1
|
Xiang G, Liu Z, Yuan Z, Ying Z, Ding Y, Lin D, Qin H, Dong S, Zhou S, Yuan H, Xie W, Zheng Z, Chen Y, Li L, Long Q, Yang L, Wu Y, Chen K, Bao F, Huang Y, Li W, Wang J, Liu Y, Qin D, Liu X. Perinuclear mitochondrial clustering for mesenchymal-to-epithelial transition in pluripotency induction. Stem Cell Reports 2025; 20:102474. [PMID: 40250438 DOI: 10.1016/j.stemcr.2025.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 04/20/2025] Open
Abstract
Remodeled mitochondria are characteristic of pluripotent stem cells. However, a role for mitochondrial movement and distribution in pluripotency remains unknown. Here, we show that mitochondrial retrograde transport-mediated perinuclear clustering via dynein complex occurs at the early phase of pluripotency induction. Interestingly, this mitochondrial redistribution is regulated by Yamanaka factor OCT4 but not SOX2 or KLF4. This mitochondrial redistribution, which has effect on the efficiency of somatic cell reprogramming, also depends on DRP1-mediated mitochondrial fission. Importantly, perinuclear mitochondrial clustering is required for mesenchymal-to-epithelial transition (MET), an early step in reprogramming, during which β-catenin regulates the MET process. Furthermore, sufficient amount of β-catenin plays a key role in maintaining stabilization of E-CADHERIN. Taken together, these studies show that perinuclear mitochondrial clustering is an essential organellar step for MET process of pluripotency induction, which may shed light on the subcellular relationship between mitochondrial dynamics, pluripotency, and cellular morphology.
Collapse
Affiliation(s)
- Ge Xiang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zihuang Liu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China; Institute of Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zebin Yuan
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhongfu Ying
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Institute of Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yingzhe Ding
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Dongtong Lin
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haihao Qin
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shanshan Dong
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shihe Zhou
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hao Yuan
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wei Xie
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhihong Zheng
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yongqiang Chen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Linpeng Li
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Institute of Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Long
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Institute of Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Liang Yang
- Institute of Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Wu
- Institute of Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Keshi Chen
- Institute of Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Feixiang Bao
- Institute of Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yile Huang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Wei Li
- Institute of Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Junwei Wang
- Institute of Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yang Liu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Dajiang Qin
- Guangdong Engineering Research Center of Early Clinical Trials of Biotechnology Drugs, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xingguo Liu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China; Institute of Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
2
|
Shameem M, Olson SL, Marron Fernandez de Velasco E, Kumar A, Singh BN. Cardiac Fibroblasts: Helping or Hurting. Genes (Basel) 2025; 16:381. [PMID: 40282342 PMCID: PMC12026832 DOI: 10.3390/genes16040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Cardiac fibroblasts (CFs) are the essential cell type for heart morphogenesis and homeostasis. In addition to maintaining the structural integrity of the heart tissue, muscle fibroblasts are involved in complex signaling cascades that regulate cardiomyocyte proliferation, migration, and maturation. While CFs serve as the primary source of extracellular matrix proteins (ECM), tissue repair, and paracrine signaling, they are also responsible for adverse pathological changes associated with cardiovascular disease. Following activation, fibroblasts produce excessive ECM components that ultimately lead to fibrosis and cardiac dysfunction. Decades of research have led to a much deeper understanding of the role of CFs in cardiogenesis. Recent studies using the single-cell genomic approach have focused on advancing the role of CFs in cellular interactions, and the mechanistic implications involved during cardiovascular development and disease. Arguably, the unique role of fibroblasts in development, tissue repair, and disease progression categorizes them into the friend or foe category. This brief review summarizes the current understanding of cardiac fibroblast biology and discusses the key findings in the context of development and pathophysiological conditions.
Collapse
Affiliation(s)
- Mohammad Shameem
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Shelby L. Olson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Akhilesh Kumar
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bhairab N. Singh
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Ma Z, Tan S, Lu R, Chen P, Hu Y, Yang T, Wu H, Zhu Z, Guo J, Chen X, Yang J, Zhang W, Ye Y. Interplay of chromatin remodeling BAF complexes in mouse embryonic and epiblast stem cell conversion and maintenance. J Biol Chem 2025; 301:108140. [PMID: 39730061 PMCID: PMC11791114 DOI: 10.1016/j.jbc.2024.108140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024] Open
Abstract
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are pluripotent stem cells derived from preimplantation and postimplantation embryos, respectively. These cells are capable of interconversion through manipulation of key transcription factors and signaling pathways. While BRG1/BRM-associated factor (BAF) chromatin remodeling complexes are known to play crucial roles in ESC self-renewal and pluripotency, their roles in EpiSCs and their interconversion with ESCs remain unclear. This study demonstrates that the LIF/STAT3 and Wnt signaling pathways, in conjunction with canonical BAF (cBAF) and polycomb repressive complex two complexes, inhibit EpiSC gene expression, thereby preventing ESCs from converting to EpiSCs. Upon removal of LIF, the reduced LIF/STAT3 signaling lifts this inhibition, increasing TGF/nodal pathway activity. Subsequently, the cBAF complex facilitates ESC to EpiSC conversion by promoting EpiSC gene expression. Furthermore, unlike cBAF, inhibition of the ncBAF complex downregulates TGF-β signaling, thereby hindering both ESC to EpiSC conversion and EpiSC maintenance. Moreover, this study revealed the dual mechanisms, methylating histone or non-histone protein STAT3, by which polycomb repressive complex two components participate in the regulation of ESCs to EpiSCs. This research elucidates the interplay between distinct BAF complexes and specific signaling pathways in regulating the conversion and maintenance of ESCs and EpiSCs.
Collapse
Affiliation(s)
- Zhaoru Ma
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Shuping Tan
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Renhong Lu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peixin Chen
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Yukun Hu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Tenghui Yang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Hao Wu
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Zhexin Zhu
- Hefei Comprehensive National Science Center, Institute of Health and Medicine, Heifei, China
| | - Jiayi Guo
- Research Center of Medical Science and Technology, Ningxia Medical University, Yinchuan, China
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian Yang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.
| | - Ying Ye
- Department of Clinical Pathobiology and Immunological Testing, School of Medical Laboratory, Qilu Medical University, Zibo, China.
| |
Collapse
|
4
|
Bou-Rouphael J, Doulazmi M, Eschstruth A, Abdou A, Durand BC. Cerebellar granular neuron progenitors exit their germinative niche via BarH-like1 activity mediated partly by inhibition of T-cell factor. Development 2024; 151:dev202234. [PMID: 38860486 DOI: 10.1242/dev.202234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Cerebellar granule neuron progenitors (GNPs) originate from the upper rhombic lip (URL), a germinative niche in which developmental defects produce human diseases. T-cell factor (TCF) responsiveness and Notch dependence are hallmarks of self-renewal in neural stem cells. TCF activity, together with transcripts encoding proneural gene repressors hairy and enhancer of split (Hes/Hey), are detected in the URL; however, their functions and regulatory modes are undeciphered. Here, we established amphibian as a pertinent model for studying vertebrate URL development. The amphibian long-lived URL is TCF active, whereas the external granular layer (EGL) is non-proliferative and expresses hes4 and hes5 genes. Using functional and transcriptomic approaches, we show that TCF activity is necessary for URL emergence and maintenance. We establish that the transcription factor Barhl1 controls GNP exit from the URL, acting partly through direct TCF inhibition. Identification of Barhl1 target genes suggests that, besides TCF, Barhl1 inhibits transcription of hes5 genes independently of Notch signaling. Observations in amniotes suggest a conserved role for Barhl in maintenance of the URL and/or EGL via co-regulation of TCF, Hes and Hey genes.
Collapse
Affiliation(s)
- Johnny Bou-Rouphael
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS) - Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Mohamed Doulazmi
- Sorbonne Université, CNRS UMR8256, Institut de Biologie Paris-Seine (IBPS) - Laboratoire Adaptation Biologique et Vieillissement, 75005 Paris, France
| | - Alexis Eschstruth
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS) - Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Asna Abdou
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS) - Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Béatrice C Durand
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine (IBPS) - Laboratoire de Biologie du Développement, 75005 Paris, France
- Sorbonne Université, CNRS UMR8256, Institut de Biologie Paris-Seine (IBPS) - Laboratoire Adaptation Biologique et Vieillissement, 75005 Paris, France
| |
Collapse
|
5
|
BharathwajChetty B, Sajeev A, Vishwa R, Aswani BS, Alqahtani MS, Abbas M, Kunnumakkara AB. Dynamic interplay of nuclear receptors in tumor cell plasticity and drug resistance: Shifting gears in malignant transformations and applications in cancer therapeutics. Cancer Metastasis Rev 2024; 43:321-362. [PMID: 38517618 DOI: 10.1007/s10555-024-10171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 03/24/2024]
Abstract
Recent advances have brought forth the complex interplay between tumor cell plasticity and its consequential impact on drug resistance and tumor recurrence, both of which are critical determinants of neoplastic progression and therapeutic efficacy. Various forms of tumor cell plasticity, instrumental in facilitating neoplastic cells to develop drug resistance, include epithelial-mesenchymal transition (EMT) alternatively termed epithelial-mesenchymal plasticity, the acquisition of cancer stem cell (CSC) attributes, and transdifferentiation into diverse cell lineages. Nuclear receptors (NRs) are a superfamily of transcription factors (TFs) that play an essential role in regulating a multitude of cellular processes, including cell proliferation, differentiation, and apoptosis. NRs have been implicated to play a critical role in modulating gene expression associated with tumor cell plasticity and drug resistance. This review aims to provide a comprehensive overview of the current understanding of how NRs regulate these key aspects of cancer biology. We discuss the diverse mechanisms through which NRs influence tumor cell plasticity, including EMT, stemness, and metastasis. Further, we explore the intricate relationship between NRs and drug resistance, highlighting the impact of NR signaling on chemotherapy, radiotherapy and targeted therapies. We also discuss the emerging therapeutic strategies targeting NRs to overcome tumor cell plasticity and drug resistance. This review also provides valuable insights into the current clinical trials that involve agonists or antagonists of NRs modulating various aspects of tumor cell plasticity, thereby delineating the potential of NRs as therapeutic targets for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
6
|
Ye Y, Xie W, Ma Z, Wang X, Wen Y, Li X, Qi H, Wu H, An J, Jiang Y, Lu X, Chen G, Hu S, Blaber EA, Chen X, Chang L, Zhang W. Conserved mechanisms of self-renewal and pluripotency in mouse and human ESCs regulated by simulated microgravity using a 3D clinostat. Cell Death Discov 2024; 10:68. [PMID: 38336777 PMCID: PMC10858198 DOI: 10.1038/s41420-024-01846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Embryonic stem cells (ESCs) exhibit unique attributes of boundless self-renewal and pluripotency, making them invaluable for fundamental investigations and clinical endeavors. Previous examinations of microgravity effects on ESC self-renewal and differentiation have predominantly maintained a descriptive nature, constrained by limited experimental opportunities and techniques. In this investigation, we present compelling evidence derived from murine and human ESCs, demonstrating that simulated microgravity (SMG)-induced stress significantly impacts self-renewal and pluripotency through a previously unidentified conserved mechanism. Specifically, SMG induces the upregulation of heat shock protein genes, subsequently enhancing the expression of core pluripotency factors and activating the Wnt and/or LIF/STAT3 signaling pathways, thereby fostering ESC self-renewal. Notably, heightened Wnt pathway activity, facilitated by Tbx3 upregulation, prompts mesoendodermal differentiation in both murine and human ESCs under SMG conditions. Recognizing potential disparities between terrestrial SMG simulations and authentic microgravity, forthcoming space flight experiments are imperative to validate the impact of reduced gravity on ESC self-renewal and differentiation mechanisms.
