1
|
Mujizah EY, Kuwana S, Matsumoto K, Gushiken T, Aoyama N, Ishikawa HO, Sasamura T, Umetsu D, Inaki M, Yamakawa T, Baron M, Matsuno K. Numb Suppresses Notch-Dependent Activation of Enhancer of split during Lateral Inhibition in the Drosophila Embryonic Nervous System. Biomolecules 2024; 14:1062. [PMID: 39334829 PMCID: PMC11429637 DOI: 10.3390/biom14091062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/30/2024] Open
Abstract
The role of Drosophila numb in regulating Notch signaling and neurogenesis has been extensively studied, with a particular focus on its effects on the peripheral nervous system (PNS). Previous studies based on a single loss-of-function allele of numb, numb1, showed an antineurogenic effect on the peripheral nervous system (PNS), which revealed that the wild-type numb suppresses Notch signaling. In the current study, we examined whether this phenotype is consistently observed in loss-of-function mutations of numb. Two more numb alleles, numbEY03840 and numbEY03852, were shown to have an antineurogenic phenotype in the PNS. We also found that introducing a wild-type numb genomic fragment into numb1 homozygotes rescued their antineurogenic phenotype. These results demonstrated that loss-of-function mutations of numb universally induce this phenotype. Many components of Notch signaling are encoded by maternal effect genes, but no maternal effect of numb was observed in this study. The antineurogenic phenotype of numb was found to be dependent on the Enhancer of split (E(spl)), a downstream gene of Notch signaling. We found that the combination of E(spl) homozygous and numb1 homozygous suppressed the neurogenic phenotype of the embryonic central nervous system (CNS) associated with the E(spl) mutation. In the E(spl) allele, genes encoding basic helix-loop-helix proteins, such as m5, m6, m7, and m8, remain. Thus, in the E(spl) allele, derepression of Notch activity by numb mutation can rescue the neurogenic phenotype by increasing the expression of the remaining genes in the E(spl) complex. We also uncovered a role for numb in regulating neuronal projections. Our results further support an important role for numb in the suppression of Notch signaling during embryonic nervous system development.
Collapse
Affiliation(s)
- Elzava Yuslimatin Mujizah
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (E.Y.M.)
| | - Satoshi Kuwana
- Graduate School of Arts and Sciences, University of Tokyo, Meguro 153-8902, Japan
| | - Kenjiroo Matsumoto
- Institute for Glyco-Core Research, Gifu University, Gifu 501-1193, Japan
| | - Takuma Gushiken
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (E.Y.M.)
| | - Naoki Aoyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (E.Y.M.)
| | | | - Takeshi Sasamura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (E.Y.M.)
| | - Daiki Umetsu
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (E.Y.M.)
| | - Mikiko Inaki
- School of Science, Graduate School of Science, University of Hyogo, Ako 678-1297, Japan;
| | - Tomoko Yamakawa
- Department of Industrial Engineering, Chemistry, Bioengineering and Environmental Science Course, National Institute of Technology, Ibaraki College, Hitachinaka 312-8508, Japan
| | - Martin Baron
- School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Kenji Matsuno
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (E.Y.M.)
| |
Collapse
|
2
|
Gillard G, Röper K. β-H-Spectrin is a key component of an apical-medial hub of proteins during cell wedging in tube morphogenesis. J Cell Sci 2024; 137:jcs261946. [PMID: 38988298 PMCID: PMC11361641 DOI: 10.1242/jcs.261946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Coordinated cell shape changes are a major driver of tissue morphogenesis, with apical constriction of epithelial cells leading to tissue bending. We previously identified that interplay between the apical-medial actomyosin, which drives apical constriction, and the underlying longitudinal microtubule array has a key role during tube budding of salivary glands in the Drosophila embryo. At this microtubule-actomyosin interface, a hub of proteins accumulates, and we have shown before that this hub includes the microtubule-actin crosslinker Shot and the microtubule minus-end-binding protein Patronin. Here, we identify two actin-crosslinkers, β-heavy (H)-Spectrin (also known as Karst) and Filamin (also known as Cheerio), and the multi-PDZ-domain protein Big bang as components of the protein hub. We show that tissue-specific degradation of β-H-Spectrin leads to reduction of apical-medial F-actin, Shot, Patronin and Big bang, as well as concomitant defects in apical constriction, but that residual Patronin is still sufficient to assist microtubule reorganisation. We find that, unlike Patronin and Shot, neither β-H-Spectrin nor Big bang require microtubules for their localisation. β-H-Spectrin is instead recruited via binding to apical-medial phosphoinositides, and overexpression of the C-terminal pleckstrin homology domain-containing region of β-H-Spectrin (β-H-33) displaces endogenous β-H-Spectrin and leads to strong morphogenetic defects. This protein hub therefore requires the synergy and coincidence of membrane- and microtubule-associated components for its assembly and function in sustaining apical constriction during tubulogenesis.
Collapse
Affiliation(s)
- Ghislain Gillard
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Katja Röper
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
3
|
Li J, Jin C, Li Y, Liu H. Mid1 aggravates hepatic ischemia-reperfusion injury by inducing immune cell infiltration. FASEB J 2024; 38:e23823. [PMID: 39008003 DOI: 10.1096/fj.202400843r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) represents a major risk factor in liver transplantation and resection surgeries. Kupffer cells (KCs) produce proinflammatory cytokines and lead to hepatic neutrophil infiltration in the liver, which is one of the leading causes of HIRI. Mid1 is involved in immune infiltration, but the role of Mid1 remains poorly understood. Herin, our study aimed to investigate the effect of Mid1 on HIRI progression. Male C57BL/6 mice aged 6 weeks were used for the HIRI model established. The function of Mid1 on liver injury and hepatic inflammation was evaluated. In vitro, KCs were used to investigate the function and mechanism of Mid1 in modulating KC inflammation upon lipopolysaccharide (LPS) stimulation. We found that Mid1 expression was up-regulated upon HIRI. Mid1 inhibition alleviated liver damage, as evidenced by neutrophil infiltration, intrahepatic inflammation, and hepatocyte apoptosis. In vitro experiments further revealed that Mid1 knockdown reduced the secretion of proinflammatory cytokines and chemokines in KCs. Moreover, silenced-Mid1 suppressed proinflammatory responses by the inhibition of NF-κB, JNK, and p38 signaling pathways. Taken together, Mid1 contributes to HIRI via regulating the proinflammatory response of KCs and inducing neutrophil infiltration. Targeting Mid1 may be a promising strategy to protect against HIRI.
Collapse
Affiliation(s)
- Ji Li
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Changlian Jin
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yue Li
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huanqiu Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Kharrat M, Triki C, Ben Isaa A, Bouchaala W, Alila O, Chouchen J, Ghouliya Y, Kamoun F, Tlili A, Fakhfakh F. Expanding the genetic and phenotypic spectrum of TRAPPC9 and MID2-related neurodevelopmental disabilities: report of two novel mutations, 3D-modelling, and molecular docking studies. J Hum Genet 2024; 69:291-299. [PMID: 38467738 DOI: 10.1038/s10038-024-01242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Intellectual disabilities (ID) and autism spectrum disorders (ASD) have a variety of etiologies, including environmental and genetic factors. Our study reports a psychiatric clinical investigation and a molecular analysis using whole exome sequencing (WES) of two siblings with ID and ASD from a consanguineous family. Bioinformatic prediction and molecular docking analysis were also carried out. The two patients were diagnosed with profound intellectual disability, brain malformations such as cortical atrophy, acquired microcephaly, and autism level III. The neurological and neuropsychiatric examination revealed that P2 was more severely affected than P1, as he was unable to walk, presented with dysmorphic feature and exhibited self and hetero aggressive behaviors. The molecular investigations revealed a novel TRAPPC9 biallelic nonsense mutation (c.2920 C > T, p.R974X) in the two siblings. The more severely affected patient (P2) presented, along with the TRAPPC9 variant, a new missense mutation c.166 C > T (p.R56C) in the MID2 gene at hemizygous state, while his sister P1 was merely a carrier. The 3D modelling and molecular docking analysis revealed that c.166 C > T variant could affect the ability of MID2 binding to Astrin, leading to dysregulation of microtubule dynamics and causing morphological abnormalities in the brain. As our knowledge, the MID2 mutation (p.R56C) is the first one to be detected in Tunisia and causing phenotypic variability between the siblings. We extend the genetic and clinical spectrum of TRAPPC9 and MID2 mutations and highlights the possible concomitant presence of X-linked as well as autosomal recessive inheritance to causing ID, microcephaly, and autism.
Collapse
Affiliation(s)
- Marwa Kharrat
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences of Sfax University, Sfax, Tunisia.
| | - Chahnez Triki
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Abir Ben Isaa
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Wafa Bouchaala
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Olfa Alila
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences of Sfax University, Sfax, Tunisia
| | - Jihen Chouchen
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Yosra Ghouliya
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Fatma Kamoun
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
- Research laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Sciences of Sfax University, Sfax, Tunisia.
| |
Collapse
|
5
|
Suzuki M, Yasue N, Ueno N. Differential cellular stiffness across tissues that contribute to Xenopus neural tube closure. Dev Growth Differ 2024; 66:320-328. [PMID: 38925637 PMCID: PMC11457508 DOI: 10.1111/dgd.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
During the formation of the neural tube, the primordium of the vertebrate central nervous system, the actomyosin activity of cells in different regions drives neural plate bending. However, how the stiffness of the neural plate and surrounding tissues is regulated and mechanically influences neural plate bending has not been elucidated. Here, we used atomic force microscopy to reveal the relationship between the stiffness of the neural plate and the mesoderm during Xenopus neural tube formation. Measurements with intact embryos revealed that the stiffness of the neural plate was consistently higher compared with the non-neural ectoderm and that it increased in an actomyosin activity-dependent manner during neural plate bending. Interestingly, measurements of isolated tissue explants also revealed that the relationship between the stiffness of the apical and basal sides of the neural plate was reversed during bending and that the stiffness of the mesoderm was lower than that of the basal side of the neural plate. The experimental elevation of mesoderm stiffness delayed neural plate bending, suggesting that low mesoderm stiffness mechanically supports neural tube closure. This study provides an example of mechanical interactions between tissues during large-scale morphogenetic movements.
