1
|
March A, Hebner TS, Choe R, Benoit DSW. Leveraging the predictive power of a 3D in vitro vascularization screening assay for hydrogel-based tissue-engineered periosteum allograft healing. BIOMATERIALS ADVANCES 2025; 169:214187. [PMID: 39827700 PMCID: PMC11815559 DOI: 10.1016/j.bioadv.2025.214187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
A common strategy for promoting bone allograft healing is the design of tissue-engineered periosteum (TEP) to orchestrate host-tissue infiltration. However, evaluating requires costly and time-consuming in vivo studies. Therefore, in vitro assays are necessary to expedite TEP designs. Since angiogenesis is a critical process orchestrated by the periosteum, this study investigates in vitro 3D cell spheroid vascularization as a predictive tool for TEP-mediated in vivo healing. Spheroids of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) are encapsulated in enzymatically-degradable poly (ethylene glycol)-based hydrogels and sprout formation, network formation, and angiogenic growth factor secretion are quantified. Hydrogels are also evaluated as TEP-modified allografts for in vivo bone healing with graft vascularization, callus formation, and biomechanical strength quantified as healing metrics. Evaluation of hydrogels highlights the importance of degradation, with 24-fold greater day 1 sprouts observed in degradable hydrogels in vitro and 4-fold greater graft-localized vascular volume at 6-weeks in vivo compared to non-degradable hydrogels. Correlations between in vitro and in vivo studies elucidate linear relationships when comparing in vitro sprout formation and angiocrine production with 3- and 6-week in vivo graft vascularization, 3-week cartilage callus, and 6-week bone callus, with a Pearson's R2 value equal to 0.97 for the linear correlation between in vitro sprout formation and 6-week in vivo vascular volume. Non-linear relationships are found between in vitro measures and bone torque strength at week 6. These correlations suggest that the in vitro sprouting assay has predictive power for in vivo vascularization and bone allograft healing.
Collapse
Affiliation(s)
- Alyson March
- Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA
| | - Tayler S Hebner
- Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon, 6231 University of Oregon, Eugene, OR 97403, USA; Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Regine Choe
- Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon, 6231 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
2
|
Olayinka O, Ryu H, Wang X, Malik AB, Jung HM. Compensatory lymphangiogenesis is required for edema resolution in zebrafish. Sci Rep 2025; 15:8177. [PMID: 40065081 PMCID: PMC11893789 DOI: 10.1038/s41598-025-92970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Edema, characterized by the accumulation of interstitial fluid, poses significant challenges in various pathological conditions. Lymphangiogenesis is critical in edema clearance, and delayed or inadequate lymphatic responses significantly hinder healing processes. However, real-time observation of dynamic changes in lymphangiogenesis during tissue repair in animal models has been challenging, leaving the mechanisms behind compensatory lymphatic activation for edema clearance largely unexplored. To address this gap, we subjected zebrafish larvae to osmotic stress using hypertonic (375 mOsm/L) and isotonic (37.5 mOsm/L) solutions to induce osmotic imbalance and subsequent edema formation. Intravital imaging of vascular transgenic larvae revealed significant lymphatic vessel remodeling during tissue edema. The observed increase in lymphatic endothelial progenitor cells, alongside the sustained expansion and remodeling of primary lymphatics, indicates active lymphangiogenesis during the recovery phase. We developed a novel method employing translating ribosome affinity purification to analyze the translatome of lymphatic and venous endothelial cells in vivo, which uncovered the upregulation of key pro-lymphangiogenic genes, particularly vegfr2 and vegfr3, during tissue recovery. Inhibition of compensatory lymphangiogenesis impaired edema fluid clearance and tissue recovery. Our findings establish a new model for in vivo live imaging of compensatory lymphangiogenesis and provide a novel approach in investigating lymphatic activation during edema resolution.
