oxidative stress and detoxification responses, and accumulated ferritin in the SCTB instead of the fetal endothelium. In summary, we demonstrate that SynbCre is an effective and specific tool to investigate placental gene function in vivo. The loss of Fpn1 in late gestation mouse placenta is embryonically lethal, providing direct evidence for an essential role of Fpn1 in placental iron transport.
Collapse
Affiliation(s)
- Chang Cao
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
14
|
Wang X, Liu S. Endogenous Jaagsiekte sheep retrovirus envelope protein promotes sheep trophoblast cell fusion by activating PKA/MEK/ERK1/2 signaling. Theriogenology 2022; 193:58-67. [PMID: 36152587 DOI: 10.1016/j.theriogenology.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Endogenous Jaagsiekte sheep retrovirus envelope protein (enJSRV-Env) plays an important role in trophoblast cell fusion in sheep. However, the underlying mechanism remains unclear. METHODS Primary endometrial luminal epithelial cells (LECs) were isolated from the sheep uterus and cocultured with sheep trophoblast cells (STCs). Giemsa staining was conducted to count multinucleated cells in the coculture system. Gain- and loss-of-function assays were performed to explore the role of enJSRV-Env in trophoblast cell fusion in the coculture system. Co-immunoprecipitation and mass spectrometry were carried out to identify the interacting partner of enJSRV-Env in the cocultures. Western blot analysis were conducted to determine the activation of protein kinase A (PKA)/mitogen-activated extracellular signal-regulated kinase (MEK)/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. RESULTS Primary LECs were identified by the expression of epithelial marker cytokeratin 18. Overexpression of enJSRV-Env promoted the formation of multinucleated cells in the coculture system. enJSRV-Env activated and physically interacted with PKA, along with the activation of MEK/ERK1/2 signaling. PKA inhibition completely reversed enJSRV-Env-induced MEK/ERK1/2 activation, and ERK1/2 inhibition abolished enJSRV-Env-induced formation of multinucleated cells in the coculture system. CONCLUSION enJSRV-Env promotes trophoblast cell fusion in the sheep placenta by activating PKA/MEK/ERK1/2 signaling. This finding reveals a novel mechanism underlying the contribution of enJSRV-Env to trophoblast cell fusion during placental morphogenesis.
Collapse
Affiliation(s)
- Xiaojuan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China; Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010018, China
| | - Shuying Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China; Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China.
| |
Collapse
|
15
|
Du Y, Cai Z, Zhou G, Liang W, Man Q, Wang W. Perfluorooctanoic acid exposure increases both proliferation and apoptosis of human placental trophoblast cells mediated by ER stress-induced ROS or UPR pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113508. [PMID: 35427876 DOI: 10.1016/j.ecoenv.2022.113508] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Perfluorooctanoate acid (PFOA) is a highly persistent and widespread chemical in the environment. PFOA serum levels in pregnant women are positively associated with an increased risk of placenta-related disorders. However, the mechanism of PFOA cytotoxicity involved in placental cells and cellular responses such as ER stress remains poorly understood. In this study, we studied the cellular toxicity of PFOA with a focus on proliferation and apoptosis in a human placental trophoblast cell line. Cell viability, number, apoptosis, stress response, activation of the involved signaling pathways were assessed. Our results showed PFOA affected cell viability, proliferation and also resulted in apoptosis. Besides, both pro-proliferation and pro-apoptosis effects were attenuated by endoplasmic reticulum (ER) stress inhibitors. Further experiments demonstrated that two different signaling pathways were activated by PFOA-induced ER stress and involved in PFOA toxicity: the reactive oxygen species (ROS)-dependent ERK signaling triggered trophoblast proliferation, while the ATF4-dependent C/EBP homologous protein (CHOP) signaling was the trigger of apoptosis. We conclude that PFOA-induced ER stress is the trigger of proliferation and apoptosis of trophoblast via ROS or UPR signaling pathway, which leads to the altered balance critical to the normal development and function of the placenta.
Collapse
Affiliation(s)
- Yatao Du
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Zhenzhen Cai
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Guangdi Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Wei Liang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Weiye Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China.
| |
Collapse
|
16
|
Arthurs AL, Jankovic-Karasoulos T, Smith MD, Roberts CT. Circular RNAs in Pregnancy and the Placenta. Int J Mol Sci 2022; 23:ijms23094551. [PMID: 35562943 PMCID: PMC9100345 DOI: 10.3390/ijms23094551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
The emerging field of circular RNAs (circRNAs) has identified their novel roles in the development and function of many cancers and inspired the interest of many researchers. circRNAs are also found throughout the healthy body, as well as in other pathological states, but while research into the function and abundance of circRNAs has progressed, our overall understanding of these molecules remains primitive. Importantly, recent studies are elucidating new roles for circRNAs in pregnancy, particularly in the placenta. Given that many of the genes responsible for circRNA production in cancer are also highly expressed in the placenta, it is likely that the same genes act in the production of circRNAs in the placenta. Furthermore, placental development can be referred to as ‘controlled cancer’, as it shares many key signalling pathways and hallmarks with tumour growth and metastasis. Hence, the roles of circRNAs in this field are important to study with respect to pregnancy success but also may provide novel insights for cancer progression. This review illuminates the known roles of circRNAs in pregnancy and the placenta, as well as demonstrating differential placental expressions of circRNAs between complicated and uncomplicated pregnancies.
Collapse
|
17
|
Houde N, Beuret L, Bonaud A, Fortier-Beaulieu SP, Truchon-Landry K, Aoidi R, Pic É, Alouche N, Rondeau V, Schlecht-Louf G, Balabanian K, Espéli M, Charron J. Fine-tuning of MEK signaling is pivotal for limiting B and T cell activation. Cell Rep 2022; 38:110223. [PMID: 35021072 DOI: 10.1016/j.celrep.2021.110223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 10/05/2021] [Accepted: 12/15/2021] [Indexed: 01/17/2023] Open
Abstract
MEK1 and MEK2, the only known activators of ERK, are attractive therapeutic candidates for both cancer and autoimmune diseases. However, how MEK signaling finely regulates immune cell activation is only partially understood. To address this question, we specifically delete Mek1 in hematopoietic cells in the Mek2 null background. Characterization of an allelic series of Mek mutants reveals the presence of distinct degrees of spontaneous B cell activation, which are inversely proportional to the levels of MEK proteins and ERK activation. While Mek1 and Mek2 null mutants have a normal lifespan, 1Mek1 and 1Mek2 mutants retaining only one functional Mek1 or Mek2 allele in hematopoietic cell lineages die from glomerulonephritis and lymphoproliferative disorders, respectively. This establishes that the fine-tuning of the ERK/MAPK pathway is critical to regulate B and T cell activation and function and that each MEK isoform plays distinct roles during lymphocyte activation and disease development.