Collapse
Affiliation(s)
- Ying Ye
- Medical College of Soochow University, Suzhou, China
| | - Wenyan Xie
- Medical College of Soochow University, Suzhou, China
| | - Zhaoru Ma
- Medical College of Soochow University, Suzhou, China
| | - Xuepeng Wang
- Medical College of Soochow University, Suzhou, China
| | - Yi Wen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xuemei Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Hongqian Qi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, Tianjin, 300350, China
| | - Hao Wu
- Medical College of Soochow University, Suzhou, China
| | - Jinnan An
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Suzhou, China
| | - Yan Jiang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, Tianjin, 300350, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215000, China.
| | - Elizabeth A Blaber
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xi Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Province International Joint Laboratory For Regeneration Medicine, Medical College of Soochow University, Suzhou, China.
| | | |
Collapse
|
7
|
Montibus B, Ragheb R, Diamanti E, Dunn SJ, Reynolds N, Hendrich B. The Nucleosome Remodelling and Deacetylation complex coordinates the transcriptional response to lineage commitment in pluripotent cells. Biol Open 2024; 13:bio060101. [PMID: 38149716 PMCID: PMC10836651 DOI: 10.1242/bio.060101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023] Open
Abstract
As cells exit the pluripotent state and begin to commit to a specific lineage they must activate genes appropriate for that lineage while silencing genes associated with pluripotency and preventing activation of lineage-inappropriate genes. The Nucleosome Remodelling and Deacetylation (NuRD) complex is essential for pluripotent cells to successfully undergo lineage commitment. NuRD controls nucleosome density at regulatory sequences to facilitate transcriptional responses, and also has been shown to prevent unscheduled transcription (transcriptional noise) in undifferentiated pluripotent cells. How these activities combine to ensure cells engage a gene expression program suitable for successful lineage commitment has not been determined. Here, we show that NuRD is not required to silence all genes. Rather, it restricts expression of genes primed for activation upon exit from the pluripotent state, but maintains them in a transcriptionally permissive state in self-renewing conditions, which facilitates their subsequent activation upon exit from naïve pluripotency. We further show that NuRD coordinates gene expression changes, which acts to maintain a barrier between different stable states. Thus NuRD-mediated chromatin remodelling serves multiple functions, including reducing transcriptional noise, priming genes for activation and coordinating the transcriptional response to facilitate lineage commitment.
Collapse
Affiliation(s)
- Bertille Montibus
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Ramy Ragheb
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Evangelia Diamanti
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Sara-Jane Dunn
- Microsoft Research, 21 Station Road, Cambridge CB1 2FB, UK
| | - Nicola Reynolds
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Brian Hendrich
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, UK
| |
Collapse
|
8
|
He Q, Xu S, He F, Wu Z, Wu F, Zhou R, Zhou B, Li F, Yang X. Combined Proteomic and Phosphoproteomic Characterization of the Molecular Regulators and Functional Modules During Pancreatic Progenitor Cell Development. J Proteome Res 2024; 23:40-51. [PMID: 37993262 DOI: 10.1021/acs.jproteome.3c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Differentiated multipotent pancreatic progenitors have major advantages for both modeling pancreas development and preventing or treating diabetes. Despite significant advancements in inducing the differentiation of human pluripotent stem cells into insulin-producing cells, the complete mechanism governing proliferation and differentiation remains poorly understood. This study used large-scale mass spectrometry to characterize molecular processes at various stages of human embryonic stem cell (hESC) differentiation toward pancreatic progenitors. hESCs were induced into pancreatic progenitor cells in a five-stage differentiation protocol. A high-performance liquid chromatography-mass spectrometry platform was used to undertake comprehensive proteome and phosphoproteome profiling of cells at different stages. A series of bioinformatic explorations, including coregulated modules, gene regulatory networks, and phosphosite enrichment analysis, were then conducted. A total of 27,077 unique phosphorylated sites and 8122 proteins were detected, including several cyclin-dependent kinases at the initial stage of cell differentiation. Furthermore, we discovered that ERK1, a member of the MAPK cascade, contributed to proliferation at an early stage. Finally, Western blotting confirmed that the phosphosites from SIRT1 and CHEK1 could inhibit the corresponding substrate abundance in the late stage. Thus, this study extends our understanding of the molecular mechanism during pancreatic cell development.
Collapse
Affiliation(s)
- Qian He
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College of Jinan University), Shenzhen 518055, China
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shaohang Xu
- Deepxomics Co., Ltd., Shenzhen 518000, China
| | - Fei He
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College of Jinan University), Shenzhen 518055, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zubiao Wu
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College of Jinan University), Shenzhen 518055, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fujian Wu
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College of Jinan University), Shenzhen 518055, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruo Zhou
- Deepxomics Co., Ltd., Shenzhen 518000, China
| | - Baojin Zhou
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Furong Li
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College of Jinan University), Shenzhen 518055, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaofei Yang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College of Jinan University), Shenzhen 518055, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen 518020, China
- Institute of Health Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Hajian M, Rouhollahi Varnosfaderani S, Jafarpour F, Tanhaei Vash N, Nasr-Esfahani MH. Pluripotency and embryonic lineage genes expression in the presence of small molecule inhibitors of FGF, TGFβ and GSK3 during pre-implantation development of goat embryos. Gene Expr Patterns 2023; 50:119334. [PMID: 37678700 DOI: 10.1016/j.gep.2023.119334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/05/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Generating stable livestock pluripotent stem cells (PSCs) can be used for complex genome editing, cellular agriculture, gamete generation, regenerative medicine and in vitro breeding schemes. Over the past decade, significant progress has been made in characterizing pluripotency markers for livestock species. In this study, we investigated embryo development and gene expression of the core pluripotency triad (OCT4, NANOG, SOX2) and cell lineage commitment markers (REX1, CDX2, GATA4) in the presence of three small molecules and their combination [PD0325901 (FGF inhibitor), SB431542 (TGFβ inhibitor), and CHIR99021 (GSK3B inhibitor)] from day 2-7 post-insemination in goat. Significant reduction in rate of blastocyst formation was observed when SB was used along with PD or CHIR and their three combinations had more sever effect. SB and CHIR decreased the expression of SOX2 while increasing the GATA4 expression. PD decrease the relative expression of NANOG, OCT4 and GATA4, while increased the expression of REX1. Among the combination of two molecules, only SB + CHIR combination significantly decreased the expression of GATA4, while the combination of the three molecules significantly decreases the expression of NANOG, SOX2 and CDX2. According to these results, the inhibition of the FGF signaling pathway, by PD may lead to blocking the hypoblast formation as observed by reduction of GATA4. OCT4 and NANOG expressions did not show signs of maintenance pluripotency. GATA4, NANOG and OCT4 in the PD group were downregulated and REX1 as EPI-marker was upregulated thus REX1 may be considered as a marker of EPI/ICM in goat.
Collapse
Affiliation(s)
- Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Shiva Rouhollahi Varnosfaderani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nima Tanhaei Vash
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
10
|
Šopin T, Liška F, Kučera T, Cmarko D, Vacík T. Lysine Demethylase KDM2A Promotes Proteasomal Degradation of TCF/LEF Transcription Factors in a Neddylation-Dependent Manner. Cells 2023; 12:2620. [PMID: 37998355 PMCID: PMC10670284 DOI: 10.3390/cells12222620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Canonical Wnt signaling is essential for a plethora of biological processes ranging from early embryogenesis to aging. Malfunctions of this crucial signaling pathway are associated with various developmental defects and diseases, including cancer. Although TCF/LEF transcription factors (TCF/LEFs) are known to be essential for this pathway, the regulation of their intracellular levels is not completely understood. Here, we show that the lysine demethylase KDM2A promotes the proteasomal destabilization of TCF/LEFs independently of its demethylase domain. We found that the KDM2A-mediated destabilization of TCF/LEFs is dependent on the KDM2A zinc finger CXXC domain. Furthermore, we identified the C-terminal region of TCF7L2 and the CXXC domain of KDM2A as the domains responsible for the interaction between the two proteins. Our study is also the first to show that endogenous TCF/LEF proteins undergo KDM2A-mediated proteasomal degradation in a neddylation-dependent manner. Here, we reveal a completely new mechanism that affects canonical Wnt signaling by regulating the levels of TCF/LEF transcription factors through their KDM2A-promoted proteasomal degradation.
Collapse
Affiliation(s)
- Tijana Šopin
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 01 Prague, Czech Republic; (F.L.); (T.Š.); (D.C.)
| | - František Liška
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 01 Prague, Czech Republic; (F.L.); (T.Š.); (D.C.)
| | - Tomáš Kučera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 01 Prague, Czech Republic;
| | - Dušan Cmarko
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 01 Prague, Czech Republic; (F.L.); (T.Š.); (D.C.)
| | - Tomáš Vacík
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 01 Prague, Czech Republic; (F.L.); (T.Š.); (D.C.)
| |
Collapse
|
11
|
Manfreda L, Rampazzo E, Persano L. Wnt Signaling in Brain Tumors: A Challenging Therapeutic Target. BIOLOGY 2023; 12:biology12050729. [PMID: 37237541 DOI: 10.3390/biology12050729] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The involvement of Wnt signaling in normal tissue homeostasis and disease has been widely demonstrated over the last 20 years. In particular, dysregulation of Wnt pathway components has been suggested as a relevant hallmark of several neoplastic malignancies, playing a role in cancer onset, progression, and response to treatments. In this review, we summarize the current knowledge on the instructions provided by Wnt signaling during organogenesis and, particularly, brain development. Moreover, we recapitulate the most relevant mechanisms through which aberrant Wnt pathway activation may impact on brain tumorigenesis and brain tumor aggressiveness, with a particular focus on the mutual interdependency existing between Wnt signaling components and the brain tumor microenvironment. Finally, the latest anti-cancer therapeutic approaches employing the specific targeting of Wnt signaling are extensively reviewed and discussed. In conclusion, here we provide evidence that Wnt signaling, due to its pleiotropic involvement in several brain tumor features, may represent a relevant target in this context, although additional efforts will be needed to: (i) demonstrate the real clinical impact of Wnt inhibition in these tumors; (ii) overcome some still unsolved concerns about the potential systemic effects of such approaches; (iii) achieve efficient brain penetration.
Collapse
Affiliation(s)
- Lorenzo Manfreda
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Elena Rampazzo
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Luca Persano
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| |
Collapse
|
12
|
Shi Y, Kopparapu N, Ohler L, Dickinson DJ. Efficient and rapid fluorescent protein knock-in with universal donors in mouse embryonic stem cells. Development 2023; 150:dev201367. [PMID: 37129004 PMCID: PMC10233722 DOI: 10.1242/dev.201367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Fluorescent protein (FP) tagging is a key method for observing protein distribution, dynamics and interaction with other proteins in living cells. However, the typical approach using overexpression of tagged proteins can perturb cell behavior and introduce localization artifacts. To preserve native expression, fluorescent proteins can be inserted directly into endogenous genes. This approach has been widely used in yeast for decades, and more recently in invertebrate model organisms with the advent of CRISPR/Cas9. However, endogenous FP tagging has not been widely used in mammalian cells due to inefficient homology-directed repair. Recently, the CRISPaint system used non-homologous end joining for efficient integration of FP tags into native loci, but it only allows C-terminal knock-ins. Here, we have enhanced the CRISPaint system by introducing new universal donors for N-terminal insertion and for multi-color tagging with orthogonal selection markers. We adapted the procedure for mouse embryonic stem cells, which can be differentiated into diverse cell types. Our protocol is rapid and efficient, enabling live imaging in less than 2 weeks post-transfection. These improvements increase the versatility and applicability of FP knock-in in mammalian cells.
