1
|
Liu H, Yuan Y, Li J, Lan Z, Dai Z, Li G, Xiao K, Pu Y, He C, Qin S, Su Z. Establishment of an efficient and economical method for primary oligodendrocyte progenitor cell culture from neonatal mouse brain. Brain Res 2025; 1853:149519. [PMID: 40023233 DOI: 10.1016/j.brainres.2025.149519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
The primary culture of oligodendrocyte progenitor cells (OPCs) provides an indispensable tool for characterizing their biological properties and myelin repair potential. However, the current OPC preparation methods are mainly limited to rat tissues, and it remains a substantial challenge for replicating the primary culture from mouse tissues to generate large quantities of high-quality OPCs. Here, we describe a protocol to successfully establish highly enriched OPC cultures from the cerebral cortex of mice at the age of neonatal 3 days. OPCs were isolated and purified from the bed layer of astrocytes by shaking for 6 h at 250 rpm. Using this protocol, mouse OPCs can be easily produced in bulk and economically without the need for specific cell-surface antibodies and equipment. These mouse OPC cultures were identified by immunocytochemical, immunobloting and RNA-seq analysis. Furthermore, they could be expanded in vitro and differentiate into mature oligodendrocytes. We propose this method as a viable and affordable protocol to obtain mouse OPC culture, which should significantly facilitate studies on OPC lineage progression and their application in myelin-related disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China; Department of Pain Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Jiali Li
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Zhida Lan
- Department of Anatomy, College of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Ziwei Dai
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Guanyu Li
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Kouwei Xiao
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yingyan Pu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Mayr L, Neyazi S, Schwark K, Trissal M, Beck A, Labelle J, Eder SK, Weiler-Wichtl L, Marques JG, de Biagi-Junior CAO, Lo Cascio C, Chapman O, Sridhar S, Kenkre R, Dutta A, Wang S, Wang J, Hack O, Nascimento A, Nguyen CM, Castellani S, Rozowsky JS, Groves A, Panditharatna E, Cruzeiro GAV, Haase RD, Tabatabai K, Madlener S, Wadden J, Adam T, Kong S, Miclea M, Patel T, Bruckner K, Senfter D, Lämmerer A, Supko J, Guntner AS, Palova H, Neradil J, Stepien N, Lötsch-Gojo D, Berger W, Leiss U, Rosenmayr V, Dorfer C, Dieckmann K, Peyrl A, Azizi AA, Baumgartner A, Slaby O, Pokorna P, Clark LM, Cameron A, Nguyen QD, Wakimoto H, Dubois F, Greenwald NF, Bandopadhayay P, Beroukhim R, Ligon K, Kramm C, Bronsema A, Bailey S, Stucklin AG, Mueller S, Skrypek M, Martinez N, Bowers DC, Jones DTW, Jones C, Jäger N, Sterba J, Müllauer L, Haberler C, Kumar-Sinha C, Chinnaiyan A, Mody R, Chavez L, Furtner J, Koschmann C, Gojo J, Filbin MG. Effective targeting of PDGFRA-altered high-grade glioma with avapritinib. Cancer Cell 2025; 43:740-756.e8. [PMID: 40086436 DOI: 10.1016/j.ccell.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/27/2024] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
PDGFRA is crucial to tumorigenesis and frequently genomically altered in high-grade glioma (HGG). In a comprehensive dataset of pediatric HGG (n = 261), we detect PDGFRA mutations and/or amplifications in 15% of cases, suggesting PDGFRA as a therapeutic target. We reveal that the PDGFRA/KIT inhibitor avapritinib shows (1) selectivity for PDGFRA inhibition, (2) distinct patterns of subcellular effects, (3) in vitro and in vivo activity in patient-derived HGG models, and (4) effective blood-brain barrier penetration in mice and humans. Furthermore, we report preliminary clinical real-world experience using avapritinib in pediatric and young adult patients with predominantly recurrent/refractory PDGFRA-altered HGG (n = 8). Our early data demonstrate that avapritinib is well tolerated and results in radiographic response in 3/7 cases, suggesting a potential role for avapritinib in the treatment of HGG with specific PDGFRA alterations. Overall, these translational results underscore the therapeutic potential of PDGFRA inhibition with avapritinib in HGG.
Collapse
Affiliation(s)
- Lisa Mayr
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA; Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Sina Neyazi
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Kallen Schwark
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria Trissal
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Alexander Beck
- Center for Neuropathology and Prion Research, Ludwig Maximilians University Munich, Faculty of Medicine, Muenchen, 80539 Bayern, Germany
| | - Jenna Labelle
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Sebastian K Eder
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA; St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna and St. Anna Children's Cancer Research Institute (CCRI), 1090 Vienna, Austria
| | - Liesa Weiler-Wichtl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Joana G Marques
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Carlos A O de Biagi-Junior
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Costanza Lo Cascio
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Owen Chapman
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Sunita Sridhar
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Rishaan Kenkre
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Aditi Dutta
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Shanqing Wang
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Jessica Wang
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Olivia Hack
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Andrezza Nascimento
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Cuong M Nguyen
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Sophia Castellani
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jacob S Rozowsky
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Andrew Groves
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Eshini Panditharatna
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca D Haase
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Kuscha Tabatabai
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Jack Wadden
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tiffany Adam
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Seongbae Kong
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Madeline Miclea
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tirth Patel
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Katharina Bruckner
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; Department of Neurosurgery, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniel Senfter
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna Lämmerer
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Jeffrey Supko
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Armin S Guntner
- Institute for Analytical and General Chemistry, Johannes Kepler University, 4040 Linz, Austria
| | - Hana Palova
- Central European Institute of Technology, Masaryk University, 60177 Brno, Czech Republic
| | - Jakub Neradil
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Natalia Stepien
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Lötsch-Gojo
- Department of Neurosurgery, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Ulrike Leiss
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Verena Rosenmayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Karin Dieckmann
- Department of Radiotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Alicia Baumgartner
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA; Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 60177 Brno, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Petra Pokorna
- Central European Institute of Technology, Masaryk University, 60177 Brno, Czech Republic
| | - Louise M Clark
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Amy Cameron
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Frank Dubois
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Noah F Greenwald
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Cancer Biology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02115, USA
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Rameen Beroukhim
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA 02115, USA
| | - Keith Ligon
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Christof Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Annika Bronsema
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Simon Bailey
- Great North Childrens Hospital and Newcastle University, Newcastle upon Tyne, UK; Newcastle Hospitals NHS Foundation Trust, NE1 4LP Newcastle, UK
| | - Ana Guerreiro Stucklin
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, 8008 Zurich, Switzerland
| | - Sabine Mueller
- Departments of Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Mary Skrypek
- Department of Pediatric Hematology-Oncology, Children's Minnesota, Minneapolis, MN 55404, USA
| | - Nina Martinez
- Department of Neurology & Neurological Surgery, Jefferson University, Philadelphia, PA 19107, USA
| | - Daniel C Bowers
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Chris Jones
- Division of Molecular Pathology, Institute of Cancer Research, SM2 5NG London, UK
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ) & Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jaroslav Sterba
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, 662630 Brno, Czech Republic
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Arul Chinnaiyan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Rajen Mody
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lukas Chavez
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Julia Furtner
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; Research Center of Medical Image Analysis and Artificial Intelligence, Danube Private University, 3500 Krems an der Donau, Austria
| | - Carl Koschmann
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria.
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
3
|
Guenoun D, Blaise N, Sellam A, Roupret‐Serzec J, Jacquens A, Steenwinckel JV, Gressens P, Bokobza C. Microglial Depletion, a New Tool in Neuroinflammatory Disorders: Comparison of Pharmacological Inhibitors of the CSF-1R. Glia 2025; 73:686-700. [PMID: 39719687 PMCID: PMC11845850 DOI: 10.1002/glia.24664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024]
Abstract
A growing body of evidence highlights the importance of microglia, the resident immune cells of the CNS, and their pro-inflammatory activation in the onset of many neurological diseases. Microglial proliferation, differentiation, and survival are highly dependent on the CSF-1 signaling pathway, which can be pharmacologically modulated by inhibiting its receptor, CSF-1R. Pharmacological inhibition of CSF-1R leads to an almost complete microglial depletion whereas treatment arrest allows for subsequent repopulation. Microglial depletion has shown promising results in many animal models of neurodegenerative diseases (Alzheimer's disease (AD), Parkinson's disease, or multiple sclerosis) where transitory microglial depletion reduced neuroinflammation and improved behavioral test results. In this review, we will focus on the comparison of three different pharmacological CSF-1R inhibitors (PLX3397, PLX5622, and GW2580) regarding microglial depletion. We will also highlight the promising results obtained by microglial depletion strategies in adult models of neurological disorders and argue they could also prove promising in neurodevelopmental diseases associated with microglial activation and neuroinflammation. Finally, we will discuss the lack of knowledge about the effects of these strategies on neurons, astrocytes, and oligodendrocytes in adults and during neurodevelopment.
Collapse
Affiliation(s)
- David Guenoun
- Inserm, NeuroDiderotUniversité Paris‐CitéParisFrance
- Department of PharmacyRobert Debré Hospital (AP‐HP)ParisFrance
| | - Nathan Blaise
- Inserm, NeuroDiderotUniversité Paris‐CitéParisFrance
| | | | | | - Alice Jacquens
- Inserm, NeuroDiderotUniversité Paris‐CitéParisFrance
- Department of Anesthesia and Critical CarePitié‐Salpétrière Hospital (AP‐HP)ParisFrance
| | | | | | - Cindy Bokobza
- Inserm, NeuroDiderotUniversité Paris‐CitéParisFrance
| |
Collapse
|
4
|
Ismailov A, Spallone A, Belogurov A, Herbert A, Poptsova M. Molecular biology of the deadliest cancer - glioblastoma: what do we know? Front Immunol 2025; 16:1530305. [PMID: 40191211 PMCID: PMC11968700 DOI: 10.3389/fimmu.2025.1530305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Glioblastomas are the most prevalent primary brain tumors and are associated with a dramatically poor prognosis. Despite an intensive treatment approach, including maximal surgical tumor removal followed by radio- and chemotherapy, the median survival for glioblastoma patients has remained around 18 months for decades. Glioblastoma is distinguished by its highly complex mechanisms of immune evasion and pronounced heterogeneity. This variability is apparent both within the tumor itself, which can exhibit multiple phenotypes simultaneously, and in its surrounding microenvironment. Another key feature of glioblastoma is its "cold" microenvironment, characterized by robust immunosuppression. Recent advances in single-cell RNA sequencing have uncovered new promising insights, revealing previously unrecognized aspects of this tumor. In this review, we consolidate current knowledge on glioblastoma cells and its microenvironment, with an emphasis on their biological properties and unique patterns of molecular communication through signaling pathways. The evidence underscores the critical need for personalized poly-immunotherapy and other approaches to overcome the plasticity of glioblastoma stem cells. Analyzing the tumor microenvironment of individual patients using single-cell transcriptomics and implementing a customized immunotherapeutic strategy could potentially improve survival outcomes for those facing this formidable disease.
Collapse
Affiliation(s)
- Aly Ismailov
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| | - Aldo Spallone
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- Laboratory of Hormonal Regulation Proteins, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Alexey Belogurov
- Laboratory of Hormonal Regulation Proteins, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Scientific and Educational Institute of Fundamental Medicine named after V.I. Pokrovsky, Department of Biological Chemistry, Russian University of Medicine, Moscow, Russia
| | - Alan Herbert
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- Discovery Department, InsideOutBio, Boston, MA, United States
| | - Maria Poptsova
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
5
|
Wong A, Alejandro EU. Post translational modification regulation of transcription factors governing pancreatic β-cell identity and functional mass. Front Endocrinol (Lausanne) 2025; 16:1562646. [PMID: 40134803 PMCID: PMC11932907 DOI: 10.3389/fendo.2025.1562646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Dysfunction of the insulin-secreting β-cells is a key hallmark of Type 2 diabetes (T2D). In the natural history of the progression of T2D, factors such as genetics, early life exposures, lifestyle, and obesity dictate an individual's susceptibility risk to disease. Obesity is associated with insulin resistance and increased demand for insulin to maintain glucose homeostasis. Studies in both mouse and human islets have implicated the β-cell's ability to compensate through proliferation and survival (increasing functional β-cell mass) as a tipping point toward the development of disease. A growing body of evidence suggests the reduction of β-cell mass in T2D is driven majorly by loss of β-cell identity, rather than by apoptosis alone. The development and maintenance of pancreatic β-cell identity, function, and adaptation to stress is governed, in part, by the spatiotemporal expression of transcription factors (TFs), whose activity is regulated by signal-dependent post-translational modifications (PTM). In this review, we examine the role of these TFs in the developing pancreas and in the mature β-cell. We discuss functional implications of post-translational modifications on these transcription factors' activities and how an understanding of the pathways they regulate can inform therapies to promoteβ-cell regeneration, proliferation, and survival in diabetes.
