1
|
Levavasseur F, Oussous S, Framarini A, Boussaid I, Gou P, Tuerdi Z, Boueya IL, Hoffner H, De Almeida M, Gall ML, Tucker H, Giraudier S, Bouscary D, Fontenay M, Passaro D, Dusanter-Fourt I, Lauret E. FOXP1 contributes to murine hematopoietic stem cell functionality. Exp Hematol 2025:104815. [PMID: 40449872 DOI: 10.1016/j.exphem.2025.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/23/2025] [Accepted: 05/13/2025] [Indexed: 06/03/2025]
Abstract
Transcription factor forkhead box P1 (FOXP1) is a key regulator of immune cell functions. We have shown that FOXP1 contributes to the expansion of human hematopoietic stem/progenitor (HSPC) and acute myeloid leukaemia cells. Here, we investigated the role of FOXP1 in early adult mouse hematopoiesis in vivo. We showed that loss of hematopoietic-specific FOXP1 expression leads to attrition of the HSC and multipotent progenitor (MPP)-1 compartment in parallel with enhancement of myeloid-biased MPP3 in adult bone marrow and fetal liver. Transplantation experiments confirmed that FOXP1-deficient bone marrow had an intrinsic reduced HSC compartment. FOXP1-deficient MPP compartments also showed enhanced proliferation with G0 phase reduction. Transcriptome analyses revealed that FOXP1-deficient HSC exhibited reduced stemness and enhanced expression of cell proliferation pathways. Thus, our current results reveal the important contribution of FOXP1 in early murine hematopoiesis through HSC maintenance, limited expansion of all MPP compartments and restriction of early myeloid commitment in vivo.
Collapse
Affiliation(s)
- Françoise Levavasseur
- Normal and Pathological Hematopoiesis laboratory, Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Samia Oussous
- Normal and Pathological Hematopoiesis laboratory, Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Alessandro Framarini
- Normal and Pathological Hematopoiesis laboratory, Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Ismael Boussaid
- Normal and Pathological Hematopoiesis laboratory, Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France; Assistance Publique-Hôpitaux de Paris. Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Panhong Gou
- Inserm UMR-S 1131, Hôpital Saint-Louis, Paris, France. Université de Paris Cité, Paris, France. Service de Biologie Cellulaire, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Zubaidan Tuerdi
- Normal and Pathological Hematopoiesis laboratory, Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Iman Litchy Boueya
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - Helyette Hoffner
- Normal and Pathological Hematopoiesis laboratory, Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Marta De Almeida
- Normal and Pathological Hematopoiesis laboratory, Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Morgane Le Gall
- Plateforme Proteom'IC, Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Haley Tucker
- Departments of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States
| | - Stéphane Giraudier
- Inserm UMR-S 1131, Hôpital Saint-Louis, Paris, France. Université de Paris Cité, Paris, France. Service de Biologie Cellulaire, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Didier Bouscary
- Normal and Pathological Hematopoiesis laboratory, Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France; Assistance Publique-Hôpitaux de Paris. Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Michaela Fontenay
- Normal and Pathological Hematopoiesis laboratory, Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France; Assistance Publique-Hôpitaux de Paris. Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Diana Passaro
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - Isabelle Dusanter-Fourt
- Normal and Pathological Hematopoiesis laboratory, Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Evelyne Lauret
- Normal and Pathological Hematopoiesis laboratory, Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France.
| |
Collapse
|
2
|
Takamori H, Huang YJ, Fukushima H, Yokoyama K, Huang TY, Kuo MC, Ogawa S, Nannya Y, Shih LY. Whole-genome sequencing of myeloproliferative neoplasms revealed dynamic clonal changes in the fibrotic or leukemic transformation and novel FOXP1 mutations in the fibrotic transformation. Leukemia 2025; 39:1218-1227. [PMID: 40164719 DOI: 10.1038/s41375-025-02576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/18/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Myeloproliferative neoplasms (MPNs) are characterized by clonal proliferation of hematopoietic stem cells, which can lead to secondary myelofibrosis or acute myeloid leukemia. We explored the changes in genomic alterations during MPN transformation using whole-genome sequencing of samples from both the chronic and fibrotic or leukemic phases of 20 patients. We identified FOXP1 mutations in 3 of 14 (21.4%) patients with secondary myelofibrosis. This novel mutation was identified in another 5 of the 35 patients (14.3%) in an independent cohort. All these 8 patients with FOXP1 mutations did not experience leukemic transformation after a median follow-up of 5.1 years. The acquisition of non-canonical MPLY591 mutations was detected in the fibrotic or leukemic phase. Clonal expansion, involving both known and unknown driver genes (in 18 and 2 patients, respectively), was observed in all patients. We determined the patterns of clonal evolution based on myeloid driver mutations in 18 patients: linear clonal evolution in 11 patients and branched clonal evolution in 7 patients. Our results suggested that MPN patients carrying FOXP1 mutations are unlikely to have leukemia transformation and emphasized that the acquisition of specific genetic mutations and dynamic changes in clonal architecture underlie the pathogenesis in patients undergoing MPN transformation.
Collapse
Affiliation(s)
- Hiroyuki Takamori
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ying-Jung Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hidehito Fukushima
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Yokoyama
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ting-Yu Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Chung Kuo
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- School of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Zhuang H, Lin Y, Lin C, Zheng M, Li Y, Yao X, Xu Y. Transcriptome sequencing-based analysis of the molecular mechanism underlying the effect of lncRNA AC003090.1 on osteoporosis. J Orthop Surg Res 2025; 20:346. [PMID: 40189548 PMCID: PMC11974094 DOI: 10.1186/s13018-025-05634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/20/2025] [Indexed: 04/09/2025] Open
Abstract
OBJECTIVE To analyze changes in the expression of osteoporosis (OP)-related genes across different bone types based on transcriptome sequencing, and to identify the key molecules and mechanisms involved in the progression of OP in order to better understand this process. METHODS Ten pairs of postmenopausal patients with osteoporosis (OP) and non-osteoporotic (non-OP) volunteers were included. Transcriptome sequencing was performed on six pairs of spongy and cortical bone tissues. The expression of FOXP1 was detected using quantitative real-time PCR (RT-qPCR) and receiver operating characteristic (ROC) curves. Magnetic-activated cell sorting was conducted, and the expression levels of AC003090.1, miR-203a-3p, and FOXP1 were measured using RT-qPCR. Human bone marrow stem cells (hBMSCs) were infected with a lentivirus carrying the AC003090.1 expression plasmid. The expression levels of Runx2, Opn, and Ocn in spongy and cortical bone samples, as well as in post-infection cells, were assessed through RT-qPCR. The expression levels of GSK-3β, β-catenin, and c-Myc were evaluated by performing RT-qPCR and Western blot analysis. RESULT A total of 2,102 out of 2,827 differentially expressed genes (DEGs) were identified between the cortical bone samples from patients with osteoporosis (OP) and the cortical/spongy bone samples of the control group. Among these, 1,482 were significantly up-regulated, and 620 were significantly down-regulated, while 1,146 were significantly up-regulated and 1,681 were significantly down-regulated. The expression of FOXP1 in tissue and bone tissue-derived mesenchymal stem cells (MSCs) from patients with OP was significantly lower than that in patients without OP. FOXP1 levels in bone tissue (cortical bone AUC = 0.825, P = 0.01405; spongy bone AUC = 0.800, P = 0.02338) could serve as predictors of OP. In addition, the overexpression of AC003090.1 significantly enhanced the transcription levels of Runx2, Opn, and Ocn; significantly upregulated the expression levels of β-catenin and c-Myc; and inhibited the expression of GSK-3β. Transfection with miR-203a-3p mimics and FOXP1 small interfering RNA reversed the effect of AC003090.1 on GSK-3β/β-catenin/c-Myc signaling. CONCLUSION FOXP1, as a molecular mediator of AC003090.1, affects the GSK-3β/β-catenin/c-Myc signaling pathway and promotes the osteogenic differentiation of hBMSCs, thus playing a key role in the progression of OP.
Collapse
Affiliation(s)
- Huafeng Zhuang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Department of Orthopedics, The Second Affiliated Hospital of FuJian University, QuanZhou, 362000, China
| | - Yongjun Lin
- Department of Orthopedics, The Second Affiliated Hospital of FuJian University, QuanZhou, 362000, China
| | - Chengye Lin
- Department of Orthopedics, The Second Affiliated Hospital of FuJian University, QuanZhou, 362000, China
| | - Miao Zheng
- Osteoporosis Clinical Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yizhong Li
- Department of Orthopedics, The Second Affiliated Hospital of FuJian University, QuanZhou, 362000, China
| | - Xuedong Yao
- Department of Orthopedics, The Second Affiliated Hospital of FuJian University, QuanZhou, 362000, China.
| | - Youjia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Osteoporosis Clinical Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
4
|
Gupta MK, Gouda G, Vadde R. Deciphering the role of FOXP4 in long COVID: exploring genetic associations, evolutionary conservation, and drug identification through bioinformatics analysis. Funct Integr Genomics 2024; 24:167. [PMID: 39298002 DOI: 10.1007/s10142-024-01451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Long COVID (LC) refers to a condition characterized by a variety of lingering symptoms that persist for more than 4 to 12 weeks following the initial acute SARS-CoV-2 infection. Recent research has suggested that the FOXP4 gene could potentially be a significant factor contributing to LC. Owing to that, this study investigates FOXP4's role in LC by analyzing public datasets to understand its evolution and expression in diverse human populations and searching for drugs to reduce LC symptoms. Population genetic analysis of FOXP4 across human populations unmasks distinct genetic diversity patterns and positive selection signatures, suggesting potential population-specific susceptibilities to conditions like LC. Further, we also observed that FOXP4 experiences high expression during LC. To identify potential inhibitors, drug screening analysis identifies synthetic drugs like Glisoxepide, and natural compounds Kapurimycin A3 produced from Streptomyces sp, and Cucurbitacin B from Begonia nantoensis as promising candidates. Overall, our research contributes to understanding how FOXP4 may serve as a therapeutic target for mitigating the impact of LC.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India.
| | - Gayatri Gouda
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India.
| |
Collapse
|
5
|
Zhang F, Zhou P, Wang L, Liao X, Liu X, Ke C, Wen S, Shu Y. Polymorphisms of IFN signaling genes and FOXP4 influence the severity of COVID-19. BMC Infect Dis 2024; 24:270. [PMID: 38429664 PMCID: PMC10905836 DOI: 10.1186/s12879-024-09040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/20/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The clinical manifestations of COVID-19 range from asymptomatic, mild to moderate, severe, and critical disease. Host genetic variants were recognized to affect the disease severity. However, the genetic landscape differs among various populations. Therefore, we explored the variants associated with COVID-19 severity in the Guangdong population. METHODS A total of 314 subjects were selected, of which the severe and critical COVID-19 patients were defined as "cases", and the mild and moderate patients were defined as "control". Twenty-two variants in interferon-related genes and FOXP4 were genotyped using the MassARRAY technology platform. RESULTS IFN signaling gene MX1 rs17000900 CA + AA genotype was correlated with a reduced risk of severe COVID-19 in males (P = 0.001, OR = 0.050, 95%CI = 0.008-0.316). The AT haplotype comprised of MX1 rs17000900 and rs2071430 was more likely to protect against COVID-19 severity (P = 6.3E-03). FOXP4 rs1886814 CC genotype (P = 0.001, OR = 3.747, 95%CI = 1.746-8.043) and rs2894439 GA + AA genotype (P = 0.001, OR = 5.703, 95% CI = 2.045-15.903) were correlated with increased risk of severe COVID-19. Haplotype CA comprised of rs1886814 and rs2894439 was found to be correlated with adverse outcomes (P = 7.0E-04). FOXP4 rs1886814 CC (P = 0.0004) and rs2894439 GA + AA carriers had higher neutralizing antibody titers (P = 0.0018). The CA + AA genotype of MX1 rs17000900 tended to be correlated with lower neutralizing antibody titers than CC genotype (P = 0.0663), but the difference was not statistically significant. CONCLUSION Our study found a possible association between MX1 and FOXP4 polymorphisms and the severity of COVID-19. Distinguishing high-risk patients who develop severe COVID-19 will provide clues for early intervention and individual treatment strategies.
Collapse
Affiliation(s)
- Feng Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Pingping Zhou
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, P. R. China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Xinzhong Liao
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Xuejie Liu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, P. R. China
| | - Simin Wen
- Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, P. R. China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China.
