1
|
Angom RS, Singh M, Muhammad H, Varanasi SM, Mukhopadhyay D. Zebrafish as a Versatile Model for Cardiovascular Research: Peering into the Heart of the Matter. Cells 2025; 14:531. [PMID: 40214485 PMCID: PMC11988917 DOI: 10.3390/cells14070531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the world. A total of 17.5 million people died of CVDs in the year 2012, accounting for 31% of all deaths globally. Vertebrate animal models have been used to understand cardiac disease biology, as the cellular, molecular, and physiological aspects of human CVDs can be replicated closely in these organisms. Zebrafish is a popular model organism offering an arsenal of genetic tools that allow the rapid in vivo analysis of vertebrate gene function and disease conditions. It has a short breeding cycle, high fecundity, optically transparent embryos, rapid internal organ development, and easy maintenance. This review aims to give readers an overview of zebrafish cardiac biology and a detailed account of heart development in zebrafish and its comparison with humans and the conserved genetic circuitry. We also discuss the contributions made in CVD research using the zebrafish model. The first part of this review focuses on detailed information on the morphogenetic and differentiation processes in early cardiac development. The overlap and divergence of the human heart's genetic circuitry, structure, and physiology are emphasized wherever applicable. In the second part of the review, we overview the molecular tools and techniques available to dissect gene function and expression in zebrafish, with special mention of the use of these tools in cardiac biology.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Meghna Singh
- Department of Pathology and Lab Medicine, University of California, Los Angeles, CA 92093, USA;
| | - Huzaifa Muhammad
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| |
Collapse
|
2
|
Liang J, Jiang P, Yan S, Cheng T, Chen S, Xian K, Xu P, Xiong JW, He A, Li J, Han P. Genetically encoded tension heterogeneity sculpts cardiac trabeculation. SCIENCE ADVANCES 2025; 11:eads2998. [PMID: 40053597 PMCID: PMC11887796 DOI: 10.1126/sciadv.ads2998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
The myocardial wall arises from a single layer of cardiomyocytes, some delaminate to create trabeculae while others remain in the compact layer. However, the mechanisms governing cardiomyocyte fate decisions remain unclear. Using single-cell RNA sequencing, genetically encoded biosensors, and in toto live imaging, we observe intrinsic variations in erbb2 expression and its association with trabecular fate. Specifically, erbb2 promotes PI3K activity and recruits the Arp2/3 complex, inducing a polarized accumulation of the actomyosin network to drive cell delamination. Subsequently, the lineage-committed nascent trabeculae trigger Notch activity in neighboring cardiomyocytes to suppress erbb2 expression and reduce cell tension, thereby confining them to the compact layer. Overall, this genetic and cellular interplay governs compact and trabecular cell fate determination to orchestrate myocardial pattern formation.
Collapse
Affiliation(s)
- Jinxiu Liang
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peijun Jiang
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuaifang Yan
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Tao Cheng
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuo Chen
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kexin Xian
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Pengfei Xu
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Aibin He
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jia Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peidong Han
- Department of Cardiology, Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Mitra A, Mandal S, Banerjee K, Ganguly N, Sasmal P, Banerjee D, Gupta S. Cardiac Regeneration in Adult Zebrafish: A Review of Signaling and Metabolic Coordination. Curr Cardiol Rep 2025; 27:15. [PMID: 39792206 DOI: 10.1007/s11886-024-02162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE OF REVIEW This review investigates how post-injury cellular signaling and energy metabolism are two pivotal points in zebrafish's cardiomyocyte cell cycle re-entry and proliferation. It seeks to highlight the probable mechanism of action in proliferative cardiomyocytes compared to mammals and identify gaps in the current understanding of metabolic regulation of cardiac regeneration. RECENT FINDINGS Metabolic substrate changes after birth correlate with reduced cardiomyocyte proliferation in mammals. Unlike adult mammalian hearts, zebrafish can regenerate cardiomyocytes by re-entering the cell cycle, characterized by a metabolic switch from oxidative metabolism to increased glycolysis. Zebrafish provide a valuable model for studying metabolic regulation during cell cycle re-entry and cardiac regeneration. Proliferative cardiomyocytes have upregulated Notch, hippo, and Wnt signaling and decreased ROS generation, DNA damage in different zebrafish cardiac regeneration models. Understanding the correlation between metabolic switches during cell cycle re-entry of already differentiated zebrafish cardiomyocytes is being increasingly recognized as a critical factor in heart regeneration. Zebrafish studies provide insights into metabolic adaptations during heart regeneration, emphasizing the importance of a metabolic switch. However, there are mechanistic gaps, and extensive studies are required to aid in formulating therapeutic strategies for cardiac regenerative medicine.
Collapse
Affiliation(s)
- Arkadeep Mitra
- Department of Zoology, City College, 102/1, Raja Rammohan Sarani, Kolkata, 700009, West Bengal, India
| | - Subhadeep Mandal
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Kalyan Banerjee
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Nilanjan Ganguly
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Pramit Sasmal
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Durba Banerjee
- Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St, Seattle, WA, 98109, USA.
| | - Shreyasi Gupta
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India.
| |
Collapse
|
4
|
Zhao Y, Lv H, Yu C, Liang J, Yu H, Du Z, Zhang R. Systemic inhibition of mitochondrial fatty acid β-oxidation impedes zebrafish ventricle regeneration. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167442. [PMID: 39059593 DOI: 10.1016/j.bbadis.2024.167442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/07/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Unlike humans and other mammals, zebrafish demonstrate a remarkable capacity to regenerate their injured hearts throughout life. Mitochondrial fatty acid β-oxidation (FAO) contributes to major energy demands of the adult hearts under physiological conditions; however, its functions in regulating cardiac regeneration and the underlying mechanisms are not completely understood. Different strategies targeting FAO have yield mixed outcomes. Here, we demonstrated that pharmacological inhibition of mitochondrial FAO with mildronate (MD) caused lipid accumulation in zebrafish larvae and suppressed ventricle regeneration. MD treatment impeded cardiogenic factor reactivation and cardiomyocyte (CM) proliferation, and impaired ventricle regeneration could be rescued by exogenous l-carnitine supplementation. Moreover, compared with the ablated hearts of wild-type fish, ventricle regeneration, cardiogenic factor reactivation and CM proliferation were significantly blocked in the ablated hearts of carnitine palmitoyltransferase-1b (cpt1b) knockout zebrafish. Further experiments suggested that NF-κB signaling and increased inflammation may be involved in the impediment of ventricle regeneration caused by systemic mitochondrial FAO inhibition. Overall, our study demonstrates the essential roles of mitochondrial FAO in zebrafish ventricle regeneration and reaffirms the sophisticated and multifaceted roles of FAO in heart regeneration with regard to different injury models and means of FAO inhibition.
Collapse
Affiliation(s)
- Yan Zhao
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Hongbo Lv
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Chunxiao Yu
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Jieling Liang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Hong Yu
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Zhenyu Du
- School of Life Sciences, East China Normal University, Shanghai, China.
| | - Ruilin Zhang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
5
|
Wong D, Martinez J, Quijada P. Exploring the Function of Epicardial Cells Beyond the Surface. Circ Res 2024; 135:353-371. [PMID: 38963865 PMCID: PMC11225799 DOI: 10.1161/circresaha.124.321567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The epicardium, previously viewed as a passive outer layer around the heart, is now recognized as an essential component in development, regeneration, and repair. In this review, we explore the cellular and molecular makeup of the epicardium, highlighting its roles in heart regeneration and repair in zebrafish and salamanders, as well as its activation in young and adult postnatal mammals. We also examine the latest technologies used to study the function of epicardial cells for therapeutic interventions. Analysis of highly regenerative animal models shows that the epicardium is essential in regulating cardiomyocyte proliferation, transient fibrosis, and neovascularization. However, despite the epicardium's unique cellular programs to resolve cardiac damage, it remains unclear how to replicate these processes in nonregenerative mammalian organisms. During myocardial infarction, epicardial cells secrete signaling factors that modulate fibrotic, vascular, and inflammatory remodeling, which differentially enhance or inhibit cardiac repair. Recent transcriptomic studies have validated the cellular and molecular heterogeneity of the epicardium across various species and developmental stages, shedding further light on its function under pathological conditions. These studies have also provided insights into the function of regulatory epicardial-derived signaling molecules in various diseases, which could lead to new therapies and advances in reparative cardiovascular medicine. Moreover, insights gained from investigating epicardial cell function have initiated the development of novel techniques, including using human pluripotent stem cells and cardiac organoids to model reparative processes within the cardiovascular system. This growing understanding of epicardial function holds the potential for developing innovative therapeutic strategies aimed at addressing developmental heart disorders, enhancing regenerative therapies, and mitigating cardiovascular disease progression.
Collapse
Affiliation(s)
- David Wong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90029
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, CA 90029
| | - Julie Martinez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90029
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, CA 90029
| | - Pearl Quijada
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90029
- Eli and Edythe Broad Stem Research Center, University of California, Los Angeles, CA 90029
- Molecular Biology Institute, University of California, Los Angeles, CA 90029
| |
Collapse
|
6
|
Apolínová K, Pérez FA, Dyballa S, Coppe B, Mercader Huber N, Terriente J, Di Donato V. ZebraReg-a novel platform for discovering regulators of cardiac regeneration using zebrafish. Front Cell Dev Biol 2024; 12:1384423. [PMID: 38799508 PMCID: PMC11116629 DOI: 10.3389/fcell.2024.1384423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide with myocardial infarction being the most prevalent. Currently, no cure is available to either prevent or revert the massive death of cardiomyocytes that occurs after a myocardial infarction. Adult mammalian hearts display a limited regeneration capacity, but it is insufficient to allow complete myocardial recovery. In contrast, the injured zebrafish heart muscle regenerates efficiently through robust proliferation of pre-existing myocardial cells. Thus, zebrafish allows its exploitation for studying the genetic programs behind cardiac regeneration, which may be present, albeit dormant, in the adult human heart. To this end, we have established ZebraReg, a novel and versatile automated platform for studying heart regeneration kinetics after the specific ablation of cardiomyocytes in zebrafish larvae. In combination with automated heart imaging, the platform can be integrated with genetic or pharmacological approaches and used for medium-throughput screening of presumed modulators of heart regeneration. We demonstrate the versatility of the platform by identifying both anti- and pro-regenerative effects of genes and drugs. In conclusion, we present a tool which may be utilised to streamline the process of target validation of novel gene regulators of regeneration, and the discovery of new drug therapies to regenerate the heart after myocardial infarction.
