1
|
Zhang Y, Xiao Y, Zhu Y, Yan L, Cheng N, Wei Y, Zhang Y, Tian Y, Cao W, Yang J. GPR83 protects cochlear hair cells against ibrutinib-induced hearing loss through AKT signaling pathways. Front Med (Lausanne) 2025; 12:1579285. [PMID: 40248074 PMCID: PMC12003303 DOI: 10.3389/fmed.2025.1579285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
Introduction Ibrutinib, widely used in leukemia treatment, has been implicated in sensorineural hearing loss; however, its underlying mechanisms remain unclear. Methods This study investigated the impact of ibrutinib on hearing using HEI-OC1 cells, cochlear explants and C57BL/6 J mice. We used RNA-sequences analysis to investigate the potential mechanisms of ibrutinib-induced ototoxicity. Mice received ibrutinib and auditory thresholds were assessed via auditory brainstem response testing; to assess the potential protective effects, we co-administered the caspase inhibitor Z-Val-Ala-Asp (OMe)-fluoromethylketone (Z-VAD-FMK) and monitored hearing. Results Z-VAD-FMK mitigated ibrutinib-induced hearing loss by inhibiting apoptosis in auditory cells. Ibrutinib exposure resulted in cochlear hair cell (HC) damage and subsequent hearing loss by inhibiting the protein kinase B and G protein-coupled receptor 83 (GPR83) pathways. RNA sequencing suggested that GPR83 protects HCs by modulating autophagy. Z-VAD-FMK application and GPR83 overexpression attenuated ibrutinib-induced cochlear HC apoptosis and auditory decline. Conclusion These findings confirm ibrutinib's ototoxicity and highlight the protective role of GPR83 in ibrutinib-induced hearing loss, supporting future clinical investigations into Z-VAD-FMK and GPR83 as interventions for ibrutinib or other chemotherapeutic drug-induced ototoxicity.
Collapse
Affiliation(s)
- Yuhua Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yun Xiao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongjun Zhu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lin Yan
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Nan Cheng
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongjie Wei
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanling Zhang
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Yanghua Tian
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Cao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianming Yang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Yang Z, Zhou SH, Zhang QY, Song ZC, Liu WW, Sun Y, Wang MW, Fu XL, Zhu KK, Guan Y, Qi JY, Wang XH, Sun YN, Lu Y, Ping YQ, Xi YT, Teng ZX, Xu L, Xiao P, Xu ZG, Xiong W, Qin W, Yang W, Yi F, Chai RJ, Yu X, Sun JP. A force-sensitive adhesion GPCR is required for equilibrioception. Cell Res 2025; 35:243-264. [PMID: 39966628 PMCID: PMC11958651 DOI: 10.1038/s41422-025-01075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Equilibrioception (sensing of balance) is essential for mammals to perceive and navigate the three-dimensional world. A rapid mechanoelectrical transduction (MET) response in vestibular hair cells is crucial for detecting position and motion. Here, we identify the G protein-coupled receptor (GPCR) LPHN2/ADGRL2, expressed on the apical membrane of utricular hair cells, as essential for maintaining normal balance. Loss of LPHN2 specifically in hair cells impaired both balance behavior and the MET response in mice. Functional analyses using hair-cell-specific Lphn2-knockout mice and an LPHN2-specific inhibitor suggest that LPHN2 regulates tip-link-independent MET currents at the apical surface of utricular hair cells. Mechanistic studies in a heterologous system show that LPHN2 converts force stimuli into increased open probability of transmembrane channel-like protein 1 (TMC1). LPHN2-mediated force sensation triggers glutamate release and calcium signaling in utricular hair cells. Importantly, reintroducing LPHN2 into the hair cells of Lphn2-deficient mice restores vestibular function and MET response. Our data reveal that a mechanosensitive GPCR is required for equilibrioception.
Collapse
Affiliation(s)
- Zhao Yang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shu-Hua Zhou
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu, China
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qi-Yue Zhang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhi-Chen Song
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wen-Wen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming-Wei Wang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiao-Long Fu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Kong-Kai Zhu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Guan
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie-Yu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu, China
| | - Xiao-Hui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu-Nan Sun
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yan Lu
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu-Qi Ping
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yue-Tong Xi
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhen-Xiao Teng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peng Xiao
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhi-Gang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, Shandong, China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing, China
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, China
| | - Wei Yang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| | - Ren-Jie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu, China.
| | - Xiao Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Jin-Peng Sun
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
3
|
Dong Y, Wei Q, Sun G, Gao X, Lyu T, Wang L, Zhou S, Wang X, Shang Y, Shi L, Zhang H. Evolutionary analysis of genes associated with the sense of balance in semi-aquatic mammals. BMC Ecol Evol 2025; 25:8. [PMID: 39794719 PMCID: PMC11721335 DOI: 10.1186/s12862-024-02345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Semi-aquatic mammals represent a transitional phase in the evolutionary spectrum between terrestrial and aquatic mammals. The sense of balance is crucial for mammalian locomotion, and in semi-aquatic mammals, the structural foundation of this sense (the vestibular system) shows distinct morphological adaptations to both aquatic and terrestrial environments compared to their terrestrial counterparts. Despite this, the precise molecular mechanisms driving these adaptations remain elusive. Our study endeavors to unravel the genetic components associated with the sense of balance in semi-aquatic mammals and to examine the evolutionary trajectories of these genes, shed light on the molecular mechanisms underlying the adaptive evolution of balance perception in semi-aquatic mammals. RESULTS We selected 42 mammal species across 20 orders, 38 families, and 42 genera for analysis. We analyzed a comprehensive set of 116 genes related to the vestibular system's development or function. Our findings indicate that 27 of these genes likely experienced adaptive evolution in semi-aquatic mammals. Particularly, genes such as SLC26A2, SOX10, MYCN, and OTX1 are implicated in collectively orchestrating morphological adaptations in the semicircular canals to suit semi-aquatic environments. Additionally, genes associated with otolith development, including SLC26A2, OC90, and OTOP1, likely regulate otolith sensitivity across various locomotor modes. Moreover, genes linked to vestibular disorders, such as GJB2, GJB6, and USH1C, may provide a molecular foundation for averting vertigo amidst intricate locomotor scenarios in semi-aquatic mammals. CONCLUSIONS Our research offers insights into the molecular mechanisms underlying the evolution of the sense of balance in semi-aquatic mammals, while also providing a new research direction for the adaptive evolution of mammals undergoing a secondary transition to an aquatic lifestyle.
Collapse
Affiliation(s)
- Yuehuan Dong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Qinguo Wei
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Guolei Sun
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xiaodong Gao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Tianshu Lyu
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Lidong Wang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Shengyang Zhou
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xibao Wang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yongquan Shang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Lupeng Shi
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
4
|
Aslam MM, Abbas S, Nawaz S, Zaman G, Ahmed I, Rafeeq M, Sain ZM, Habib AH, Umair M, Shah K. A Novel Homozygous Loss-of-Function Variant in GPR156 Delineates Non-syndromic Hearing Loss. Biochem Genet 2025:10.1007/s10528-024-11019-6. [PMID: 39760840 DOI: 10.1007/s10528-024-11019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Non-syndromic hearing loss (NSHL) is a genetically heterogeneous disorder accounting for almost 70% of the total congenital hearing loss. The implementation of rapid advanced sequencing methods has significantly contributed to the correct molecular diagnosis for several rare genetic disorders, including NHSL. Features of two probands with NHSL were clinically and genetically evaluated. One of the affected individuals was subjected to exome sequencing (ES) using standard methods. 3D protein modeling was performed to check the effect of mutation on the protein structure. ES data analysis revealed a homozygous nonsense variant [c.1144A > T; p.Lys382*] within the GPR156 gene (NM_153002.3) associated with rare NSHL. Sanger sequencing supported its recessive segregation within the family. The in silico predictions and 3D protein modeling further affirmed its disease-causing nature. The present study reported a nonsense variant in the GPR156 and its association with NSHL susceptibility, which requires further studies to unveil its key role and disease-related pathophysiology.
Collapse
Affiliation(s)
- M Muaaz Aslam
- Department of Life Sciences, School of Science and Engineering, Lahore University of Management Science, Lahore, Pakistan
| | - Safdar Abbas
- Department of Biological Science, Dartmouth College, Hanover, NH, USA
| | - Shoaib Nawaz
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Gohar Zaman
- Department of Computer Science, Abbottabad University of Science and Technology, Havelin, Pakistan
| | - Ishtiaq Ahmed
- Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46000, Pakistan
- Metropole Laboratories (Private) Limited, Islamabad, 44000, Pakistan
| | - Misbahuddin Rafeeq
- Department of Pharmacology, Faculty of Medicine, Abdulaziz University, RabighJeddah, King, Saudi Arabia
- Integral Institute of Medical Sciences and Research, Integral University, Lucknow, India
| | - Ziaullah M Sain
- Department of Microbiology Faculty of Medicine, Rabigh King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa Hamed Habib
- Department of Physiology, Faculty of Medicine King, Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia.
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 14611, Pakistan.
| | - Khadim Shah
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Mori Y, Smith S, Wang J, Eliora N, Heikes KL, Munjal A. Versican controlled by Lmx1b regulates hyaluronate density and hydration for semicircular canal morphogenesis. Development 2025; 152:dev203003. [PMID: 39651757 PMCID: PMC11829767 DOI: 10.1242/dev.203003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/29/2024] [Indexed: 12/11/2024]
Abstract
During inner ear semicircular canal morphogenesis in zebrafish, patterned canal-genesis zones express genes for extracellular matrix component synthesis. These include hyaluronan and the hyaluronan-binding chondroitin sulfate proteoglycan Versican, which are abundant in the matrices of many developing organs. Charged hyaluronate polymers play a key role in canal morphogenesis through osmotic swelling. However, the developmental factor(s) that pattern the synthesis of the matrix components and regulation of hyaluronate density and swelling are unknown. Here, we identify the transcription factor Lmx1b as a positive transcriptional regulator of hyaluronan, Versican, and chondroitin synthesis genes crucial for canal morphogenesis. We show that Versican regulates hyaluronan density through its protein core, whereas the charged chondroitin side chains contribute to the hydration of hyaluronate-containing extracellular matrices. Versican-tuned properties of hyaluronate matrices may be a broadly used mechanism in morphogenesis with important implications for understanding diseases in which these matrices are impaired, and for hydrogel engineering for tissue regeneration.
Collapse
Affiliation(s)
- Yusuke Mori
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sierra Smith
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jiacheng Wang
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nadia Eliora
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kira L. Heikes
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Akankshi Munjal
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
6
|
Ren M, Chen X, Dai L, Tu J, Hu H, Sun X, Luo J, Li P, Fu Y, Zhu Y, Sun W, Tang Z, Liu M, Ren X, Lu Q. Knockout of dhx38 Causes Inner Ear Developmental Defects in Zebrafish. Biomedicines 2024; 13:20. [PMID: 39857604 PMCID: PMC11760894 DOI: 10.3390/biomedicines13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Alternative splicing is essential for the physiological and pathological development of the inner ear. Disruptions in this process can result in both syndromic and non-syndromic forms of hearing loss. DHX38, a DEAH box RNA helicase, is integral to pre-mRNA splicing regulation and plays critical roles in development, cell differentiation, and stem cell maintenance. However, its specific role in inner ear development remains undefined. Here, we utilized a dhx38 knockout zebrafish model to monitor the ear morphology and elucidate a crucial role for DHX38 in the development of the zebrafish inner ear. Methods: Bright-field morphological analysis and in situ hybridization were performed to observe ear morphology changes. Immunofluorescence and semi-quantitative RT-PCR were employed to test apoptotic cells and abnormal splicing. Results: The dhx38-/- mutant zebrafish showed significant inner ear impairments, including decrescent otocysts, absent semicircular canal protrusion, and smaller otoliths. These structural abnormalities were accompanied by substantial DNA damage and p53-dependent apoptosis within the inner ear cells. Alternative splicing analysis showed that genes related to DNA damage repair and inner ear morphogenesis are abnormal in dhx38 knockout mutants. In summary, we suggest that dhx38 promotes cell survival during the inner ear development of zebrafish by ensuring the correct splicing of genes related to DNA damage repair.