Collapse
Affiliation(s)
- Nicolas Houde
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada
| | - Laurent Beuret
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada
| | - Amélie Bonaud
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, INSERM U1160, Paris 75010, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris 75010, France
| | - Simon-Pierre Fortier-Beaulieu
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada
| | - Kim Truchon-Landry
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada
| | - Rifdat Aoidi
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada
| | - Émilie Pic
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada
| | - Nagham Alouche
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, INSERM U1160, Paris 75010, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris 75010, France
| | - Vincent Rondeau
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, INSERM U1160, Paris 75010, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris 75010, France
| | - Géraldine Schlecht-Louf
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Clamart 92140, France
| | - Karl Balabanian
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, INSERM U1160, Paris 75010, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris 75010, France
| | - Marion Espéli
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, INSERM U1160, Paris 75010, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris 75010, France
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada; Department of Molecular Biology, Medical Biochemistry & Pathology, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
18
|
Beuret L, Fortier-Beaulieu SP, Rondeau V, Roy S, Houde N, Balabanian K, Espéli M, Charron J. Mek1 and Mek2 Functional Redundancy in Erythropoiesis. Front Cell Dev Biol 2021; 9:639022. [PMID: 34386488 PMCID: PMC8353236 DOI: 10.3389/fcell.2021.639022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Several studies have established the crucial role of the extracellular signal–regulated kinase (ERK)/mitogen-activated protein kinase pathway in hematopoietic cell proliferation and differentiation. MEK1 and MEK2 phosphorylate and activate ERK1 and ERK2. However, whether MEK1 and MEK2 differentially regulate these processes is unknown. To define the function of Mek genes in the activation of the ERK pathway during hematopoiesis, we generated a mutant mouse line carrying a hematopoietic-specific deletion of the Mek1 gene function in a Mek2 null background. Inactivation of both Mek1 and Mek2 genes resulted in death shortly after birth with a severe anemia revealing the essential role of the ERK pathway in erythropoiesis. Mek1 and Mek2 functional ablation also affected lymphopoiesis and myelopoiesis. In contrast, mice that retained one functional Mek1 (1Mek1) or Mek2 (1Mek2) allele in hematopoietic cells were viable and fertile. 1Mek1 and 1Mek2 mutants showed mild signs of anemia and splenomegaly, but the half-life of their red blood cells and the response to erythropoietic stress were not altered, suggesting a certain level of Mek redundancy for sustaining functional erythropoiesis. However, subtle differences in multipotent progenitor distribution in the bone marrow were observed in 1Mek1 mice, suggesting that the two Mek genes might differentially regulate early hematopoiesis.
Collapse
Affiliation(s)
- Laurent Beuret
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Simon-Pierre Fortier-Beaulieu
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Vincent Rondeau
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Sophie Roy
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Nicolas Houde
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Karl Balabanian
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marion Espéli
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| |
Collapse
|
19
|
Park KS, Saindane M, Yang EY, Jin T, Rallabandi HR, Heil A, Nam SE, Yoo YB, Yang JH, Kim JB, Park SY, Park WS, Youn YK. Selective inhibition of V600E-mutant BRAF gene induces apoptosis in thyroid carcinoma cell lines. Ann Surg Treat Res 2021; 100:127-136. [PMID: 33748026 PMCID: PMC7943282 DOI: 10.4174/astr.2021.100.3.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Papillary thyroid cancer (PTC) has a high incidence of BRAFV600E mutation. The purpose of this study was to evaluate the potential relationship between thyroiditis and BRAFV600E mutation status in patients with PTC. We investigated how a selective inhibitor of BRAFV600E PLX4032 affects the proliferation and inflammatory cytokine levels of thyroid cancer. Methods Two thyroid cancer cell lines TPC1 and 8505C were treated with PLX4032, an analysis was done on cell growth, cell cycle, the degree of apoptosis, and levels of inflammatory cytokines. To identify the functional links of BRAF, we used the STRING database. Results Docking results illustrated PLX4032 blocked the kinase activity by exclusively binding on the serine/threonine kinase domain. STRING results indicated BRAF is functionally linked to mitogen-activated protein kinase. Both cell lines showed a dose-dependent reduction in growth rate but had a different half maximal inhibitory concentration value for PLX4032. The reaction to PLX4032 was more sensitive in the 8505C cells than in the TPC1 cells. PLX4032 induced a G2/M phase arrest in the TPC1 cells and G0/G1 in the 8505C cells. PLX4032 induced apoptosis only in the 8505C cells. With PLX4032, the TPC1 cells showed decreased levels of vascular endothelial growth factor, granulocyte-macrophage colony-stimulating factor, chemokine (C-C motif) ligand 2/monocyte chemoattractant protein 1, whereas the 8505C cells showed significantly decreased levels of IL-8, serpin E1/plasminogen activator inhibitor-1, and matrix metalloproteinase (MMP)-3. Conclusion PLX4032 was cytotoxic in both TPC1 and 8505C cells and induced apoptosis. In the 8505C cells, inflammatory cytokines such as IL-8 and MMP-3 were down-regulated. These findings suggest the possibility that the BRAFV600E mutation needs to target inflammatory signaling pathways in the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Kyoung Sik Park
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea.,Department of Surgery, Konkuk University Medical Center, Seoul, Korea.,Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Madhuri Saindane
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea.,Department of Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Eun Yeol Yang
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - TongYi Jin
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Harikrishna Reddy Rallabandi
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea.,Department of Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Alexander Heil
- Institute of Botany and Molecular Genetics, RWTH, Aachen University, Aachen, Germany
| | - Sang Eun Nam
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea.,Department of Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Young Bum Yoo
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea.,Department of Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Jung-Hyun Yang
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea.,Department of Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Jong Bin Kim
- Research Centers for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Seo-Young Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Won Seo Park
- Department of Surgery, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Yeo-Kyu Youn
- Thyroid Clinic, St. Peter's Hospital, Seoul, Korea
| |
Collapse
|
20
|
Ullah R, Naz A, Akram HS, Ullah Z, Tariq M, Mithani A, Faisal A. Transcriptomic analysis reveals differential gene expression, alternative splicing, and novel exons during mouse trophoblast stem cell differentiation. Stem Cell Res Ther 2020; 11:342. [PMID: 32762732 PMCID: PMC7409654 DOI: 10.1186/s13287-020-01848-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Differentiation of mouse trophoblast stem cells (TSCs) to trophoblast giant cells (TGCs) has been widely used as a model system to study placental development and function. While several differentially expressed genes, including regulators of TSC differentiation, have been identified, a comprehensive analysis of the global expression of genes and splice variants in the two cell types has not been reported. RESULTS Here, we report ~ 7800 differentially expressed genes in TGCs compared to TSCs which include regulators of the cell cycle, apoptosis, cytoskeleton, cell mobility, embryo implantation, metabolism, and various signaling pathways. We show that several mitotic proteins, including Aurora A kinase, were downregulated in TGCs and that the activity of Aurora A kinase is required for the maintenance of TSCs. We also identify hitherto undiscovered, cell-type specific alternative splicing events in 31 genes in the two cell types. Finally, we also report 19 novel exons in 12 genes which are expressed in both TSCs and TGCs. CONCLUSIONS Overall, our results uncover several potential regulators of TSC differentiation and TGC function, thereby providing a valuable resource for developmental and molecular biologists interested in the study of stem cell differentiation and embryonic development.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Ambreen Naz
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Hafiza Sara Akram
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zakir Ullah
- Virginia Commonwealth University, Richmond, USA
| | - Muhammad Tariq
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Aziz Mithani
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
| | - Amir Faisal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
| |
Collapse
|
21
|
Wu PK, Becker A, Park JI. Growth Inhibitory Signaling of the Raf/MEK/ERK Pathway. Int J Mol Sci 2020; 21:ijms21155436. [PMID: 32751750 PMCID: PMC7432891 DOI: 10.3390/ijms21155436] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
In response to extracellular stimuli, the Raf/MEK/extracellular signal-regulated kinase (ERK) pathway regulates diverse cellular processes. While mainly known as a mitogenic signaling pathway, the Raf/MEK/ERK pathway can mediate not only cell proliferation and survival but also cell cycle arrest and death in different cell types. Growing evidence suggests that the cell fate toward these paradoxical physiological outputs may be determined not only at downstream effector levels but also at the pathway level, which involves the magnitude of pathway activity, spatial-temporal regulation, and non-canonical functions of the molecular switches in this pathway. This review discusses recent updates on the molecular mechanisms underlying the pathway-mediated growth inhibitory signaling, with a major focus on the regulation mediated at the pathway level.