Collapse
Affiliation(s)
- Yu Shi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nitya Kopparapu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lauren Ohler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel J. Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
13
|
Sadeghi M, Andani MR, Hajian M, Sanei N, Moradi-Hajidavaloo R, Mahvash N, Jafarpour F, Nasr-Esfahani MH. Developmental competence of IVF and SCNT goat embryos is improved by inhibition of canonical WNT signaling. PLoS One 2023; 18:e0281331. [PMID: 37075045 PMCID: PMC10115261 DOI: 10.1371/journal.pone.0281331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/20/2023] [Indexed: 04/20/2023] Open
Abstract
The specific role of the canonical WNT/β-catenin signaling pathway during the preimplantation development of goat remains unclear. Our objective was to investigate the expression of β-CATENIN, one of the critical components of Wnt signaling pathway, in IVF embryos and compare it with SCNT embryos in goat. In addition, we evaluated the consequence of inhibition of β-catenin using IWR1. Initially, we observed cytoplasmic expression of β-CATENIN in 2 and 8-16 cell stage embryos and membranous expression of β-CATENIN in compact morula and blastocyst stages. Furthermore, while we observed exclusively membranous localization of β-catenin in IVF blastocysts, we observed both membranous and cytoplasmic localization in SCNT blastocysts. We observed that Inhibition of WNT signaling by IWR1 during compact morula to blastocyst transition (from day 4 till day 7 of in vitro culture) increased blastocyst formation rate in both IVF and SCNT embryos. In conclusion, it seems that WNT signaling system has functional role in the preimplantation goat embryos, and inhibition of this pathway during the period of compact morula to blastocyst transition (D4-D7) can improve preimplantation embryonic development.
Collapse
Affiliation(s)
- Marjan Sadeghi
- Department of Biology, Faculty of Science and Technology, ACECR Institute of Higher Education (Isfahan), Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahimi Andani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nafiseh Sanei
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Reza Moradi-Hajidavaloo
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nasrin Mahvash
- Department of Biology, Faculty of Science and Technology, ACECR Institute of Higher Education (Isfahan), Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
14
|
Morita M, Nishida N, Aoki T, Chishina H, Takita M, Ida H, Hagiwara S, Minami Y, Ueshima K, Kudo M. Role of β-Catenin Activation in the Tumor Immune Microenvironment and Immunotherapy of Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:cancers15082311. [PMID: 37190239 DOI: 10.3390/cancers15082311] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Recently, the therapeutic combination of atezolizumab and bevacizumab was widely used to treat advanced hepatocellular carcinoma (HCC). According to recent clinical trials, immune checkpoint inhibitors (ICIs) and molecular target agents are expected to be key therapeutic strategies in the future. Nonetheless, the mechanisms underlying molecular immune responses and immune evasion remain unclear. The tumor immune microenvironment plays a vital role in HCC progression. The infiltration of CD8-positive cells into tumors and the expression of immune checkpoint molecules are key factors in this immune microenvironment. Specifically, Wnt/β catenin pathway activation causes "immune exclusion", associated with poor infiltration of CD8-positive cells. Some clinical studies suggested an association between ICI resistance and β-catenin activation in HCC. Additionally, several subclassifications of the tumor immune microenvironment were proposed. The HCC immune microenvironment can be broadly divided into inflamed class and non-inflamed class, with several subclasses. β-catenin mutations are important factors in immune subclasses; this may be useful when considering therapeutic strategies as β-catenin activation may serve as a biomarker for ICI. Various types of β-catenin modulators were developed. Several kinases may also be involved in the β-catenin pathway. Therefore, combinations of β-catenin modulators, kinase inhibitors, and ICIs may exert synergistic effects.
Collapse
Affiliation(s)
- Masahiro Morita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Tomoko Aoki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Hirokazu Chishina
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Masahiro Takita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Hiroshi Ida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Satoru Hagiwara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Kazuomi Ueshima
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| |
Collapse
|
15
|
Brown G. Retinoic acid receptor regulation of decision-making for cell differentiation. Front Cell Dev Biol 2023; 11:1182204. [PMID: 37082619 PMCID: PMC10110968 DOI: 10.3389/fcell.2023.1182204] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
All-trans retinoic acid (ATRA) activation of retinoic acid receptors (RARs) is crucial to an organism's proper development as established by findings for mouse foetuses from dams fed a vitamin A-deficient diet. ATRA influences decision-making by embryonic stem (ES) cells for differentiation including lineage fate. From studies of knockout mice, RARα and RARγ regulate haematopoiesis whereby active RARα modulates the frequency of decision-making for myeloid differentiation, but is not essential for myelopoiesis, and active RARγ supports stem cell self-renewal and maintenance. From studies of zebrafish embryo development, active RARγ plays a negative role in stem cell decision-making for differentiation whereby, in the absence of exogenous ATRA, selective agonism of RARγ disrupted stem cell decision-making for differentiation patterning for development. From transactivation studies, 0.24 nM ATRA transactivated RARγ and 19.3 nM (80-fold more) was needed to transactivate RARα. Therefore, the dose of ATRA that cells are exposed to in vivo, from gradients created by cells that synthesize and metabolize, is important to RARγ versus RARα and RARγ activation and balancing of the involvements in modulating stem cell maintenance versus decision-making for differentiation. RARγ activation favours stemness whereas concomitant or temporal activation of RARγ and RARα favours differentiation. Crosstalk with signalling events that are provoked by membrane receptors is also important.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
16
|
Abstract
During embryo development, cell proliferation, cell fate specification and tissue patterning are coordinated and tightly regulated by a handful of evolutionarily conserved signaling pathways activated by secreted growth factor families including fibroblast growth factor (FGF), Nodal/bone morphogenetic protein (BMP), Hedgehog and Wnt. The spatial and temporal activation of these signaling pathways elicit context-specific cellular responses that ultimately shape the different tissues of the embryo. Extensive efforts have been dedicated to identifying the molecular mechanisms underlying these signaling pathways during embryo development, adult tissue homeostasis and regeneration. In this review, we first describe the role of the Wnt/β-catenin signaling pathway during early embryo development, axis specification and cell differentiation as a prelude to highlight how this knowledge is being leveraged to manipulate Wnt/β-catenin signaling activity with small molecules and biologics for the directed differentiation of pluripotent stem cells into various cell lineages that are physiologically relevant for stem cell therapy and regenerative medicine.
Collapse
|
17
|
Schnirman RE, Kuo SJ, Kelly RC, Yamaguchi TP. The role of Wnt signaling in the development of the epiblast and axial progenitors. Curr Top Dev Biol 2023; 153:145-180. [PMID: 36967193 DOI: 10.1016/bs.ctdb.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Understanding how the body plan is established during embryogenesis remains a fundamental biological question. The Wnt/β-catenin signaling pathway plays a crucial and highly conserved role in body plan formation, functioning to polarize the primary anterior-posterior (AP) or head-to-tail body axis in most metazoans. In this chapter, we focus on the roles that the mammalian Wnt/β-catenin pathway plays to prepare the pluripotent epiblast for gastrulation, and to elicit the emergence of multipotent axial progenitors from the caudal epiblast. Interactions between Wnt and retinoic acid (RA), another powerful family of developmental signaling molecules, in axial progenitors will also be discussed. Gastrulation movements and somitogenesis result in the anterior displacement of the RA source (the rostral somites and lateral plate mesoderm (LPM)), from the posterior Wnt source (the primitive streak (PS)), leading to the establishment of antiparallel gradients of RA and Wnt that control the self-renewal and successive differentiation of neck, trunk and tail progenitors.
Collapse
Affiliation(s)
| | - Samuel J Kuo
- NCI-Frederick, NIH, Frederick, MD, United States
| | - Ryan C Kelly
- NCI-Frederick, NIH, Frederick, MD, United States
| | | |
Collapse
|
18
|
Canse C, Yildirim E, Yaba A. Overview of junctional complexes during mammalian early embryonic development. Front Endocrinol (Lausanne) 2023; 14:1150017. [PMID: 37152932 PMCID: PMC10158982 DOI: 10.3389/fendo.2023.1150017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 05/09/2023] Open
Abstract
Cell-cell junctions form strong intercellular connections and mediate communication between blastomeres during preimplantation embryonic development and thus are crucial for cell integrity, polarity, cell fate specification and morphogenesis. Together with cell adhesion molecules and cytoskeletal elements, intercellular junctions orchestrate mechanotransduction, morphokinetics and signaling networks during the development of early embryos. This review focuses on the structure, organization, function and expressional pattern of the cell-cell junction complexes during early embryonic development. Understanding the importance of dynamic junction formation and maturation processes will shed light on the molecular mechanism behind developmental abnormalities of early embryos during the preimplantation period.
Collapse
Affiliation(s)
- Ceren Canse
- Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Ecem Yildirim
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, Istanbul, Türkiye
| | - Aylin Yaba
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, Istanbul, Türkiye
- *Correspondence: Aylin Yaba,
| |
Collapse
|
19
|
Shen X, Li M, Wang C, Liu Z, Wu K, Wang A, Bi C, Lu S, Long H, Zhu G. Hypoxia is fine-tuned by Hif-1α and regulates mesendoderm differentiation through the Wnt/β-Catenin pathway. BMC Biol 2022; 20:219. [PMID: 36199093 PMCID: PMC9536055 DOI: 10.1186/s12915-022-01423-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hypoxia naturally happens in embryogenesis and thus serves as an important environmental factor affecting embryo development. Hif-1α, an essential hypoxia response factor, was mostly considered to mediate or synergistically regulate the effect of hypoxia on stem cells. However, the function and relationship of hypoxia and Hif-1α in regulating mesendoderm differentiation remains controversial. Results We here discovered that hypoxia dramatically suppressed the mesendoderm differentiation and promoted the ectoderm differentiation of mouse embryonic stem cells (mESCs). However, hypoxia treatment after mesendoderm was established promoted the downstream differentiation of mesendoderm-derived lineages. These effects of hypoxia were mediated by the repression of the Wnt/β-Catenin pathway and the Wnt/β-Catenin pathway was at least partially regulated by the Akt/Gsk3β axis. Blocking the Wnt/β-Catenin pathway under normoxia using IWP2 mimicked the effects of hypoxia while activating the Wnt/β-Catenin pathway with CHIR99021 fully rescued the mesendoderm differentiation suppression caused by hypoxia. Unexpectedly, Hif-1α overexpression, in contrast to hypoxia, promoted mesendoderm differentiation and suppressed ectoderm differentiation. Knockdown of Hif-1α under normoxia and hypoxia both inhibited the mesendoderm differentiation. Moreover, hypoxia even suppressed the mesendoderm differentiation of Hif-1α knockdown mESCs, further implying that the effects of hypoxia on the mesendoderm differentiation were Hif-1α independent. Consistently, the Wnt/β-Catenin pathway was enhanced by Hif-1α overexpression and inhibited by Hif-1α knockdown. As shown by RNA-seq, unlike hypoxia, the effect of Hif-1α was relatively mild and selectively regulated part of hypoxia response genes, which fine-tuned the effect of hypoxia on mESC differentiation. Conclusions This study revealed that hypoxia is fine-tuned by Hif-1α and regulates the mesendoderm and ectoderm differentiation by manipulating the Wnt/β-Catenin pathway, which contributed to the understanding of hypoxia-mediated regulation of development. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01423-y.