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102629, P. R. China.
| |
Collapse
|
6
|
Xing YZ, Guo HY, Xiang F, Li YH. Recent progress in hair follicle stem cell markers and their regulatory roles. World J Stem Cells 2024; 16:126-136. [PMID: 38455104 PMCID: PMC10915958 DOI: 10.4252/wjsc.v16.i2.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 02/26/2024] Open
Abstract
Hair follicle stem cells (HFSCs) in the bulge are a multipotent adult stem cell population. They can periodically give rise to new HFs and even regenerate the epidermis and sebaceous glands during wound healing. An increasing number of biomarkers have been used to isolate, label, and trace HFSCs in recent years. Considering more detailed data from single-cell transcriptomics technology, we mainly focus on the important HFSC molecular markers and their regulatory roles in this review.
Collapse
Affiliation(s)
- Yi-Zhan Xing
- Department of Cell Biology, Army Medical University, Chongqing 400038, China
| | - Hai-Ying Guo
- Department of Cell Biology, Army Medical University, Chongqing 400038, China
| | - Fei Xiang
- Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yu-Hong Li
- Department of Cell Biology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
7
|
Ruhl A, Antão AV, Dietschmann A, Radtke D, Tenbusch M, Voehringer D. STAT6-induced production of mucus and resistin-like molecules in lung Club cells does not protect against helminth or influenza A virus infection. Eur J Immunol 2024; 54:e2350558. [PMID: 37855177 DOI: 10.1002/eji.202350558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Airway epithelial cells contribute to a variety of lung diseases including allergic asthma, where IL-4 and IL-13 promote activation of the transcription factor STAT6. This leads to goblet cell hyperplasia and the secretion of effector molecules by epithelial cells. However, the specific effect of activated STAT6 in lung epithelial cells is only partially understood. Here, we created a mouse strain to selectively investigate the role of constitutively active STAT6 in Club cells, a subpopulation of airway epithelial cells. CCSP-Cre_STAT6vt mice and bronchiolar organoids derived from these show an enhanced expression of the chitinase-like protein Chil4 (Ym2) and resistin-like molecules (Relm-α, -β, -γ). In addition, goblet cells of these mice spontaneously secrete mucus into the bronchi. However, the activated epithelium resulted neither in impaired lung function nor conferred a protective effect against the migrating helminth Nippostrongylus brasiliensis. Moreover, CCSP-Cre_STAT6vt mice showed similar allergic airway inflammation induced by live conidia of the fungus Aspergillus fumigatus and similar recovery after influenza A virus infection compared to control mice. Together these results highlight that STAT6 signaling in Club cells induces the secretion of Relm proteins and mucus without impairing lung function, but this is not sufficient to confer protection against helminth or viral infections.
Collapse
Affiliation(s)
- Andreas Ruhl
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Vieira Antão
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Axel Dietschmann
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Radtke
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David Voehringer
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Nikaido M, Shirai A, Mizumaki Y, Shigenobu S, Ueno N, Hatta K. Intestinal expression patterns of transcription factors and markers for interstitial cells in the larval zebrafish. Dev Growth Differ 2023; 65:418-428. [PMID: 37452633 DOI: 10.1111/dgd.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
For the digestion of food, it is important for the gut to be differentiated regionally and to have proper motor control. However, the number of transcription factors that regulate its development is still limited. Meanwhile, the interstitial cells of the gastrointestinal (GI) tract are necessary for intestinal motility in addition to the enteric nervous system. There are anoctamine1 (Ano1)-positive and platelet-derived growth factor receptor α (Pdgfra)-positive interstitial cells in mammal, but Pdgfra-positive cells have not been reported in the zebrafish. To identify new transcription factors involved in GI tract development, we used RNA sequencing comparing between larval and adult gut. We isolated 40 transcription factors that were more highly expressed in the larval gut. We demonstrated expression patterns of the 13 genes, 7 of which were newly found to be expressed in the zebrafish larval gut. Six of the 13 genes encode nuclear receptors. The osr2 is expressed in the anterior part, while foxP4 in its distal part. Also, we reported the expression pattern of pdgfra for the first time in the larval zebrafish gut. Our data provide fundamental knowledge for studying vertebrate gut regionalization and motility by live imaging using zebrafish.
Collapse
Affiliation(s)
| | - Ayaka Shirai
- School of Science, University of Hyogo, Ako-gun, Japan
| | | | - Shuji Shigenobu
- Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Japan
| | - Naoto Ueno
- Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Japan
- Unit of Quantitative and Imaging Biology, International Research Collaboration Center, National Institute of Natural Sciences, Okazaki, Japan
| | - Kohei Hatta
- Graduate School of Science, University of Hyogo, Ako-gun, Japan
| |
Collapse
|
9
|
Tomoshige K, Stuart WD, Fink-Baldauf IM, Ito M, Tsuchiya T, Nagayasu T, Yamatsuji T, Okada M, Fukazawa T, Guo M, Maeda Y. FOXA2 Cooperates with Mutant KRAS to Drive Invasive Mucinous Adenocarcinoma of the Lung. Cancer Res 2023; 83:1443-1458. [PMID: 37067057 PMCID: PMC10160002 DOI: 10.1158/0008-5472.can-22-2805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/04/2023] [Accepted: 02/24/2023] [Indexed: 04/18/2023]
Abstract
The endoderm-lineage transcription factor FOXA2 has been shown to inhibit lung tumorigenesis in in vitro and xenograft studies using lung cancer cell lines. However, FOXA2 expression in primary lung tumors does not correlate with an improved patient survival rate, and the functional role of FOXA2 in primary lung tumors remains elusive. To understand the role of FOXA2 in primary lung tumors in vivo, here, we conditionally induced the expression of FOXA2 along with either of the two major lung cancer oncogenes, EGFRL858R or KRASG12D, in the lung epithelium of transgenic mice. Notably, FOXA2 suppressed autochthonous lung tumor development driven by EGFRL858R, whereas FOXA2 promoted tumor growth driven by KRASG12D. Importantly, FOXA2 expression along with KRASG12D produced invasive mucinous adenocarcinoma (IMA) of the lung, a fatal mucus-producing lung cancer comprising approximately 5% of human lung cancer cases. In the mouse model in vivo and human lung cancer cells in vitro, FOXA2 activated a gene regulatory network involved in the key mucous transcription factor SPDEF and upregulated MUC5AC, whose expression is critical for inducing IMA. Coexpression of FOXA2 with mutant KRAS synergistically induced MUC5AC expression compared with that induced by FOXA2 alone. ChIP-seq combined with CRISPR interference indicated that FOXA2 bound directly to the enhancer region of MUC5AC and induced the H3K27ac enhancer mark. Furthermore, FOXA2 was found to be highly expressed in primary tumors of human IMA. Collectively, this study reveals that FOXA2 is not only a biomarker but also a driver for IMA in the presence of a KRAS mutation. SIGNIFICANCE FOXA2 expression combined with mutant KRAS drives invasive mucinous adenocarcinoma of the lung by synergistically promoting a mucous transcriptional program, suggesting strategies for targeting this lung cancer type that lacks effective therapies.
Collapse
Affiliation(s)
- Koichi Tomoshige
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - William D. Stuart
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Iris M. Fink-Baldauf
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Masaoki Ito
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tomoshi Tsuchiya
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoki Yamatsuji
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takuya Fukazawa
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Minzhe Guo
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yutaka Maeda
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Crotta S, Villa M, Major J, Finsterbusch K, Llorian M, Carmeliet P, Buescher J, Wack A. Repair of airway epithelia requires metabolic rewiring towards fatty acid oxidation. Nat Commun 2023; 14:721. [PMID: 36781848 PMCID: PMC9925445 DOI: 10.1038/s41467-023-36352-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
Epithelial tissues provide front-line barriers shielding the organism from invading pathogens and harmful substances. In the airway epithelium, the combined action of multiciliated and secretory cells sustains the mucociliary escalator required for clearance of microbes and particles from the airways. Defects in components of mucociliary clearance or barrier integrity are associated with recurring infections and chronic inflammation. The timely and balanced differentiation of basal cells into mature epithelial cell subsets is therefore tightly controlled. While different growth factors regulating progenitor cell proliferation have been described, little is known about the role of metabolism in these regenerative processes. Here we show that basal cell differentiation correlates with a shift in cellular metabolism from glycolysis to fatty acid oxidation (FAO). We demonstrate both in vitro and in vivo that pharmacological and genetic impairment of FAO blocks the development of fully differentiated airway epithelial cells, compromising the repair of airway epithelia. Mechanistically, FAO links to the hexosamine biosynthesis pathway to support protein glycosylation in airway epithelial cells. Our findings unveil the metabolic network underpinning the differentiation of airway epithelia and identify novel targets for intervention to promote lung repair.
Collapse
Affiliation(s)
- Stefania Crotta
- Immunoregulation Laboratory, Francis Crick Institute, London, UK.
| | - Matteo Villa
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jack Major
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | | | | | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, and Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Joerg Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Andreas Wack
- Immunoregulation Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
11
|
Akhmerova YN, Shpakova TA, Grammatikati KS, Mitrofanov SI, Kazakova PG, Mkrtchian AA, Zemsky PU, Pilipenko MN, Feliz NV, Frolova LV, Frolovskaya AA, Yudin VS, Keskinov AA, Kraevoy SA, Yudin SM, Skvortsova VI. Genetic Variants Associated with Bronchial Asthma Specific to the Population of the Russian Federation. Acta Naturae 2023; 15:31-41. [PMID: 37153512 PMCID: PMC10154776 DOI: 10.32607/actanaturae.11853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/09/2023] [Indexed: 05/09/2023] Open
Abstract
Bronchial asthma (BA) is a disease that still lacks an exhaustive treatment protocol. In this regard, the global medical community pays special attention to the genetic prerequisites for the occurrence of this disease. Therefore, the search for the genetic polymorphisms underlying bronchial asthma has expanded considerably. As the present study progressed, a significant amount of scientific medical literature was analyzed and 167 genes reported to be associated with the development of bronchial asthma were identified. A group of participants (n = 7,303) who had voluntarily provided their biomaterial (venous blood) to be used in the research conducted by the Federal Medical Biological Agency of Russia was formed to subsequently perform a bioinformatic verification of known associations and search for new ones. This group of participants was divided into four cohorts, including two sex-distinct cohorts of individuals with a history of asthma and two sex-distinct cohorts of apparently healthy individuals. A search for polymorphisms was made in each cohort among the selected genes, and genetic variants were identified whose difference in occurrence in the different cohorts was statistically significant (significance level less than 0.0001). The study revealed 11 polymorphisms that affect the development of asthma: four genetic variants (rs869106717, rs1461555098, rs189649077, and rs1199362453), which are more common in men with bronchial asthma compared to apparently healthy men; five genetic variants (rs1923038536, rs181066119, rs143247175, rs140597386, and rs762042586), which are more common in women with bronchial asthma compared to apparently healthy women; and two genetic variants (rs1219244986 and rs2291651) that are rare in women with a history of asthma.
Collapse
Affiliation(s)
- Y. N. Akhmerova
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - T. A. Shpakova
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - K. S. Grammatikati
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - S. I. Mitrofanov
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - P. G. Kazakova
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - A. A. Mkrtchian
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - P. U. Zemsky
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - M. N. Pilipenko
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - N. V. Feliz
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - L. V. Frolova
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - A. A. Frolovskaya
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - V. S. Yudin
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - A. A. Keskinov
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - S. A. Kraevoy
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - S. M. Yudin
- Federal State Budgetary Institution “Center for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Center for Strategic Planning of FMBA of Russia), Moscow, 119121 Russian Federation
| | - V. I. Skvortsova
- Federal Medical Biological Agency (FMBA of Russia), Moscow, 123182 Russian Federation
| |
Collapse
|
12
|
Barmania F, Mellet J, Holborn MA, Pepper MS. Genetic Associations with Coronavirus Susceptibility and Disease Severity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:119-140. [PMID: 37378764 DOI: 10.1007/978-3-031-28012-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) global public health emergency, and the disease it causes is highly variable in its clinical presentation. Host genetic factors are increasingly recognised as a determinant of infection susceptibility and disease severity. Several initiatives and groups have been established to analyse and review host genetic epidemiology associated with COVID-19 outcomes. Here, we review the genetic loci associated with COVID-19 susceptibility and severity focusing on the common variants identified in genome-wide association studies.