Collapse
Affiliation(s)
- Pui-Kei Wu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Correspondence: (P.-K.W.); (J.-I.P.)
| | - Andrew Becker
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (P.-K.W.); (J.-I.P.)
| |
Collapse
|
22
|
Bhattacharya B, Home P, Ganguly A, Ray S, Ghosh A, Islam MR, French V, Marsh C, Gunewardena S, Okae H, Arima T, Paul S. Atypical protein kinase C iota (PKCλ/ι) ensures mammalian development by establishing the maternal-fetal exchange interface. Proc Natl Acad Sci U S A 2020; 117:14280-14291. [PMID: 32513715 PMCID: PMC7322033 DOI: 10.1073/pnas.1920201117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In utero mammalian development relies on the establishment of the maternal-fetal exchange interface, which ensures transportation of nutrients and gases between the mother and the fetus. This exchange interface is established via development of multinucleated syncytiotrophoblast cells (SynTs) during placentation. In mice, SynTs develop via differentiation of the trophoblast stem cell-like progenitor cells (TSPCs) of the placenta primordium, and in humans, SynTs are developed via differentiation of villous cytotrophoblast (CTB) progenitors. Despite the critical need in pregnancy progression, conserved signaling mechanisms that ensure SynT development are poorly understood. Herein, we show that atypical protein kinase C iota (PKCλ/ι) plays an essential role in establishing the SynT differentiation program in trophoblast progenitors. Loss of PKCλ/ι in the mouse TSPCs abrogates SynT development, leading to embryonic death at approximately embryonic day 9.0 (E9.0). We also show that PKCλ/ι-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. PKCλ/ι is selectively expressed in the first-trimester CTBs of a developing human placenta. Furthermore, loss of PKCλ/ι in CTB-derived human trophoblast stem cells (human TSCs) impairs their SynT differentiation potential both in vitro and after transplantation in immunocompromised mice. Our mechanistic analyses indicate that PKCλ/ι signaling maintains expression of GCM1, GATA2, and PPARγ, which are key transcription factors to instigate SynT differentiation programs in both mouse and human trophoblast progenitors. Our study uncovers a conserved molecular mechanism, in which PKCλ/ι signaling regulates establishment of the maternal-fetal exchange surface by promoting trophoblast progenitor-to-SynT transition during placentation.
Collapse
Affiliation(s)
- Bhaswati Bhattacharya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Pratik Home
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
| | - Avishek Ganguly
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Soma Ray
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ananya Ghosh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Md Rashedul Islam
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Valerie French
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Courtney Marsh
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160;
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
23
|
Soares MJ, Varberg KM, Iqbal K. Hemochorial placentation: development, function, and adaptations. Biol Reprod 2019; 99:196-211. [PMID: 29481584 DOI: 10.1093/biolre/ioy049] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 11/12/2022] Open
Abstract
Placentation is a reproductive adaptation that permits fetal growth and development within the protected confines of the female reproductive tract. Through this important role, the placenta also determines postnatal health and susceptibility to disease. The hemochorial placenta is a prominent feature in primate and rodent development. This manuscript provides an overview of the basics of hemochorial placental development and function, provides perspectives on major discoveries that have shaped placental research, and thoughts on strategies for future investigation.
Collapse
Affiliation(s)
- Michael J Soares
- Institute for Reproduction and Perinatal Research and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA and the Center for Perinatal Research, Children΄s Research Institute, Children΄s Mercy, Kansas City, Missouri, USA
| | - Kaela M Varberg
- Institute for Reproduction and Perinatal Research and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
24
|
Kurtzeborn K, Kwon HN, Kuure S. MAPK/ERK Signaling in Regulation of Renal Differentiation. Int J Mol Sci 2019; 20:E1779. [PMID: 30974877 PMCID: PMC6479953 DOI: 10.3390/ijms20071779] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects derived from abnormalities in renal differentiation during embryogenesis. CAKUT is the major cause of end-stage renal disease and chronic kidney diseases in children, but its genetic causes remain largely unresolved. Here we discuss advances in the understanding of how mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) activity contributes to the regulation of ureteric bud branching morphogenesis, which dictates the final size, shape, and nephron number of the kidney. Recent studies also demonstrate that the MAPK/ERK pathway is directly involved in nephrogenesis, regulating both the maintenance and differentiation of the nephrogenic mesenchyme. Interestingly, aberrant MAPK/ERK signaling is linked to many cancers, and recent studies suggest it also plays a role in the most common pediatric renal cancer, Wilms' tumor.