Collapse
Affiliation(s)
- Xiaopeng Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China. .,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China. .,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.
| | - Meng Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Chunguang Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Zhongxian Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Kun Wu
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Ao Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Chao Bi
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Shan Lu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| |
Collapse
|
20
|
Roodgar M, Suchy FP, Nguyen LH, Bajpai VK, Sinha R, Vilches-Moure JG, Van Bortle K, Bhadury J, Metwally A, Jiang L, Jian R, Chiang R, Oikonomopoulos A, Wu JC, Weissman IL, Mankowski JL, Holmes S, Loh KM, Nakauchi H, VandeVoort CA, Snyder MP. Chimpanzee and pig-tailed macaque iPSCs: Improved culture and generation of primate cross-species embryos. Cell Rep 2022; 40:111264. [PMID: 36044843 PMCID: PMC10075238 DOI: 10.1016/j.celrep.2022.111264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/06/2022] [Accepted: 08/04/2022] [Indexed: 12/26/2022] Open
Abstract
As our closest living relatives, non-human primates uniquely enable explorations of human health, disease, development, and evolution. Considerable effort has thus been devoted to generating induced pluripotent stem cells (iPSCs) from multiple non-human primate species. Here, we establish improved culture methods for chimpanzee (Pan troglodytes) and pig-tailed macaque (Macaca nemestrina) iPSCs. Such iPSCs spontaneously differentiate in conventional culture conditions, but can be readily propagated by inhibiting endogenous WNT signaling. As a unique functional test of these iPSCs, we injected them into the pre-implantation embryos of another non-human species, rhesus macaques (Macaca mulatta). Ectopic expression of gene BCL2 enhances the survival and proliferation of chimpanzee and pig-tailed macaque iPSCs within the pre-implantation embryo, although the identity and long-term contribution of the transplanted cells warrants further investigation. In summary, we disclose transcriptomic and proteomic data, cell lines, and cell culture resources that may be broadly enabling for non-human primate iPSCs research.
Collapse
Affiliation(s)
- Morteza Roodgar
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Fabian P Suchy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lan H Nguyen
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Vivek K Bajpai
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jose G Vilches-Moure
- Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kevin Van Bortle
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Joydeep Bhadury
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Biomedicine, Sahlgrenska University Hospital, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Ahmed Metwally
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Rosaria Chiang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Angelos Oikonomopoulos
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Kyle M Loh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Catherine A VandeVoort
- California National Primate Research Center and Department of Obstetrics and Gynecology, University of California, Davis, Davis, CA, USA.
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
La Manna MP, Shekarkar Azgomi M, Tamburini B, Badami GD, Mohammadnezhad L, Dieli F, Caccamo N. Phenotypic and Immunometabolic Aspects on Stem Cell Memory and Resident Memory CD8+ T Cells. Front Immunol 2022; 13:884148. [PMID: 35784300 PMCID: PMC9247337 DOI: 10.3389/fimmu.2022.884148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune system, smartly and surprisingly, saves the exposure of a particular pathogen in its memory and reacts to the pathogen very rapidly, preventing serious diseases.Immunologists have long been fascinated by understanding the ability to recall and respond faster and more vigorously to a pathogen, known as “memory”.T-cell populations can be better described by using more sophisticated techniques to define phenotype, transcriptional and epigenetic signatures and metabolic pathways (single-cell resolution), which uncovered the heterogeneity of the memory T-compartment. Phenotype, effector functions, maintenance, and metabolic pathways help identify these different subsets. Here, we examine recent developments in the characterization of the heterogeneity of the memory T cell compartment. In particular, we focus on the emerging role of CD8+ TRM and TSCM cells, providing evidence on how their immunometabolism or modulation can play a vital role in their generation and maintenance in chronic conditions such as infections or autoimmune diseases.
Collapse
Affiliation(s)
- Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Leila Mohammadnezhad
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
- *Correspondence: Nadia Caccamo,
| |
Collapse
|
22
|
Zhang J, Zhi M, Gao D, Zhu Q, Gao J, Zhu G, Cao S, Han J. Research progress and application prospects of stable porcine pluripotent stem cells. Biol Reprod 2022; 107:226-236. [PMID: 35678320 DOI: 10.1093/biolre/ioac119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Pluripotent stem cells (PSCs) harbor the capacity of unlimited self-renewal and multi-lineage differentiation potential which are crucial for basic research and biomedical science. Establishment of PSCs with defined features were previously reported from mice and humans, while generation of stable large animal PSCs has experienced a relatively long trial stage and only recently has made breakthroughs. Pigs are regarded as ideal animal models for their similarities in physiology and anatomy to humans. Generation of porcine PSCs would provide cell resources for basic research, genetic engineering, animal breeding and cultured meat. In this review, we summarize the progress on the derivation of porcine PSCs and reprogrammed cells and elucidate the mechanisms of pluripotency changes during pig embryo development. This will be beneficial for understanding the divergence and conservation between different species involved in embryo development and the pluripotent regulated signaling pathways. Finally, we also discuss the promising future applications of stable porcine PSCs.
Collapse
Affiliation(s)
- Jinying Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Minglei Zhi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianqian Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Gaoxiang Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jianyong Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Groenendyk J, Wang WA, Robinson A, Michalak M. Calreticulin and the Heart. Cells 2022; 11:cells11111722. [PMID: 35681417 PMCID: PMC9179554 DOI: 10.3390/cells11111722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Calreticulin is an endoplasmic Ca2+ binding protein and molecular chaperone. As a cardiac embryonic gene, calreticulin is essential for heart development. The protein supports Ca2+-dependent signaling events that are critical to cardiomyocyte differentiation and cardiogenesis. The increased expression of calreticulin and endoplasmic reticulum/sarcoplasmic reticulum Ca2+ capacity produces cardiomyocytes with enhanced efficiency, and detrimental mechanical stretching of cardiac fibroblasts, leading to cardiac pathology. Deletion of the calreticulin gene in adult cardiomyocytes results in left ventricle dilation, an impaired electrocardiogram, and heart failure. These observations indicate that a well-adjusted endoplasmic reticulum and calreticulin-dependent Ca2+ pool in cardiomyocytes are critical for the maintenance of proper cardiac function.
Collapse
Affiliation(s)
- Jody Groenendyk
- Correspondence: (J.G.); (M.M.); Tel.: +1-780-492-2256 (M.M.)
| | | | | | - Marek Michalak
- Correspondence: (J.G.); (M.M.); Tel.: +1-780-492-2256 (M.M.)
| |
Collapse
|
24
|
Houschyar KS, Borrelli MR, Rein S, Tapking C, Popp D, Palackic A, Puladi B, Ooms M, Houschyar M, Branski LK, Schmitt L, Modabber A, Rübben A, Hölzle F, Yazdi AS. Head and neck squamous cell carcinoma: a potential therapeutic target for the Wnt signaling pathway. EUROPEAN JOURNAL OF PLASTIC SURGERY 2022. [DOI: 10.1007/s00238-022-01958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Squamous cell carcinoma (SCC) of the head and neck region accounts for 3% of all tumors worldwide. The incidence is higher in men, with most carcinomas found in the oral cavity. At the point of initial diagnosis, distant metastases are rare. The Wnt signaling pathway is critically involved in cell development and stemness and has been associated with SCC. Understanding precisely how Wnt signaling regulates SCC progression and how it can, therefore, be modulated for the therapeutic benefit has enormous potential in the treatment of head and neck SCC. In this review, we will describe the underlying mechanisms of Wnt signaling and outline how Wnt signaling controls cellular processes both in homeostasis and in the development and progression of SCC.Level of evidence: Not gradable.
Collapse
|
25
|
Anh LPH, Nishimura K, Kuno A, Linh NT, Kato T, Ohtaka M, Nakanishi M, Sugihara E, Sato TA, Hayashi Y, Fukuda A, Hisatake K. Downregulation of Odd-Skipped Related 2, a Novel Regulator of Epithelial-Mesenchymal Transition, Enables Efficient Somatic Cell Reprogramming. Stem Cells 2022; 40:397-410. [DOI: 10.1093/stmcls/sxac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/04/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Somatic cell reprogramming proceeds through a series of events to generate induced pluripotent stem cells (iPSCs). The early stage of reprogramming of mouse embryonic fibroblasts (MEFs) is characterized by rapid cell proliferation and morphological changes, which are accompanied by downregulation of mesenchyme-associated genes. However, the functional relevance of their downregulation to reprogramming remains poorly defined. In this study, we have screened transcriptional regulators that are downregulated immediately upon reprogramming, presumably through direct targeting by reprogramming factors. To test if these transcriptional regulators impact reprogramming when expressed continuously, we generated an expression vector that harbors human cytomegalovirus upstream open reading frame 2 (uORF2), which reduces translation to minimize the detrimental effect of an expressed protein. Screening of transcriptional regulators with this expression vector revealed that downregulation of odd-skipped related 2 (Osr2) is crucial for efficient reprogramming. Using a cell-based model for epithelial-mesenchymal transition (EMT), we show that Osr2 is a novel EMT regulator that acts through induction of TGF-β signaling. During reprogramming, Osr2 downregulation not only diminishes TGF-β signaling but also allows activation of Wnt signaling, thus promoting mesenchymal-epithelial transition (MET) toward acquisition of pluripotency. Our results illuminate the functional significance of Osr2 downregulation in erasing the mesenchymal phenotype at an early stage of somatic cell reprogramming.
Collapse
Affiliation(s)
- Le Phuong Hoang Anh
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Nguyen Thuy Linh
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; Humboldt-University of Berlin, Institute of Biology, 10115 Berlin, Germany
| | - Tetsuo Kato
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | - Mahito Nakanishi
- TOKIWA-Bio, Inc. Tsukuba, Ibaraki 305-0047, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8562, Japan
| | - Eiji Sugihara
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8550, Japan
- Center for Joint Research Facilities Support, Research Promotion and Support Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Taka-Aki Sato
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8550, Japan
| | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Aya Fukuda
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Koji Hisatake
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
26
|
Bou-Rouphael J, Durand BC. T-Cell Factors as Transcriptional Inhibitors: Activities and Regulations in Vertebrate Head Development. Front Cell Dev Biol 2021; 9:784998. [PMID: 34901027 PMCID: PMC8651982 DOI: 10.3389/fcell.2021.784998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Since its first discovery in the late 90s, Wnt canonical signaling has been demonstrated to affect a large variety of neural developmental processes, including, but not limited to, embryonic axis formation, neural proliferation, fate determination, and maintenance of neural stem cells. For decades, studies have focused on the mechanisms controlling the activity of β-catenin, the sole mediator of Wnt transcriptional response. More recently, the spotlight of research is directed towards the last cascade component, the T-cell factor (TCF)/Lymphoid-Enhancer binding Factor (LEF), and more specifically, the TCF/LEF-mediated switch from transcriptional activation to repression, which in both embryonic blastomeres and mouse embryonic stem cells pushes the balance from pluri/multipotency towards differentiation. It has been long known that Groucho/Transducin-Like Enhancer of split (Gro/TLE) is the main co-repressor partner of TCF/LEF. More recently, other TCF/LEF-interacting partners have been identified, including the pro-neural BarH-Like 2 (BARHL2), which belongs to the evolutionary highly conserved family of homeodomain-containing transcription factors. This review describes the activities and regulatory modes of TCF/LEF as transcriptional repressors, with a specific focus on the functions of Barhl2 in vertebrate brain development. Specific attention is given to the transcriptional events leading to formation of the Organizer, as well as the roles and regulations of Wnt/β-catenin pathway in growth of the caudal forebrain. We present TCF/LEF activities in both embryonic and neural stem cells and discuss how alterations of this pathway could lead to tumors.