Collapse
Affiliation(s)
- Kateřina Apolínová
- ZeClinics SL, Barcelona, Spain
- Biomedicine, Department of Medicine and Life Sciences, Faculty of Health and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | | | | | - Benedetta Coppe
- Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland
- Department for Biomedical Research DBMR, University of Bern, Bern, Switzerland
| | - Nadia Mercader Huber
- Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland
- Department for Biomedical Research DBMR, University of Bern, Bern, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid, Spain
| | | | | |
Collapse
|
7
|
Cordero J, Elsherbiny A, Wang Y, Jürgensen L, Constanty F, Günther S, Boerries M, Heineke J, Beisaw A, Leuschner F, Hassel D, Dobreva G. Leveraging chromatin state transitions for the identification of regulatory networks orchestrating heart regeneration. Nucleic Acids Res 2024; 52:4215-4233. [PMID: 38364861 PMCID: PMC11077086 DOI: 10.1093/nar/gkae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
The limited regenerative capacity of the human heart contributes to high morbidity and mortality worldwide. In contrast, zebrafish exhibit robust regenerative capacity, providing a powerful model for studying how to overcome intrinsic epigenetic barriers maintaining cardiac homeostasis and initiate regeneration. Here, we present a comprehensive analysis of the histone modifications H3K4me1, H3K4me3, H3K27me3 and H3K27ac during various stages of zebrafish heart regeneration. We found a vast gain of repressive chromatin marks one day after myocardial injury, followed by the acquisition of active chromatin characteristics on day four and a transition to a repressive state on day 14, and identified distinct transcription factor ensembles associated with these events. The rapid transcriptional response involves the engagement of super-enhancers at genes implicated in extracellular matrix reorganization and TOR signaling, while H3K4me3 breadth highly correlates with transcriptional activity and dynamic changes at genes involved in proteolysis, cell cycle activity, and cell differentiation. Using loss- and gain-of-function approaches, we identified transcription factors in cardiomyocytes and endothelial cells influencing cardiomyocyte dedifferentiation or proliferation. Finally, we detected significant evolutionary conservation between regulatory regions that drive zebrafish and neonatal mouse heart regeneration, suggesting that reactivating transcriptional and epigenetic networks converging on these regulatory elements might unlock the regenerative potential of adult human hearts.
Collapse
Affiliation(s)
- Julio Cordero
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Adel Elsherbiny
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yinuo Wang
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lonny Jürgensen
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Florian Constanty
- Institute of Experimental Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Stefan Günther
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, 69110 Heidelberg, Germany
| | - Joerg Heineke
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Arica Beisaw
- Institute of Experimental Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Florian Leuschner
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - David Hassel
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Chi C, Roland TJ, Song K. Differentiation of Pluripotent Stem Cells for Disease Modeling: Learning from Heart Development. Pharmaceuticals (Basel) 2024; 17:337. [PMID: 38543122 PMCID: PMC10975450 DOI: 10.3390/ph17030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
Heart disease is a pressing public health problem and the leading cause of death worldwide. The heart is the first organ to gain function during embryogenesis in mammals. Heart development involves cell determination, expansion, migration, and crosstalk, which are orchestrated by numerous signaling pathways, such as the Wnt, TGF-β, IGF, and Retinoic acid signaling pathways. Human-induced pluripotent stem cell-based platforms are emerging as promising approaches for modeling heart disease in vitro. Understanding the signaling pathways that are essential for cardiac development has shed light on the molecular mechanisms of congenital heart defects and postnatal heart diseases, significantly advancing stem cell-based platforms to model heart diseases. This review summarizes signaling pathways that are crucial for heart development and discusses how these findings improve the strategies for modeling human heart disease in vitro.
Collapse
Affiliation(s)
- Congwu Chi
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Truman J. Roland
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Kunhua Song
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| |
Collapse
|
9
|
Gu J, You J, Liang H, Zhan J, Gu X, Zhu Y. Engineered bone marrow mesenchymal stem cell-derived exosomes loaded with miR302 through the cardiomyocyte specific peptide can reduce myocardial ischemia and reperfusion (I/R) injury. J Transl Med 2024; 22:168. [PMID: 38368334 PMCID: PMC10874538 DOI: 10.1186/s12967-024-04981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND MicroRNA (miRNA)-based therapies have shown great potential in myocardial repair following myocardial infarction (MI). MicroRNA-302 (miR302) has been reported to exert a protective effect on MI. However, miRNAs are easily degraded and ineffective in penetrating cells, which limit their clinical applications. Exosomes, which are small bioactive molecules, have been considered as an ideal vehicle for miRNAs delivery due to their cell penetration, low immunogenicity and excellent stability potential. Herein, we explored cardiomyocyte-targeting exosomes as vehicles for delivery of miR302 into cardiomyocyte to potentially treat MI. METHODS To generate an efficient exosomal delivery system that can target cardiomyocytes, we engineered exosomes with cardiomyocyte specific peptide (CMP, WLSEAGPVVTVRALRGTGSW). Afterwards, the engineered exosomes were characterized and identified using transmission electron microscope (TEM) and Nanoparticle Tracking Analysis (NTA). Later on, the miR302 mimics were loaded into the engineered exosomes via electroporation technique. Subsequently, the effect of the engineered exosomes on myocardial ischemia and reperfusion (I/R) injury was evaluated in vitro and in vivo, including MTT, ELISA, real-time quantitative polymerase chain reaction (PCR), western blot, TUNNEL staining, echocardiogram and hematoxylin and eosin (HE) staining. RESULTS Results of in vitro experimentation showed that DSPE-PEG-CMP-EXO could be more efficiently internalized by H9C2 cells than unmodified exosomes (blank-exosomes). Importantly, compared with the DSPE-PEG-CMP-EXO group, DSPE-PEG-CMP-miR302-EXO significantly upregulated the expression of miR302, while exosomes loaded with miR302 could enhance proliferation of H9C2 cells. Western blot results showed that the DSPE-PEG-CMP-miR302-EXO significantly increased the protein level of Ki67 and Yap, which suggests that DSPE-PEG-CMP-miR302-EXO enhanced the activity of Yap, the principal downstream effector of Hippo pathway. In vivo, DSPE-PEG-CMP-miR302-EXO improved cardiac function, attenuated myocardial apoptosis and inflammatory response, as well as reduced infarct size significantly. CONCLUSION In conclusion, our findings suggest that CMP-engineered exosomes loaded with miR302 was internalized by H9C2 cells, an in vitro model for cardiomyocytes coupled with potential enhancement of the therapeutic effects on myocardial I/R injury.
Collapse
Affiliation(s)
- Jianjun Gu
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, 98 Nantong West Road, Yangzhou, Jiangsu, China
| | - Jia You
- Department of Internal Medicine, Yangzhou Maternal and Child Health Care Hospital, Yangzhou, 225001, Jiangsu, China
| | - Hao Liang
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, 98 Nantong West Road, Yangzhou, Jiangsu, China
| | - Jiacai Zhan
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, 98 Nantong West Road, Yangzhou, Jiangsu, China
| | - Xiang Gu
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, 98 Nantong West Road, Yangzhou, Jiangsu, China
| | - Ye Zhu
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
- Department of Cardiology, Northern Jiangsu People's Hospital, 98 Nantong West Road, Yangzhou, Jiangsu, China.
| |
Collapse
|
10
|
Weinberger M, Simões FC, Gungoosingh T, Sauka-Spengler T, Riley PR. Distinct epicardial gene regulatory programs drive development and regeneration of the zebrafish heart. Dev Cell 2024; 59:351-367.e6. [PMID: 38237592 DOI: 10.1016/j.devcel.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/12/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
Unlike the adult mammalian heart, which has limited regenerative capacity, the zebrafish heart fully regenerates following injury. Reactivation of cardiac developmental programs is considered key to successfully regenerating the heart, yet the regulation underlying the response to injury remains elusive. Here, we compared the transcriptome and epigenome of the developing and regenerating zebrafish epicardia. We identified epicardial enhancer elements with specific activity during development or during adult heart regeneration. By generating gene regulatory networks associated with epicardial development and regeneration, we inferred genetic programs driving each of these processes, which were largely distinct. Loss of Hif1ab, Nrf1, Tbx2b, and Zbtb7a, central regulators of the regenerating epicardial network, in injured hearts resulted in elevated epicardial cell numbers infiltrating the wound and excess fibrosis after cryoinjury. Our work identifies differences between the regulatory blueprint deployed during epicardial development and regeneration, underlining that heart regeneration goes beyond the reactivation of developmental programs.
Collapse
Affiliation(s)
- Michael Weinberger
- Department of Physiology, Anatomy and Genetics, Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford OX3 7TY, Oxfordshire, UK; Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, Oxfordshire, UK
| | - Filipa C Simões
- Department of Physiology, Anatomy and Genetics, Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford OX3 7TY, Oxfordshire, UK
| | - Trishalee Gungoosingh
- Department of Physiology, Anatomy and Genetics, Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford OX3 7TY, Oxfordshire, UK
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, Oxfordshire, UK; Stowers Institute for Medical Research, Kansas City, MO, USA.
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford OX3 7TY, Oxfordshire, UK.
| |
Collapse
|
11
|
Schuster KJ, Christiaen L. The Chordate Origins of Heart Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558507. [PMID: 37781597 PMCID: PMC10541106 DOI: 10.1101/2023.09.19.558507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The human heart is infamous for not healing after infarction in adults, prompting biomedical interest in species that can regenerate damaged hearts. In such animals as zebrafish and neonatal mice, cardiac repair relies on remaining heart tissue supporting cardiomyocyte proliferation. Natural de novo cardiogenesis in post-embryonic stages thus remains elusive. Here we show that the tunicate Ciona, an ascidian among the closest living relatives to the vertebrates, can survive complete chemogenetic ablation of the heart and loss of cardiac function, and recover both cardiac tissue and contractility. As in vertebrates, Ciona heart regeneration relies on Bone Morphogenetic Protein (BMP) signaling-dependent proliferation of cardiomyocytes, providing insights into the evolutionary origins of regenerative cardiogenesis in chordates. Remarkably, prospective lineage tracing by photoconversion of the fluorescent protein Kaede suggested that new cardiomyocytes can emerge from endodermal lineages in post-metamorphic animals, providing an unprecedented case of regenerative de novo cardiogenesis. Finally, while embryos cannot compensate for early losses of the cardiogenic lineage, forming heartless juveniles, developing animals gain their regenerative ability during metamorphosis, uncovering a fundamental transition between deterministic embryogenesis and regulative post-embryonic development.