Collapse
Affiliation(s)
- Kristen Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Hyuk Nam Kwon
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Satu Kuure
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
- GM-unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
| |
Collapse
|
25
|
Aoidi R, Houde N, Landry-Truchon K, Holter M, Jacquet K, Charron L, Krishnaswami SR, Yu BD, Rauen KA, Bisson N, Newbern J, Charron J. Mek1Y130C mice recapitulate aspects of human cardio-facio-cutaneous syndrome. Dis Model Mech 2018; 11:dmm.031278. [PMID: 29590634 PMCID: PMC5897723 DOI: 10.1242/dmm.031278] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 02/07/2018] [Indexed: 12/28/2022] Open
Abstract
The RAS/MAPK signaling pathway is one of the most investigated pathways, owing to its established role in numerous cellular processes and implication in cancer. Germline mutations in genes encoding members of the RAS/MAPK pathway also cause severe developmental syndromes collectively known as RASopathies. These syndromes share overlapping characteristics, including craniofacial dysmorphology, cardiac malformations, cutaneous abnormalities and developmental delay. Cardio-facio-cutaneous syndrome (CFC) is a rare RASopathy associated with mutations in BRAF, KRAS, MEK1 (MAP2K1) and MEK2 (MAP2K2). MEK1 and MEK2 mutations are found in ∼25% of the CFC patients and the MEK1Y130C substitution is the most common one. However, little is known about the origins and mechanisms responsible for the development of CFC. To our knowledge, no mouse model carrying RASopathy-linked Mek1 or Mek2 gene mutations has been reported. To investigate the molecular and developmental consequences of the Mek1Y130C mutation, we generated a mouse line carrying this mutation. Analysis of mice from a Mek1 allelic series revealed that the Mek1Y130C allele expresses both wild-type and Y130C mutant forms of MEK1. However, despite reduced levels of MEK1 protein and the lower abundance of MEK1 Y130C protein than wild type, Mek1Y130C mutants showed increased ERK (MAPK) protein activation in response to growth factors, supporting a role for MEK1 Y130C in hyperactivation of the RAS/MAPK pathway, leading to CFC. Mek1Y130C mutant mice exhibited pulmonary artery stenosis, cranial dysmorphia and neurological anomalies, including increased numbers of GFAP+ astrocytes and Olig2+ oligodendrocytes in regions of the cerebral cortex. These data indicate that the Mek1Y130C mutation recapitulates major aspects of CFC, providing a new animal model to investigate the physiopathology of this RASopathy. This article has an associated First Person interview with the first author of the paper. Summary: A mouse model for cardio-facio-cutaneous syndrome caused by MEK1 Y130C mutant protein reveals the role of hyperactivation of the RAS/MAPK pathway in the development of the syndrome.
Collapse
Affiliation(s)
- Rifdat Aoidi
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Nicolas Houde
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Kim Landry-Truchon
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Michael Holter
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Kevin Jacquet
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Louis Charron
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada
| | - Suguna Rani Krishnaswami
- Institute for Genomic Medicine, Division of Dermatology, University of California San Diego, La Jolla, CA 92093-0761, USA
| | - Benjamin D Yu
- Institute for Genomic Medicine, Division of Dermatology, University of California San Diego, La Jolla, CA 92093-0761, USA.,Interpreta Inc., San Diego, CA 92121, USA
| | - Katherine A Rauen
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Nicolas Bisson
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| | - Jason Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jean Charron
- Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada .,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
26
|
Deletion of the Syncytin A receptor Ly6e impairs syncytiotrophoblast fusion and placental morphogenesis causing embryonic lethality in mice. Sci Rep 2018; 8:3961. [PMID: 29500366 PMCID: PMC5834536 DOI: 10.1038/s41598-018-22040-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Fetal growth and survival is dependent on the elaboration and propinquity of the fetal and maternal circulations within the placenta. Central to this is the formation of the interhaemal membrane, a multi-cellular lamina facilitating exchange of oxygen, nutrients and metabolic waste products between the mother and fetus. In rodents, this cellular barrier contains two transporting layers of syncytiotrophoblast, which are multinucleated cells that form by cell-cell fusion. Previously, we reported the expression of the GPI-linked cell surface protein LY6E by the syncytial layer closest to the maternal sinusoids of the mouse placenta (syncytiotrophoblast layer I). LY6E has since been shown to be a putative receptor for the fusogenic protein responsible for fusion of syncytiotrophoblast layer I, Syncytin A. In this report, we demonstrate that LY6E is essential for the normal fusion of syncytiotrophoblast layer I, and for the proper morphogenesis of both fetal and maternal vasculatures within the placenta. Furthermore, specific inactivation of Ly6e in the epiblast, but not in placenta, is compatible with embryonic development, indicating the embryonic lethality reported for Ly6e−/− embryos is most likely placental in origin.
Collapse
|
27
|
Hong SK, Wu PK, Park JI. A cellular threshold for active ERK1/2 levels determines Raf/MEK/ERK-mediated growth arrest versus death responses. Cell Signal 2017; 42:11-20. [PMID: 28986121 DOI: 10.1016/j.cellsig.2017.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 01/01/2023]
Abstract
In addition to its conventional role for cell proliferation and survival, the Raf/MEK/Extracellular signal-regulated kinase (ERK) pathway can also induce growth arrest and death responses, if aberrantly activated. Here, we determined a molecular basis of ERK1/2 signaling that underlies these growth inhibitory physiological outputs. We found that overexpression of ERK1 or ERK2 switches ΔRaf-1:ER-induced growth arrest responses to caspase-dependent apoptotic death responses in different cell types. These death responses, however, were reverted to growth arrest responses upon titration of cellular phospho-ERK1/2 levels by the MEK1/2 inhibitor AZD6244. These data suggest that a cellular threshold for active ERK1/2 levels exists and affects the cell fate between death and growth arrest. We also found that death-mediating ability of ERK2 is abolished by the catalytic site-disabling Lys52Arg replacement or significantly attenuated by the F-site recruitment site-disabling Tyr261Asn replacement, although unaffected by the mutations that disable the common docking groove or the dimerization interface. Therefore, ERK1/2 mediates death signaling dependently of kinase activity and specific physical interactions. Intriguingly, Tyr261Asn-replaced ERK2 could still mediate growth arrest signaling, further contrasting the molecular basis of ERK1/2-mediated growth arrest and death signaling. These data reveal a mechanism underlying the role of ERK1/2 as a focal point of Raf/MEK/ERK-mediated growth arrest and death signaling.
Collapse
Affiliation(s)
- Seung-Keun Hong
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pui-Kei Wu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
28
|
Ekizceli G, Inan S, Oktem G, Onur E, Ozbilgin K. Assessment of mTOR pathway molecules during implantation in rats. Biotech Histochem 2017; 92:450-458. [DOI: 10.1080/10520295.2017.1350749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- G. Ekizceli
- Department of Histology and Embryology, Uludag University Faculty of Medicine, Bursa
| | - S. Inan
- Department of Histology and Embryology, Izmir University of Economics, Faculty of Medicine, Izmir
| | - G. Oktem
- Department of Histology and Embryology, Ege University, Faculty of Medicine, Izmir
| | - E. Onur
- Department of Medical Biochemistry, Celal Bayar University, Faculty of Medicine, Manisa
| | - K. Ozbilgin
- Department of Histology and Embryology, Celal Bayar University, Faculty of Medicine, Manisa, Turkey
| |
Collapse
|
29
|
Aoidi R, Maltais A, Charron J. Functional redundancy of the kinases MEK1 and MEK2: Rescue of theMek1mutant phenotype byMek2knock-in reveals a protein threshold effect. Sci Signal 2016; 9:ra9. [DOI: 10.1126/scisignal.aad5658] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Walentin K, Hinze C, Schmidt-Ott KM. The basal chorionic trophoblast cell layer: An emerging coordinator of placenta development. Bioessays 2016; 38:254-65. [PMID: 26778584 DOI: 10.1002/bies.201500087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During gestation, fetomaternal exchange occurs in the villous tree (labyrinth) of the placenta. Development of this structure depends on tightly coordinated cellular processes of branching morphogenesis and differentiation of specialized trophoblast cells. The basal chorionic trophoblast (BCT) cell layer that localizes next to the chorioallantoic interface is of critical importance for labyrinth morphogenesis in rodents. Gcm1-positive cell clusters within this layer initiate branching morphogenesis thereby guiding allantoic fetal blood vessels towards maternal blood sinuses. Later these cells differentiate and contribute to the syncytiotrophoblast of the fetomaternal barrier. Additional cells within the BCT layer sustain continued morphogenesis, possibly through a repopulating progenitor population. Several mouse mutants highlight the importance of a structurally intact BCT epithelium, and a growing number of studies addresses its patterning and epithelial architecture. Here, we review and discuss emerging concepts in labyrinth development focussing on the biology of the BCT cell layer.