Collapse
Affiliation(s)
- Makoto Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
- Division of Morphogenesis, National Institute for Basic BiologyNational Institutes of Natural SciencesAichiJapan
- Basic Biology Programthe Graduate University of Advanced StudiesAichiJapan
| | - Naoko Yasue
- Division of Morphogenesis, National Institute for Basic BiologyNational Institutes of Natural SciencesAichiJapan
| | - Naoto Ueno
- Division of Morphogenesis, National Institute for Basic BiologyNational Institutes of Natural SciencesAichiJapan
- Basic Biology Programthe Graduate University of Advanced StudiesAichiJapan
| |
Collapse
|
6
|
Dudley-Fraser J, Rittinger K. It's a TRIM-endous view from the top: the varied roles of TRIpartite Motif proteins in brain development and disease. Front Mol Neurosci 2023; 16:1287257. [PMID: 38115822 PMCID: PMC10728303 DOI: 10.3389/fnmol.2023.1287257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
The tripartite motif (TRIM) protein family members have been implicated in a multitude of physiologies and pathologies in different tissues. With diverse functions in cellular processes including regulation of signaling pathways, protein degradation, and transcriptional control, the impact of TRIM dysregulation can be multifaceted and complex. Here, we focus on the cellular and molecular roles of TRIMs identified in the brain in the context of a selection of pathologies including cancer and neurodegeneration. By examining each disease in parallel with described roles in brain development, we aim to highlight fundamental common mechanisms employed by TRIM proteins and identify opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jane Dudley-Fraser
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
7
|
Chen J, Zhou L, Yang Z, Zhao S, Li W, Zhang Y, Xia P. The Molecular and Function Characterization of Porcine MID2. Animals (Basel) 2023; 13:2853. [PMID: 37760252 PMCID: PMC10526110 DOI: 10.3390/ani13182853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Midline2 (MID2/TRIM1) is a member of the tripartite motif-containing (TRIM) family, which is involved in a wide range of cellular processes. However, fundamental studies on porcine MID2 (pMID2) are still lacking. In this study, we identified and characterized the full length MID2 gene of pig (Sus scrofa). The sequence alignment analysis results showed that pMID2 had an N-terminal RING zinc-finger domain, BBC domain, and C-terminal COS box, FN3 motif, and PRY-SPRY domain that were conserved and similar to those of other vertebrates. Furthermore, pMID2 had the highest expression levels in porcine lung and spleen. Serial deletion and site-directed mutagenesis showed that the putative nuclear factor-κB (NF-κB) binding site may be an essential transcription factor for regulating the transcription expression of pMID2. Furthermore, the immunofluorescence assay indicated that pMID2 presented in the cell membrane and cytoplasm. To further study the functions of pMID2, we identified and determined its potential ability to perceive poly (I:C) and IFN-α stimulation. Stimulation experiments showed pMID2 enhanced poly (I:C)-/IFN-α-induced JAK-STAT signaling pathway, indicating that pMID2 might participate in the immune responses. In conclusion, we systematically and comprehensively analyzed the characterizations and functions of pMID2, which provide valuable information to explore the pMID2 functions in innate immunity. Our findings not only enrich the current knowledge of MID2 in IFN signaling regulation but also offer the basis for future research of pig MID2 gene.
Collapse
Affiliation(s)
- Jing Chen
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (J.C.); (L.Z.); (Z.Y.)
| | - Likun Zhou
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (J.C.); (L.Z.); (Z.Y.)
| | - Zhuosong Yang
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (J.C.); (L.Z.); (Z.Y.)
| | - Shijie Zhao
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (W.L.)
| | - Wen Li
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (W.L.)
| | - Yina Zhang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (W.L.)
| | - Pingan Xia
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (W.L.)
| |
Collapse
|
8
|
Bennison SA, Liu X, Toyo-Oka K. Nuak kinase signaling in development and disease of the central nervous system. Cell Signal 2022; 100:110472. [PMID: 36122883 DOI: 10.1016/j.cellsig.2022.110472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 01/14/2023]
Abstract
Protein kinases represent important signaling hubs for a variety of biological functions. Many kinases are traditionally studied for their roles in cancer cell biology, but recent advances in neuroscience research show repurposed kinase function to be important for nervous system development and function. Two members of the AMP-activated protein kinase (AMPK) related family, NUAK1 and NUAK2, have drawn attention in neuroscience due to their mutations in autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), schizophrenia, and intellectual disability (ID). Furthermore, Nuak kinases have also been implicated in tauopathy and other disorders of aging. This review highlights what is known about the Nuak kinases in nervous system development and disease and explores the possibility of Nuak kinases as targets for therapeutic innovation.
Collapse
Affiliation(s)
- Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Xiaonan Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
9
|
Notch Missense Mutations in Drosophila Reveal Functions of Specific EGF-like Repeats in Notch Folding, Trafficking, and Signaling. Biomolecules 2022; 12:biom12121752. [PMID: 36551180 PMCID: PMC9775759 DOI: 10.3390/biom12121752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
Abstract
Notch signaling plays various roles in cell-fate specification through direct cell-cell interactions. Notch receptors are evolutionarily conserved transmembrane proteins with multiple epidermal growth factor (EGF)-like repeats. Drosophila Notch has 36 EGF-like repeats, and while some play a role in Notch signaling, the specific functions of most remain unclear. To investigate the role of each EGF-like repeat, we used 19 previously identified missense mutations of Notch with unique amino acid substitutions in various EGF-like repeats and a transmembrane domain; 17 of these were identified through a single genetic screen. We assessed these mutants' phenotypes in the nervous system and hindgut during embryogenesis, and found that 10 of the 19 Notch mutants had defects in both lateral inhibition and inductive Notch signaling, showing context dependency. Of these 10 mutants, six accumulated Notch in the endoplasmic reticulum (ER), and these six were located in EGF-like repeats 8-10 or 25. Mutations with cysteine substitutions were not always coupled with ER accumulation. This suggests that certain EGF-like repeats may be particularly susceptible to structural perturbation, resulting in a misfolded and inactive Notch product that accumulates in the ER. Thus, we propose that these EGF-like repeats may be integral to Notch folding.
Collapse
|
10
|
Fang M, Zhang A, Du Y, Lu W, Wang J, Minze LJ, Cox TC, Li XC, Xing J, Zhang Z. TRIM18 is a critical regulator of viral myocarditis and organ inflammation. J Biomed Sci 2022; 29:55. [PMID: 35909127 PMCID: PMC9339186 DOI: 10.1186/s12929-022-00840-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/19/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Infections by viruses including severe acute respiratory syndrome coronavirus 2 could cause organ inflammations such as myocarditis, pneumonia and encephalitis. Innate immunity to viral nucleic acids mediates antiviral immunity as well as inflammatory organ injury. However, the innate immune mechanisms that control viral induced organ inflammations are unclear. METHODS To understand the role of the E3 ligase TRIM18 in controlling viral myocarditis and organ inflammation, wild-type and Trim18 knockout mice were infected with coxsackievirus B3 for inducing viral myocarditis, influenza A virus PR8 strain and human adenovirus for inducing viral pneumonia, and herpes simplex virus type I for inducing herpes simplex encephalitis. Mice survivals were monitored, and heart, lung and brain were harvested for histology and immunohistochemistry analysis. Real-time PCR, co-immunoprecipitation, immunoblot, enzyme-linked immunosorbent assay, luciferase assay, flow cytometry, over-expression and knockdown techniques were used to understand the molecular mechanisms of TRIM18 in regulating type I interferon (IFN) production after virus infection in this study. RESULTS We find that knockdown or deletion of TRIM18 in human or mouse macrophages enhances production of type I IFN in response to double strand (ds) RNA and dsDNA or RNA and DNA virus infection. Importantly, deletion of TRIM18 protects mice from viral myocarditis, viral pneumonia, and herpes simplex encephalitis due to enhanced type I IFN production in vivo. Mechanistically, we show that TRIM18 recruits protein phosphatase 1A (PPM1A) to dephosphorylate TANK binding kinase 1 (TBK1), which inactivates TBK1 to block TBK1 from interacting with its upstream adaptors, mitochondrial antiviral signaling (MAVS) and stimulator of interferon genes (STING), thereby dampening antiviral signaling during viral infections. Moreover, TRIM18 stabilizes PPM1A by inducing K63-linked ubiquitination of PPM1A. CONCLUSIONS Our results indicate that TRIM18 serves as a negative regulator of viral myocarditis, lung inflammation and brain damage by downregulating innate immune activation induced by both RNA and DNA viruses. Our data reveal that TRIM18 is a critical regulator of innate immunity in viral induced diseases, thereby identifying a potential therapeutic target for treatment.
Collapse
Affiliation(s)
- Mingli Fang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Ao Zhang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yong Du
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Wenting Lu
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Junying Wang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Laurie J Minze
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Timothy C Cox
- Department of Oral & Craniofacial Sciences, School of Dentistry & Department of Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Xian Chang Li
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA
| | - Junji Xing
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA.
| | - Zhiqiang Zhang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA.
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Microtubular TRIM36 E3 Ubiquitin Ligase in Embryonic Development and Spermatogenesis. Cells 2022; 11:cells11020246. [PMID: 35053362 PMCID: PMC8773809 DOI: 10.3390/cells11020246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
TRIM36 is a member of the tripartite motif (TRIM) family of RING-containing proteins, also known as Haprin, which was first discovered for its abundance in testis and found to be implicated in the spermatozoa acrosome reaction. TRIM36 is a microtubule-associated E3 ubiquitin ligase that plays a role in cytoskeletal organization, and according to data gathered in different species, coordinates growth speed and stability, acting on the microtubules’ plus end, and impacting on cell cycle progression. TRIM36 is also crucial for early developmental processes, in Xenopus, where it is needed for dorso-ventral axis formation, but also in humans as bi-allelic mutations in the TRIM36 gene cause a form of severe neural tube closure defect, called anencephaly. Here, we review TRIM36-related mechanisms implicated in such composite physiological and pathological processes.