Collapse
Affiliation(s)
- Mengmeng Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Liyan Dai
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Jiayi Tu
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA;
| | - Hualei Hu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Xiaohan Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Jiong Luo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Pei Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Yiyang Fu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Yuejie Zhu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Weiqiang Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| |
Collapse
|
7
|
Liessmann F, von Bredow L, Meiler J, Liebscher I. Targeting adhesion G protein-coupled receptors. Current status and future perspectives. Structure 2024; 32:2188-2205. [PMID: 39520987 DOI: 10.1016/j.str.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
G protein-coupled receptors (GPCRs) orchestrate many physiological functions and are a crucial target in drug discovery. Adhesion GPCRs (aGPCRs), the second largest family within this superfamily, are promising yet underexplored targets for treating various diseases, including obesity, psychiatric disorders, and cancer. However, the receptors' unique and complex structure and miscellaneous interactions complicate comprehensive pharmacological studies. Despite recent progress in determining structures and elucidation of the activation mechanism, the function of many receptors remains to be determined. This review consolidates current knowledge on aGPCR ligands, focusing on small molecule orthosteric ligands and allosteric modulators identified for the ADGRGs subfamily (subfamily VIII), (GPR56/ADGRG1, GPR64/ADGRG2, GPR97/ADGRG3, GPR114/ADGRG5, GPR126/ADGRG6, and GPR128/ADGRG7). We discuss challenges in hit identification, target validation, and drug discovery, highlighting molecular compositions and recent structural breakthroughs. ADGRG ligands can offer new insights into aGPCR modulation and have significant potential for novel therapeutic interventions targeting various diseases.
Collapse
Affiliation(s)
- Fabian Liessmann
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany
| | - Lukas von Bredow
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany.
| |
Collapse
|
8
|
Chen F, Zhao J, Mo R, Ding X, Zhang Y, Huang L, Xie T, Ding Y. Genetic Variants in the Adhesive G Protein-Coupled Receptor ADGRG6 are Associated with Increased Susceptibility to COPD in the Elderly Han Chinese Population of Southern China. Int J Chron Obstruct Pulmon Dis 2024; 19:2599-2610. [PMID: 39650745 PMCID: PMC11624663 DOI: 10.2147/copd.s478095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
Background Mutations in ADGRG6 are associated with a variety of cancers and multiple types of diseases. However, the impact of genetic variations in ADGRG6 on chronic obstructive pulmonary disease (COPD) susceptibility has not yet been evaluated. Methods Considering the high prevalence of COPD among the elderly population in China, this study specifically targets the elderly Han population in Southern China as the study subject. Following the acquisition of participants' whole-genome DNA, genotyping was conducted using the Agena MassARRAY platform. The online tool 'SNPStats', which utilizes logistic regression, was employed to analyze and assess the correlation. Multi-factor dimensionality reduction was utilized to clarify the impact of "SNP-SNP" interactions on COPD risk. The False-Positive Report Probability (FPRP) was applied to determine whether significant results are noteworthy findings. Results The mutant allele "C" of rs11155242 was a protective genetic factor against COPD susceptibility (OR = 0.57, 95% CI = 0.36 to 0.91, p = 0.017). The heterozygous mutant genotype "CA" of rs11155242 was found to be significantly associated with reduced COPD risk (CA Vs AA: OR = 0.53, 95% CI = 0.32 to 0.90, p = 0.018). ADGRG6-rs11155242 was found to be strongly associated with a reduced risk of COPD in males, non-smokers, and subjects with a BMI below 24 kg/m2 (OR < 1, p < 0.05). The FPRP analysis indicated that the positive results identified in this study are noteworthy new findings. Conclusion The mutant allele "C" and mutant genotype "CA" of rs11155242 act as protective genetic factors against COPD susceptibility. This study will provide a new research direction for the personalized prevention and treatment of COPD in the elderly Han population in southern China, and lay a potential scientific basis.
Collapse
Affiliation(s)
- Fei Chen
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
- Department of General Practice, Bai Majing Town Central Health Center, Danzhou City, Hainan Province, People’s Republic of China
| | - Jie Zhao
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Rubing Mo
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Xiuxiu Ding
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Yue Zhang
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Linhui Huang
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Tian Xie
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Yipeng Ding
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| |
Collapse
|
9
|
Pressé MT, Malgrange B, Delacroix L. The cochlear matrisome: Importance in hearing and deafness. Matrix Biol 2024; 125:40-58. [PMID: 38070832 DOI: 10.1016/j.matbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 02/12/2024]
Abstract
The extracellular matrix (ECM) consists in a complex meshwork of collagens, glycoproteins, and proteoglycans, which serves a scaffolding function and provides viscoelastic properties to the tissues. ECM acts as a biomechanical support, and actively participates in cell signaling to induce tissular changes in response to environmental forces and soluble cues. Given the remarkable complexity of the inner ear architecture, its exquisite structure-function relationship, and the importance of vibration-induced stimulation of its sensory cells, ECM is instrumental to hearing. Many factors of the matrisome are involved in cochlea development, function and maintenance, as evidenced by the variety of ECM proteins associated with hereditary deafness. This review describes the structural and functional ECM components in the auditory organ and how they are modulated over time and following injury.
Collapse
Affiliation(s)
- Mary T Pressé
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium.
| |
Collapse
|
10
|
Ramzan M, Bozan N, Seyhan S, Zafeer MF, Ayral A, Duman D, Bademci G, Tekin M. Novel GPR156 variants confirm its role in moderate sensorineural hearing loss. Sci Rep 2023; 13:17010. [PMID: 37814107 PMCID: PMC10562426 DOI: 10.1038/s41598-023-44259-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023] Open
Abstract
Hereditary hearing loss (HL) is a genetically heterogeneous disorder affecting people worldwide. The implementation of advanced sequencing technologies has significantly contributed to the identification of novel genes involved in HL. In this study, probands of two Turkish families with non-syndromic moderate HL were subjected to exome sequencing. The data analysis identified the c.600G > A (p.Thr200Thr) and c.1863dupG (p.His622fs) variants in GPR156, which co-segregated with the phenotype as an autosomal recessive trait in the respective families. The in silico predictions and a minigene assay showed that the c.600G > A variant disrupts mRNA splicing. This gene belongs to the family of G protein-coupled receptors whose function is not well established in the inner ear. GPR156 variants have very recently been reported to cause HL in three families. Our study from a different ethnic background confirms GPR156 as a bona fide gene involved in HL in humans. Further investigation towards the understanding of the role of GPCRs in the inner ear is warranted.
Collapse
Affiliation(s)
- Memoona Ramzan
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10Th Avenue, BRB-610 (M860), Miami, FL, 33136, USA
| | - Nazim Bozan
- Department of Otolaryngology, Yuzuncu Yil University School of Medicine, Van, Turkey
| | - Serhat Seyhan
- Department of Medical Genetics, Faculty of Medicine, Uskudar University, Istanbul, Turkey
| | - Mohammad Faraz Zafeer
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10Th Avenue, BRB-610 (M860), Miami, FL, 33136, USA
| | - Aburrahman Ayral
- Department of Otolaryngology, Yuzuncu Yil University School of Medicine, Van, Turkey
| | - Duygu Duman
- Department of Audiology, Ankara University Faculty of Health Sciences, Ankara, Turkey
| | - Guney Bademci
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mustafa Tekin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10Th Avenue, BRB-610 (M860), Miami, FL, 33136, USA.
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
11
|
Asad A, Shahidan NO, de la Vega de León A, Wiggin GR, Whitfield TT, Baxendale S. A screen of pharmacologically active compounds to identify modulators of the Adgrg6/Gpr126 signalling pathway in zebrafish embryos. Basic Clin Pharmacol Toxicol 2023; 133:364-377. [PMID: 37394692 PMCID: PMC10952222 DOI: 10.1111/bcpt.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Adhesion G protein-coupled receptors (GPCRs) are an underrepresented class of GPCRs in drug discovery. We previously developed an in vivo drug screening pipeline to identify compounds with agonist activity for Adgrg6 (Gpr126), an adhesion GPCR required for myelination of the peripheral nervous system in vertebrates. The screening assay tests for rescue of an ear defect found in adgrg6tb233c-/- hypomorphic homozygous mutant zebrafish, using the expression of versican b (vcanb) mRNA as an easily identifiable phenotype. In the current study, we used the same assay to screen a commercially available library of 1280 diverse bioactive compounds (Sigma LOPAC). Comparison with published hits from two partially overlapping compound collections (Spectrum, Tocris) confirms that the screening assay is robust and reproducible. Using a modified counter screen for myelin basic protein (mbp) gene expression, we have identified 17 LOPAC compounds that can rescue both inner ear and myelination defects in adgrg6tb233c-/- hypomorphic mutants, three of which (ebastine, S-methylisothiourea hemisulfate, and thapsigargin) are new hits. A further 25 LOPAC hit compounds were effective at rescuing the otic vcanb expression but not mbp. Together, these and previously identified hits provide a wealth of starting material for the development of novel and specific pharmacological modulators of Adgrg6 receptor activity.
Collapse
Affiliation(s)
- Anzar Asad
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | | | | | | | - Sarah Baxendale
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Sheffield Zebrafish Screening Facility, School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
12
|
Cazorla-Vázquez S, Kösters P, Bertz S, Pfister F, Daniel C, Dedden M, Zundler S, Jobst-Schwan T, Amann K, Engel FB. Adhesion GPCR Gpr126 (Adgrg6) Expression Profiling in Zebrafish, Mouse, and Human Kidney. Cells 2023; 12:1988. [PMID: 37566066 PMCID: PMC10417176 DOI: 10.3390/cells12151988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) comprise the second-largest class of GPCRs, the most common target for approved pharmacological therapies. aGPCRs play an important role in development and disease and have recently been associated with the kidney. Several aGPCRs are expressed in the kidney and some aGPCRs are either required for kidney development or their expression level is altered in diseased kidneys. Yet, general aGPCR function and their physiological role in the kidney are poorly understood. Here, we characterize in detail Gpr126 (Adgrg6) expression based on RNAscope® technology in zebrafish, mice, and humans during kidney development in adults. Gpr126 expression is enriched in the epithelial linage during nephrogenesis and persists in the adult kidney in parietal epithelial cells, collecting ducts, and urothelium. Single-cell RNAseq analysis shows that gpr126 expression is detected in zebrafish in a distinct ionocyte sub-population. It is co-detected selectively with slc9a3.2, slc4a4a, and trpv6, known to be involved in apical acid secretion, buffering blood or intracellular pH, and to maintain high cytoplasmic Ca2+ concentration, respectively. Furthermore, gpr126-expressing cells were enriched in the expression of potassium transporter kcnj1a.1 and gcm2, which regulate the expression of a calcium sensor receptor. Notably, the expression patterns of Trpv6, Kcnj1a.1, and Gpr126 in mouse kidneys are highly similar. Collectively, our approach permits a detailed insight into the spatio-temporal expression of Gpr126 and provides a basis to elucidate a possible role of Gpr126 in kidney physiology.
Collapse
Affiliation(s)
- Salvador Cazorla-Vázquez
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.C.-V.); (P.K.)
| | - Peter Kösters
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.C.-V.); (P.K.)
| | - Simone Bertz
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Frederick Pfister
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.P.); (C.D.); (K.A.)
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.P.); (C.D.); (K.A.)
| | - Mark Dedden
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.D.); (S.Z.)
