1
|
Herstine JA, Mensh J, Coffman E, George SM, Herman K, Martin JB, Zatari A, Chandler HL, Kozmik Z, Drysdale TA, Bridgewater D, Plageman TF. Shroom3 facilitates optic fissure closure via tissue alignment and reestablishment of apical-basal polarity during epithelial fusion. Dev Biol 2025; 522:91-105. [PMID: 40113025 DOI: 10.1016/j.ydbio.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/24/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Optic cup morphogenesis is a complex process involving cellular behaviors such as epithelial folding, cell shape changes, proliferation, and tissue fusion. Disruptions to these processes can lead to an ocular coloboma, a congenital defect where the optic fissure fails to close. This study investigates the role of Shroom3, a protein implicated in epithelial morphogenesis, in mouse embryos during optic cup development. It was observed that Shroom3 is apically localized in the neural retina and retinal pigmented epithelium, and its deficiency leads to a both a conventional coloboma phenotype characterized by a gap in pigmented tissue as well as a unique type of coloboma where an ectopic ventral fold of neural tissue is present. Increased apical areas of both neural retina and retinal pigmented epithelial cells are present in the absence of Shroom3 leading to a greater apical surface area and disruption of optic fissure alignment. Neural retina specific gene ablation revealed that Shroom3 function in the RPE is likely sufficient to facilitate tissue alignment and permit fusion. However, the fusion process is ultimately disturbed due to a failure of the neural tissue to reestablish apical-basal polarity. Furthermore, it is demonstrated that Shroom3 deficiency also affects other epithelial fusion events in the embryo that rely on polarity reestablishment, such as lens vesicle separation, eyelid formation, and secondary palate closure. These findings highlight the importance of Shroom3 during optic cup morphogenesis, aid our understanding of optic fissure closure and coloboma formation, and implicates a role for Shroom3 in regulating apical-basal polarity.
Collapse
Affiliation(s)
| | - Jordyn Mensh
- College of Optometry, The Ohio State University, Columbus, OH, USA
| | - Electra Coffman
- College of Optometry, The Ohio State University, Columbus, OH, USA
| | | | - Kenneth Herman
- College of Optometry, The Ohio State University, Columbus, OH, USA
| | - Jessica B Martin
- College of Optometry, The Ohio State University, Columbus, OH, USA
| | - Ali Zatari
- College of Optometry, The Ohio State University, Columbus, OH, USA
| | | | - Zbynek Kozmik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Thomas A Drysdale
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Darren Bridgewater
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
2
|
Zhu H, Zhang J, Rao S, Durbin MD, Li Y, Lang R, Liu J, Xiao B, Shan H, Meng Z, Wang J, Tang X, Shi Z, Cox LL, Zhao S, Ware SM, Tan TY, de Silva M, Gallacher L, Liu T, Mi J, Zeng C, Zheng HF, Zhang Q, Antonarakis SE, Cox TC, Zhang YB. Common cis-regulatory variation modifies the penetrance of pathogenic SHROOM3 variants in craniofacial microsomia. Genome Res 2025; 35:1065-1079. [PMID: 40234029 PMCID: PMC12047249 DOI: 10.1101/gr.280047.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025]
Abstract
Pathogenic coding variants have been identified in thousands of genes, yet the mechanisms underlying the incomplete penetrance in individuals carrying these variants are poorly understood. In this study, in a cohort of 2009 craniofacial microsomia (CFM) patients of Chinese ancestry and 2625 Han Chinese controls, we identified multiple predicted pathogenic coding variants in SHROOM3 in both CFM patients and healthy individuals. We found that the penetrance of CFM correlates with specific haplotype combinations containing likely pathogenic-coding SHROOM3 variants and CFM-associated expression quantitative trait loci (eQTLs) of SHROOM3 expression. Further investigations implicate specific eQTL combinations, such as rs1001322 or rs344131, in combination with other significant CFM-associated eQTLs, which we term combined eQTL phenotype modifiers (CePMods). We additionally show that rs344131, located within a regulatory enhancer region of SHROOM3, demonstrates allele-specific effects on enhancer activity and thus impacts expression levels of the associated SHROOM3 allele harboring any rare coding variant. Our findings also suggest that CePMods may serve as pathogenic determinants, even in the absence of rare deleterious coding variants in SHROOM3 This highlights the critical role of allelic expression in determining the penetrance and severity of craniofacial abnormalities, including microtia and facial asymmetry. Additionally, using quantitative phenotyping, we demonstrate that both microtia and facial asymmetry are present in two separate Shroom3 mouse models, the severity of which is dependent on gene dosage. Our study establishes SHROOM3 as a likely pathogenic gene for CFM and demonstrates eQTLs as determinants of modified penetrance in the manifestation of the disease in individuals carrying likely pathogenic rare coding variants.
Collapse
Affiliation(s)
- Hao Zhu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Jiao Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Soumya Rao
- Department of Oral & Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | - Matthew D Durbin
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Ying Li
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100051, China
| | - Ruirui Lang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Jiqiang Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Baichuan Xiao
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Hailin Shan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Ziqiu Meng
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Jinmo Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Xiaokai Tang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Zhenni Shi
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Liza L Cox
- Department of Oral & Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | - Shouqin Zhao
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100051, China
| | - Stephanie M Ware
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Tiong Y Tan
- Victorian Clinical Genetics Service, Royal Children's Hospital and Department of Pediatrics, University of Melbourne, Victoria 3052, Australia
| | - Michelle de Silva
- Victorian Clinical Genetics Service, Royal Children's Hospital and Department of Pediatrics, University of Melbourne, Victoria 3052, Australia
| | - Lyndon Gallacher
- Victorian Clinical Genetics Service, Royal Children's Hospital and Department of Pediatrics, University of Melbourne, Victoria 3052, Australia
| | - Ting Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400000, China
| | - Jie Mi
- Center for Non-Communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Changqing Zeng
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hou-Feng Zheng
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Diseases & Population (DaP) Geninfo Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Qingguo Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva 1211, Switzerland;
- Medigenome, Swiss Institute of Genomic Medicine, 1207 Geneva, Switzerland
- iGE3 Institute of Genetics and Genomes in Geneva, Geneva 1211, Switzerland
| | - Timothy C Cox
- Department of Oral & Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA;
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | - Yong-Biao Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China;
- Key Laboratory of Big Data-Based Precision Medicine and Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing 100191, China
- National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Beihang University, Beijing 100083, China
| |
Collapse
|
3
|
Yamashita S, Ishihara S, Graner F. Apical constriction requires patterned apical surface remodeling to synchronize cellular deformation. eLife 2025; 13:RP93496. [PMID: 40243291 PMCID: PMC12005724 DOI: 10.7554/elife.93496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Apical constriction is a basic mechanism for epithelial morphogenesis, making columnar cells into wedge shape and bending a flat cell sheet. It has long been thought that an apically localized myosin generates a contractile force and drives the cell deformation. However, when we tested the increased apical surface contractility in a cellular Potts model simulation, the constriction increased pressure inside the cell and pushed its lateral surface outward, making the cells adopt a drop shape instead of the expected wedge shape. To keep the lateral surface straight, we considered an alternative model in which the cell shape was determined by cell membrane elasticity and endocytosis, and the increased pressure is balanced among the cells. The cellular Potts model simulation succeeded in reproducing the apical constriction, and it also suggested that a too strong apical surface tension might prevent the tissue invagination.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Shuji Ishihara
- Graduate School of Arts and Sciences, The University of TokyoTokyoJapan
| | | |
Collapse
|
4
|
Li Q, Zhang BH, Chen Q, Fu Y, Zuo X, Lu P, Zhang W, Wang B. Pathogenic variants in SHROOM3 associated with hemifacial microsomia. J Hum Genet 2025; 70:189-194. [PMID: 39875538 DOI: 10.1038/s10038-025-01317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/14/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Hemifacial microsomia (HFM) is a rare congenital disorder that affects facial symmetry, ear development, and other congenital anomalies. However, known causal genes account for only approximately 6% of patients, indicating the need to discover more pathogenic genes. Association tests demonstrated an association between common variants in SHROOM3 and HFM (P = 1.02E-4 for the lead SNP), while gene burden analysis revealed a significant enrichment of rare variants in HFM patients compared to healthy controls (P = 2.78E-5). We then evaluated the expression patterns of SHROOM3 and the consequences of its deleterious variants. Our study identified 7 deleterious variants in SHROOM3 among the 320 Chinese HFM patients and 2 deleterious variants in two HFM trios, respectively, suggesting a model of dominant inheritance with incomplete penetrance. These variants were predicted to significantly impact SHROOM3 function. Furthermore, the gene expression pattern of SHROOM3 in the pharyngeal arches and the presence of facial abnormalities in gene-edited mice suggest that SHROOM3 plays important roles in facial development. Our findings suggest that SHROOM3 is a likely pathogenic gene for HFM.