Collapse
|
12
|
Abstract
Apical constriction refers to the active, actomyosin-driven process that reduces apical cell surface area in epithelial cells. Apical constriction is utilized in epithelial morphogenesis during embryonic development in multiple contexts, such as gastrulation, neural tube closure, and organogenesis. Defects in apical constriction can result in congenital birth defects, yet our understanding of the molecular control of apical constriction is relatively limited. To uncover new genetic regulators of apical constriction and gain mechanistic insight into the cell biology of this process, we need reliable assay systems that allow real-time observation and quantification of apical constriction as it occurs and permit gain- and loss-of-function analyses to explore gene function and interaction during apical constriction. In this chapter, we describe using the early Xenopus embryo as an assay system to investigate molecular mechanisms involved in apical constriction during both gastrulation and neurulation.
Collapse
Affiliation(s)
- Austin T Baldwin
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Ivan K Popov
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
13
|
Galea GL, Maniou E, Edwards TJ, Marshall AR, Ampartzidis I, Greene NDE, Copp AJ. Cell non-autonomy amplifies disruption of neurulation by mosaic Vangl2 deletion in mice. Nat Commun 2021; 12:1159. [PMID: 33608529 PMCID: PMC7895924 DOI: 10.1038/s41467-021-21372-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Post-zygotic mutations that generate tissue mosaicism are increasingly associated with severe congenital defects, including those arising from failed neural tube closure. Here we report that neural fold elevation during mouse spinal neurulation is vulnerable to deletion of the VANGL planar cell polarity protein 2 (Vangl2) gene in as few as 16% of neuroepithelial cells. Vangl2-deleted cells are typically dispersed throughout the neuroepithelium, and each non-autonomously prevents apical constriction by an average of five Vangl2-replete neighbours. This inhibition of apical constriction involves diminished myosin-II localisation on neighbour cell borders and shortening of basally-extending microtubule tails, which are known to facilitate apical constriction. Vangl2-deleted neuroepithelial cells themselves continue to apically constrict and preferentially recruit myosin-II to their apical cell cortex rather than to apical cap localisations. Such non-autonomous effects can explain how post-zygotic mutations affecting a minority of cells can cause catastrophic failure of morphogenesis leading to clinically important birth defects.
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK.
| | - Eirini Maniou
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Timothy J Edwards
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Abigail R Marshall
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Ioakeim Ampartzidis
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
14
|
Yano T, Tsukita K, Kanoh H, Nakayama S, Kashihara H, Mizuno T, Tanaka H, Matsui T, Goto Y, Komatsubara A, Aoki K, Takahashi R, Tamura A, Tsukita S. A microtubule-LUZP1 association around tight junction promotes epithelial cell apical constriction. EMBO J 2021; 40:e104712. [PMID: 33346378 PMCID: PMC7809799 DOI: 10.15252/embj.2020104712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022] Open
Abstract
Apical constriction is critical for epithelial morphogenesis, including neural tube formation. Vertebrate apical constriction is induced by di-phosphorylated myosin light chain (ppMLC)-driven contraction of actomyosin-based circumferential rings (CRs), also known as perijunctional actomyosin rings, around apical junctional complexes (AJCs), mainly consisting of tight junctions (TJs) and adherens junctions (AJs). Here, we revealed a ppMLC-triggered system at TJ-associated CRs for vertebrate apical constriction involving microtubules, LUZP1, and myosin phosphatase. We first identified LUZP1 via unbiased screening of microtubule-associated proteins in the AJC-enriched fraction. In cultured epithelial cells, LUZP1 was found localized at TJ-, but not at AJ-, associated CRs, and LUZP1 knockout resulted in apical constriction defects with a significant reduction in ppMLC levels within CRs. A series of assays revealed that ppMLC promotes the recruitment of LUZP1 to TJ-associated CRs, where LUZP1 spatiotemporally inhibits myosin phosphatase in a microtubule-facilitated manner. Our results uncovered a hitherto unknown microtubule-LUZP1 association at TJ-associated CRs that inhibits myosin phosphatase, contributing significantly to the understanding of vertebrate apical constriction.
Collapse
Affiliation(s)
- Tomoki Yano
- Laboratory of Biological ScienceGraduate School of MedicineOsaka UniversityOsakaJapan
- Laboratory of Barriology and Cell BiologyGraduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
| | - Kazuto Tsukita
- Laboratory of Barriology and Cell BiologyGraduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
- Department of NeurologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Hatsuho Kanoh
- Laboratory of Barriology and Cell BiologyGraduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
- Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Shogo Nakayama
- Laboratory of Barriology and Cell BiologyGraduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
| | - Hiroka Kashihara
- Laboratory of Barriology and Cell BiologyGraduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
| | - Tomoaki Mizuno
- Laboratory of Barriology and Cell BiologyGraduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
| | - Hiroo Tanaka
- Laboratory of Barriology and Cell BiologyGraduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
- Department of PharmacologySchool of MedicineTeikyo UniversityTokyoJapan
- Strategic Innovation and Research CenterTeikyo UniversityTokyoJapan
| | - Takeshi Matsui
- Laboratory for Skin HomeostasisResearch Center for Allergy and ImmunologyRIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Yuhei Goto
- Exploratory Research Center on Life and Living Systems (ExCELLS)National Institutes of Natural SciencesAichiJapan
- National Institute for Basic BiologyNational Institutes of Natural SciencesAichiJapan
- Department of Basic BiologyFaculty of Life ScienceSOKENDAI (Graduate University for Advanced Studies)AichiJapan
| | - Akira Komatsubara
- Exploratory Research Center on Life and Living Systems (ExCELLS)National Institutes of Natural SciencesAichiJapan
- National Institute for Basic BiologyNational Institutes of Natural SciencesAichiJapan
- Department of Basic BiologyFaculty of Life ScienceSOKENDAI (Graduate University for Advanced Studies)AichiJapan
| | - Kazuhiro Aoki
- Exploratory Research Center on Life and Living Systems (ExCELLS)National Institutes of Natural SciencesAichiJapan
- National Institute for Basic BiologyNational Institutes of Natural SciencesAichiJapan
- Department of Basic BiologyFaculty of Life ScienceSOKENDAI (Graduate University for Advanced Studies)AichiJapan
| | - Ryosuke Takahashi
- Department of NeurologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Atsushi Tamura
- Laboratory of Barriology and Cell BiologyGraduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
- Department of PharmacologySchool of MedicineTeikyo UniversityTokyoJapan
- Strategic Innovation and Research CenterTeikyo UniversityTokyoJapan
| | - Sachiko Tsukita
- Laboratory of Barriology and Cell BiologyGraduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
- Strategic Innovation and Research CenterTeikyo UniversityTokyoJapan
| |
Collapse
|
15
|
Ying Z, Yang J, Li W, Wang X, Zhu Z, Jiang W, Li C, Sha O. Astrin: A Key Player in Mitosis and Cancer. Front Cell Dev Biol 2020; 8:866. [PMID: 32984344 PMCID: PMC7484939 DOI: 10.3389/fcell.2020.00866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/11/2020] [Indexed: 12/04/2022] Open
Abstract
Astrin, which is a spindle-associated protein, was found to be closely related to mitotic spindle formation and maintenance. It interacts with other spindle-related proteins to play a key role in maintaining the attachment of the kinetochore-microtubule and integrity of centrosomes and promoting the centriole duplication. In addition, Astrin was quite recently found to be abnormally highly expressed in a variety of cancers. Astrin promotes the development of cancer by participating in various molecular pathways and is considered as a potential prognostic and survival predictor.
Collapse
Affiliation(s)
- Zhenguang Ying
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Jing Yang
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Wei Li
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Xia Wang
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Zeyao Zhu
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Weipeng Jiang
- School of Dentistry, Shenzhen University Health Science Centre, Shenzhen, China
| | - Chunman Li
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Ou Sha
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China.,School of Dentistry, Shenzhen University Health Science Centre, Shenzhen, China
| |
Collapse
|
16
|
Qiao Y, Zhou Y, Song C, Zhang X, Zou Y. MID1 and MID2 regulate cell migration and epithelial-mesenchymal transition via modulating Wnt/β-catenin signaling. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1021. [PMID: 32953821 PMCID: PMC7475493 DOI: 10.21037/atm-20-5583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background The ubiquitin E3 ligase activity has been ascribed to MID1, the causative gene of X-linked OS, and its homologue, MID2. Both alpha4, the common MID protein partner, and PP2Ac in MID-alpha4-PP2Ac complexes can be ubiquitylated. Ubiquitylation of alpha4 converted its function toward PP2Ac from protective to destructive, while PP2A also affected MID protein phosphorylation and their subsequent trafficking on microtubules. It was believed that disruption of the function of MID1-alpha4-PP2A complex was vital to the pathogenesis of craniofacial malformation, the most prominent clinical manifestation of OS, although the detailed molecular mechanisms was not unravelled. Methods The cellular level of PP2A and phosphor-PP2A in cells overexpressing MID1/MID2 or in cells with siRNA mediated MID1/MID2 gene silencing was analyzed using Western blot. The Wnt signaling in these cells was further monitored using TCF/LEF luciferase reporter assay and the cellular level of β-catenin was also verified using western blot. Given the crosstalk of E-cadherin and Wnt via the common effector β-catenin, the potential influences of MID1/MID2 on the cell migration and epithelial-mesenchymal transition (EMT) were investigated using wound healing assay and immunofluorescence for E-cadherin and vimentin, respectively. Results Here, we presented the increased phosphorylation of PP2Ac in cells overexpressing MID1/MID2, and vice versa, in vitro, while the cellular level of total PP2Ac was unaffected. In addition, β-catenin, the effector of canonical Wnt signaling, was downregulated in cells overexpressing MID1/MID2 and upregulated in cells with siRNA mediated MID1/MID2 gene silencing. Down-regulated Wnt/β-catenin signaling by Okadaic acid, a specific inhibitor of PP2A, was partially rescued by siRNA mediated MID1/MID2 gene silencing. In consistent, an activated EMT and accelerated cell migration in cells with MID1/MID2 gene silencing were observed, and vice versa. Conclusions The results in this study indicated roles for MID1 and MID2 in regulating cell migration/EMT via modulating Wnt/β-catenin signaling, which might help to understand the molecular etiology of the facial abnormalities that are usually the consequences of defective neural crest cells migration and EMT at the early stage of craniofacial development.