Collapse
Affiliation(s)
| | - Christian Hinze
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kai M Schmidt-Ott
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
31
|
ERK1/2 can feedback-regulate cellular MEK1/2 levels. Cell Signal 2015; 27:1939-48. [PMID: 26163823 DOI: 10.1016/j.cellsig.2015.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/30/2015] [Accepted: 07/07/2015] [Indexed: 12/11/2022]
Abstract
Signal transduction of the Raf/MEK/ERK pathway is regulated by various feedback mechanisms. Given the greater molar ratio between Raf-MEK than between MEK-ERK in cells, it may be possible that MEK1/2 levels are regulated to modulate Raf/MEK/ERK activity upon pathway stimulation. Nevertheless, it has not been reported whether MEK1/2 expression can be subject to a feedback regulation. Here, we report that the Raf/MEK/ERK pathway can feedback-regulate cellular MEK1 and MEK2 levels. In different cell types, ΔRaf-1:ER- or B-Raf(V600E)-mediated MEK/ERK activation increased MEK1 but decreased MEK2 levels. These regulations were abrogated by ERK1/2 knockdown mediated by RNA interference, suggesting the presence of a feedback mechanism that regulates MEK1/2 levels. Subsequently, analyses using qPCR and luciferase reporters of the DNA promoter and 3' untranslated region revealed that the feedback MEK1 upregulation was in part attributed to increased transcription. However, the feedback MEK2 downregulation was only observed at protein levels, which was blocked by the proteasome inhibitors, MG132 and bortezomib, suggesting that the MEK2 regulation is mediated at a post-translational level. These results suggest that the Raf/MEK/ERK pathway can feedback-regulate cellular levels of MEK1 and MEK2, wherein MEK1 levels are upregulated at transcriptional level whereas MEK2 levels are downregulated at posttranslational level.
Collapse
|
32
|
Boucherat O, Nadeau V, Bérubé-Simard FA, Charron J, Jeannotte L. Crucial requirement of ERK/MAPK signaling in respiratory tract development. Development 2014; 141:3197-211. [DOI: 10.1242/dev.110254] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mammalian genome contains two ERK/MAP kinase genes, Mek1 and Mek2, which encode dual-specificity kinases responsible for ERK/MAP kinase activation. In order to define the function of the ERK/MAPK pathway in the lung development in mice, we performed tissue-specific deletions of Mek1 function on a Mek2 null background. Inactivation of both Mek genes in mesenchyme resulted in several phenotypes, including giant omphalocele, kyphosis, pulmonary hypoplasia, defective tracheal cartilage and death at birth. The absence of tracheal cartilage rings establishes the crucial role of intracellular signaling molecules in tracheal chondrogenesis and provides a putative mouse model for tracheomalacia. In vitro, the loss of Mek function in lung mesenchyme did not interfere with lung growth and branching, suggesting that both the reduced intrathoracic space due to the dysmorphic rib cage and the omphalocele impaired lung development in vivo. Conversely, Mek mutation in the respiratory epithelium caused lung agenesis, a phenotype resulting from the direct impact of the ERK/MAPK pathway on cell proliferation and survival. No tracheal epithelial cell differentiation occurred and no SOX2-positive progenitor cells were detected in mutants, implying a role for the ERK/MAPK pathway in trachea progenitor cell maintenance and differentiation. Moreover, these anomalies were phenocopied when the Erk1 and Erk2 genes were mutated in airway epithelium. Thus, the ERK/MAPK pathway is required for the integration of mesenchymal and epithelial signals essential for the development of the entire respiratory tract.
Collapse
Affiliation(s)
- Olivier Boucherat
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
| | - Valérie Nadeau
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
| | - Félix-Antoine Bérubé-Simard
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
| | - Jean Charron
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada G1V 0A6
| | - Lucie Jeannotte
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada G1V 0A6
| |
Collapse
|
33
|
Nadeau V, Charron J. Essential role of the ERK/MAPK pathway in blood-placental barrier formation. Development 2014; 141:2825-37. [PMID: 24948605 DOI: 10.1242/dev.107409] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mammalian genome contains two ERK/MAP kinase kinase genes, Map2k1 and Map2k2, which encode dual-specificity kinases responsible for ERK activation. Loss of Map2k1 function in mouse causes embryonic lethality due to placental defects, whereas Map2k2 mutants have a normal lifespan. The majority of Map2k1(+/-) Map2k2(+/-) embryos die during gestation from the underdevelopment of the placenta labyrinth, demonstrating that both kinases are involved in placenta formation. Map2k1(+/-) Map2k2(+/-) mutants show reduced vascularization of the labyrinth and defective formation of syncytiotrophoblast layer II (SynT-II) leading to the accumulation of multinucleated trophoblast giant cells (MTGs). To define the cell type-specific contribution of the ERK/MAPK pathway to placenta development, we performed deletions of Map2k1 function in different Map2k1 Map2k2 allelic backgrounds. Loss of MAP kinase kinase activity in pericytes or in allantois-derived tissues worsens the MTG phenotype. These results define the contribution of the ERK/MAPK pathway in specific embryonic and extraembryonic cell populations for normal placentation. Our data also indicate that MTGs could result from the aberrant fusion of SynT-I and -II. Using mouse genetics, we demonstrate that the normal development of SynT-I into a thin layer of multinucleated cells depends on the presence of SynT-II. Lastly, the combined mutations of Map2k1 and Map2k2 alter the expression of several genes involved in cell fate specification, cell fusion and cell polarity. Thus, appropriate ERK/MAPK signaling in defined cell types is required for the proper growth, differentiation and morphogenesis of the placenta.