Collapse
Affiliation(s)
- Qin Li
- Department of Stomatology, Eye&ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Bing-Hua Zhang
- Shanghai Xuhui District Dental Center, Shanghai, 200032, China
| | - Qi Chen
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Yaoyao Fu
- Department of facial plastic and reconstructive surgery, Eye&ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Xiang Zuo
- Department of Stomatology, Eye&ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Peng Lu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Weiwei Zhang
- Department of Stomatology, Eye&ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Bingqing Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China.
| |
Collapse
|
5
|
Islam ST, Cheheltani S, Cheng C, Fowler VM. Disease-related non-muscle myosin IIA D1424N rod domain mutation, but not R702C motor domain mutation, disrupts mouse ocular lens fiber cell alignment and hexagonal packing. Cytoskeleton (Hoboken) 2024; 81:789-805. [PMID: 38516850 PMCID: PMC11416570 DOI: 10.1002/cm.21853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
The mouse ocular lens is an excellent vertebrate model system for studying hexagonal cell packing and shape changes during tissue morphogenesis and differentiation. The lens is composed of two types of cells, epithelial and fiber cells. During the initiation of fiber cell differentiation, lens epithelial cells transform from randomly packed cells to hexagonally shaped and packed cells to form meridional row cells. The meridional row cells further differentiate and elongate into newly formed fiber cells that maintain hexagonal cell shape and ordered packing. In other tissues, actomyosin contractility regulates cell hexagonal packing geometry during epithelial tissue morphogenesis. Here, we use the mouse lens as a model to study the effect of two human disease-related non-muscle myosin IIA (NMIIA) mutations on lens cellular organization during fiber cell morphogenesis and differentiation. We studied genetic knock-in heterozygous mice with NMIIA-R702C motor domain or NMIIA-D1424N rod domain mutations. We observed that while one allele of NMIIA-R702C has no impact on lens meridional row epithelial cell shape and packing, one allele of the NMIIA-D1424N mutation can cause localized defects in cell hexagonal packing. Similarly, one allele of NMIIA-R702C motor domain mutation does not affect lens fiber cell organization while the NMIIA-D1424N mutant proteins disrupt fiber cell organization and packing. Our work demonstrates that disease-related NMIIA rod domain mutations (D1424N or E1841K) disrupt mouse lens fiber cell morphogenesis and differentiation.
Collapse
Affiliation(s)
- Sadia T. Islam
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Sepideh Cheheltani
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Velia M. Fowler
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
6
|
Mikula Mrstakova S, Kozmik Z. Genetic analysis of medaka fish illuminates conserved and divergent roles of Pax6 in vertebrate eye development. Front Cell Dev Biol 2024; 12:1448773. [PMID: 39512904 PMCID: PMC11541176 DOI: 10.3389/fcell.2024.1448773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
Landmark discovery of eye defects caused by Pax6 gene mutations in humans, rodents, and even fruit flies combined with Pax6 gene expression studies in various phyla, led to the master control gene hypothesis postulating that the gene is required almost universally for animal visual system development. However, this assumption has not been broadly tested in genetically trackable organisms such as vertebrates. Here, to determine the functional role of the fish orthologue of mammalian Pax6 in eye development we analyzed mutants in medaka Pax6.1 gene generated by genome editing. We found that transcription factors implicated in vertebrate lens development (Prox1a, MafB, c-Maf, FoxE3) failed to initiate expression in the presumptive lens tissue of Pax6.1 mutant fish resulting in aphakia, a phenotype observed previously in Pax6 mutant mice. Surprisingly, the overall differentiation potential of Pax6.1-deficient retinal progenitor cells (RPCs) is not severely compromised, and the only cell types affected by the absence of Pax6.1 transcription factor are retinal ganglion cells. This is in stark contrast to the situation in mice where the Pax6 gene is required cell-autonomously for the expansion of RPCs, and the differentiation of all retina cell types. Our results provide novel insight into the conserved and divergent roles of Pax6 gene orthologues in vertebrate eye development indicating that the lens-specific role is more evolutionarily conserved than the role in retina differentiation.
Collapse
Affiliation(s)
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
De Magalhães CG, Cvekl A, Jaeger RG, Yan CYI. Lens placode modulates extracellular matrix formation during early eye development. Differentiation 2024; 138:100792. [PMID: 38935992 PMCID: PMC11247415 DOI: 10.1016/j.diff.2024.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The role extracellular matrix (ECM) in multiple events of morphogenesis has been well described, little is known about its specific role in early eye development. One of the first morphogenic events in lens development is placodal thickening, which converts the presumptive lens ectoderm from cuboidal to pseudostratified epithelium. This process occurs in the anterior pre-placodal ectoderm when the optic vesicle approaches the cephalic ectoderm and is regulated by transcription factor Pax6 and secreted BMP4. Since cells and ECM have a dynamic relationship of interdependence and modulation, we hypothesized that the ECM evolves with cell shape changes during lens placode formation. This study investigates changes in optic ECM including both protein distribution deposition, extracellular gelatinase activity and gene expression patterns during early optic development using chicken and mouse models. In particular, the expression of Timp2, a metalloprotease inhibitor, corresponds with a decrease in gelatinase activity within the optic ECM. Furthermore, we demonstrate that optic ECM remodeling depends on BMP signaling in the placode. Together, our findings suggest that the lens placode plays an active role in remodeling the optic ECM during early eye development.
Collapse
Affiliation(s)
- Cecília G De Magalhães
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruy G Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - C Y Irene Yan
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
8
|
Liu W, Xiu L, Zhou M, Li T, Jiang N, Wan Y, Qiu C, Li J, Hu W, Zhang W, Wu J. The Critical Role of the Shroom Family Proteins in Morphogenesis, Organogenesis and Disease. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:187-202. [PMID: 38884059 PMCID: PMC11169129 DOI: 10.1007/s43657-023-00119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 06/18/2024]
Abstract
The Shroom (Shrm) family of actin-binding proteins has a unique and highly conserved Apx/Shrm Domain 2 (ASD2) motif. Shroom protein directs the subcellular localization of Rho-associated kinase (ROCK), which remodels the actomyosin cytoskeleton and changes cellular morphology via its ability to phosphorylate and activate non-muscle myosin II. Therefore, the Shrm-ROCK complex is critical for the cellular shape and the development of many tissues, including the neural tube, eye, intestines, heart, and vasculature system. Importantly, the structure and expression of Shrm proteins are also associated with neural tube defects, chronic kidney disease, metastasis of carcinoma, and X-link mental retardation. Therefore, a better understanding of Shrm-mediated signaling transduction pathways is essential for the development of new therapeutic strategies to minimize damage resulting in abnormal Shrm proteins. This paper provides a comprehensive overview of the various Shrm proteins and their roles in morphogenesis and disease.
Collapse
Affiliation(s)
- Wanling Liu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Lei Xiu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Mingzhe Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Tao Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yanmin Wan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Chao Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jian Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Wei Hu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Monglia University, Hohhot, 010030 China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, 200052 China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, 200052 China
| |
Collapse
|
9
|
De Magalhães CG, Cvekl A, Jaeger RG, Yan CYI. Lens Placode Modulates Extracellular Matrix Formation During Early Eye Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.30.569417. [PMID: 38076974 PMCID: PMC10705410 DOI: 10.1101/2023.11.30.569417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The role extracellular matrix (ECM) in multiple events of morphogenesis has been well described, little is known about its specific role in early eye development. One of the first morphogenic events in lens development is placodal thickening, which converts the presumptive lens ectoderm from cuboidal to pseudostratified epithelium. This process occurs in the anterior pre-placodal ectoderm when the optic vesicle approaches the cephalic ectoderm. Since cells and ECM have a dynamic relationship of interdependence and modulation, we hypothesized that the ECM evolves with cell shape changes during lens placode formation. This study investigates changes in optic ECM including both protein distribution deposition, extracellular gelatinase activity and gene expression patterns during early optic development using chicken and mouse models. In particular, the expression of Timp2 , a metalloprotease inhibitor, corresponds with a decrease in gelatinase activity within the optic ECM. Furthermore, we demonstrate that optic ECM remodeling depends on BMP signaling in the placode. Together, our findings suggest that the lens placode plays an active role in remodeling the optic ECM during early eye development.
Collapse
|
10
|
Collinet C, Bailles A, Dehapiot B, Lecuit T. Mechanical regulation of substrate adhesion and de-adhesion drives a cell-contractile wave during Drosophila tissue morphogenesis. Dev Cell 2024; 59:156-172.e7. [PMID: 38103554 PMCID: PMC10783558 DOI: 10.1016/j.devcel.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/14/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
During morphogenesis, mechanical forces induce large-scale deformations; yet, how forces emerge from cellular contractility and adhesion is unclear. In Drosophila embryos, a tissue-scale wave of actomyosin contractility coupled with adhesion to the surrounding vitelline membrane drives polarized tissue invagination. We show that this process emerges subcellularly from the mechanical coupling between myosin II activation and sequential adhesion/de-adhesion to the vitelline membrane. At the wavefront, integrin clusters anchor the actin cortex to the vitelline membrane and promote activation of myosin II, which in turn enhances adhesion in a positive feedback. Following cell detachment, cortex contraction and advective flow amplify myosin II. Prolonged contact with the vitelline membrane prolongs the integrin-myosin II feedback, increases integrin adhesion, and thus slows down cell detachment and wave propagation. The angle of cell detachment depends on adhesion strength and sets the tensile forces required for detachment. Thus, we document how the interplay between subcellular mechanochemical feedback and geometry drives tissue morphogenesis.
Collapse
Affiliation(s)
- Claudio Collinet
- Aix Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, 13288 Marseille, France.
| | - Anaïs Bailles
- Aix Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, 13288 Marseille, France
| | - Benoit Dehapiot
- Aix Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, 13288 Marseille, France
| | - Thomas Lecuit
- Aix Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, 13288 Marseille, France; Collège de France, 11 Place Marcelin Berthelot, Paris, France.
| |
Collapse
|
11
|
Paul A, Lawlor A, Cunanan K, Gaheer PS, Kalra A, Napoleone M, Lanktree MB, Bridgewater D. The Good and the Bad of SHROOM3 in Kidney Development and Disease: A Narrative Review. Can J Kidney Health Dis 2023; 10:20543581231212038. [PMID: 38107159 PMCID: PMC10722951 DOI: 10.1177/20543581231212038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose of review Multiple large-scale genome-wide association meta-analyses studies have reliably identified an association between genetic variants within the SHROOM3 gene and chronic kidney disease. This association extends to alterations in known markers of kidney disease including baseline estimated glomerular filtration rate, urinary albumin-to-creatinine ratio, and blood urea nitrogen. Yet, an understanding of the molecular mechanisms behind the association of SHROOM3 and kidney disease remains poorly communicated. We conducted a narrative review to summarize the current state of literature regarding the genetic and molecular relationships between SHROOM3 and kidney development and disease. Sources of information PubMed, PubMed Central, SCOPUS, and Web of Science databases, as well as review of references from relevant studies and independent Google Scholar searches to fill gaps in knowledge. Methods A comprehensive narrative review was conducted to explore the molecular mechanisms underlying SHROOM3 and kidney development, function, and disease. Key findings SHROOM3 is a unique protein, as it is the only member of the SHROOM group of proteins that regulates actin dynamics through apical constriction and apicobasal cell elongation. It holds a dichotomous role in the kidney, as subtle alterations in SHROOM3 expression and function can be both pathological and protective toward kidney disease. Genome-wide association studies have identified genetic variants near the transcription start site of the SHROOM3 gene associated with chronic kidney disease. SHROOM3 also appears to protect the glomerular structure and function in conditions such as focal segmental glomerulosclerosis. However, little is known about the exact mechanisms by which this protection occurs, which is why SHROOM3 binding partners remain an opportunity for further investigation. Limitations Our search was limited to English articles. No structured assessment of study quality was performed, and selection bias of included articles may have occurred. As we discuss future directions and opportunities, this narrative review reflects the academic views of the authors.