Collapse
Affiliation(s)
- Alicia Wong
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Emilyn U. Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
6
|
Jung SC, Kang D, Ko EA. Roles of PDGF/PDGFR signaling in various organs. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2025; 29:139-155. [PMID: 39482238 PMCID: PMC11842291 DOI: 10.4196/kjpp.24.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024]
Abstract
Platelet-derived growth factors (PDGFs) ligands and their corresponding receptors, PDGF receptor (PDGFR)α and PDGFRβ, play a crucial role in controlling diverse biological functions, including cell growth, viability and migration. These growth factors bind to PDGFRs, which are receptor tyrosine kinases present on the surface of target cells. The interaction between PDGFs and PDGFRs induces receptor dimerization and subsequent activation through auto-phosphorylation, which in turn triggers a cascade of intracellular signaling pathways. PDGF/PDGFR signaling is essential for maintaining normal physiological functions, including tissue regeneration and growth. However, dysregulation of this signaling pathway leads to pathological conditions, including fibrosis, atherosclerosis, and cancer development in various organs. The pathological impact of PDGF/PDGFR signaling primarily stems from its capacity to promote excessive cell proliferation, enhanced migration, and increased extracellular matrix deposition, resulting in tissue overgrowth, scarring, and abnormal vessel formation. These processes are integral to the pathogenesis of fibrotic, neoplastic, and vascular disorders. Therefore, understanding these pathways is crucial for developing targeted treatments designed to inhibit PDGF/PDGFR signaling in these diseases. This review delves into the dual role of PDGF/PDGFR signaling in both physiological and pathophysiological contexts across different organs and provides insights into current pharmacological therapies designed to target the PDGF signaling pathway.
Collapse
Affiliation(s)
- Sung-Cherl Jung
- Department of Physiology, College of Medicine, Jeju National University, Jeju 63243, Korea
| | - Dawon Kang
- Department of Physiology, College of Medicine and Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Korea
| | - Eun-A Ko
- Department of Physiology, College of Medicine, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
7
|
Schuurmans IME, Mordelt A, de Witte LD. Orchestrating the neuroglial compartment: Ontogeny and developmental interaction of astrocytes, oligodendrocytes, and microglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:27-47. [PMID: 40122629 DOI: 10.1016/b978-0-443-19104-6.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Neuroglial cells serve as the master regulators of the central nervous system, making it imperative for glial development to be tightly regulated both spatially and temporally to ensure optimal brain function. In this chapter, we will discuss the origin and development of the three major glia cells such as astrocytes, oligodendrocytes, and microglia in the central nervous system. While much of our understanding of neuroglia development stems from studies using animal models, we will also explore recent insights into human glial development and potential differences from rodent models. Finally, the extensive crosstalk between glia cells will be highlighted, discussing how interactions among astrocyte, oligodendrocyte, and microglial influence their respective developmental pathways.
Collapse
Affiliation(s)
- Imke M E Schuurmans
- Department of Pediatrics, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Annika Mordelt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Lot D de Witte
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Sharma T, Mehan S, Tiwari A, Khan Z, Gupta GD, Narula AS. Targeting Oligodendrocyte Dynamics and Remyelination: Emerging Therapies and Personalized Approaches in Multiple Sclerosis Management. Curr Neurovasc Res 2025; 21:359-417. [PMID: 39219420 DOI: 10.2174/0115672026336440240822063430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/01/1970] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Multiple sclerosis (MS) is a progressive autoimmune condition that primarily affects young people and is characterized by demyelination and neurodegeneration of the central nervous system (CNS). This in-depth review explores the complex involvement of oligodendrocytes, the primary myelin- producing cells in the CNS, in the pathophysiology of MS. It discusses the biochemical processes and signalling pathways required for oligodendrocytes to function and remain alive, as well as how they might fail and cause demyelination to occur. We investigate developing therapeutic options that target remyelination, a fundamental component of MS treatment. Remyelination approaches promote the survival and differentiation of oligodendrocyte precursor cells (OPCs), restoring myelin sheaths. This improves nerve fibre function and may prevent MS from worsening. We examine crucial parameters influencing remyelination success, such as OPC density, ageing, and signalling pathway regulation (e.g., Retinoid X receptor, LINGO-1, Notch). The review also examines existing neuroprotective and antiinflammatory medications being studied to see if they can assist oligodendrocytes in surviving and reducing the severity of MS symptoms. The review focuses on medicines that target the myelin metabolism in oligodendrocytes. Altering oligodendrocyte metabolism has been linked to reversing demyelination and improving MS patient outcomes through various mechanisms. We also explore potential breakthroughs, including innovative antisense technologies, deep brain stimulation, and the impact of gut health and exercise on MS development. The article discusses the possibility of personalized medicine in MS therapy, emphasizing the importance of specific medicines based on individual molecular profiles. The study emphasizes the need for reliable biomarkers and improved imaging tools for monitoring disease progression and therapy response. Finally, this review focuses on the importance of oligodendrocytes in MS and the potential for remyelination therapy. It also underlines the importance of continued research to develop more effective treatment regimens, taking into account the complexities of MS pathology and the different factors that influence disease progression and treatment.
Collapse
Affiliation(s)
- Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
9
|
Xu X, Fang M, Chen L, Huang H, Dai ZM, Yang J, Qiu M. Nzf2 promotes oligodendrocyte differentiation and regeneration via repressing HDAC1-mediated histone deacetylation. SCIENCE ADVANCES 2024; 10:eadf8405. [PMID: 39671488 PMCID: PMC11641009 DOI: 10.1126/sciadv.adf8405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
Proper axonal myelination and function of the vertebrate central nervous system rely largely on the timely differentiation of oligodendrocytes (OLs), yet key regulatory factors remain enigmatic. Our study reveals neural zinc finger (Nzf2) as a crucial orchestrator that controls the timing of OL differentiation both during development and myelin repair, contrasting with its previously suggested role in direct myelin gene regulation. Nzf2 ablation delays the onset of OL differentiation, while hyperactivation stimulates OL differentiation both during development and remyelination. Using RNA-seq and ChIP-seq, we pinpoint Nkx2.2 as a critical downstream target of Nzf2. Specific binding of Nzf2 in the Nkx2.2 gene locus inhibits histone deacetylation by disrupting the HDAC1 repressor complex and reducing deacetylase activity. Furthermore, Nzf2 overrides the inhibitory Notch signaling to initiate OL differentiation. Thus, we propose that the Notch-Nzf2-Nkx2.2 axis is a vital component of OL differentiation timing mechanism, suggesting Nzf2 as a potential therapeutic target for stimulating OL differentiation and boosting myelin repair in demyelinating diseases.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Minxi Fang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lixia Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhong-Min Dai
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Junlin Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
10
|
Bernou C, Mouthon MA, Daynac M, Kortulewski T, Demaille B, Barroca V, Couillard-Despres S, Dechamps N, Ménard V, Bellenger L, Antoniewski C, Chicheportiche AD, Boussin FD. Switching of RNA splicing regulators in immature neuroblasts during adult neurogenesis. eLife 2024; 12:RP87083. [PMID: 39576691 PMCID: PMC11584179 DOI: 10.7554/elife.87083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
The lateral wall of the mouse subventricular zone harbors neural stem cells (NSC, B cells) which generate proliferating transient-amplifying progenitors (TAP, C cells) that ultimately give rise to neuroblasts (NB, A cells). Molecular profiling at the single-cell level struggles to distinguish these different cell types. Here, we combined transcriptome analyses of FACS-sorted cells and single-cell RNAseq to demonstrate the existence of an abundant, clonogenic and multipotent population of immature neuroblasts (iNB cells) at the transition between TAP and migrating NB (mNB). iNB are reversibly engaged in neuronal differentiation. Indeed, they keep molecular features of both undifferentiated progenitors, plasticity and unexpected regenerative properties. Strikingly, they undergo important progressive molecular switches, including changes in the expression of splicing regulators leading to their differentiation in mNB subdividing them into two subtypes, iNB1 and iNB2. Due to their plastic properties, iNB could represent a new target for regenerative therapy of brain damage.
Collapse
Affiliation(s)
- Corentin Bernou
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| | - Marc-André Mouthon
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| | - Mathieu Daynac
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| | - Thierry Kortulewski
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| | - Benjamin Demaille
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| | - Vilma Barroca
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| | - Sebastien Couillard-Despres
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Nathalie Dechamps
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| | - Véronique Ménard
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| | - Léa Bellenger
- Inserm, ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Christophe Antoniewski
- ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Alexandra Déborah Chicheportiche
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| | - François Dominique Boussin
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| |
Collapse
|
11
|
Li X, Li N, Wang Y, Han Q, Sun B. Research Progress of Fibroblasts in Human Diseases. Biomolecules 2024; 14:1478. [PMID: 39595654 PMCID: PMC11591654 DOI: 10.3390/biom14111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Fibroblasts, which originate from embryonic mesenchymal cells, are the predominant cell type seen in loose connective tissue. As the main components of the internal environment that cells depend on for survival, fibroblasts play an essential role in tissue development, wound healing, and the maintenance of tissue homeostasis. Furthermore, fibroblasts are also involved in several pathological processes, such as fibrosis, cancers, and some inflammatory diseases. In this review, we analyze the latest research progress on fibroblasts, summarize the biological characteristics and physiological functions of fibroblasts, and delve into the role of fibroblasts in disease pathogenesis and explore treatment approaches for fibroblast-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Boshi Sun
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (X.L.); (N.L.); (Y.W.); (Q.H.)
| |
Collapse
|
12
|
Chang L, Xie Y, Taylor B, Wang Z, Sun J, Armand EJ, Mishra S, Xu J, Tastemel M, Lie A, Gibbs ZA, Indralingam HS, Tan TM, Bejar R, Chen CC, Furnari FB, Hu M, Ren B. Droplet Hi-C enables scalable, single-cell profiling of chromatin architecture in heterogeneous tissues. Nat Biotechnol 2024:10.1038/s41587-024-02447-1. [PMID: 39424717 DOI: 10.1038/s41587-024-02447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Current methods for analyzing chromatin architecture are not readily scalable to heterogeneous tissues. Here we introduce Droplet Hi-C, which uses a commercial microfluidic device for high-throughput, single-cell chromatin conformation profiling in droplets. Using Droplet Hi-C, we mapped the chromatin architecture of the mouse cortex and analyzed gene regulatory programs in major cortical cell types. In addition, we used this technique to detect copy number variations, structural variations and extrachromosomal DNA in human glioblastoma, colorectal and blood cancer cells, revealing clonal dynamics and other oncogenic events during treatment. We refined the technique to allow joint profiling of chromatin architecture and transcriptome in single cells, facilitating exploration of the links between chromatin architecture and gene expression in both normal tissues and tumors. Thus, Droplet Hi-C both addresses critical gaps in chromatin analysis of heterogeneous tissues and enhances understanding of gene regulation.
Collapse
Affiliation(s)
- Lei Chang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yang Xie
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Brett Taylor
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Zhaoning Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jiachen Sun
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Systems Biology and Bioinformatics PhD Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ethan J Armand
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Shreya Mishra
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Jie Xu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Melodi Tastemel
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Audrey Lie
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Zane A Gibbs
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hannah S Indralingam
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tuyet M Tan
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Rafael Bejar
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Frank B Furnari
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA.