Collapse
Affiliation(s)
- Fatima Barmania
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Mellet
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Megan A Holborn
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
13
|
Ferreira LC, Gomes CE, Rodrigues-Neto JF, Jeronimo SM. Genome-wide association studies of COVID-19: Connecting the dots. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 106:105379. [PMID: 36280088 PMCID: PMC9584840 DOI: 10.1016/j.meegid.2022.105379] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/01/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022]
Abstract
Genome-wide association studies (GWASs) are a research approach used to identify genetic variants associated with common diseases, like COVID-19. The lead genetic variants (n = 41) reported by the eleven largest COVID-19 GWASs are mapped to 22 different chromosomal regions. The loci 3q21.31 (LZTFL1 and chemokine receptor genes) and 9q34.2 (ABO), associated with disease severity and susceptibility to infection, respectively, were the most replicated findings across studies. Genes involved with mucociliary clearance (CEP97, FOXP4), viral-entry (ACE2, SLC6A20) and mucosal immunity (MIR6891) are associated with the risk of SARS-CoV-2 infection while genes of antiviral immune response (IFNAR2, OAS1), leukocyte trafficking (CCR9, CXCR6) and lung injury (DPP9, NOTCH4) are associated with severe disease. The biological processes underlying the risk of infection occur prominently, but not exclusively, in the upper airways whereas the severe COVID-19-associated processes in alveolar-capillary interface. The COVID-19 GWASs has unraveled key genetic mechanisms of SARS-CoV-2 pathogenesis, although the genetic basis of other COVID-19 related phenotypes (long COVID and neurological impairment) remains to be elucidated.
Collapse
Affiliation(s)
- Leonardo C. Ferreira
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil,Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil,Corresponding author at: Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil
| | - Carlos E.M. Gomes
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil
| | - João F. Rodrigues-Neto
- Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil,Multicampi School of Medical Sciences, Federal University of Rio Grande do Norte, Caicó, RN 59078-900, Brazil
| | - Selma M.B. Jeronimo
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil,Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil,Institute of Science and Technology of Tropical Diseases, Natal, RN, Brazil
| |
Collapse
|
14
|
Zangouei AS, Tolue Ghasaban F, Dalili A, Akhlaghipour I, Moghbeli M. MicroRNAs as the pivotal regulators of Forkhead box protein family during gastrointestinal tumor progression and metastasis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Andreas A, Maloy A, Nyunoya T, Zhang Y, Chandra D. The FoxP1 gene regulates lung function, production of matrix metalloproteinases and inflammatory mediators, and viability of lung epithelia. Respir Res 2022; 23:281. [PMID: 36221131 PMCID: PMC9554985 DOI: 10.1186/s12931-022-02213-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background Genes involved in lung development may become dysregulated in adult life and contribute to the pathogenesis of lung diseases. Multiple genes regulate lung development, including Forkhead box protein P1-4 (FoxP1-4). Methods We examined the association between variants in the FoxP1-4 genes and lung function using data from a GWAS that included close to 400,000 individuals and 20 million SNPs. Results More than 100 variants in the FoxP1 gene, but none in the FoxP2-4 genes, are associated with lung function. The sentinel variant in the FoxP1 gene associated with FEV1 was rs1499894 (C > T), while the sentinel variant in the FoxP1 gene associated with FVC was rs35480566 (A > G). Those with the T allele instead of the C allele for rs1499894, or the G allele instead of the A allele for rs35480566 had increased FoxP1 mRNA levels in transcriptomic data, higher FEV1 and FVC, and reduced odds of being diagnosed with idiopathic pulmonary fibrosis. Further, knockdown of FoxP1 in lung epithelial cells by RNA interference led to increased mRNA levels for matrix metalloproteinases 1, 2, 3 and pro-inflammatory cytokines IL-6 & IL-8, as well as reduced cell viability after exposure to cigarette smoke—all processes implicated in the pathogenesis of COPD and IPF. Conclusions Our results suggest that the protein encoded by the FoxP1 gene may protect against the development of COPD and IPF. A causal role for FoxP1 in the pathogenesis of COPD and IPF may warrant further investigation, and FoxP1 may be a novel therapeutic target for these lung disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02213-4.
Collapse
Affiliation(s)
- Alexis Andreas
- Department of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Abby Maloy
- Department of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Toru Nyunoya
- Department of Medicine, University of Pittsburgh, Pittsburgh, USA.,Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Divay Chandra
- Department of Medicine, University of Pittsburgh, Pittsburgh, USA. .,Pulmonary, Allergy, and Critical Care Medicine, UPMC Montefiore Hospital-NW628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
16
|
Yuan H, Hatleberg WL, Degnan BM, Degnan SM. Gene activation of metazoan Fox transcription factors at the onset of metamorphosis in the marine demosponge Amphimedon queenslandica. Dev Growth Differ 2022; 64:455-468. [PMID: 36155915 PMCID: PMC9828451 DOI: 10.1111/dgd.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023]
Abstract
Transcription factors encoded by the Forkhead (Fox) gene family have diverse, sometimes conserved, regulatory roles in eumetazoan development, immunity, and physiology. Although this gene family includes members that predate the origin of the animal kingdom, the majority of metazoan Fox genes evolved after the divergence of animals and choanoflagellates. Here, we characterize the composition, structure, and expression of Fox genes in the marine demosponge Amphimedon queenslandica to better understand the origin and evolution of this family. The Fox gene repertoire in A. queenslandica appears to be similar to the ancestral metazoan Fox gene family. All 17 A. queenslandica Fox genes are differentially expressed during development and in adult cell types. Remarkably, eight of these, all of which appear to be metazoan-specific, are induced within just 1 h of larval settlement and commencement of metamorphosis. Gene co-expression analyses suggest that these eight Fox genes regulate developmental and physiological processes similar to their roles in other animals. These findings are consistent with Fox genes playing deeply ancestral roles in animal development and physiology, including in response to changes in the external environment.
Collapse
Affiliation(s)
- Huifang Yuan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - William L. Hatleberg
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia,Present address:
Department of Biological SciencesCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Bernard M. Degnan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Sandie M. Degnan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
17
|
Jing J, Feng J, Yuan Y, Guo T, Lei J, Pei F, Ho TV, Chai Y. Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis. Nat Commun 2022; 13:4803. [PMID: 35974052 PMCID: PMC9381504 DOI: 10.1038/s41467-022-32490-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
Cranial neural crest cells are an evolutionary innovation of vertebrates for craniofacial development and function, yet the mechanisms that govern the cell fate decisions of postmigratory cranial neural crest cells remain largely unknown. Using the mouse molar as a model, we perform single-cell transcriptome profiling to interrogate the cell fate diversification of postmigratory cranial neural crest cells. We reveal the landscape of transcriptional heterogeneity and define the specific cellular domains during the progression of cranial neural crest cell-derived dental lineage diversification, and find that each domain makes a specific contribution to distinct molar mesenchymal tissues. Furthermore, IGF signaling-mediated cell-cell interaction between the cellular domains highlights the pivotal role of autonomous regulation of the dental mesenchyme. Importantly, we reveal cell-type-specific gene regulatory networks in the dental mesenchyme and show that Foxp4 is indispensable for the differentiation of periodontal ligament. Our single-cell atlas provides comprehensive mechanistic insight into the cell fate diversification process of the cranial neural crest cell-derived odontogenic populations.
Collapse
Affiliation(s)
- Junjun Jing
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA ,grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan 610041 China
| | - Jifan Feng
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Yuan Yuan
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Tingwei Guo
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Jie Lei
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Fei Pei
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Thach-Vu Ho
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
18
|
Chen Y, Toth R, Chocarro S, Weichenhan D, Hey J, Lutsik P, Sawall S, Stathopoulos GT, Plass C, Sotillo R. Club cells employ regeneration mechanisms during lung tumorigenesis. Nat Commun 2022; 13:4557. [PMID: 35931677 PMCID: PMC9356049 DOI: 10.1038/s41467-022-32052-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
The high plasticity of lung epithelial cells, has for many years, confounded the correct identification of the cell-of-origin of lung adenocarcinoma (LUAD), one of the deadliest malignancies worldwide. Here, we employ lineage-tracing mouse models to investigate the cell of origin of Eml4-Alk LUAD, and show that Club and Alveolar type 2 (AT2) cells give rise to tumours. We focus on Club cell originated tumours and find that Club cells experience an epigenetic switch by which they lose their lineage fidelity and gain an AT2-like phenotype after oncogenic transformation. Single-cell transcriptomic analyses identified two trajectories of Club cell evolution which are similar to the ones used during lung regeneration, suggesting that lung epithelial cells leverage on their plasticity and intrinsic regeneration mechanisms to give rise to a tumour. Together, this study highlights the role of Club cells in LUAD initiation, identifies the mechanism of Club cell lineage infidelity, confirms the presence of these features in human tumours, and unveils key mechanisms conferring LUAD heterogeneity.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Reka Toth
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Bioinformatics Platform, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Sara Chocarro
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Stefan Sawall
- X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU), Max-Lebsche-Platz 31, 81377, Munich, Bavaria, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TRLC), Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), 69120, Heidelberg, Germany
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,German Center for Lung Research (DZL), Heidelberg, Germany. .,Translational Lung Research Center Heidelberg (TRLC), Heidelberg, Germany. .,German Consortium for Translational Cancer Research (DKTK), 69120, Heidelberg, Germany.
| |
Collapse
|
19
|
Matsumoto T, Iizuka T, Nakamura M, Suzuki T, Yamamoto M, Ono M, Kagami K, Kasama H, Wakae K, Muramatsu M, Horike SI, Kyo S, Yamamoto Y, Mizumoto Y, Daikoku T, Fujiwara H. FOXP4 inhibits squamous differentiation of atypical cells in cervical intraepithelial neoplasia via an ELF3-dependent pathway. Cancer Sci 2022; 113:3376-3389. [PMID: 35838233 PMCID: PMC9530870 DOI: 10.1111/cas.15489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022] Open
Abstract
Although the human papillomavirus (HPV) vaccine is effective for preventing cervical cancers, this vaccine does not eliminate pre‐existing infections, and alternative strategies have been warranted. Here, we report that FOXP4 is a new target molecule for differentiation therapy of cervical intraepithelial neoplasia (CIN). An immunohistochemical study showed that FOXP4 was expressed in columnar epithelial, reserve, and immature squamous cells, but not in mature squamous cells of the normal uterine cervix. In contrast with normal mature squamous cells, FOXP4 was expressed in atypical squamous cells in CIN and squamous cell carcinoma lesions. The FOXP4‐positive areas significantly increased according to the CIN stages from CIN1 to CIN3. In monolayer cultures, downregulation of FOXP4 attenuated proliferation and induced squamous differentiation in CIN1‐derived HPV 16‐positive W12 cells via an ELF3‐dependent pathway. In organotypic raft cultures, FOXP4‐downregulated W12 cells showed mature squamous phenotypes of CIN lesions. In human keratinocyte‐derived HaCaT cells, FOXP4 downregulation also induced squamous differentiation via an ELF3‐dependent pathway. These findings suggest that downregulation of FOXP4 inhibits cell proliferation and promotes the differentiation of atypical cells in CIN lesions. Based on these results, we propose that FOXP4 is a novel target molecule for nonsurgical CIN treatment that inhibits CIN progression by inducing squamous differentiation.
Collapse
Affiliation(s)
- Takeo Matsumoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mitsuhiro Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takuma Suzuki
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Megumi Yamamoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan.,Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Kyosuke Kagami
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Haruki Kasama
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kousho Wakae
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shin-Ichi Horike
- Division of Integrated Omics research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Yasuhiko Yamamoto
- Departments of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Yasunari Mizumoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takiko Daikoku
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
20
|
Baxter M, Poolman T, Cunningham P, Hunter L, Voronkov M, Kitchen GB, Goosey L, Begley N, Kay D, Hespe A, Maidstone R, Loudon ASI, Ray DW. Circadian clock function does not require the histone methyltransferase MLL3. FASEB J 2022; 36:e22356. [PMID: 35704036 PMCID: PMC9328146 DOI: 10.1096/fj.202200368r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 11/11/2022]
Abstract
The circadian clock controls the physiological function of tissues through the regulation of thousands of genes in a cell-type-specific manner. The core cellular circadian clock is a transcription-translation negative feedback loop, which can recruit epigenetic regulators to facilitate temporal control of gene expression. Histone methyltransferase, mixed lineage leukemia gene 3 (MLL3) was reported to be required for the maintenance of circadian oscillations in cultured cells. Here, we test the role of MLL3 in circadian organization in whole animals. Using mice expressing catalytically inactive MLL3, we show that MLL3 methyltransferase activity is in fact not required for circadian oscillations in vitro in a range of tissues, nor for the maintenance of circadian behavioral rhythms in vivo. In contrast to a previous report, loss of MLL3-dependent methylation did not affect the global levels of H3K4 methylation in liver, indicating substantial compensation from other methyltransferases. Furthermore, we found little evidence of genomic repositioning of H3K4me3 marks. We did, however, observe repositioning of H3K4me1 from intronic regions to intergenic regions and gene promoters; however, there were no changes in H3K4me1 mark abundance around core circadian clock genes. Output functions of the circadian clock, such as control of inflammation, were largely intact in MLL3-methyltransferase-deficient mice, although some gene-specific changes were observed, with sexually dimorphic loss of circadian regulation of specific cytokines. Taken together, these observations indicate that MLL3-directed histone methylation is not essential for core circadian clock function; however, it may influence the inflammatory response.