Collapse
Affiliation(s)
- Keaton J Schuster
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
- Michael Sars Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
12
|
Kasamoto M, Funakoshi S, Hatani T, Okubo C, Nishi Y, Tsujisaka Y, Nishikawa M, Narita M, Ohta A, Kimura T, Yoshida Y. Am80, a retinoic acid receptor agonist, activates the cardiomyocyte cell cycle and enhances engraftment in the heart. Stem Cell Reports 2023; 18:1672-1685. [PMID: 37451261 PMCID: PMC10444569 DOI: 10.1016/j.stemcr.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Human induced pluripotent stem cell-derived (hiPSC) cardiomyocytes are a promising source for regenerative therapy. To realize this therapy, however, their engraftment potential after their injection into the host heart should be improved. Here, we established an efficient method to analyze the cell cycle activity of hiPSC cardiomyocytes using a fluorescence ubiquitination-based cell cycle indicator (FUCCI) system. In vitro high-throughput screening using FUCCI identified a retinoic acid receptor (RAR) agonist, Am80, as an effective cell cycle activator in hiPSC cardiomyocytes. The transplantation of hiPSC cardiomyocytes treated with Am80 before the injection significantly enhanced the engraftment in damaged mouse heart for 6 months. Finally, we revealed that the activation of endogenous Wnt pathways through both RARA and RARB underlies the Am80-mediated cell cycle activation. Collectively, this study highlights an efficient method to activate cell cycle in hiPSC cardiomyocytes by Am80 as a means to increase the graft size after cell transplantation into a damaged heart.
Collapse
Affiliation(s)
- Manabu Kasamoto
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Department of Cardiovascular Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Shunsuke Funakoshi
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint program (T-CiRA), Fujisawa, Japan.
| | - Takeshi Hatani
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Chikako Okubo
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yohei Nishi
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yuta Tsujisaka
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Department of Cardiovascular Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Misato Nishikawa
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Megumi Narita
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Akira Ohta
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Yoshinori Yoshida
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint program (T-CiRA), Fujisawa, Japan.
| |
Collapse
|
13
|
Boezio GLM, Zhao S, Gollin J, Priya R, Mansingh S, Guenther S, Fukuda N, Gunawan F, Stainier DYR. The developing epicardium regulates cardiac chamber morphogenesis by promoting cardiomyocyte growth. Dis Model Mech 2023; 16:dmm049571. [PMID: 36172839 PMCID: PMC9612869 DOI: 10.1242/dmm.049571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022] Open
Abstract
The epicardium, the outermost layer of the heart, is an important regulator of cardiac regeneration. However, a detailed understanding of the crosstalk between the epicardium and myocardium during development requires further investigation. Here, we generated three models of epicardial impairment in zebrafish by mutating the transcription factor genes tcf21 and wt1a, and ablating tcf21+ epicardial cells. Notably, all three epicardial impairment models exhibited smaller ventricles. We identified the initial cause of this phenotype as defective cardiomyocyte growth, resulting in reduced cell surface and volume. This failure of cardiomyocyte growth was followed by decreased proliferation and increased abluminal extrusion. By temporally manipulating its ablation, we show that the epicardium is required to support cardiomyocyte growth mainly during early cardiac morphogenesis. By transcriptomic profiling of sorted epicardial cells, we identified reduced expression of FGF and VEGF ligand genes in tcf21-/- hearts, and pharmacological inhibition of these signaling pathways in wild type partially recapitulated the ventricular growth defects. Taken together, these data reveal distinct roles of the epicardium during cardiac morphogenesis and signaling pathways underlying epicardial-myocardial crosstalk.
Collapse
Affiliation(s)
- Giulia L. M. Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Aulweg 130, 35392 Giessen, Germany
| | - Shengnan Zhao
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Josephine Gollin
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Rashmi Priya
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Aulweg 130, 35392 Giessen, Germany
| | - Shivani Mansingh
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Stefan Guenther
- Cardio-Pulmonary Institute, Aulweg 130, 35392 Giessen, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Nana Fukuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Felix Gunawan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Aulweg 130, 35392 Giessen, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Aulweg 130, 35392 Giessen, Germany
| |
Collapse
|
14
|
Zuppo DA, Missinato MA, Santana-Santos L, Li G, Benos PV, Tsang M. Foxm1 regulates cardiomyocyte proliferation in adult zebrafish after cardiac injury. Development 2023; 150:dev201163. [PMID: 36846912 PMCID: PMC10108034 DOI: 10.1242/dev.201163] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
The regenerative capacity of the mammalian heart is poor, with one potential reason being that adult cardiomyocytes cannot proliferate at sufficient levels to replace lost tissue. During development and neonatal stages, cardiomyocytes can successfully divide under injury conditions; however, as these cells mature their ability to proliferate is lost. Therefore, understanding the regulatory programs that can induce post-mitotic cardiomyocytes into a proliferative state is essential to enhance cardiac regeneration. Here, we report that the forkhead transcription factor Foxm1 is required for cardiomyocyte proliferation after injury through transcriptional regulation of cell cycle genes. Transcriptomic analysis of injured zebrafish hearts revealed that foxm1 expression is increased in border zone cardiomyocytes. Decreased cardiomyocyte proliferation and expression of cell cycle genes in foxm1 mutant hearts was observed, suggesting it is required for cell cycle checkpoints. Subsequent analysis of a candidate Foxm1 target gene, cenpf, revealed that this microtubule and kinetochore binding protein is also required for cardiac regeneration. Moreover, cenpf mutants show increased cardiomyocyte binucleation. Thus, foxm1 and cenpf are required for cardiomyocytes to complete mitosis during zebrafish cardiac regeneration.
Collapse
Affiliation(s)
- Daniel A. Zuppo
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Maria A. Missinato
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
- Avidity Biosciences, 10578 Science Center Dr. Suite 125, San Diego, CA 92121, USA
| | - Lucas Santana-Santos
- Department of Computational and Systems Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Guang Li
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Renikunta H, Chakrabarti R, Duddu S, Bhattacharya A, Chakravorty N, Shukla PC. Stem Cells and Therapies in Cardiac Regeneration. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
16
|
Min M, Song T, Sun M, Wang T, Tan J, Zhang J. Dhh signaling pathway regulates reconstruction of seminiferous tubule-like structure. Reprod Biol 2022; 22:100684. [PMID: 35987158 DOI: 10.1016/j.repbio.2022.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/05/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
The reconstruction of a tubule-like structure in vitro has provided a promising system to analyze factors that drive morphogenesis and the underlying mechanisms. In this study, we took advantage of the inhibitor cyclopamine and a smoothened agonist to detect the role of the Dhh signaling pathway in the reconstructed tubule-like structure. Sertoli cells did not show polarity, rounded peritubular myoid cells and scattered Leydig cells were observed, combined with less laminin and lower proliferation of Leydig, peritubular myoid, germ, and Sertoli cells. However, in the presence of SAG, elongated peritubular myoid cells gathered at the bottom of polarized Sertoli cells, and most of the Leydig cells gathered at the outer part of the elongated peritubular myoid cells. Moreover, SAG promoted the secretion of laminin, assisting in the formation of the basal membrane and promoting the proliferation of Leydig, peritubular myoid, and germ cells. The level of Gli1 was significantly downregulated when treated with cyclopamine, whereas it was significantly upregulated when treated with SAG. These results indicate that the Dhh signaling pathway regulates the reconstruction of tubule-like structures by regulating the expression of Gli1.
Collapse
Affiliation(s)
- Ming Min
- Department of Immunology, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China; People's Hospital of Qingbaijiang District, Qingbaijiang, 61300 Chengdu, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| | - Mengdi Sun
- Department of Immunology, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| | - Tingting Wang
- Department of Immunology, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
17
|
Teranikar T, Villarreal C, Salehin N, Ijaseun T, Lim J, Dominguez C, Nguyen V, Cao H, Chuong C, Lee J. SCALE SPACE DETECTOR FOR ANALYZING SPATIOTEMPORAL VENTRICULAR CONTRACTILITY AND NUCLEAR MORPHOGENESIS IN ZEBRAFISH. iScience 2022; 25:104876. [PMID: 36034231 PMCID: PMC9404658 DOI: 10.1016/j.isci.2022.104876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 04/01/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022] Open
Abstract
In vivo quantitative assessment of structural and functional biomarkers is essential for characterizing the pathophysiology of congenital disorders. In this regard, fixed tissue analysis has offered revolutionary insights into the underlying cellular architecture. However, histological analysis faces major drawbacks with respect to lack of spatiotemporal sampling and tissue artifacts during sample preparation. This study demonstrates the potential of light sheet fluorescence microscopy (LSFM) as a non-invasive, 4D (3days + time) optical sectioning tool for revealing cardiac mechano-transduction in zebrafish. Furthermore, we have described the utility of a scale and size-invariant feature detector, for analyzing individual morphology of fused cardiomyocyte nuclei and characterizing zebrafish ventricular contractility. Cardiac defect genes in humans have corresponding zebrafish orthologs Light sheet modality is very effective for non-invasive, 4D modeling of zebrafish Hessian detector is robust to varying nuclei scales and geometric transformations Watershed filter is effective for separating fused cellular volumes
Collapse
Affiliation(s)
- Tanveer Teranikar
- Joint Department of Bioengineering, UT Arlington/UT Southwestern, Arlington, TX, USA
| | - Cameron Villarreal
- Joint Department of Bioengineering, UT Arlington/UT Southwestern, Arlington, TX, USA
| | - Nabid Salehin
- Joint Department of Bioengineering, UT Arlington/UT Southwestern, Arlington, TX, USA
| | - Toluwani Ijaseun
- Joint Department of Bioengineering, UT Arlington/UT Southwestern, Arlington, TX, USA
| | - Jessica Lim
- Joint Department of Bioengineering, UT Arlington/UT Southwestern, Arlington, TX, USA
| | - Cynthia Dominguez
- Joint Department of Bioengineering, UT Arlington/UT Southwestern, Arlington, TX, USA
| | - Vivian Nguyen
- Martin High School/ UT Arlington, Arlington, TX, USA
| | - Hung Cao
- Department of Electrical Engineering, UC Irvine, Irvine, CA, USA
| | - Cheng–Jen Chuong
- Joint Department of Bioengineering, UT Arlington/UT Southwestern, Arlington, TX, USA
| | - Juhyun Lee
- Joint Department of Bioengineering, UT Arlington/UT Southwestern, Arlington, TX, USA
- Department of Medical Education, TCU and UNTHSC School of Medicine, Fort Worth, TX 76107, USA
- Corresponding author
| |
Collapse
|
18
|
Sun J, Peterson EA, Jiao C, Chen X, Zhao Y, Wang J. Zebrafish heart regeneration after coronary dysfunction-induced cardiac damage. Dev Biol 2022; 487:57-66. [PMID: 35490764 PMCID: PMC11017783 DOI: 10.1016/j.ydbio.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/03/2022]
Abstract
Over the past 20 years, various zebrafish injury models demonstrated efficient heart regeneration after cardiac tissue loss. However, no established coronary vessel injury methods exist in the zebrafish model, despite coronary endothelial dysfunction occurring in most patients with acute coronary syndrome. This is due to difficulties performing surgery on small coronary vessels and a lack of genetic tools to precisely manipulate coronary cells in zebrafish. We determined that the Notch ligand gene deltaC regulatory sequences drive gene expression in zebrafish coronary endothelial cells, enabling us to overcome these obstacles. We created a deltaC fluorescent reporter line and visualized robust coronary growth during heart development and regeneration. Importantly, this reporter facilitated the visualization of coronary growth without an endocardial background. Moreover, we visualized robust coronary growth on the surface of juvenile hearts and regrowth in the wounded area of adult hearts ex vivo. With this approach, we observed growth inhibition by reported vascular growth antagonists of the VEGF, EGF and Notch signaling pathways. Furthermore, we established a coronary genetic ablation system and observed that severe coronary endothelial cell loss resulted in fish death, whereas fish survived mild coronary cell loss. Coronary cell depletion triggered regenerative responses, which resulted in the restoration of damaged cardiac tissues within several weeks. Overall, our work demonstrated the efficacy of using deltaC regulatory elements for high-resolution visualization of the coronary endothelium; screening small molecules for coronary growth effects; and revealed complete recovery in adult zebrafish after coronary-induced heart damage.