Collapse
Affiliation(s)
- Yingying Qiao
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Yuan Zhou
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Chao Song
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Xin Zhang
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Yi Zou
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Baldini R, Mascaro M, Meroni G. The MID1 gene product in physiology and disease. Gene 2020; 747:144655. [PMID: 32283114 PMCID: PMC8011326 DOI: 10.1016/j.gene.2020.144655] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/22/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022]
Abstract
MID1 is an E3 ubiquitin ligase of the Tripartite Motif (TRIM) subfamily of RING-containing proteins, hence also known as TRIM18. MID1 is a microtubule-binding protein found in complex with the catalytic subunit of PP2A (PP2Ac) and its regulatory subunit alpha 4 (α4). To date, several substrates and interactors of MID1 have been described, providing evidence for the involvement of MID1 in a plethora of essential biological processes, especially during embryonic development. Mutations in the MID1 gene are responsible of the X-linked form of Opitz syndrome (XLOS), a multiple congenital disease characterised by defects in the development of midline structures during embryogenesis. Here, we review MID1-related physiological mechanisms as well as the pathological implication of the MID1 gene in XLOS and in other clinical conditions.
Collapse
Affiliation(s)
- Rossella Baldini
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Martina Mascaro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Germana Meroni
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
18
|
TRIM E3 Ubiquitin Ligases in Rare Genetic Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:311-325. [PMID: 32274764 DOI: 10.1007/978-3-030-38266-7_14] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The TRIM family comprises proteins characterized by the presence of the tripartite motif composed of a RING domain, one or two B-box domains and a coiled-coil region. The TRIM shared domain structure underscores a common biochemical function as E3 ligase within the ubiquitination cascade. The TRIM proteins represent one of the largest E3 ligase families counting in human more than 70 members. These proteins are implicated in a plethora of cellular processes such as apoptosis, cell cycle regulation, muscular physiology, and innate immune response. Consistently, their alteration results in several pathological conditions emphasizing their medical relevance. Here, the genetic and pathogenetic mechanisms of rare disorders directly caused by mutations in TRIM genes will be reviewed. These diseases fall into different pathological areas, from malformation birth defects due to developmental abnormalities, to neurological disorders and progressive teenage neuromuscular disorders. In many instances, TRIM E3 ligases act on several substrates thus exerting pleiotropic activities: the need of unraveling disease-specific TRIM pathways for a precise targeting therapy avoiding dramatic side effects will be discussed.
Collapse
|
19
|
Das P, Salazar JL, Li-Kroeger D, Yamamoto S, Nakamura M, Sasamura T, Inaki M, Masuda W, Kitagawa M, Yamakawa T, Matsuno K. Maternal almondex, a neurogenic gene, is required for proper subcellular Notch distribution in early Drosophila embryogenesis. Dev Growth Differ 2019; 62:80-93. [PMID: 31782145 DOI: 10.1111/dgd.12639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 01/03/2023]
Abstract
Notch signaling plays crucial roles in the control of cell fate and physiology through local cell-cell interactions. The core processes of Notch signal transduction are well established, but the mechanisms that fine-tune the pathway in various developmental and post-developmental contexts are less clear. Drosophila almondex, which encodes an evolutionarily conserved double-pass transmembrane protein, was identified in the 1970s as a maternal-effect gene that regulates Notch signaling in certain contexts, but its mechanistic function remains obscure. In this study, we examined the role of almondex in Notch signaling during early Drosophila embryogenesis. We found that in addition to being required for lateral inhibition in the neuroectoderm, almondex is also partially required for Notch signaling-dependent single-minded expression in the mesectoderm. Furthermore, we found that almondex is required for proper subcellular Notch receptor distribution in the neuroectoderm, specifically during mid-stage 5 development. The absence of maternal almondex during this critical window of time caused Notch to accumulate abnormally in cells in a mesh-like pattern. This phenotype did not include any obvious change in subcellular Delta ligand distribution, suggesting that it does not result from a general vesicular-trafficking defect. Considering that dynamic Notch trafficking regulates signal output to fit the specific context, we speculate that almondex may facilitate Notch activation by regulating intracellular Notch receptor distribution during early embryogenesis.
Collapse
Affiliation(s)
- Puspa Das
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - David Li-Kroeger
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Mitsutoshi Nakamura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Takeshi Sasamura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Mikiko Inaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Wataru Masuda
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Motoo Kitagawa
- Department of Biochemistry, International University of Health and Welfare, School of Medicine, Chiba, Japan
| | - Tomoko Yamakawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kenji Matsuno
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
20
|
Posey KL, Coustry F, Veerisetty AC, Hossain MG, Gambello MJ, Hecht JT. Novel mTORC1 Mechanism Suggests Therapeutic Targets for COMPopathies. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:132-146. [PMID: 30553437 DOI: 10.1016/j.ajpath.2018.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/20/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
Cartilage oligomeric matrix protein (COMP) is a large, multifunctional extracellular protein that, when mutated, is retained in the rough endoplasmic reticulum (ER). This retention elicits ER stress, inflammation, and oxidative stress, resulting in dysfunction and death of growth plate chondrocytes. While identifying the cellular pathologic mechanisms underlying the murine mutant (MT)-COMP model of pseudoachondroplasia, increased midline-1 (MID1) expression and mammalian target of rapamycin complex 1 (mTORC1) signaling was found. This novel role for MID1/mTORC1 signaling was investigated since treatments shown to repress the pathology also reduced Mid1/mTORC1. Although ER stress-inducing drugs or tumor necrosis factor α (TNFα) in rat chondrosarcoma cells increased Mid1, oxidative stress did not, establishing that ER stress- or TNFα-driven inflammation alone is sufficient to elevate MID1 expression. Since MID1 ubiquitinates protein phosphatase 2A (PP2A), a negative regulator of mTORC1, PP2A was evaluated in MT-COMP growth plate chondrocytes. PP2A was decreased, indicating de-repression of mTORC1 signaling. Rapamycin treatment in MT-COMP mice reduced mTORC1 signaling and intracellular retention of COMP, and increased proliferation, but did not change inflammatory markers IL-16 and eosinophil peroxidase. Lastly, mRNA from tuberous sclerosis-1/2-null mice brain tissue exhibiting ER stress had increased Mid1 expression, confirming the relationship between ER stress and MID1/mTORC1 signaling. These findings suggest a mechanistic link between ER stress and MID1/mTORC1 signaling that has implications extending to other conditions involving ER stress.
Collapse
Affiliation(s)
- Karen L Posey
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas.
| | - Francoise Coustry
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Alka C Veerisetty
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Mohammad G Hossain
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Michael J Gambello
- Human Genetics and Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas; School of Dentistry, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
21
|
Ardestani G, West MC, Maresca TJ, Fissore RA, Stratton MM. FRET-based sensor for CaMKII activity (FRESCA): A useful tool for assessing CaMKII activity in response to Ca 2+ oscillations in live cells. J Biol Chem 2019; 294:11876-11891. [PMID: 31201271 DOI: 10.1074/jbc.ra119.009235] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/11/2019] [Indexed: 01/22/2023] Open
Abstract
Ca2+ oscillations and consequent Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation are required for embryogenesis, as well as neuronal, immunological, and cardiac signaling. Fertilization directly results in Ca2+ oscillations, but the resultant pattern of CaMKII activity remains largely unclear. To address this gap, we first employed the one existing biosensor for CaMKII activation. This sensor, Camui, comprises CaMKIIα and therefore solely reports on the activation of this CaMKII variant. Additionally, to detect the activity of all endogenous CaMKII variants simultaneously, we constructed a substrate-based sensor for CaMKII activity, FRESCA (FRET-based sensor for CaMKII activity). To examine the differential responses of the Camui and FRESCA sensors, we used several approaches to stimulate Ca2+ release in mouse eggs, including addition of phospholipase Cζ cRNA, which mimics natural fertilization. We found that the Camui response is delayed or terminates earlier than the FRESCA response. FRESCA enables assessment of endogenous CaMKII activity in real-time by both fertilization and artificial reagents, such as Sr2+, which also leads to CaMKII activation. FRESCA's broad utility will be important for optimizing artificial CaMKII activation for clinical use to manage infertility. Moreover, FRESCA provides a new view on CaMKII activity, and its application in additional biological systems may reveal new signaling paradigms in eggs, as well as in neurons, cardiomyocytes, immune cells, and other CaMKII-expressing cells.
Collapse
Affiliation(s)
- Goli Ardestani
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003.,Veterinary and Animal Sciences Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003
| | - Megan C West
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Thomas J Maresca
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
22
|
Hartl L, Huelsz-Prince G, van Zon J, Tans SJ. Apical constriction is necessary for crypt formation in small intestinal organoids. Dev Biol 2019; 450:76-81. [PMID: 30914321 DOI: 10.1016/j.ydbio.2019.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 12/23/2022]
Abstract
Small intestinal organoids have become an important tool to study crypt homeostasis, cell fate dynamics and tissue biomechanics. Yet, the mechanisms that drive the budding of crypts from the smooth organoid epithelium remain incompletely understood. Locally enhanced proliferation has been suggested to induce tissue buckling and crypt initiation. Here we report that changes in cell morphology play a crucial role in crypt formation. Crypt formation is preceded by local epithelial thickening, apicobasal elongation, and apical narrowing, resulting in a wedge-like cell-shape, followed by apical evagination and crypt outgrowth. Myosin II activity is found to coincide with apical constriction of cells, while inhibition of myosin suppresses apical constriction and bud formation. The data suggest that myosin-driven apical constriction is a key driving force of bud initiation in small intestinal organoids.