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.D.); (S.Z.)
| | - Tilman Jobst-Schwan
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.P.); (C.D.); (K.A.)
| | - Felix B. Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.C.-V.); (P.K.)
| |
Collapse
|
13
|
Cintrón-Rivera LG, Oulette G, Prakki A, Burns NM, Patel R, Cyr R, Plavicki J. Exposure to the persistent organic pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) disrupts development of the zebrafish inner ear. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106539. [PMID: 37086653 PMCID: PMC10519160 DOI: 10.1016/j.aquatox.2023.106539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Dioxins are a class of highly toxic and persistent environmental pollutants that have been shown through epidemiological and laboratory-based studies to act as developmental teratogens. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent dioxin congener, has a high affinity for the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor. TCDD-induced AHR activation during development impairs nervous system, cardiac, and craniofacial development. Despite the robust phenotypes previously reported, the characterization of developmental malformations and our understanding of the molecular targets mediating TCDD-induced developmental toxicity remains limited. In zebrafish, TCDD-induced craniofacial malformations are produced, in part, by the downregulation of SRY-box transcription factor 9b (sox9b), a member of the SoxE gene family. sox9b, along with fellow SoxE gene family members sox9a and sox10, have important functions in the development of the otic placode, the otic vesicle, and, ultimately, the inner ear. Given that sox9b is a known target of TCDD and that transcriptional interactions exist among SoxE genes, we asked whether TCDD exposure impaired the development of the zebrafish auditory system, specifically the otic vesicle, which gives rise to the sensory components of the inner ear. Using immunohistochemistry, in vivo confocal imaging, and time-lapse microscopy, we assessed the impact of TCDD exposure on zebrafish otic vesicle development. We found exposure resulted in structural deficits, including incomplete pillar fusion and altered pillar topography, leading to defective semicircular canal development. The observed structural deficits were accompanied by reduced collagen type II expression in the ear. Together, our findings reveal the otic vesicle as a novel target of TCDD-induced toxicity, suggest that the function of multiple SoxE genes may be affected by TCDD exposure, and provide insight into how environmental contaminants contribute to congenital malformations.
Collapse
Affiliation(s)
- Layra G Cintrón-Rivera
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Gabrielle Oulette
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Aishwarya Prakki
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Nicole M Burns
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Ratna Patel
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Rachel Cyr
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Jessica Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA.
| |
Collapse
|
14
|
Cintr N-Rivera LG, Oulette G, Prakki A, Burns NM, Patel R, Cyr R, Plavicki J. Exposure to the persistent organic pollutant 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) disrupts development of the zebrafish inner ear. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532434. [PMID: 36993549 PMCID: PMC10054988 DOI: 10.1101/2023.03.14.532434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Dioxins are a class of highly toxic and persistent environmental pollutants that have been shown through epidemiological and laboratory-based studies to act as developmental teratogens. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent dioxin congener, has a high affinity for the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor. TCDD-induced AHR activation during development impairs nervous system, cardiac, and craniofacial development. Despite the robust phenotypes previously reported, the characterization of developmental malformations and our understanding of the molecular targets mediating TCDD-induced developmental toxicity remains limited. In zebrafish, TCDD-induced craniofacial malformations are produced, in part, by the downregulation of SRY-box transcription factor 9b ( sox9b ), a member of the SoxE gene family. sox9b , along with fellow SoxE gene family members sox9a and sox10 , have important functions in the development of the otic placode, the otic vesicle, and, ultimately, the inner ear. Given that sox9b in a known target of TCDD and that transcriptional interactions exist among SoxE genes, we asked whether TCDD exposure impaired the development of the zebrafish auditory system, specifically the otic vesicle, which gives rise to the sensory components of the inner ear. Using immunohistochemistry, in vivo confocal imaging, and time-lapse microscopy, we assessed the impact of TCDD exposure on zebrafish otic vesicle development. We found exposure resulted in structural deficits, including incomplete pillar fusion and altered pillar topography, leading to defective semicircular canal development. The observed structural deficits were accompanied by reduced collagen type II expression in the ear. Together, our findings reveal the otic vesicle as a novel target of TCDD-induced toxicity, suggest that the function of multiple SoxE genes may be affected by TCDD exposure, and provide insight into how environmental contaminants contribute to congenital malformations. Highlights The zebrafish ear is necessary to detect changes in motion, sound, and gravity.Embryos exposed to TCDD lack structural components of the developing ear.TCDD exposure impairs formation of the fusion plate and alters pillar topography.The semicircular canals of the ear are required to detect changes in movement.Following TCDD exposure embryos fail to establish semicircular canals.
Collapse
|
15
|
Karaica D, Mihaljević I, Vujica L, Bošnjak A, Dragojević J, Otten C, Babić N, Lončar J, Smital T. Stage-dependent localization of F-actin and Na + /K + -ATPase in zebrafish embryos detected using optimized cryosectioning immunostaining protocol. Microsc Res Tech 2023; 86:294-310. [PMID: 36453864 DOI: 10.1002/jemt.24270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
The increasing use of the zebrafish model in biomedical and (eco)toxicological studies aimed at understanding the function of various proteins highlight the importance of optimizing existing methods to study gene and protein expression and localization in this model. In this context, zebrafish cryosections are still underutilized compared with whole-mount preparations. In this study, we used zebrafish embryos (24-120 hpf) to determine key factors for the preparation of high-quality zebrafish cryosections and to determine the optimal protocol for (immuno)fluorescence analyses of Na+ /K+ -ATPase and F-actin, across developmental stages from 1 to 5 dpf. The results showed that the highest quality zebrafish cryosections were obtained after the samples were fixed in 4% paraformaldehyde (PFA) for 1 h, incubated in 2.5% bovine gelatin/25% sucrose mixture, embedded in OCT, and then sectioned to 8 μm thickness at -20°C. Fluorescence microscopy analysis of phalloidin-labeled zebrafish skeletal muscle revealed that 1-h-4% PFA-fixed samples allowed optimal binding of phalloidin to F-actin. Further immunofluorescence analyses revealed detailed localization of F-actin and Na+ /K+ -ATPase in various tissues of the zebrafish and a stage-dependent increase in their respective expression in the somitic muscles and pronephros. Finally, staining of zebrafish cryosections and whole-mount samples revealed organ-specific and zone-dependent localizations of the Na+ /K+ -ATPase α1-subunit. RESEARCH HIGHLIGHTS: This study brings optimization of existing protocols for preparation and use of zebrafish embryos cryosections in (immuno)histological analyses. It reveals stage-dependent localization/expression of F-actin and Na+ /K+ -ATPase in zebrafish embryos.
Collapse
Affiliation(s)
- Dean Karaica
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ivan Mihaljević
- Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Lana Vujica
- Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Arvena Bošnjak
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Jelena Dragojević
- Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Cecile Otten
- Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nency Babić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Jovica Lončar
- Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tvrtko Smital
- Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
16
|
Jones AA, Diamantopoulou E, Baxendale S, Whitfield TT. Presence of chondroitin sulphate and requirement for heparan sulphate biosynthesis in the developing zebrafish inner ear. Front Cell Dev Biol 2022; 10:959624. [PMID: 36092694 PMCID: PMC9458858 DOI: 10.3389/fcell.2022.959624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Epithelial morphogenesis to form the semicircular canal ducts of the zebrafish inner ear depends on the production of the large glycosaminoglycan hyaluronan, which is thought to contribute to the driving force that pushes projections of epithelium into the lumen of the otic vesicle. Proteoglycans are also implicated in otic morphogenesis: several of the genes coding for proteoglycan core proteins, together with enzymes that synthesise and modify their polysaccharide chains, are expressed in the developing zebrafish inner ear. In this study, we demonstrate the highly specific localisation of chondroitin sulphate to the sites of epithelial projection outgrowth in the ear, present before any morphological deformation of the epithelium. Staining for chondroitin sulphate is also present in the otolithic membrane, whereas the otoliths are strongly positive for keratan sulphate. We show that heparan sulphate biosynthesis is critical for normal epithelial projection outgrowth, otolith growth and tethering. In the ext2 mutant ear, which has reduced heparan sulphate levels, but continues to produce hyaluronan, epithelial projections are rudimentary, and do not grow sufficiently to meet and fuse to form the pillars of tissue that normally span the otic lumen. Staining for chondroitin sulphate and expression of versican b, a chondroitin sulphate proteoglycan core protein gene, persist abnormally at high levels in the unfused projections of the ext2 mutant ear. We propose a model for wild-type epithelial projection outgrowth in which hyaluronan and proteoglycans are linked to form a hydrated gel that fills the projection core, with both classes of molecule playing essential roles in zebrafish semicircular canal morphogenesis.
Collapse
|
17
|
Zhang Z, Chai R. Hear the sounds: The role of G Protein-Coupled Receptors in the cochlea. Am J Physiol Cell Physiol 2022; 323:C1088-C1099. [PMID: 35938679 DOI: 10.1152/ajpcell.00453.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sound is converted by hair cells in the cochlea into electrical signals, which are transmitted by spiral ganglion neurons (SGNs) and heard by the auditory cortex. G protein-coupled receptors (GPCRs) are crucial receptors that regulate a wide range of physiological functions in different organ and tissues. The research of GPCRs in the cochlea is essential for the understanding of the cochlea development, hearing disorders, and the treatment for hearing loss. Recently, several GPCRs have been found to play important roles in the cochlea. Frizzleds and Lgrs are dominant GPCRs that regulate stem cell self-renew abilities. Moreover, Frizzleds and Celsrs have been demonstrated to play core roles in the modulation of cochlear planar cell polarity (PCP). In addition, hearing loss can be caused by mutations of certain GPCRs, such as Vlgr1, Gpr156, S1P2 and Gpr126. And A1, A2A and CB2 activation by agonists have protective functions on noise- or drug-induced hearing loss. Here, we review the key findings of GPCR in the cochlea, and discuss the role of GPCR in the cochlea, such as stem cell fate, PCP, hearing loss, and hearing protection.
Collapse
Affiliation(s)
- Zhong Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Mackowetzky K, Dicipulo R, Fox SC, Philibert DA, Todesco H, Doshi JD, Kawakami K, Tierney K, Waskiewicz AJ. Retinoic acid signaling regulates late stages of semicircular canal morphogenesis and otolith maintenance in the zebrafish inner ear. Dev Dyn 2022; 251:1798-1815. [PMID: 35710880 DOI: 10.1002/dvdy.510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The vitamin A derivative all-trans retinoic acid (RA) regulates early stages of inner ear development. As the early disruption of the RA pathway results in profound mispatterning of the developing inner ear, this confounds analyses of specific roles in later stages. Therefore, we used the temporal-specific exposure of all-trans RA or diethylaminobenzaldehyde to evaluate RA functions in late otic development. RESULTS Perturbing late RA signaling causes behavioral defects analogous to those expected in larvae suffering from vestibular dysfunction. These larvae also demonstrate malformations of the semi-circular canals, as visualized through (a) use of the transgenic strain nkhspdmc12a, a fluorescent reporter expressed in otic epithelium; and (b) injection of the fluorescent lipophilic dye DiI. We also noted the altered expression of genes encoding ECM proteins or modifying enzymes. Other malformations of the inner ear observed in our work include the loss or reduced size of the utricular and saccular otoliths, suggesting a role for RA in otolith maintenance. CONCLUSION Our work has identified a previously undescribed late phase of RA activity in otic development, demonstrating that vestibular defects observed in human patients in relation to perturbed RA signaling are not solely due to its early disruption in otic development.