Collapse
Affiliation(s)
- Valérie Nadeau
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, Canada G1R 2J6
| | - Jean Charron
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, Canada G1R 2J6
| |
Collapse
|
34
|
Guégan JP, Ezan F, Gailhouste L, Langouët S, Baffet G. MEK1/2 overactivation can promote growth arrest by mediating ERK1/2-dependent phosphorylation of p70S6K. J Cell Physiol 2014; 229:903-15. [PMID: 24501087 DOI: 10.1002/jcp.24521] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/22/2013] [Indexed: 12/22/2022]
Abstract
The extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase pathway has been involved in the positive and negative regulation of cell proliferation. Upon mitogen stimulation, ERK1/ERK2 activation is necessary for G1- to S-phase progression whereas when hyperactived, this pathway could elicit cell cycle arrest. The mechanisms involved are not fully elucidated but a kinase-independent function of ERK1/2 has been evidenced in the MAPK-induced growth arrest. Here, we show that p70S6K, a central regulator of protein biosynthesis, is essential for the cell cycle arrest induced by overactivation of ERK1/2. Indeed, whereas MEK1 silencing inhibits cell cycle progression, we demonstrate that active mutant form of MEK1 or MEK2 triggers a G1 phase arrest by stimulating an activation of p70S6K by ERK1/2 kinases. Silencing of ERK1/2 activity by shRNA efficiently suppresses p70S6K phosphorylation on Thr421/Ser424 and S6 phosphorylation on Ser240/244 as well as p21 expression, but these effects can be partially reversed by the expression of kinase-dead mutant form of ERK1 or ERK2. In addition, we demonstrate that the kinase p70S6K modulates neither the p21 gene transcription nor the stability of the protein but enhances the translation of the p21 mRNA. In conclusion, our data emphasizes the importance of the translational regulation of p21 by the MEK1/2-ERK1/2-p70S6K pathway to negatively control the cell cycle progression.
Collapse
|
35
|
Abstract
The Raf/MEK/extracellular signal-regulated kinase (ERK) pathway has a pivotal role in facilitating cell proliferation, and its deregulated activation is a central signature of many epithelial cancers. However paradoxically, sustained activity of Raf/MEK/ERK can also result in growth arrest in many different cell types. This anti-proliferative Raf/MEK/ERK signaling also has physiological significance, as exemplified by its potential as a tumor suppressive mechanism. Therefore, significant questions include in which cell types and by what mechanisms this pathway can mediate such an opposing context of signaling. Particularly, our understating of the role of ERK1 and ERK2, the focal points of pathway signaling, in growth arrest signaling is still limited. This review discusses these aspects of Raf/MEK/ERK-mediated growth arrest signaling.
Collapse
|
36
|
Ihermann-Hella A, Lume M, Miinalainen IJ, Pirttiniemi A, Gui Y, Peränen J, Charron J, Saarma M, Costantini F, Kuure S. Mitogen-activated protein kinase (MAPK) pathway regulates branching by remodeling epithelial cell adhesion. PLoS Genet 2014; 10:e1004193. [PMID: 24603431 PMCID: PMC3945187 DOI: 10.1371/journal.pgen.1004193] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 01/06/2014] [Indexed: 12/30/2022] Open
Abstract
Although the growth factor (GF) signaling guiding renal branching is well characterized, the intracellular cascades mediating GF functions are poorly understood. We studied mitogen-activated protein kinase (MAPK) pathway specifically in the branching epithelia of developing kidney by genetically abrogating the pathway activity in mice lacking simultaneously dual-specificity protein kinases Mek1 and Mek2. Our data show that MAPK pathway is heterogeneously activated in the subset of G1- and S-phase epithelial cells, and its tissue-specific deletion results in severe renal hypodysplasia. Consequently to the deletion of Mek1/2, the activation of ERK1/2 in the epithelium is lost and normal branching pattern in mutant kidneys is substituted with elongation-only phenotype, in which the epithelium is largely unable to form novel branches and complex three-dimensional patterns, but able to grow without primary defects in mitosis. Cellular characterization of double mutant epithelium showed increased E-cadherin at the cell surfaces with its particular accumulation at baso-lateral locations. This indicates changes in cellular adhesion, which were revealed by electron microscopic analysis demonstrating intercellular gaps and increased extracellular space in double mutant epithelium. When challenged to form monolayer cultures, the mutant epithelial cells were impaired in spreading and displayed strong focal adhesions in addition to spiky E-cadherin. Inhibition of MAPK activity reduced paxillin phosphorylation on serine 83 while remnants of phospho-paxillin, together with another focal adhesion (FA) protein vinculin, were augmented at cell surface contacts. We show that MAPK activity is required for branching morphogenesis, and propose that it promotes cell cycle progression and higher cellular motility through remodeling of cellular adhesions.
Collapse
Affiliation(s)
| | - Maria Lume
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | - Yujuan Gui
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Johan Peränen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jean Charron
- Centre de Recherche en Cancérologie de l'Université Laval, CRCHUQ, Hôtel-Dieu de Québec, Québec, Canada
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Satu Kuure
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
37
|
Zhang Y, Ma W, Mo X, Zhao H, Zheng H, Ke C, Zheng W, Tu Y, Zhang Y. Erratum: Differential expressed genes in ECV304 Endothelial-like Cells infected with Human Cytomegalovirus. Afr Health Sci 2013; 13:864-79. [PMID: 24940306 PMCID: PMC4056481 DOI: 10.4314/ahs.v13i4.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) is a virus which has the potential to alter cellular gene expression through multiple mechanisms. OBJECTIVE With the application of DNA microarrays, we could monitor the effects of pathogens on host-cell gene expression programmes in great depth and on a broad scale. METHODS Changes in mRNA expression levels of human endothelial-like ECV304 cells following infection with human cytomegalovirus AD169 strain was analyzed by a microarray system comprising 21073 60-mer oligonucleotide probes which represent 18716 human genes or transcripts. RESULTS The results from cDNA microarray showed that there were 559 differential expressed genes consisted of 471 upregulated genes and 88 down-regulated genes. Real-time qPCR was performed to validate the expression of 6 selected genes (RPS24, MGC8721, SLC27A3, MST4, TRAF2 and LRRC28), and the results of which were consistent with those from the microarray. Among 237 biology processes, 39 biology processes were found to be related significantly to HCMV-infection. The signal transduction is the most significant biological process with the lowest p value (p=0.005) among all biological process which involved in response to HCMV infection. CONCLUSION Several of these gene products might play key roles in virus-induced pathogenesis. These findings may help to elucidate the pathogenic mechanisms of HCMV caused diseases. [This corrects the article on p. 243 in vol. 13, PMID: 24235919.].