Collapse
Affiliation(s)
- Leonie Hartl
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands
| | | | - Jeroen van Zon
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands
| | - Sander J Tans
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands.
| |
Collapse
|
23
|
Zhou X, Xiao C, Li Y, Shang Y, Yin D, Li S, Xiang B, Lu R, Ji Y, Wu Y, Meng W, Zhu H, Liu J, Hu H, Mo X, Xu H. Mid1ip1b modulates apical reorientation of non-centrosomal microtubule organizing center in epithelial cells. J Genet Genomics 2018; 45:433-442. [PMID: 30174135 DOI: 10.1016/j.jgg.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 02/05/2023]
Abstract
In most kinds of animal cells, the centrosome serves as the main microtubule organizing center (MTOC) that nucleates microtubule arrays throughout the cytoplasm to maintain cell structure, cell division and intracellular transport. Whereas in epithelial cells, non-centrosomal MTOCs are established in the apical domain for generating asymmetric microtubule fibers and cilia in epithelial cells for the organ morphogenesis during embryonic development. However, the mechanism by which MTOCs localize to the apical domain in epithelial cells remains largely unknown. Here, we show that Mid1ip1b has a close interaction with γ-tubulin protein, the central component of MTOC, and modulates lumen opening of the neural tube, gut, intestine, and kidney of zebrafish. Knockdown or dominant negative effect of Mid1ip1b resulted in failure of lumen formation of the organs as aforementioned. Moreover, the non-centrosomal MTOCs were unable to orientate to the apical domain in Mid1ip1b knockdown epithelial cells, and the centrosomal MTOCs were inaccurately placed in the apical domain, resulting in defective formation of asymmetric microtubules and misplacement of cilia in the apical domain. These data uncover a molecule that controls the proper localization of MTOCs in the apical domain in epithelial cells for organ morphogenesis during embryonic development.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Chun Xiao
- National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Li
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yanna Shang
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Dongqin Yin
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Siying Li
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bo Xiang
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ran Lu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yi Ji
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yang Wu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Wentong Meng
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hongyan Zhu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jin Liu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Huozhen Hu
- National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xianming Mo
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hong Xu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
24
|
Cerrizuela S, Vega-López GA, Palacio MB, Tríbulo C, Aybar MJ. Gli2 is required for the induction and migration of Xenopus laevis neural crest. Mech Dev 2018; 154:219-239. [PMID: 30086335 DOI: 10.1016/j.mod.2018.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/09/2018] [Accepted: 07/26/2018] [Indexed: 01/22/2023]
Abstract
The neural crest (NC) is a multipotent migratory embryonic population that is formed during late gastrulation and gives rise to a wide array of derivatives, including cells from the peripheral nervous system (PNS), the craniofacial bones and cartilages, peripheral glial cells, and melanocyte cells, among others. In this work we analyzed the role of the Hedgehog signaling pathway effector gli2 in Xenopus NC. We provide evidence that the gli2 gene is expressed in the prospective, premigratory and migratory NC. The use of a specific morpholino against gli2 and the pharmacological specific inhibitor GANT61 in different experimental approaches allowed us to determine that gli2 is required for the induction and specification of NC cells as a transcriptional activator. Moreover, gli2 also acts by reducing apoptosis in the NC without affecting its cell proliferation status. We also demonstrated that gli2 is required cell-autonomously for NC migration, and for the formation of NC derivatives such as the craniofacial cartilages, melanocytes and the cranial ganglia. Altogether, our results showed that gli2 is a key transcriptional activator to accomplish the proper specification and development of Xenopus NC cells.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.
| | - Guillermo A Vega-López
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina; Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina.
| | - María Belén Palacio
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina
| | - Celeste Tríbulo
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina; Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina.
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina; Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina.
| |
Collapse
|
25
|
Kim J, Kim JW, Kim DG, Nam BH, Kim YO, Park JY, Kong HJ. Molecular characterization of Rhodeus uyekii tripartite motif protein 1 (TRIM1) involved in IFN-γ/LPS-induced NF-κB signaling. FISH & SHELLFISH IMMUNOLOGY 2018; 79:42-51. [PMID: 29747011 DOI: 10.1016/j.fsi.2018.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/30/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
The tripartite motif-containing (TRIM) proteins are involved in a wide range of cellular processes, and the role of TRIM1 in immunity has been explored. However, fundamental studies on fish TRIM1 are lacking. In this study, we cloned and characterized TRIM1 cDNA from the Korean rose bitterling, Rhodeus uyekii (RuTRIM1). Two RuTRIM1 isoforms (RuTRIM1-X1 and RuTRIM1-X2) were identified. The coding sequence (CDS) of RuTRIM1-X1 comprised 2157 bp encoding a 718-aa protein, and the CDS of RuTRIM1-X2 comprised 1929 bp encoding a 642-aa protein. Both RuTRIM1 isoforms contained a RING finger domain, B-box 1, B-box 2, coiled-coil domain, COS box, FN3 motif, and PRY/SPRY domain. The deduced RuTRIM1-X1 and RuTRIM1-X2 proteins had high amino acid identity (76.27-98.89%) with orthologs from various other species, and a phylogenetic tree was constructed. RuTRIM1-X1 and RuTRIM1-X2 mRNA were expressed in all tissues examined, with the highest expression levels detected in the hepatopancreas. During early development, RuTRIM1-X1 and RuTRIM1-X2 mRNA levels changed differently from the gastrula period to the first feeding stage. An in vivo ubiquitination assay showed that RuTRIM1 exhibited RING-dependent E3 ubiquitin ligase activity, mainly by comparing RuTRIM1-X2 to RuTRIM1-X1. The subcellular localization of the two RuTRIM1 protein isoforms was characterized, revealing that they formed aggregates in cytoplasmic bodies in Raw264.7 cells. Interferon-γ/lipopolysaccharide-induced nuclear factor-κB signaling was negatively regulated by RuTRIM1-X1 and RuTRIM1-X2, and the negative effect was reversed in RING deletion mutants. To our knowledge, this is the first study to characterize fish TRIM1, which may play a role in the inflammatory response.
Collapse
Affiliation(s)
- Julan Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Ju-Won Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Dong-Gyun Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Jung Youn Park
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea.
| |
Collapse
|
26
|
Jin Y, Weinstein DC. Pitx1 regulates cement gland development in Xenopus laevis through activation of transcriptional targets and inhibition of BMP signaling. Dev Biol 2018. [PMID: 29530451 DOI: 10.1016/j.ydbio.2018.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cement gland in Xenopus laevis has long been used as a model to study the interplay of cell signaling and transcription factors during embryogenesis. It has been shown that an intermediate level of Bone Morphogenetic Protein (BMP) signaling is essential for cement gland formation. In addition, several transcription factors have been linked to cement gland development. One of these, the homeodomain-containing protein Pitx1, can generate ectopic cement gland formation; however, the mechanisms underlying this process remain obscure. We report here, for the first time, a requirement for Pitx proteins in cement gland formation, in vivo: knockdown of both pitx1 and the closely related pitx2c inhibit endogenous cement gland formation. Pitx1 transcriptionally activates cement gland differentiation genes through both direct and indirect mechanisms, and functions as a transcriptional activator to inhibit BMP signaling. This inhibition, required for the expression of pitx genes, is partially mediated by Pitx1-dependent follistatin expression. Complete suppression of BMP signaling inhibits induction of cement gland markers by Pitx1; furthermore, we find that Pitx1 physically interacts with Smad1, an intracellular transducer of BMP signaling. We propose a model of cement gland formation in which Pitx1 limits local BMP signaling within the cement gland primordium, and recruits Smad1 to activate direct downstream targets.
Collapse
Affiliation(s)
- Ye Jin
- Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Daniel C Weinstein
- Department of Biology, Queens College, The City University of New York, 65-30 Kissena Boulevard, Queens, NY 11367, USA.
| |
Collapse
|
27
|
Lenihan JA, Saha O, Young PW. Proteomic analysis reveals novel ligands and substrates for LNX1 E3 ubiquitin ligase. PLoS One 2017; 12:e0187352. [PMID: 29121065 PMCID: PMC5679597 DOI: 10.1371/journal.pone.0187352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/18/2017] [Indexed: 11/25/2022] Open
Abstract
Ligand of Numb protein X1 (LNX1) is an E3 ubiquitin ligase that contains a catalytic RING (Really Interesting New Gene) domain and four PDZ (PSD-95, DlgA, ZO-1) domains. LNX1 can ubiquitinate Numb, as well as a number of other ligands. However, the physiological relevance of these interactions in vivo remain unclear. To gain functional insights into the LNX family, we have characterised the LNX1 interactome using affinity purification and mass spectrometry. This approach identified a large number of novel LNX1-interacting proteins, as well as confirming known interactions with NUMB and ERC2. Many of the novel interactions mapped to the LNX PDZ domains, particularly PDZ2, and many showed specificity for LNX1 over the closely related LNX2. We show that PPFIA1 (liprin-α1), KLHL11, KIF7 and ERC2 are substrates for ubiquitination by LNX1. LNX1 ubiquitination of liprin-α1 is dependent on a PDZ binding motif containing a carboxyl terminal cysteine that binds LNX1 PDZ2. Surprisingly, the neuronally-expressed LNX1p70 isoform, that lacks the RING domain, was found to promote ubiquitination of PPFIA1 and KLHL11, albeit to a lesser extent than the longer RING-containing LNX1p80 isoform. Of several E3-ligases identified in the LNX1 interactome we confirm interactions of LNX1 with MID2/TRIM1 and TRIM27. On this basis we propose a model whereby LNX1p70, despite lacking a catalytic RING domain, may function as a scaffold to promote ubiquitination of its ligands through recruitment of other E3-ligases. These findings provide functional insights into the LNX protein family, particularly the neuronal LNX1p70 isoform.
Collapse
Affiliation(s)
- Joan A. Lenihan
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Orthis Saha
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Paul W. Young
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
28
|
Wen FL, Wang YC, Shibata T. Epithelial Folding Driven by Apical or Basal-Lateral Modulation: Geometric Features, Mechanical Inference, and Boundary Effects. Biophys J 2017. [PMID: 28636924 DOI: 10.1016/j.bpj.2017.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During embryonic development, epithelial sheets fold into complex structures required for tissue and organ functions. Although substantial efforts have been devoted to identifying molecular mechanisms underlying epithelial folding, far less is understood about how forces deform individual cells to sculpt the overall sheet morphology. Here we describe a simple and general theoretical model for the autonomous folding of monolayered epithelial sheets. We show that active modulation of intracellular mechanics along the basal-lateral as well as the apical surfaces is capable of inducing fold formation in the absence of buckling instability. Apical modulation sculpts epithelia into shallow and V-shaped folds, whereas basal-lateral modulation generates deep and U-shaped folds. These characteristic tissue shapes remain unchanged when subject to mechanical perturbations from the surroundings, illustrating that the autonomous folding is robust against environmental variabilities. At the cellular scale, how cells change shape depends on their initial aspect ratios and the modulation mechanisms. Such cell deformation characteristics are verified via experimental measurements for a canonical folding process driven by apical modulation, indicating that our theory could be used to infer the underlying folding mechanisms based on experimental data. The mechanical principles revealed in our model could potentially guide future studies on epithelial folding in diverse systems.