Collapse
Affiliation(s)
- Jisheng Sun
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth A Peterson
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Cheng Jiao
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Xin Chen
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Yun Zhao
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
19
|
Ross Stewart KM, Walker SL, Baker AH, Riley PR, Brittan M. Hooked on heart regeneration: the zebrafish guide to recovery. Cardiovasc Res 2022; 118:1667-1679. [PMID: 34164652 PMCID: PMC9215194 DOI: 10.1093/cvr/cvab214] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
While humans lack sufficient capacity to undergo cardiac regeneration following injury, zebrafish can fully recover from a range of cardiac insults. Over the past two decades, our understanding of the complexities of both the independent and co-ordinated injury responses by multiple cardiac tissues during zebrafish heart regeneration has increased exponentially. Although cardiomyocyte regeneration forms the cornerstone of the reparative process in the injured zebrafish heart, recent studies have shown that this is dependent on prior neovascularization and lymphangiogenesis, which in turn require epicardial, endocardial, and inflammatory cell signalling within an extracellular milieu that is optimized for regeneration. Indeed, it is the amalgamation of multiple regenerative systems and gene regulatory patterns that drives the much-heralded success of the adult zebrafish response to cardiac injury. Increasing evidence supports the emerging paradigm that developmental transcriptional programmes are re-activated during adult tissue regeneration, including in the heart, and the zebrafish represents an optimal model organism to explore this concept. In this review, we summarize recent advances from the zebrafish cardiovascular research community with novel insight into the mechanisms associated with endogenous cardiovascular repair and regeneration, which may be of benefit to inform future strategies for patients with cardiovascular disease.
Collapse
Affiliation(s)
- Katherine M Ross Stewart
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sophie L Walker
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Paul R Riley
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
20
|
Abstract
Heart disease is the leading cause of death worldwide. Despite decades of research, most heart pathologies have limited treatments, and often the only curative approach is heart transplantation. Thus, there is an urgent need to develop new therapeutic approaches for treating cardiac diseases. Animal models that reproduce the human pathophysiology are essential to uncovering the biology of diseases and discovering therapies. Traditionally, mammals have been used as models of cardiac disease, but the cost of generating and maintaining new models is exorbitant, and the studies have very low throughput. In the last decade, the zebrafish has emerged as a tractable model for cardiac diseases, owing to several characteristics that made this animal popular among developmental biologists. Zebrafish fertilization and development are external; embryos can be obtained in high numbers, are cheap and easy to maintain, and can be manipulated to create new genetic models. Moreover, zebrafish exhibit an exceptional ability to regenerate their heart after injury. This review summarizes 25 years of research using the zebrafish to study the heart, from the classical forward screenings to the contemporary methods to model mutations found in patients with cardiac disease. We discuss the advantages and limitations of this model organism and introduce the experimental approaches exploited in zebrafish, including forward and reverse genetics and chemical screenings. Last, we review the models used to induce cardiac injury and essential ideas derived from studying natural regeneration. Studies using zebrafish have the potential to accelerate the discovery of new strategies to treat cardiac diseases.
Collapse
Affiliation(s)
- Juan Manuel González-Rosa
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute, Harvard Medical School, Charlestown, MA
| |
Collapse
|
21
|
Abrial M, Basu S, Huang M, Butty V, Schwertner A, Jeffrey S, Jordan D, Burns CE, Burns CG. Latent TGFβ-binding proteins 1 and 3 protect the larval zebrafish outflow tract from aneurysmal dilatation. Dis Model Mech 2022; 15:dmm046979. [PMID: 35098309 PMCID: PMC8990920 DOI: 10.1242/dmm.046979] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Aortic root aneurysm is a common cause of morbidity and mortality in Loeys-Dietz and Marfan syndromes, where perturbations in transforming growth factor beta (TGFβ) signaling play a causal or contributory role, respectively. Despite the advantages of cross-species disease modeling, animal models of aortic root aneurysm are largely restricted to genetically engineered mice. Here, we report that zebrafish devoid of the genes encoding latent-transforming growth factor beta-binding protein 1 and 3 (ltbp1 and ltbp3, respectively) develop rapid and severe aneurysm of the outflow tract (OFT), the aortic root equivalent. Similar to syndromic aneurysm tissue, the distended OFTs display evidence for paradoxical hyperactivated TGFβ signaling. RNA-sequencing revealed significant overlap between the molecular signatures of disease tissue from mutant zebrafish and a mouse model of Marfan syndrome. Moreover, chemical inhibition of TGFβ signaling in wild-type animals phenocopied mutants but chemical activation did not, demonstrating that TGFβ signaling is protective against aneurysm. Human relevance is supported by recent studies implicating genetic lesions in LTBP3 and, potentially, LTBP1 as heritable causes of aortic root aneurysm. Ultimately, our data demonstrate that zebrafish can now be leveraged to interrogate thoracic aneurysmal disease and identify novel lead compounds through small-molecule suppressor screens. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Maryline Abrial
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Sandeep Basu
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mengmeng Huang
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Vincent Butty
- BioMicroCenter, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Asya Schwertner
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Spencer Jeffrey
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Daniel Jordan
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Caroline E. Burns
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - C. Geoffrey Burns
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
22
|
Sharpe M, González-Rosa JM, Wranitz F, Jeffrey S, Copenhaver K, Burns CG, Burns CE. Ruvbl2 Suppresses Cardiomyocyte Proliferation During Zebrafish Heart Development and Regeneration. Front Cell Dev Biol 2022; 10:800594. [PMID: 35178388 PMCID: PMC8844374 DOI: 10.3389/fcell.2022.800594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiomyocyte proliferation is an important source of new myocardium during heart development and regeneration. Consequently, mutations in drivers of cardiomyocyte proliferation cause congenital heart disease, and infarcted human hearts scar because cardiomyocytes exit the cell cycle postnatally. To boost cardiomyocyte proliferation in either setting, critical regulators must be identified. Through an ENU screen in zebrafish, the liebeskummer (lik) mutant was isolated and described as having elevated cardiomyocyte numbers during embryogenesis. The lik mutation results in a three amino acid insertion into Ruvbl2, a highly conserved ATPase. Because both gain- and loss-of-function properties have been described for ruvbl2lik, it remains unclear whether Ruvbl2 positively or negatively regulates cardiomyocyte proliferation. Here, we demonstrate that Ruvbl2 is a suppressor of cardiomyocyte proliferation during zebrafish heart development and regeneration. First, we confirmed speculation that augmented cardiomyocyte numbers in ruvbl2lik/lik hearts arise by hyperproliferation. To characterize bona fide ruvbl2 null animals, we created a ruvbl2 locus deletion allele (ruvbl2Δ). Like ruvbl2lik/lik mutants, ruvbl2Δ/Δ and compound heterozygote ruvbl2lik/Δ animals display ventricular hyperplasia, demonstrating that lik is a loss of function allele and that ruvbl2 represses cardiomyocyte proliferation. This activity is autonomous because constitutive myocardial overexpression of Ruvbl2 is sufficient to suppress cardiomyocyte proliferation in control hearts and rescue the hyperproliferation observed in ruvbl2Δ/Δ mutant hearts. Lastly, heat-shock inducible overexpression of Ruvbl2 suppresses cardiomyocyte proliferation during heart regeneration and leads to scarring. Together, our data demonstrate that Ruvbl2 functions autonomously as a suppressor of cardiomyocyte proliferation during both zebrafish heart development and adult heart regeneration.
Collapse
Affiliation(s)
- Michka Sharpe
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Juan Manuel González-Rosa
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Felicia Wranitz
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Spencer Jeffrey
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, United States
| | - Katherine Copenhaver
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, United States
| | - C Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Caroline E Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States.,Harvard Stem Cell Institute, Cambridge, MA, United States
| |
Collapse
|
23
|
Cao Y, Xia Y, Balowski JJ, Ou J, Song L, Safi A, Curtis T, Crawford GE, Poss KD, Cao J. Identification of enhancer regulatory elements that direct epicardial gene expression during zebrafish heart regeneration. Development 2022; 149:dev200133. [PMID: 35179181 PMCID: PMC8918790 DOI: 10.1242/dev.200133] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
The epicardium is a mesothelial tissue layer that envelops the heart. Cardiac injury activates dynamic gene expression programs in epicardial tissue, which in zebrafish enables subsequent regeneration through paracrine and vascularizing effects. To identify tissue regeneration enhancer elements (TREEs) that control injury-induced epicardial gene expression during heart regeneration, we profiled transcriptomes and chromatin accessibility in epicardial cells purified from regenerating zebrafish hearts. We identified hundreds of candidate TREEs, which are defined by increased chromatin accessibility of non-coding elements near genes with increased expression during regeneration. Several of these candidate TREEs were incorporated into stable transgenic lines, with five out of six elements directing injury-induced epicardial expression but not ontogenetic epicardial expression in larval hearts. Whereas two independent TREEs linked to the gene gnai3 showed similar functional features of gene regulation in transgenic lines, two independent ncam1a-linked TREEs directed distinct spatiotemporal domains of epicardial gene expression. Thus, multiple TREEs linked to a regeneration gene can possess either matching or complementary regulatory controls. Our study provides a new resource and principles for understanding the regulation of epicardial genetic programs during heart regeneration. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Yingxi Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Yu Xia
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Joseph J. Balowski
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| | - Jianhong Ou
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | - Alexias Safi
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy Curtis
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| | - Gregory E. Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| |
Collapse
|
24
|
Abdi A, AlOtaiby S, Badarin FA, Khraibi A, Hamdan H, Nader M. Interaction of SARS-CoV-2 with cardiomyocytes: Insight into the underlying molecular mechanisms of cardiac injury and pharmacotherapy. Biomed Pharmacother 2022; 146:112518. [PMID: 34906770 PMCID: PMC8654598 DOI: 10.1016/j.biopha.2021.112518] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
SARS-CoV-2 causes respiratory illness with a spectrum of systemic complications. However, the mechanism for cardiac infection and cardiomyocyte injury in COVID-19 patients remains unclear. The current literature supports the notion that SARS-CoV-2 particles access the heart either by the circulating blood cells or by extracellular vesicles, originating from the inflamed lungs, and encapsulating the virus along with its receptor (ACE2). Both cardiomyocytes and pericytes (coronary arteries) express the necessary accessory proteins for access of SARS-CoV-2 particles (i.e. ACE2, NRP-1, TMPRSS2, CD147, integrin α5β1, and CTSB/L). These proteins facilitate the SARS-CoV-2 interaction and entry into the pericytes and cardiomyocytes thus leading to cardiac manifestations. Subsequently, various signaling pathways are altered in the infected cardiomyocytes (i.e. increased ROS production, reduced contraction, impaired calcium homeostasis), causing cardiac dysfunction. The currently adopted pharmacotherapy in severe COVID-19 subjects exhibited side effects on the heart, often manifested by electrical abnormalities. Nonetheless, cardiovascular adverse repercussions have been associated with the advent of some of the SARS-CoV-2 vaccines with no clear mechanisms underlining these complications. We provide herein an overview of the pathways involved with cardiomyocyte in COVID-19 subjects to help promoting pharmacotherapies that can protect against SARS-CoV-2-induced cardiac injuries.