Collapse
Affiliation(s)
- Amy Paul
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Allison Lawlor
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kristina Cunanan
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Pukhraj S. Gaheer
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton, ON, Canada
| | - Aditya Kalra
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Melody Napoleone
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Matthew B. Lanktree
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton, ON, Canada
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Darren Bridgewater
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Casey MA, Lusk S, Kwan KM. Eye Morphogenesis in Vertebrates. Annu Rev Vis Sci 2023; 9:221-243. [PMID: 37040791 DOI: 10.1146/annurev-vision-100720-111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Proper eye structure is essential for visual function: Multiple essential eye tissues must take shape and assemble into a precise three-dimensional configuration. Accordingly, alterations to eye structure can lead to pathological conditions of visual impairment. Changes in eye shape can also be adaptive over evolutionary time. Eye structure is first established during development with the formation of the optic cup, which contains the neural retina, retinal pigment epithelium, and lens. This crucial yet deceptively simple hemispherical structure lays the foundation for all later elaborations of the eye. Building on descriptions of the embryonic eye that started with hand drawings and micrographs, the field is beginning to identify mechanisms driving dynamic changes in three-dimensional cell and tissue shape. A combination of molecular genetics, imaging, and pharmacological approaches is defining connections among transcription factors, signaling pathways, and the intracellular machinery governing the emergence of this crucial structure.
Collapse
Affiliation(s)
- Macaulie A Casey
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA; , ,
| | - Sarah Lusk
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA; , ,
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA; , ,
| |
Collapse
|
13
|
Takla TN, Luo J, Sudyk R, Huang J, Walker JC, Vora NL, Sexton JZ, Parent JM, Tidball AM. A Shared Pathogenic Mechanism for Valproic Acid and SHROOM3 Knockout in a Brain Organoid Model of Neural Tube Defects. Cells 2023; 12:1697. [PMID: 37443734 PMCID: PMC10340169 DOI: 10.3390/cells12131697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Neural tube defects (NTDs), including anencephaly and spina bifida, are common major malformations of fetal development resulting from incomplete closure of the neural tube. These conditions lead to either universal death (anencephaly) or severe lifelong complications (spina bifida). Despite hundreds of genetic mouse models of neural tube defect phenotypes, the genetics of human NTDs are poorly understood. Furthermore, pharmaceuticals, such as antiseizure medications, have been found clinically to increase the risk of NTDs when administered during pregnancy. Therefore, a model that recapitulates human neurodevelopment would be of immense benefit to understand the genetics underlying NTDs and identify teratogenic mechanisms. Using our self-organizing single rosette cortical organoid (SOSR-COs) system, we have developed a high-throughput image analysis pipeline for evaluating the SOSR-CO structure for NTD-like phenotypes. Similar to small molecule inhibition of apical constriction, the antiseizure medication valproic acid (VPA), a known cause of NTDs, increases the apical lumen size and apical cell surface area in a dose-responsive manner. GSK3β and HDAC inhibitors caused similar lumen expansion; however, RNA sequencing suggests VPA does not inhibit GSK3β at these concentrations. The knockout of SHROOM3, a well-known NTD-related gene, also caused expansion of the lumen, as well as reduced f-actin polarization. The increased lumen sizes were caused by reduced cell apical constriction, suggesting that impingement of this process is a shared mechanism for VPA treatment and SHROOM3-KO, two well-known causes of NTDs. Our system allows the rapid identification of NTD-like phenotypes for both compounds and genetic variants and should prove useful for understanding specific NTD mechanisms and predicting drug teratogenicity.
Collapse
Affiliation(s)
- Taylor N. Takla
- Department of Neurology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA (R.S.)
| | - Jinghui Luo
- Department of Neurology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA (R.S.)
| | - Roksolana Sudyk
- Department of Neurology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA (R.S.)
| | - Joy Huang
- Department of Neurology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA (R.S.)
| | - John Clayton Walker
- Department of Neurology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA (R.S.)
| | - Neeta L. Vora
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan Z. Sexton
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Drug Repurposing, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jack M. Parent
- Department of Neurology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA (R.S.)
- Michigan Neuroscience Institute, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Andrew M. Tidball
- Department of Neurology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA (R.S.)
| |
Collapse
|
14
|
Takla TN, Luo J, Sudyk R, Huang J, Walker JC, Vora NL, Sexton JZ, Parent JM, Tidball AM. A Shared Pathogenic Mechanism for Valproic Acid and SHROOM3 Knockout in a Brain Organoid Model of Neural Tube Defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536245. [PMID: 37090564 PMCID: PMC10120643 DOI: 10.1101/2023.04.11.536245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Neural tube defects (NTDs) including anencephaly and spina bifida are common major malformations of fetal development resulting from incomplete closure of the neural tube. These conditions lead to either universal death (anencephaly) or life-long severe complications (spina bifida). Despite hundreds of genetic mouse models having neural tube defect phenotypes, the genetics of human NTDs are poorly understood. Furthermore, pharmaceuticals such as antiseizure medications have been found clinically to increase the risk of NTDs when administered during pregnancy. Therefore, a model that recapitulates human neurodevelopment would be of immense benefit to understand the genetics underlying NTDs and identify teratogenic mechanisms. Using our self-organizing single rosette spheroid (SOSRS) brain organoid system, we have developed a high-throughput image analysis pipeline for evaluating SOSRS structure for NTD-like phenotypes. Similar to small molecule inhibition of apical constriction, the antiseizure medication valproic acid (VPA), a known cause of NTDs, increases the apical lumen size and apical cell surface area in a dose-responsive manner. This expansion was mimicked by GSK3β and HDAC inhibitors; however, RNA sequencing suggests VPA does not inhibit GSK3β at these concentrations. Knockout of SHROOM3, a well-known NTD-related gene, also caused expansion of the lumen as well as reduced f-actin polarization. The increased lumen sizes were caused by reduced cell apical constriction suggesting that impingement of this process is a shared mechanism for VPA treatment and SHROOM3-KO, two well-known causes of NTDs. Our system allows the rapid identification of NTD-like phenotypes for both compounds and genetic variants and should prove useful for understanding specific NTD mechanisms and predicting drug teratogenicity.
Collapse
Affiliation(s)
- Taylor N. Takla
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - Jinghui Luo
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - Roksolana Sudyk
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - Joy Huang
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - J. Clayton Walker
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| | - Neeta L. Vora
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Jonathan Z. Sexton
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Ann Arbor, MI
- Center for Drug Repurposing, University of Michigan, Ann Arbor, MI
| | - Jack M. Parent
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI
- VA Ann Arbor Healthcare System, Ann Arbor, MI
| | - Andrew M. Tidball
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
15
|
Koontz A, Urrutia HA, Bronner ME. Making a head: Neural crest and ectodermal placodes in cranial sensory development. Semin Cell Dev Biol 2023; 138:15-27. [PMID: 35760729 PMCID: PMC10224775 DOI: 10.1016/j.semcdb.2022.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/11/2022] [Accepted: 06/19/2022] [Indexed: 01/04/2023]
Abstract
During development of the vertebrate sensory system, many important components like the sense organs and cranial sensory ganglia arise within the head and neck. Two progenitor populations, the neural crest, and cranial ectodermal placodes, contribute to these developing vertebrate peripheral sensory structures. The interactions and contributions of these cell populations to the development of the lens, olfactory, otic, pituitary gland, and cranial ganglia are vital for appropriate peripheral nervous system development. Here, we review the origins of both neural crest and placode cells at the neural plate border of the early vertebrate embryo and investigate the molecular and environmental signals that influence specification of different sensory regions. Finally, we discuss the underlying molecular pathways contributing to the complex vertebrate sensory system from an evolutionary perspective, from basal vertebrates to amniotes.
Collapse
Affiliation(s)
- Alison Koontz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hugo A Urrutia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
16
|
Hemkemeyer SA, Liu Z, Vollmer V, Xu Y, Lohmann B, Bähler M. The RhoGAP-myosin Myo9b regulates ocular lens pit morphogenesis. Dev Dyn 2022; 251:1897-1907. [PMID: 36008362 DOI: 10.1002/dvdy.522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND During eye development the lens placode invaginates to form the lens pit. Further bending of lens epithelium and separation from ectoderm leads eventually to a spherical lens vesicle with enclosed extracellular fluid. Changes in epithelial morphology involve the actin cytoskeleton and its regulators. The myosin Myo9b is simultaneously an actin-based motor and Rho GTPase-activating protein that regulates actin cytoskeleton organization. Myo9b-deficient adult mice and embryos were analyzed for eye malformations and alterations in lens development. RESULTS Myo9b-deficient mice showed a high incidence of microphthalmia and cataracts with occasional blepharitis. Formation of the lens vesicle during embryonic lens development was disordered in virtually all embryos. Lens placode invagination was less deep and gave rise to a conical structure instead of a spherical pit. At later stages either no lens vesicle was formed or a significantly smaller one that was not enclosed by the optic cup. Expression of the cell fate marker Pax6 was not altered. Staining of adherens junctions and F-actin was most intense at the tip of conical invaginations, suggesting that mechanical forces are not properly coordinated between epithelial cells that form the pit. CONCLUSIONS Myo9b is a critical regulator of ocular lens vesicle morphogenesis during eye development.