Collapse
Affiliation(s)
- Fu-Lai Wen
- Laboratory for Physical Biology, RIKEN Quantitative Biology Center, Kobe, Hyogo, Japan.
| | - Yu-Chiun Wang
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Quantitative Biology Center, Kobe, Hyogo, Japan.
| |
Collapse
|
29
|
The TRIMendous Role of TRIMs in Virus-Host Interactions. Vaccines (Basel) 2017; 5:vaccines5030023. [PMID: 28829373 PMCID: PMC5620554 DOI: 10.3390/vaccines5030023] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/23/2022] Open
Abstract
The innate antiviral response is integral in protecting the host against virus infection. Many proteins regulate these signaling pathways including ubiquitin enzymes. The ubiquitin-activating (E1), -conjugating (E2), and -ligating (E3) enzymes work together to link ubiquitin, a small protein, onto other ubiquitin molecules or target proteins to mediate various effector functions. The tripartite motif (TRIM) protein family is a group of E3 ligases implicated in the regulation of a variety of cellular functions including cell cycle progression, autophagy, and innate immunity. Many antiviral signaling pathways, including type-I interferon and NF-κB, are TRIM-regulated, thus influencing the course of infection. Additionally, several TRIMs directly restrict viral replication either through proteasome-mediated degradation of viral proteins or by interfering with different steps of the viral replication cycle. In addition, new studies suggest that TRIMs can exert their effector functions via the synthesis of unconventional polyubiquitin chains, including unanchored (non-covalently attached) polyubiquitin chains. TRIM-conferred viral inhibition has selected for viruses that encode direct and indirect TRIM antagonists. Furthermore, new evidence suggests that the same antagonists encoded by viruses may hijack TRIM proteins to directly promote virus replication. Here, we describe numerous virus–TRIM interactions and novel roles of TRIMs during virus infections.
Collapse
|
30
|
hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus. Dev Biol 2017; 430:188-201. [PMID: 28778799 DOI: 10.1016/j.ydbio.2017.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022]
Abstract
Development of the central nervous system requires orchestration of morphogenetic processes which drive elevation and apposition of the neural folds and their fusion into a neural tube. The newly formed tube gives rise to the brain in anterior regions and continues to develop into the spinal cord posteriorly. Conspicuous differences between the anterior and posterior neural tube become visible already during neural tube closure (NTC). Planar cell polarity (PCP)-mediated convergent extension (CE) movements are restricted to the posterior neural plate, i.e. hindbrain and spinal cord, where they propagate neural fold apposition. The lack of CE in the anterior neural plate correlates with a much slower mode of neural fold apposition anteriorly. The morphogenetic processes driving anterior NTC have not been addressed in detail. Here, we report a novel role for the breast cancer susceptibility gene and microtubule (MT) binding protein Hmmr (Hyaluronan-mediated motility receptor, RHAMM) in anterior neurulation and forebrain development in Xenopus laevis. Loss of hmmr function resulted in a lack of telencephalic hemisphere separation, arising from defective roof plate formation, which in turn was caused by impaired neural tissue narrowing. hmmr regulated polarization of neural cells, a function which was dependent on the MT binding domains. hmmr cooperated with the core PCP component vangl2 in regulating cell polarity and neural morphogenesis. Disrupted cell polarization and elongation in hmmr and vangl2 morphants prevented radial intercalation (RI), a cell behavior essential for neural morphogenesis. Our results pinpoint a novel role of hmmr in anterior neural development and support the notion that RI is a major driving force for anterior neurulation and forebrain morphogenesis.
Collapse
|
31
|
Suzuki M, Sato M, Koyama H, Hara Y, Hayashi K, Yasue N, Imamura H, Fujimori T, Nagai T, Campbell RE, Ueno N. Distinct intracellular Ca 2+ dynamics regulate apical constriction and differentially contribute to neural tube closure. Development 2017; 144:1307-1316. [PMID: 28219946 DOI: 10.1242/dev.141952] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/07/2017] [Indexed: 01/24/2023]
Abstract
Early in the development of the central nervous system, progenitor cells undergo a shape change, called apical constriction, that triggers the neural plate to form a tubular structure. How apical constriction in the neural plate is controlled and how it contributes to tissue morphogenesis are not fully understood. In this study, we show that intracellular calcium ions (Ca2+) are required for Xenopus neural tube formation and that there are two types of Ca2+-concentration changes, a single-cell and a multicellular wave-like fluctuation, in the developing neural plate. Quantitative imaging analyses revealed that transient increases in Ca2+ concentration induced cortical F-actin remodeling, apical constriction and accelerations of the closing movement of the neural plate. We also show that extracellular ATP and N-cadherin (cdh2) participate in the Ca2+-induced apical constriction. Furthermore, our mathematical model suggests that the effect of Ca2+ fluctuations on tissue morphogenesis is independent of fluctuation frequency and that fluctuations affecting individual cells are more efficient than those at the multicellular level. We propose that distinct Ca2+ signaling patterns differentially modulate apical constriction for efficient epithelial folding and that this mechanism has a broad range of physiological outcomes.
Collapse
Affiliation(s)
- Makoto Suzuki
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan .,Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan
| | - Masanao Sato
- Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan.,Division of Developmental Genetics, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Department of Biodesign Research, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hiroshi Koyama
- Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan.,Division of Embryology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yusuke Hara
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan
| | - Kentaro Hayashi
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan
| | - Naoko Yasue
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Hiromi Imamura
- Department of Functional Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshihiko Fujimori
- Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan.,Division of Embryology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Naoto Ueno
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan .,Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies, Hayama, Kanagawa 240-0193 Japan
| |
Collapse
|
32
|
D. S. V, L. A. D. Mechanics of neurulation: From classical to current perspectives on the physical mechanics that shape, fold, and form the neural tube. Birth Defects Res 2017; 109:153-168. [PMID: 27620928 PMCID: PMC9972508 DOI: 10.1002/bdra.23557] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neural tube defects arise from mechanical failures in the process of neurulation. At the most fundamental level, formation of the neural tube relies on coordinated, complex tissue movements that mechanically transform the flat neural epithelium into a lumenized epithelial tube (Davidson, 2012). The nature of this mechanical transformation has mystified embryologists, geneticists, and clinicians for more than 100 years. Early embryologists pondered the physical mechanisms that guide this transformation. Detailed observations of cell and tissue movements as well as experimental embryological manipulations allowed researchers to generate and test elementary hypotheses of the intrinsic and extrinsic forces acting on the neural tissue. Current research has turned toward understanding the molecular mechanisms underlying neurulation. Genetic and molecular perturbation have identified a multitude of subcellular components that correlate with cell behaviors and tissue movements during neural tube formation. In this review, we focus on methods and conceptual frameworks that have been applied to the study of amphibian neurulation that can be used to determine how molecular and physical mechanisms are integrated and responsible for neurulation. We will describe how qualitative descriptions and quantitative measurements of strain, force generation, and tissue material properties as well as simulations can be used to understand how embryos use morphogenetic programs to drive neurulation. Birth Defects Research 109:153-168, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vijayraghavan D. S.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260
| | - Davidson L. A.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260,Department of Developmental Biology, School of Medicine, University of Pittsburgh Pittsburgh, PA 15213,Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
33
|
Nishimura T, Ito S, Saito H, Hiver S, Shigetomi K, Ikenouchi J, Takeichi M. DAAM1 stabilizes epithelial junctions by restraining WAVE complex-dependent lateral membrane motility. J Cell Biol 2016; 215:559-573. [PMID: 27807130 PMCID: PMC5119936 DOI: 10.1083/jcb.201603107] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/13/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022] Open
Abstract
Nishimura et al. show that DAAM1, a formin family actin polymerization regulator, stabilizes epithelial cell junctions by counteracting the WAVE complex, another actin regulator. Loss of DAAM1 promotes the motility of junctional membranes and thereby enhances their invasion of neighboring environments. Epithelial junctions comprise two subdomains, the apical junctional complex (AJC) and the adjacent lateral membrane contacts (LCs), that span the majority of the junction. The AJC is lined with circumferential actin cables, whereas the LCs are associated with less-organized actin filaments whose roles are elusive. We found that DAAM1, a formin family actin regulator, accumulated at the LCs, and its depletion caused dispersion of actin filaments at these sites while hardly affecting circumferential actin cables. DAAM1 loss enhanced the motility of LC-forming membranes, leading to their invasion of neighboring cell layers, as well as disruption of polarized epithelial layers. We found that components of the WAVE complex and its downstream targets were required for the elevation of LC motility caused by DAAM1 loss. These findings suggest that the LC membranes are motile by nature because of the WAVE complex, but DAAM1-mediated actin regulation normally restrains this motility, thereby stabilizing epithelial architecture, and that DAAM1 loss evokes invasive abilities of epithelial cells.
Collapse
Affiliation(s)
- Tamako Nishimura
- RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| | - Shoko Ito
- RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| | - Hiroko Saito
- RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| | - Sylvain Hiver
- RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| | - Kenta Shigetomi
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| | | |
Collapse
|
34
|
Nenasheva VV, Novosadova EV, Makarova IV, Lebedeva OS, Grefenshtein MA, Arsenyeva EL, Antonov SA, Grivennikov IA, Tarantul VZ. The Transcriptional Changes of trim Genes Associated with Parkinson’s Disease on a Model of Human Induced Pluripotent Stem Cells. Mol Neurobiol 2016; 54:7204-7211. [DOI: 10.1007/s12035-016-0230-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/16/2016] [Indexed: 12/31/2022]
|
35
|
Hedgehog-dependent E3-ligase Midline1 regulates ubiquitin-mediated proteasomal degradation of Pax6 during visual system development. Proc Natl Acad Sci U S A 2016; 113:10103-8. [PMID: 27555585 DOI: 10.1073/pnas.1600770113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pax6 is a key transcription factor involved in eye, brain, and pancreas development. Although pax6 is expressed in the whole prospective retinal field, subsequently its expression becomes restricted to the optic cup by reciprocal transcriptional repression of pax6 and pax2 However, it remains unclear how Pax6 protein is removed from the eyestalk territory on time. Here, we report that Mid1, a member of the RBCC/TRIM E3 ligase family, which was first identified in patients with the X-chromosome-linked Opitz BBB/G (OS) syndrome, interacts with Pax6. We found that the forming eyestalk is a major domain of mid1 expression, controlled by the morphogen Sonic hedgehog (Shh). Here, Mid1 regulates the ubiquitination and proteasomal degradation of Pax6 protein. Accordantly, when Mid1 levels are knocked down, Pax6 expression is expanded and eyes are enlarged. Our findings indicate that remaining or misaddressed Pax6 protein is cleared from the eyestalk region to properly set the border between the eyestalk territory and the retina via Mid1. Thus, we identified a posttranslational mechanism, regulated by Sonic hedgehog, which is important to suppress Pax6 activity and thus breaks pax6 autoregulation at defined steps during the formation of the visual system.