- Center for Epigenomics, Institute for Genomic Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Ma Z, Zhang W, Wang C, Su Y, Yi C, Niu J. A New Acquaintance of Oligodendrocyte Precursor Cells in the Central Nervous System. Neurosci Bull 2024; 40:1573-1589. [PMID: 39042298 PMCID: PMC11422404 DOI: 10.1007/s12264-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 07/24/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are a heterogeneous multipotent population in the central nervous system (CNS) that appear during embryogenesis and persist as resident cells in the adult brain parenchyma. OPCs could generate oligodendrocytes to participate in myelination. Recent advances have renewed our knowledge of OPC biology by discovering novel markers of oligodendroglial cells, the myelin-independent roles of OPCs, and the regulatory mechanism of OPC development. In this review, we will explore the updated knowledge on OPC identity, their multifaceted roles in the CNS in health and diseases, as well as the regulatory mechanisms that are involved in their developmental stages, which hopefully would contribute to a further understanding of OPCs and attract attention in the field of OPC biology.
Collapse
Affiliation(s)
- Zexuan Ma
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wei Zhang
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
| | - Chenmeng Wang
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
- Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, 518107, China.
| | - Jianqin Niu
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China.
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400038, China.
| |
Collapse
|
14
|
Shen Y, Li T, Sun C, Cheng X, Chen Z, Wang G, Yang X. Atg7 autophagy-independent role on governing neural stem cell fate could be potentially applied for regenerative medicine. Cell Death Differ 2024; 31:1375-1388. [PMID: 38898232 PMCID: PMC11445561 DOI: 10.1038/s41418-024-01330-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
A literature review showed that Atg7 biological role was associated with the development and pathogenesis of nervous system, but very few reports focused on Atg7 role on neurogenesis at the region of spinal cord, so that we are committed to explore the subject. Atg7 expression in neural tube is incrementally increased during neurogenesis. Atg7 neural-specific knockout mice demonstrated the impaired motor function and imbalance of neuronal and glial cell differentiation during neurogenesis, which was similarly confirmed in primary neurosphere culture and reversely verified by Atg7 overexpression in unilateral neural tubes of gastrula chicken embryos. Furthermore, activating autophagy in neural stem cells (NSCs) of neurospheres did not rescue Atg7 deficiency-suppressed neuronal differentiation, but Atg7 overexpression on the basis of autophagy inhibition could reverse Atg7 deficiency-suppressed neuronal differentiation, which provides evidence for the existence of Atg7 role of autophagy-independent function. The underlying mechanism is that Atg7 deficiency directly caused the alteration of cell cycle length of NSCs, which is controlled by Atg7 through specifically binding Mdm2, thereby affecting neuronal differentiation during neurogenesis. Eventually, the effect of overexpressing Atg7-promoting neuronal differentiation was proved in spinal cord injury model as well. Taken together, this study revealed that Atg7 was involved in regulating neurogenesis by a non-autophagic signaling process, and this finding also shed light on the potential application in regenerative medicine.
Collapse
Affiliation(s)
- Yao Shen
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Tingting Li
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chengyang Sun
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xin Cheng
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhi Chen
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou, 510220, China.
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, 510632, China.
- Clinical Research Center, Clifford Hospital, Guangzhou, 511496, China.
| |
Collapse
|
15
|
Ventura GC, Dyshliuk N, Dmytriyeva O, Nordsten MJB, Haugaard MM, Christiansen LI, Thymann T, Sangild PT, Pankratova S. Enteral plasma supports brain repair in newborn pigs after birth asphyxia. Brain Behav Immun 2024; 119:693-708. [PMID: 38677626 DOI: 10.1016/j.bbi.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Newborns exposed to birth asphyxia transiently experience deficient blood flow and a lack of oxygen, potentially inducing hypoxic-ischaemic encephalopathy and subsequent neurological damage. Immunomodulatory components in plasma may dampen these responses. Using caesarean-delivered pigs as a model, we hypothesized that dietary plasma supplementation improves brain outcomes in pigs exposed to birth asphyxia. Mild birth asphyxia was induced by temporary occlusion of the umbilical cord prior to caesarean delivery. Motor development was assessed in asphyxiated (ASP) and control (CON) piglets using neonatal arousal, physical activity and gait test parameters before euthanasia on Day 4. The ASP pigs exhibited increased plasma lactate at birth, deficient motor skills and increased glial fibrillary acidic protein levels in CSF and astrogliosis in the putamen. The expression of genes related to oxidative stress, inflammation and synaptic functions was transiently altered in the motor cortex and caudate nucleus. The number of apoptotic cells among CTIP2-positive neurons in the motor cortex and striatal medium spiny neurons was increased, and maturation of preoligodendrocytes in the internal capsule was delayed. Plasma supplementation improved gait performance in the beam test, attenuated neuronal apoptosis and affected gene expression related to neuroinflammation, neurotransmission and antioxidants (motor cortex, caudate). We present a new clinically relevant animal model of moderate birth asphyxia inducing structural and functional brain damage. The components in plasma that support brain repair remain to be identified but may represent a therapeutic potential for infants and animals after birth asphyxia.
Collapse
Affiliation(s)
- Gemma Chavarria Ventura
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadiya Dyshliuk
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Jacob Bagi Nordsten
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Mathilde Haugaard
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Line Iadsatian Christiansen
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Thymann
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Torp Sangild
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark; Department of Pediatrics, Odense University Hospital, Odense, Denmark
| | - Stanislava Pankratova
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Emery B, Wood TL. Regulators of Oligodendrocyte Differentiation. Cold Spring Harb Perspect Biol 2024; 16:a041358. [PMID: 38503504 PMCID: PMC11146316 DOI: 10.1101/cshperspect.a041358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.
Collapse
Affiliation(s)
- Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| |
Collapse
|
17
|
Brocato ER, Easter R, Morgan A, Kakani M, Lee G, Wolstenholme JT. Adolescent binge ethanol impacts H3K9me3-occupancy at synaptic genes and the regulation of oligodendrocyte development. Front Mol Neurosci 2024; 17:1389100. [PMID: 38840776 PMCID: PMC11150558 DOI: 10.3389/fnmol.2024.1389100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Binge drinking in adolescence can disrupt myelination and cause brain structural changes that persist into adulthood. Alcohol consumption at a younger age increases the susceptibility of these changes. Animal models to understand ethanol's actions on myelin and white matter show that adolescent binge ethanol can alter the developmental trajectory of oligodendrocytes, myelin structure, and myelin fiber density. Oligodendrocyte differentiation is epigenetically regulated by H3K9 trimethylation (H3K9me3). Prior studies have shown that adolescent binge ethanol dysregulates H3K9 methylation and decreases H3K9-related gene expression in the PFC. Methods Here, we assessed ethanol-induced changes to H3K9me3 occupancy at genomic loci in the developing adolescent PFC. We further assessed ethanol-induced changes at the transcription level with qPCR time course approaches in oligodendrocyte-enriched cells to assess changes in oligodendrocyte progenitor and oligodendrocytes specifically. Results Adolescent binge ethanol altered H3K9me3 regulation of synaptic-related genes and genes specific for glutamate and potassium channels in a sex-specific manner. In PFC tissue, we found an early change in gene expression in transcription factors associated with oligodendrocyte differentiation that may lead to the later significant decrease in myelin-related gene expression. This effect appeared stronger in males. Conclusion Further exploration in oligodendrocyte cell enrichment time course and dose response studies could suggest lasting dysregulation of oligodendrocyte maturation at the transcriptional level. Overall, these studies suggest that binge ethanol may impede oligodendrocyte differentiation required for ongoing myelin development in the PFC by altering H3K9me3 occupancy at synaptic-related genes. We identify potential genes that may be contributing to adolescent binge ethanol-related myelin loss.
Collapse
Affiliation(s)
- Emily R. Brocato
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Rachel Easter
- Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Alanna Morgan
- Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Meenakshi Kakani
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Grace Lee
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer T. Wolstenholme
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
- Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
18
|
Gao X, Mukaibo T, Wei X, Faustoferri RC, Oei MS, Hwang SK, Yan AJ, Melvin JE, Ovitt CE. Nkx2.3 transcription factor is a key regulator of mucous cell identity in salivary glands. Dev Biol 2024; 509:1-10. [PMID: 38311164 PMCID: PMC10939741 DOI: 10.1016/j.ydbio.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Saliva is vital to oral health, fulfilling multiple functions in the oral cavity. Three pairs of major salivary glands and hundreds of minor salivary glands contribute to saliva production. The secretory acinar cells within these glands include two distinct populations. Serous acinar cells secrete a watery saliva containing enzymes, while mucous acinar cells secrete a more viscous fluid containing highly glycosylated mucins. Despite their shared developmental origins, the parotid gland (PG) is comprised of only serous acinar cells, while the sublingual gland (SLG) contains predominantly mucous acinar cells. The instructive signals that govern the identity of serous versus mucous acinar cell phenotypes are not yet known. The homeobox transcription factor Nkx2.3 is uniquely expressed in the SLG. Disruption of the Nkx2.3 gene was reported to delay the maturation of SLG mucous acinar cells. To examine whether Nkx2.3 plays a role in directing the mucous cell phenotype, we analyzed SLG from Nkx2.3-/- mice using RNAseq, immunostaining and proteomic analysis of saliva. Our results indicate that Nkx2.3, most likely in concert with other transcription factors uniquely expressed in the SLG, is a key regulator of the molecular program that specifies the identity of mucous acinar cells.
Collapse
Affiliation(s)
- Xin Gao
- Secretory Mechanisms and Dysfunctions Section, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Taro Mukaibo
- Secretory Mechanisms and Dysfunctions Section, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaolu Wei
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Roberta C Faustoferri
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Maria S Oei
- Secretory Mechanisms and Dysfunctions Section, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seo-Kyoung Hwang
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Adela Jingyi Yan
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - James E Melvin
- Secretory Mechanisms and Dysfunctions Section, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine E Ovitt
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA; Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|
19
|
Chang L, Xie Y, Taylor B, Wang Z, Sun J, Tan TR, Bejar R, Chen CC, Furnari FB, Hu M, Ren B. Droplet Hi-C for Fast and Scalable Profiling of Chromatin Architecture in Single Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590148. [PMID: 38712075 PMCID: PMC11071305 DOI: 10.1101/2024.04.18.590148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Comprehensive analysis of chromatin architecture is crucial for understanding the gene regulatory programs during development and in disease pathogenesis, yet current methods often inadequately address the unique challenges presented by analysis of heterogeneous tissue samples. Here, we introduce Droplet Hi-C, which employs a commercial microfluidic device for high-throughput, single-cell chromatin conformation profiling in droplets. Using Droplet Hi-C, we mapped the chromatin architecture at single-cell resolution from the mouse cortex and analyzed gene regulatory programs in major cortical cell types. Additionally, we used this technique to detect copy number variation (CNV), structural variations (SVs) and extrachromosomal DNA (ecDNA) in cancer cells, revealing clonal dynamics and other oncogenic events during treatment. We further refined this technique to allow for joint profiling of chromatin architecture and transcriptome in single cells, facilitating a more comprehensive exploration of the links between chromatin architecture and gene expression in both normal tissues and tumors. Thus, Droplet Hi-C not only addresses critical gaps in chromatin analysis of heterogeneous tissues but also emerges as a versatile tool enhancing our understanding of gene regulation in health and disease.