Collapse
Affiliation(s)
- Yali Zhang
- Department of Clinical Laborotary Science, Guiyang Medical College, Guiyang, Guizhou 550004, China
| | - Wenli Ma
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaoyang Mo
- The Center for Heart Development, Key Lab of National Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410006 China
| | - Haiquan Zhao
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huanying Zheng
- Guangdong Province Center of Disease Control Virology Section, Guangzhou, Guangdong 510033, China
| | - Changwen Ke
- Guangdong Province Center of Disease Control Virology Section, Guangzhou, Guangdong 510033, China
| | - Wenling Zheng
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yanyang Tu
- Department of Experimental Surgery, Tangdu Hospital, The Forth Military Medical University, Xi'an, Shannxi, 710038, China
| | - Yongsheng Zhang
- Department of Experimental Surgery, Tangdu Hospital, The Forth Military Medical University, Xi'an, Shannxi, 710038, China
| |
Collapse
|
38
|
Xiaoyang M, Haiquan Z, Huanying Z, Changwen K, Wenling Z, Yanyang T, Yongsheng Z. Global analysis of differential expressed genes in ECV304 Endothelial-like cells infected with human cytomegalovirus. Afr Health Sci 2013; 13:243-51. [PMID: 24235919 PMCID: PMC3824489 DOI: 10.4314/ahs.v13i2.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) is a virus which has the potential to alter cellular gene expression through multiple mechanisms. OBJECTIVE With the application of DNA microarrays, we could monitor the effects of pathogens on host-cell gene expression programmes in great depth and on a broad scale. METHODS Changes in mRNA expression levels of human endothelial-like ECV304 cells following infection with human cytomegalovirus AD169 strain was analyzed by a microarray system comprising 21073 60-mer oligonucleotide probes which represent 18716 human genes or transcripts. RESULTS The results from cDNA microarray showed that there were 559 differential expressed genes consisted of 471 upregulated genes and 88 down-regulated genes. Real-time qPCR was performed to validate the expression of 6 selected genes (RPS24, MGC8721, SLC27A3, MST4, TRAF2 and LRRC28), and the results of which were consistent with those from the microarray. Among 237 biology processes, 39 biology processes were found to be related significantly to HCMV-infection. The signal transduction is the most significant biological process with the lowest p value (p=0.005) among all biological process which involved in response to HCMV infection. CONCLUSION Several of these gene products might play key roles in virus-induced pathogenesis. These findings may help to elucidate the pathogenic mechanisms of HCMV caused diseases.
Collapse
Affiliation(s)
- Mo Xiaoyang
- Department of Clinical Laborotary Science, Guiyang Medical College, Guiyang, Guizhou 550004, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Choi HJ, Sanders TA, Tormos KV, Ameri K, Tsai JD, Park AM, Gonzalez J, Rajah AM, Liu X, Quinonez DM, Rinaudo PF, Maltepe E. ECM-dependent HIF induction directs trophoblast stem cell fate via LIMK1-mediated cytoskeletal rearrangement. PLoS One 2013; 8:e56949. [PMID: 23437279 PMCID: PMC3578927 DOI: 10.1371/journal.pone.0056949] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/16/2013] [Indexed: 01/24/2023] Open
Abstract
The Hypoxia-inducible Factor (HIF) family of transcriptional regulators coordinates the expression of dozens of genes in response to oxygen deprivation. Mammalian development occurs in a hypoxic environment and HIF-null mice therefore die in utero due to multiple embryonic and placental defects. Mouse embryonic stem cells do not differentiate into placental cells; therefore, trophoblast stem cells (TSCs) are used to study mouse placental development. Consistent with a requirement for HIF activity during placental development in utero, TSCs derived from HIF-null mice exhibit severe differentiation defects and fail to form trophoblast giant cells (TGCs) in vitro. Interestingly, differentiating TSCs induce HIF activity independent of oxygen tension via unclear mechanisms. Here, we show that altering the extracellular matrix (ECM) composition upon which TSCs are cultured changes their differentiation potential from TGCs to multinucleated syncytiotropholasts (SynTs) and blocks oxygen-independent HIF induction. We further find that modulation of Mitogen Activated Protein Kinase Kinase-1/2 (MAP2K1/2, MEK-1/2) signaling by ECM composition is responsible for this effect. In the absence of ECM-dependent cues, hypoxia-signaling pathways activate this MAPK cascade to drive HIF induction and redirect TSC fate along the TGC lineage. In addition, we show that integrity of the microtubule and actin cytoskeleton is critical for TGC fate determination. HIF-2α ensures TSC cytoskeletal integrity and promotes invasive TGC formation by interacting with c-MYC to induce non-canonical expression of Lim domain kinase 1-an enzyme that regulates microtubule and actin stability, as well as cell invasion. Thus, we find that HIF can integrate positional and metabolic cues from within the TSC niche to regulate placental development by modulating the cellular cytoskeleton via non-canonical gene expression.
Collapse
Affiliation(s)
- Hwa J. Choi
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Timothy A. Sanders
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Kathryn V. Tormos
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Kurosh Ameri
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Justin D. Tsai
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Angela M. Park
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Julissa Gonzalez
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Anthony M. Rajah
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Xiaowei Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Diana M. Quinonez
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Paolo F. Rinaudo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Emin Maltepe
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
- Developmental and Stem Cell Biology Program, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Kim J, Kim I, Han SK, Bowie JU, Kim S. Network rewiring is an important mechanism of gene essentiality change. Sci Rep 2012. [PMID: 23198090 PMCID: PMC3509348 DOI: 10.1038/srep00900] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Gene essentiality changes are crucial for organismal evolution. However, it is unclear how essentiality of orthologs varies across species. We investigated the underlying mechanism of gene essentiality changes between yeast and mouse based on the framework of network evolution and comparative genomic analysis. We found that yeast nonessential genes become essential in mouse when their network connections rapidly increase through engagement in protein complexes. The increased interactions allowed the previously nonessential genes to become members of vital pathways. By accounting for changes in gene essentiality, we firmly reestablished the centrality-lethality rule, which proposed the relationship of essential genes and network hubs. Furthermore, we discovered that the number of connections associated with essential and non-essential genes depends on whether they were essential in ancestral species. Our study describes for the first time how network evolution occurs to change gene essentiality.
Collapse
Affiliation(s)
- Jinho Kim
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | |
Collapse
|
41
|
Nadeau V, Bissonauth V, Charron J. [Mek1 and Mek2 functions in the formation of the blood placental barrier]. Med Sci (Paris) 2012; 28:409-15. [PMID: 22549869 DOI: 10.1051/medsci/2012284019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ERK/MAPK signaling pathway is involved in several cellular functions. Inactivation in mice of genes encoding members of this pathway is often associated with embryonic death resulting from abnormal placental development. The placenta is essential for nutritional and gaseous exchanges between maternal and embryonic circulations, as well as for the removal of metabolic wastes. These exchanges take place without direct contact between the two circulations. In mice, the hematoplacental barrier consists in a triple layer of trophoblast cells and endothelial cells of the embryo. MEK1 and MEK2 are double specificity serine-threonine/tyrosine kinases responsible for the activation of ERK1 and ERK2. Mek1 inactivation results in placental anomalies due to trophoblast cell proliferation and differentiation defects leading to severe delays in the development of placenta and causing the death of the embryo. Although Mek2(-/-) mutant mice survived without any apparent phenotype, double heterozygous Mek1(+/-)Mek2(+/-) mutants die during gestation from placental malformations. Together, these data emphasize the crucial role of the ERK/MAPK cascade in the formation of extraembryonic structures.