Collapse
Affiliation(s)
- Sandra A Hemkemeyer
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Zhijun Liu
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Veith Vollmer
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Yan Xu
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Birgit Lohmann
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Martin Bähler
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| |
Collapse
|
17
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
18
|
Gao L, Jin N, Ye Z, Ma T, Huang Y, Li H, Du J, Li Z. A possible connection between reactive oxygen species and the unfolded protein response in lens development: From insight to foresight. Front Cell Dev Biol 2022; 10:820949. [PMID: 36211466 PMCID: PMC9535091 DOI: 10.3389/fcell.2022.820949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
The lens is a relatively special and simple organ. It has become an ideal model to study the common developmental characteristics among different organic systems. Lens development is a complex process influenced by numerous factors, including signals from the intracellular and extracellular environment. Reactive oxygen species (ROS) are a group of highly reactive and oxygen-containing molecules that can cause endoplasmic reticulum stress in lens cells. As an adaptive response to ER stress, lens cells initiate the unfolded protein response (UPR) to maintain normal protein synthesis by selectively increasing/decreasing protein synthesis and increasing the degradation of misfolded proteins. Generally, the UPR signaling pathways have been well characterized in the context of many pathological conditions. However, recent studies have also confirmed that all three UPR signaling pathways participate in a variety of developmental processes, including those of the lens. In this review, we first briefly summarize the three stages of lens development and present the basic profiles of ROS and the UPR. We then discuss the interconnections between lens development and these two mechanisms. Additionally, the potential adoption of human pluripotent stem-cell-based lentoids in lens development research is proposed to provide a novel perspective on future developmental studies.
Collapse
Affiliation(s)
- Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ni Jin
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Endocrinology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, The Chinese PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tianju Ma
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Huang
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongyu Li
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jinlin Du
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhaohui Li,
| |
Collapse
|
19
|
Martínez-Ara G, Taberner N, Takayama M, Sandaltzopoulou E, Villava CE, Bosch-Padrós M, Takata N, Trepat X, Eiraku M, Ebisuya M. Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues. Nat Commun 2022; 13:5400. [PMID: 36104355 PMCID: PMC9474505 DOI: 10.1038/s41467-022-33115-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
The emerging field of synthetic developmental biology proposes bottom-up approaches to examine the contribution of each cellular process to complex morphogenesis. However, the shortage of tools to manipulate three-dimensional (3D) shapes of mammalian tissues hinders the progress of the field. Here we report the development of OptoShroom3, an optogenetic tool that achieves fast spatiotemporal control of apical constriction in mammalian epithelia. Activation of OptoShroom3 through illumination in an epithelial Madin-Darby Canine Kidney (MDCK) cell sheet reduces the apical surface of the stimulated cells and causes displacements in the adjacent regions. Light-induced apical constriction provokes the folding of epithelial cell colonies on soft gels. Its application to murine and human neural organoids leads to thickening of neuroepithelia, apical lumen reduction in optic vesicles, and flattening in neuroectodermal tissues. These results show that spatiotemporal control of apical constriction can trigger several types of 3D deformation depending on the initial tissue context.
Collapse
Affiliation(s)
- Guillermo Martínez-Ara
- European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Núria Taberner
- European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003, Barcelona, Spain
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, 650-0047, Kobe, Japan
| | - Mami Takayama
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, 650-0047, Kobe, Japan
| | | | - Casandra E Villava
- European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Miquel Bosch-Padrós
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Nozomu Takata
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, 650-0047, Kobe, Japan
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mototsugu Eiraku
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, 650-0047, Kobe, Japan
| | - Miki Ebisuya
- European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003, Barcelona, Spain.
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, 650-0047, Kobe, Japan.
| |
Collapse
|
20
|
Abstract
Developing organs are shaped, in part, by physical interaction with their environment in the embryo. In recent years, technical advances in live-cell imaging and material science have greatly expanded our understanding of the mechanical forces driving organ formation. Here, we provide a broad overview of the types of forces generated during embryonic development and then focus on a subset of organs underlying our senses: the eyes, inner ears, nose and skin. The epithelia in these organs emerge from a common origin: the ectoderm germ layer; yet, they arrive at unique and complex forms over developmental time. We discuss exciting recent animal studies that show a crucial role for mechanical forces in, for example, the thickening of sensory placodes, the coiling of the cochlea and the lengthening of hair. Finally, we discuss how microfabricated organoid systems can now provide unprecedented insights into the physical principles of human development.
Collapse
Affiliation(s)
- Anh Phuong Le
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Kim
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Karl R. Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Disatham J, Brennan L, Jiao X, Ma Z, Hejtmancik JF, Kantorow M. Changes in DNA methylation hallmark alterations in chromatin accessibility and gene expression for eye lens differentiation. Epigenetics Chromatin 2022; 15:8. [PMID: 35246225 PMCID: PMC8897925 DOI: 10.1186/s13072-022-00440-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Background Methylation at cytosines (mCG) is a well-known regulator of gene expression, but its requirements for cellular differentiation have yet to be fully elucidated. A well-studied cellular differentiation model system is the eye lens, consisting of a single anterior layer of epithelial cells that migrate laterally and differentiate into a core of fiber cells. Here, we explore the genome-wide relationships between mCG methylation, chromatin accessibility and gene expression during differentiation of eye lens epithelial cells into fiber cells. Results Whole genome bisulfite sequencing identified 7621 genomic loci exhibiting significant differences in mCG levels between lens epithelial and fiber cells. Changes in mCG levels were inversely correlated with the differentiation state-specific expression of 1285 genes preferentially expressed in either lens fiber or lens epithelial cells (Pearson correlation r = − 0.37, p < 1 × 10–42). mCG levels were inversely correlated with chromatin accessibility determined by assay for transposase-accessible sequencing (ATAC-seq) (Pearson correlation r = − 0.86, p < 1 × 10–300). Many of the genes exhibiting altered regions of DNA methylation, chromatin accessibility and gene expression levels in fiber cells relative to epithelial cells are associated with lens fiber cell structure, homeostasis and transparency. These include lens crystallins (CRYBA4, CRYBB1, CRYGN, CRYBB2), lens beaded filament proteins (BFSP1, BFSP2), transcription factors (HSF4, SOX2, HIF1A), and Notch signaling pathway members (NOTCH1, NOTCH2, HEY1, HES5). Analysis of regions exhibiting cell-type specific alterations in DNA methylation revealed an overrepresentation of consensus sequences of multiple transcription factors known to play key roles in lens cell differentiation including HIF1A, SOX2, and the MAF family of transcription factors. Conclusions Collectively, these results link DNA methylation with control of chromatin accessibility and gene expression changes required for eye lens differentiation. The results also point to a role for DNA methylation in the regulation of transcription factors previously identified to be important for lens cell differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00440-z.
Collapse
Affiliation(s)
- Joshua Disatham
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Lisa Brennan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marc Kantorow
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
22
|
Baldwin AT, Kim JH, Seo H, Wallingford JB. Global analysis of cell behavior and protein dynamics reveals region-specific roles for Shroom3 and N-cadherin during neural tube closure. eLife 2022; 11:e66704. [PMID: 35244026 PMCID: PMC9010020 DOI: 10.7554/elife.66704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Failures of neural tube closure are common and serious birth defects, yet we have a poor understanding of the interaction of genetics and cell biology during neural tube closure. Additionally, mutations that cause neural tube defects (NTDs) tend to affect anterior or posterior regions of the neural tube but rarely both, indicating a regional specificity to NTD genetics. To better understand the regional specificity of cell behaviors during neural tube closure, we analyzed the dynamic localization of actin and N-cadherin via high-resolution tissue-level time-lapse microscopy during Xenopus neural tube closure. To investigate the regionality of gene function, we generated mosaic mutations in shroom3, a key regulator or neural tube closure. This new analytical approach elucidates several differences between cell behaviors during cranial/anterior and spinal/posterior neural tube closure, provides mechanistic insight into the function of shroom3, and demonstrates the ability of tissue-level imaging and analysis to generate cell biological mechanistic insights into neural tube closure.
Collapse
Affiliation(s)
- Austin T Baldwin
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - Juliana H Kim
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - Hyemin Seo
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| |
Collapse
|
23
|
Li A, Cunanan J, Khalili H, Plageman T, Ask K, Khan A, Hunjan A, Drysdale T, Bridgewater D. Shroom3, a Gene Associated with CKD, Modulates Epithelial Recovery after AKI. KIDNEY360 2021; 3:51-62. [PMID: 35368578 PMCID: PMC8967620 DOI: 10.34067/kid.0003802021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/28/2021] [Indexed: 01/12/2023]
Abstract
Background Ischemia-induced AKI resulting in tubular damage can often progress to CKD and is a common cause of nephrology consultation. After renal tubular epithelial damage, molecular and cellular mechanisms are activated to repair and regenerate the damaged epithelium. If these mechanisms are impaired, AKI can progress to CKD. Even in patients whose kidney function returns to normal baseline are more likely to develop CKD. Genome-wide association studies have provided robust evidence that genetic variants in Shroom3, which encodes an actin-associated protein, are associated with CKD and poor outcomes in transplanted kidneys. Here, we sought to further understand the associations of Shroom3 in CKD. Methods Kidney ischemia was induced in wild-type (WT) and Shroom3 heterozygous null mice (Shroom3Gt/+ ) and the mechanisms of cellular recovery and repair were examined. Results A 28-minute bilateral ischemia in Shroom3Gt/+ mice resulted in 100% mortality within 24 hours. After 22-minute ischemic injury, Shroom3Gt/+ mice had a 16% increased mortality, worsened kidney function, and significantly worse histopathology, apoptosis, proliferation, inflammation, and fibrosis after injury. The cortical tubular damage in Shroom3Gt/+ was associated with disrupted epithelial redifferentiation, disrupted Rho-kinase/myosin signaling, and disorganized apical F-actin. Analysis of MDCK cells showed the levels of Shroom3 are directly correlated to apical organization of actin and actomyosin regulators. Conclusion These findings establish that Shroom3 is required for epithelial repair and redifferentiation through the organization of actomyosin regulators, and could explain why genetic variants in Shroom3 are associated with CKD and allograft rejection.