Collapse
Affiliation(s)
- Lei Chang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yang Xie
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Brett Taylor
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Zhaoning Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jiachen Sun
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Systems Biology and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Tuyet R. Tan
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Rafael Bejar
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Clark C. Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Frank B. Furnari
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Epigenomics, Institute for Genomic Medicine, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| |
Collapse
|
20
|
Perdaens O, Bottemanne P, van Pesch V. MicroRNAs dysregulated in multiple sclerosis affect the differentiation of CG-4 cells, an oligodendrocyte progenitor cell line. Front Cell Neurosci 2024; 18:1336439. [PMID: 38486710 PMCID: PMC10937391 DOI: 10.3389/fncel.2024.1336439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Demyelination is one of the hallmarks of multiple sclerosis (MS). While remyelination occurs during the disease, it is incomplete from the start and strongly decreases with its progression, mainly due to the harm to oligodendrocyte progenitor cells (OPCs), causing irreversible neurological deficits and contributing to neurodegeneration. Therapeutic strategies promoting remyelination are still very preliminary and lacking within the current treatment panel for MS. Methods In a previous study, we identified 21 microRNAs dysregulated mostly in the CSF of relapsing and/or remitting MS patients. In this study we transfected the mimics/inhibitors of several of these microRNAs separately in an OPC cell line, called CG-4. We aimed (1) to phenotypically characterize their effect on OPC differentiation and (2) to identify corroborating potential mRNA targets via immunocytochemistry, RT-qPCR analysis, RNA sequencing, and Gene Ontology enrichment analysis. Results We observed that the majority of 13 transfected microRNA mimics decreased the differentiation of CG-4 cells. We demonstrate, by RNA sequencing and independent RT-qPCR analyses, that miR-33-3p, miR-34c-5p, and miR-124-5p arrest OPC differentiation at a late progenitor stage and miR-145-5p at a premyelinating stage as evidenced by the downregulation of premyelinating oligodendrocyte (OL) [Tcf7l2, Cnp (except for miR-145-5p)] and mature OL (Plp1, Mbp, and Mobp) markers, whereas only miR-214-3p promotes OPC differentiation. We further propose a comprehensive exploration of their change in cell fate through Gene Ontology enrichment analysis. We finally confirm by RT-qPCR analyses the downregulation of several predicted mRNA targets for each microRNA that possibly support their effect on OPC differentiation by very distinctive mechanisms, of which some are still unexplored in OPC/OL physiology. Conclusion miR-33-3p, miR-34c-5p, and miR-124-5p arrest OPC differentiation at a late progenitor stage and miR-145-5p at a premyelinating stage, whereas miR-214-3p promotes the differentiation of CG-4 cells. We propose several potential mRNA targets and hypothetical mechanisms by which each microRNA exerts its effect. We hereby open new perspectives in the research on OPC differentiation and the pathophysiology of demyelination/remyelination, and possibly even in the search for new remyelinating therapeutic strategies in the scope of MS.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pauline Bottemanne
- Bioanalysis and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
21
|
Sojka C, Sloan SA. Gliomas: a reflection of temporal gliogenic principles. Commun Biol 2024; 7:156. [PMID: 38321118 PMCID: PMC10847444 DOI: 10.1038/s42003-024-05833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The hijacking of early developmental programs is a canonical feature of gliomas where neoplastic cells resemble neurodevelopmental lineages and possess mechanisms of stem cell resilience. Given these parallels, uncovering how and when in developmental time gliomagenesis intersects with normal trajectories can greatly inform our understanding of tumor biology. Here, we review how elapsing time impacts the developmental principles of astrocyte (AS) and oligodendrocyte (OL) lineages, and how these same temporal programs are replicated, distorted, or circumvented in pathological settings such as gliomas. Additionally, we discuss how normal gliogenic processes can inform our understanding of the temporal progression of gliomagenesis, including when in developmental time gliomas originate, thrive, and can be pushed towards upon therapeutic coercion.
Collapse
Affiliation(s)
- Caitlin Sojka
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
22
|
Fang M, Chen L, Tang T, Qiu M, Xu X. The committed oligodendrocyte precursor cell, a newly-defined intermediate progenitor cell type in oligodendroglial lineage. Glia 2023; 71:2499-2510. [PMID: 37278537 DOI: 10.1002/glia.24426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
In the central nervous system, oligodendrocytes (OLs) produce myelin sheaths that provide trophic support to neuronal axons and increase the propagation speed of action potential. OLs are constantly generated from OL precursor cells (OPCs) throughout life span. The production of myelinating OLs consists of three canonical stages: OPCs, newly-formed OLs (NFOs), and mature myelinating OLs. Recently, single-cell RNA transcriptomic analyses identified a new population of oligodendroglial cells, namely differentiation committed OPCs (COPs). COPs represent a critical intermediate population between OPCs and NFOs, as revealed by specific expression of G-protein coupled receptor 17 (GPR17). The dysregulation of COPs leads to the remyelination failure in demyelinating diseases and impairs the replacement of lost myelin sheaths due to aging. Hence, understanding the development of COPs and their underlying regulatory network will be helpful in establishing new strategies for promoting myelin repair in demyelinating diseases. This review summarizes the current knowledge on the development and functions of COPs under both physiological and pathological conditions. Overall, COPs function as "checkpoints" to prevent inappropriate precocious OL differentiation and myelination through expressing distinct regulatory factors. Deepening our understanding of COPs may not only advance our knowledge of how OL lineage progresses during development, but also open the door to new treatments for demyelinating diseases.
Collapse
Affiliation(s)
- Minxi Fang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lixia Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Tao Tang
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Xiaofeng Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
23
|
Cao G, Sun C, Shen H, Qu D, Shen C, Lu H. Conditional Deletion of Foxg1 Delayed Myelination during Early Postnatal Brain Development. Int J Mol Sci 2023; 24:13921. [PMID: 37762220 PMCID: PMC10530892 DOI: 10.3390/ijms241813921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
FOXG1 (forkhead box G1) syndrome is a neurodevelopmental disorder caused by variants in the Foxg1 gene that affect brain structure and function. Individuals affected by FOXG1 syndrome frequently exhibit delayed myelination in neuroimaging studies, which may impair the rapid conduction of nerve impulses. To date, the specific effects of FOXG1 on oligodendrocyte lineage progression and myelination during early postnatal development remain unclear. Here, we investigated the effects of Foxg1 deficiency on myelin development in the mouse brain by conditional deletion of Foxg1 in neural progenitors using NestinCreER;Foxg1fl/fl mice and tamoxifen induction at postnatal day 0 (P0). We found that Foxg1 deficiency resulted in a transient delay in myelination, evidenced by decreased myelin formation within the first two weeks after birth, but ultimately recovered to the control levels by P30. We also found that Foxg1 deletion prevented the timely attenuation of platelet-derived growth factor receptor alpha (PDGFRα) signaling and reduced the cell cycle exit of oligodendrocyte precursor cells (OPCs), leading to their excessive proliferation and delayed maturation. Additionally, Foxg1 deletion increased the expression of Hes5, a myelin formation inhibitor, as well as Olig2 and Sox10, two promoters of OPC differentiation. Our results reveal the important role of Foxg1 in myelin development and provide new clues for further exploring the pathological mechanisms of FOXG1 syndrome.
Collapse
Affiliation(s)
- Guangliang Cao
- Department of Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, China; (G.C.); (H.S.); (D.Q.)
| | - Congli Sun
- Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Hualin Shen
- Department of Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, China; (G.C.); (H.S.); (D.Q.)
| | - Dewei Qu
- Department of Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, China; (G.C.); (H.S.); (D.Q.)
| | - Chuanlu Shen
- Department of Pathophysiology, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Haiqin Lu
- Department of Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, China; (G.C.); (H.S.); (D.Q.)
| |
Collapse
|
24
|
Zhang C, Chen Z, Zhang D, Wang X, Qiu M, Tan Z. Role of Gltp in Maturation of Oligodendrocytes Under the Regulation of Nkx2.2. Mol Neurobiol 2023; 60:4897-4908. [PMID: 37191854 DOI: 10.1007/s12035-023-03383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Myelin, a lipid-enriched multi-layer membrane structure, allows for rapid long-distance saltatory conduction of neuronal impulses. Although glycolipids are the predominant types of lipids in the myelin bilayer, the role of glycolipid transfer protein (GLTP), which selectively mediates the transfer of various glycolipids between phospholipid bilayer, in myelin development and maintenance remains unknown at present. In this study, we identified Gltp as the key lipid metabolism gene in myelin-forming oligodendrocytes (OLs) through integrated omics analysis across independent transcriptomic and single-cell sequencing studies. Gene expression analysis revealed that Gltp is selectively expressed in the differentiated OLs. Functional study demonstrated that its expression is essential for the differentiation of OLs, and promotes the outgrowth of OL membrane. Moreover, we found that the expression of Gltp is regulated by OL-lineage transcriptional factors, such as NKX2.2, OLIG2, SOX10, and MYRF. These findings provide important insights into the unrecognized functions of Gltp in OL differentiation and maturation.
Collapse
Affiliation(s)
- Chengfu Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhen Chen
- Division of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Dai Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
| | - Xiaoping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, China
| | - Zhou Tan
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
25
|
Fabres RB, Cardoso DS, Aragón BA, Arruda BP, Martins PP, Ikebara JM, Drobyshevsky A, Kihara AH, de Fraga LS, Netto CA, Takada SH. Consequences of oxygen deprivation on myelination and sex-dependent alterations. Mol Cell Neurosci 2023; 126:103864. [PMID: 37268283 DOI: 10.1016/j.mcn.2023.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/07/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
Oxygen deprivation is one of the main causes of morbidity and mortality in newborns, occurring with a higher prevalence in preterm infants, reaching 20 % to 50 % mortality in newborns in the perinatal period. When they survive, 25 % exhibit neuropsychological pathologies, such as learning difficulties, epilepsy, and cerebral palsy. White matter injury is one of the main features found in oxygen deprivation injury, which can lead to long-term functional impairments, including cognitive delay and motor deficits. The myelin sheath accounts for much of the white matter in the brain by surrounding axons and enabling the efficient conduction of action potentials. Mature oligodendrocytes, which synthesize and maintain myelination, also comprise a significant proportion of the brain's white matter. In recent years, oligodendrocytes and the myelination process have become potential therapeutic targets to minimize the effects of oxygen deprivation on the central nervous system. Moreover, evidence indicate that neuroinflammation and apoptotic pathways activated during oxygen deprivation may be influenced by sexual dimorphism. To summarize the most recent research about the impact of sexual dimorphism on the neuroinflammatory state and white matter injury after oxygen deprivation, this review presents an overview of the oligodendrocyte lineage development and myelination, the impact of oxygen deprivation and neuroinflammation on oligodendrocytes in neurodevelopmental disorders, and recent reports about sexual dimorphism regarding the neuroinflammation and white matter injury after neonatal oxygen deprivation.
Collapse
Affiliation(s)
- Rafael Bandeira Fabres
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Débora Sterzeck Cardoso
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | | | - Bruna Petrucelli Arruda
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | - Pamela Pinheiro Martins
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | - Juliane Midori Ikebara
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | | | - Alexandre Hiroaki Kihara
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | - Luciano Stürmer de Fraga
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre 90050-170, Brazil
| | - Carlos Alexandre Netto
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Silvia Honda Takada
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil.
| |
Collapse
|
26
|
Mei R, Qiu W, Yang Y, Xu S, Rao Y, Li Q, Luo Y, Huang H, Yang A, Tao H, Qiu M, Zhao X. Evidence That DDR1 Promotes Oligodendrocyte Differentiation during Development and Myelin Repair after Injury. Int J Mol Sci 2023; 24:10318. [PMID: 37373466 DOI: 10.3390/ijms241210318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Oligodendrocytes generate myelin sheaths vital for the formation, health, and function of the central nervous system. Mounting evidence suggests that receptor tyrosine kinases (RTKs) are crucial for oligodendrocyte differentiation and myelination in the CNS. It was recently reported that discoidin domain receptor 1 (Ddr1), a collagen-activated RTK, is expressed in oligodendrocyte lineage. However, its specific expression stage and functional role in oligodendrocyte development in the CNS remain to be determined. In this study, we report that Ddr1 is selectively upregulated in newly differentiated oligodendrocytes in the early postnatal CNS and regulates oligodendrocyte differentiation and myelination. Ddr1 knock-out mice of both sexes displayed compromised axonal myelination and apparent motor dysfunction. Ddr1 deficiency alerted the ERK pathway, but not the AKT pathway in the CNS. In addition, Ddr1 function is important for myelin repair after lysolecithin-induced demyelination. Taken together, the current study described, for the first time, the role of Ddr1 in myelin development and repair in the CNS, providing a novel molecule target for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Ruyi Mei
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Wanwan Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yingying Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Siyu Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yueyu Rao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qingxin Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuhao Luo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Aifen Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huaping Tao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaofeng Zhao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
27
|
Abarinov V, Levine JA, Churchill AJ, Hopwood B, Deiter CS, Guney MA, Wells KL, Schrunk JM, Guo Y, Hammelman J, Gifford DK, Magnuson MA, Wichterle H, Sussel L. Major β cell-specific functions of NKX2.2 are mediated via the NK2-specific domain. Genes Dev 2023; 37:490-504. [PMID: 37364986 PMCID: PMC10393193 DOI: 10.1101/gad.350569.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
The consolidation of unambiguous cell fate commitment relies on the ability of transcription factors (TFs) to exert tissue-specific regulation of complex genetic networks. However, the mechanisms by which TFs establish such precise control over gene expression have remained elusive-especially in instances in which a single TF operates in two or more discrete cellular systems. In this study, we demonstrate that β cell-specific functions of NKX2.2 are driven by the highly conserved NK2-specific domain (SD). Mutation of the endogenous NKX2.2 SD prevents the developmental progression of β cell precursors into mature, insulin-expressing β cells, resulting in overt neonatal diabetes. Within the adult β cell, the SD stimulates β cell performance through the activation and repression of a subset of NKX2.2-regulated transcripts critical for β cell function. These irregularities in β cell gene expression may be mediated via SD-contingent interactions with components of chromatin remodelers and the nuclear pore complex. However, in stark contrast to these pancreatic phenotypes, the SD is entirely dispensable for the development of NKX2.2-dependent cell types within the CNS. Together, these results reveal a previously undetermined mechanism through which NKX2.2 directs disparate transcriptional programs in the pancreas versus neuroepithelium.