Collapse
Affiliation(s)
- Kacey Mackowetzky
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Renée Dicipulo
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sabrina C Fox
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, Edmonton, Alberta, Canada
| | - Danielle A Philibert
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hayley Todesco
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jainil D Doshi
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Shizuoka, Japan
| | - Keith Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Progesterone activates GPR126 to promote breast cancer development via the Gi pathway. Proc Natl Acad Sci U S A 2022; 119:e2117004119. [PMID: 35394864 PMCID: PMC9169622 DOI: 10.1073/pnas.2117004119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The steroid hormone progesterone is highly involved in different physiological–pathophysiological processes, including bone formation and cancer progression. Understanding the working mechanisms, especially identifying the receptors of progesterone hormones, is of great value. In the present study, we identified GPR126 as a membrane receptor for both progesterone and 17-hydroxyprogesterone and triggered its downstream G protein signaling. We further characterized the residues of GPR126 that interact with these two ligands and found that progesterone promoted the progression of a triple-negative breast cancer model through GPR126-dependent Gi-SRC signaling. Therefore, developing antagonists targeting GPR126-Gi may provide an alternative therapeutic option for patients with triple-negative breast cancer. GPR126 is a member of the adhesion G protein-coupled receptors (aGPCRs) that is essential for the normal development of diverse tissues, and its mutations are implicated in various pathological processes. Here, through screening 34 steroid hormones and their derivatives for cAMP production, we found that progesterone (P4) and 17-hydroxyprogesterone (17OHP) could specifically activate GPR126 and trigger its downstream Gi signaling by binding to the ligand pocket in the seven-transmembrane domain of the C-terminal fragment of GPR126. A detailed mutagenesis screening according to a computational simulated structure model indicated that K1001ECL2 and F1012ECL2 are key residues that specifically recognize 17OHP but not progesterone. Finally, functional analysis revealed that progesterone-triggered GPR126 activation promoted cell growth in vitro and tumorigenesis in vivo, which involved Gi-SRC pathways in a triple-negative breast cancer model. Collectively, our work identified a membrane receptor for progesterone/17OHP and delineated the mechanisms by which GPR126 participated in potential tumor progression in triple-negative breast cancer, which will enrich our understanding of the functions and working mechanisms of both the aGPCR member GPR126 and the steroid hormone progesterone.
Collapse
|
20
|
Zheng S, Tang D, Wang X, Liu C, Zuo N, Yan R, Wu C, Ma J, Wang C, Xu H, He Y, Liu D, Liu S. Kif15 Is Required in the Development of Auditory System Using Zebrafish as a Model. Front Mol Neurosci 2022; 15:844568. [PMID: 35370541 PMCID: PMC8971910 DOI: 10.3389/fnmol.2022.844568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
Kif15, a kinesin family member, is powerful in the formation of bipolar spindles. There is emerging evidence indicating that Kif15 plays vital roles in influencing the growth of axons and interference with the progression of the tumor. However, the function of Kif15 in the auditory organs remains unknown. The Western blotting test was used to examine the effect of Kif15 downregulation by specific morpholino targeting Kif15 (Kif15-MO). The development of the inner ear and posterior lateral line (PLL) system in zebrafish was under continuous observation from spawns to 96 h postfertilization (hpf) to investigate the potential role of Kif15 in the auditory and vestibular system. We uncovered that Kif15 inhibition induced otic organ deformities in zebrafish, including malformed semicircular canals, abnormal number and location of otoliths, and reduced number of hair cells (HCs) both in utricle and saccule. Furthermore, a remarkable reduction in the number of PLL neuromasts was also explored in Kif15-MO morphants compared to the normal larvae. We also detected notably reduced activity in locomotion after Kif15 was knocked down. Additionally, we performed rescue experiments with co-injection of Kif15 mRNA and found that the Kif15 splicing MO-induced deformities in otic vesicle and PLL of zebrafish were successfully rescued, and the severely reduced locomotor activity caused by Kif15-MO was partially rescued compared to the control-MO (Con-MO) embryos. Our findings uncover that Kif15 is essential in the early development of auditory and vestibular organs using zebrafish as models.
Collapse
Affiliation(s)
- Shimei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Dongmei Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Xin Wang
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Chang Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Na Zuo
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Renchun Yan
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Cheng Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jun Ma
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Chuanxi Wang
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Hongfei Xu
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yingzi He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- *Correspondence: Yingzi He,
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
- Dong Liu, ,
| | - Shaofeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
- Shaofeng Liu,
| |
Collapse
|
21
|
Extracellular hyaluronate pressure shaped by cellular tethers drives tissue morphogenesis. Cell 2021; 184:6313-6325.e18. [PMID: 34942099 PMCID: PMC8722442 DOI: 10.1016/j.cell.2021.11.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
How tissues acquire complex shapes is a fundamental question in biology and regenerative medicine. Zebrafish semicircular canals form from invaginations in the otic epithelium (buds) that extend and fuse to form the hubs of each canal. We find that conventional actomyosin-driven behaviors are not required. Instead, local secretion of hyaluronan, made by the enzymes uridine 5'-diphosphate dehydrogenase (ugdh) and hyaluronan synthase 3 (has3), drives canal morphogenesis. Charged hyaluronate polymers osmotically swell with water and generate isotropic extracellular pressure to deform the overlying epithelium into buds. The mechanical anisotropy needed to shape buds into tubes is conferred by a polarized distribution of actomyosin and E-cadherin-rich membrane tethers, which we term cytocinches. Most work on tissue morphogenesis ascribes actomyosin contractility as the driving force, while the extracellular matrix shapes tissues through differential stiffness. Our work inverts this expectation. Hyaluronate pressure shaped by anisotropic tissue stiffness may be a widespread mechanism for powering morphological change in organogenesis and tissue engineering.
Collapse
|
22
|
Knockout of mafba Causes Inner-Ear Developmental Defects in Zebrafish via the Impairment of Proliferation and Differentiation of Ionocyte Progenitor Cells. Biomedicines 2021; 9:biomedicines9111699. [PMID: 34829928 PMCID: PMC8616026 DOI: 10.3390/biomedicines9111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 12/03/2022] Open
Abstract
Zebrafish is an excellent model for exploring the development of the inner ear. Its inner ear has similar functions to that of humans, specifically in the maintenance of hearing and balance. Mafba is a component of the Maf transcription factor family. It participates in multiple biological processes, but its role in inner-ear development remains poorly understood. In this study, we constructed a mafba knockout (mafba−/−) zebrafish model using CRISPR/Cas9 technology. The mafba−/− mutant inner ear displayed severe impairments, such as enlarged otocysts, smaller or absent otoliths, and insensitivity to sound stimulation. The proliferation of p63+ epidermal stem cells and dlc+ ionocyte progenitors was inhibited in mafba−/− mutants. Moreover, the results showed that mafba deletion induces the apoptosis of differentiated K+-ATPase-rich (NR) cells and H+-ATPase-rich (HR) cells. The activation of p53 apoptosis and G0/G1 cell cycle arrest resulted from DNA damage in the inner-ear region, providing a mechanism to account for the inner ear deficiencies. The loss of homeostasis resulting from disorders of ionocyte progenitors resulted in structural defects in the inner ear and, consequently, loss of hearing. In conclusion, the present study elucidated the function of ionic channel homeostasis and inner-ear development using a zebrafish Mafba model and clarified the possible physiological roles.
Collapse
|
23
|
Torregrosa-Carrión R, Piñeiro-Sabarís R, Siguero-Álvarez M, Grego-Bessa J, Luna-Zurita L, Fernandes VS, MacGrogan D, Stainier DYR, de la Pompa JL. Adhesion G protein-coupled receptor Gpr126/Adgrg6 is essential for placental development. SCIENCE ADVANCES 2021; 7:eabj5445. [PMID: 34767447 PMCID: PMC8589310 DOI: 10.1126/sciadv.abj5445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mutations in the G protein–coupled receptor GPR126/ADGRG6 cause human diseases, including defective peripheral nervous system (PNS) myelination. To study GPR126 function, we generated new genetic mice and zebrafish models. Murine Gpr126 is expressed in developing heart endocardium, and global Gpr126 inactivation is embryonically lethal, with mutants having thin-walled ventricles but unaffected heart patterning or maturation. Endocardial-specific Gpr126 deletion does not affect heart development or function, and transgenic endocardial GPR126 expression fails to rescue lethality in Gpr126-null mice. Zebrafish gpr126 mutants display unaffected heart development. Gpr126 is also expressed in placental trophoblast giant cells. Gpr126-null mice with a heterozygous placenta survive but exhibit GPR126-defective PNS phenotype. In contrast, Gpr126-null embryos with homozygous mutant placenta die but are rescued by placental GPR126 expression. Gpr126-deficient placentas display down-regulation of preeclampsia markers Mmp9, Cts7, and Cts8. We propose that the placenta-heart axis accounts for heart abnormalities secondary to placental defects in Gpr126 mutants.
Collapse
Affiliation(s)
- Rebeca Torregrosa-Carrión
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Rebeca Piñeiro-Sabarís
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Marcos Siguero-Álvarez
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Joaquím Grego-Bessa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Luis Luna-Zurita
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Vitor Samuel Fernandes
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Donal MacGrogan
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
- Corresponding author.
| |
Collapse
|
24
|
Mendonca T, Jones AA, Pozo JM, Baxendale S, Whitfield TT, Frangi AF. Origami: Single-cell 3D shape dynamics oriented along the apico-basal axis of folding epithelia from fluorescence microscopy data. PLoS Comput Biol 2021; 17:e1009063. [PMID: 34723957 PMCID: PMC8584784 DOI: 10.1371/journal.pcbi.1009063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/11/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
A common feature of morphogenesis is the formation of three-dimensional structures from the folding of two-dimensional epithelial sheets, aided by cell shape changes at the cellular-level. Changes in cell shape must be studied in the context of cell-polarised biomechanical processes within the epithelial sheet. In epithelia with highly curved surfaces, finding single-cell alignment along a biological axis can be difficult to automate in silico. We present 'Origami', a MATLAB-based image analysis pipeline to compute direction-variant cell shape features along the epithelial apico-basal axis. Our automated method accurately computed direction vectors denoting the apico-basal axis in regions with opposing curvature in synthetic epithelia and fluorescence images of zebrafish embryos. As proof of concept, we identified different cell shape signatures in the developing zebrafish inner ear, where the epithelium deforms in opposite orientations to form different structures. Origami is designed to be user-friendly and is generally applicable to fluorescence images of curved epithelia.
Collapse
Affiliation(s)
- Tania Mendonca
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, United Kingdom
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (TM); (AFF)
| | - Ana A. Jones
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Jose M. Pozo
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, United Kingdom
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing and School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Sarah Baxendale
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Tanya T. Whitfield
- Department of Biomedical Science, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Alejandro F. Frangi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, United Kingdom
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing and School of Medicine, University of Leeds, Leeds, United Kingdom
- Medical Imaging Research Center (MIRC), University Hospital Gasthuisberg, Cardiovascular Sciences and Electrical Engineering Departments, KU Leuven, Belgium
- * E-mail: (TM); (AFF)
| |
Collapse
|
25
|
Mackowetzky K, Yoon KH, Mackowetzky EJ, Waskiewicz AJ. Development and evolution of the vestibular apparatuses of the inner ear. J Anat 2021; 239:801-828. [PMID: 34047378 PMCID: PMC8450482 DOI: 10.1111/joa.13459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The vertebrate inner ear is a labyrinthine sensory organ responsible for perceiving sound and body motion. While a great deal of research has been invested in understanding the auditory system, a growing body of work has begun to delineate the complex developmental program behind the apparatuses of the inner ear involved with vestibular function. These animal studies have helped identify genes involved in inner ear development and model syndromes known to include vestibular dysfunction, paving the way for generating treatments for people suffering from these disorders. This review will provide an overview of known inner ear anatomy and function and summarize the exciting discoveries behind inner ear development and the evolution of its vestibular apparatuses.