Collapse
Affiliation(s)
| | - Béatrice C. Durand
- Sorbonne Université, CNRS UMR7622, IBPS Developmental Biology Laboratory, Campus Pierre et Marie Curie, Paris, France
| |
Collapse
|
27
|
Xu Z, Chen S, Feng D, Liu Y, Wang Q, Gao T, Liu Z, Zhang Y, Chen J, Qiu L. Biological role of heparan sulfate in osteogenesis: A review. Carbohydr Polym 2021; 272:118490. [PMID: 34420746 DOI: 10.1016/j.carbpol.2021.118490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022]
Abstract
Heparan sulfate (HS) is extensively expressed in cells, for example, cell membrane and extracellular matrix of most mammalian cells and tissues, playing a key role in the growth and development of life by maintaining homeostasis and implicating in the etiology and diseases. Recent studies have revealed that HS is involved in osteogenesis via coordinating multiple signaling pathways. The potential effect of HS on osteogenesis is a complicated and delicate biological process, which involves the participation of osteocytes, chondrocytes, osteoblasts, osteoclasts and a variety of cytokines. In this review, we summarized the structural and functional characteristics of HS and highlighted the molecular mechanism of HS in bone metabolism to provide novel research perspectives for the further medical research.
Collapse
Affiliation(s)
- Zhujie Xu
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Shayang Chen
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Dehong Feng
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Yi Liu
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China.
| | - Qiqi Wang
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Tianshu Gao
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Zhenwei Liu
- Department of Orthopedics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Yan Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jinghua Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Lipeng Qiu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
28
|
Emerging role of G9a in cancer stemness and promises as a therapeutic target. Oncogenesis 2021; 10:76. [PMID: 34775469 PMCID: PMC8590690 DOI: 10.1038/s41389-021-00370-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
The histone methyltransferase G9a is well-documented for its implication in neoplastic growth. However, recent investigations have demonstrated a key involvement of this chromatin writer in maintaining the self-renewal and tumor-initiating capacities of cancer stem cells (CSCs). Direct inhibition of G9a’s catalytic activity was reported as a promising therapeutic target in multiple preclinical studies. Yet, none of the available pharmacological inhibitors of G9a activity have shown success at the early stages of clinical testing. Here, we discuss central findings of oncogenic expression and activation of G9a in CSCs from different origins, as well as the impact of the suppression of G9a histone methyltransferase activity in such contexts. We will explore the challenges posed by direct and systemic inhibition of G9a activity in the perspective of clinical translation of documented small molecules. Finally, we will discuss recent advances in drug discovery as viable strategies to develop context-specific drugs, selectively targeting G9a in CSC populations.
Collapse
|
29
|
Hosseini V, Kalantary-Charvadeh A, Hajikarami M, Fayyazpour P, Rahbarghazi R, Totonchi M, Darabi M. A small molecule modulating monounsaturated fatty acids and Wnt signaling confers maintenance to induced pluripotent stem cells against endodermal differentiation. Stem Cell Res Ther 2021; 12:550. [PMID: 34674740 PMCID: PMC8532309 DOI: 10.1186/s13287-021-02617-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background Stearoyl-coenzyme A desaturase 1 (SCD1) is required for de novo synthesis of fatty acids. Through the fatty acid acylation process, this enzyme orchestrates post-translational modifications to proteins involved in cell development and differentiation. In this study, we used biochemical methods, immunostaining, and covalent labeling to evaluate whether a small molecule modulating unsaturated fatty acids can influence the early endodermal differentiation of human-induced pluripotent stem cells (iPSCs). Methods The hiPSCs were cultured in an endoderm-inducing medium containing activin A and defined fetal bovine serum in the presence of an SCD1 inhibitor at different time points. The cell cycles and the yields of the three germ layers (endoderm, mesoderm, and ectoderm) were assessed using flow cytometry. The expression of endoderm and pluripotency markers and the expressions of Wnt signaling pathway proteins were assessed using western blotting and RT-PCR. Total protein acylation was evaluated using a click chemistry reaction. Results When SCD1 was inhibited on the first day, the population of cells with endodermal features decreased at the end of differentiation. Moreover, early SCD1 inhibition preserved the properties of hiPSCs, preventing their shift toward mesodermal or ectodermal lineage. Also, first-day-only treatment of cells with the SCD1 inhibitor decreased β-catenin gene expression and the intensity of fluorescent emission in the click chemistry assay. The cells were effectively rescued from these effects by cotreatment with oleate. Late treatment with the inhibitor in the two subsequent days of endoderm induction did not have any significant effects on endoderm-specific markers or fluorescent intensity. Reproducible results were also obtained with human embryonic stem cells. Conclusion The small molecule SCD1 inhibitor attenuates the Wnt/β-catenin signaling pathway, conferring the maintenance of hiPSCs by opposing the initiation of endoderm differentiation. The immediate requirement for SCD1 activity in the endoderm commitment of pluripotent stem cells may be of importance in disorders of endoderm-derived organs and dysregulated metabolism. The schematic representation of the study design and main results. Activin A induces endoderm features through Smad2/3/4 and increases the expression of SCD1. SCD1 can produce MUFAs and subsequently modify the Wnt molecules. MUFA acylated/activated Wnts are secreted to interact with corresponding receptors on the target cells. β-catenin accumulates in the cytoplasm and is translocated into the nucleus after the interaction of Wnt with the receptor. Then, β-catenin increases the expression of the endoderm markers Sox17 and CXCR4.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02617-x.
Collapse
Affiliation(s)
- Vahid Hosseini
- Student Research Committee, Tabriz University of Medical Sciences, 5166615573, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, 516615731, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Kalantary-Charvadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Hajikarami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parisa Fayyazpour
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, 516615731, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, 516615731, Tabriz, Iran. .,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Internal Medicine IV, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
30
|
Zeng B, Zhao Q, Sun Z, Liu D, Chen H, Li X, Wang J, Xing HR. SEC23A Is an Independent Prognostic Biomarker in Bladder Cancer Correlated With MAPK Signaling. Front Genet 2021; 12:672832. [PMID: 34456965 PMCID: PMC8385657 DOI: 10.3389/fgene.2021.672832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Clinical data mining and bioinformatics analysis can be employed effectively to elucidate the function and underlying mechanisms of the gene of interest. Here, we have proposed a framework for the identification and validation of independent biomarkers in human cancer and for mechanistic profiling using gene sets enrichment analysis and pathway analysis. This is followed by validation with in vitro experiments. Using this framework to analyze the clinical relevance of SEC23A, we have discovered the prognostic potential of SEC23A in different cancers and identified SEC23A as an independent prognostic factor for poor prognosis in bladder cancer, which implicates SEC23A, for the first time, as an oncogene. Bioinformatic analyses have elucidated an association between SEC23A expression and the upregulation of the MAPK signaling pathway. Using the T24 human bladder cell line, we confirmed that knockdown of SEC23A expression could effectively impact the MAPK signaling pathway. Further, through PCR verification, we showed that MEF2A, one of the key genes of the MAPK signaling pathway, might be a downstream factor of the SEC23A gene.
Collapse
Affiliation(s)
- Bin Zeng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Qiting Zhao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zhiwei Sun
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Doudou Liu
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded By Chongqing and the Ministry of Science and Technology, School of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Hao Chen
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded By Chongqing and the Ministry of Science and Technology, School of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiaoshuang Li
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded By Chongqing and the Ministry of Science and Technology, School of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Jianyu Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - H Rosie Xing
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded By Chongqing and the Ministry of Science and Technology, School of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
31
|
Dai Y, Zheng H, Liu Z, Wang Y, Hu W. The flavonoid luteolin suppresses infantile hemangioma by targeting FZD6 in the Wnt pathway. Invest New Drugs 2021; 39:775-784. [PMID: 33411210 DOI: 10.1007/s10637-020-01052-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 10/22/2022]
Abstract
Infantile hemangioma is the most common vascular tumor of childhood. It is characterized by clinical expansion of endothelial cells and promoted by angiogenic factors. Luteolin is a flavonoid compound that carries anti-cancer and anti-angiogenesis properties. The study aimed to investigate the effect of luteolin in treating infantile hemangioma. We first tested the effect of luteolin on cell proliferative potential and VEGFA expression in hemangioma-derived stem cells (HemSCs). We then examined the efficacy of systemic application of luteolin in a murine hemangioma model. We then identified the downstream factor regulated by luteolin in HemSCs and validated its causative relationship with knock-down method in both in vitro and in vivo models. We also investigated the protein expression change of this targeting factor in proliferating hemangiomas. Luteolin inhibited HemSC growth and suppressed VEGF-A expression in a dose-dependent manner. Luteolin inhibited microvessel formation and de novo vasculogenesis in the murine model. FZD6 was induced by luteolin and exerted the anti-angiogenesis effect in our tumor models. Lastly, FZD6 level was repressed in the clinical tissues of human proliferating hemangiomas. Luteolin is a promising new agent to treat infantile hemangioma. Targeting the Wnt pathway may represent a potential therapeutic strategic to inhibit angiogenesis in proliferating hemangiomas.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Proliferation/drug effects
- Cells, Cultured
- Fibroblasts/drug effects
- Frizzled Receptors/antagonists & inhibitors
- Frizzled Receptors/genetics
- Frizzled Receptors/metabolism
- Hemangioma/drug therapy
- Hemangioma/genetics
- Hemangioma/metabolism
- Hemangioma/pathology
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/drug therapy
- Infant, Newborn, Diseases/genetics
- Infant, Newborn, Diseases/metabolism
- Infant, Newborn, Diseases/pathology
- Luteolin/pharmacology
- Luteolin/therapeutic use
- Male
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Mice, Nude
- Microvessels/drug effects
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Wnt Signaling Pathway/drug effects
- Mice
Collapse
Affiliation(s)
- Yujian Dai
- Department of Pediatric Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, 362000, Fujian, China
| | - Huiming Zheng
- Department of Pediatric Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, 362000, Fujian, China.
| | - Zhen Liu
- Department of Pediatric Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, 362000, Fujian, China
| | - Yingjun Wang
- Department of Pediatric Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, 362000, Fujian, China
| | - Weize Hu
- Department of Pediatric Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, 362000, Fujian, China
| |
Collapse
|
32
|
Zhai X, Gong M, Peng Y, Yang D. Effects of UV Induced-Photoaging on the Hair Follicle Cycle of C57BL6/J Mice. Clin Cosmet Investig Dermatol 2021; 14:527-539. [PMID: 34040410 PMCID: PMC8140904 DOI: 10.2147/ccid.s310487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022]
Abstract
Purpose To study the changes in the hair follicle cycle and related stem cells induced by photoaging to establish a mouse model of senescence in hair follicles. Methods There were 54 C57BL6/J mice randomly divided into three groups. The UVA group and the UVB group underwent photoaging induced by UV lamps for 8 weeks. Changes in skin and the hair follicle cycle were compared by physical signs, dermoscopy, and hematoxylin and eosin and Masson's staining in each group. Western blot, immunohistochemistry, and RT-qPCR were carried out to test canonical proteins and gene expression of the Wnt signaling pathway in the samples. Immunofluorescence was chosen to show variations in the stem cells related to the hair follicle cycle. Results There were more gray hairs in the UVA group than the other groups (P<0.05). Both diameter of the hair shaft and depth of hair root were significantly decreased in the UV groups (P<0.05). Stem cells and melanocytes of the hair follicles were reduced in the UVA group. UV, especially UVB, up-regulated the expression of the Wnt signaling pathway and prolonged anagen and telogen phases in the hair follicles, compared with the control group (P<0.05). Conclusion By decreasing the number of stem cells related to hair follicles, UVA induces hair follicle photoaging characterized by hair follicle miniaturization and gray hairs. UV up-regulated the expression of the Wnt signaling pathway, and the hair follicle cycle was significantly prolonged by UVB.