Collapse
Affiliation(s)
- Vladimir Abarinov
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Joshua A Levine
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | - Angela J Churchill
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | - Bryce Hopwood
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Cailin S Deiter
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Michelle A Guney
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jessica M Schrunk
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Yuchun Guo
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jennifer Hammelman
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
- Department of Neurology, Columbia University, New York, New York 10032, USA
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| | - Lori Sussel
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA;
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
28
|
Higginbottom SL, Tomaskovic-Crook E, Crook JM. Considerations for modelling diffuse high-grade gliomas and developing clinically relevant therapies. Cancer Metastasis Rev 2023; 42:507-541. [PMID: 37004686 PMCID: PMC10348989 DOI: 10.1007/s10555-023-10100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/16/2023] [Indexed: 04/04/2023]
Abstract
Diffuse high-grade gliomas contain some of the most dangerous human cancers that lack curative treatment options. The recent molecular stratification of gliomas by the World Health Organisation in 2021 is expected to improve outcomes for patients in neuro-oncology through the development of treatments targeted to specific tumour types. Despite this promise, research is hindered by the lack of preclinical modelling platforms capable of recapitulating the heterogeneity and cellular phenotypes of tumours residing in their native human brain microenvironment. The microenvironment provides cues to subsets of glioma cells that influence proliferation, survival, and gene expression, thus altering susceptibility to therapeutic intervention. As such, conventional in vitro cellular models poorly reflect the varied responses to chemotherapy and radiotherapy seen in these diverse cellular states that differ in transcriptional profile and differentiation status. In an effort to improve the relevance of traditional modelling platforms, recent attention has focused on human pluripotent stem cell-based and tissue engineering techniques, such as three-dimensional (3D) bioprinting and microfluidic devices. The proper application of these exciting new technologies with consideration of tumour heterogeneity and microenvironmental interactions holds potential to develop more applicable models and clinically relevant therapies. In doing so, we will have a better chance of translating preclinical research findings to patient populations, thereby addressing the current derisory oncology clinical trial success rate.
Collapse
Affiliation(s)
- Sarah L Higginbottom
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, NSW, 2519, Australia
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia
| | - Eva Tomaskovic-Crook
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, NSW, 2519, Australia.
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Jeremy M Crook
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, NSW, 2519, Australia.
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
29
|
Garcia-Diaz C, Pöysti A, Mereu E, Clements MP, Brooks LJ, Galvez-Cancino F, Castillo SP, Tang W, Beattie G, Courtot L, Ruiz S, Roncaroli F, Yuan Y, Marguerat S, Quezada SA, Heyn H, Parrinello S. Glioblastoma cell fate is differentially regulated by the microenvironments of the tumor bulk and infiltrative margin. Cell Rep 2023; 42:112472. [PMID: 37149862 DOI: 10.1016/j.celrep.2023.112472] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 03/14/2023] [Accepted: 04/19/2023] [Indexed: 05/09/2023] Open
Abstract
Glioblastoma (GBM) recurrence originates from invasive margin cells that escape surgical debulking, but to what extent these cells resemble their bulk counterparts remains unclear. Here, we generated three immunocompetent somatic GBM mouse models, driven by subtype-associated mutations, to compare matched bulk and margin cells. We find that, regardless of mutations, tumors converge on common sets of neural-like cellular states. However, bulk and margin have distinct biology. Injury-like programs associated with immune infiltration dominate in the bulk, leading to the generation of lowly proliferative injured neural progenitor-like cells (iNPCs). iNPCs account for a significant proportion of dormant GBM cells and are induced by interferon signaling within T cell niches. In contrast, developmental-like trajectories are favored within the immune-cold margin microenvironment resulting in differentiation toward invasive astrocyte-like cells. These findings suggest that the regional tumor microenvironment dominantly controls GBM cell fate and biological vulnerabilities identified in the bulk may not extend to the margin residuum.
Collapse
Affiliation(s)
- Claudia Garcia-Diaz
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Anni Pöysti
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Elisabetta Mereu
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Melanie P Clements
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Lucy J Brooks
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Felipe Galvez-Cancino
- Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Simon P Castillo
- Division of Molecular Pathology & Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
| | - Wenhao Tang
- Department of Mathematics, Imperial College London, London, UK
| | - Gordon Beattie
- CRUK City of London Centre Single Cell Genomics Facility, UCL Cancer Institute, University College London, London, UK; Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London, UK
| | - Lilas Courtot
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Sara Ruiz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Division of Neuroscience, School of Biological Sciences, Faculty of Brain and Mental Health, University of Manchester, Manchester, UK
| | - Yinyin Yuan
- Division of Molecular Pathology & Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
| | - Samuel Marguerat
- Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK.
| |
Collapse
|
30
|
Zhang F, Jiao H, Wang Y, Yang C, Li L, Wang Z, Tong R, Zhou J, Shen J, Li L. InferLoop: leveraging single-cell chromatin accessibility for the signal of chromatin loop. Brief Bioinform 2023; 24:7150740. [PMID: 37139553 DOI: 10.1093/bib/bbad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
Deciphering cell-type-specific 3D structures of chromatin is challenging. Here, we present InferLoop, a novel method for inferring the strength of chromatin interaction using single-cell chromatin accessibility data. The workflow of InferLoop is, first, to conduct signal enhancement by grouping nearby cells into bins, and then, for each bin, leverage accessibility signals for loop signals using a newly constructed metric that is similar to the perturbation of the Pearson correlation coefficient. In this study, we have described three application scenarios of InferLoop, including the inference of cell-type-specific loop signals, the prediction of gene expression levels and the interpretation of intergenic loci. The effectiveness and superiority of InferLoop over other methods in those three scenarios are rigorously validated by using the single-cell 3D genome structure data of human brain cortex and human blood, the single-cell multi-omics data of human blood and mouse brain cortex, and the intergenic loci in the GWAS Catalog database as well as the GTEx database, respectively. In addition, InferLoop can be applied to predict loop signals of individual spots using the spatial chromatin accessibility data of mouse embryo. InferLoop is available at https://github.com/jumphone/inferloop.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huiyuan Jiao
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yihao Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Chen Yang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Linying Li
- Department of Central Laboratory, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zhiming Wang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ran Tong
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junmei Zhou
- Department of Central Laboratory, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Lingjie Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
31
|
Mok KKS, Yeung SHS, Cheng GWY, Ma IWT, Lee RHS, Herrup K, Tse KH. Apolipoprotein E ε4 disrupts oligodendrocyte differentiation by interfering with astrocyte-derived lipid transport. J Neurochem 2023; 165:55-75. [PMID: 36549843 DOI: 10.1111/jnc.15748] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Carriers of the APOE4 (apolipoprotein E ε4) variant of the APOE gene are subject to several age-related health risks, including Alzheimer's disease (AD). The deficient lipid and cholesterol transport capabilities of the APOE4 protein are one reason for the altered risk profile. In particular, APOE4 carriers are at elevated risk for sporadic AD. While deposits o misfolded proteins are present in the AD brain, white matter (WM) myelin is also disturbed. As myelin is a lipid- and cholesterol-rich structure, the connection to APOE makes considerable biological sense. To explore the APOE-WM connection, we have analyzed the impact of human APOE4 on oligodendrocytes (OLs) of the mouse both in vivo and in vitro. We find that APOE proteins is enriched in astrocytes but sparse in OL. In human APOE4 (hAPOE4) knock-in mice, myelin lipid content is increased but the density of major myelin proteins (MBP, MAG, and PLP) is largely unchanged. We also find an unexpected but significant reduction of cell density of the OL lineage (Olig2+ ) and an abnormal accumulation of OL precursors (Nkx 2.2+ ), suggesting a disruption of OL differentiation. Gene ontology analysis of an existing RNA-seq dataset confirms a robust transcriptional response to the altered chemistry of the hAPOE4 mouse brain. In culture, the uptake of astrocyte-derived APOE during Lovastatin-mediated depletion of cholesterol synthesis is sufficient to sustain OL differentiation. While endogenous hAPOE protein isoforms have no effects on OL development, exogenous hAPOE4 abolishes the ability of very low-density lipoprotein to restore myelination in Apoe-deficient, cholesterol-depleted OL. Our data suggest that APOE4 impairs myelination in the aging brain by interrupting the delivery of astrocyte-derived lipids to the oligodendrocytes. We propose that high myelin turnover and OL exhaustion found in APOE4 carriers is a likely explanation for the APOE-dependent myelin phenotypes of the AD brain.
Collapse
Affiliation(s)
- Kingston King-Shi Mok
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sunny Hoi-Sang Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Gerald Wai-Yeung Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Iris Wai-Ting Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ralph Hon-Sun Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
32
|
Zhao X, Jacob C. Mechanisms of Demyelination and Remyelination Strategies for Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24076373. [PMID: 37047344 PMCID: PMC10093908 DOI: 10.3390/ijms24076373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
All currently licensed medications for multiple sclerosis (MS) target the immune system. Albeit promising preclinical results demonstrated disease amelioration and remyelination enhancement via modulating oligodendrocyte lineage cells, most drug candidates showed only modest or no effects in human clinical trials. This might be due to the fact that remyelination is a sophistically orchestrated process that calls for the interplay between oligodendrocyte lineage cells, neurons, central nervous system (CNS) resident innate immune cells, and peripheral immune infiltrates and that this process may somewhat differ in humans and rodent models used in research. To ensure successful remyelination, the recruitment and activation/repression of each cell type should be regulated in a highly organized spatio–temporal manner. As a result, drug candidates targeting one single pathway or a single cell population have difficulty restoring the optimal microenvironment at lesion sites for remyelination. Therefore, when exploring new drug candidates for MS, it is instrumental to consider not only the effects on all CNS cell populations but also the optimal time of administration during disease progression. In this review, we describe the dysregulated mechanisms in each relevant cell type and the disruption of their coordination as causes of remyelination failure, providing an overview of the complex cell interplay in CNS lesion sites.