Collapse
Affiliation(s)
- Abdulhamid Abdi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, and Biotechnology Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shahad AlOtaiby
- Research Center, King Fahad Medical City, Central Second Health Cluster, Ministry of Health, Riyadh, Saudi Arabia
| | - Firas Al Badarin
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ali Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, and Biotechnology Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, and Biotechnology Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, and Biotechnology Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
25
|
Riley SE, Feng Y, Hansen CG. Hippo-Yap/Taz signalling in zebrafish regeneration. NPJ Regen Med 2022; 7:9. [PMID: 35087046 PMCID: PMC8795407 DOI: 10.1038/s41536-022-00209-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
The extent of tissue regeneration varies widely between species. Mammals have a limited regenerative capacity whilst lower vertebrates such as the zebrafish (Danio rerio), a freshwater teleost, can robustly regenerate a range of tissues, including the spinal cord, heart, and fin. The molecular and cellular basis of this altered response is one of intense investigation. In this review, we summarise the current understanding of the association between zebrafish regeneration and Hippo pathway function, a phosphorylation cascade that regulates cell proliferation, mechanotransduction, stem cell fate, and tumorigenesis, amongst others. We also compare this function to Hippo pathway activity in the regenerative response of other species. We find that the Hippo pathway effectors Yap/Taz facilitate zebrafish regeneration and that this appears to be latent in mammals, suggesting that therapeutically promoting precise and temporal YAP/TAZ signalling in humans may enhance regeneration and hence reduce morbidity.
Collapse
Affiliation(s)
- Susanna E Riley
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Yi Feng
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Carsten Gram Hansen
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
26
|
Miklas JW, Levy S, Hofsteen P, Mex DI, Clark E, Muster J, Robitaille AM, Sivaram G, Abell L, Goodson JM, Pranoto I, Madan A, Chin MT, Tian R, Murry CE, Moon RT, Wang Y, Ruohola-Baker H. Amino acid primed mTOR activity is essential for heart regeneration. iScience 2022; 25:103574. [PMID: 34988408 PMCID: PMC8704488 DOI: 10.1016/j.isci.2021.103574] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 06/17/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023] Open
Abstract
Heart disease is the leading cause of death with no method to repair damaged myocardium due to the limited proliferative capacity of adult cardiomyocytes. Curiously, mouse neonates and zebrafish can regenerate their hearts via cardiomyocyte de-differentiation and proliferation. However, a molecular mechanism of why these cardiomyocytes can re-enter cell cycle is poorly understood. Here, we identify a unique metabolic state that primes adult zebrafish and neonatal mouse ventricular cardiomyocytes to proliferate. Zebrafish and neonatal mouse hearts display elevated glutamine levels, predisposing them to amino-acid-driven activation of TOR, and that TOR activation is required for zebrafish cardiomyocyte regeneration in vivo. Through a multi-omics approach with cellular validation we identify metabolic and mitochondrial changes during the first week of regeneration. These data suggest that regeneration of zebrafish myocardium is driven by metabolic remodeling and reveals a unique metabolic regulator, TOR-primed state, in which zebrafish and mammalian cardiomyocytes are regeneration competent.
Collapse
Affiliation(s)
- Jason W. Miklas
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Shiri Levy
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Peter Hofsteen
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Diego Ic Mex
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Elisa Clark
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jeanot Muster
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Aaron M. Robitaille
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Gargi Sivaram
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Lauren Abell
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jamie M. Goodson
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
| | - Inez Pranoto
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Anup Madan
- Covance Genomics Laboratory, Redmond, WA 98052, USA
| | - Michael T. Chin
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
- Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Rong Tian
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Charles E. Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
- Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Randall T. Moon
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Hannele Ruohola-Baker
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
27
|
Brandt EB, Mahmoud AI. Quantifying Cardiomyocyte Proliferation and Nucleation to Assess Mammalian Cardiac Regeneration. Methods Mol Biol 2022; 2485:243-253. [PMID: 35618910 DOI: 10.1007/978-1-0716-2261-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neonatal mice display a remarkable ability to regenerate their heart following an injury during the first week of life. A key facet of successful cardiac regeneration is the proliferation of cardiomyocytes to replace the lost cells. Stimulating cardiomyocyte proliferation in the adult heart is a very promising approach to restore cardiac structure and function following injury. Here, we outline our approach to assess cardiomyocyte proliferation following a myocardial injury via the cell cycle markers phospho-histone H3 and Aurora B. We additionally discuss how we assess successful regeneration using wheat germ agglutinin to measure cardiomyocyte size, nuclear staining to quantify cardiomyocyte nucleation, and Trichrome staining to identify myocardial regeneration and scarring in the myocardium.
Collapse
Affiliation(s)
- Emma B Brandt
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Ahmed I Mahmoud
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
- University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
28
|
Elhassan RM, Hou X, Fang H. Recent advances in the development of allosteric protein tyrosine phosphatase inhibitors for drug discovery. Med Res Rev 2021; 42:1064-1110. [PMID: 34791703 DOI: 10.1002/med.21871] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/26/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023]
Abstract
Protein tyrosine phosphatases (PTPs) superfamily catalyzes tyrosine de-phosphorylation which affects a myriad of cellular processes. Imbalance in signal pathways mediated by PTPs has been associated with development of many human diseases including cancer, metabolic, and immunological diseases. Several compelling evidence suggest that many members of PTP family are novel therapeutic targets. However, the clinical development of conventional PTP-based active-site inhibitors originally was hampered by the poor selectivity and pharmacokinetic properties. In this regard, PTPs has been widely dismissed as "undruggable." Nonetheless, allosteric modulation has become increasingly an influential and alternative approach that can be exploited for drug development against PTPs. Unlike active-site inhibitors, allosteric inhibitors exhibit a remarkable target-selectivity, drug-likeness, potency, and in vivo activity. Intriguingly, there has been a high interest in novel allosteric PTPs inhibitors within the last years. In this review, we focus on the recent advances of allosteric inhibitors that have been explored in drug discovery and have shown an excellent result in the development of PTPs-based therapeutics. A special emphasis is placed on the structure-activity relationship and molecular mechanistic studies illustrating applications in chemical biology and medicinal chemistry.
Collapse
Affiliation(s)
- Reham M Elhassan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
29
|
Bühler A, Gahr BM, Park DD, Bertozzi A, Boos A, Dalvoy M, Pott A, Oswald F, Kovall RA, Kühn B, Weidinger G, Rottbauer W, Just S. Histone deacetylase 1 controls cardiomyocyte proliferation during embryonic heart development and cardiac regeneration in zebrafish. PLoS Genet 2021; 17:e1009890. [PMID: 34723970 PMCID: PMC8584950 DOI: 10.1371/journal.pgen.1009890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/11/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022] Open
Abstract
In contrast to mammals, the zebrafish maintains its cardiomyocyte proliferation capacity throughout adulthood. However, neither the molecular mechanisms that orchestrate the proliferation of cardiomyocytes during developmental heart growth nor in the context of regeneration in the adult are sufficiently defined yet. We identified in a forward genetic N-ethyl-N-nitrosourea (ENU) mutagenesis screen the recessive, embryonic-lethal zebrafish mutant baldrian (bal), which shows severely impaired developmental heart growth due to diminished cardiomyocyte proliferation. By positional cloning, we identified a missense mutation in the zebrafish histone deacetylase 1 (hdac1) gene leading to severe protein instability and the loss of Hdac1 function in vivo. Hdac1 inhibition significantly reduces cardiomyocyte proliferation, indicating a role of Hdac1 during developmental heart growth in zebrafish. To evaluate whether developmental and regenerative Hdac1-associated mechanisms of cardiomyocyte proliferation are conserved, we analyzed regenerative cardiomyocyte proliferation after Hdac1 inhibition at the wound border zone in cryoinjured adult zebrafish hearts and we found that Hdac1 is also essential to orchestrate regenerative cardiomyocyte proliferation in the adult vertebrate heart. In summary, our findings suggest an important and conserved role of Histone deacetylase 1 (Hdac1) in developmental and adult regenerative cardiomyocyte proliferation in the vertebrate heart. Heart disease is one of the most common causes of death in all developed countries. While zebrafish cardiomyocytes are able to proliferate throughout adulthood, mammalian cardiomyocytes lose this ability during early development, and therefore are not capable to replace and renew cardiomyocytes after injury. The underlying mechanisms of cardiomyocyte proliferation are still not completely resolved. Understanding how zebrafish cardiomyocytes preserve their proliferating state, would be a valuable information to foster cardiac regeneration, e.g. after myocardial infarction in patients. Knowledge of the signaling pathways that need to be activated, or deactivated in order to induce cardiomyocyte proliferation after acute or chronic injury will pave the way for the development of genetic and/or pharmacological treatment options. In an ENU-mutagenesis screen, we identified the zebrafish mutant baldrian, which shows reduced embryonic cardiomyocyte proliferation. As genetic cause of the observed phenotype, we identified a missense mutation in the hdac1 gene. By treatment of heart-injured adult fish with the HDAC1 inhibitor Mocetinostat, we were able to show a reduced rate of cardiomyocyte proliferation also in the adult zebrafish heart in vivo, suggesting a role of Hdac1 in embryonic heart growth and adult regenerative cardiomyocyte proliferation in zebrafish.