Collapse
Affiliation(s)
- Matthew Baxter
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| | - Toryn Poolman
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| | - Peter Cunningham
- Centre for Biological TimingFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Louise Hunter
- Centre for Biological TimingFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Maria Voronkov
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| | - Gareth B. Kitchen
- Centre for Biological TimingFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Laurence Goosey
- Centre for Biological TimingFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Nicola Begley
- Centre for Biological TimingFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Danielle Kay
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| | - Abby Hespe
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| | - Robert Maidstone
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| | - Andrew S. I. Loudon
- Centre for Biological TimingFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - David W. Ray
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK
| |
Collapse
|
21
|
Yang Q, Zhang J, Bao Q, Zhong J, Wang X, Tao Y, Xu X, Lv K, Wang Y, Li B, He L, Guo X, Ma G. Foxp1 and Foxp4 deletion causes the loss of follicle stem cell niche and cyclic hair shedding by inducing inner bulge cell apoptosis. Stem Cells 2022; 40:843-856. [PMID: 35759955 DOI: 10.1093/stmcls/sxac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 06/15/2022] [Indexed: 11/14/2022]
Abstract
Quiescent hair follicle stem cells (HFSCs) reside in specialized bulge niche where they undergo activation and differentiation upon sensing niche-dependent signals during hair follicle (HF) homeostasis and wound repair. The underlying mechanism of HFSCs and bulge niche maintenance is poorly understood. Our previous study has reported that a transcription factor, forkhead box P1 (Foxp1), functions to maintain the quiescence of HFSCs. Here, we further discovered that forkhead box P4 (Foxp4), a close family member of Foxp1, had similar expression profiles in various components of HFs and formed a complex with Foxp1 in vitro and in vivo. The HF-specific deficiency of Foxp4 resulted in the precocious activation of HFSCs during hair cycles. In contrast to single Foxp1 or Foxp4 conditional knockout (cKO) mice, Foxp1/4 double cKO exerted an additive effect in the spectrum and severity of phenotypes in HFSC activation, hair cycling acceleration and hair loss, coupled with remarkable downregulation of fibroblast growth factor 18 (Fgf18) and bone morphogenetic protein 6 (Bmp6) expression in bulge cells. In addition, the double KO of Foxp1/4 induced the apoptosis of K6-positive (K6+) inner bulge cells, a well-established stem cell (SC) niche, thus resulting in the destruction of the bulge SC niche and recurrent hair loss. Our investigation reveals the synergistic role of Foxp1/4 in sustaining K6+ niche cells for the quiescence of HFSCs.
Collapse
Affiliation(s)
- Qingchun Yang
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.,Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jie Zhang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qianyi Bao
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jialin Zhong
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiaoqing Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yixin Tao
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xuegang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Kaiyang Lv
- Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yushu Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Baojie Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lin He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xizhi Guo
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Gang Ma
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.,Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
22
|
Chen J, Wu Z, Wang J, Si X, Zhang R, Sun T, Dong Q, Wu W, Qiu Y. Docosahexaenoic acid ester of phloridzin reduces inflammation and insulin resistance via AMPK. Curr Pharm Des 2022; 28:1854-1862. [PMID: 35585811 DOI: 10.2174/1381612828666220518102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Docosahexaenoic acid-acylated phloridzin (PZ-DHA), a novel polyphenol fatty acid ester derivative, is synthesized through an acylation reaction of phloridzin (PZ) and docosahexaenoic acid (DHA). PZ-DHA is more stable than DHA and exhibits higher cellular uptake and bioavailability than PZ. OBJECTIVE To investigate the effects of PZ-DHA on insulin resistance in the skeletal muscle and the related mechanisms, we used palmitic acid (PA)-treated C2C12 myotubes as an insulin resistance model. RESULTS We found that PZ-DHA increased the activity of AMP-activated protein kinase (AMPK) and improved glucose uptake and mitochondrial function in an AMPK-dependent manner in untreated C2C12 myotubes. PZ-DHA treatment of the myotubes reversed PA-induced insulin resistance; this was indicated by increases in glucose uptake and the expression of membrane glucose transporter 4 (Glut4) and phosphorylated Akt. Moreover, PZ-DHA treatment reversed PA-induced inflammation and oxidative stress. These effects of PZ-DHA were mediated by AMPK. Furthermore, the increase in AMPK activity, improvement in insulin resistance, and decrease in inflammatory and oxidative responses after PZ-DHA treatment diminished upon co-treatment with a liver kinase B1 (LKB1) inhibitor, suggesting that PZ-DHA improved AMPK activity by regulating its upstream kinase, LKB1. CONCLUSION The effects of PZ-DHA on insulin resistance in C2C12 myotubes may be mediated by the LKB1-AMPK signaling pathway. Hence, PZ-DHA is a promising therapeutic agent for insulin resistance in type 2 diabetes.
Collapse
Affiliation(s)
- Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Jin Wang
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100193, China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Rui Zhang
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100193, China
| | - Tianqi Sun
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100193, China
| | - Qiaoyan Dong
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100193, China
| | - Wenqing Wu
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100193, China
| | - Yefeng Qiu
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100193, China
| |
Collapse
|
23
|
Wang F, Xu S, Chen T, Ling S, Zhang W, Wang S, Zhou R, Xia X, Yao Z, Li P, Zhao X, Wang J, Guo X. FOXP4 differentially controls cold-induced beige adipocyte differentiation and thermogenesis. Development 2022; 149:274748. [PMID: 35297993 DOI: 10.1242/dev.200260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/07/2022] [Indexed: 11/20/2022]
Abstract
Beige adipocytes have a discrete developmental origin and possess notable plasticity in their thermogenic capacity in response to various environmental cues, but the transcriptional machinery controlling beige adipocyte development and thermogenesis remains largely unknown. By analyzing beige adipocyte-specific knockout mice, we identified a transcription factor, forkhead box P4 (FOXP4), that differentially governs beige adipocyte differentiation and activation. Depletion of Foxp4 in progenitor cells impaired beige cell early differentiation. However, we observed that ablation of Foxp4 in differentiated adipocytes profoundly potentiated their thermogenesis capacity upon cold exposure. Of note, the outcome of Foxp4 deficiency on UCP1-mediated thermogenesis was confined to beige adipocytes, rather than to brown adipocytes. Taken together, we suggest that FOXP4 primes beige adipocyte early differentiation, but attenuates their activation by potent transcriptional repression of the thermogenic program.
Collapse
Affiliation(s)
- Fuhua Wang
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuqin Xu
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tienan Chen
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shifeng Ling
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Zhang
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaojiao Wang
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rujiang Zhou
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuechun Xia
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengju Yao
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengxiao Li
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xizhi Guo
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
24
|
Yin W, Liontos A, Koepke J, Ghoul M, Mazzocchi L, Liu X, Lu C, Wu H, Fysikopoulos A, Sountoulidis A, Seeger W, Ruppert C, Günther A, Stainier DYR, Samakovlis C. An essential function for autocrine hedgehog signaling in epithelial proliferation and differentiation in the trachea. Development 2022; 149:274222. [PMID: 35112129 PMCID: PMC8918789 DOI: 10.1242/dev.199804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
The tracheal epithelium is a primary target for pulmonary diseases as it provides a conduit for air flow between the environment and the lung lobes. The cellular and molecular mechanisms underlying airway epithelial cell proliferation and differentiation remain poorly understood. Hedgehog (HH) signaling orchestrates communication between epithelial and mesenchymal cells in the lung, where it modulates stromal cell proliferation, differentiation and signaling back to the epithelium. Here, we reveal a previously unreported autocrine function of HH signaling in airway epithelial cells. Epithelial cell depletion of the ligand sonic hedgehog (SHH) or its effector smoothened (SMO) causes defects in both epithelial cell proliferation and differentiation. In cultured primary human airway epithelial cells, HH signaling inhibition also hampers cell proliferation and differentiation. Epithelial HH function is mediated, at least in part, through transcriptional activation, as HH signaling inhibition leads to downregulation of cell type-specific transcription factor genes in both the mouse trachea and human airway epithelial cells. These results provide new insights into the role of HH signaling in epithelial cell proliferation and differentiation during airway development. Summary: A conserved autocrine role for HH signaling in tracheal epithelial cell proliferation and differentiation is revealed, suggesting potential new interventions for airway epithelial proliferation and differentiation defects.
Collapse
Affiliation(s)
- Wenguang Yin
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China.,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim 61231, Germany
| | - Andreas Liontos
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna 171 21, Sweden
| | - Janine Koepke
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Maroua Ghoul
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Luciana Mazzocchi
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Xinyuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China
| | - Chunyan Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China
| | - Haoyu Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China
| | - Athanasios Fysikopoulos
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Alexandros Sountoulidis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna 171 21, Sweden
| | - Werner Seeger
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany.,Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Clemens Ruppert
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Andreas Günther
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim 61231, Germany
| | - Christos Samakovlis
- Cardio-Pulmonary Institute, Member of the German Center for Lung Research (DZL), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, Giessen 35392, Germany.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna 171 21, Sweden.,Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| |
Collapse
|
25
|
Schilders KAA, Edel GG, Eenjes E, Oresta B, Birkhoff J, Boerema-de Munck A, Buscop-van Kempen M, Liakopoulos P, Kolovos P, Demmers JAA, Poot R, Wijnen RMH, Tibboel D, Rottier RJ. Identification of SOX2 Interacting Proteins in the Developing Mouse Lung With Potential Implications for Congenital Diaphragmatic Hernia. Front Pediatr 2022; 10:881287. [PMID: 35615634 PMCID: PMC9124971 DOI: 10.3389/fped.2022.881287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Congenital diaphragmatic hernia is a structural birth defect of the diaphragm, with lung hypoplasia and persistent pulmonary hypertension. Aside from vascular defects, the lungs show a disturbed balance of differentiated airway epithelial cells. The Sry related HMG box protein SOX2 is an important transcription factor for proper differentiation of the lung epithelium. The transcriptional activity of SOX2 depends on interaction with other proteins and the identification of SOX2-associating factors may reveal important complexes involved in the disturbed differentiation in CDH. To identify SOX2-associating proteins, we purified SOX2 complexes from embryonic mouse lungs at 18.5 days of gestation. Mass spectrometry analysis of SOX2-associated proteins identified several potential candidates, among which were the Chromodomain Helicase DNA binding protein 4 (CHD4), Cut-Like Homeobox1 (CUX1), and the Forkhead box proteins FOXP2 and FOXP4. We analyzed the expression patterns of FOXP2, FOXP4, CHD4, and CUX1 in lung during development and showed co-localization with SOX2. Co-immunoprecipitations validated the interactions of these four transcription factors with SOX2, and large-scale chromatin immunoprecipitation (ChIP) data indicated that SOX2 and CHD4 bound to unique sites in the genome, but also co-occupied identical regions, suggesting that these complexes could be involved in co-regulation of genes involved in the respiratory system.
Collapse
Affiliation(s)
- Kim A A Schilders
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Gabriëla G Edel
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Evelien Eenjes
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Bianca Oresta
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Judith Birkhoff
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Anne Boerema-de Munck
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Marjon Buscop-van Kempen
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Panagiotis Liakopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Raymond Poot
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Rene M H Wijnen
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
26
|
Sagulkoo P, Plaimas K, Suratanee A, Colado Simão AN, Vissoci Reiche EM, Maes M. Immunopathogenesis and Immunogenetic Variants in COVID-19. Curr Pharm Des 2022; 28:1780-1797. [PMID: 35598232 DOI: 10.2174/1381612828666220519150821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
Abstract
Coronavirus disease 2019 (COVID-19) continues to spread globally despite the discovery of vaccines. Many people die due to COVID-19 as a result of catastrophic consequences, such as acute respiratory distress syndrome, pulmonary embolism, and disseminated intravascular coagulation caused by a cytokine storm. Immunopathology and immunogenetic research may assist in diagnosing, predicting, and treating severe COVID-19 and the cytokine storm associated with COVID-19. This paper reviews the immunopathogenesis and immunogenetic variants that play a role in COVID-19. Although various immune-related genetic variants have been investigated in relation to severe COVID-19, the NOD-like receptor protein 3 (NLRP3) and interleukin 18 (IL-18) have not been assessed for their potential significance in the clinical outcome. Here, we a) summarize the current understanding of the immunogenetic etiology and pathophysiology of COVID-19 and the associated cytokine storm; and b) construct and analyze protein-protein interaction (PPI) networks (using enrichment and annotation analysis) based on the NLRP3 and IL18 variants and all genes, which were established in severe COVID-19. Our PPI network and enrichment analyses predict a) useful drug targets to prevent the onset of severe COVID-19, including key antiviral pathways such as Toll-Like-Receptor cascades, NOD-like receptor signaling, RIG-induction of interferon (IFN) α/β, and interleukin (IL)-1, IL-6, IL-12, IL-18, and tumor necrosis factor signaling; and b) SARS-CoV-2 innate immune evasion and the participation of MYD88 and MAVS in the pathophysiology of severe COVID-19. The PPI network genetic variants may be used to predict more severe COVID-19 outcomes, thereby opening the door for targeted preventive treatments.