Collapse
|
33
|
Gil M, Gama V. Emerging mitochondrial-mediated mechanisms involved in oligodendrocyte development. J Neurosci Res 2023; 101:354-366. [PMID: 36461887 PMCID: PMC9851982 DOI: 10.1002/jnr.25151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/19/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Oligodendrocytes are the myelinating glia of the central nervous system and are generated after oligodendrocyte progenitor cells (OPCs) transition into pre-oligodendrocytes and then into myelinating oligodendrocytes. Myelin is essential for proper signal transmission within the nervous system and axonal metabolic support. Although the intrinsic and extrinsic factors that support the differentiation, survival, integration, and subsequent myelination of appropriate axons have been well investigated, little is known about how mitochondria-related pathways such as mitochondrial dynamics, bioenergetics, and apoptosis finely tune these developmental events. Previous findings suggest that changes to mitochondrial morphology act as an upstream regulatory mechanism of neural stem cell (NSC) fate decisions. Whether a similar mechanism is engaged during OPC differentiation has yet to be elucidated. Maintenance of mitochondrial dynamics is vital for regulating cellular bioenergetics, functional mitochondrial networks, and the ability of cells to distribute mitochondria to subcellular locations, such as the growing processes of oligodendrocytes. Myelination is an energy-consuming event, thus, understanding the interplay between mitochondrial dynamics, metabolism, and apoptosis will provide further insight into mechanisms that mediate oligodendrocyte development in healthy and disease states. Here we will provide a concise overview of oligodendrocyte development and discuss the potential contribution of mitochondrial mitochondrial-mediated mechanisms to oligodendrocyte bioenergetics and development.
Collapse
Affiliation(s)
- M Gil
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - V Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
34
|
Ahmadi M, Eidi A, Ahmadvand H, Khaksarian M, Sotoodehnejadnematalahi F. Effect of Carvacrol on histological analysis and expression of genes involved in an animal model of multiple sclerosis. Mult Scler Relat Disord 2023; 70:104471. [PMID: 36580874 DOI: 10.1016/j.msard.2022.104471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The most common non-traumatic neurological disease in young- and middle-aged adults is multiple sclerosis (MS), leading to central nervous system (CNS) atrophy and neurological disorders with loss of myelin and axonal degeneration. Due to the inadequate efficiency of common treatments, some natural products with antioxidant properties such as Carvacrol have been considered. OBJECTIVE the present study aimed to investigate carvacrol's anti-inflammatory and therapeutic effects on MS symptoms in healthy and experimental autoimmune encephalomyelitis (EAE) induced female Lewis rats. METHODS The study was performed in three groups of Lewis rats: control group, EAE model, and EAE treated with carvacrol (carvacrol-treated group). The treatment group received 25 mg/kg of carvacrol intraperitoneally daily. Histologic examination and expression analysis of pro-inflammatory genes (Interleukin-1 and 17 (IL-1 and IL-17), Nuclear Factor Kappa B Cells (NF-κB) and Tumor Necrosis Factor-α (TNF-α)), myelin repair, and also regeneration genes (Myelin basic protein (MBP), Oligodendrocyte Transcription Factor 2 (OLIG2) and Platelet-Derived Growth Factor Receptor α (PDGFR-α)) were carried out. Gene studies, Hematoxylin and Eosin (H&E), and Luxol fast blue stain were performed in the lumbar region of the spinal cord. RESULTS The EAE clinical scores in the carvacrol-treated group were lower than in untreated rats (P < 0.001). The expression of two genes, IL-17 and MBP, was confirmed using fluorescence immunohistochemistry (FIHC). A significant decrease was observed in NF-κB and IL-17, and IL-1 gene expression. The MBP and OLIG2 gene expression was increased in the carvacrol-treated group (p < 0.001). In EAE, PDGFR-α expression increased about four times. However, carvacrol administration did not affect PDGFR-α and TNF-α gene expression. In this treatment, H&E staining of spinal cord regions showed a significant decrease in inflammatory cell infiltration. Moreover, immunostaining analysis demonstrated a considerable increase in MBP and a reduction in IL-17 secretion. CONCLUSION The results showed that carvacrol administration reduces the entry of inflammatory cells into the CNS by stimulating myelination-related processes employing increasing the expression of genes involved in myelin repair and reducing the expression of inflammatory genes. Our findings confirm that carvacrol improves the clinical and pathological symptoms of EAE through its therapeutic and modification properties as a potential adjunctive therapy and needs to be studied more.
Collapse
Affiliation(s)
- Mahdieh Ahmadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hassan Ahmadvand
- Department of Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad 68138-33946, Iran.
| | - Mojtaba Khaksarian
- Razi Herbal Medicine Research Center and Department of physiology, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | | |
Collapse
|
35
|
Dimovasili C, Fair AE, Garza IR, Batterman KV, Mortazavi F, Moore TL, Rosene DL. Aging compromises oligodendrocyte precursor cell maturation and efficient remyelination in the monkey brain. GeroScience 2023; 45:249-264. [PMID: 35930094 PMCID: PMC9886778 DOI: 10.1007/s11357-022-00621-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 02/03/2023] Open
Abstract
Age-associated cognitive decline is common among otherwise healthy elderly people, even in the absence of Alzheimer's disease and neuron loss. Instead, white matter loss and myelin damage are strongly associated with cognitive decline. Myelin is subject to lifelong oxidative stress that damages the myelin sheath, which is repaired by cells of the oligodendrocyte lineage. This process is mediated by oligodendrocyte precursor cells (OPCs) that sense the damage and respond by proliferating locally and migrating to the region, where they differentiate into mature myelinating oligodendrocytes. In aging, extensive myelin damage, in combination with inefficient remyelination, leads to chronically damaged myelin and loss of efficient neuronal conduction. This study used the rhesus monkey model of normal aging to examine how myelin regeneration capacity is affected by age. Results show that older subjects have reduced numbers of new BCAS1 + myelinating oligodendrocytes, which are newly formed cells, and that this reduction is associated with poorer cognitive performance. Interestingly, this does not result from limited proliferation of progenitor OPCs. Instead, the transcription factor NKX2.2, which regulates OPCs differentiation, is significantly decreased in aged OPCs. This suggests that these OPCs have a diminished potential for differentiation into mature oligodendrocytes. In addition, mature oligodendrocytes have reduced RNA expression of two essential myelin protein markers, MBP and PLP. These data collectively suggest that in the normal aging brain, there is a reduction in regenerative OPCs as well as myelin production that impairs the capacity for remyelination.
Collapse
Affiliation(s)
- Christina Dimovasili
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| | - Ashley E Fair
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Isabella R Garza
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Katelyn V Batterman
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Farzad Mortazavi
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Tara L Moore
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Douglas L Rosene
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| |
Collapse
|
36
|
Fekete CD, Nishiyama A. Presentation and integration of multiple signals that modulate oligodendrocyte lineage progression and myelination. Front Cell Neurosci 2022; 16:1041853. [PMID: 36451655 PMCID: PMC9701731 DOI: 10.3389/fncel.2022.1041853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
Myelination is critical for fast saltatory conduction of action potentials. Recent studies have revealed that myelin is not a static structure as previously considered but continues to be made and remodeled throughout adulthood in tune with the network requirement. Synthesis of new myelin requires turning on the switch in oligodendrocytes (OL) to initiate the myelination program that includes synthesis and transport of macromolecules needed for myelin production as well as the metabolic and other cellular functions needed to support this process. A significant amount of information is available regarding the individual intrinsic and extrinsic signals that promote OL commitment, expansion, terminal differentiation, and myelination. However, it is less clear how these signals are made available to OL lineage cells when needed, and how multiple signals are integrated to generate the correct amount of myelin that is needed in a given neural network state. Here we review the pleiotropic effects of some of the extracellular signals that affect myelination and discuss the cellular processes used by the source cells that contribute to the variation in the temporal and spatial availability of the signals, and how the recipient OL lineage cells might integrate the multiple signals presented to them in a manner dialed to the strength of the input.
Collapse
Affiliation(s)
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
37
|
Rapid differentiation of hiPSCs into functional oligodendrocytes using an OLIG2 synthetic modified messenger RNA. Commun Biol 2022; 5:1095. [PMID: 36241911 PMCID: PMC9568531 DOI: 10.1038/s42003-022-04043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
Transcription factors (TFs) have been introduced to drive the highly efficient differentiation of human-induced pluripotent stem cells (hiPSCs) into lineage-specific oligodendrocytes (OLs). However, effective strategies currently rely mainly on genome-integrating viruses. Here we show that a synthetic modified messenger RNA (smRNA)-based reprogramming method that leads to the generation of transgene-free OLs has been developed. An smRNA encoding a modified form of OLIG2, in which the serine 147 phosphorylation site is replaced with alanine, OLIG2S147A, is designed to reprogram hiPSCs into OLs. We demonstrate that repeated administration of the smRNA encoding OLIG2S147A lead to higher and more stable protein expression. Using the single-mutant OLIG2 smRNA morphogen, we establish a 6-day smRNA transfection protocol, and glial induction lead to rapid NG2+ OL progenitor cell (OPC) generation (>70% purity) from hiPSC. The smRNA-induced NG2+ OPCs can mature into functional OLs in vitro and promote remyelination in vivo. Taken together, we present a safe and efficient smRNA-driven strategy for hiPSC differentiation into OLs, which may be utilized for therapeutic OPC/OL transplantation in patients with neurodegenerative disease. The use of synthetic modified messenger RNA (smRNA) allows for the differentiation of human-induced pluripotent stem cells (hiPSCs) into lineage-specific oligodendrocytes.
Collapse
|
38
|
The role of depolarizing activation of Na +-Ca 2+ exchanger by oligodendrocyte progenitor cells in the effect of sevoflurane on myelination. Life Sci 2022; 308:120951. [PMID: 36103958 DOI: 10.1016/j.lfs.2022.120951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 10/31/2022]
Abstract
AIMS The aim of this study was to investigate the role of depolarizing activation of Na+-Ca2+ exchanger (NCX) by oligodendrocyte progenitor cells (OPC) in the effect of sevoflurane on myelination. MAIN METHODS On postnatal days 7, 8, and 9, mice were exposed to 3 % sevoflurane for 2 h per day. The proliferation, differentiation, and myelin sheath of OPC were observed with immunofluorescence, quantitative real-time polymerase chain reaction (QRT-PCR), and transmission electron microscopy (TEM) at various time points. The open field, Y maze, and new object recognition tests were used to measure spatial learning and memory. siRNA was used for the knockdown NCX1 in human OPC (HOPC) before sevoflurane exposure; the Transwell migration assay was used to measure cell migration ability and Fluo 4-AM was used to measure intracellular Ca2+ concentration. KEY FINDINGS Pretreatment with an NCX inhibitor attenuated the proliferation and differentiation of OPC induced by sevoflurane and induced a remarkable increase in platelet-derived growth factor receptor-alpha (PDGFRα), 2, 3-cyclic nucleotide 3-phosphodiesterase (CNPase), oligodendrocyte transcription factor 2 (Olig2), and homeodomain protein NK2 homeobox 2 (NKX2.2) levels. Pretreatment with an NCX inhibitor alleviated the sevoflurane-induced myelination disorder and cognitive impairment. The decreased cell migration and increased intracellular Ca2+ concentration observed in the siRNA-negative control group was reversed in the sevoflurane plus siRNA-NCX1 group. SIGNIFICANCE This study suggests that repeated sevoflurane exposure in newborn mice leads to depolarization of OPC, which leads to Ca2+ influx through NCX and affects OPC proliferation, migration, differentiation, and myelination, ultimately leading to cognitive impairment.
Collapse
|
39
|
Huang H, He W, Tang T, Qiu M. Immunological Markers for Central Nervous System Glia. Neurosci Bull 2022; 39:379-392. [PMID: 36028641 PMCID: PMC10043115 DOI: 10.1007/s12264-022-00938-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/09/2022] [Indexed: 10/15/2022] Open
Abstract
Glial cells in the central nervous system (CNS) are composed of oligodendrocytes, astrocytes and microglia. They contribute more than half of the total cells of the CNS, and are essential for neural development and functioning. Studies on the fate specification, differentiation, and functional diversification of glial cells mainly rely on the proper use of cell- or stage-specific molecular markers. However, as cellular markers often exhibit different specificity and sensitivity, careful consideration must be given prior to their application to avoid possible confusion. Here, we provide an updated overview of a list of well-established immunological markers for the labeling of central glia, and discuss the cell-type specificity and stage dependency of their expression.