Collapse
|
36
|
Inoue Y, Suzuki M, Watanabe T, Yasue N, Tateo I, Adachi T, Ueno N. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus. Biomech Model Mechanobiol 2016; 15:1733-1746. [PMID: 27193152 PMCID: PMC5106510 DOI: 10.1007/s10237-016-0794-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/02/2016] [Indexed: 01/18/2023]
Abstract
Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.
Collapse
Affiliation(s)
- Yasuhiro Inoue
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Makoto Suzuki
- National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Tadashi Watanabe
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Naoko Yasue
- National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Itsuki Tateo
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Taiji Adachi
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Naoto Ueno
- National Institute for Basic Biology, Okazaki, Aichi, Japan
| |
Collapse
|
37
|
Cearns MD, Escuin S, Alexandre P, Greene NDE, Copp AJ. Microtubules, polarity and vertebrate neural tube morphogenesis. J Anat 2016; 229:63-74. [PMID: 27025884 DOI: 10.1111/joa.12468] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
Microtubules (MTs) are key cellular components, long known to participate in morphogenetic events that shape the developing embryo. However, the links between the cellular functions of MTs, their effects on cell shape and polarity, and their role in large-scale morphogenesis remain poorly understood. Here, these relationships were examined with respect to two strategies for generating the vertebrate neural tube: bending and closure of the mammalian neural plate; and cavitation of the teleost neural rod. The latter process has been compared with 'secondary' neurulation that generates the caudal spinal cord in mammals. MTs align along the apico-basal axis of the mammalian neuroepithelium early in neural tube closure, participating functionally in interkinetic nuclear migration, which indirectly impacts on cell shape. Whether MTs play other functional roles in mammalian neurulation remains unclear. In the zebrafish, MTs are important for defining the neural rod midline prior to its cavitation, both by localizing apical proteins at the tissue midline and by orienting cell division through a mirror-symmetric MT apparatus that helps to further define the medial localization of apical polarity proteins. Par proteins have been implicated in centrosome positioning in neuroepithelia as well as in the control of polarized morphogenetic movements in the neural rod. Understanding of MT functions during early nervous system development has so far been limited, partly by techniques that fail to distinguish 'cause' from 'effect'. Future developments will likely rely on novel ways to selectively impair MT function in order to investigate the roles they play.
Collapse
Affiliation(s)
- Michael D Cearns
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | - Sarah Escuin
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | - Paula Alexandre
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| |
Collapse
|
38
|
Gholkar AA, Senese S, Lo YC, Vides E, Contreras E, Hodara E, Capri J, Whitelegge JP, Torres JZ. The X-Linked-Intellectual-Disability-Associated Ubiquitin Ligase Mid2 Interacts with Astrin and Regulates Astrin Levels to Promote Cell Division. Cell Rep 2015; 14:180-8. [PMID: 26748699 DOI: 10.1016/j.celrep.2015.12.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/13/2015] [Accepted: 12/04/2015] [Indexed: 12/13/2022] Open
Abstract
Mid1 and Mid2 are ubiquitin ligases that regulate microtubule dynamics and whose mutation is associated with X-linked developmental disorders. We show that astrin, a microtubule-organizing protein, co-purifies with Mid1 and Mid2, has an overlapping localization with Mid1 and Mid2 at intercellular bridge microtubules, is ubiquitinated by Mid2 on lysine 409, and is degraded during cytokinesis. Mid2 depletion led to astrin stabilization during cytokinesis, cytokinetic defects, multinucleated cells, and cell death. Similarly, expression of a K409A mutant astrin in astrin-depleted cells led to the accumulation of K409A on intercellular bridge microtubules and an increase in cytokinetic defects, multinucleated cells, and cell death. These results indicate that Mid2 regulates cell division through the ubiquitination of astrin on K409, which is critical for its degradation and proper cytokinesis. These results could help explain how mutation of MID2 leads to misregulation of microtubule organization and the downstream disease pathology associated with X-linked intellectual disabilities.
Collapse
Affiliation(s)
- Ankur A Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Silvia Senese
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu-Chen Lo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Program in Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Edmundo Vides
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ely Contreras
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emmanuelle Hodara
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joseph Capri
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
39
|
Li B, Zhou T, Zou Y. Mid1/Mid2 expression in craniofacial development and a literature review of X-linked opitz syndrome. Mol Genet Genomic Med 2015; 4:95-105. [PMID: 26788540 PMCID: PMC4707030 DOI: 10.1002/mgg3.183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/15/2022] Open
Abstract
Background Opitz syndrome (OS) is a genetic disorder that affects mainly the development of midline structures, including the craniofacial region, embryonic heart, and urogenital system. The manifestations of X‐linked OS are believed to be results of a malfunctioned gene, MID1, whose product has been shown to have ubiquitin E3 ligase activity and regulate the turnover of microtubular protein phosphatase 2Ac. MID2, a homolog of MID1, shares high structural and functional similarities with MID1. Identification of a missense mutation in MID2 in an Indian family causing overlapping phenotypes with OS provided the first evidence that MID2 might be involved in similar pathogenesis. Methods The clinic features and the genetic findings of all reported X‐linked OS were collectively summarized in this research. Real‐time RT‐PCR and in situ hybridization were used in the expression studies of Mid1/Mid2 in mouse embryos. Results Up‐to‐date, 88 different mutations have been identified in MID1 and most mutations occurred on the conserved amino acids of MID1 and MID2. Expression studies using real‐time RT‐PCR implicated a tendency of a mutually repressive expression pattern between Mid1 and Mid2 in mouse embryos. Further investigations using in situ hybridization revealed strong expressions of Mid1 and Mid2 in the epithelium of approaching facial prominences and downregulated expressions after fusion in mouse embryos. Conclusions Our results support the hypothesis of functional redundancy of Mid1/Mid2 and their potential roles in regulating tissue remodelling in early development.
Collapse
Affiliation(s)
- Bijun Li
- Department of Biology Jinan University Guangzhou China
| | - Tianhong Zhou
- Department of Biology Jinan University Guangzhou China
| | - Yi Zou
- Department of Biology Jinan University Guangzhou China
| |
Collapse
|
40
|
Miyagi A, Negishi T, Yamamoto TS, Ueno N. G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/β-catenin signaling and are essential for head formation in Xenopus. Dev Biol 2015; 407:131-44. [PMID: 26244992 DOI: 10.1016/j.ydbio.2015.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 06/18/2015] [Accepted: 08/01/2015] [Indexed: 12/11/2022]
Abstract
Patterning of the vertebrate anterior-posterior axis is regulated by the coordinated action of growth factors whose effects can be further modulated by upstream and downstream mediators and the cross-talk of different intracellular pathways. In particular, the inhibition of the Wnt/β-catenin signaling pathway by various factors is critically required for anterior specification. Here, we report that Flop1 and Flop2 (Flop1/2), G protein-coupled receptors related to Gpr4, contribute to the regulation of head formation by inhibiting Wnt/β-catenin signaling in Xenopus embryos. Using whole-mount in situ hybridization, we showed that flop1 and flop2 mRNAs were expressed in the neural ectoderm during early gastrulation. Both the overexpression and knockdown of Flop1/2 resulted in altered embryonic head phenotypes, while the overexpression of either Flop1/2 or the small GTPase RhoA in the absence of bone morphogenetic protein (BMP) signaling resulted in ectopic head induction. Examination of the Flops' function in Xenopus embryo animal cap cells showed that they inhibited Wnt/β-catenin signaling by promoting β-catenin degradation through both RhoA-dependent and -independent pathways in a cell-autonomous manner. These results suggest that Flop1 and Flop2 are essential regulators of Xenopus head formation that act as novel inhibitory components of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Asuka Miyagi
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takefumi Negishi
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takamasa S Yamamoto
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Naoto Ueno
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
41
|
Kondo T, Hayashi S. Mechanisms of cell height changes that mediate epithelial invagination. Dev Growth Differ 2015; 57:313-23. [DOI: 10.1111/dgd.12224] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/24/2015] [Accepted: 04/26/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Takefumi Kondo
- Laboratory for Morphogenetic Signaling; RIKEN Center for Developmental Biology; Kobe Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling; RIKEN Center for Developmental Biology; Kobe Japan
- Department of Biology; Kobe University Graduate School of Science; Kobe Japan
| |
Collapse
|
42
|
Boding L, Hansen AK, Meroni G, Levring TB, Woetmann A, Ødum N, Bonefeld CM, Geisler C. MID2 can substitute for MID1 and control exocytosis of lytic granules in cytotoxic T cells. APMIS 2015; 123:682-7. [PMID: 25924778 DOI: 10.1111/apm.12402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/10/2015] [Indexed: 11/30/2022]
Abstract
We have recently shown that the E3 ubiquitin ligase midline 1 (MID1) is upregulated in murine cytotoxic lymphocytes (CTL), where it controls exocytosis of lytic granules and the killing capacity. Accordingly, CTL from MID1 knock-out (MID1(-/-)) mice have a 25-30% reduction in exocytosis of lytic granules and cytotoxicity compared to CTL from wild-type (WT) mice. We wondered why the MID1 gene knock-out did not affect exocytosis and cytotoxicity more severely and speculated whether MID2, a close homologue of MID1, might partially compensate for the loss of MID1 in MID1(-/-) CTL. Here, we showed that MID2, like MID1, is upregulated in activated murine T cells. Furthermore, MID1(-/-) CTL upregulated MID2 two-twenty-fold stronger than CTL from WT mice, suggesting that MID2 might compensate for MID1. In agreement, transfection of MID2 into MID1(-/-) CTL completely rescued exocytosis of lytic granules in MID1(-/-) CTL, and vice versa, knock-down of MID2 inhibited exocytosis of lytic granules in both WT and MID1(-/-) CTL, demonstrating that both MID1 and MID2 play a central role in the regulation of granule exocytosis and that functional redundancy exists between MID1 and MID2 in CTL.