Collapse
Affiliation(s)
- Olamide Olayinka
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Hannah Ryu
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Hyun Min Jung
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA.
| |
Collapse
|
3
|
Monroy-Romero AX, Nieto-Rivera B, Xiao W, Hautefeuille M. Microvascular Engineering for the Development of a Nonembedded Liver Sinusoid with a Lumen: When Endothelial Cells Do Not Lose Their Edge. ACS Biomater Sci Eng 2024; 10:7054-7072. [PMID: 39390649 DOI: 10.1021/acsbiomaterials.4c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Microvascular engineering seeks to exploit known cell-cell and cell-matrix interactions in the context of vasculogenesis to restore homeostasis or disease development of reliable capillary models in vitro. However, current systems generally focus on recapitulating microvessels embedded in thick gels of extracellular matrix, overlooking the significance of discontinuous capillaries, which play a vital role in tissue-blood exchanges particularly in organs like the liver. In this work, we introduce a novel method to stimulate the spontaneous organization of endothelial cells into nonembedded microvessels. By creating an anisotropic micropattern at the edge of a development-like matrix dome using Marangoni flow, we achieved a long, nonrandom orientation of endothelial cells, laying a premise for stable lumenized microvessels. Our findings revealed a distinctive morphogenetic process leading to mature lumenized capillaries, demonstrated with both murine and human immortalized liver sinusoidal endothelial cell lines (LSECs). The progression of cell migration, proliferation, and polarization was clearly guided by the pattern, initiating the formation of a multicellular cord that caused a deformation spanning extensive regions and generated a wave-like folding of the gel, hinged at a laminin-depleted zone, enveloping the cord with gel proteins. This event marked the onset of lumenogenesis, regulated by the gradual apico-basal polarization of the wrapped cells, leading to the maturation of vessel tight junctions, matrix remodeling, and ultimately the formation of a lumen─recapitulating the development of vessels in vivo. Furthermore, we demonstrate that the process strongly relies on the initial gel edge topography, while the geometry of the vessels can be tuned from a curved to a straight structure. We believe that our facile engineering method, guiding an autonomous self-organization of vessels without the need for supporting cells or complex prefabricated scaffolds, holds promise for future integration into microphysiological systems featuring discontinuous, fenestrated capillaries.
Collapse
Affiliation(s)
- Ana Ximena Monroy-Romero
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, 03100 Mexico, México
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| | - Brenda Nieto-Rivera
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| | - Wenjin Xiao
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
4
|
Yrigoin K, Bernard KN, Castaño MA, Cleaver O, Sumanas S, Davis GE. Enhancing human capillary tube network assembly and maturation through upregulated expression of pericyte-derived TIMP-3. Front Cell Dev Biol 2024; 12:1465806. [PMID: 39544367 PMCID: PMC11560913 DOI: 10.3389/fcell.2024.1465806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
In this study, we identify and characterize new molecular determinants that optimize human capillary tube network assembly. Our lab has previously reported a novel, serum free-defined 3D co-culture model using human endothelial cells (ECs) and human pericytes whereby EC-lined tubes form and co-assemble with pericytes, but when these cultures are maintained at or beyond 5 days, tubes become progressively wider and unstable. To address this issue, we generated novel human pericytes that carry a tissue inhibitor of metalloproteinase (TIMP)-3 transgene which can be upregulated following doxycycline addition. EC-pericyte co-cultures established in the presence of doxycycline demonstrated marked enhancement of capillary network assembly including dramatic narrowing of capillary tube widths to an average of 8 µm (physiologic capillary tube width), increased tube lengths, increased tube branching, and robust stimulation of basement membrane matrix assembly, particularly with collagen type IV and fibronectin deposition compared to controls. These substantial changes depend not only on induction of pericyte TIMP-3, but also on recruitment of pericytes to EC tubes. Blockade of pericyte recruitment prevents these dramatic capillary network alterations suggesting that EC-pericyte interactions and induction of pericyte TIMP-3 are necessary together to coordinate and facilitate capillary assembly and maturation. Overall, this work is critical for our basic understanding of capillary formation, but also for the ability to reproducibly generate stabilized networks of capillary tubes.