Collapse
Affiliation(s)
- Hao Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Wanjun He
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Tao Tang
- Department of Anatomy, Cell Biology and Physiology Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
40
|
Talbott HE, Mascharak S, Griffin M, Wan DC, Longaker MT. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 2022; 29:1161-1180. [PMID: 35931028 PMCID: PMC9357250 DOI: 10.1016/j.stem.2022.07.006] [Citation(s) in RCA: 302] [Impact Index Per Article: 100.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibroblasts are highly dynamic cells that play a central role in tissue repair and fibrosis. However, the mechanisms by which they contribute to both physiologic and pathologic states of extracellular matrix deposition and remodeling are just starting to be understood. In this review article, we discuss the current state of knowledge in fibroblast biology and heterogeneity, with a primary focus on the role of fibroblasts in skin wound repair. We also consider emerging techniques in the field, which enable an increasingly nuanced and contextualized understanding of these complex systems, and evaluate limitations of existing methodologies and knowledge. Collectively, this review spotlights a diverse body of research examining an often-overlooked cell type-the fibroblast-and its critical functions in wound repair and beyond.
Collapse
Affiliation(s)
- Heather E Talbott
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shamik Mascharak
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Derrick C Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
41
|
Tran V, Carpo N, Shaka S, Zamudio J, Choi S, Cepeda C, Espinosa-Jeffrey A. Delayed Maturation of Oligodendrocyte Progenitors by Microgravity: Implications for Multiple Sclerosis and Space Flight. Life (Basel) 2022; 12:797. [PMID: 35743828 PMCID: PMC9224676 DOI: 10.3390/life12060797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
In previous studies, we examined the effects of space microgravity on human neural stem cells. To date, there are no studies on a different type of cell that is critical for myelination and electrical signals transmission, oligodendrocyte progenitors (OLPs). The purpose of the present study was to examine the behavior of space-flown OLPs (SPC-OLPs) as they were adapting to Earth's gravity. We found that SPC-OLPs survived, and most of them proliferated normally. Nonetheless, some of them displayed incomplete cytokinesis. Both morphological and ontogenetic analyses showed that they remained healthy and expressed the immature OLP markers Sox2, PDGFR-α, and transferrin (Tf) after space flight, which confirmed that SPC-OLPs displayed a more immature phenotype than their ground control (GC) counterparts. In contrast, GC OLPs expressed markers that usually appear later (GPDH, O4, and ferritin), indicating a delay in SPC-OLPs' development. These cells remained immature even after treatment with culture media designed to support oligodendrocyte (OL) maturation. The most remarkable and surprising finding was that the iron carrier glycoprotein Tf, previously described as an early marker for OLPs, was expressed ectopically in the nucleus of all SPC-OLPs. In contrast, their GC counterparts expressed it exclusively in the cytoplasm, as previously described. In addition, analysis of the secretome demonstrated that SPC-OLPs contained 3.5 times more Tf than that of GC cells, indicating that Tf is gravitationally regulated, opening two main fields of study to understand the upregulation of the Tf gene and secretion of the protein that keep OLPs at a progenitor stage rather than moving forward to more mature phenotypes. Alternatively, because Tf is an autocrine and paracrine factor in the central nervous system (CNS), in the absence of neurons, it accumulated in the secretome collected after space flight. We conclude that microgravity is becoming a novel platform to study why in some myelin disorders OLPs are present but do not mature.
Collapse
Affiliation(s)
- Victoria Tran
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA; (V.T.); (N.C.); (S.S.); (J.Z.); (C.C.)
| | - Nicholas Carpo
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA; (V.T.); (N.C.); (S.S.); (J.Z.); (C.C.)
| | - Sophia Shaka
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA; (V.T.); (N.C.); (S.S.); (J.Z.); (C.C.)
| | - Joile Zamudio
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA; (V.T.); (N.C.); (S.S.); (J.Z.); (C.C.)
| | - Sungshin Choi
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA;
| | - Carlos Cepeda
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA; (V.T.); (N.C.); (S.S.); (J.Z.); (C.C.)
| | - Araceli Espinosa-Jeffrey
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA; (V.T.); (N.C.); (S.S.); (J.Z.); (C.C.)
| |
Collapse
|
42
|
Inhibition of RIPK1 by ZJU-37 promotes oligodendrocyte progenitor proliferation and remyelination via NF-κB pathway. Cell Death Dis 2022; 8:147. [PMID: 35365618 PMCID: PMC8975999 DOI: 10.1038/s41420-022-00929-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022]
Abstract
Receptor interacting serine/threonine protein kinase 1 (RIPK1) activation and necroptosis have been genetically and mechanistically linked with human multiple sclerosis and neurodegenerative diseases for which demyelination is a common key pathology. Demyelination can be healed through remyelination which is mediated by new oligodendrocytes derived from the adult oligodendrocyte progenitor cells (OPCs). Unfortunately, the efficiency of remyelination declines with progressive aging partially due to the depletion of OPCs following chronic or repeated demyelination. However, to our knowledge, so far there is no drug which enhances proliferation of OPCs, and it is unknown whether inhibiting RIPK1 activity directly affect OPCs, the central player of remyelination. Using TNFα induced RIPK1-dependent necroptosis in Jurkat FADD−/− cells as a cell death assay, we screened from 2112 FDA-approved drugs and the drug candidates of new RIPK1 inhibitors selected by ourselves, and identified ZJU-37, a small molecule modified by introducing an amide bond to Nec-1s, is a new RIPK1 kinase inhibitor with higher potency than Nec-1s which has the best reported potency. We unveil in addition to protecting myelin from demyelination and axons from degeneration, ZJU-37 exhibits a new role on promoting proliferation of OPCs and enhancing remyelination by inhibiting RIPK1 kinase activity with higher potency than Nec-1s. Mechanistically, ZJU-37 promotes proliferation of OPCs by enhancing the transcription of platelet derived growth factor receptor alpha via NF-κB pathway. This work identifies ZJU-37 as a new drug candidate which enhances remyelination by promoting proliferation of OPCs, paving the way for a potential drug to enhance myelin repair.
Collapse
|
43
|
Solinc J, Raimbault‐Machado J, Dierick F, El Bernoussi L, Tu L, Thuillet R, Mougenot N, Hoareau‐Coudert B, Monceau V, Pavoine C, Atassi F, Sassoon D, Marazzi G, Harvey RP, Schofield P, Christ D, Humbert M, Guignabert C, Soubrier F, Nadaud S. Platelet‐Derived Growth Factor Receptor Type α Activation Drives Pulmonary Vascular Remodeling Via Progenitor Cell Proliferation and Induces Pulmonary Hypertension. J Am Heart Assoc 2022; 11:e023021. [PMID: 35348002 PMCID: PMC9075467 DOI: 10.1161/jaha.121.023021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Platelet‐derived growth factor is a major regulator of the vascular remodeling associated with pulmonary arterial hypertension. We previously showed that protein widely 1 (PW1+) vascular progenitor cells participate in early vessel neomuscularization during experimental pulmonary hypertension (PH) and we addressed the role of the platelet‐derived growth factor receptor type α (PDGFRα) pathway in progenitor cell‐dependent vascular remodeling and in PH development. Methods and Results Remodeled pulmonary arteries from patients with idiopathic pulmonary arterial hypertension showed an increased number of perivascular and vascular PW1+ cells expressing PDGFRα. PW1nLacZ reporter mice were used to follow the fate of pulmonary PW1+ progenitor cells in a model of chronic hypoxia–induced PH development. Under chronic hypoxia, PDGFRα inhibition prevented the increase in PW1+ progenitor cell proliferation and differentiation into vascular smooth muscle cells and reduced pulmonary vessel neomuscularization, but did not prevent an increased right ventricular systolic pressure or the development of right ventricular hypertrophy. Conversely, constitutive PDGFRα activation led to neomuscularization via PW1+ progenitor cell differentiation into new smooth muscle cells and to PH development in male mice without fibrosis. In vitro, PW1+ progenitor cell proliferation, but not differentiation, was dependent on PDGFRα activity. Conclusions These results demonstrate a major role of PDGFRα signaling in progenitor cell–dependent lung vessel neomuscularization and vascular remodeling contributing to PH development, including in idiopathic pulmonary arterial hypertension patients. Our findings suggest that PDGFRα blockers may offer a therapeutic add‐on strategy to combine with current pulmonary arterial hypertension treatments to reduce vascular remodeling. Furthermore, our study highlights constitutive PDGFRα activation as a novel experimental PH model.
Collapse
Affiliation(s)
- Julien Solinc
- Sorbonne Université, INSERM, UMR_S 1166, Faculté de Médecine Pitié‐Salpêtrière Paris France
- ICAN Institute Paris France
| | - Jessica Raimbault‐Machado
- Sorbonne Université, INSERM, UMR_S 1166, Faculté de Médecine Pitié‐Salpêtrière Paris France
- ICAN Institute Paris France
| | - France Dierick
- Sorbonne Université, INSERM, UMR_S 1166, Faculté de Médecine Pitié‐Salpêtrière Paris France
- Lady Davis Institute for Medical Research, McGill University Montréal QC Canada
| | - Lamiaa El Bernoussi
- Sorbonne Université, INSERM, UMR_S 1166, Faculté de Médecine Pitié‐Salpêtrière Paris France
- ICAN Institute Paris France
| | - Ly Tu
- Université Paris‐Saclay, School of Medicine Le Kremlin‐Bicêtre France
- INSERM, Hôpital Marie Lannelongue, UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies Le Plessis‐Robinson France
| | - Raphaël Thuillet
- Université Paris‐Saclay, School of Medicine Le Kremlin‐Bicêtre France
- INSERM, Hôpital Marie Lannelongue, UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies Le Plessis‐Robinson France
| | - Nathalie Mougenot
- Sorbonne Universités, INSERM, UMS2, Faculté de Médecine Pitié‐Salpêtrière Paris France
| | | | | | - Catherine Pavoine
- Sorbonne Université, INSERM, UMR_S 1166, Faculté de Médecine Pitié‐Salpêtrière Paris France
- ICAN Institute Paris France
| | - Fabrice Atassi
- Sorbonne Université, INSERM, UMR_S 1166, Faculté de Médecine Pitié‐Salpêtrière Paris France
- ICAN Institute Paris France
| | - David Sassoon
- Université de Paris, INSERM, Paris Cardiovascular Research Center Paris France
| | - Giovanna Marazzi
- Université de Paris, INSERM, Paris Cardiovascular Research Center Paris France
| | - Richard P. Harvey
- Victor Chang Cardiac Research Institute Darlinghurst Australia
- St. Vincent’s Clinical School and School of Biotechnology and Biomolecular Science UNSW Sydney Sydney Australia
| | - Peter Schofield
- St. Vincent’s Clinical School and School of Biotechnology and Biomolecular Science UNSW Sydney Sydney Australia
- Immunology Division Garvan Institute of Medical Research Darlinghurst Australia
| | - Daniel Christ
- St. Vincent’s Clinical School and School of Biotechnology and Biomolecular Science UNSW Sydney Sydney Australia
- Immunology Division Garvan Institute of Medical Research Darlinghurst Australia
| | - Marc Humbert
- Université Paris‐Saclay, School of Medicine Le Kremlin‐Bicêtre France
- INSERM, Hôpital Marie Lannelongue, UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies Le Plessis‐Robinson France
- Department of Respiratory and Intensive Care Medicine Assistance Publique–Hôpitaux de Paris (AP‐HP)Pulmonary Hypertension National Referral CenterHôpital Bicêtre Le Kremlin‐Bicêtre France
| | - Christophe Guignabert
- Université Paris‐Saclay, School of Medicine Le Kremlin‐Bicêtre France
- INSERM, Hôpital Marie Lannelongue, UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies Le Plessis‐Robinson France
| | - Florent Soubrier
- Sorbonne Université, INSERM, UMR_S 1166, Faculté de Médecine Pitié‐Salpêtrière Paris France
- ICAN Institute Paris France
| | - Sophie Nadaud
- Sorbonne Université, INSERM, UMR_S 1166, Faculté de Médecine Pitié‐Salpêtrière Paris France
- ICAN Institute Paris France
| |
Collapse
|
44
|
Zheng K, Huang H, Yang J, Qiu M. Origin, molecular specification and stemness of astrocytes. Dev Neurobiol 2022; 82:149-159. [DOI: 10.1002/dneu.22863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/08/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Kang Zheng
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Hao Huang
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Junlin Yang
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Mengsheng Qiu
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| |
Collapse
|
45
|
Luan W, Qi X, Liang F, Zhang X, Jin Z, Shi L, Luo B, Dai X. Microglia Impede Oligodendrocyte Generation in Aged Brain. J Inflamm Res 2021; 14:6813-6831. [PMID: 34924766 PMCID: PMC8674668 DOI: 10.2147/jir.s338242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/18/2021] [Indexed: 01/13/2023] Open
Abstract
Purpose Age-related increase in myelin loss may be responsible for brain atrophy, and the mechanism is not completely understood. We aim to comprehensively delineate oligodendrocyte heterogeneity in young and aged mice and to reveal the underlying mechanism for myelin loss during aging. Methods Diffusion tensor imaging and immunofluorescent staining were performed to verify the demyelination in the aged brains of both rodents and human. Further, the single-cell RNA sequencing data of all brain cells from young and aged mice were deeply analyzed to identify the subsets of oligodendrocyte lineage cells. Cell-to-cell interaction analysis was performed to detect the mechanism of observed changes in oligodendrocyte generation. Results Oligodendrocytes were observed to up-regulate several senescence associated genes in aged brain. Four clusters of oligodendrocyte precursor cells (OPCs) were identified in both young and aged brains. The number of those OPCs in basal state was significantly increased, while the OPCs in the procedure of differentiation were immensely decreased in aged brain. Furthermore, it was identified that activated microglia in the aged brain released inflammatory factors to suppress OPC differentiation. Stat1 might be a potential target to transform senescent microglia into tissue repair type to promote oligodendrocyte generation. Conclusion These results provided a perspective on how age activated microglia could impede remyelination and might give a new therapeutic target for age-related remyelinating diseases.