Collapse
Affiliation(s)
- Lasse Boding
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ann K Hansen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Germana Meroni
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Trine B Levring
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Bonefeld
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Martin AC, Goldstein B. Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development 2014; 141:1987-98. [PMID: 24803648 DOI: 10.1242/dev.102228] [Citation(s) in RCA: 341] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apical constriction is a cell shape change that promotes tissue remodeling in a variety of homeostatic and developmental contexts, including gastrulation in many organisms and neural tube formation in vertebrates. In recent years, progress has been made towards understanding how the distinct cell biological processes that together drive apical constriction are coordinated. These processes include the contraction of actin-myosin networks, which generates force, and the attachment of actin networks to cell-cell junctions, which allows forces to be transmitted between cells. Different cell types regulate contractility and adhesion in unique ways, resulting in apical constriction with varying dynamics and subcellular organizations, as well as a variety of resulting tissue shape changes. Understanding both the common themes and the variations in apical constriction mechanisms promises to provide insight into the mechanics that underlie tissue morphogenesis.
Collapse
Affiliation(s)
- Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | |
Collapse
|
44
|
Winkle CC, McClain LM, Valtschanoff JG, Park CS, Maglione C, Gupton SL. A novel Netrin-1-sensitive mechanism promotes local SNARE-mediated exocytosis during axon branching. ACTA ACUST UNITED AC 2014; 205:217-32. [PMID: 24778312 PMCID: PMC4003241 DOI: 10.1083/jcb.201311003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Localized plasma membrane expansion during axon branching mediated by Netrin-1 occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion. Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.
Collapse
Affiliation(s)
- Cortney C Winkle
- Neuroscience Center and Curriculum in Neurobiology, 2 Department of Cell Biology and Physiology, and 3 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | | | | | | | | | | |
Collapse
|
45
|
Yajima H, Suzuki M, Ochi H, Ikeda K, Sato S, Yamamura KI, Ogino H, Ueno N, Kawakami K. Six1 is a key regulator of the developmental and evolutionary architecture of sensory neurons in craniates. BMC Biol 2014; 12:40. [PMID: 24885223 PMCID: PMC4084797 DOI: 10.1186/1741-7007-12-40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Various senses and sensory nerve architectures of animals have evolved during adaptation to exploit diverse environments. In craniates, the trunk sensory system has evolved from simple mechanosensory neurons inside the spinal cord (intramedullary), called Rohon-Beard (RB) cells, to multimodal sensory neurons of dorsal root ganglia (DRG) outside the spinal cord (extramedullary). The fish and amphibian trunk sensory systems switch from RB cells to DRG during development, while amniotes rely exclusively on the DRG system. The mechanisms underlying the ontogenic switching and its link to phylogenetic transition remain unknown. RESULTS In Xenopus, Six1 overexpression promoted precocious apoptosis of RB cells and emergence of extramedullary sensory neurons, whereas Six1 knockdown delayed the reduction in RB cell number. Genetic ablation of Six1 and Six4 in mice led to the appearance of intramedullary sensory neuron-like cells as a result of medial migration of neural crest cells into the spinal cord and production of immature DRG neurons and fused DRG. Restoration of SIX1 expression in the neural crest-linage partially rescued the phenotype, indicating the cell autonomous requirements of SIX1 for normal extramedullary sensory neurogenesis. Mouse Six1 enhancer that mediates the expression in DRG neurons activated transcription in Xenopus RB cells earlier than endogenous six1 expression, suggesting earlier onset of mouse SIX1 expression than Xenopus during sensory development. CONCLUSIONS The results indicated the critical role of Six1 in transition of RB cells to DRG neurons during Xenopus development and establishment of exclusive DRG system of mice. The study provided evidence that early appearance of SIX1 expression, which correlated with mouse Six1 enhancer, is essential for the formation of DRG-dominant system in mice, suggesting that heterochronic changes in Six1 enhancer sequence play an important role in alteration of trunk sensory architecture and contribute to the evolution of the trunk sensory system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
46
|
Manojlovic Z, Earwood R, Kato A, Stefanovic B, Kato Y. RFX7 is required for the formation of cilia in the neural tube. Mech Dev 2014; 132:28-37. [PMID: 24530844 DOI: 10.1016/j.mod.2014.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/04/2014] [Indexed: 12/22/2022]
Abstract
Regulatory Factor X (RFX) transcription factors are important for development and are likely involved in the pathogenesis of serious human diseases including ciliopathies. While seven RFX genes have been identified in vertebrates and several RFX transcription factors have been reported to be regulators of ciliogenesis, the role of RFX7 in development including ciliogenesis is not known. Here we show that RFX7 in Xenopus laevis is expressed in the neural tube, eye, otic vesicles, and somites. Knockdown of RFX7 in Xenopus embryos resulted in a defect of ciliogenesis in the neural tube and failure of neural tube closure. RFX7 controlled the formation of cilia by regulating the expression of RFX4 gene, which has been reported to be required for ciliogenesis in the neural tube. Moreover, ectopic expression of Foxj1, which is a master regulator of motile cilia formation, suppressed the expression of RFX4 but not RFX7. Taken together, RFX7 plays an important role in the process of neural tube closure at the top of the molecular cascade which controls ciliogenesis in the neural tube.
Collapse
Affiliation(s)
- Zarko Manojlovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Ryan Earwood
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Akiko Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Branko Stefanovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| | - Yoichi Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
47
|
Geetha TS, Michealraj KA, Kabra M, Kaur G, Juyal RC, Thelma BK. Targeted deep resequencing identifies MID2 mutation for X-linked intellectual disability with varied disease severity in a large kindred from India. Hum Mutat 2014; 35:41-4. [PMID: 24115387 DOI: 10.1002/humu.22453] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 09/19/2013] [Indexed: 11/11/2022]
Abstract
We report a novel missense mutation (c.1040G>A, p.Arg347Gln) in MID2, which encodes ubiquitin ligase E3, as the likely cause of X-linked mental retardation in a large kindred. The mutation was observed in all affected and obligate carriers but not in any unaffected males of the family or in population controls (n = 200). When transiently expressed in HEK293T cell line, the mutation was found to abolish the function of the COS domain in the protein. The GFP-tagged mutant protein accumulated in the cytoplasm instead of binding to the cytoskeleton resulting in its altered subcellular localization. Screening of coding exons of this gene in additional 480 unrelated individuals with idiopathic intellectual disability identified another novel variation p.Asn343Ser. This study highlights the growing role of the ubiquitin pathway in intellectual disability and also, the difference in MID2 determined phenotype observed in this study compared with that of its paralogue MID1 reported in literature.
Collapse
Affiliation(s)
- Thenral S Geetha
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | | | | | | | | | | |
Collapse
|
48
|
Chu CW, Gerstenzang E, Ossipova O, Sokol SY. Lulu regulates Shroom-induced apical constriction during neural tube closure. PLoS One 2013; 8:e81854. [PMID: 24282618 PMCID: PMC3839891 DOI: 10.1371/journal.pone.0081854] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 10/19/2013] [Indexed: 02/06/2023] Open
Abstract
Apical constriction is an essential cell behavior during neural tube closure, but its underlying mechanisms are not fully understood. Lulu, or EPB4.1l5, is a FERM domain protein that has been implicated in apical constriction and actomyosin contractility in mouse embryos and cultured cells. Interference with the function of Lulu in Xenopus embryos by a specific antisense morpholino oligonucleotide or a carboxy-terminal fragment of Lulu impaired apical constriction during neural plate hinge formation. This effect was likely due to lack of actomyosin contractility in superficial neuroectodermal cells. By contrast, overexpression of Lulu RNA in embryonic ectoderm cells triggered ectopic apico-basal elongation and apical constriction, accompanied by the apical recruitment of F-actin. Depletion of endogenous Lulu disrupted the localization and activity of Shroom3, a PDZ-containing actin-binding protein that has also been implicated in apical constriction. Furthermore, Lulu and Shroom3 RNAs cooperated in triggering ectopic apical constriction in embryonic ectoderm. Our findings reveal that Lulu is essential for Shroom3-dependent apical constriction during vertebrate neural tube closure.
Collapse
Affiliation(s)
- Chih-Wen Chu
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Emma Gerstenzang
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Sergei Y. Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
49
|
A genome-wide association study for canine cryptorchidism in Siberian Huskies. J Anim Breed Genet 2013; 131:202-9. [DOI: 10.1111/jbg.12064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 10/16/2013] [Indexed: 12/13/2022]
|
50
|
X-linked microtubule-associated protein, Mid1, regulates axon development. Proc Natl Acad Sci U S A 2013; 110:19131-6. [PMID: 24194544 DOI: 10.1073/pnas.1303687110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Opitz syndrome (OS) is a genetic neurological disorder. The gene responsible for the X-linked form of OS, Midline-1 (MID1), encodes an E3 ubiquitin ligase that regulates the degradation of the catalytic subunit of protein phosphatase 2A (PP2Ac). However, how Mid1 functions during neural development is largely unknown. In this study, we provide data from in vitro and in vivo experiments suggesting that silencing Mid1 in developing neurons promotes axon growth and branch formation, resulting in a disruption of callosal axon projections in the contralateral cortex. In addition, a similar phenotype of axonal development was observed in the Mid1 knockout mouse. This defect was largely due to the accumulation of PP2Ac in Mid1-depleted cells as further down-regulation of PP2Ac rescued the axonal phenotype. Together, these data demonstrate that Mid1-dependent PP2Ac turnover is important for normal axonal development and that dysregulation of this process may contribute to the underlying cause of OS.
Collapse
|