Collapse
Affiliation(s)
- Anja Bühler
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Bernd M Gahr
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Deung-Dae Park
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Alberto Bertozzi
- Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| | - Alena Boos
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Mohankrishna Dalvoy
- Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| | - Alexander Pott
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany.,Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Franz Oswald
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Bernhard Kühn
- Department of Pediatrics, University of Pittsburgh, and Richard King Mellon Institute for Pediatric Research and Division of Pediatric Cardiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| | | | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| |
Collapse
|
30
|
Abstract
Heart regeneration is a remarkable process whereby regrowth of damaged cardiac tissue rehabilitates organ anatomy and function. Unfortunately, the human heart is highly resistant to regeneration, which creates a shortage of cardiomyocytes in the wake of ischemic injury, and explains, in part, why coronary artery disease remains a leading cause of death worldwide. Luckily, a detailed blueprint for achieving therapeutic heart regeneration already exists in nature because several lower vertebrate species successfully regenerate amputated or damaged heart muscle through robust cardiomyocyte proliferation. A growing number of species are being interrogated for cardiac regenerative potential, and several commonalities have emerged between those animals showing high or low innate capabilities. In this review, we provide a historical perspective on the field, discuss how regenerative potential is influenced by cardiomyocyte properties, mitogenic signals, and chromatin accessibility, and highlight unanswered questions under active investigation. Ultimately, delineating why heart regeneration occurs preferentially in some organisms, but not in others, will uncover novel therapeutic inroads for achieving cardiac restoration in humans.
Collapse
Affiliation(s)
- Hui-Min Yin
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - C Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Caroline E Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
31
|
Bongiovanni C, Sacchi F, Da Pra S, Pantano E, Miano C, Morelli MB, D'Uva G. Reawakening the Intrinsic Cardiac Regenerative Potential: Molecular Strategies to Boost Dedifferentiation and Proliferation of Endogenous Cardiomyocytes. Front Cardiovasc Med 2021; 8:750604. [PMID: 34692797 PMCID: PMC8531484 DOI: 10.3389/fcvm.2021.750604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Despite considerable efforts carried out to develop stem/progenitor cell-based technologies aiming at replacing and restoring the cardiac tissue following severe damages, thus far no strategies based on adult stem cell transplantation have been demonstrated to efficiently generate new cardiac muscle cells. Intriguingly, dedifferentiation, and proliferation of pre-existing cardiomyocytes and not stem cell differentiation represent the preponderant cellular mechanism by which lower vertebrates spontaneously regenerate the injured heart. Mammals can also regenerate their heart up to the early neonatal period, even in this case by activating the proliferation of endogenous cardiomyocytes. However, the mammalian cardiac regenerative potential is dramatically reduced soon after birth, when most cardiomyocytes exit from the cell cycle, undergo further maturation, and continue to grow in size. Although a slow rate of cardiomyocyte turnover has also been documented in adult mammals, both in mice and humans, this is not enough to sustain a robust regenerative process. Nevertheless, these remarkable findings opened the door to a branch of novel regenerative approaches aiming at reactivating the endogenous cardiac regenerative potential by triggering a partial dedifferentiation process and cell cycle re-entry in endogenous cardiomyocytes. Several adaptations from intrauterine to extrauterine life starting at birth and continuing in the immediate neonatal period concur to the loss of the mammalian cardiac regenerative ability. A wide range of systemic and microenvironmental factors or cell-intrinsic molecular players proved to regulate cardiomyocyte proliferation and their manipulation has been explored as a therapeutic strategy to boost cardiac function after injuries. We here review the scientific knowledge gained thus far in this novel and flourishing field of research, elucidating the key biological and molecular mechanisms whose modulation may represent a viable approach for regenerating the human damaged myocardium.
Collapse
Affiliation(s)
- Chiara Bongiovanni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Francesca Sacchi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Silvia Da Pra
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Elvira Pantano
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Carmen Miano
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Marco Bruno Morelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Gabriele D'Uva
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| |
Collapse
|
32
|
Valizadeh A, Asghari S, Mansouri P, Alemi F, Majidinia M, Mahmoodpoor A, Yousefi B. The roles of signaling pathways in cardiac regeneration. Curr Med Chem 2021; 29:2142-2166. [PMID: 34521319 DOI: 10.2174/0929867328666210914115411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
In recent years, knowledge of cardiac regeneration mechanisms has dramatically expanded. Regeneration can replace lost parts of organs, common among animal species. The heart is commonly considered an organ with terminal development, which has no reparability potential during post-natal life; however, some intrinsic regeneration capacity has been reported for cardiac muscle, which opens novel avenues in cardiovascular disease treatment. Different endogenous mechanisms were studied for cardiac repairing and regeneration in recent decades. Survival, proliferation, inflammation, angiogenesis, cell-cell communication, cardiomyogenesis, and anti-aging pathways are the most important mechanisms that have been studied in this regard. Several in vitro and animal model studies focused on proliferation induction for cardiac regeneration reported promising results. These studies have mainly focused on promoting proliferation signaling pathways and demonstrated various signaling pathways such as Wnt, PI3K/Akt, IGF-1, TGF-β, Hippo, and VEGF signaling cardiac regeneration. Therefore, in this review, we intended to discuss the connection between different critical signaling pathways in cardiac repair and regeneration.
Collapse
Affiliation(s)
- Amir Valizadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Samira Asghari
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Parinaz Mansouri
- Students Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Forough Alemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia. Iran
| | - Ata Mahmoodpoor
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| |
Collapse
|
33
|
Chen A, Han Y, Poss KD. Regulation of zebrafish fin regeneration by vitamin D signaling. Dev Dyn 2021; 250:1330-1339. [PMID: 33064344 PMCID: PMC8050121 DOI: 10.1002/dvdy.261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Vitamin D is an essential nutrient that has long been known to regulate skeletal growth and integrity. In models of major appendage regeneration, treatment with vitamin D analogs has been reported to improve aspects of zebrafish fin regeneration in specific disease or gene misexpression contexts, but also to disrupt pattern in regenerating salamander limbs. Recently, we reported strong mitogenic roles for vitamin D signaling in several zebrafish tissues throughout life stages, including epidermal cells and osteoblasts of adult fins. To our knowledge, molecular genetic approaches to dissect vitamin D function in appendage regeneration have not been described. RESULTS Using a knock-in GFP reporter for the expression of the vitamin D target gene and negative regulator cyp24a1, we identified active vitamin D signaling in adult zebrafish fins during tissue homeostasis and regeneration. Transgenic expression of cyp24a1 or a dominant-negative vitamin D receptor (VDR) inhibited regeneration of amputated fins, whereas global vitamin D treatment accelerated regeneration. Using tissue regeneration enhancer elements, we found that local enhancement of VDR expression could improve regeneration with low doses of a vitamin D analog. CONCLUSIONS Vitamin D signaling enhances the efficacy of fin regeneration in zebrafish.
Collapse
Affiliation(s)
- Anzhi Chen
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA
- Regeneration Next, Duke University, Durham, North Carolina, 27710, USA
| | - Yanchao Han
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA
- Regeneration Next, Duke University, Durham, North Carolina, 27710, USA
- Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
| | - Kenneth D. Poss
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA
- Regeneration Next, Duke University, Durham, North Carolina, 27710, USA
| |
Collapse
|
34
|
Heliste J, Jokilammi A, Vaparanta K, Paatero I, Elenius K. Combined genetic and chemical screens indicate protective potential for EGFR inhibition to cardiomyocytes under hypoxia. Sci Rep 2021; 11:16661. [PMID: 34404849 PMCID: PMC8371130 DOI: 10.1038/s41598-021-96033-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022] Open
Abstract
The return of blood flow to ischemic heart after myocardial infarction causes ischemia-reperfusion injury. There is a clinical need for novel therapeutic targets to treat myocardial ischemia-reperfusion injury. Here we screened for targets for the treatment of ischemia-reperfusion injury using a combination of shRNA and drug library analyses in HL-1 mouse cardiomyocytes subjected to hypoxia and reoxygenation. The shRNA library included lentiviral constructs targeting 4625 genes and the drug library 689 chemical compounds approved by the Food and Drug Administration (FDA). Data were analyzed using protein-protein interaction and pathway analyses. EGFR inhibition was identified as a cardioprotective mechanism in both approaches. Inhibition of EGFR kinase activity with gefitinib improved cardiomyocyte viability in vitro. In addition, gefitinib preserved cardiac contractility in zebrafish embryos exposed to hypoxia-reoxygenation in vivo. These findings indicate that the EGFR inhibitor gefitinib is a potential candidate for further studies of repurposing the drug for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Juho Heliste
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Anne Jokilammi
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6B, 20520, Turku, Finland
| | - Katri Vaparanta
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6B, 20520, Turku, Finland.,MediCity Research Laboratories, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6B, 20520, Turku, Finland.
| | - Klaus Elenius
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6B, 20520, Turku, Finland. .,MediCity Research Laboratories, University of Turku, Tykistökatu 6A, 20520, Turku, Finland. .,Department of Oncology, Turku University Hospital, PO Box 52, 20521, Turku, Finland.
| |
Collapse
|
35
|
Sarvari P, Rasouli SJ, Allanki S, Stone OA, Sokol AM, Graumann J, Stainier DYR. The E3 ubiquitin-protein ligase Rbx1 regulates cardiac wall morphogenesis in zebrafish. Dev Biol 2021; 480:1-12. [PMID: 34363825 DOI: 10.1016/j.ydbio.2021.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 07/11/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022]
Abstract
Cardiac trabeculae are muscular ridge-like structures within the ventricular wall that are crucial for cardiac function. In zebrafish, these structures first form primarily through the delamination of compact wall cardiomyocytes (CMs). Although defects in proteasomal degradation have been associated with decreased cardiac function, whether they also affect cardiac development has not been extensively analyzed. Here we report a role during cardiac wall morphogenesis in zebrafish for the E3 ubiquitin-protein ligase Rbx1, which has been shown to regulate the degradation of key signaling molecules. Although development is largely unperturbed in zebrafish rbx1 mutant larvae, they exhibit CM multi-layering. This phenotype is not affected by blocking ErbB signaling, but fails to manifest itself in the absence of blood flow/cardiac contractility. Surprisingly, rbx1 mutants display ErbB independent Notch reporter expression in the myocardium. We generated tissue-specific rbx1 overexpression lines and found that endothelial, but not myocardial, specific rbx1 expression normalizes the cardiac wall morphogenesis phenotype. In addition, we found that pharmacological activation of Hedgehog signaling ameliorates the multi-layered myocardial wall phenotype in rbx1 mutants. Collectively, our data indicate that endocardial activity of Rbx1 is essential for cardiac wall morphogenesis.