Collapse
Affiliation(s)
- Kacey Mackowetzky
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Kevin H. Yoon
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Andrew J. Waskiewicz
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Women & Children’s Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
26
|
Liu Z, Hussien AA, Wang Y, Heckmann T, Gonzalez R, Karner CM, Snedeker JG, Gray RS. An adhesion G protein-coupled receptor is required in cartilaginous and dense connective tissues to maintain spine alignment. eLife 2021; 10:67781. [PMID: 34318745 PMCID: PMC8328515 DOI: 10.7554/elife.67781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common spine disorder affecting children worldwide, yet little is known about the pathogenesis of this disorder. Here, we demonstrate that genetic regulation of structural components of the axial skeleton, the intervertebral discs, and dense connective tissues (i.e., ligaments and tendons) is essential for the maintenance of spinal alignment. We show that the adhesion G protein-coupled receptor ADGRG6, previously implicated in human AIS association studies, is required in these tissues to maintain typical spine alignment in mice. Furthermore, we show that ADGRG6 regulates biomechanical properties of tendon and stimulates CREB signaling governing gene expression in cartilaginous tissues of the spine. Treatment with a cAMP agonist could mirror aspects of receptor function in culture, thus defining core pathways for regulating these axial cartilaginous and connective tissues. As ADGRG6 is a key gene involved in human AIS, these findings open up novel therapeutic opportunities for human scoliosis.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, United States.,Department of Nutritional Sciences, The University of Texas at Austin, Austin, United States
| | - Amro A Hussien
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Yunjia Wang
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, United States.,Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Terry Heckmann
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, United States
| | - Roberto Gonzalez
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, United States
| | - Courtney M Karner
- Department of Internal Medicine, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jess G Snedeker
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ryan S Gray
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, United States.,Department of Nutritional Sciences, The University of Texas at Austin, Austin, United States
| |
Collapse
|
27
|
Hall RJ, O'Loughlin J, Billington CK, Thakker D, Hall IP, Sayers I. Functional genomics of GPR126 in airway smooth muscle and bronchial epithelial cells. FASEB J 2021; 35:e21300. [PMID: 34165809 DOI: 10.1096/fj.202002073r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
GPR126 is an adhesion G protein-coupled receptor which lies on chromosome 6q24. Genetic variants in this region are reproducibly associated with lung function and COPD in genome wide association studies (GWAS). The aims of this study were to define the role of GPR126 in the human lung and in pulmonary disease and identify possible casual variants. Online tools (GTEx and LDlink) identified SNPs which may have effects on GPR126 function/ expression, including missense variant Ser123Gly and an intronic variant that shows eQTL effects on GPR126 expression. GPR126 signaling via cAMP-mediated pathways was identified in human structural airway cells when activated with the tethered agonist, stachel. RNA-seq was used to identify downstream genes/ pathways affected by stachel-mediated GPR126 activation in human airway smooth muscle cells. We identified ~350 differentially expressed genes at 4 and 24 hours post stimulation with ~20% overlap. We identified that genes regulated by GPR126 activation include IL33, CTGF, and SERPINE1, which already have known roles in lung biology. Pathways altered by GPR126 included those involved in cell cycle progression and cell proliferation. Here, we suggest a role for GPR126 in airway remodeling.
Collapse
Affiliation(s)
- Robert J Hall
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Jonathan O'Loughlin
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Charlotte K Billington
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Dhruma Thakker
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Ian P Hall
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Ian Sayers
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| |
Collapse
|
28
|
Sheets L, Holmgren M, Kindt KS. How Zebrafish Can Drive the Future of Genetic-based Hearing and Balance Research. J Assoc Res Otolaryngol 2021; 22:215-235. [PMID: 33909162 PMCID: PMC8110678 DOI: 10.1007/s10162-021-00798-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last several decades, studies in humans and animal models have successfully identified numerous molecules required for hearing and balance. Many of these studies relied on unbiased forward genetic screens based on behavior or morphology to identify these molecules. Alongside forward genetic screens, reverse genetics has further driven the exploration of candidate molecules. This review provides an overview of the genetic studies that have established zebrafish as a genetic model for hearing and balance research. Further, we discuss how the unique advantages of zebrafish can be leveraged in future genetic studies. We explore strategies to design novel forward genetic screens based on morphological alterations using transgenic lines or behavioral changes following mechanical or acoustic damage. We also outline how recent advances in CRISPR-Cas9 can be applied to perform reverse genetic screens to validate large sequencing datasets. Overall, this review describes how future genetic studies in zebrafish can continue to advance our understanding of inherited and acquired hearing and balance disorders.
Collapse
Affiliation(s)
- Lavinia Sheets
- Department of Otolaryngology-Head & Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Melanie Holmgren
- Department of Otolaryngology-Head & Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Katie S Kindt
- Section On Sensory Cell Development and Function, National Institutes On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
29
|
Baxendale S, Asad A, Shahidan NO, Wiggin GR, Whitfield TT. The adhesion GPCR Adgrg6 (Gpr126): Insights from the zebrafish model. Genesis 2021; 59:e23417. [PMID: 33735533 PMCID: PMC11475505 DOI: 10.1002/dvg.23417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Adhesion GPCRs are important regulators of conserved developmental processes and represent an untapped pool of potential targets for drug discovery. The adhesion GPCR Adgrg6 (Gpr126) has critical developmental roles in Schwann cell maturation and inner ear morphogenesis in the zebrafish embryo. Mutations in the human ADGRG6 gene can result in severe deficits in peripheral myelination, and variants have been associated with many other disease conditions. Here, we review work on the zebrafish Adgrg6 signaling pathway and its potential as a disease model. Recent advances have been made in the analysis of the structure of the Adgrg6 receptor, demonstrating alternative structural conformations and the presence of a conserved calcium-binding site within the CUB domain of the extracellular region that is critical for receptor function. Homozygous zebrafish adgrg6 hypomorphic mutants have been used successfully as a whole-animal screening platform, identifying candidate molecules that can influence signaling activity and rescue mutant phenotypes. These compounds offer promise for further development as small molecule modulators of Adgrg6 pathway activity.
Collapse
Affiliation(s)
- Sarah Baxendale
- Department of Biomedical Science, Bateson Centre and Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Anzar Asad
- Department of Biomedical Science, Bateson Centre and Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Nahal O. Shahidan
- Department of Biomedical Science, Bateson Centre and Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | | | - Tanya T. Whitfield
- Department of Biomedical Science, Bateson Centre and Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
30
|
Du W, Bhojwani A, Hu JK. FACEts of mechanical regulation in the morphogenesis of craniofacial structures. Int J Oral Sci 2021; 13:4. [PMID: 33547271 PMCID: PMC7865003 DOI: 10.1038/s41368-020-00110-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
During embryonic development, organs undergo distinct and programmed morphological changes as they develop into their functional forms. While genetics and biochemical signals are well recognized regulators of morphogenesis, mechanical forces and the physical properties of tissues are now emerging as integral parts of this process as well. These physical factors drive coordinated cell movements and reorganizations, shape and size changes, proliferation and differentiation, as well as gene expression changes, and ultimately sculpt any developing structure by guiding correct cellular architectures and compositions. In this review we focus on several craniofacial structures, including the tooth, the mandible, the palate, and the cranium. We discuss the spatiotemporal regulation of different mechanical cues at both the cellular and tissue scales during craniofacial development and examine how tissue mechanics control various aspects of cell biology and signaling to shape a developing craniofacial organ.
Collapse
Affiliation(s)
- Wei Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Arshia Bhojwani
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Jimmy K Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Han B, Zhang Y, Bi X, Zhou Y, Krueger CJ, Hu X, Zhu Z, Tong X, Zhang B. Bi-FoRe: an efficient bidirectional knockin strategy to generate pairwise conditional alleles with fluorescent indicators. Protein Cell 2021; 12:39-56. [PMID: 32681448 PMCID: PMC7815861 DOI: 10.1007/s13238-020-00747-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Gene expression labeling and conditional manipulation of gene function are important for elaborate dissection of gene function. However, contemporary generation of pairwise dual-function knockin alleles to achieve both conditional and geno-tagging effects with a single donor has not been reported. Here we first developed a strategy based on a flipping donor named FoRe to generate conditional knockout alleles coupled with fluorescent allele-labeling through NHEJ-mediated unidirectional targeted insertion in zebrafish facilitated by the CRISPR/Cas system. We demonstrated the feasibility of this strategy at sox10 and isl1 loci, and successfully achieved Cre-induced conditional knockout of target gene function and simultaneous switch of the fluorescent reporter, allowing generation of genetic mosaics for lineage tracing. We then improved the donor design enabling efficient one-step bidirectional knockin to generate paired positive and negative conditional alleles, both tagged with two different fluorescent reporters. By introducing Cre recombinase, these alleles could be used to achieve both conditional knockout and conditional gene restoration in parallel; furthermore, differential fluorescent labeling of the positive and negative alleles enables simple, early and efficient real-time discrimination of individual live embryos bearing different genotypes prior to the emergence of morphologically visible phenotypes. We named our improved donor as Bi-FoRe and demonstrated its feasibility at the sox10 locus. Furthermore, we eliminated the undesirable bacterial backbone in the donor using minicircle DNA technology. Our system could easily be expanded for other applications or to other organisms, and coupling fluorescent labeling of gene expression and conditional manipulation of gene function will provide unique opportunities to fully reveal the power of emerging single-cell sequencing technologies.
Collapse
Affiliation(s)
- Bingzhou Han
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yage Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xuetong Bi
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yang Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory, Atlanta, GA, 33032, USA
| | - Xinli Hu
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Zuoyan Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
32
|
Kröll-Hermi A, Ebstein F, Stoetzel C, Geoffroy V, Schaefer E, Scheidecker S, Bär S, Takamiya M, Kawakami K, Zieba BA, Studer F, Pelletier V, Eyermann C, Speeg-Schatz C, Laugel V, Lipsker D, Sandron F, McGinn S, Boland A, Deleuze JF, Kuhn L, Chicher J, Hammann P, Friant S, Etard C, Krüger E, Muller J, Strähle U, Dollfus H. Proteasome subunit PSMC3 variants cause neurosensory syndrome combining deafness and cataract due to proteotoxic stress. EMBO Mol Med 2020; 12:e11861. [PMID: 32500975 PMCID: PMC7338805 DOI: 10.15252/emmm.201911861] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
The ubiquitin–proteasome system degrades ubiquitin‐modified proteins to maintain protein homeostasis and to control signalling. Whole‐genome sequencing of patients with severe deafness and early‐onset cataracts as part of a neurological, sensorial and cutaneous novel syndrome identified a unique deep intronic homozygous variant in the PSMC3 gene, encoding the proteasome ATPase subunit Rpt5, which lead to the transcription of a cryptic exon. The proteasome content and activity in patient's fibroblasts was however unaffected. Nevertheless, patient's cells exhibited impaired protein homeostasis characterized by accumulation of ubiquitinated proteins suggesting severe proteotoxic stress. Indeed, the TCF11/Nrf1 transcriptional pathway allowing proteasome recovery after proteasome inhibition is permanently activated in the patient's fibroblasts. Upon chemical proteasome inhibition, this pathway was however impaired in patient's cells, which were unable to compensate for proteotoxic stress although a higher proteasome content and activity. Zebrafish modelling for knockout in PSMC3 remarkably reproduced the human phenotype with inner ear development anomalies as well as cataracts, suggesting that Rpt5 plays a major role in inner ear, lens and central nervous system development.