Collapse
Affiliation(s)
- Pakorn Sagulkoo
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Biomedical Informatics, Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
- Intelligent and Nonlinear Dynamic Innovations Research Center, Science and Technology Research Institute, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Andrea Name Colado Simão
- Department of Pathology Clinical Analysis and Toxicology, Health Sciences Center, Londrina State University, Londrina, Brazil
| | - Edna Maria Vissoci Reiche
- Department of Pathology Clinical Analysis and Toxicology, Health Sciences Center, Londrina State University, Londrina, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| |
Collapse
|
27
|
Donaldson DS, Shih BB, Mabbott NA. Aging-Related Impairments to M Cells in Peyer's Patches Coincide With Disturbances to Paneth Cells. Front Immunol 2021; 12:761949. [PMID: 34938288 PMCID: PMC8687451 DOI: 10.3389/fimmu.2021.761949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022] Open
Abstract
The decline in mucosal immunity during aging increases susceptibility, morbidity and mortality to infections acquired via the gastrointestinal and respiratory tracts in the elderly. We previously showed that this immunosenescence includes a reduction in the functional maturation of M cells in the follicle-associated epithelia (FAE) covering the Peyer’s patches, diminishing the ability to sample of antigens and pathogens from the gut lumen. Here, co-expression analysis of mRNA-seq data sets revealed a general down-regulation of most FAE- and M cell-related genes in Peyer’s patches from aged mice, including key transcription factors known to be essential for M cell differentiation. Conversely, expression of ACE2, the cellular receptor for SARS-Cov-2 virus, was increased in the aged FAE. This raises the possibility that the susceptibility of aged Peyer’s patches to infection with the SARS-Cov-2 virus is increased. Expression of key Paneth cell-related genes was also reduced in the ileum of aged mice, consistent with the adverse effects of aging on their function. However, the increased expression of these genes in the villous epithelium of aged mice suggested a disturbed distribution of Paneth cells in the aged intestine. Aging effects on Paneth cells negatively impact on the regenerative ability of the gut epithelium and could indirectly impede M cell differentiation. Thus, restoring Paneth cell function may represent a novel means to improve M cell differentiation in the aging intestine and increase mucosal vaccination efficacy in the elderly.
Collapse
Affiliation(s)
- David S Donaldson
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom
| | - Barbara B Shih
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom
| | - Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom
| |
Collapse
|
28
|
Li Y, Zhang Q, Li L, Hao D, Cheng P, Li K, Li X, Wang J, Wang Q, Du Z, Ji H, Chen H. LKB1 deficiency upregulates RELM-α to drive airway goblet cell metaplasia. Cell Mol Life Sci 2021; 79:42. [PMID: 34921639 PMCID: PMC8738459 DOI: 10.1007/s00018-021-04044-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023]
Abstract
Targeting airway goblet cell metaplasia is a novel strategy that can potentially reduce the chronic obstructive pulmonary disease (COPD) symptoms. Tumor suppressor liver kinase B1 (LKB1) is an important regulator of the proliferation and differentiation of stem/progenitor cells. In this study, we report that LKB1 expression was downregulated in the lungs of patients with COPD and in those of cigarette smoke-exposed mice. Nkx2.1Cre; Lkb1f/f mice with conditional loss of Lkb1 in mouse lung epithelium displayed airway mucus hypersecretion and pulmonary macrophage infiltration. Single-cell transcriptomic analysis of the lung tissues from Nkx2.1Cre; Lkb1f/f mice further revealed that airway goblet cell differentiation was altered in the absence of LKB1. An organoid culture study demonstrated that Lkb1 deficiency in mouse airway (club) progenitor cells promoted the expression of FIZZ1/RELM-α, which drove airway goblet cell differentiation and pulmonary macrophage recruitment. Additionally, monocyte-derived macrophages in the lungs of Nkx2.1Cre; Lkb1f/f mice exhibited an alternatively activated M2 phenotype, while expressing RELM-α, which subsequently aggravated airway goblet cell metaplasia. Our findings suggest that the LKB1-mediated crosstalk between airway progenitor cells and macrophages regulates airway goblet cell metaplasia. Moreover, our data suggest that LKB1 agonists might serve as a potential therapeutic option to treat respiratory disorders associated with goblet cell metaplasia.
Collapse
Affiliation(s)
- Yu Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Qiuyang Zhang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Li Li
- Department of Respiratory Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - De Hao
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| | - Peiyong Cheng
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| | - Kuan Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Xue Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Jianhai Wang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Qi Wang
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Zhongchao Du
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China.
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China.
| |
Collapse
|
29
|
The Balance between Differentiation and Terminal Differentiation Maintains Oral Epithelial Homeostasis. Cancers (Basel) 2021; 13:cancers13205123. [PMID: 34680271 PMCID: PMC8534139 DOI: 10.3390/cancers13205123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Oral cancer affecting the oral cavity represents the most common cancer of the head and neck region. Oral cancer develops in a multistep process in which normal cells gradually accumulate genetic and epigenetic modifications to evolve into a malignant disease. Mortality for oral cancer patients is high and morbidity has a significant long-term impact on the health and wellbeing of affected individuals, typically resulting in facial disfigurement and a loss of the ability to speak, chew, taste, and swallow. The limited scope to which current treatments are able to control oral cancer underlines the need for novel therapeutic strategies. This review highlights the molecular differences between oral cell proliferation, differentiation and terminal differentiation, defines terminal differentiation as an important tumour suppressive mechanism and establishes a rationale for clinical investigation of differentiation-paired therapies that may improve outcomes in oral cancer. Abstract The oral epithelium is one of the fastest repairing and continuously renewing tissues. Stem cell activation within the basal layer of the oral epithelium fuels the rapid proliferation of multipotent progenitors. Stem cells first undergo asymmetric cell division that requires tightly controlled and orchestrated differentiation networks to maintain the pool of stem cells while producing progenitors fated for differentiation. Rapidly expanding progenitors subsequently commit to advanced differentiation programs towards terminal differentiation, a process that regulates the structural integrity and homeostasis of the oral epithelium. Therefore, the balance between differentiation and terminal differentiation of stem cells and their progeny ensures progenitors commitment to terminal differentiation and prevents epithelial transformation and oral squamous cell carcinoma (OSCC). A recent comprehensive molecular characterization of OSCC revealed that a disruption of terminal differentiation factors is indeed a common OSCC event and is superior to oncogenic activation. Here, we discuss the role of differentiation and terminal differentiation in maintaining oral epithelial homeostasis and define terminal differentiation as a critical tumour suppressive mechanism. We further highlight factors with crucial terminal differentiation functions and detail the underlying consequences of their loss. Switching on terminal differentiation in differentiated progenitors is likely to represent an extremely promising novel avenue that may improve therapeutic interventions against OSCC.
Collapse
|
30
|
Velavan TP, Pallerla SR, Rüter J, Augustin Y, Kremsner PG, Krishna S, Meyer CG. Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine 2021; 72:103629. [PMID: 34655949 PMCID: PMC8512556 DOI: 10.1016/j.ebiom.2021.103629] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) poses an unprecedented challenge to humanity. SARS-CoV-2 infections range from asymptomatic to severe courses of COVID-19 with acute respiratory distress syndrome (ARDS), multiorgan involvement and death. Risk factors for disease severity include older age, male sex, increased BMI and pre-existing comorbidities. Ethnicity is also relevant to COVID-19 susceptibility and severity. Host genetic predisposition to COVID-19 is now increasingly recognized and whole genome and candidate gene association studies regarding COVID-19 susceptibility have been performed. Several common and rare variants in genes related to inflammation or immune responses have been identified. We summarize research on COVID-19 host genetics and compile genetic variants associated with susceptibility to COVID-19 and disease severity. We discuss candidate genes that should be investigated further to understand such associations and provide insights relevant to pathogenesis, risk classification, therapy response, precision medicine, and drug repurposing.
Collapse
Affiliation(s)
- Thirumalaisamy P Velavan
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany; Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.
| | - Srinivas Reddy Pallerla
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany; Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Jule Rüter
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany
| | - Yolanda Augustin
- Institute of Infection and Immunity, St George's University of London, United Kingdom
| | - Peter G Kremsner
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany; Centre de Recherches Médicales de Lambaréné (CERMEL), Gabon
| | - Sanjeev Krishna
- Institute of Infection and Immunity, St George's University of London, United Kingdom; Centre de Recherches Médicales de Lambaréné (CERMEL), Gabon
| | - Christian G Meyer
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany; Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam; Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
31
|
Konigsberg IR, Borie R, Walts AD, Cardwell J, Rojas M, Metzger F, Hauck SM, Fingerlin TE, Yang IV, Schwartz DA. Molecular Signatures of Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 65:430-441. [PMID: 34038697 PMCID: PMC8525208 DOI: 10.1165/rcmb.2020-0546oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/24/2021] [Indexed: 11/24/2022] Open
Abstract
Molecular patterns and pathways in idiopathic pulmonary fibrosis (IPF) have been extensively investigated, but few studies have assimilated multiomic platforms to provide an integrative understanding of molecular patterns that are relevant in IPF. Herein, we combine the coding and noncoding transcriptomes, DNA methylomes, and proteomes from IPF and healthy lung tissue to identify molecules and pathways associated with this disease. RNA sequencing, Illumina MethylationEPIC array, and liquid chromatography-mass spectrometry proteomic data were collected on lung tissue from 24 subjects with IPF and 14 control subjects. Significant differential features were identified by using linear models adjusting for age and sex, inflation, and bias when appropriate. Data Integration Analysis for Biomarker Discovery Using a Latent Component Method for Omics Studies was used for integrative multiomic analysis. We identified 4,643 differentially expressed transcripts aligning to 3,439 genes, 998 differentially abundant proteins, 2,500 differentially methylated regions, and 1,269 differentially expressed long noncoding RNAs (lncRNAs) that were significant after correcting for multiple tests (false discovery rate < 0.05). Unsupervised hierarchical clustering using 20 coding mRNA, protein, methylation, and lncRNA features with the highest loadings on the top latent variable from the four data sets demonstrates perfect separation of IPF and control lungs. Our analysis confirmed previously validated molecules and pathways known to be dysregulated in disease and implicated novel molecular features as potential drivers and modifiers of disease. For example, 4 proteins, 18 differentially methylated regions, and 10 lncRNAs were found to have strong correlations (|r| > 0.8) with MMP7 (matrix metalloproteinase 7). Therefore, by using a system biology approach, we have identified novel molecular relationships in IPF.
Collapse
Affiliation(s)
- Iain R. Konigsberg
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Raphael Borie
- Department of Medicine, Bichat Hospital, Paris, France
| | - Avram D. Walts
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Jonathan Cardwell
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Mauricio Rojas
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Fabian Metzger
- Research Unit for Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; and
| | - Stefanie M. Hauck
- Research Unit for Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; and
| | - Tasha E. Fingerlin
- Department of Immunology and Genomic Medicine and Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado
| | - Ivana V. Yang
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - David A. Schwartz
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| |
Collapse
|
32
|
Wu P, Ding L, Li X, Liu S, Cheng F, He Q, Xiao M, Wu P, Hou H, Jiang M, Long P, Wang H, Liu L, Qu M, Shi X, Jiang Q, Mo T, Ding W, Fu Y, Han S, Huo X, Zeng Y, Zhou Y, Zhang Q, Ke J, Xu X, Ni W, Shao Z, Wang J, Liu P, Li Z, Jin Y, Zheng F, Wang F, Liu L, Li W, Liu K, Peng R, Xu X, Lin Y, Gao H, Shi L, Geng Z, Mu X, Yan Y, Wang K, Wu D, Hao X, Cheng S, Qiu G, Guo H, Li K, Chen G, Sun Z, Lin X, Jin X, Wang F, Sun C, Wang C. Trans-ethnic genome-wide association study of severe COVID-19. Commun Biol 2021; 4:1034. [PMID: 34465887 PMCID: PMC8408224 DOI: 10.1038/s42003-021-02549-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/12/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 has caused numerous infections with diverse clinical symptoms. To identify human genetic variants contributing to the clinical development of COVID-19, we genotyped 1457 (598/859 with severe/mild symptoms) and sequenced 1141 (severe/mild: 474/667) patients of Chinese ancestry. We further incorporated 1401 genotyped and 948 sequenced ancestry-matched population controls, and tested genome-wide association on 1072 severe cases versus 3875 mild or population controls, followed by trans-ethnic meta-analysis with summary statistics of 3199 hospitalized cases and 897,488 population controls from the COVID-19 Host Genetics Initiative. We identified three significant signals outside the well-established 3p21.31 locus: an intronic variant in FOXP4-AS1 (rs1853837, odds ratio OR = 1.28, P = 2.51 × 10-10, allele frequencies in Chinese/European AF = 0.345/0.105), a frameshift insertion in ABO (rs8176719, OR = 1.19, P = 8.98 × 10-9, AF = 0.422/0.395) and a Chinese-specific intronic variant in MEF2B (rs74490654, OR = 8.73, P = 1.22 × 10-8, AF = 0.004/0). These findings highlight an important role of the adaptive immunity and the ABO blood-group system in protection from developing severe COVID-19.