Collapse
Affiliation(s)
- Pourya Sarvari
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany
| | - S Javad Rasouli
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany
| | - Srinivas Allanki
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany
| | - Oliver A Stone
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany
| | - Anna M Sokol
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany; Max Planck Institute for Heart and Lung Research, Biomolecular Mass Spectrometry, Bad Nauheim, 61231, Germany
| | - Johannes Graumann
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany; Max Planck Institute for Heart and Lung Research, Biomolecular Mass Spectrometry, Bad Nauheim, 61231, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany.
| |
Collapse
|
36
|
Induced Cardiomyocyte Proliferation: A Promising Approach to Cure Heart Failure. Int J Mol Sci 2021; 22:ijms22147720. [PMID: 34299340 PMCID: PMC8303201 DOI: 10.3390/ijms22147720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022] Open
Abstract
Unlike some lower vertebrates which can completely regenerate their heart, the human heart is a terminally differentiated organ. Cardiomyocytes lost during cardiac injury and heart failure cannot be replaced due to their limited proliferative capacity. Therefore, cardiac injury generally leads to progressive failure. Here, we summarize the latest progress in research on methods to induce cardiomyocyte cell cycle entry and heart repair through the alteration of cardiomyocyte plasticity, which is emerging as an effective strategy to compensate for the loss of functional cardiomyocytes and improve the impaired heart functions.
Collapse
|
37
|
Wang W, Hu YF, Pang M, Chang N, Yu C, Li Q, Xiong JW, Peng Y, Zhang R. BMP and Notch Signaling Pathways differentially regulate Cardiomyocyte Proliferation during Ventricle Regeneration. Int J Biol Sci 2021; 17:2157-2166. [PMID: 34239346 PMCID: PMC8241734 DOI: 10.7150/ijbs.59648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/14/2021] [Indexed: 01/15/2023] Open
Abstract
Adult mammalian hearts show limited capacity to proliferate after injury, while zebrafish are capable to completely regenerate injured hearts through the proliferation of spared cardiomyocytes. BMP and Notch signaling pathways have been implicated in cardiomyocyte proliferation during zebrafish heart regeneration. However, the molecular mechanism underneath this process as well as the interaction between these two pathways remains to be further explored. In this study we showed BMP signaling was activated after ventricle ablation and acted epistatic downstream of Notch signaling. Inhibition of both signaling pathways differentially influenced ventricle regeneration and cardiomyocyte proliferation, as revealed by time-lapse analysis using a cardiomyocyte-specific FUCCI (fluorescent ubiquitylation-based cell cycle indicator) system. Further experiments revealed that inhibition of BMP and Notch signaling led to cell-cycle arrest at different phases. Overall, our results shed light on the interaction between BMP and Notch signaling pathways and their functions in cardiomyocyte proliferation during cardiac regeneration.
Collapse
Affiliation(s)
- Wenyuan Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ye-Fan Hu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Meijun Pang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Nannan Chang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Chunxiao Yu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qi Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jing-Wei Xiong
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Yuanyuan Peng
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Becker C, Lust K, Wittbrodt J. Igf signaling couples retina growth with body growth by modulating progenitor cell division. Development 2021; 148:dev.199133. [PMID: 33722901 PMCID: PMC8077508 DOI: 10.1242/dev.199133] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
How the body and organs balance their relative growth is of key importance for coordinating size and function. This is of particular relevance in organisms, which continue to grow over their entire life span. We addressed this issue in the neuroretina of medaka fish (Oryzias latipes), a well-studied system with which to address vertebrate organ growth. We reveal that a central growth regulator, Igf1 receptor (Igf1r), is necessary and sufficient for proliferation control in the postembryonic retinal stem cell niche: the ciliary marginal zone (CMZ). Targeted activation of Igf1r signaling in the CMZ uncouples neuroretina growth from body size control, and we demonstrate that Igf1r operates on progenitor cells, stimulating their proliferation. Activation of Igf1r signaling increases retinal size while preserving its structural integrity, revealing a modular organization in which progenitor differentiation and neurogenesis are self-organized and highly regulated. Our findings position Igf signaling as a key module for controlling retinal size and composition, with important evolutionary implications. Highlighted Article: Targeted activation of Igf1r signaling in the retinal stem cell niche increases retina size through expanding the progenitor but not stem cell population.
Collapse
Affiliation(s)
- Clara Becker
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany.,Heidelberg Biosciences International Graduate School, Heidelberg 69120, Germany
| | - Katharina Lust
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| |
Collapse
|
39
|
Geng F, Ma J, Li X, Hu Z, Zhang R. Hemodynamic Forces Regulate Cardiac Regeneration-Responsive Enhancer Activity during Ventricle Regeneration. Int J Mol Sci 2021; 22:ijms22083945. [PMID: 33920448 PMCID: PMC8070559 DOI: 10.3390/ijms22083945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023] Open
Abstract
Cardiac regenerative capacity varies widely among vertebrates. Zebrafish can robustly regenerate injured hearts and are excellent models to study the mechanisms of heart regeneration. Recent studies have shown that enhancers are able to respond to injury and regulate the regeneration process. However, the mechanisms to activate these regeneration-responsive enhancers (RREs) remain poorly understood. Here, we utilized transient and transgenic analysis combined with a larval zebrafish ventricle ablation model to explore the activation and regulation of a representative RRE. lepb-linked enhancer sequence (LEN) directed enhanced green fluorescent protein (EGFP) expression in response to larval ventricle regeneration and such activation was attenuated by hemodynamic force alteration and mechanosensation pathway modulation. Further analysis revealed that Notch signaling influenced the endocardial LEN activity as well as endogenous lepb expression. Altogether, our work has established zebrafish models for rapid characterization of cardiac RREs in vivo and provides novel insights on the regulation of LEN by hemodynamic forces and other signaling pathways during heart regeneration.
Collapse
Affiliation(s)
- Fang Geng
- School of Life Sciences, Fudan University, Shanghai 200438, China; (F.G.); (J.M.); (X.L.); (Z.H.)
| | - Jinmin Ma
- School of Life Sciences, Fudan University, Shanghai 200438, China; (F.G.); (J.M.); (X.L.); (Z.H.)
| | - Xueyu Li
- School of Life Sciences, Fudan University, Shanghai 200438, China; (F.G.); (J.M.); (X.L.); (Z.H.)
| | - Zhengyue Hu
- School of Life Sciences, Fudan University, Shanghai 200438, China; (F.G.); (J.M.); (X.L.); (Z.H.)
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Correspondence:
| |
Collapse
|
40
|
Zheng L, Du J, Wang Z, Zhou Q, Zhu X, Xiong JW. Molecular regulation of myocardial proliferation and regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:13. [PMID: 33821373 PMCID: PMC8021683 DOI: 10.1186/s13619-021-00075-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Heart regeneration is a fascinating and complex biological process. Decades of intensive studies have revealed a sophisticated molecular network regulating cardiac regeneration in the zebrafish and neonatal mouse heart. Here, we review both the classical and recent literature on the molecular and cellular mechanisms underlying heart regeneration, with a particular focus on how injury triggers the cell-cycle re-entry of quiescent cardiomyocytes to replenish their massive loss after myocardial infarction or ventricular resection. We highlight several important signaling pathways for cardiomyocyte proliferation and propose a working model of how these injury-induced signals promote cardiomyocyte proliferation. Thus, this concise review provides up-to-date research progresses on heart regeneration for investigators in the field of regeneration biology.
Collapse
Affiliation(s)
- Lixia Zheng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Jianyong Du
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Zihao Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Qinchao Zhou
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China.
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| |
Collapse
|
41
|
Abstract
The zebrafish has emerged as a valuable and important model organism for studying vascular development and vascular biology. Here, we discuss some of the approaches used to study vessels in fish, including loss-of-function tools such as morpholinos and genetic mutants, along with methods and considerations for assessing vascular phenotypes. We also provide detailed protocols for methods used for vital imaging of the zebrafish vasculature, including microangiography and long-term time-lapse imaging. The methods we describe, and the considerations we suggest using for assessing phenotypes observed using these methods, will help ensure reliable, valid conclusions when assessing vascular phenotypes following genetic or experimental manipulation of zebrafish.
Collapse
|
42
|
Tomura M, Ikebuchi R, Moriya T, Kusumoto Y. Tracking the fate and migration of cells in live animals with cell-cycle indicators and photoconvertible proteins. J Neurosci Methods 2021; 355:109127. [PMID: 33722643 DOI: 10.1016/j.jneumeth.2021.109127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022]
Abstract
Cell migration and cell proliferation are the basic principles that make up a living organism, and both biologically and medically. In order to understand living organism and biological phenomena, it is essential to track the migration, proliferation, and fate of cells in living cells and animals and to clarify the properties and molecular expression of cells. Recent developments in novel fluorescent proteins have made it possible to observe cell migration and proliferation as the cell cycle at the single-cell level in living individuals and tissues. Here, we introduce cell cycle visualization of living cells and animals by Fucci (Fluorescent Ubiquitination-based Cell Cycle Indicator) system and in situ cell labeling of cells and tracking cell migration by photoactivatable and photoconvertible proteins. In addition, we will present our established methods as an example of combines above tools with single-cell molecular expression analysis to reveal the fate of migrating cells at single cell level.
Collapse
Affiliation(s)
- Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan.
| | - Ryoyo Ikebuchi
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Taiki Moriya
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Yutaka Kusumoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| |
Collapse
|
43
|
Peng Y, Wang W, Fang Y, Hu H, Chang N, Pang M, Hu YF, Li X, Long H, Xiong JW, Zhang R. Inhibition of TGF-β/Smad3 Signaling Disrupts Cardiomyocyte Cell Cycle Progression and Epithelial-Mesenchymal Transition-Like Response During Ventricle Regeneration. Front Cell Dev Biol 2021; 9:632372. [PMID: 33816481 PMCID: PMC8010688 DOI: 10.3389/fcell.2021.632372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Unlike mammals, zebrafish can regenerate injured hearts even in the adult stage. Cardiac regeneration requires the coordination of cardiomyocyte (CM) proliferation and migration. The TGF-β/Smad3 signaling pathway has been implicated in cardiac regeneration, but the molecular mechanisms by which this pathway regulates CM proliferation and migration have not been fully illustrated. Here, we investigated the function of TGF-β/Smad3 signaling in a zebrafish model of ventricular ablation. Multiple components of this pathway were upregulated/activated after injury. Utilizing a specific inhibitor of Smad3, we detected an increased ratio of unrecovered hearts. Transcriptomic analysis suggested that the TGF-β/Smad3 signaling pathway could affect CM proliferation and migration. Further analysis demonstrated that the CM cell cycle was disrupted and the epithelial–mesenchymal transition (EMT)-like response was impaired, which limited cardiac regeneration. Altogether, our study reveals an important function of TGF-β/Smad3 signaling in CM cell cycle progression and EMT process during zebrafish ventricle regeneration.