Collapse
Affiliation(s)
- Ariane Kröll-Hermi
- Laboratoire de Génétique Médicale, INSERM, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg, Faculté de médecine de Strasbourg, Strasbourg, France.,Karlsruhe Institute of Technology (KIT), Institut für Biologische und Chemische Systeme (IBCS, BIP), Eggenstein-Leopoldshafen, Germany
| | - Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Corinne Stoetzel
- Laboratoire de Génétique Médicale, INSERM, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg, Faculté de médecine de Strasbourg, Strasbourg, France
| | - Véronique Geoffroy
- Laboratoire de Génétique Médicale, INSERM, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg, Faculté de médecine de Strasbourg, Strasbourg, France
| | - Elise Schaefer
- Laboratoire de Génétique Médicale, INSERM, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg, Faculté de médecine de Strasbourg, Strasbourg, France.,Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sophie Scheidecker
- Laboratoire de Génétique Médicale, INSERM, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg, Faculté de médecine de Strasbourg, Strasbourg, France.,Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Séverine Bär
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR7156, Centre National de Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| | - Masanari Takamiya
- Karlsruhe Institute of Technology (KIT), Institut für Biologische und Chemische Systeme (IBCS, BIP), Eggenstein-Leopoldshafen, Germany
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Barbara A Zieba
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Fouzia Studer
- Filière SENSGENE, Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Valerie Pelletier
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Filière SENSGENE, Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Carine Eyermann
- Service de chirurgie ORL, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Claude Speeg-Schatz
- Department of Ophthalmology, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Vincent Laugel
- Laboratoire de Génétique Médicale, INSERM, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg, Faculté de médecine de Strasbourg, Strasbourg, France.,Service de Pédiatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Dan Lipsker
- Faculté de Médecine, Hôpitaux Universitaires, Université de Strasbourg et Clinique Dermatologique, Strasbourg, France
| | - Florian Sandron
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Steven McGinn
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France.,Centre d'études du polymorphisme humain-Fondation Jean Dausset, Paris, France
| | - Lauriane Kuhn
- CNRS FRC1589, Institut de Biologie Moléculaire et Cellulaire (IBMC), Plateforme Protéomique Strasbourg-Esplanade, Strasbourg, France
| | - Johana Chicher
- CNRS FRC1589, Institut de Biologie Moléculaire et Cellulaire (IBMC), Plateforme Protéomique Strasbourg-Esplanade, Strasbourg, France
| | - Philippe Hammann
- CNRS FRC1589, Institut de Biologie Moléculaire et Cellulaire (IBMC), Plateforme Protéomique Strasbourg-Esplanade, Strasbourg, France
| | - Sylvie Friant
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR7156, Centre National de Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, France
| | - Christelle Etard
- Karlsruhe Institute of Technology (KIT), Institut für Biologische und Chemische Systeme (IBCS, BIP), Eggenstein-Leopoldshafen, Germany
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jean Muller
- Laboratoire de Génétique Médicale, INSERM, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg, Faculté de médecine de Strasbourg, Strasbourg, France.,Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Uwe Strähle
- Karlsruhe Institute of Technology (KIT), Institut für Biologische und Chemische Systeme (IBCS, BIP), Eggenstein-Leopoldshafen, Germany
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, INSERM, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg, Faculté de médecine de Strasbourg, Strasbourg, France.,Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Filière SENSGENE, Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
33
|
Sun P, He L, Jia K, Yue Z, Li S, Jin Y, Li Z, Siwko S, Xue F, Su J, Liu M, Luo J. Regulation of body length and bone mass by Gpr126/Adgrg6. SCIENCE ADVANCES 2020; 6:eaaz0368. [PMID: 32219165 PMCID: PMC7083604 DOI: 10.1126/sciadv.aaz0368] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/26/2019] [Indexed: 05/24/2023]
Abstract
Adhesion G protein-coupled receptor G6 (Adgrg6; also named GPR126) single-nucleotide polymorphisms are associated with human height in multiple populations. However, whether and how GPR126 regulates body height is unknown. In this study, we found that mouse body length was specifically decreased in Osx-Cre;Gpr126fl/fl mice. Deletion of Gpr126 in osteoblasts resulted in a remarkable delay in osteoblast differentiation and mineralization during embryonic bone formation. Postnatal bone formation, bone mass, and bone strength were also significantly affected in Gpr126 osteoblast deletion mice because of defects in osteoblast proliferation, differentiation, and ossification. Furthermore, type IV collagen functioned as an activating ligand of Gpr126 to regulate osteoblast differentiation and function by stimulating cAMP signaling. Moreover,the cAMP activator PTH(1-34), could partially restore the inhibition of osteoblast differentiation and the body length phenotype induced by Gpr126 deletion.Together, our results demonstrated that COLIV-Gpr126 regulated body length and bone mass through cAMP-CREB signaling pathway.
Collapse
Affiliation(s)
- Peng Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, Shanghai 200241, P.R. China
| | - Liang He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Kunhang Jia
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Zhiying Yue
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Shichang Li
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, Shanghai 200241, P.R. China
| | - Yunyun Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Zhenxi Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Stefan Siwko
- Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Feng Xue
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Shanghai Fengxian District Central Hospital, Shanghai 201400, P.R. China
| | - Jiacan Su
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| |
Collapse
|
34
|
Structural basis for adhesion G protein-coupled receptor Gpr126 function. Nat Commun 2020; 11:194. [PMID: 31924782 PMCID: PMC6954182 DOI: 10.1038/s41467-019-14040-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
Many drugs target the extracellular regions (ECRs) of cell-surface receptors. The large and alternatively-spliced ECRs of adhesion G protein-coupled receptors (aGPCRs) have key functions in diverse biological processes including neurodevelopment, embryogenesis, and tumorigenesis. However, their structures and mechanisms of action remain unclear, hampering drug development. The aGPCR Gpr126/Adgrg6 regulates Schwann cell myelination, ear canal formation, and heart development; and GPR126 mutations cause myelination defects in human. Here, we determine the structure of the complete zebrafish Gpr126 ECR and reveal five domains including a previously unknown domain. Strikingly, the Gpr126 ECR adopts a closed conformation that is stabilized by an alternatively spliced linker and a conserved calcium-binding site. Alternative splicing regulates ECR conformation and receptor signaling, while mutagenesis of the calcium-binding site abolishes Gpr126 function in vivo. These results demonstrate that Gpr126 ECR utilizes a multi-faceted dynamic approach to regulate receptor function and provide relevant insights for ECR-targeted drug design. The extracellular regions (ECRs) of adhesion GPCRs have diverse biological functions, but their structures and mechanisms of action remain unclear. Here, the authors solve the ECR structure of the Gpr126 receptor and show that ECR conformation and signaling functions are regulated by alternative splicing.
Collapse
|
35
|
Morgan RK, Anderson GR, Araç D, Aust G, Balenga N, Boucard A, Bridges JP, Engel FB, Formstone CJ, Glitsch MD, Gray RS, Hall RA, Hsiao CC, Kim HY, Knierim AB, Kusuluri DK, Leon K, Liebscher I, Piao X, Prömel S, Scholz N, Srivastava S, Thor D, Tolias KF, Ushkaryov YA, Vallon M, Van Meir EG, Vanhollebeke B, Wolfrum U, Wright KM, Monk KR, Mogha A. The expanding functional roles and signaling mechanisms of adhesion G protein-coupled receptors. Ann N Y Acad Sci 2019; 1456:5-25. [PMID: 31168816 PMCID: PMC7891679 DOI: 10.1111/nyas.14094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
Abstract
The adhesion class of G protein-coupled receptors (GPCRs) is the second largest family of GPCRs (33 members in humans). Adhesion GPCRs (aGPCRs) are defined by a large extracellular N-terminal region that is linked to a C-terminal seven transmembrane (7TM) domain via a GPCR-autoproteolysis inducing (GAIN) domain containing a GPCR proteolytic site (GPS). Most aGPCRs undergo autoproteolysis at the GPS motif, but the cleaved fragments stay closely associated, with the N-terminal fragment (NTF) bound to the 7TM of the C-terminal fragment (CTF). The NTFs of most aGPCRs contain domains known to be involved in cell-cell adhesion, while the CTFs are involved in classical G protein signaling, as well as other intracellular signaling. In this workshop report, we review the most recent findings on the biology, signaling mechanisms, and physiological functions of aGPCRs.
Collapse
Affiliation(s)
- Rory K. Morgan
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Garret R. Anderson
- Department of Molecular, Cell and Systems Biology, University of California – Riverside, Riverside, California
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Gabriela Aust
- Research Laboratories, Department of Surgery, Leipzig University, Leipzig, Germany
| | - Nariman Balenga
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Program in Molecular and Structural Biology, Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, Baltimore, Maryland
| | - Antony Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México
| | - James P. Bridges
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Felix B. Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Caroline J. Formstone
- Centre for Developmental Neurobiology, Guys Campus, Kings College London, London, UK
- Department of Biological and Environmental Sciences, College Lane Campus, University of Hertfordshire, Hatfield, UK
| | - Maike D. Glitsch
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ryan S. Gray
- Department of Pediatrics, University of Texas at Austin, Dell Medical School, Austin, Texas
| | - Randy A. Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Alexander B. Knierim
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Deva Krupakar Kusuluri
- Institute of Molecular Physiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Katherine Leon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Xianhua Piao
- Newborn Brain Research Institute, Department of Pediatrics, University of California – San Francisco, San Francisco, California
| | - Simone Prömel
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Swati Srivastava
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | | | | | - Mario Vallon
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California
| | - Erwin G. Van Meir
- Laboratory of Molecular Neuro-Oncology, Departments of Neurosurgery and Hematology & Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Kevin M. Wright
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Kelly R. Monk
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Amit Mogha
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
36
|
Liu Z, Easson GWD, Zhao J, Makki N, Ahituv N, Hilton MJ, Tang SY, Gray RS. Dysregulation of STAT3 signaling is associated with endplate-oriented herniations of the intervertebral disc in Adgrg6 mutant mice. PLoS Genet 2019; 15:e1008096. [PMID: 31652254 PMCID: PMC6834287 DOI: 10.1371/journal.pgen.1008096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/06/2019] [Accepted: 09/18/2019] [Indexed: 12/01/2022] Open
Abstract
Degenerative changes of the intervertebral disc (IVD) are a leading cause of disability affecting humans worldwide and has been attributed primarily to trauma and the accumulation of pathology during aging. While genetic defects have also been associated with disc degeneration, the precise mechanisms driving the initiation and progression of disease have remained elusive due to a paucity of genetic animal models. Here, we discuss a novel conditional mouse genetic model of endplate-oriented disc herniations in adult mice. Using conditional mouse genetics, we show increased mechanical stiffness and reveal dysregulation of typical gene expression profiles of the IVD in adhesion G-protein coupled receptor G6 (Adgrg6) mutant mice prior to the onset of endplate-oriented disc herniations in adult mice. We observed increased STAT3 activation prior to IVD defects and go on to demonstrate that treatment of Adgrg6 conditional mutant mice with a small molecule inhibitor of STAT3 activation ameliorates endplate-oriented herniations. These findings establish ADGRG6 and STAT3 as novel regulators of IVD endplate and growth plate integrity in the mouse, and implicate ADGRG6/STAT3 signaling as promising therapeutic targets for endplate-oriented disc degeneration. Back pain is a leading cause of disability in humans worldwide and one of the most common culprits of these issues are the consequence of degenerative changes of the intervertebral disc. Here, we demonstrate that conditional loss of the Adgrg6 gene in cartilaginous tissues of the spine results in endplate-oriented disc herniations and degenerative changes of the intervertebral disc in mice. We further establish that these obvious degenerative changes of the disc are preceded by substantial alterations in normal gene expression profiles, including upregulation of pro-inflammatory STAT3 signaling, and increased mechanical stiffness of the intervertebral disc. Increased STAT3 activation is a signal observed in other models of degenerative musculoskeletal tissues. As such, we tested whether systemic treatment with a small-molecule STAT3 inhibitor would protect against the formation of endplate-oriented disc herniations in conditional Adgrg6 mutant mice, and report a significant positive improvement of histopathology in our treatment group. Taken together, we demonstrate a novel conditional model of endplate-oriented disc herniation in mouse. We establish ADGRG6 and STAT3 as novel regulators of endplate integrity of the intervertebral disc in mouse and suggest that modulation of ADGRG6/STAT3 signaling could provide robust disease-modifying targets for endplate-oriented disc degeneration in humans.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Department of Nutritional Sciences, University of Texas at Austin, Austin, Texas, United States of America
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, Texas, United States of America
| | - Garrett W. D. Easson
- Department of Orthopedics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jingjing Zhao
- Department of Bioengineering and Therapeutic Sciences and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Nadja Makki
- Department of Bioengineering and Therapeutic Sciences and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Matthew J. Hilton
- Department of Orthopedic Surgery and Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Simon Y. Tang
- Department of Orthopedics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ryan S. Gray
- Department of Nutritional Sciences, University of Texas at Austin, Austin, Texas, United States of America
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Musa G, Srivastava S, Petzold J, Cazorla-Vázquez S, Engel FB. miR-27a/b is a posttranscriptional regulator of Gpr126 (Adgrg6). Ann N Y Acad Sci 2019; 1456:109-121. [PMID: 31596512 DOI: 10.1111/nyas.14245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
Abstract
Gpr126 (Adgrg6), a member of the adhesion G protein-coupled receptor family, has been associated with a variety of human diseases. Yet, despite its clinical importance, the mechanisms regulating Gpr126 expression are poorly understood. Here, we aimed at identifying upstream regulatory mechanisms of Gpr126 expression utilizing the heart as model organ in which Gpr126 regulates trabeculation. Here, we focused on possible regulation of Gpr126 regulation by microRNAs, which have emerged as key players in regulating development, have a critical role in disease progression, and might serve as putative therapeutic targets. In silico analyses identified one conserved binding site in the 3' UTR of Gpr126 for microRNA 27a and 27b (miR-27a/b). In addition, miR-27a/b and Gpr126 expression were differentially expressed during rat heart development. A regulatory role of miR-27a/b in controlling Gpr126 expression was substantiated by reduced Gpr126 mRNA levels upon ectopic expression of miR-27a/b in HEK293T cells and miR-27b in zebrafish embryos. Regulation of Gpr126 expression by direct binding of miR-27a/b to the 3' UTR of Gpr126 was verified by luciferase reporter assays in HEK293T cells. Finally, the modulation of gpr126 expression in zebrafish by injection of either miR-27b or miR-27b inhibitor in single cell-stage embryos resulted in hypo- or hypertrabeculation, respectively. Collectively, the data indicate that Gpr126 expression is regulated by miR-27a/b.