Collapse
Affiliation(s)
- Peng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaodong Li
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Siyang Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Fanjun Cheng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing He
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Mingzhong Xiao
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Ping Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Hou
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghui Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pinpin Long
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Liu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Minghan Qu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Jiang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Mo
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wencheng Ding
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China
| | - Shi Han
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xixiang Huo
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yingchun Zeng
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yana Zhou
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Qing Zhang
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Jia Ke
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Xi Xu
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Wei Ni
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Zuoyu Shao
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Jingzhi Wang
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Panhong Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zilong Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Jin
- Department of Emergency, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Lei Liu
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Wending Li
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Peng
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuedan Xu
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhui Lin
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Gao
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limei Shi
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyue Geng
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuanwen Mu
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Degang Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaokun Qiu
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyong Sun
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xihong Lin
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Statistics, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xin Jin
- School of Medicine, South China University of Technology, Guangzhou, China.
| | - Feng Wang
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China.
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China.
| | - Chaolong Wang
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
33
|
The Forkhead Box Transcription Factor FoxP4 Regulates Thermogenic Programs in Adipocytes. J Lipid Res 2021; 62:100102. [PMID: 34384787 PMCID: PMC8411233 DOI: 10.1016/j.jlr.2021.100102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
Forkhead box transcription factors have been shown to be involved in various developmental and differentiation processes. In particular, members of the FoxP family have been previously characterized in depth for their participation in the regulation of lung and neuronal cell differentiation and T-cell development and function; however, their role in adipocyte functionality has not yet been investigated. Here, we report for the first time that Forkhead box P4 (FoxP4) is expressed at high levels in subcutaneous fat depots and mature thermogenic adipocytes. Through molecular and gene expression analyses, we revealed that FoxP4 is induced in response to thermogenic stimuli, both in vivo and in isolated cells, and is regulated directly by the heat shock factor protein 1 through a heat shock response element identified in the proximal promoter region of FoxP4. Further detailed analysis involving chromatin immunoprecipitation and luciferase assays demonstrated that FoxP4 directly controls the levels of uncoupling protein 1, a key regulator of thermogenesis that uncouples fatty acid oxidation from ATP production. In addition, through our gain-of-function and loss-of-function studies, we showed that FoxP4 regulates the expression of a number of classic brown and beige fat genes and affects oxygen consumption in isolated adipocytes. Overall, our data demonstrate for the first time the novel role of FoxP4 in the regulation of thermogenic adipocyte functionality.
Collapse
|
34
|
Benway CJ, Liu J, Guo F, Du F, Randell SH, Cho MH, Silverman EK, Zhou X. Chromatin Landscapes of Human Lung Cells Predict Potentially Functional Chronic Obstructive Pulmonary Disease Genome-Wide Association Study Variants. Am J Respir Cell Mol Biol 2021; 65:92-102. [PMID: 33788674 DOI: 10.1165/rcmb.2020-0475oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Genome-wide association studies (GWASs) have identified dozens of loci associated with risk of chronic obstructive pulmonary disease (COPD). However, identifying the causal variants and their functional role in the appropriate cell type remains a major challenge. We aimed to identify putative causal variants in 82 GWAS loci associated with COPD susceptibility and predict the regulatory impact of these variants in lung-cell types. We used an integrated approach featuring statistical fine mapping, open chromatin profiling, and machine learning to identify functional variants. We generated chromatin accessibility data using the Assay for Transposase-Accessible Chromatin with High-Throughput Sequencing (ATAC-seq) for human primary lung-cell types implicated in COPD pathobiology. We then evaluated the enrichment of COPD risk variants in lung-specific open chromatin regions and generated cell type-specific regulatory predictions for >6,500 variants corresponding to 82 COPD GWAS loci. Integration of the fine-mapped variants with lung open chromatin regions helped prioritize 22 variants in putative regulatory elements with potential functional effects. Comparison with functional predictions from 222 Encyclopedia of DNA Elements (ENCODE) cell samples revealed cell type-specific regulatory effects of COPD variants in the lung epithelium, endothelium, and immune cells. We identified potential causal variants for COPD risk by integrating fine mapping in GWAS loci with cell-specific regulatory profiling, highlighting the importance of leveraging the chromatin status in relevant cell types to predict the molecular effects of risk variants in lung disease.
Collapse
Affiliation(s)
| | | | - Feng Guo
- Channing Division of Network Medicine and
| | - Fei Du
- Channing Division of Network Medicine and
| | - Scott H Randell
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael H Cho
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Edwin K Silverman
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Xiaobo Zhou
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | | |
Collapse
|
35
|
Luo X, Schwartz J, Baccarelli A, Liu Z. Testing cell-type-specific mediation effects in genome-wide epigenetic studies. Brief Bioinform 2021; 22:bbaa131. [PMID: 32632436 PMCID: PMC8138838 DOI: 10.1093/bib/bbaa131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenome-wide mediation analysis aims to identify DNA methylation CpG sites that mediate the causal effects of genetic/environmental exposures on health outcomes. However, DNA methylations in the peripheral blood tissues are usually measured at the bulk level based on a heterogeneous population of white blood cells. Using the bulk level DNA methylation data in mediation analysis might cause confounding bias and reduce study power. Therefore, it is crucial to get fine-grained results by detecting mediation CpG sites in a cell-type-specific way. However, there is a lack of methods and software to achieve this goal. We propose a novel method (Mediation In a Cell-type-Specific fashion, MICS) to identify cell-type-specific mediation effects in genome-wide epigenetic studies using only the bulk-level DNA methylation data. MICS follows the standard mediation analysis paradigm and consists of three key steps. In step1, we assess the exposure-mediator association for each cell type; in step 2, we assess the mediator-outcome association for each cell type; in step 3, we combine the cell-type-specific exposure-mediator and mediator-outcome associations using a multiple testing procedure named MultiMed [Sampson JN, Boca SM, Moore SC, et al. FWER and FDR control when testing multiple mediators. Bioinformatics 2018;34:2418-24] to identify significant CpGs with cell-type-specific mediation effects. We conduct simulation studies to demonstrate that our method has correct FDR control. We also apply the MICS procedure to the Normative Aging Study and identify nine DNA methylation CpG sites in the lymphocytes that might mediate the effect of cigarette smoking on the lung function.
Collapse
Affiliation(s)
- Xiangyu Luo
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - Joel Schwartz
- Department of Environmental Health, Harvard University, Boston, MA, USA
| | - Andrea Baccarelli
- Leon Hess Professor in the Department of Environmental Health Sciences, Columbia University, New York City, NY, USA
| | - Zhonghua Liu
- Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
36
|
FOXP1 drives osteosarcoma development by repressing P21 and RB transcription downstream of P53. Oncogene 2021; 40:2785-2802. [PMID: 33716296 DOI: 10.1038/s41388-021-01742-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 01/31/2023]
Abstract
Osteosarcoma has a poor prognosis, and the poor understanding of the genetic drivers of osteosarcoma hinders further improvement in therapeutic approaches. Transcription factor forkhead box P1 (FOXP1) is a crucial modulator in skeletal development and aging. Here, we determined the role and regulatory mechanisms of FOXP1 in osteosarcoma. Higher FOXP1 expression correlated with malignancy in both osteosarcoma cell lines and clinical biopsies. FOXP1 overexpression and knockdown in osteosarcoma cell lines revealed that FOXP1 promoted proliferation, tumor sphere formation, migration and invasion, and inhibited anoikis. Mechanistically, FOXP1 acted as a repressor of P21 and RB (retinoblastoma protein) transcription, and directly interacted with the tumor suppressor p53 to inhibit its activity. Extracellular signal-regulated kinase/c-Jun N-terminal kinase (ERK/JNK) signaling and c-JUN/c-FOS transcription factors were found to be upstream activators of FOXP1. Moreover, FOXP1 silencing via lentivirus or adeno-associated virus (AAV)-mediated delivery of shRNA suppressed osteosarcoma development and progression in cell-derived and patient-derived xenograft animal models. Taken together, we demonstrate that FOXP1, which is transactivated by ERK/JNK-c-JUN/c-FOS, drives osteosarcoma development by regulating the p53-P21/RB signaling cascade, suggesting that FOXP1 is a potential target for osteosarcoma therapy.
Collapse
|
37
|
COVID-19 Host Genetics Initiative NiemiMari E. K.1KarjalainenJuha1LiaoRachel G.2http://orcid.org/0000-0003-1513-6077NealeBenjamin M.bneale@broadinstitute.org4DalyMarkmark.daly@helsinki.fi123GannaAndreaandrea.ganna@helsinki.fi123for the COVID-19 Host Genetics InitiativeLeadershipfor the Writing groupfor the Analysis groupfor the Project management groupDavisLea44LeeSulggi45PriestJames46RenieriAlessandra4765SankaranVijay G.49van HeelDavid50DeelenPatrick5152RichardsJ. Brent17535556NakanishiTomoko175657BieseckerLes59KerchbergerV. Eric44BaillieJ. Kenneth606162for the Phenotype steering groupMariFrancesca636465BernasconiAnna66BaillieStefano Ceri67CanakogluArif67for the Data dictionaryfor the Scientific communication groupfor the Website Developmentfor the 23andMefor the ACCOuNTfor the Amsterdam UMC COVID Study Groupfor the AncestryDNA COVID-19 Research Studyfor the BelCovidfor the Biobanque Quebec COVID-19for the BioVUfor the Bonn Study of COVID-19 Geneticsfor the CHRISfor the Colorado Center for Personalized Medicine (CCPM)for the Columbia University COVID-19 Biobankfor the Corea (Genetics of COVID-19-related Manifestation)for the COVID-19-Hostagefor the deCODEfor the Determining the Molecular Pathways & Genetic Predisposition of the Acute Inflammatory Process Caused by SARS-CoV-2for the FinnGenfor the Functional Host Genomics in Infectious Diseases (FHoGID)for the GCAT Genomes For Lifefor the GEN-COVID Multicenter Studyfor the Genes & Healthfor the Genes for Goodfor the Genetic determinants of COVID-19 complications in the Brazilian populationfor the Genetic influences on severity of COVID-19 illness in Koreafor the Genomic epidemiology of SARS-CoV-2host genetics in coronavirus disease 2019for the Genotek COVID-19 studyfor the Helix & Healthy Nevada Project Exome+ COVID-19 Phenotypesfor the 24Genetics & IdiPaz Genomic Variants associated to COVID-19 infection outcomefor the Japan Coronavirus Taskforcefor the Lifelinesfor the Lung eQTL Consortiumfor the Mass General Brigham-Host Vulnerability to COVID-19for the Michigan Genomics Initiative (MGI)for the Mount Sinai Health System COVID-19 Genomics Initiativefor the MyCode Health Initiativefor the Netherlands Twin Registerfor the Penn Medicine Biobankfor the Population controlsfor the Qatar Genome Programfor the Study of the COVID-19 host genetics in the population of Latviafor the The genetic predisposition to severe COVID-19for the UCLA Precision Health COVID-19 Host Genomics Biobankfor the UK 100,000 Genomes Project (Genomics England)for the UK Biobankfor the UK Blood Donors Cohortfor the VA Million Veteran Program (MVP)for the Val GardenaChangXiao1227GlessnerJoseph R.12271228HakonarsonHakon122712281229for the CHOP_CAGfor the GenOMICC/ISARIC4C. Mapping the human genetic architecture of COVID-19. Nature 2021; 600:472-477. [PMID: 34237774 PMCID: PMC8674144 DOI: 10.1038/s41586-021-03767-x] [Citation(s) in RCA: 390] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3-7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.