Collapse
Affiliation(s)
- Aihua Li
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Joanna Cunanan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Hadiseh Khalili
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | | | - Kjetil Ask
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Ahsan Khan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Ashmeet Hunjan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Thomas Drysdale
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Darren Bridgewater
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
24
|
Hildebrand JD, Leventry AD, Aideyman OP, Majewski JC, Haddad JA, Bisi DC, Kaufmann N. A modifier screen identifies regulators of cytoskeletal architecture as mediators of Shroom-dependent changes in tissue morphology. Biol Open 2021; 10:bio.055640. [PMID: 33504488 PMCID: PMC7875558 DOI: 10.1242/bio.055640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of cell architecture is critical in the formation of tissues during animal development. The mechanisms that control cell shape must be both dynamic and stable in order to establish and maintain the correct cellular organization. Previous work has identified Shroom family proteins as essential regulators of cell morphology during vertebrate development. Shroom proteins regulate cell architecture by directing the subcellular distribution and activation of Rho-kinase, which results in the localized activation of non-muscle myosin II. Because the Shroom-Rock-myosin II module is conserved in most animal model systems, we have utilized Drosophila melanogaster to further investigate the pathways and components that are required for Shroom to define cell shape and tissue architecture. Using a phenotype-based heterozygous F1 genetic screen for modifiers of Shroom activity, we identified several cytoskeletal and signaling protein that may cooperate with Shroom. We show that two of these proteins, Enabled and Short stop, are required for ShroomA-induced changes in tissue morphology and are apically enriched in response to Shroom expression. While the recruitment of Ena is necessary, it is not sufficient to redefine cell morphology. Additionally, this requirement for Ena appears to be context dependent, as a variant of Shroom that is apically localized, binds to Rock, but lacks the Ena binding site, is still capable of inducing changes in tissue architecture. These data point to important cellular pathways that may regulate contractility or facilitate Shroom-mediated changes in cell and tissue morphology. Summary: Using Drosophila as a model system, we identify F-actin and microtubules as important determinants of how cells and tissues respond to Shroom induced contractility.
Collapse
Affiliation(s)
- Jeffrey D Hildebrand
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Adam D Leventry
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Omoregie P Aideyman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - John C Majewski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - James A Haddad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Dawn C Bisi
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nancy Kaufmann
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
25
|
Collinet C, Lecuit T. Programmed and self-organized flow of information during morphogenesis. Nat Rev Mol Cell Biol 2021; 22:245-265. [PMID: 33483696 DOI: 10.1038/s41580-020-00318-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2020] [Indexed: 11/09/2022]
Abstract
How the shape of embryos and organs emerges during development is a fundamental question that has fascinated scientists for centuries. Tissue dynamics arise from a small set of cell behaviours, including shape changes, cell contact remodelling, cell migration, cell division and cell extrusion. These behaviours require control over cell mechanics, namely active stresses associated with protrusive, contractile and adhesive forces, and hydrostatic pressure, as well as material properties of cells that dictate how cells respond to active stresses. In this Review, we address how cell mechanics and the associated cell behaviours are robustly organized in space and time during tissue morphogenesis. We first outline how not only gene expression and the resulting biochemical cues, but also mechanics and geometry act as sources of morphogenetic information to ultimately define the time and length scales of the cell behaviours driving morphogenesis. Next, we present two idealized modes of how this information flows - how it is read out and translated into a biological effect - during morphogenesis. The first, akin to a programme, follows deterministic rules and is hierarchical. The second follows the principles of self-organization, which rests on statistical rules characterizing the system's composition and configuration, local interactions and feedback. We discuss the contribution of these two modes to the mechanisms of four very general classes of tissue deformation, namely tissue folding and invagination, tissue flow and extension, tissue hollowing and, finally, tissue branching. Overall, we suggest a conceptual framework for understanding morphogenetic information that encapsulates genetics and biochemistry as well as mechanics and geometry as information modules, and the interplay of deterministic and self-organized mechanisms of their deployment, thereby diverging considerably from the traditional notion that shape is fully encoded and determined by genes.
Collapse
Affiliation(s)
- Claudio Collinet
- Aix-Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, Marseille, France
| | - Thomas Lecuit
- Aix-Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, Marseille, France. .,Collège de France, Paris, France.
| |
Collapse
|
26
|
Brooks ER, Islam MT, Anderson KV, Zallen JA. Sonic hedgehog signaling directs patterned cell remodeling during cranial neural tube closure. eLife 2020; 9:60234. [PMID: 33103996 PMCID: PMC7655103 DOI: 10.7554/elife.60234] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
Neural tube closure defects are a major cause of infant mortality, with exencephaly accounting for nearly one-third of cases. However, the mechanisms of cranial neural tube closure are not well understood. Here, we show that this process involves a tissue-wide pattern of apical constriction controlled by Sonic hedgehog (Shh) signaling. Midline cells in the mouse midbrain neuroepithelium are flat with large apical surfaces, whereas lateral cells are taller and undergo synchronous apical constriction, driving neural fold elevation. Embryos lacking the Shh effector Gli2 fail to produce appropriate midline cell architecture, whereas embryos with expanded Shh signaling, including the IFT-A complex mutants Ift122 and Ttc21b and embryos expressing activated Smoothened, display apical constriction defects in lateral cells. Disruption of lateral, but not midline, cell remodeling results in exencephaly. These results reveal a morphogenetic program of patterned apical constriction governed by Shh signaling that generates structural changes in the developing mammalian brain.
Collapse
Affiliation(s)
- Eric R Brooks
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Mohammed Tarek Islam
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, United States
| |
Collapse
|
27
|
Durbin MD, O'Kane J, Lorentz S, Firulli AB, Ware SM. SHROOM3 is downstream of the planar cell polarity pathway and loss-of-function results in congenital heart defects. Dev Biol 2020; 464:124-136. [PMID: 32511952 DOI: 10.1016/j.ydbio.2020.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
Congenital heart disease (CHD) is the most common birth defect, and the leading cause of death due to birth defects, yet causative molecular mechanisms remain mostly unknown. We previously implicated a novel CHD candidate gene, SHROOM3, in a patient with CHD. Using a Shroom3 gene trap knockout mouse (Shroom3gt/gt) we demonstrate that SHROOM3 is downstream of the noncanonical Wnt planar cell polarity signaling pathway (PCP) and loss-of-function causes cardiac defects. We demonstrate Shroom3 expression within cardiomyocytes of the ventricles and interventricular septum from E10.5 onward, as well as within cardiac neural crest cells and second heart field cells that populate the cardiac outflow tract. We demonstrate that Shroom3gt/gt mice exhibit variable penetrance of a spectrum of CHDs that include ventricular septal defects, double outlet right ventricle, and thin left ventricular myocardium. This CHD spectrum phenocopies what is observed with disrupted PCP. We show that during cardiac development SHROOM3 interacts physically and genetically with, and is downstream of, key PCP signaling component Dishevelled 2. Within Shroom3gt/gt hearts we demonstrate disrupted terminal PCP components, actomyosin cytoskeleton, cardiomyocyte polarity, organization, proliferation and morphology. Together, these data demonstrate SHROOM3 functions during cardiac development as an actomyosin cytoskeleton effector downstream of PCP signaling, revealing SHROOM3's novel role in cardiac development and CHD.
Collapse
Affiliation(s)
- Matthew D Durbin
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James O'Kane
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Samuel Lorentz
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony B Firulli
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie M Ware
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
28
|
Abstract
During embryonic development, the central nervous system forms as the neural plate and then rolls into a tube in a complex morphogenetic process known as neurulation. Neural tube defects (NTDs) occur when neurulation fails and are among the most common structural birth defects in humans. The frequency of NTDs varies greatly anywhere from 0.5 to 10 in 1000 live births, depending on the genetic background of the population, as well as a variety of environmental factors. The prognosis varies depending on the size and placement of the lesion and ranges from death to severe or moderate disability, and some NTDs are asymptomatic. This chapter reviews how mouse models have contributed to the elucidation of the genetic, molecular, and cellular basis of neural tube closure, as well as to our understanding of the causes and prevention of this devastating birth defect.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
29
|
Houssin NS, Martin JB, Coppola V, Yoon SO, Plageman TF. Formation and contraction of multicellular actomyosin cables facilitate lens placode invagination. Dev Biol 2020; 462:36-49. [PMID: 32113830 DOI: 10.1016/j.ydbio.2020.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/06/2020] [Accepted: 02/25/2020] [Indexed: 01/23/2023]
Abstract
Embryonic morphogenesis relies on the intrinsic ability of cells, often through remodeling the cytoskeleton, to shape epithelial tissues during development. Epithelial invagination is an example of morphogenesis that depends on this remodeling but the cellular mechanisms driving arrangement of cytoskeletal elements needed for tissue deformation remain incompletely characterized. To elucidate these mechanisms, live fluorescent microscopy and immunohistochemistry on fixed specimens were performed on chick and mouse lens placodes. This analysis revealed the formation of peripherally localized, circumferentially orientated and aligned junctions enriched in F-actin and MyoIIB. Once formed, the aligned junctions contract in a Rho-kinase and non-muscle myosin dependent manner. Further molecular characterization of these junctions revealed a Rho-kinase dependent accumulation of Arhgef11, a RhoA-specific guanine exchange factor known to regulate the formation of actomyosin cables and junctional contraction. In contrast, the localization of the Par-complex protein Par3, was reduced in these circumferentially orientated junctions. In an effort to determine if Par3 plays a negative role in MyoIIB accumulation, Par3-deficient mouse embryos were analyzed which not only revealed an increase in bicellular junctional accumulation of MyoIIB, but also a reduction of Arhgef11. Together, these results highlight the importance of the formation of the multicellular actomyosin cables that appear essential to the initiation of epithelial invagination and implicate the potential role of Arhgef11 and Par3 in their contraction and formation.