Collapse
Affiliation(s)
- Xu Zhai
- Department of Plastic Surgery, The 2nd Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Meihua Gong
- Department of Plastic Surgery, The 2nd Hospital of Harbin Medical University, Harbin, People's Republic of China.,Department of Plastic and Cosmetic Surgery, Shenzhen People's Hospital, Second Affiliated Hospital of Jinan University Medical College, Shenzhen, People's Republic of China
| | - Yixuan Peng
- Department of Plastic Surgery, The 2nd Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Daping Yang
- Department of Plastic Surgery, The 2nd Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
33
|
Figla promotes secondary follicle growth in mature mice. Sci Rep 2021; 11:9842. [PMID: 33972571 PMCID: PMC8110814 DOI: 10.1038/s41598-021-89052-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/20/2021] [Indexed: 11/09/2022] Open
Abstract
The in vitro growth (IVG) of human follicles is a potential fertility option for women for whom cryopreserved ovarian tissues cannot be transplanted due to the risk of cancer cell reintroduction; however, there is currently no established method. Furthermore, optimal IVG conditions may differ between the follicles of adult and pre-pubertal females due to molecular differences suggested by basic research. To systematically identify differences between the secondary follicles of adult and pre-pubertal females, a comparative transcriptomic study using mice was conducted herein. Among differentially expressed genes (DEGs), Figla was up-regulated in mature mice. We successfully down-regulated Figla expression in secondary follicle oocytes by a Figla siRNA microinjection, and the subsequent IVG of follicles showed that the diameter of these follicles was smaller than those of controls in mature mice, whereas no significant difference was observed in premature mice. The canonical pathways of DEGs between control and Figla-reduced secondary follicles suggest that Figla up-regulates VDR/RXR activation and down-regulates stem cell pluripotency as well as estrogen signaling. We demonstrated for the first time that folliculogenesis of the secondary follicles of premature and mature mice may be regulated by different factors, such as Figla with its possible target genes, providing insights into optimal IVG conditions for adult and pre-pubertal females, respectively.
Collapse
|
34
|
Precilla DS, Kuduvalli SS, Purushothaman M, Marimuthu P, Ramachandran MA, Anitha TS. Wnt/β-catenin Antagonists: Exploring New Avenues to Trigger Old Drugs in Alleviating Glioblastoma Multiforme. Curr Mol Pharmacol 2021; 15:338-360. [PMID: 33881978 DOI: 10.2174/1874467214666210420115431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/24/2020] [Accepted: 01/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glioblastoma multiforme is one of the most heterogenous primary brain tumor with high mortality. Nevertheless, of the current therapeutic approaches, survival rate remains poor with 12 to 15 months following preliminary diagnosis, this warrants the need for effective treatment modality. Wnt/β-catenin pathway is presumably the most noteworthy pathway up-regulated in almost 80% GBM cases contributing to tumor-initiation, progression and survival. Therefore, therapeutic strategies targeting key components of Wnt/β-catenin cascade using established genotoxic agents like temozolomide and pharmacological inhibitors would be an effective approach to modulate Wnt/β-catenin pathway. Recently, drug repurposing by means of effective combination therapy has gained importance in various solid tumors including GBM, by targeting two or more proteins in a single pathway, thereby possessing the ability to overcome the hurdle implicated by chemo-resistance in GBM. OBJECTIVE In this context, by employing computational tools, an attempt has been carried out to speculate the novel combinations against Wnt/β-catenin signaling pathway. METHODS We have explored the binding interactions of three conventional drugs namely temozolomide, metformin, chloroquine along with three natural compounds viz., epigallocatechin gallate, naringenin and phloroglucinol on the major receptors of Wnt/β-catenin signaling. RESULTS It was noted that all the experimental compounds possessed profound interaction with the two major receptors of Wnt/β-catenin pathway. CONCLUSION To the best of our knowledge, this study is the first of its kind to characterize the combined interactions of the afore-mentioned drugs on Wnt/β-catenin signaling in silico and this will putatively open up new avenues for combination therapies in GBM treatment.
Collapse
Affiliation(s)
- Daisy S Precilla
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | | | - Parthiban Marimuthu
- Structural Bioinformatics Laboratory - Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, Turku. Finland
| | | | | |
Collapse
|
35
|
LncRNA Mrhl orchestrates differentiation programs in mouse embryonic stem cells through chromatin mediated regulation. Stem Cell Res 2021; 53:102250. [PMID: 33662735 DOI: 10.1016/j.scr.2021.102250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 01/15/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been well-established to act as regulators and mediators of development and cell fate specification programs. LncRNA Mrhl (meiotic recombination hotspot locus) has been shown to act in a negative feedback loop with WNT signaling to regulate male germ cell meiotic commitment. In our current study, we have addressed the role of Mrhl in development and differentiation using mouse embryonic stem cells (mESCs) as our model system of study. Mrhl is a nuclear-localized, chromatin-bound lncRNA with moderately stable expression in mESCs. Transcriptome analyses and loss-of-function phenotype studies revealed dysregulation of developmental processes, lineage-specific transcription factors and key networks along with aberrance in specification of early lineages during differentiation of mESCs. Genome-wide chromatin occupancy studies suggest regulation of chromatin architecture at key target loci through triplex formation. Our studies thus reveal a role for lncRNA Mrhl in regulating differentiation programs in mESCs in the context of appropriate cues through chromatin-mediated responses.
Collapse
|
36
|
Sidrat T, Rehman ZU, Joo MD, Lee KL, Kong IK. Wnt/β-catenin Pathway-Mediated PPARδ Expression during Embryonic Development Differentiation and Disease. Int J Mol Sci 2021; 22:ijms22041854. [PMID: 33673357 PMCID: PMC7918746 DOI: 10.3390/ijms22041854] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays a crucial role in early embryonic development. Wnt/β-catenin signaling is a major regulator of cell proliferation and keeps embryonic stem cells (ESCs) in the pluripotent state. Dysregulation of Wnt signaling in the early developmental stages causes several hereditary diseases that lead to embryonic abnormalities. Several other signaling molecules are directly or indirectly activated in response to Wnt/β-catenin stimulation. The crosstalk of these signaling factors either synergizes or opposes the transcriptional activation of β-catenin/Tcf4-mediated target gene expression. Recently, the crosstalk between the peroxisome proliferator-activated receptor delta (PPARδ), which belongs to the steroid superfamily, and Wnt/β-catenin signaling has been reported to take place during several aspects of embryonic development. However, numerous questions need to be answered regarding the function and regulation of PPARδ in coordination with the Wnt/β-catenin pathway. Here, we have summarized the functional activation of the PPARδ in co-ordination with the Wnt/β-catenin pathway during the regulation of several aspects of embryonic development, stem cell regulation and maintenance, as well as during the progression of several metabolic disorders.
Collapse
Affiliation(s)
- Tabinda Sidrat
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (T.S.); (M.-D.J.)
| | - Zia-Ur Rehman
- Department of Microbiology, Hazara University, Mansehra 21310, Pakistan;
| | - Myeong-Don Joo
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (T.S.); (M.-D.J.)
| | - Kyeong-Lim Lee
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Korea;
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (T.S.); (M.-D.J.)
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Korea;
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
37
|
PUFA Treatment Affects C2C12 Myocyte Differentiation, Myogenesis Related Genes and Energy Metabolism. Genes (Basel) 2021; 12:genes12020192. [PMID: 33525599 PMCID: PMC7910949 DOI: 10.3390/genes12020192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are the main components of cell membrane affecting its fluidity, signaling processes and play a vital role in muscle cell development. The effects of docosahexaenoic acid (DHA) on myogenesis are well known, while the effects of arachidonic acid (AA) are largely unclear. The purpose of this study is to evaluate the effect of two PUFAs (DHA and AA) on cell fate during myogenic processes, Wnt signaling and energy metabolism by using the C2C12 cells. The cells were treated with different concentrations of AA or DHA for 48 h during the differentiation period. PUFA treatment increased mRNA level of myogenic factor 5 (Myf5), which is involved in early stage of myoblast proliferation. Additionally, PUFA treatment prevented myoblast differentiation, indicated by decreased myotube fusion index and differentiation index in parallel with reduced mRNA levels of myogenin (MyoG). After PUFA withdrawal, some changes in cell morphology and myosin heavy chain mRNA levels were still observed. Expression of genes associated with Wnt signaling pathway, and energy metabolism changed in PUFA treatment in a dose and time dependent manner. Our data suggests that PUFAs affect the transition of C2C12 cells from proliferation to differentiation phase by prolonging proliferation and preventing differentiation.
Collapse
|
38
|
Weng C, Xi J, Li H, Cui J, Gu A, Lai S, Leskov K, Ke L, Jin F, Li Y. Single-cell lineage analysis reveals extensive multimodal transcriptional control during directed beta-cell differentiation. Nat Metab 2020; 2:1443-1458. [PMID: 33257854 PMCID: PMC7744443 DOI: 10.1038/s42255-020-00314-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/22/2020] [Indexed: 11/08/2022]
Abstract
The in vitro differentiation of insulin-producing beta-like cells can model aspects of human pancreatic development. Here, we generate 95,308 single-cell transcriptomes and reconstruct a lineage tree of the entire differentiation process from human embryonic stem cells to beta-like cells to study temporally regulated genes during differentiation. We identify so-called 'switch genes' at the branch point of endocrine/non-endocrine cell fate choice, revealing insights into the mechanisms of differentiation-promoting reagents, such as NOTCH and ROCKII inhibitors, and providing improved differentiation protocols. Over 20% of all detectable genes are activated multiple times during differentiation, even though their enhancer activation is usually unimodal, indicating extensive gene reuse driven by different enhancers. We also identify a stage-specific enhancer at the TCF7L2 locus for diabetes, uncovered by genome-wide association studies, that drives a transient wave of gene expression in pancreatic progenitors. Finally, we develop a web app to visualize gene expression on the lineage tree, providing a comprehensive single-cell data resource for researchers studying islet biology and diabetes.
Collapse
Affiliation(s)
- Chen Weng
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jiajia Xi
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Haiyan Li
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jian Cui
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anniya Gu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Medical Scientist Training Program (MSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sisi Lai
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Biomedical Sciences Training Program (BSTP), School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Konstantin Leskov
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Luxin Ke
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Master of Science in Biology Program, Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Fulai Jin
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Population and Quantitative Health Sciences, Department of Electrical Engineering and Computer Science, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Yan Li
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
39
|
Olatz C, Patricia GG, Jon L, Iker B, Carmen DLH, Fernando U, Gaskon I, Ramon PJ. Is There Such a Thing as a Genuine Cancer Stem Cell Marker? Perspectives from the Gut, the Brain and the Dental Pulp. BIOLOGY 2020; 9:biology9120426. [PMID: 33260962 PMCID: PMC7760753 DOI: 10.3390/biology9120426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Abstract
The conversion of healthy stem cells into cancer stem cells (CSCs) is believed to underlie tumor relapse after surgical removal and fuel tumor growth and invasiveness. CSCs often arise from the malignant transformation of resident multipotent stem cells, which are present in most human tissues. Some organs, such as the gut and the brain, can give rise to very aggressive types of cancers, contrary to the dental pulp, which is a tissue with a very remarkable resistance to oncogenesis. In this review, we focus on the similarities and differences between gut, brain and dental pulp stem cells and their related CSCs, placing a particular emphasis on both their shared and distinctive cell markers, including the expression of pluripotency core factors. We discuss some of their similarities and differences with regard to oncogenic signaling, telomerase activity and their intrinsic propensity to degenerate to CSCs. We also explore the characteristics of the events and mutations leading to malignant transformation in each case. Importantly, healthy dental pulp stem cells (DPSCs) share a great deal of features with many of the so far reported CSC phenotypes found in malignant neoplasms. However, there exist literally no reports about the contribution of DPSCs to malignant tumors. This raises the question about the particularities of the dental pulp and what specific barriers to malignancy might be present in the case of this tissue. These notable differences warrant further research to decipher the singular properties of DPSCs that make them resistant to transformation, and to unravel new therapeutic targets to treat deadly tumors.