Collapse
Affiliation(s)
- Valérie Nadeau
- Centre de recherche en cancérologie de l'université Laval, centre de recherche du centre hospitalier universitaire de Québec, Québec G1R 2J6, Canada.
| | | | | |
Collapse
|
42
|
Charron J, Bissonauth V, Nadeau V. Implication of MEK1 and MEK2 in the establishment of the blood-placenta barrier during placentogenesis in mouse. Reprod Biomed Online 2012; 25:58-67. [PMID: 22561024 DOI: 10.1016/j.rbmo.2012.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 02/07/2023]
Abstract
The ERK/MAPK signalling cascade is involved in many cellular functions. In mice, the targeted ablation of genes coding for members of this pathway is often associated with embryonic death due to the abnormal development of the placenta. The placenta is essential for nutritional and gaseous exchanges between maternal and embryonic circulations, as well as for the elimination of metabolic waste. These exchanges occur without direct contact between the two circulations. In mice, the blood-placenta barrier consists of a triple layer of trophoblast cells adjacent to endothelial cells from the embryo. In the ERK/MAPK cascade, MEK1 and MEK2 are dual-specificity kinases responsible for the activation of the ERK1 and ERK2 kinases. Inactivation of Mek1 causes placental malformations resulting from defective proliferation and differentiation of the labyrinthine trophoblast cells and leading to a severe delay in the development and the vascularization of the placenta, which explains the embryonic death. Although Mek2(-/-) mutants survive without any apparent phenotype, a large proportion of Mek1(+/-)Mek2(+/-) double heterozygous mutants die during gestation from placenta anomalies affecting the establishment of the blood-placenta barrier. Together, these data reveal how crucial is the role of the ERK/MAPK pathway during the formation of the placenta.
Collapse
Affiliation(s)
- Jean Charron
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Canada.
| | | | | |
Collapse
|
43
|
|
44
|
O'Connell BA, Moritz KM, Roberts CT, Walker DW, Dickinson H. The placental response to excess maternal glucocorticoid exposure differs between the male and female conceptus in spiny mice. Biol Reprod 2011; 85:1040-7. [PMID: 21795670 DOI: 10.1095/biolreprod.111.093369] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The placenta is the intermediary between the mother and fetus, and its primary role is to provide for the appropriate growth of the fetus. A suboptimal in utero environment has been shown to differentially affect the health of offspring, depending on their sex. Here we show that excess maternal glucocorticoids administered in midgestation (Day 20, 0.5 gestation in the spiny mouse) for 60 h, have persisting effects on the placenta that differ by fetal sex, placental region, and time after glucocorticoid exposure. Dexamethasone (DEX) exposure altered placental structure and mRNA expression from male and female fetuses both immediately (Day 23) and 2 wk posttreatment (Day 37). The immediate consequences (Day 23) of DEX were similar between males and females, with reductions in the expression of IGF1, IGF1R, and SLC2A1 in the placenta. However, by Day 37, the transcriptional and structural response of the placenta was dependent on the sex of the fetus, with placentas of male fetuses having an increase in GCM1 expression, a decrease in SLC2A1 expression, and an increase in the amount of maternal blood sinusoids in the DEX-exposed placenta. Female placentas, on the other hand, showed increased SLC2A1 and MAP2K1 expression and a decrease in the amount of maternal blood sinusoids in response to DEX exposure. We have shown that the effect of a brief glucocorticoid exposure at midgestation has persisting effects on the placenta, and this is likely to have ongoing and dynamic effects on fetal development that differ for a male and female fetus.
Collapse
Affiliation(s)
- Bree A O'Connell
- The Ritchie Centre, Monash Institute of Medical Research, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
45
|
The expression of Akt and ERK1/2 proteins decreased in dexamethasone-induced intrauterine growth restricted rat placental development. J Mol Histol 2011; 42:237-49. [DOI: 10.1007/s10735-011-9328-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/12/2011] [Indexed: 11/26/2022]
|
46
|
Yang QE, Giassetti MI, Ealy AD. Fibroblast growth factors activate mitogen-activated protein kinase pathways to promote migration in ovine trophoblast cells. Reproduction 2011; 141:707-14. [PMID: 21310815 DOI: 10.1530/rep-10-0541] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fibroblast growth factors (FGFs) 2 and FGF10 are uterine- and conceptus-derived factors that mediate trophoblast activities in cattle and sheep. To extend our understanding of how FGFs may control peri-implantation development in ruminants, we determined whether FGF2 and FGF10 impact trophoblast cell migration. Transwell inserts containing 8 μm pores were used to examine whether FGF2 or FGF10 supplementation increased oTr1 cell migration. Supplementation with 0.5 ng/ml FGF2 or FGF10 did not affect oTr1 cell migration number, but exposure to 5 or 50 ng/ml FGF2 or FGF10 increased (P<0.05) oTr1 cell migration when compared with controls. The involvement of specific MAP kinase (MAPK) cascades in mediating this FGF response was examined by using pharmacological inhibitors of specific MAPKs. Western blot analysis indicated that FGF2 and FGF10 increased phosphorylation status of MAPKs 1, 3, 8, 9, and 14. Exposure to specific inhibitors blocked FGF induction of each MAPK. Exposure to inhibitors before supplementation with FGF2 or FGF10 prevented FGF induction of cell migration, indicating that each of these signaling molecules was required for FGF effects. A final series of studies examined whether FGF2 and FGF10 also mediated the migration of a bovine trophoblast line (CT1 cell). Increases in migration were detected in each cell line by supplementing 5 or 50 ng/ml FGF2 or FGF10 (P<0.05). In summary, FGF2 and FGF10 regulate migratory activity of ovine trophoblast cells through MAPK-dependent pathways. These outcomes provide further evidence that FGFs function as mediators of peri-implantation conceptus development in cattle and sheep.
Collapse
Affiliation(s)
- Qi En Yang
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, PO Box 110910, Gainesville, Florida 32611-0910, USA
| | | | | |
Collapse
|
47
|
El-Hashash AHK, Warburton D, Kimber SJ. Genes and signals regulating murine trophoblast cell development. Mech Dev 2009; 127:1-20. [PMID: 19755154 DOI: 10.1016/j.mod.2009.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 11/25/2022]
Abstract
A fundamental step in embryonic development is cell differentiation whereby highly specialised cell types are developed from a single undifferentiated, fertilised egg. One of the earliest lineages to form in the mammalian conceptus is the trophoblast, which contributes exclusively to the extraembryonic structures that form the placenta. Trophoblast giant cells (TGCs) in the rodent placenta form the outermost layer of the extraembryonic compartment, establish direct contact with maternal cells, and produce a number of pregnancy-specific cytokine hormones. Giant cells differentiate from proliferative trophoblasts as they exit the cell cycle and enter a genome-amplifying endocycle. Normal differentiation of secondary TGCs is a critical step toward the formation of the placenta and normal embryonic development. Trophoblast development is also of particular interest to the developmental biologist and immunobiologist, as these cells constitute the immediate cellular boundary between the embryonic and maternal tissues. Abnormalities in the development of secondary TGCs results in severe malfunction of the placenta. Herein we review new information that has been accumulated recently regarding the molecular and cellular regulation of trophoblast and placenta development. In particular, we discuss the molecular aspects of murine TGC differentiation. We also focus on the role of growth and transcription factors in TGC development.
Collapse
Affiliation(s)
- Ahmed H K El-Hashash
- Developmental Biology, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA 90027, USA
| | | | | |
Collapse
|