Collapse
|
38
|
Paris AJ, Hayer KE, Oved JH, Avgousti DC, Toulmin SA, Zepp JA, Zacharias WJ, Katzen JB, Basil MC, Kremp MM, Slamowitz AR, Jayachandran S, Sivakumar A, Dai N, Wang P, Frank DB, Eisenlohr LC, Cantu E, Beers MF, Weitzman MD, Morrisey EE, Worthen GS. STAT3-BDNF-TrkB signalling promotes alveolar epithelial regeneration after lung injury. Nat Cell Biol 2020; 22:1197-1210. [PMID: 32989251 PMCID: PMC8167437 DOI: 10.1038/s41556-020-0569-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/03/2020] [Indexed: 01/13/2023]
Abstract
Alveolar epithelial regeneration is essential for recovery from devastating lung diseases. This process occurs when type II alveolar pneumocytes (AT2 cells) proliferate and transdifferentiate into type I alveolar pneumocytes (AT1 cells). We used genome-wide analysis of chromatin accessibility and gene expression following acute lung injury to elucidate repair mechanisms. AT2 chromatin accessibility changed substantially following injury to reveal STAT3 binding motifs adjacent to genes that regulate essential regenerative pathways. Single-cell transcriptome analysis identified brain-derived neurotrophic factor (Bdnf) as a STAT3 target gene with newly accessible chromatin in a unique population of regenerating AT2 cells. Furthermore, the BDNF receptor tropomyosin receptor kinase B (TrkB) was enriched on mesenchymal alveolar niche cells (MANCs). Loss or blockade of AT2-specific Stat3, Bdnf or mesenchyme-specific TrkB compromised repair and reduced Fgf7 expression by niche cells. A TrkB agonist improved outcomes in vivo following lung injury. These data highlight the biological and therapeutic importance of the STAT3-BDNF-TrkB axis in orchestrating alveolar epithelial regeneration.
Collapse
Affiliation(s)
- Andrew J Paris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharina E Hayer
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph H Oved
- Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daphne C Avgousti
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sushila A Toulmin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jarod A Zepp
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William J Zacharias
- Division of Pulmonary Biology, Perinatal Institute, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeremy B Katzen
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria C Basil
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Madison M Kremp
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Sowmya Jayachandran
- Division of Cardiology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aravind Sivakumar
- Division of Cardiology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ning Dai
- Division of Neonatology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ping Wang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David B Frank
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Cardiology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laurence C Eisenlohr
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Edward Cantu
- Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael F Beers
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Edward E Morrisey
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Regenerative Medicine, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - G Scott Worthen
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Neonatology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Shen W, Sun B, Zhou C, Ming W, Zhang S, Wu X. CircFOXP1/FOXP1 promotes osteogenic differentiation in adipose-derived mesenchymal stem cells and bone regeneration in osteoporosis via miR-33a-5p. J Cell Mol Med 2020; 24:12513-12524. [PMID: 32996692 PMCID: PMC7687013 DOI: 10.1111/jcmm.15792] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/30/2020] [Indexed: 01/17/2023] Open
Abstract
Osteoporosis (OP) is defined by bone mass loss and structural bone deterioration. Currently, there are no effective therapies for OP treatment. Circular RNAs (circRNAs) have been reported to have an important function in stem cell osteogenesis and to be associated with OP. Most circRNA roles in OP remain unclear. In the present study, we employed circRNA microarray to investigate circRNA expression patterns in OP and non‐OP patient bone tissues. The circRNA‐miRNA‐mRNA interaction was predicted using bioinformatic analysis and confirmed by RNA FISH, RIP and dual‐luciferase reporter assays. ARS and ALP staining was used to detect the degree of osteogenic differentiation in human adipose‐derived mesenchymal stem cells (hASCs) in vitro. In vivo osteogenesis in hASCs encapsulated in collagen‐based hydrogels was tested with heterotopic bone formation assay in nude mice. Our research found that circFOXP1 was significantly down‐regulated in OP patient bone tissues and functioned like a miRNA sponge targeting miR‐33a‐5p to increase FOXP1 expression. In vivo and in vitro analyses showed that circFOXP1 enhances hASC osteogenesis by sponging miR‐33a‐5p. Conversely, miR‐33a‐5p inhibits osteogenesis by targeting FOXP1 3′‐UTR and down‐regulating FOXP1 expression. These results determined that circFOXP1 binding to miR‐33a‐5p promotes hASC osteogenic differentiation by targeting FOXP1. Therefore, circFOXP7ay prevent OP and can be used as a candidate OP therapeutic target.
Collapse
Affiliation(s)
- Wanxiang Shen
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Bin Sun
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Chenghong Zhou
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Wenyi Ming
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Shaohua Zhang
- Inspection Division, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang, Chinese Medical University, Zhejiang, China
| | - Xudong Wu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
40
|
Co M, Anderson AG, Konopka G. FOXP transcription factors in vertebrate brain development, function, and disorders. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2020; 9:e375. [PMID: 31999079 PMCID: PMC8286808 DOI: 10.1002/wdev.375] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
FOXP transcription factors are an evolutionarily ancient protein subfamily coordinating the development of several organ systems in the vertebrate body. Association of their genes with neurodevelopmental disorders has sparked particular interest in their expression patterns and functions in the brain. Here, FOXP1, FOXP2, and FOXP4 are expressed in distinct cell type-specific spatiotemporal patterns in multiple regions, including the cortex, hippocampus, amygdala, basal ganglia, thalamus, and cerebellum. These varied sites and timepoints of expression have complicated efforts to link FOXP1 and FOXP2 mutations to their respective developmental disorders, the former affecting global neural functions and the latter specifically affecting speech and language. However, the use of animal models, particularly those with brain region- and cell type-specific manipulations, has greatly advanced our understanding of how FOXP expression patterns could underlie disorder-related phenotypes. While many questions remain regarding FOXP expression and function in the brain, studies to date have illuminated the roles of these transcription factors in vertebrate brain development and have greatly informed our understanding of human development and disorders. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Marissa Co
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Ashley G Anderson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
41
|
Hou Y, Lee HJ, Chen Y, Ge J, Osman FOI, McAdow AR, Mokalled MH, Johnson SL, Zhao G, Wang T. Cellular diversity of the regenerating caudal fin. SCIENCE ADVANCES 2020; 6:eaba2084. [PMID: 32851162 PMCID: PMC7423392 DOI: 10.1126/sciadv.aba2084] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 06/26/2020] [Indexed: 05/03/2023]
Abstract
Zebrafish faithfully regenerate their caudal fin after amputation. During this process, both differentiated cells and resident progenitors migrate to the wound site and undergo lineage-restricted, programmed cellular state transitions to populate the new regenerate. Until now, systematic characterizations of cells comprising the new regenerate and molecular definitions of their state transitions have been lacking. We hereby characterize the dynamics of gene regulatory programs during fin regeneration by creating single-cell transcriptome maps of both preinjury and regenerating fin tissues at 1/2/4 days post-amputation. We consistently identified epithelial, mesenchymal, and hematopoietic populations across all stages. We found common and cell type-specific cell cycle programs associated with proliferation. In addition to defining the processes of epithelial replenishment and mesenchymal differentiation, we also identified molecular signatures that could better distinguish epithelial and mesenchymal subpopulations in fish. The insights for natural cell state transitions during regeneration point to new directions for studying this regeneration model.
Collapse
Affiliation(s)
- Yiran Hou
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Hyung Joo Lee
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Yujie Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jiaxin Ge
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Fujr Osman Ibrahim Osman
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Maryville University of St Louis, St. Louis, MO 63141, USA
| | - Anthony R. McAdow
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Mayssa H. Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Stephen L. Johnson
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63108, USA
- Corresponding author. (G.Z.); (T.W.)
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Corresponding author. (G.Z.); (T.W.)
| |
Collapse
|
42
|
WNT/RYK signaling restricts goblet cell differentiation during lung development and repair. Proc Natl Acad Sci U S A 2019; 116:25697-25706. [PMID: 31776260 DOI: 10.1073/pnas.1911071116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Goblet cell metaplasia and mucus hypersecretion are observed in many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the regulation of goblet cell differentiation remains unclear. Here, we identify a regulator of this process in an N-ethyl-N-nitrosourea (ENU) screen for modulators of postnatal lung development; Ryk mutant mice exhibit lung inflammation, goblet cell hyperplasia, and mucus hypersecretion. RYK functions as a WNT coreceptor, and, in the developing lung, we observed high RYK expression in airway epithelial cells and moderate expression in mesenchymal cells as well as in alveolar epithelial cells. From transcriptomic analyses and follow-up studies, we found decreased WNT/β-catenin signaling activity in the mutant lung epithelium. Epithelial-specific Ryk deletion causes goblet cell hyperplasia and mucus hypersecretion but not inflammation, while club cell-specific Ryk deletion in adult stages leads to goblet cell hyperplasia and mucus hypersecretion during regeneration. We also found that the airway epithelium of COPD patients often displays goblet cell metaplastic foci, as well as reduced RYK expression. Altogether, our findings reveal that RYK plays important roles in maintaining the balance between airway epithelial cell populations during development and repair, and that defects in RYK expression or function may contribute to the pathogenesis of human lung diseases.
Collapse
|
43
|
Liu P, Huang S, Ling S, Xu S, Wang F, Zhang W, Zhou R, He L, Xia X, Yao Z, Fan Y, Wang N, Hu C, Zhao X, Tucker HO, Wang J, Guo X. Foxp1 controls brown/beige adipocyte differentiation and thermogenesis through regulating β3-AR desensitization. Nat Commun 2019; 10:5070. [PMID: 31699980 PMCID: PMC6838312 DOI: 10.1038/s41467-019-12988-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/02/2019] [Indexed: 01/08/2023] Open
Abstract
β-Adrenergic receptor (β-AR) signaling is a pathway controlling adaptive thermogenesis in brown or beige adipocytes. Here we investigate the biological roles of the transcription factor Foxp1 in brown/beige adipocyte differentiation and thermogenesis. Adipose-specific deletion of Foxp1 leads to an increase of brown adipose activity and browning program of white adipose tissues. The Foxp1-deficient mice show an augmented energy expenditure and are protected from diet-induced obesity and insulin resistance. Consistently, overexpression of Foxp1 in adipocytes impairs adaptive thermogenesis and promotes diet-induced obesity. A robust change in abundance of the β3-adrenergic receptor (β3-AR) is observed in brown/beige adipocytes from both lines of mice. Molecularly, Foxp1 directly represses β3-AR transcription and regulates its desensitization behavior. Taken together, our findings reveal Foxp1 as a master transcriptional repressor of brown/beige adipocyte differentiation and thermogenesis, and provide an important clue for its targeting and treatment of obesity. Beta3-adrenergic receptor (b3-AR) signaling in response to cold activates adipose tissue thermogenesis. Here the authors identify the transcription factor FoxP1 as a direct negative regulator of b3-AR expression and show that loss of FoxP1 leads to enhanced development of thermogenic adipose tissue.
Collapse
Affiliation(s)
- Pei Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Sixia Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shifeng Ling
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuqin Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fuhua Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rujiang Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuechun Xia
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengju Yao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Fan
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Congxia Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haley O Tucker
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xizhi Guo
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
44
|
Sengupta S, Tang SY, Devine JC, Anderson ST, Nayak S, Zhang SL, Valenzuela A, Fisher DG, Grant GR, López CB, FitzGerald GA. Circadian control of lung inflammation in influenza infection. Nat Commun 2019; 10:4107. [PMID: 31511530 PMCID: PMC6739310 DOI: 10.1038/s41467-019-11400-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Influenza is a leading cause of respiratory mortality and morbidity. While inflammation is essential for fighting infection, a balance of anti-viral defense and host tolerance is necessary for recovery. Circadian rhythms have been shown to modulate inflammation. However, the importance of diurnal variability in the timing of influenza infection is not well understood. Here we demonstrate that endogenous rhythms affect survival in influenza infection. Circadian control of influenza infection is mediated by enhanced inflammation as proven by increased cellularity in bronchoalveolar lavage (BAL), pulmonary transcriptomic profile and histology and is not attributable to viral burden. Better survival is associated with a time dependent preponderance of NK and NKT cells and lower proportion of inflammatory monocytes in the lung. Further, using a series of genetic mouse mutants, we elucidate cellular mechanisms underlying circadian gating of influenza infection.