Collapse
Affiliation(s)
- Crende Olatz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - García-Gallastegui Patricia
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Luzuriaga Jon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Badiola Iker
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - de la Hoz Carmen
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Unda Fernando
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Ibarretxe Gaskon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| | - Pineda Jose Ramon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Achucarro Basque Center for Neuroscience Fundazioa, 48940 Leioa, Spain
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| |
Collapse
|
40
|
Pooyan P, Karamzadeh R, Mirzaei M, Meyfour A, Amirkhan A, Wu Y, Gupta V, Baharvand H, Javan M, Salekdeh GH. The Dynamic Proteome of Oligodendrocyte Lineage Differentiation Features Planar Cell Polarity and Macroautophagy Pathways. Gigascience 2020; 9:giaa116. [PMID: 33128372 PMCID: PMC7601170 DOI: 10.1093/gigascience/giaa116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/22/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Generation of oligodendrocytes is a sophisticated multistep process, the mechanistic underpinnings of which are not fully understood and demand further investigation. To systematically profile proteome dynamics during human embryonic stem cell differentiation into oligodendrocytes, we applied in-depth quantitative proteomics at different developmental stages and monitored changes in protein abundance using a multiplexed tandem mass tag-based proteomics approach. FINDINGS Our proteome data provided a comprehensive protein expression profile that highlighted specific expression clusters based on the protein abundances over the course of human oligodendrocyte lineage differentiation. We identified the eminence of the planar cell polarity signalling and autophagy (particularly macroautophagy) in the progression of oligodendrocyte lineage differentiation-the cooperation of which is assisted by 106 and 77 proteins, respectively, that showed significant expression changes in this differentiation process. Furthermore, differentially expressed protein analysis of the proteome profile of oligodendrocyte lineage cells revealed 378 proteins that were specifically upregulated only in 1 differentiation stage. In addition, comparative pairwise analysis of differentiation stages demonstrated that abundances of 352 proteins differentially changed between consecutive differentiation time points. CONCLUSIONS Our study provides a comprehensive systematic proteomics profile of oligodendrocyte lineage cells that can serve as a resource for identifying novel biomarkers from these cells and for indicating numerous proteins that may contribute to regulating the development of myelinating oligodendrocytes and other cells of oligodendrocyte lineage. We showed the importance of planar cell polarity signalling in oligodendrocyte lineage differentiation and revealed the autophagy-related proteins that participate in oligodendrocyte lineage differentiation.
Collapse
Affiliation(s)
- Paria Pooyan
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Brain and Cognitive Science, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
| | - Razieh Karamzadeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Brain and Cognitive Science, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Daneshjoo Blv., Velenjak, Tehran 19839-63113, Iran
| | - Ardeshir Amirkhan
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Brain and Cognitive Science, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Developmental Biology, University of Science and Culture, Ashrafi Esfahani, Tehran 1461968151, Iran
| | - Mohammad Javan
- Department of Brain and Cognitive Science, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal AleAhmad, Tehran 14115-111, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| |
Collapse
|
41
|
Wang HF, Warrier T, Farran CA, Zheng ZH, Xing QR, Fullwood MJ, Zhang LF, Li H, Xu J, Lim TM, Loh YH. Defining Essential Enhancers for Pluripotent Stem Cells Using a Features-Oriented CRISPR-Cas9 Screen. Cell Rep 2020; 33:108309. [PMID: 33113365 DOI: 10.1016/j.celrep.2020.108309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/23/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022] Open
Abstract
cis-regulatory elements (CREs) regulate the expression of genes in their genomic neighborhoods and influence cellular processes such as cell-fate maintenance and differentiation. To date, there remain major gaps in the functional characterization of CREs and the identification of their target genes in the cellular native environment. In this study, we perform a features-oriented CRISPR-utilized systematic (FOCUS) screen of OCT4-bound CREs using CRISPR-Cas9 to identify functional enhancers important for pluripotency maintenance in mESCs. From the initial 235 candidates tested, 16 CREs are identified to be essential stem cell enhancers. Using RNA-seq and genomic 4C-seq, we further uncover a complex network of candidate CREs and their downstream target genes, which supports the growth and self-renewal of mESCs. Notably, an essential enhancer, CRE111, and its target, Lrrc31, form the important switch to modulate the LIF-JAK1-STAT3 signaling pathway.
Collapse
Affiliation(s)
- Hao Fei Wang
- Laboratory for Epigenetics, Stem Cells and Cell Therapy, Programme in Stem Cell, Regenerative Medicine and Aging, A(∗)STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Tushar Warrier
- Laboratory for Epigenetics, Stem Cells and Cell Therapy, Programme in Stem Cell, Regenerative Medicine and Aging, A(∗)STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Chadi A Farran
- Laboratory for Epigenetics, Stem Cells and Cell Therapy, Programme in Stem Cell, Regenerative Medicine and Aging, A(∗)STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Zi Hao Zheng
- Laboratory for Epigenetics, Stem Cells and Cell Therapy, Programme in Stem Cell, Regenerative Medicine and Aging, A(∗)STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Qiao Rui Xing
- Laboratory for Epigenetics, Stem Cells and Cell Therapy, Programme in Stem Cell, Regenerative Medicine and Aging, A(∗)STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Melissa J Fullwood
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Li-Feng Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian Xu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore; Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | - Tit-Meng Lim
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Yuin-Han Loh
- Laboratory for Epigenetics, Stem Cells and Cell Therapy, Programme in Stem Cell, Regenerative Medicine and Aging, A(∗)STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; Department of Physiology, NUS Yong Loo Lin School of Medicine, 2 Medical Drive, MD9, Singapore 117593, Singapore.
| |
Collapse
|
42
|
Alternative isoforms of KDM2A and KDM2B lysine demethylases negatively regulate canonical Wnt signaling. PLoS One 2020; 15:e0236612. [PMID: 33104714 PMCID: PMC7588095 DOI: 10.1371/journal.pone.0236612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
A precisely balanced activity of canonical Wnt signaling is essential for a number of biological processes and its perturbation leads to developmental defects or diseases. Here, we demonstrate that alternative isoforms of the KDM2A and KDM2B lysine demethylases have the ability to negatively regulate canonical Wnt signaling. These KDM2A and KDM2B isoforms (KDM2A-SF and KDM2B-SF) lack the N-terminal demethylase domain, but they still have the ability to bind to CpG islands in promoters and to interact with their protein partners via their other functional domains. We have observed that KDM2A-SF and KDM2B-SF bind to the promoters of axin 2 and cyclin D1, two canonical Wnt signaling target genes, and repress their activity. Moreover, KDM2A-SF and KDM2B-SF are both able to strongly repress a Wnt-responsive luciferase reporter. The transcriptional repression mediated by KDM2A-SF and KDM2B-SF, but also by KDM2A-LF, is dependent on their DNA binding domain, while the N-terminal demethylase domain is dispensable for this process. Surprisingly, KDM2B-LF is unable to repress both the endogenous promoters and the luciferase reporter. Finally, we show that both KDM2A-SF and KDM2B-SF are able to interact with TCF7L1, one of the transcriptional mediators of canonical Wnt signaling. KDM2A-SF and KDM2B-SF are thus likely to negatively affect the transcription of canonical Wnt signaling target genes by binding to their promoters and by interacting with TCF7L1 and other co-repressors.
Collapse
|
43
|
Zhang GY, Ma ZJ, Wang L, Sun RF, Jiang XY, Yang XJ, Long B, Ye HL, Zhang SZ, Yu ZY, Shi WG, Jiao ZY. The Role of Shcbp1 in Signaling and Disease. Curr Cancer Drug Targets 2020; 19:854-862. [PMID: 31250756 DOI: 10.2174/1568009619666190620114928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/19/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Abstract
Src homolog and collagen homolog (Shc) proteins have been identified as adapter proteins associated with cell surface receptors and have been shown to play important roles in signaling and disease. Shcbp1 acts as a Shc SH2-domain binding protein 1 and is involved in the regulation of signaling pathways, such as FGF, NF-κB, MAPK/ERK, PI3K/AKT, TGF-β1/Smad and β -catenin signaling. Shcbp1 participates in T cell development, the regulation of downstream signal transduction pathways, and cytokinesis during mitosis and meiosis. In addition, Shcbp1 has been demonstrated to correlate with Burkitt-like lymphoma, breast cancer, lung cancer, gliomas, synovial sarcoma, human hepatocellular carcinoma and other diseases. Shcbp1 may play an important role in tumorigenesis and progression. Accordingly, recent studies are reviewed herein to discuss and interpret the role of Shcbp1 in normal cell proliferation and differentiation, tumorigenesis and progression, as well as its interactions with proteins.
Collapse
Affiliation(s)
- Geng-Yuan Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhi-Jian Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Long Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Ruo-Fei Sun
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | | | - Xu-Juan Yang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Bo Long
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Hui-Li Ye
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Shu-Ze Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Ze-Yuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen-Gui Shi
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Zuo-Yi Jiao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
44
|
Tao F, Soffers J, Hu D, Chen S, Gao X, Zhang Y, Zhao C, Smith SE, Unruh JR, Zhang D, Tsuchiya D, Venkatraman A, Zhao M, Li Z, Qian P, Parmely T, He XC, Washburn M, Florens L, Perry JM, Zeitlinger J, Workman J, Li L. β-Catenin and Associated Proteins Regulate Lineage Differentiation in Ground State Mouse Embryonic Stem Cells. Stem Cell Reports 2020; 15:662-676. [PMID: 32822591 PMCID: PMC7486223 DOI: 10.1016/j.stemcr.2020.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) cultured in defined medium resemble the pre-implantation epiblast in the ground state, with full developmental capacity including the germline. β-Catenin is required to maintain ground state pluripotency in mouse ESCs, but its exact role is controversial. Here, we reveal a Tcf3-independent role of β-catenin in restraining germline and somatic lineage differentiation genes. We show that β-catenin binds target genes with E2F6 and forms a complex with E2F6 and HMGA2 or E2F6 and HP1γ. Our data indicate that these complexes help β-catenin restrain and fine-tune germ cell and neural developmental potential. Overall, our data reveal a previously unappreciated role of β-catenin in preserving lineage differentiation integrity in ground state ESCs. β-Catenin depletion irreversibly compromised lineage development of ground state ESCs TCF3-independent role of β-catenin in determining lineage differentiation potential E2F6, HP1γ, and HMGA2 are β-catenin interaction partners and co-bound to target genes β-Catenin and protein partners fine-tune germline and neural development potential
Collapse
Affiliation(s)
- Fang Tao
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; University of Kansas Medical Center, Kansas City, KS, USA; Children's Mercy Kansas City, Kansas City, MO, USA
| | - Jelly Soffers
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Deqing Hu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Shiyuan Chen
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Xin Gao
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ying Zhang
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Chongbei Zhao
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Sarah E Smith
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Da Zhang
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Aparna Venkatraman
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Meng Zhao
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhenrui Li
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Pengxu Qian
- China Center of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tari Parmely
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Xi C He
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Michael Washburn
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - John M Perry
- University of Kansas Medical Center, Kansas City, KS, USA; Children's Mercy Kansas City, Kansas City, MO, USA; University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; University of Kansas Medical Center, Kansas City, KS, USA
| | - Jerry Workman
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Linheng Li
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
45
|
Yin SY, Sun BM, Xu T, Liu X, Huo LJ, Zhang X, Zhou J, Miao YL. CHIR99021 and rpIL6 promote porcine parthenogenetic embryo development and blastocyst quality. Theriogenology 2020; 158:470-476. [PMID: 33049572 DOI: 10.1016/j.theriogenology.2020.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/09/2020] [Accepted: 08/08/2020] [Indexed: 12/20/2022]
Abstract
Signaling pathways and transcription factors are involved in porcine embryonic development. Here, we demonstrate that glycogen synthase kinase-3 (GSK3) inhibitor, CHIR99021 and recombinant porcine interleukin-6 (rpIL6) significantly promote porcine parthenogenetic blastocyst formation (49.23 ± 8.40% vs 32.34 ± 4.15%), with increased inner cell mass (ICM) cell numbers (7.72 ± 2.30 vs 4.28 ± 1.60) and higher expression of pluripotent genes, such as OCT4, SOX2 and NANOG. Furthermore, CHIR99021 and rpIL6 improve blastocyst quality with increased blastocyst hatching percentage (16.19 ± 1.96% vs 10.25 ± 1.12%) and subsequently porcine pluripotent stem cells (pPSCs) derivation efficiency. These results advance the understanding of porcine pre-implantation development and provide evidences in improving the blastocyst quality.