Collapse
Affiliation(s)
| | - Jessica B Martin
- College of Optometry, The Ohio State University, Columbus, OH, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Sung Ok Yoon
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
30
|
Harding P, Moosajee M. The Molecular Basis of Human Anophthalmia and Microphthalmia. J Dev Biol 2019; 7:jdb7030016. [PMID: 31416264 PMCID: PMC6787759 DOI: 10.3390/jdb7030016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Human eye development is coordinated through an extensive network of genetic signalling pathways. Disruption of key regulatory genes in the early stages of eye development can result in aborted eye formation, resulting in an absent eye (anophthalmia) or a small underdeveloped eye (microphthalmia) phenotype. Anophthalmia and microphthalmia (AM) are part of the same clinical spectrum and have high genetic heterogeneity, with >90 identified associated genes. By understanding the roles of these genes in development, including their temporal expression, the phenotypic variation associated with AM can be better understood, improving diagnosis and management. This review describes the genetic and structural basis of eye development, focusing on the function of key genes known to be associated with AM. In addition, we highlight some promising avenues of research involving multiomic approaches and disease modelling with induced pluripotent stem cell (iPSC) technology, which will aid in developing novel therapies.
Collapse
Affiliation(s)
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
| |
Collapse
|
31
|
Zhao Y, Wilmarth PA, Cheng C, Limi S, Fowler VM, Zheng D, David LL, Cvekl A. Proteome-transcriptome analysis and proteome remodeling in mouse lens epithelium and fibers. Exp Eye Res 2019; 179:32-46. [PMID: 30359574 PMCID: PMC6360118 DOI: 10.1016/j.exer.2018.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/31/2018] [Accepted: 10/20/2018] [Indexed: 12/21/2022]
Abstract
Epithelial cells and differentiated fiber cells represent distinct compartments in the ocular lens. While previous studies have revealed proteins that are preferentially expressed in epithelial vs. fiber cells, a comprehensive proteomics library comparing the molecular compositions of epithelial vs. fiber cells is essential for understanding lens formation, function, disease and regenerative potential, and for efficient differentiation of pluripotent stem cells for modeling of lens development and pathology in vitro. To compare protein compositions between the lens epithelium and fibers, we employed tandem mass spectrometry (2D-LC/MS) analysis of microdissected mouse P0.5 lenses. Functional classifications of the top 525 identified proteins into gene ontology categories by molecular processes and subcellular localizations, were adapted for the lens. Expression levels of both epithelial and fiber proteomes were compared with whole lens proteome and mRNA levels using E14.5, E16.5, E18.5, and P0.5 RNA-Seq data sets. During this developmental time window, multiple complex biosynthetic and catabolic processes generate the molecular and structural foundation for lens transparency. As expected, crystallins showed a high correlation between their mRNA and protein levels. Comprehensive data analysis confirmed and/or predicted roles for transcription factors (TFs), RNA-binding proteins (e.g. Carhsp1), translational apparatus including ribosomal heterogeneity and initiation factors, microtubules, cytoskeletal [e.g. non-muscle myosin IIA heavy chain (Myh9) and βB2-spectrin (Sptbn2)] and membrane proteins in lens formation and maturation. Our data highlighted many proteins with unknown functions in the lens that were preferentially enriched in epithelium or fibers, setting the stage for future studies to further dissect the roles of these proteins in fiber cell differentiation vs. epithelial cell maintenance. In conclusion, the present proteomic datasets represent the first mouse lens epithelium and fiber cell proteomes, establish comparative analyses of protein and RNA-Seq data, and characterize the major proteome remodeling required to form the mature lens fiber cells.
Collapse
Affiliation(s)
- Yilin Zhao
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Phillip A Wilmarth
- Department of Biochemistry & Molecular Biology, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Catherine Cheng
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Saima Limi
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Deyou Zheng
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Neurology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Larry L David
- Department of Biochemistry & Molecular Biology, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Ales Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
32
|
Martin JB, Muccioli M, Herman K, Finnell RH, Plageman TF. Folic acid modifies the shape of epithelial cells during morphogenesis via a Folr1 and MLCK dependent mechanism. Biol Open 2019; 8:8/1/bio041160. [PMID: 30670450 PMCID: PMC6361208 DOI: 10.1242/bio.041160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Folic acid supplementation can prevent neural tube defects, but the specific molecular mechanisms by which it does have not been elucidated. During neural plate morphogenesis, epithelial cell apical constriction cooperates with other events to drive tissue-bending, and when defective, can result in neural tube defects. A Rho-kinase deficient binding mutant of the apical constriction regulating protein, Shroom3 (Shroom3R1838C), is one of only a handful of mouse mutant lines with neural tube defects that can be rescued by folic acid supplementation. This provided a unique opportunity to probe the functional rescue of a protein linked to neural tube development by folic acid. Utilizing an epithelial cell culture model of apical constriction, it was observed that treatment with exogenous folic acid, as well as co-expression of the folic acid receptor Folr1, can rescue the function of the Rho-kinase binding deficient mutant of Shroom3 in vitro It was also determined that the rescuing ability of folic acid is RhoA and Rho-kinase independent but myosin light chain kinase (MLCK) and Src-kinase dependent. Inhibition of Rho-kinase-dependent apical constriction in chick embryo neural epithelium was also observed to be rescued by exogenous folic acid and that treatment with folic acid is accompanied by elevated activated myosin light chain and MLCK. Furthermore, doubly heterozygous mouse embryos lacking one copy each of Shroom3 and Folr1 exhibit a low rate of neural tube defects and also have lower levels of activated myosin light chain and MLCK. These studies suggest a novel mechanism by which folic acid modifies epithelial cell shape during morphogenesis, shedding light onto how folic acid may prevent neural tube defects.
Collapse
Affiliation(s)
- Jessica B Martin
- The Ohio State University, College of Optometry, Columbus, OH 43210, USA
| | - Maria Muccioli
- The Ohio State University, College of Optometry, Columbus, OH 43210, USA
| | - Kenneth Herman
- The Ohio State University, College of Optometry, Columbus, OH 43210, USA
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Timothy F Plageman
- The Ohio State University, College of Optometry, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Abstract
This chapter provides an overview of the early developmental origins of six ocular tissues: the cornea, lens, ciliary body, iris, neural retina, and retina pigment epithelium. Many of these tissue types are concurrently specified and undergo a complex set of morphogenetic movements that facilitate their structural interconnection. Within the context of vertebrate eye organogenesis, we also discuss the genetic hierarchies of transcription factors and signaling pathways that regulate growth, patterning, cell type specification and differentiation.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States.
| |
Collapse
|
34
|
Popov IK, Ray HJ, Skoglund P, Keller R, Chang C. The RhoGEF protein Plekhg5 regulates apical constriction of bottle cells during gastrulation. Development 2018; 145:dev168922. [PMID: 30446627 PMCID: PMC6307888 DOI: 10.1242/dev.168922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
Apical constriction regulates epithelial morphogenesis during embryonic development, but how this process is controlled is not understood completely. Here, we identify a Rho guanine nucleotide exchange factor (GEF) gene plekhg5 as an essential regulator of apical constriction of bottle cells during Xenopus gastrulation. plekhg5 is expressed in the blastopore lip and its expression is sufficient to induce ectopic bottle cells in epithelia of different germ layers in a Rho-dependent manner. This activity is not shared by arhgef3, which encodes another organizer-specific RhoGEF. Plekhg5 protein is localized in the apical cell cortex via its pleckstrin homology domain, and the GEF activity enhances its apical recruitment. Plekhg5 induces apical actomyosin accumulation and cell elongation. Knockdown of plekhg5 inhibits activin-induced bottle cell formation and endogenous blastopore lip formation in gastrulating frog embryos. Apical accumulation of actomyosin, apical constriction and bottle cell formation fail to occur in these embryos. Taken together, our data indicate that transcriptional regulation of plekhg5 expression at the blastopore lip determines bottle cell morphology via local polarized activation of Rho by Plekhg5, which stimulates apical actomyosin activity to induce apical constriction.
Collapse
Affiliation(s)
- Ivan K Popov
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Heather J Ray
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Paul Skoglund
- Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| | - Ray Keller
- Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| | - Chenbei Chang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
35
|
Visetsouk MR, Falat EJ, Garde RJ, Wendlick JL, Gutzman JH. Basal epithelial tissue folding is mediated by differential regulation of microtubules. Development 2018; 145:dev.167031. [PMID: 30333212 PMCID: PMC6262788 DOI: 10.1242/dev.167031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023]
Abstract
The folding of epithelial tissues is crucial for development of three-dimensional structure and function. Understanding this process can assist in determining the etiology of developmental disease and engineering of tissues for the future of regenerative medicine. Folding of epithelial tissues towards the apical surface has long been studied, but the molecular mechanisms that mediate epithelial folding towards the basal surface are just emerging. Here, we utilize zebrafish neuroepithelium to identify mechanisms that mediate basal tissue folding to form the highly conserved embryonic midbrain-hindbrain boundary. Live imaging revealed Wnt5b as a mediator of anisotropic epithelial cell shape, both apically and basally. In addition, we uncovered a Wnt5b-mediated mechanism for specific regulation of basal anisotropic cell shape that is microtubule dependent and likely to involve JNK signaling. We propose a model in which a single morphogen can differentially regulate apical versus basal cell shape during tissue morphogenesis. Summary: Examination of cell shape changes during zebrafish neuroepithelium tissue folding reveals that Wnt5b specifically regulates basal anisotropic cell shape via a microtubule-dependent mechanism, likely involving JNK signaling.