Collapse
Affiliation(s)
- Ksenia Yrigoin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Kaitlyn N. Bernard
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Maria A. Castaño
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ondine Cleaver
- Department of Molecular Biology, UT Southwestern School of Medicine, Dallas, TX, United States
| | - Saulius Sumanas
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - George E. Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
5
|
Nwokoye PN, Abilez OJ. Bioengineering methods for vascularizing organoids. CELL REPORTS METHODS 2024; 4:100779. [PMID: 38759654 PMCID: PMC11228284 DOI: 10.1016/j.crmeth.2024.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
Organoids, self-organizing three-dimensional (3D) structures derived from stem cells, offer unique advantages for studying organ development, modeling diseases, and screening potential therapeutics. However, their translational potential and ability to mimic complex in vivo functions are often hindered by the lack of an integrated vascular network. To address this critical limitation, bioengineering strategies are rapidly advancing to enable efficient vascularization of organoids. These methods encompass co-culturing organoids with various vascular cell types, co-culturing lineage-specific organoids with vascular organoids, co-differentiating stem cells into organ-specific and vascular lineages, using organoid-on-a-chip technology to integrate perfusable vasculature within organoids, and using 3D bioprinting to also create perfusable organoids. This review explores the field of organoid vascularization, examining the biological principles that inform bioengineering approaches. Additionally, this review envisions how the converging disciplines of stem cell biology, biomaterials, and advanced fabrication technologies will propel the creation of increasingly sophisticated organoid models, ultimately accelerating biomedical discoveries and innovations.
Collapse
Affiliation(s)
- Peter N Nwokoye
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oscar J Abilez
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; Division of Pediatric CT Surgery, Stanford University, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Maternal and Child Health Research Institute, Stanford University, Stanford, CA 94305, USA; Bio-X Program, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Chen DX, Lu CH, Na N, Yin RX, Huang F. Endothelial progenitor cell-derived extracellular vesicles: the world of potential prospects for the treatment of cardiovascular diseases. Cell Biosci 2024; 14:72. [PMID: 38840175 DOI: 10.1186/s13578-024-01255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) have emerged as a predominant threat to human health, surpassing the incidence and mortality rates of neoplastic diseases. Extracellular vesicles (EVs) serve as vital mediators in intercellular communication and material exchange. Endothelial progenitor cells (EPCs), recognized as precursors of vascular endothelial cells (ECs), have garnered considerable attention in recent years due to the potential therapeutic value of their derived extracellular vesicles (EPC-EVs) in the context of CVDs. This comprehensive review systematically explores the origins, characteristics, and functions of EPCs, alongside the classification, properties, biogenesis, and extraction techniques of EVs, with particular emphasis on their protective roles in CVDs. Additionally, we delve into the essential bioactive components of EPC-EVs, including microRNAs, long non-coding RNAs, and proteins, analyzing their beneficial effects in promoting angiogenesis, anti-inflammatory and anti-oxidant activities, anti-fibrosis, anti-apoptosis, and myocardial regeneration. Furthermore, this review comprehensively investigates the therapeutic potential of EPC-EVs across various CVDs, encompassing acute myocardial infarction, myocardial ischemia-reperfusion injury, atherosclerosis, non-ischemic cardiomyopathies, and diabetic cardiovascular disease. Lastly, we summarize the potential challenges associated with the clinical application of EPC-EVs and outline future directions, aiming to offer a valuable resource for both theoretical insights and practical applications of EPC-EVs in managing CVDs.