Collapse
Affiliation(s)
- Yuanyuan Peng
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wenyuan Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yunzheng Fang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Haichen Hu
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Nannan Chang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Meijun Pang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Ye-Fan Hu
- School of Life Sciences, Fudan University, Shanghai, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
| | - Xueyu Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Han Long
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jing-Wei Xiong
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
44
|
Cardiac cell type-specific responses to injury and contributions to heart regeneration. CELL REGENERATION 2021; 10:4. [PMID: 33527149 PMCID: PMC7851195 DOI: 10.1186/s13619-020-00065-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Heart disease is the leading cause of mortality worldwide. Due to the limited proliferation rate of mature cardiomyocytes, adult mammalian hearts are unable to regenerate damaged cardiac muscle following injury. Instead, injured area is replaced by fibrotic scar tissue, which may lead to irreversible cardiac remodeling and organ failure. In contrast, adult zebrafish and neonatal mammalian possess the capacity for heart regeneration and have been widely used as experimental models. Recent studies have shown that multiple types of cells within the heart can respond to injury with the activation of distinct signaling pathways. Determining the specific contributions of each cell type is essential for our understanding of the regeneration network organization throughout the heart. In this review, we provide an overview of the distinct functions and coordinated cell behaviors of several major cell types including cardiomyocytes, endocardial cells, epicardial cells, fibroblasts, and immune cells. The topic focuses on their specific responses and cellular plasticity after injury, and potential therapeutic applications.
Collapse
|
45
|
Tahara N, Akiyama R, Wang J, Kawakami H, Bessho Y, Kawakami Y. The FGF-AKT pathway is necessary for cardiomyocyte survival for heart regeneration in zebrafish. Dev Biol 2021; 472:30-37. [PMID: 33444612 DOI: 10.1016/j.ydbio.2020.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/12/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Zebrafish have a remarkable ability to regenerate the myocardium after injury by proliferation of pre-existing cardiomyocytes. Fibroblast growth factor (FGF) signaling is known to play a critical role in zebrafish heart regeneration through promotion of neovascularization of the regenerating myocardium. Here, we define an additional function of FGF signaling in the zebrafish myocardium after injury. We find that FGF signaling is active in a small fraction of cardiomyocytes before injury, and that the number of FGF signaling-positive cardiomyocytes increases after amputation-induced injury. We show that ERK phosphorylation is prominent in endothelial cells, but not in cardiomyocytes. In contrast, basal levels of phospho-AKT positive cardiomyocytes are detected before injury, and the ratio of phosphorylated AKT-positive cardiomyocytes increases after injury, indicating a role of AKT signaling in cardiomyocytes following injury. Inhibition of FGF signaling reduced the number of phosphorylated AKT-positive cardiomyocytes and increased cardiomyocyte death without injury. Heart injury did not induce cardiomyocyte death; however, heart injury in combination with inhibition of FGF signaling caused significant increase in cardiomyocyte death. Pharmacological inhibition of AKT signaling after heart injury also caused increased cardiomyocyte death. Our data support the idea that FGF-AKT signaling-dependent cardiomyocyte survival is necessary for subsequent heart regeneration.
Collapse
Affiliation(s)
- Naoyuki Tahara
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN, USA
| | - Ryutaro Akiyama
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN, USA; Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Justin Wang
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Hiroko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN, USA
| | - Yasumasa Bessho
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
46
|
Sun F, Shoffner AR, Poss KD. A Genetic Cardiomyocyte Ablation Model for the Study of Heart Regeneration in Zebrafish. Methods Mol Biol 2021; 2158:71-80. [PMID: 32857367 DOI: 10.1007/978-1-0716-0668-1_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adult zebrafish possess an elevated cardiac regenerative capacity as compared with adult mammals. In the past two decades, zebrafish have provided a key model system for studying the cellular and molecular mechanisms of innate heart regeneration. The ease of genetic manipulation in zebrafish has enabled the establishment of a genetic ablation injury model in which over 60% of cardiomyocytes can be depleted, eliciting signs of heart failure. After this severe injury, adult zebrafish efficiently regenerate lost cardiomyocytes and reverse heart failure. In this chapter, we describe the methods for inducing genetic cardiomyocyte ablation in adult zebrafish, assessing cardiomyocyte proliferation, and histologically analyzing regeneration after injury.
Collapse
Affiliation(s)
- Fei Sun
- Regeneration Next, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Adam R Shoffner
- Regeneration Next, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Kenneth D Poss
- Regeneration Next, Duke University, Durham, NC, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
47
|
Mef2c factors are required for early but not late addition of cardiomyocytes to the ventricle. Dev Biol 2020; 470:95-107. [PMID: 33245870 PMCID: PMC7819464 DOI: 10.1016/j.ydbio.2020.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
During heart formation, the heart grows and undergoes dramatic morphogenesis to achieve efficient embryonic function. Both in fish and amniotes, much of the growth occurring after initial heart tube formation arises from second heart field (SHF)-derived progenitor cell addition to the arterial pole, allowing chamber formation. In zebrafish, this process has been extensively studied during embryonic life, but it is unclear how larval cardiac growth occurs beyond 3 days post-fertilisation (dpf). By quantifying zebrafish myocardial growth using live imaging of GFP-labelled myocardium we show that the heart grows extensively between 3 and 5 dpf. Using methods to assess cell division, cellular development timing assay and Kaede photoconversion, we demonstrate that proliferation, CM addition, and hypertrophy contribute to ventricle growth. Mechanistically, we show that reduction in Mef2c activity (mef2ca+/-;mef2cb-/-), downstream or in parallel with Nkx2.5 and upstream of Ltbp3, prevents some CM addition and differentiation, resulting in a significantly smaller ventricle by 3 dpf. After 3 dpf, however, CM addition in mef2ca+/-;mef2cb-/- mutants recovers to a normal pace, and the heart size gap between mutants and their siblings diminishes into adulthood. Thus, as in mice, there is an early time window when SHF contribution to the myocardium is particularly sensitive to loss of Mef2c activity.
Collapse
|
48
|
Markmee R, Aungsuchawan S, Tancharoen W, Narakornsak S, Pothacharoen P. Differentiation of cardiomyocyte-like cells from human amniotic fluid mesenchymal stem cells by combined induction with human platelet lysate and 5-azacytidine. Heliyon 2020; 6:e04844. [PMID: 32995593 PMCID: PMC7502343 DOI: 10.1016/j.heliyon.2020.e04844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/01/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Human amniotic fluid mesenchymal stem cells (hAF-MSCs) have been shown to be effective in the treatment of many diseases. Platelet lysate (PL) contains multiple growth and differentiation factors; therefore, it can be used as a differentiation inducer. In this study, we attempted to evaluate the efficiency of human platelet lysate (hPL) on cell viability and the effects on cardiomyogenic differentiation of hAF-MSCs. When treating the cells with hPL, the result showed an increase in cell viability. Expressions of cardiomyogenic specific genes, including GATA4, cTnT, Cx43 and Nkx2.5, were higher in the combined treatment groups of 5-azacytidine (5-aza) and hPL than the expressions of cardiomyogenic specific genes in the control group and in the 5-aza treatment group. In terms of the results of immunofluorescence and immunoenzymatic staining, the highest expressions of cardiomyogenic specific proteins were revealed in combined treatment groups. It can be summarized that hPL may be an effective supporting cardiomyogenic supplementary factor for cardiomyogenic differentiation in hAF-MSCs.
Collapse
Affiliation(s)
- Runchana Markmee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sirinda Aungsuchawan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Waleephan Tancharoen
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Suteera Narakornsak
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Peraphan Pothacharoen
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
49
|
Abstract
Regeneration is the process by which organisms replace lost or damaged tissue, and regenerative capacity can vary greatly among species, tissues and life stages. Tissue regeneration shares certain hallmarks of embryonic development, in that lineage-specific factors can be repurposed upon injury to initiate morphogenesis; however, many differences exist between regeneration and embryogenesis. Recent studies of regenerating tissues in laboratory model organisms - such as acoel worms, frogs, fish and mice - have revealed that chromatin structure, dedicated enhancers and transcriptional networks are regulated in a context-specific manner to control key gene expression programmes. A deeper mechanistic understanding of the gene regulatory networks of regeneration pathways might ultimately enable their targeted reactivation as a means to treat human injuries and degenerative diseases. In this Review, we consider the regeneration of body parts across a range of tissues and species to explore common themes and potentially exploitable elements.
Collapse
Affiliation(s)
- Joseph A Goldman
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA.
| | - Kenneth D Poss
- Regeneration Next, Duke University, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
50
|
Cashman JR. Small Molecule Regulation of Stem Cells that Generate Bone, Chondrocyte, and Cardiac Cells. Curr Top Med Chem 2020; 20:2344-2361. [PMID: 32819246 DOI: 10.2174/1568026620666200820143912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/13/2020] [Indexed: 11/22/2022]
Abstract
Embryonic stem cells (ESCs) are stem cells (SCs) that can self-renew and differentiate into a myriad of cell types. The process of developing stemness is determined by signaling molecules that drive stem cells to a specific lineage. For example, ESCs can differentiate into mature cells (e.g., cardiomyocytes) and mature cardiomyocytes can be characterized for cell beating, action potential, and ion channel function. A goal of this Perspective is to show how small molecules can be used to differentiate ESCs into cardiomyocytes and how this can reveal novel aspects of SC biology. This approach can also lead to the discovery of new molecules of use in cardiovascular disease. Human induced pluripotent stem cells (hiPSCs) afford the ability to produce unlimited numbers of normal human cells. The creation of patient-specific hiPSCs provides an opportunity to study cell models of human disease. The second goal is to show that small molecules can stimulate hiPSC commitment to cardiomyocytes. How iPSCs can be used in an approach to discover new molecules of use in cardiovascular disease will also be shown in this study. Adult SCs, including mesenchymal stem cells (MSCs), can likewise participate in self-renewal and multilineage differentiation. MSCs are capable of differentiating into osteoblasts, adipocytes or chondrocytes. A third goal of this Perspective is to describe differentiation of MSCs into chondrogenic and osteogenic lineages. Small molecules can stimulate MSCs to specific cell fate both in vitro and in vivo. In this Perspective, some recent examples of applying small molecules for osteogenic and chondrogenic cell fate determination are summarized. Underlying molecular mechanisms and signaling pathways involved are described. Small molecule-based modulation of stem cells shows insight into cell regulation and potential approaches to therapeutic strategies for MSC-related diseases.
Collapse
Affiliation(s)
- John R Cashman
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, United States
| |
Collapse
|