Collapse
Affiliation(s)
- Shaon Sengupta
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Soon Y Tang
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Systems Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jill C Devine
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Seán T Anderson
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Systems Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Soumyashant Nayak
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Shirley L Zhang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Alex Valenzuela
- University of Pennsylvania Veterinary School, Philadelphia, PA, 19104, USA
| | - Devin G Fisher
- University of Pennsylvania Veterinary School, Philadelphia, PA, 19104, USA
| | - Gregory R Grant
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Carolina B López
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- University of Pennsylvania Veterinary School, Philadelphia, PA, 19104, USA
| | - Garret A FitzGerald
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Systems Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
45
|
Deciphering Cell Lineage Specification during Male Sex Determination with Single-Cell RNA Sequencing. Cell Rep 2019; 22:1589-1599. [PMID: 29425512 DOI: 10.1016/j.celrep.2018.01.043] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/21/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
The gonad is a unique biological system for studying cell-fate decisions. However, major questions remain regarding the identity of somatic progenitor cells and the transcriptional events driving cell differentiation. Using time-series single-cell RNA sequencing on XY mouse gonads during sex determination, we identified a single population of somatic progenitor cells prior to sex determination. A subset of these progenitors differentiates into Sertoli cells, a process characterized by a highly dynamic genetic program consisting of sequential waves of gene expression. Another subset of multipotent cells maintains their progenitor state but undergoes significant transcriptional changes restricting their competence toward a steroidogenic fate required for the differentiation of fetal Leydig cells. Our findings confirm the presence of a unique multipotent progenitor population in the gonadal primordium that gives rise to both supporting and interstitial lineages. These also provide the most granular analysis of the transcriptional events occurring during testicular cell-fate commitment.
Collapse
|
46
|
Yuan T, Volckaert T, Redente EF, Hopkins S, Klinkhammer K, Wasnick R, Chao CM, Yuan J, Zhang JS, Yao C, Majka S, Stripp BR, Günther A, Riches DWH, Bellusci S, Thannickal VJ, De Langhe SP. FGF10-FGFR2B Signaling Generates Basal Cells and Drives Alveolar Epithelial Regeneration by Bronchial Epithelial Stem Cells after Lung Injury. Stem Cell Reports 2019; 12:1041-1055. [PMID: 31056475 PMCID: PMC6524168 DOI: 10.1016/j.stemcr.2019.04.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 01/26/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a common form of interstitial lung disease resulting in alveolar remodeling and progressive loss of pulmonary function because of chronic alveolar injury and failure to regenerate the respiratory epithelium. Histologically, fibrotic lesions and honeycomb structures expressing atypical proximal airway epithelial markers replace alveolar structures, the latter normally lined by alveolar type 1 (AT1) and AT2 cells. Bronchial epithelial stem cells (BESCs) can give rise to AT2 and AT1 cells or honeycomb cysts following bleomycin-mediated lung injury. However, little is known about what controls this binary decision or whether this decision can be reversed. Here we report that inactivation of Fgfr2b in BESCs impairs their contribution to both alveolar epithelial regeneration and honeycomb cysts after bleomycin injury. By contrast overexpression of Fgf10 in BESCs enhances fibrosis resolution by favoring the more desirable outcome of alveolar epithelial regeneration over the development of pathologic honeycomb cysts. Bronchial epithelial stem cells are required for alveolar epithelial regeneration Fgf10-Fgfr2b signaling is required for alveolar type 2 stem cell maintenance Fgfr2b signaling drives alveolar epithelial regeneration by BESCs Fgf10-Fgfr2b promotes basal cell to alveolar type 2 cell differentiation
Collapse
Affiliation(s)
- Tingting Yuan
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, THT 422, 1720 2nd Avenue S., Birmingham, 35294-2182 AL, USA
| | - Thomas Volckaert
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, THT 422, 1720 2nd Avenue S., Birmingham, 35294-2182 AL, USA
| | - Elizabeth F Redente
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, CO 80206, USA; Denver Veteran Affairs Medical Center, Denver, CO 80206, USA
| | - Seantel Hopkins
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, THT 422, 1720 2nd Avenue S., Birmingham, 35294-2182 AL, USA
| | - Kylie Klinkhammer
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, THT 422, 1720 2nd Avenue S., Birmingham, 35294-2182 AL, USA
| | - Roxana Wasnick
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, 35392 Giessen, Germany
| | - Cho-Ming Chao
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, 35392 Giessen, Germany
| | - Jie Yuan
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, THT 422, 1720 2nd Avenue S., Birmingham, 35294-2182 AL, USA
| | - Jin-San Zhang
- School of Pharmaceutical Sciences, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Changfu Yao
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Susan Majka
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Barry R Stripp
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andreas Günther
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, 35392 Giessen, Germany
| | - David W H Riches
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, CO 80206, USA; Denver Veteran Affairs Medical Center, Denver, CO 80206, USA
| | - Saverio Bellusci
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, 35392 Giessen, Germany
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, THT 422, 1720 2nd Avenue S., Birmingham, 35294-2182 AL, USA
| | - Stijn P De Langhe
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, THT 422, 1720 2nd Avenue S., Birmingham, 35294-2182 AL, USA.
| |
Collapse
|
47
|
Bush A, Griese M, Seidl E, Kerem E, Reu S, Nicholson AG. Early onset children's interstitial lung diseases: Discrete entities or manifestations of pulmonary dysmaturity? Paediatr Respir Rev 2019; 30:65-71. [PMID: 30552058 DOI: 10.1016/j.prrv.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 12/18/2022]
Abstract
Interstitial lung diseases in children (chILD) are rare and diverse. The current classifications include a group of early onset chILD specific to infancy, namely neuro-endocrine cell hyperplasia of infancy (NEHI), pulmonary interstitial glycogenosis (PIG) and the alveolar capillary-congenital acinar dysplasia (ACD-CAD) spectrum, as well as alveolar growth disorders. NEHI and PIG cells are seen in the normal developing foetal lung. We hypothesise that these conditions are in fact overlapping manifestations of pulmonary dysmaturity, respectively of airway, mesenchymal and vascular elements, rather than discrete clinical conditions in their own right. Clinically, these present as respiratory distress in early life. Mild cases rightly never undergo lung biopsy, and for these the clinical description 'persistent tachypnoea of infancy' has been proposed. In terms of pathology, we reviewed current literature, which showed that NEHI cells decline with age, and are not specific to NEHI, which we confirmed by unpublished re-analysis of a second dataset. Furthermore, specific genetic disorders which affect pulmonary maturation lead to a histological picture indistinguishable from NEHI. PIG and ACD-CAD are also associated with pulmonary growth disorders, and manifestations of PIG and NEHI may be present in the same child. We conclude that, contrary to current classifications, NEHI, PIG, and ACD-CAD should be considered as overlapping manifestations of pulmonary dysmaturation, frequently associated with disorders of alveolar growth, rather than as separate conditions. Identification of one of these patterns should be the start, not the end of the diagnostic journey, and underlying in particular genetic causes should be sought.
Collapse
Affiliation(s)
- Andrew Bush
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital and Imperial College, London UK.
| | - Matthias Griese
- Dr. von Hauner Children's Hospital, Division of Pediatric Pneumology, University Hospital Munich & Geerman Center for Lung Research (DZL), Lindwurmstr. 4, 80337 München, Germany
| | - Elias Seidl
- Department of Pediatric Pneumology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Eitan Kerem
- Department of Paediatrics and Paediatric Pulmonology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Simone Reu
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| | - Andrew G Nicholson
- Department of Histopathology, Royal Brompton & Harefield NHS Foundation Trust and National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
48
|
Wang D, Xu Q, Yuan Q, Jia M, Niu H, Liu X, Zhang J, Young CY, Yuan H. Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab. Oncogene 2019; 38:3458-3474. [PMID: 30647455 PMCID: PMC6756021 DOI: 10.1038/s41388-019-0675-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/24/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022]
Abstract
Anterior gradient 2 (AGR2), a protein belonging to the protein disulfide isomerase (PDI) family, is overexpressed in multiple cancers and promotes angiogenesis to drive cancer progression. The mechanisms controlling AGR2 abundance in cancer remain largely unknown. Here, we observed that AGR2 expression is significantly suppressed by proteasome inhibitor MG132/bortezomib at mRNA and protein levels in lung cancer cells. MG132-mediated repression of AGR2 transcription was independent of ROS generation and ER stress induction, but partially resulted from the downregulated E2F1. Further investigation revealed that MG132 facilitated polyubiquitinated AGR2 degradation through activation of autophagy, as evidenced by predominant restoration of AGR2 level in cells genetic depletion of Atg5 and Atg7, or by autophagy inhibitors. Activation of autophagy by rapamycin noticeably reduced the AGR2 protein in cells and in the mouse tissue samples administrated with bortezomib. We also provided evidence identifying the K48-linked polyubiquitin chains conjugating onto K89 of AGR2 by an E3 ligase UBR5. In addition, an autophagy receptor NBR1 was demonstrated to be important in polyubiquitinated AGR2 clearance in response to MG132 or bortezomib. Importantly, downregulation of AGR2 by proteasome inhibition significantly enhanced antitumor activity of bevacizumab, highlighting the importance of AGR2 as a predictive marker for selection of subgroup patients in chemotherapy.
Collapse
Affiliation(s)
- Dawei Wang
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Qingqing Xu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Quan Yuan
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Mengqi Jia
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Huanmin Niu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Xiaofei Liu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Jinsan Zhang
- Department of Urology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Charles Yf Young
- Department of Urology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Huiqing Yuan
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China.
| |
Collapse
|
49
|
Characterization of a recurrent missense mutation in the forkhead DNA-binding domain of FOXP1. Sci Rep 2018; 8:16161. [PMID: 30385778 PMCID: PMC6212433 DOI: 10.1038/s41598-018-34437-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022] Open
Abstract
Haploinsufficiency of Forkhead box protein P1 (FOXP1), a highly conserved transcription factor, leads to developmental delay, intellectual disability, autism spectrum disorder, speech delay, and dysmorphic features. Most of the reported FOXP1 mutations occur on the C-terminus of the protein and cluster around to the forkhead domain. All reported FOXP1 pathogenic variants result in abnormal cellular localization and loss of transcriptional repression activity of the protein product. Here we present three patients with the same FOXP1 mutation, c.1574G>A (p.R525Q), that results in the characteristic loss of transcription repression activity. This mutation, however, represents the first reported FOXP1 mutation that does not result in cytoplasmic or nuclear aggregation of the protein but maintains normal nuclear localization.
Collapse
|
50
|
Talbot NC, Krasnec KV, Garrett WM, Shannon AE, Long JA. Finite cell lines of turkey sperm storage tubule cells: ultrastructure and protein analysis. Poult Sci 2018; 97:3698-3708. [PMID: 29860518 PMCID: PMC7107167 DOI: 10.3382/ps/pey208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/22/2018] [Indexed: 12/03/2022] Open
Abstract
Cell lines of turkey sperm storage tubule (SST) epithelial cells were established. Turkey SSTs were dissected from freshly obtained uterovaginal junction (UVJ) tissue and placed in explant culture on various substrates and media. Primary cultures of SST epithelium only survived and grew from SST explants that were cultured on inactivated Sandoz inbred strain, thioguanine- and ouabain-resistance (STO) mouse feeder-cell layers in 12% fetal bovine serum-supplemented Dulbecco's Modified Eagle Medium mixed 1:1 with F12 nutrient mixture. Three independent primary colonies gave rise to 3 finite cell lines, SST-1, -2, and -3, which were continuously cultured for 8 to 16 passages at 1:3 passage ratios over a period of 3 to 4 mo. The cells were passaged by pretreatment with Y27632 and dissociation with Accutase. The SST cells grew as tightly knit monolayers on top of the feeder cells at a slow rate (approximately 96 h doubling time) at a medium pH of approximately 6.9. Lipid vacuoles were visible by light microscopy in the cells particularly at the periphery of growth. Transmission electron microscopy revealed the cells to be a polarized epithelium with apical microvilli and to have lateral tight-junction-like unions and associated desmosomes. Numerous secretory vesicles filled the upper portion of the cells’ cytoplasm, and nuclei and other major organelles such as mitochondria, rough endoplasmic reticulum, and Golgi apparatus were distributed somewhat lower in the cytoplasm. The secretory vesicles resembled mucin secretory vesicles. Proteomic analysis by mass spectroscopy of the conditioned medium of the cells, and of the cells themselves, showed the cell lines did not secrete large amounts of any particular protein, and the analysis confirmed their epithelial character. In conclusion, the SST-derived cell lines resembled the mucus-secreting cells found in the epithelium lining the UVJ of the turkey's reproductive tract.
Collapse
Affiliation(s)
- Neil C Talbot
- USDA, ARS, BARC, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Katina V Krasnec
- USDA, ARS, BARC, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Wesley M Garrett
- USDA, ARS, BARC, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Amy E Shannon
- USDA, ARS, BARC, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Julie A Long
- USDA, ARS, BARC, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| |
Collapse
|