Collapse
Affiliation(s)
- De-Xin Chen
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Chuang-Hong Lu
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Na Na
- Department of Neuroscience, Scripps Research Institute, No.10550 North Torrey Pines Road, La Jolla, San Diego, CA, 92037, USA
| | - Rui-Xing Yin
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Feng Huang
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
7
|
Schallmoser A, Einenkel R, Färber C, Hüren V, Emrich N, John J, Sänger N. Comparison of angiogenic potential in vitrified vs. slow frozen human ovarian tissue. Sci Rep 2023; 13:12885. [PMID: 37558708 PMCID: PMC10412559 DOI: 10.1038/s41598-023-39920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Vitrification of ovarian tissue is a promising alternative approach to the traditional slow freezing method. Few empirical investigations have been conducted to determine the angiogenic profiles of these two freezing methods. In this study we aimed to answer the question whether one of the cryopreservation methods should be preferred based on the secretion of angiogenic factors. Tissue culture with reduced oxygen (5%) was conducted for 48 h with samples of fresh, slow frozen/thawed and vitrified/rapid warmed ovarian cortex tissue from 20 patients. From each patient, tissue was used in all three treatment groups. Tissue culture supernatants were determined regarding cytokine expression profiles of angiogenin, angiopoietin-2, epidermal growth factor, basic fibroblast growth factor, heparin binding epidermal growth factor, hepatocyte growth factor, Leptin, Platelet-derived growth factor B, placental growth factor and vascular endothelial growth factor A via fluoroimmunoassay. Apoptotic changes were assessed by TUNEL staining of cryosections and supplemented by hematoxylin and eosin and proliferating cell nuclear antigen staining. Comparing the angiogenic expression profiles of vitrified/rapid warmed tissue with slow frozen/thawed tissue samples, no significant differences were observed. Detection of apoptotic DNA fragmentation via TUNEL indicated minor apoptotic profiles that were not significantly different comparing both cryopreservation methods. Vitrification of ovarian cortical tissue does not appear to impact negatively on the expression profile of angiogenic factors and may be regarded as an effective alternative approach to the traditional slow freezing method.
Collapse
Affiliation(s)
- Andreas Schallmoser
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| | - Rebekka Einenkel
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Cara Färber
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Vanessa Hüren
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Norah Emrich
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Julia John
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Nicole Sänger
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
8
|
Ajit A, Kumar TRS, Harikrishnan VS, Anil A, Sabareeswaran A, Krishnan LK. Enriched adipose stem cell secretome as an effective therapeutic strategy for in vivo wound repair and angiogenesis. 3 Biotech 2023; 13:83. [PMID: 36798854 PMCID: PMC9925643 DOI: 10.1007/s13205-023-03496-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
The therapeutic potential of adipose tissue-derived mesenchymal stem cells (ADMSCs) is well studied for use in non-healing wounds. However, concerns on the transplantable cell number requirement, cell expansion, cell viability, retained cell multipotency and the limited cell implantation time for efficient impact hinders cell therapy. Recent literature is much inclined to the superiority of the ADMSCs' secretome, pre-dominating its paracrine-mediated therapeutic impact. In this context, the possibility of attaining accelerated wound angiogenesis through non-viral mediated enrichment of the ADMSCs secretome with pro-angiogenic growth factors (AGF) seems promising. Accordingly, this study aimed to explore the effect of AGF-enriched ADMSCs secretome for accelerating wound angiogenesis and repair in acute large area full thickness excision rabbit wound model, as adopted from Salgado et al. (Chir Buchar Rom 108:706-710, 1990). Using sub-dermal single-dose injections along the margin of the dorsal wound, native ADMSCs secretome, AGF-enriched ADMSC secretome, allogenic rabbit ADMSCs and a combination of AGF-enriched ADMSC secretome with allogenic rabbit ADMSCs were transplanted independently. Twenty-eight days (28 days) post-transplantation, histopathological analysis was performed to assess the effect. Hematoxylin and eosin (H&E) staining showed enhanced epithelization, notable granulation tissue and collagen fiber deposition in AGF-enriched secretome transplanted groups. This was confirmed by elevated CD31 detection, faster wound closure time and collagen organization. The use of single-dose AGF-enriched ADMSCs' secretome for therapeutic angiogenesis and wound repair seems to be a promising cell-free therapeutic option. Further investigations using multiple doses on larger animal groups remains to be explored in order to ascertain the comparative potential of AGF-enriched ADMSCs' secretome.