Collapse
Affiliation(s)
- Shu-Yuan Yin
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Bing-Min Sun
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Tian Xu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Xin Liu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Xia Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; National Demonstration Center for Experimental Veterinary Medicine Education (Huazhong Agricultural University), Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China.
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China.
| |
Collapse
|
46
|
Ihry RJ, Salick MR, Ho DJ, Sondey M, Kommineni S, Paula S, Raymond J, Henry B, Frias E, Wang Q, Worringer KA, Ye C, Russ C, Reece-Hoyes JS, Altshuler RC, Randhawa R, Yang Z, McAllister G, Hoffman GR, Dolmetsch R, Kaykas A. Genome-Scale CRISPR Screens Identify Human Pluripotency-Specific Genes. Cell Rep 2020; 27:616-630.e6. [PMID: 30970262 DOI: 10.1016/j.celrep.2019.03.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/20/2018] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) generate a variety of disease-relevant cells that can be used to improve the translation of preclinical research. Despite the potential of hPSCs, their use for genetic screening has been limited by technical challenges. We developed a scalable and renewable Cas9 and sgRNA-hPSC library in which loss-of-function mutations can be induced at will. Our inducible mutant hPSC library can be used for multiple genome-wide CRISPR screens in a variety of hPSC-induced cell types. As proof of concept, we performed three screens for regulators of properties fundamental to hPSCs: their ability to self-renew and/or survive (fitness), their inability to survive as single-cell clones, and their capacity to differentiate. We identified the majority of known genes and pathways involved in these processes, as well as a plethora of genes with unidentified roles. This resource will increase the understanding of human development and genetics. This approach will be a powerful tool to identify disease-modifying genes and pathways.
Collapse
Affiliation(s)
- Robert J Ihry
- Department of Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA.
| | - Max R Salick
- Department of Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA; Insitro, South San Francisco, CA 94080, USA
| | - Daniel J Ho
- Department of Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Marie Sondey
- Department of Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA; Abbvie, Cambridge, MA 02139, USA
| | - Sravya Kommineni
- Department of Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA; Casma Therapeutics, Cambridge, MA 02139, USA
| | - Steven Paula
- Department of Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Joe Raymond
- Department of Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Beata Henry
- Department of Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Elizabeth Frias
- Department of Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Qiong Wang
- Department of Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Kathleen A Worringer
- Department of Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Chaoyang Ye
- Department of Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA; Blueprint Medicines, Cambridge, MA 02139, USA
| | - Carsten Russ
- Department of Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - John S Reece-Hoyes
- Department of Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Robert C Altshuler
- Department of Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Ranjit Randhawa
- Department of Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA; Axcella Health, Cambridge, MA 02139, USA
| | - Zinger Yang
- Department of Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA; University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Gregory McAllister
- Department of Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA; Sana Biotechnology, Cambridge, MA 02139, USA
| | - Gregory R Hoffman
- Department of Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA; Sana Biotechnology, Cambridge, MA 02139, USA
| | - Ricardo Dolmetsch
- Department of Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Ajamete Kaykas
- Department of Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA; Insitro, South San Francisco, CA 94080, USA.
| |
Collapse
|
47
|
Guo CJ, Ma XK, Xing YH, Zheng CC, Xu YF, Shan L, Zhang J, Wang S, Wang Y, Carmichael GG, Yang L, Chen LL. Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells. Cell 2020; 181:621-636.e22. [PMID: 32259487 DOI: 10.1016/j.cell.2020.03.006] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/05/2020] [Accepted: 03/05/2020] [Indexed: 01/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) evolve more rapidly than mRNAs. Whether conserved lncRNAs undergo conserved processing, localization, and function remains unexplored. We report differing subcellular localization of lncRNAs in human and mouse embryonic stem cells (ESCs). A significantly higher fraction of lncRNAs is localized in the cytoplasm of hESCs than in mESCs. This turns out to be important for hESC pluripotency. FAST is a positionally conserved lncRNA but is not conserved in its processing and localization. In hESCs, cytoplasm-localized hFAST binds to the WD40 domain of the E3 ubiquitin ligase β-TrCP and blocks its interaction with phosphorylated β-catenin to prevent degradation, leading to activated WNT signaling, required for pluripotency. In contrast, mFast is nuclear retained in mESCs, and its processing is suppressed by the splicing factor PPIE, which is highly expressed in mESCs but not hESCs. These findings reveal that lncRNA processing and localization are previously under-appreciated contributors to the rapid evolution of function.
Collapse
Affiliation(s)
- Chun-Jie Guo
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xu-Kai Ma
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yu-Hang Xing
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Chuan-Chuan Zheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yi-Feng Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Lin Shan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jun Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shaohua Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871 Beijing, China
| | - Yangming Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871 Beijing, China
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, UCONN Health, Farmington, CT 06030, USA
| | - Li Yang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| |
Collapse
|
48
|
Houschyar KS, Borrelli MR, Tapking C, Popp D, Puladi B, Ooms M, Chelliah MP, Rein S, Pförringer D, Thor D, Reumuth G, Wallner C, Branski LK, Siemers F, Grieb G, Lehnhardt M, Yazdi AS, Maan ZN, Duscher D. Molecular Mechanisms of Hair Growth and Regeneration: Current Understanding and Novel Paradigms. Dermatology 2020; 236:271-280. [PMID: 32163945 DOI: 10.1159/000506155] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/27/2020] [Indexed: 11/19/2022] Open
Abstract
Hair is a defining feature of mammals and has critical functions, including protection, production of sebum, apocrine sweat and pheromones, social and sexual interactions, thermoregulation, and provision of stem cells for skin homeostasis, regeneration, and repair. The hair follicle (HF) is considered a "mini-organ," consisting of intricate and well-organized structures which originate from HF stem and progenitor cells. Dermal papilla cells are the main components of the mesenchymal compartments in the hair bulb and are instrumental in generating signals to regulate the behavior of neighboring epithelial cells during the hair cycle. Mesenchymal-epithelial interactions within the dermal papilla niche drive HF embryonic development as well as the postnatal hair growth and regeneration cycle. This review summarizes the current understanding of HF development, repair, and regeneration, with special focus on cell signaling pathways governing these processes. In particular, we discuss emerging paradigms of molecular signaling governing the dermal papilla-epithelial cellular interactions during hair growth and maintenance and the recent progress made towards tissue engineering of human hair follicles.
Collapse
Affiliation(s)
- Khosrow Siamak Houschyar
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Mimi R Borrelli
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California, USA
| | - Christian Tapking
- Department of Surgery, Shriners Hospitals for Children-Galveston, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Hand, Plastic and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Heidelberg, Germany
| | - Daniel Popp
- Department of Surgery, Shriners Hospitals for Children-Galveston, University of Texas Medical Branch, Galveston, Texas, USA.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Behrus Puladi
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH, Aachen, Germany
| | - Mark Ooms
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH, Aachen, Germany
| | - Malcolm P Chelliah
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California, USA
| | - Susanne Rein
- Department of Plastic and Hand Surgery, Burn Center, Clinic St. Georg, Leipzig, Germany
| | - Dominik Pförringer
- Clinic and Policlinic of Trauma Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Dominik Thor
- College of Pharmacy, University of Florida Gainesville, Gainesville, Florida, USA
| | - Georg Reumuth
- Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Ludwik K Branski
- Department of Surgery, Shriners Hospitals for Children-Galveston, University of Texas Medical Branch, Galveston, Texas, USA
| | - Frank Siemers
- Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Teaching Hospital of the Charité Berlin, Berlin, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Amir S Yazdi
- Department of Dermatology and Allergology, University Hospital Aachen, Aachen, Germany
| | - Zeshaan N Maan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California, USA
| | - Dominik Duscher
- Department of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany,
| |
Collapse
|
49
|
Mossahebi-Mohammadi M, Quan M, Zhang JS, Li X. FGF Signaling Pathway: A Key Regulator of Stem Cell Pluripotency. Front Cell Dev Biol 2020; 8:79. [PMID: 32133359 PMCID: PMC7040165 DOI: 10.3389/fcell.2020.00079] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells (PSCs) isolated in vitro from embryonic stem cells (ESCs), induced PSC (iPSC) and also post-implantation epiblast-derived stem cells (EpiSCs) are known for their two unique characteristics: the ability to give rise to all somatic lineages and the self-renewal capacity. Numerous intrinsic signaling pathways contribute to the maintenance of the pluripotency state of stem cells by tightly controlling key transcriptional regulators of stemness including sex determining region Y box 2 (Sox-2), octamer-binding transcription factor (Oct)3/4, krueppel-like factor 4 (Klf-4), Nanog, and c-Myc. Signaling by fibroblast growth factor (FGF) is of critical importance in regulating stem cells pluripotency. The FGF family is comprised of 22 ligands that interact with four FGF receptors (FGFRs). FGF/FGFR signaling governs fundamental cellular processes such as cell survival, proliferation, migration, differentiation, embryonic development, organogenesis, tissue repair/regeneration, and metabolism. FGF signaling is mediated by the activation of RAS - mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-AKT, Phospholipase C Gamma (PLCγ), and signal transducers and activators of transcription (STAT), which intersects and synergizes with other signaling pathways such as Wnt, retinoic acid (RA) and transforming growth factor (TGF)-β signaling. In the current review, we summarize the role of FGF signaling in the maintenance of pluripotency state of stem cells through regulation of key transcriptional factors.
Collapse
Affiliation(s)
- Majid Mossahebi-Mohammadi
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China
| | - Meiyu Quan
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China
| | - Jin-San Zhang
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
50
|
Li Y, Wu S, Li X, Guo S, Cai Z, Yin Z, Zhang Y, Liu Z. Wnt signaling associated small molecules improve the viability of pPSCs in a PI3K/Akt pathway dependent way. J Cell Physiol 2020; 235:5811-5822. [DOI: 10.1002/jcp.29514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Yan Li
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Shuang Wu
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Xuechun Li
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Shimeng Guo
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Zhuang Cai
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Zhi Yin
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Yu Zhang
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Zhonghua Liu
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| |
Collapse
|