Collapse
Affiliation(s)
- Mike R Visetsouk
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| | - Elizabeth J Falat
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| | - Ryan J Garde
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| | - Jennifer L Wendlick
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| | - Jennifer H Gutzman
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| |
Collapse
|
36
|
|
37
|
Sivakumar A, Kurpios NA. Transcriptional regulation of cell shape during organ morphogenesis. J Cell Biol 2018; 217:2987-3005. [PMID: 30061107 PMCID: PMC6122985 DOI: 10.1083/jcb.201612115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
The emerging field of transcriptional regulation of cell shape changes aims to address the critical question of how gene expression programs produce a change in cell shape. Together with cell growth, division, and death, changes in cell shape are essential for organ morphogenesis. Whereas most studies of cell shape focus on posttranslational events involved in protein organization and distribution, cell shape changes can be genetically programmed. This review highlights the essential role of transcriptional regulation of cell shape during morphogenesis of the heart, lungs, gastrointestinal tract, and kidneys. We emphasize the evolutionary conservation of these processes across different model organisms and discuss perspectives on open questions and research avenues that may provide mechanistic insights toward understanding birth defects.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
38
|
Han C, Li J, Wang C, Ouyang H, Ding X, Liu Y, Chen S, Luo L. Wnt5a Contributes to the Differentiation of Human Embryonic Stem Cells into Lentoid Bodies Through the Noncanonical Wnt/JNK Signaling Pathway. ACTA ACUST UNITED AC 2018; 59:3449-3460. [DOI: 10.1167/iovs.18-23902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Chenlu Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jinyan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Chunxiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoyan Ding
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
39
|
Chu CW, Xiang B, Ossipova O, Ioannou A, Sokol SY. The Ajuba family protein Wtip regulates actomyosin contractility during vertebrate neural tube closure. J Cell Sci 2018; 131:jcs.213884. [PMID: 29661847 DOI: 10.1242/jcs.213884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Ajuba family proteins are implicated in the assembly of cell junctions and have been reported to antagonize Hippo signaling in response to cytoskeletal tension. To assess the role of these proteins in actomyosin contractility, we examined the localization and function of Wtip, a member of the Ajuba family, in Xenopus early embryos. Targeted in vivo depletion of Wtip inhibited apical constriction in neuroepithelial cells and elicited neural tube defects. Fluorescent protein-tagged Wtip showed predominant punctate localization along the cell junctions in the epidermis and a linear junctional pattern in the neuroectoderm. In cells undergoing Shroom3-induced apical constriction, the punctate distribution was reorganized into a linear pattern. Conversely, the linear junctional pattern of Wtip in neuroectoderm changed to a more punctate distribution in cells with reduced myosin II activity. The C-terminal fragment of Wtip physically associated with Shroom3 and interfered with Shroom3 activity and neural fold formation. We therefore propose that Wtip is a tension-sensitive cytoskeletal adaptor that regulates apical constriction during vertebrate neurulation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Chih-Wen Chu
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Xiang
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Olga Ossipova
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andriani Ioannou
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
40
|
Mib1 prevents Notch Cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination. PLoS Biol 2018; 16:e2004162. [PMID: 29708962 PMCID: PMC5945229 DOI: 10.1371/journal.pbio.2004162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 05/10/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022] Open
Abstract
The vertebrate neuroepithelium is composed of elongated progenitors whose reciprocal attachments ensure the continuity of the ventricular wall. As progenitors commit to differentiation, they translocate their nucleus basally and eventually withdraw their apical endfoot from the ventricular surface. However, the mechanisms allowing this delamination process to take place while preserving the integrity of the neuroepithelial tissue are still unclear. Here, we show that Notch signaling, which is classically associated with an undifferentiated state, remains active in prospective neurons until they delaminate. During this transition period, prospective neurons rapidly reduce their apical surface and only later down-regulate N-Cadherin levels. Upon Notch blockade, nascent neurons disassemble their junctions but fail to reduce their apical surface. This disrupted sequence weakens the junctional network and eventually leads to breaches in the ventricular wall. We also provide evidence that the Notch ligand Delta-like 1 (Dll1) promotes differentiation by reducing Notch signaling through a Cis-inhibition mechanism. However, during the delamination process, the ubiquitin ligase Mindbomb1 (Mib1) transiently blocks this Cis-inhibition and sustains Notch activity to defer differentiation. We propose that the fine-tuned balance between Notch Trans-activation and Cis-inhibition allows neuroepithelial cells to seamlessly delaminate from the ventricular wall as they commit to differentiation.
Collapse
|
41
|
How mechanical forces shape the developing eye. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:25-36. [PMID: 29432780 DOI: 10.1016/j.pbiomolbio.2018.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/29/2022]
Abstract
In the vertebrate embryo, the eyes develop from optic vesicles that grow laterally outward from the brain tube and contact the overlying surface ectoderm. Within the region of contact, each optic vesicle and the surface ectoderm thicken to form placodes, which then invaginate to create the optic cup and lens pit, respectively. Eventually, the optic cup becomes the retina, while the lens pit closes to form the lens vesicle. Here, we review current hypotheses for the physical mechanisms that create these structures and present novel three-dimensional computer (finite-element) models to illustrate the plausibility and limitations of these hypotheses. Taken together, experimental and numerical results suggest that the driving forces for early eye morphogenesis are generated mainly by differential growth, actomyosin contraction, and regional apoptosis, with morphology mediated by physical constraints provided by adjacent tissues and extracellular matrix. While these studies offer new insight into the mechanics of eye development, future work is needed to better understand how these mechanisms are regulated to precisely control the shape of the eye.
Collapse
|
42
|
Oltean A, Taber LA. Apoptosis generates mechanical forces that close the lens vesicle in the chick embryo. Phys Biol 2018; 15:025001. [PMID: 28914615 DOI: 10.1088/1478-3975/aa8d0e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the initial stages of eye development, optic vesicles grow laterally outward from both sides of the forebrain and come into contact with the surrounding surface ectoderm (SE). Within the region of contact, these layers then thicken locally to create placodes and invaginate to form the optic cup (primitive retina) and lens vesicle (LV), respectively. This paper examines the biophysical mechanisms involved in LV formation, which consists of three phases: (1) lens placode formation; (2) invagination to create the lens pit (LP); and (3) closure to form a complete ellipsoidally shaped LV. Previous studies have suggested that extracellular matrix deposited between the SE and optic vesicle causes the lens placode to form by locally constraining expansion of the SE as it grows, while actomyosin contraction causes this structure to invaginate. Here, using computational modeling and experiments on chick embryos, we confirm that these mechanisms for Phases 1 and 2 are physically plausible. Our results also suggest, however, that they are not sufficient to close the LP during Phase 3. We postulate that apoptosis provides an additional mechanism by removing cells near the LP opening, thereby decreasing its circumference and generating tension that closes the LP. This hypothesis is supported by staining that shows a ring of cell death located around the LP opening during closure. Inhibiting apoptosis in cultured embryos using caspase inhibitors significantly reduced LP closure, and results from a finite-element model indicate that closure driven by cell death is plausible. Taken together, our results suggest an important mechanical role for apoptosis in lens development.
Collapse
Affiliation(s)
- Alina Oltean
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, United States of America
| | | |
Collapse
|
43
|
Pearl EJ, Li J, Green JBA. Cellular systems for epithelial invagination. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0526. [PMID: 28348256 PMCID: PMC5379028 DOI: 10.1098/rstb.2015.0526] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 12/24/2022] Open
Abstract
Epithelial invagination is a fundamental module of morphogenesis that iteratively occurs to generate the architecture of many parts of a developing organism. By changing the physical properties such as the shape and/or position of a population of cells, invagination drives processes ranging from reconfiguring the entire body axis during gastrulation, to forming the primordia of the eyes, ears and multiple ducts and glands, during organogenesis. The epithelial bending required for invagination is achieved through a variety of mechanisms involving systems of cells. Here we provide an overview of the different mechanisms, some of which can work in combination, and outline the circumstances in which they apply. This article is part of the themed issue ‘Systems morphodynamics: understanding the development of tissue hardware’.
Collapse
Affiliation(s)
- Esther J Pearl
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Jingjing Li
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Jeremy B A Green
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
44
|
Cvekl A, Zhang X. Signaling and Gene Regulatory Networks in Mammalian Lens Development. Trends Genet 2017; 33:677-702. [PMID: 28867048 DOI: 10.1016/j.tig.2017.08.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
Ocular lens development represents an advantageous system in which to study regulatory mechanisms governing cell fate decisions, extracellular signaling, cell and tissue organization, and the underlying gene regulatory networks. Spatiotemporally regulated domains of BMP, FGF, and other signaling molecules in late gastrula-early neurula stage embryos generate the border region between the neural plate and non-neural ectoderm from which multiple cell types, including lens progenitor cells, emerge and undergo initial tissue formation. Extracellular signaling and DNA-binding transcription factors govern lens and optic cup morphogenesis. Pax6, c-Maf, Hsf4, Prox1, Sox1, and a few additional factors regulate the expression of the lens structural proteins, the crystallins. Extensive crosstalk between a diverse array of signaling pathways controls the complexity and order of lens morphogenetic processes and lens transparency.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
45
|
Yano T, Kanoh H, Tamura A, Tsukita S. Apical cytoskeletons and junctional complexes as a combined system in epithelial cell sheets. Ann N Y Acad Sci 2017; 1405:32-43. [DOI: 10.1111/nyas.13432] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Tomoki Yano
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine; Osaka University; Osaka Japan
| | - Hatsuho Kanoh
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine; Osaka University; Osaka Japan
- Graduate School of Biostudies; Kyoto University; Kyoto Japan
| | - Atsushi Tamura
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine; Osaka University; Osaka Japan
| | - Sachiko Tsukita
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine; Osaka University; Osaka Japan
| |
Collapse
|
46
|
From morphogen to morphogenesis and back. Nature 2017; 541:311-320. [DOI: 10.1038/nature21348] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
|
47
|
Iida H, Yang T, Yasugi S, Ishii Y. Temporal dissociation of developmental events in the chick eye under low temperature conditions. Dev Growth Differ 2016; 58:741-749. [PMID: 27921294 DOI: 10.1111/dgd.12330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 11/28/2022]
Abstract
The chick embryonic eye is an excellent model for the study of vertebrate organogenesis. Key events in eye development involve thickening, invagination and cytodifferentiation of the lens primordium. While these events occur successively at different developmental stages, the extent to which these events are temporally related is largely unknown. Here we show that the lens invagination is highly sensitive to temperature. Lowering of incubation temperature to 29°C at embryonic day 2 delayed the onset of invagination of the lens, but not thickening and cytodifferentiation, leading to abnormal protrusion of the eye. The temperature shift also delayed the inward bending of the underlying retinal primordium, even in the absence of the lens. Taken together, our results suggest that lens invagination is initiated independently of thickening and cytodifferentiation, possibly by mechanisms associated with morphogenesis of the primordial retina.