Collapse
Affiliation(s)
- Gentian Musa
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Swati Srivastava
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jana Petzold
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Salvador Cazorla-Vázquez
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
38
|
Musa G, Cazorla‐Vázquez S, Amerongen MJ, Stemmler MP, Eckstein M, Hartmann A, Braun T, Brabletz T, Engel FB. Gpr126 (Adgrg6)
is expressed in cell types known to be exposed to mechanical stimuli. Ann N Y Acad Sci 2019; 1456:96-108. [DOI: 10.1111/nyas.14135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/29/2019] [Accepted: 05/16/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Gentian Musa
- Experimental Renal and Cardiovascular Research, Department of NephropathologyInstitute of Pathology, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Salvador Cazorla‐Vázquez
- Experimental Renal and Cardiovascular Research, Department of NephropathologyInstitute of Pathology, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Machteld J. Amerongen
- Department of Cardiac Development and RemodellingMax‐Planck‐Institute for Heart and Lung Research Bad Nauheim Germany
| | - Marc P. Stemmler
- Department of Experimental Medicine I, Nikolaus‐Fiebiger‐CenterFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Markus Eckstein
- Department of Pathology and AnatomyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Arndt Hartmann
- Department of Pathology and AnatomyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Thomas Braun
- Department of Cardiac Development and RemodellingMax‐Planck‐Institute for Heart and Lung Research Bad Nauheim Germany
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus‐Fiebiger‐CenterFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Felix B. Engel
- Experimental Renal and Cardiovascular Research, Department of NephropathologyInstitute of Pathology, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
- Department of Cardiac Development and RemodellingMax‐Planck‐Institute for Heart and Lung Research Bad Nauheim Germany
| |
Collapse
|
39
|
Diamantopoulou E, Baxendale S, de la Vega de León A, Asad A, Holdsworth CJ, Abbas L, Gillet VJ, Wiggin GR, Whitfield TT. Identification of compounds that rescue otic and myelination defects in the zebrafish adgrg6 ( gpr126) mutant. eLife 2019; 8:44889. [PMID: 31180326 PMCID: PMC6598766 DOI: 10.7554/elife.44889] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/08/2019] [Indexed: 12/18/2022] Open
Abstract
Adgrg6 (Gpr126) is an adhesion class G protein-coupled receptor with a conserved role in myelination of the peripheral nervous system. In the zebrafish, mutation of adgrg6 also results in defects in the inner ear: otic tissue fails to down-regulate versican gene expression and morphogenesis is disrupted. We have designed a whole-animal screen that tests for rescue of both up- and down-regulated gene expression in mutant embryos, together with analysis of weak and strong alleles. From a screen of 3120 structurally diverse compounds, we have identified 68 that reduce versican b expression in the adgrg6 mutant ear, 41 of which also restore myelin basic protein gene expression in Schwann cells of mutant embryos. Nineteen compounds unable to rescue a strong adgrg6 allele provide candidates for molecules that may interact directly with the Adgrg6 receptor. Our pipeline provides a powerful approach for identifying compounds that modulate GPCR activity, with potential impact for future drug design.
Collapse
Affiliation(s)
- Elvira Diamantopoulou
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Sarah Baxendale
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | | | - Anzar Asad
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Celia J Holdsworth
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Leila Abbas
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Valerie J Gillet
- Information School, University of Sheffield, Sheffield, United Kingdom
| | | | - Tanya T Whitfield
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
40
|
Damasceno S, Menezes NBD, Rocha CDS, Matos AHBD, Vieira AS, Moraes MFD, Martins AS, Lopes-Cendes I, Godard ALB. Transcriptome of the Wistar audiogenic rat (WAR) strain following audiogenic seizures. Epilepsy Res 2018; 147:22-31. [DOI: 10.1016/j.eplepsyres.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022]
|
41
|
Clément A, Blanco-Sánchez B, Peirce JL, Westerfield M. Cog4 is required for protrusion and extension of the epithelium in the developing semicircular canals. Mech Dev 2018; 155:1-7. [PMID: 30287385 DOI: 10.1016/j.mod.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/06/2018] [Accepted: 09/22/2018] [Indexed: 11/17/2022]
Abstract
The semicircular canals in the inner ear sense angular acceleration. In zebrafish, the semicircular canals develop from epithelial projections that grow toward each other and fuse to form pillars. The growth of the epithelial projections is driven by the production and secretion of extracellular matrix components by the epithelium. The conserved oligomeric Golgi 4 protein, Cog4, functions in retrograde vesicle transport within the Golgi and mutations can lead to sensory neural hearing loss. In zebrafish cog4 mutants, the inner ear is smaller and the number of hair cells is reduced. Here, we show that formation of the pillars is delayed and that secretion of extracellular matrix components (ECM) is impaired in cog4-/- mutants. These results show that Cog4 is required for secretion of ECM molecules essential to drive the growth of the epithelial projections and thus regulates morphogenesis of the semicircular canals.
Collapse
Affiliation(s)
- Aurélie Clément
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | - Judy L Peirce
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
42
|
Swinburne IA, Mosaliganti KR, Upadhyayula S, Liu TL, Hildebrand DGC, Tsai TYC, Chen A, Al-Obeidi E, Fass AK, Malhotra S, Engert F, Lichtman JW, Kirchhausen T, Betzig E, Megason SG. Lamellar projections in the endolymphatic sac act as a relief valve to regulate inner ear pressure. eLife 2018; 7:e37131. [PMID: 29916365 PMCID: PMC6008045 DOI: 10.7554/elife.37131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 01/23/2023] Open
Abstract
The inner ear is a fluid-filled closed-epithelial structure whose function requires maintenance of an internal hydrostatic pressure and fluid composition. The endolymphatic sac (ES) is a dead-end epithelial tube connected to the inner ear whose function is unclear. ES defects can cause distended ear tissue, a pathology often seen in hearing and balance disorders. Using live imaging of zebrafish larvae, we reveal that the ES undergoes cycles of slow pressure-driven inflation followed by rapid deflation. Absence of these cycles in lmx1bb mutants leads to distended ear tissue. Using serial-section electron microscopy and adaptive optics lattice light-sheet microscopy, we find a pressure relief valve in the ES comprised of partially separated apical junctions and dynamic overlapping basal lamellae that separate under pressure to release fluid. We propose that this lmx1-dependent pressure relief valve is required to maintain fluid homeostasis in the inner ear and other fluid-filled cavities.
Collapse
Affiliation(s)
- Ian A Swinburne
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | | | - Srigokul Upadhyayula
- Department of PediatricsHarvard Medical SchoolBostonUnited States
- Program in Cellular and Molecular MedicineBoston Children’s HospitalBostonUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tsung-Li Liu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - David G C Hildebrand
- Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
| | - Tony Y -C Tsai
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Anzhi Chen
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Ebaa Al-Obeidi
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Anna K Fass
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Samir Malhotra
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Florian Engert
- Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
| | - Jeff W Lichtman
- Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
| | - Tomas Kirchhausen
- Department of PediatricsHarvard Medical SchoolBostonUnited States
- Program in Cellular and Molecular MedicineBoston Children’s HospitalBostonUnited States
- Department of Cell BiologyHarvard Medical SchoolBostonUnited States
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sean G Megason
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| |
Collapse
|
43
|
Cazorla-Vázquez S, Engel FB. Adhesion GPCRs in Kidney Development and Disease. Front Cell Dev Biol 2018; 6:9. [PMID: 29468160 PMCID: PMC5808184 DOI: 10.3389/fcell.2018.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/23/2018] [Indexed: 12/25/2022] Open
Abstract
Chronic kidney disease (CKD) represents the fastest growing pathology worldwide with a prevalence of >10% in many countries. In addition, kidney cancer represents 5% of all new diagnosed cancers. As currently no effective therapies exist to restore kidney function after CKD- as well as cancer-induced renal damage, it is important to elucidate new regulators of kidney development and disease as new therapeutic targets. G protein-coupled receptors (GPCRs) represent the most successful class of pharmaceutical targets. In recent years adhesion GPCRs (aGPCRs), the second largest GPCR family, gained significant attention as they are present on almost all mammalian cells, are associated to a plethora of diseases and regulate important cellular processes. aGPCRs regulate for example cell polarity, mitotic spindle orientation, cell migration, and cell aggregation; all processes that play important roles in kidney development and/or disease. Moreover, polycystin-1, a major regulator of kidney development and disease, contains a GAIN domain, which is otherwise only found in aGPCRs. In this review, we assess the potential of aGPCRs as therapeutic targets for kidney disease. For this purpose we have summarized the available literature and analyzed data from the databases The Human Protein Atlas, EURExpress, Nephroseq, FireBrowse, cBioPortal for Cancer Genomics and the National Cancer Institute Genomic Data Commons data portal (NCIGDC). Our data indicate that most aGPCRs are expressed in different spatio-temporal patterns during kidney development and that altered aGPCR expression is associated with a variety of kidney diseases including CKD, diabetic nephropathy, lupus nephritis as well as renal cell carcinoma. We conclude that aGPCRs present a promising new class of therapeutic targets and/or might be useful as diagnostic markers in kidney disease.
Collapse
Affiliation(s)
- Salvador Cazorla-Vázquez
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Felix B Engel
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
44
|
Shaffer JR, Li J, Lee MK, Roosenboom J, Orlova E, Adhikari K, Gallo C, Poletti G, Schuler-Faccini L, Bortolini MC, Canizales-Quinteros S, Rothhammer F, Bedoya G, González-José R, Pfeffer PE, Wollenschlaeger CA, Hecht JT, Wehby GL, Moreno LM, Ding A, Jin L, Yang Y, Carlson JC, Leslie EJ, Feingold E, Marazita ML, Hinds DA, Cox TC, Wang S, Ruiz-Linares A, Weinberg SM. Multiethnic GWAS Reveals Polygenic Architecture of Earlobe Attachment. Am J Hum Genet 2017; 101:913-924. [PMID: 29198719 PMCID: PMC5812923 DOI: 10.1016/j.ajhg.2017.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 01/08/2023] Open
Abstract
The genetic basis of earlobe attachment has been a matter of debate since the early 20th century, such that geneticists argue both for and against polygenic inheritance. Recent genetic studies have identified a few loci associated with the trait, but large-scale analyses are still lacking. Here, we performed a genome-wide association study of lobe attachment in a multiethnic sample of 74,660 individuals from four cohorts (three with the trait scored by an expert rater and one with the trait self-reported). Meta-analysis of the three expert-rater-scored cohorts revealed six associated loci harboring numerous candidate genes, including EDAR, SP5, MRPS22, ADGRG6 (GPR126), KIAA1217, and PAX9. The large self-reported 23andMe cohort recapitulated each of these six loci. Moreover, meta-analysis across all four cohorts revealed a total of 49 significant (p < 5 × 10-8) loci. Annotation and enrichment analyses of these 49 loci showed strong evidence of genes involved in ear development and syndromes with auricular phenotypes. RNA sequencing data from both human fetal ear and mouse second branchial arch tissue confirmed that genes located among associated loci showed evidence of expression. These results provide strong evidence for the polygenic nature of earlobe attachment and offer insights into the biological basis of normal and abnormal ear development.