Collapse
Affiliation(s)
- Weimin Luan
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiqian Qi
- Department of Neurology, Ningbo Municipal Hospital of T.C.M., Ningbo, Zhejiang, People's Republic of China
| | - Feng Liang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaotao Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ziyang Jin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xuejiao Dai
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
46
|
Huang H, Wu H, He W, Zhou F, Yu X, Yi M, Du J, Xie B, Qiu M. Id2 and Id4 are not the major negative regulators of oligodendrocyte differentiation during early central nervous system development. Glia 2021; 70:590-601. [PMID: 34889481 DOI: 10.1002/glia.24126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 12/18/2022]
Abstract
Myelin sheathes ensure the rapid conduction of neural impulse and provide nutritional support for neurons. Myelin sheathes are formed by differentiated oligodendrocytes (OLs) in the central nervous system. During OL development, the differentiation of oligodendrocyte progenitor cells (OPCs) into mature OLs is controlled by both positive differentiation factors (drivers) and negative regulatory factors (brakes). Previous studies have suggested Id2 and Id4 as the key negative factors for OL differentiation. However, these conclusions were mainly based on in vitro studies and the reported OL phenotype in Id4 mutants appear to be mild. In this study, we systematically investigated the in vivo function of Id2 and Id4 genes in OL differentiation in their genetic mutants and in embryonic chicken spinal cord. Our results showed that disruption of Id4 has no effect on OL differentiation and maturation, whereas Id2 mutants and Id2/Id4 compound mutants display a mild and transient precocity of OL differentiation. In agreement with these loss-of-function studies, Id2, but not Id4, is weakly expressed in OPCs. Despite their minor roles in OL differentiation, forced expression of Id2 and Id4 in embryonic chicken spinal cords strongly inhibit the differentiation of OPCs. Taken together, our detailed functional and expressional studies strongly suggest that Id2 and Id4 are not the major in vivo repressors of OPC differentiation during animal development, shedding new light on the molecular regulation of early OL development.
Collapse
Affiliation(s)
- Hao Huang
- Institute of Life Sciences, College of Life and Environmental Sciences, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Huihui Wu
- Institute of Life Sciences, College of Life and Environmental Sciences, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Wanjun He
- Institute of Life Sciences, College of Life and Environmental Sciences, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Fang Zhou
- Institute of Life Sciences, College of Life and Environmental Sciences, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xianxian Yu
- Institute of Life Sciences, College of Life and Environmental Sciences, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Min Yi
- Institute of Life Sciences, College of Life and Environmental Sciences, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Junqing Du
- Institute of Life Sciences, College of Life and Environmental Sciences, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Binghua Xie
- Institute of Life Sciences, College of Life and Environmental Sciences, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mengsheng Qiu
- Institute of Life Sciences, College of Life and Environmental Sciences, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
47
|
Lee SD, Song J, LeBlanc VG, Marra MA. Integrative multi-omic analysis reveals neurodevelopmental gene dysregulation in CIC-knockout and IDH1 mutant cells. J Pathol 2021; 256:297-309. [PMID: 34767259 PMCID: PMC9305137 DOI: 10.1002/path.5835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022]
Abstract
Capicua (CIC)'s transcriptional repressor function is implicated in neurodevelopment and in oligodendroglioma (ODG) aetiology. However, CIC's role in these contexts remains obscure, primarily from our currently limited knowledge regarding its biological functions. Moreover, CIC mutations in ODG invariably co‐occur with a neomorphic IDH1/2 mutation, yet the functional relationship between these two genetic events is unknown. Here, we analysed models derived from an E6/E7/hTERT‐immortalized (i.e. p53‐ and RB‐deficient) normal human astrocyte cell line. To examine the consequences of CIC loss, we compared transcriptomic and epigenomic profiles between CIC wild‐type and knockout cell lines, with and without mutant IDH1 expression. Our analyses revealed dysregulation of neurodevelopmental genes in association with CIC loss. CIC ChIP‐seq was also performed to expand upon the currently limited ensemble of known CIC target genes. Among the newly identified direct CIC target genes were EPHA2 and ID1, whose functions are linked to neurodevelopment and the tumourigenicity of in vivo glioma tumour models. NFIA, a known mediator of gliogenesis, was discovered to be uniquely overexpressed in CIC‐knockout cells expressing mutant IDH1‐R132H protein. These results identify neurodevelopment and specific genes within this context as candidate targets through which CIC alterations may contribute to the progression of IDH‐mutant gliomas. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Stephen D Lee
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Jungeun Song
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | | | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
48
|
Niedzwiedz-Massey VM, Douglas JC, Rafferty T, Kane CJ, Drew PD. Ethanol effects on cerebellar myelination in a postnatal mouse model of fetal alcohol spectrum disorders. Alcohol 2021; 96:43-53. [PMID: 34358666 DOI: 10.1016/j.alcohol.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/12/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) are alarmingly common, result in significant personal and societal loss, and there are no effective treatments for these disorders. Cerebellar neuropathology is common in FASD and can cause impaired cognitive and motor function. The current study evaluates the effects of ethanol on oligodendrocyte-lineage cells, as well as molecules that modulate oligodendrocyte differentiation and function in the cerebellum in a postnatal mouse model of FASD. Neonatal mice were treated with ethanol from P4-P9 (postnatal day), the cerebellum was isolated at P10, and mRNAs encoding oligodendrocyte-associated molecules were quantitated by qRT-PCR. Our studies demonstrated that ethanol significantly reduced the expression of markers for multiple stages of oligodendrocyte maturation, including oligodendrocyte precursor cells, pre-myelinating oligodendrocytes, and mature myelinating oligodendrocytes. Additionally, we determined that ethanol significantly decreased the expression of molecules that play critical roles in oligodendrocyte differentiation. Interestingly, we also observed that ethanol significantly reduced the expression of myelin-associated inhibitors, which may act as a compensatory mechanism to ethanol toxicity. Furthermore, we demonstrate that ethanol alters the expression of a variety of molecules important in oligodendrocyte function and myelination. Collectively, our studies increase our understanding of specific mechanisms by which ethanol modulates myelination in the developing cerebellum, and potentially identify novel targets for FASD therapy.
Collapse
|
49
|
Hu N, Zou L. Multiple functions of Hes genes in the proliferation and differentiation of neural stem cells. Ann Anat 2021; 239:151848. [PMID: 34715307 DOI: 10.1016/j.aanat.2021.151848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/24/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022]
Abstract
The HES proteins (hairy and Enhancer of split (E(spl)) homologs) are basic helix-loop-helix (bHLH) transcription factors that regulate the proliferation and differentiation of stem cells. Family members HES1, 3, and 5 are all critical regulators of nervous system development. The Hes genes exhibit oscillatory expression levels, and this dynamic expression allows for the complex regulation of numerous downstream genes such as Ascl1, Neurog2, Olig2 involved in the differentiation of specific cell types. In addition, HES proteins act as hubs for the molecule crosstalk among Notch, Wnt, and other signaling pathways that regulate nervous system development.
Collapse
Affiliation(s)
- Nan Hu
- Department of Human Anatomy, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Linqing Zou
- Department of Human Anatomy, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
50
|
Mei R, Huang L, Wu M, Jiang C, Yang A, Tao H, Zheng K, Yang J, Shen W, Chen X, Zhao X, Qiu M. Evidence That ITPR2-Mediated Intracellular Calcium Release in Oligodendrocytes Regulates the Development of Carbonic Anhydrase II + Type I/II Oligodendrocytes and the Sizes of Myelin Fibers. Front Cell Neurosci 2021; 15:751439. [PMID: 34630045 PMCID: PMC8492996 DOI: 10.3389/fncel.2021.751439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Myelination of neuronal axons in the central nervous system (CNS) by oligodendrocytes (OLs) enables rapid saltatory conductance and axonal integrity, which are crucial for normal brain functioning. Previous studies suggested that different subtypes of oligodendrocytes in the CNS form different types of myelin determined by the diameter of axons in the unit. However, the molecular mechanisms underlying the developmental association of different types of oligodendrocytes with different fiber sizes remain elusive. In the present study, we present the evidence that the intracellular Ca2+ release channel associated receptor (Itpr2) contributes to this developmental process. During early development, Itpr2 is selectively up-regulated in oligodendrocytes coinciding with the initiation of myelination. Functional analyses in both conventional and conditional Itpr2 mutant mice revealed that Itpr2 deficiency causes a developmental delay of OL differentiation, resulting in an increased percentage of CAII+ type I/II OLs which prefer to myelinate small-diameter axons in the CNS. The increased percentage of small caliber myelinated axons leads to an abnormal compound action potentials (CAP) in the optic nerves. Together, these findings revealed a previously unrecognized role for Itpr2-mediated calcium signaling in regulating the development of different types of oligodendrocytes.
Collapse
Affiliation(s)
- Ruyi Mei
- College of Life Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Institute of Developmental and Regenerative Biology, Hangzhou Normal University, Hangzhou, China
| | - Linyu Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Institute of Developmental and Regenerative Biology, Hangzhou Normal University, Hangzhou, China
| | - Mengyuan Wu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Institute of Developmental and Regenerative Biology, Hangzhou Normal University, Hangzhou, China
| | - Chunxia Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Institute of Developmental and Regenerative Biology, Hangzhou Normal University, Hangzhou, China
| | - Aifen Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Institute of Developmental and Regenerative Biology, Hangzhou Normal University, Hangzhou, China
| | - Huaping Tao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Institute of Developmental and Regenerative Biology, Hangzhou Normal University, Hangzhou, China
| | - Kang Zheng
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Institute of Developmental and Regenerative Biology, Hangzhou Normal University, Hangzhou, China
| | - Junlin Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Institute of Developmental and Regenerative Biology, Hangzhou Normal University, Hangzhou, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Institute of Developmental and Regenerative Biology, Hangzhou Normal University, Hangzhou, China
| | - Xianjun Chen
- Department of Physiology, Research Center of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Xiaofeng Zhao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Institute of Developmental and Regenerative Biology, Hangzhou Normal University, Hangzhou, China
| | - Mengsheng Qiu
- College of Life Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Institute of Developmental and Regenerative Biology, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|