Collapse
Affiliation(s)
- Hideaki Iida
- Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| | - Tiantian Yang
- Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| | - Sadao Yasugi
- Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan.,Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| | - Yasuo Ishii
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| |
Collapse
|
48
|
Sotthibundhu A, McDonagh K, von Kriegsheim A, Garcia-Munoz A, Klawiter A, Thompson K, Chauhan KD, Krawczyk J, McInerney V, Dockery P, Devine MJ, Kunath T, Barry F, O'Brien T, Shen S. Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells. Stem Cell Res Ther 2016; 7:166. [PMID: 27846905 PMCID: PMC5109678 DOI: 10.1186/s13287-016-0425-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/18/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cellular reprogramming is a stressful process, which requires cells to engulf somatic features and produce and maintain stemness machineries. Autophagy is a process to degrade unwanted proteins and is required for the derivation of induced pluripotent stem cells (iPSCs). However, the role of autophagy during iPSC maintenance remains undefined. METHODS Human iPSCs were investigated by microscopy, immunofluorescence, and immunoblotting to detect autophagy machinery. Cells were treated with rapamycin to activate autophagy and with bafilomycin to block autophagy during iPSC maintenance. High concentrations of rapamycin treatment unexpectedly resulted in spontaneous formation of round floating spheres of uniform size, which were analyzed for differentiation into three germ layers. Mass spectrometry was deployed to reveal altered protein expression and pathways associated with rapamycin treatment. RESULTS We demonstrate that human iPSCs express high basal levels of autophagy, including key components of APMKα, ULK1/2, BECLIN-1, ATG13, ATG101, ATG12, ATG3, ATG5, and LC3B. Block of autophagy by bafilomycin induces iPSC death and rapamycin attenuates the bafilomycin effect. Rapamycin treatment upregulates autophagy in iPSCs in a dose/time-dependent manner. High concentration of rapamycin reduces NANOG expression and induces spontaneous formation of round and uniformly sized embryoid bodies (EBs) with accelerated differentiation into three germ layers. Mass spectrometry analysis identifies actin cytoskeleton and adherens junctions as the major targets of rapamycin in mediating iPSC detachment and differentiation. CONCLUSIONS High levels of basal autophagy activity are present during iPSC derivation and maintenance. Rapamycin alters expression of actin cytoskeleton and adherens junctions, induces uniform EB formation, and accelerates differentiation. IPSCs are sensitive to enzyme dissociation and require a lengthy differentiation time. The shape and size of EBs also play a role in the heterogeneity of end cell products. This research therefore highlights the potential of rapamycin in producing uniform EBs and in shortening iPSC differentiation duration.
Collapse
Affiliation(s)
- Areechun Sotthibundhu
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Chulabhorn International College of Medicine, Thammasat University, Patumthani, 12120, Thailand
| | - Katya McDonagh
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | | | - Amaya Garcia-Munoz
- Systems Biology Ireland, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Agnieszka Klawiter
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Kerry Thompson
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Kapil Dev Chauhan
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Janusz Krawczyk
- Department of Haematology, Galway University Hospital, Galway, Ireland
| | - Veronica McInerney
- HRB Clinical Research Facility, National University of Ireland Galway, University Road, Galway, Ireland
| | - Peter Dockery
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Michael J Devine
- MRC Center for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK.,Department of Molecular Neuroscience, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Tilo Kunath
- MRC Center for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Frank Barry
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
49
|
Zalewski JK, Mo JH, Heber S, Heroux A, Gardner RG, Hildebrand JD, VanDemark AP. Structure of the Shroom-Rho Kinase Complex Reveals a Binding Interface with Monomeric Shroom That Regulates Cell Morphology and Stimulates Kinase Activity. J Biol Chem 2016; 291:25364-25374. [PMID: 27758857 DOI: 10.1074/jbc.m116.738559] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/27/2016] [Indexed: 12/21/2022] Open
Abstract
Shroom-mediated remodeling of the actomyosin cytoskeleton is a critical driver of cellular shape and tissue morphology that underlies the development of many tissues including the neural tube, eye, intestines, and vasculature. Shroom uses a conserved SD2 domain to direct the subcellular localization of Rho-associated kinase (Rock), which in turn drives changes in the cytoskeleton and cellular morphology through its ability to phosphorylate and activate non-muscle myosin II. Here, we present the structure of the human Shroom-Rock binding module, revealing an unexpected stoichiometry for Shroom in which two Shroom SD2 domains bind independent surfaces on Rock. Mutation of interfacial residues impaired Shroom-Rock binding in vitro and resulted in altered remodeling of the cytoskeleton and loss of Shroom-mediated changes in cellular morphology. Additionally, we provide the first direct evidence that Shroom can function as a Rock activator. These data provide molecular insight into the Shroom-Rock interface and demonstrate that Shroom directly participates in regulating cytoskeletal dynamics, adding to its known role in Rock localization.
Collapse
Affiliation(s)
- Jenna K Zalewski
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Joshua H Mo
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Simone Heber
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Annie Heroux
- the Department of Biology, Brookhaven National Laboratory, Upton, New York 11973, and
| | - Richard G Gardner
- the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Jeffrey D Hildebrand
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Andrew P VanDemark
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260,
| |
Collapse
|
50
|
Adams DS, Uzel SGM, Akagi J, Wlodkowic D, Andreeva V, Yelick PC, Devitt-Lee A, Pare JF, Levin M. Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil Syndrome. J Physiol 2016; 594:3245-70. [PMID: 26864374 PMCID: PMC4908029 DOI: 10.1113/jp271930] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Xenopus laevis craniofacial development is a good system for the study of Andersen-Tawil Syndrome (ATS)-associated craniofacial anomalies (CFAs) because (1) Kcnj2 is expressed in the nascent face; (2) molecular-genetic and biophysical techniques are available for the study of ion-dependent signalling during craniofacial morphogenesis; (3) as in humans, expression of variant Kcnj2 forms in embryos causes a muscle phenotype; and (4) variant forms of Kcnj2 found in human patients, when injected into frog embryos, cause CFAs in the same cell lineages. Forced expression of WT or variant Kcnj2 changes the normal pattern of Vmem (resting potential) regionalization found in the ectoderm of neurulating embryos, and changes the normal pattern of expression of ten different genetic regulators of craniofacial development, including markers of cranial neural crest and of placodes. Expression of other potassium channels and two different light-activated channels, all of which have an effect on Vmem , causes CFAs like those induced by injection of Kcnj2 variants. In contrast, expression of Slc9A (NHE3), an electroneutral ion channel, and of GlyR, an inactive Cl(-) channel, do not cause CFAs, demonstrating that correct craniofacial development depends on a pattern of bioelectric states, not on ion- or channel-specific signalling. Using optogenetics to control both the location and the timing of ion flux in developing embryos, we show that affecting Vmem of the ectoderm and no other cell layers is sufficient to cause CFAs, but only during early neurula stages. Changes in Vmem induced late in neurulation do not affect craniofacial development. We interpret these data as strong evidence, consistent with our hypothesis, that ATS-associated CFAs are caused by the effect of variant Kcnj2 on the Vmem of ectodermal cells of the developing face. We predict that the critical time is early during neurulation, and the critical cells are the ectodermal cranial neural crest and placode lineages. This points to the potential utility of extant, ion flux-modifying drugs as treatments to prevent CFAs associated with channelopathies such as ATS. ABSTRACT Variants in potassium channel KCNJ2 cause Andersen-Tawil Syndrome (ATS); the induced craniofacial anomalies (CFAs) are entirely unexplained. We show that KCNJ2 is expressed in Xenopus and mouse during the earliest stages of craniofacial development. Misexpression in Xenopus of KCNJ2 carrying ATS-associated mutations causes CFAs in the same structures affected in humans, changes the normal pattern of membrane voltage potential regionalization in the developing face and disrupts expression of important craniofacial patterning genes, revealing the endogenous control of craniofacial patterning by bioelectric cell states. By altering cells' resting potentials using other ion translocators, we show that a change in ectodermal voltage, not tied to a specific protein or ion, is sufficient to cause CFAs. By adapting optogenetics for use in non-neural cells in embryos, we show that developmentally patterned K(+) flux is required for correct regionalization of the resting potentials and for establishment of endogenous early gene expression domains in the anterior ectoderm, and that variants in KCNJ2 disrupt this regionalization, leading to the CFAs seen in ATS patients.
Collapse
Affiliation(s)
- Dany Spencer Adams
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Sebastien G M Uzel
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jin Akagi
- School of Applied Sciences, RMIT University, Melbourne, Australia
| | - Donald Wlodkowic
- School of Applied Sciences, RMIT University, Melbourne, Australia
| | - Viktoria Andreeva
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Pamela Crotty Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Adrian Devitt-Lee
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Jean-Francois Pare
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Michael Levin
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| |
Collapse
|