Collapse
Affiliation(s)
- John R Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jinxi Li
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jasmien Roosenboom
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ekaterina Orlova
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kaustabh Adhikari
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 430 Cercado de Lima, Peru
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 430 Cercado de Lima, Peru
| | - Lavinia Schuler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México, Instituto Nacional de Medicina Genómica, Mexico City 4510, Mexico
| | - Francisco Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile; Facultad de Medicina, Universidad de Chile, Santiago 8320000, Chile
| | - Gabriel Bedoya
- Grupo Genética Molecular GENMOL, Universidad de Antioquia, Medellín 050003, Colombia
| | - Rolando González-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Científico Tecnológico, Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn U9120, Argentina
| | - Paige E Pfeffer
- Center for Advanced Dental Education, Orthodontics Program, Saint Louis University, St. Louis, MO 63104, USA
| | | | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical School, University of Texas, Houston, TX 77030, USA
| | - George L Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, IA 52246, USA
| | - Lina M Moreno
- Department of Orthodontics, University of Iowa, Iowa City, IA 52242, USA
| | - Anan Ding
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Jin
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yajun Yang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jenna C Carlson
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Elizabeth J Leslie
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mary L Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA; Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David A Hinds
- 23andMe Inc., 899 West Evelyn Avenue, Mountain View, CA 94041, USA
| | - Timothy C Cox
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA; Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Department of Anatomy & Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sijia Wang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Andrés Ruiz-Linares
- Department of Genetics, Evolution and Environment, University College London, London, UK; Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China; Laboratory of Biocultural Anthropology, Law, Ethics, and Health, Centre National de la Recherche Scientifique and Etablissement Français du Sang, UMR 7268, Aix-Marseille University, Marseille 13284, France
| | - Seth M Weinberg
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Anthropology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
45
|
Whole Genome Sequencing-Based Mapping and Candidate Identification of Mutations from Fixed Zebrafish Tissue. G3-GENES GENOMES GENETICS 2017; 7:3415-3425. [PMID: 28855284 PMCID: PMC5633390 DOI: 10.1534/g3.117.300212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As forward genetic screens in zebrafish become more common, the number of mutants that cannot be identified by gross morphology or through transgenic approaches, such as many nervous system defects, has also increased. Screening for these difficult-to-visualize phenotypes demands techniques such as whole-mount in situ hybridization (WISH) or antibody staining, which require tissue fixation. To date, fixed tissue has not been amenable for generating libraries for whole genome sequencing (WGS). Here, we describe a method for using genomic DNA from fixed tissue and a bioinformatics suite for WGS-based mapping of zebrafish mutants. We tested our protocol using two known zebrafish mutant alleles, gpr126st49 and egr2bfh227, both of which cause myelin defects. As further proof of concept we mapped a novel mutation, stl64, identified in a zebrafish WISH screen for myelination defects. We linked stl64 to chromosome 1 and identified a candidate nonsense mutation in the F-box and WD repeat domain containing 7 (fbxw7) gene. Importantly, stl64 mutants phenocopy previously described fbxw7vu56 mutants, and knockdown of fbxw7 in wild-type animals produced similar defects, demonstrating that stl64 disrupts fbxw7. Together, these data show that our mapping protocol can map and identify causative lesions in mutant screens that require tissue fixation for phenotypic analysis.
Collapse
|
46
|
Sculpting the labyrinth: Morphogenesis of the developing inner ear. Semin Cell Dev Biol 2017; 65:47-59. [DOI: 10.1016/j.semcdb.2016.09.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/26/2016] [Accepted: 09/25/2016] [Indexed: 01/23/2023]
|
47
|
Fuentealba J, Toro-Tapia G, Rodriguez M, Arriagada C, Maureira A, Beyer A, Villaseca S, Leal JI, Hinrichs MV, Olate J, Caprile T, Torrejón M. Expression profiles of the Gα subunits during Xenopus tropicalis embryonic development. Gene Expr Patterns 2016; 22:15-25. [PMID: 27613600 DOI: 10.1016/j.gep.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/31/2016] [Accepted: 09/04/2016] [Indexed: 10/21/2022]
Abstract
Heterotrimeric G protein signaling plays major roles during different cellular events. However, there is a limited understanding of the molecular mechanisms underlying G protein control during embryogenesis. G proteins are highly conserved and can be grouped into four subfamilies according to sequence homology and function. To further studies on G protein function during embryogenesis, the present analysis identified four Gα subunits representative of the different subfamilies and determined their spatiotemporal expression patterns during Xenopus tropicalis embryogenesis. Each of the Gα subunit transcripts was maternally and zygotically expressed, and, as development progressed, dynamic expression patterns were observed. In the early developmental stages, the Gα subunits were expressed in the animal hemisphere and dorsal marginal zone. While expression was observed at the somite boundaries, in vascular structures, in the eye, and in the otic vesicle during the later stages, expression was mainly found in neural tissues, such as the neural tube and, especially, in the cephalic vesicles, neural crest region, and neural crest-derived structures. Together, these results support the pleiotropism and complexity of G protein subfamily functions in different cellular events. The present study constitutes the most comprehensive description to date of the spatiotemporal expression patterns of Gα subunits during vertebrate development.
Collapse
Affiliation(s)
- Jaime Fuentealba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Gabriela Toro-Tapia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Marion Rodriguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Cecilia Arriagada
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Alejandro Maureira
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Andrea Beyer
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Soraya Villaseca
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Juan I Leal
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Maria V Hinrichs
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Juan Olate
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Marcela Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
48
|
Kitagaki J, Miyauchi S, Asano Y, Imai A, Kawai S, Michikami I, Yamashita M, Yamada S, Kitamura M, Murakami S. A Putative Association of a Single Nucleotide Polymorphism in GPR126 with Aggressive Periodontitis in a Japanese Population. PLoS One 2016; 11:e0160765. [PMID: 27509131 PMCID: PMC4979892 DOI: 10.1371/journal.pone.0160765] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/25/2016] [Indexed: 12/23/2022] Open
Abstract
Periodontitis is an inflammatory disease causing loss of tooth-supporting periodontal tissue. Disease susceptibility to the rapidly progressive form of periodontitis, aggressive periodontitis (AgP), appears to be influenced by genetic risk factors. To identify these in a Japanese population, we performed whole exome sequencing of 41 unrelated generalized or localized AgP patients. We found that AgP is putatively associated with single nucleotide polymorphism (SNP) rs536714306 in the G-protein coupled receptor 126 gene, GPR126 [c.3086 G>A (p.Arg1029Gln)]. Since GPR126 activates the cAMP/PKA signaling pathway, we performed cAMP ELISA analysis of cAMP concentrations, and found that rs536714306 impaired the signal transactivation of GPR126. Moreover, transfection of human periodontal ligament (HPDL) cells with wild-type or mutant GPR126 containing rs536714306 showed that wild-type GPR126 significantly increased the mRNA expression of bone sialoprotein, osteopontin, and Runx2 genes, while mutant GPR126 had no effect on the expression of these calcification-related genes. The increase in expression of these genes was through the GPR126-induced increase of bone morphogenic protein-2, inhibitor of DNA binding (ID) 2, and ID4 expression. These data indicate that GPR126 might be important in maintaining the homeostasis of periodontal ligament tissues through regulating the cytodifferentiation of HPDL cells. The GPR126 SNP rs536714306 negatively influences this homeostasis, leading to the development of AgP, suggesting that it is a candidate genetic risk factor for AgP in the Japanese population.
Collapse
Affiliation(s)
- Jirouta Kitagaki
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- * E-mail:
| | - Shizuka Miyauchi
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsuko Imai
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinji Kawai
- Challenge to Intractable Oral Diseases, Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Ikumi Michikami
- Challenge to Intractable Oral Diseases, Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Motozo Yamashita
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Satoru Yamada
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masahiro Kitamura
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
49
|
Baxendale S, Whitfield TT. Methods to study the development, anatomy, and function of the zebrafish inner ear across the life course. Methods Cell Biol 2016; 134:165-209. [PMID: 27312494 DOI: 10.1016/bs.mcb.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The inner ear is a remarkably intricate structure able to detect sound, motion, and gravity. During development of the zebrafish embryo, the ear undergoes dynamic morphogenesis from a simple epithelial vesicle into a complex labyrinth, consisting of three semicircular canals and three otolithic sensory organs, each with an array of differentiated cell types. This microcosm of biology has led to advances in understanding molecular and cellular changes in epithelial patterning and morphogenesis, through to mechanisms of mechanosensory transduction and the origins of reflexive behavior. In this chapter, we describe different methods to study the zebrafish ear, including high-speed imaging of otic cilia, confocal microscopy, and light-sheet fluorescent microscopy. Many dyes, antibodies, and transgenic lines for labeling the ear are available, and we provide a comprehensive review of these resources. The developing ear is amenable to genetic, chemical, and physical manipulations, including injection and transplantation. Chemical modulation of developmental signaling pathways has paved the way for zebrafish to be widely used in drug discovery. We describe two chemical screens with relevance to the ear: a fluorescent-based screen for compounds that protect against ototoxicity, and an in situ-based screen for modulators of a signaling pathway involved in semicircular canal development. We also describe methods for dissection and imaging of the adult otic epithelia. We review both manual and automated methods to test the function of the inner ear and lateral line, defects in which can lead to altered locomotor behavior. Finally, we review a collection of zebrafish models that are generating new insights into human deafness and vestibular disorders.
Collapse
Affiliation(s)
- S Baxendale
- University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
50
|
Monk KR, Hamann J, Langenhan T, Nijmeijer S, Schöneberg T, Liebscher I. Adhesion G Protein-Coupled Receptors: From In Vitro Pharmacology to In Vivo Mechanisms. Mol Pharmacol 2015; 88:617-23. [PMID: 25956432 PMCID: PMC4551055 DOI: 10.1124/mol.115.098749] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/08/2015] [Indexed: 12/19/2022] Open
Abstract
The adhesion family of G protein-coupled receptors (aGPCRs) comprises 33 members in humans. aGPCRs are characterized by their enormous size and complex modular structures. While the physiologic importance of many aGPCRs has been clearly demonstrated in recent years, the underlying molecular functions have only recently begun to be elucidated. In this minireview, we present an overview of our current knowledge on aGPCR activation and signal transduction with a focus on the latest findings regarding the interplay between ligand binding, mechanical force, and the tethered agonistic Stachel sequence, as well as implications on translational approaches that may derive from understanding aGPCR pharmacology.
Collapse
Affiliation(s)
- Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri (K.R.M.); Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.); Department of Medicinal Chemistry/Amsterdam Institute for Molecules, Medicines and Systems, VU University, Amsterdam, The Netherlands (S.N.); and Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany (T.S., I.L.)
| | - Jörg Hamann
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri (K.R.M.); Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.); Department of Medicinal Chemistry/Amsterdam Institute for Molecules, Medicines and Systems, VU University, Amsterdam, The Netherlands (S.N.); and Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany (T.S., I.L.)
| | - Tobias Langenhan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri (K.R.M.); Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.); Department of Medicinal Chemistry/Amsterdam Institute for Molecules, Medicines and Systems, VU University, Amsterdam, The Netherlands (S.N.); and Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany (T.S., I.L.)
| | - Saskia Nijmeijer
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri (K.R.M.); Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.); Department of Medicinal Chemistry/Amsterdam Institute for Molecules, Medicines and Systems, VU University, Amsterdam, The Netherlands (S.N.); and Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany (T.S., I.L.)
| | - Torsten Schöneberg
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri (K.R.M.); Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.); Department of Medicinal Chemistry/Amsterdam Institute for Molecules, Medicines and Systems, VU University, Amsterdam, The Netherlands (S.N.); and Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany (T.S., I.L.)
| | - Ines Liebscher
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri (K.R.M.); Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.); Department of Medicinal Chemistry/Amsterdam Institute for Molecules, Medicines and Systems, VU University, Amsterdam, The Netherlands (S.N.); and Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany (T.S., I.L.)
| |
Collapse
|