Collapse
Affiliation(s)
- Amita Ajit
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695012 India
| | - T. Retnabai Santhosh Kumar
- Integrated Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014 India
| | - V. S. Harikrishnan
- Division of Laboratory Animal Science, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 India
| | - Arya Anil
- Division of Laboratory Animal Science, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 India
| | - A. Sabareeswaran
- Histopathology Laboratory, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 India
| | - Lissy Kalliyana Krishnan
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695012 India
| |
Collapse
|
9
|
Wang X, Ma Y, Lu F, Chang Q. The diversified hydrogels for biomedical applications and their imperative roles in tissue regeneration. Biomater Sci 2023; 11:2639-2660. [PMID: 36790251 DOI: 10.1039/d2bm01486f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Repair and regeneration of tissues after injury are complex pathophysiological processes. Microbial infection, malnutrition, and an ischemic and hypoxic microenvironment in the injured area can impede the typical healing cascade. Distinguished by biomimicry of the extracellular matrix, high aqueous content, and diverse functions, hydrogels have revolutionized clinical practices in tissue regeneration owing to their outstanding hydrophilicity, biocompatibility, and biodegradability. Various hydrogels such as smart hydrogels, nanocomposite hydrogels, and acellular matrix hydrogels are widely used for applications ranging from bench-scale to an industrial scale. In this review, some emerging hydrogels in the biomedical field are briefly discussed. The protective roles of hydrogels in wound dressings and their diverse biological effects on multiple tissues such as bone, cartilage, nerve, muscle, and adipose tissue are also discussed. The vehicle functions of hydrogels for chemicals and cell payloads are detailed. Additionally, this review emphasizes the particular characteristics of hydrogel products that promote tissue repair and reconstruction such as anti-infection, inflammation regulation, and angiogenesis.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Yuan Ma
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| |
Collapse
|
10
|
Han MJ, An JA, Kim JM, Heo DN, Kwon IK, Park KM. Calcium peroxide-mediated bioactive hydrogels for enhanced angiogenic paracrine effect and osteoblast proliferation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Heidari Moghadam A, Bayati V, Orazizadeh M, Rashno M. Redesigning of 3-Dimensional Vascular-Muscle Structure Using ADSCs/HUVECs Co-Culture and VEGF on Engineered Skeletal Muscle ECM. CELL JOURNAL 2022; 24:380-390. [PMID: 36043406 PMCID: PMC9428474 DOI: 10.22074/cellj.2022.8098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The main objective of this study is to determine the myogenic effects of skeletal muscle extracellular matrix, vascular endothelial growth factor and human umbilical vein endothelial cells on adipose-derived stem cells to achieve a 3-dimensional engineered vascular-muscle structure. MATERIALS AND METHODS The present experimental research was designed based on two main groups, i.e. monoculture of adipose tissue-derived stem cells (ADSCs) and co-culture of ADSCs and human umbilical vein endothelial cells (HUVECs) in a ratio of 1:1. Skeletal muscle tissue was isolated, decellularized and its surface was electrospun using polycaprolactone/gelatin parallel nanofibers and then matrix topography was evaluated through H and E, trichrome staining and SEM. The expression of MyHC2 gene and tropomyosin protein were examined through real-time reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence, respectively. Finally, the morphology of mesenchymal and endothelial cells and their relationship with each other and with the engineered scaffold were examined by scanning electron microscopy (SEM). RESULTS According to H and E and Masson's Trichrome staining, muscle tissue was completely decellularized. SEM showed parallel Polycaprolactone (PCL)/gelatin nanofibers with an average diameter of about 300 nm. The immunofluorescence proved that tropomyosin was positive in the ADSCs monoculture and the ADSCs/HUVECs coculture in horse serum (HS) and HS/VEGF groups. There was a significant difference in the expression of the MyHC2 gene between the ADSCs and ADSCs/HUVECs culture groups (P<0.05) and between the 2D and 3D models in HS/ VEGF differentiation groups (P<001). Moreover, a significant increase existed between the HS/VEGF group and other groups in terms of endothelial cells growth and proliferation as well as their relationship with differentiated myoblasts (P<0.05). CONCLUSION Co-culture of ADSCs/HUVECs on the engineered cell-free muscle scaffold and the dual effects of VEGF can lead to formation of a favorable engineered vascular-muscular tissue. These engineered structures can be used as an acceptable tool for tissue implantation in muscle injuries and regeneration, especially in challenging injuries such as volumetric muscle loss, which also require vascular repair.
Collapse
Affiliation(s)
- Abbas Heidari Moghadam
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,P.O.Box: 45Cellular and Molecular Research CenterMedical Basic Sciences Research InstituteAhvaz Jundishapur
University of Medical SciencesAhvazIran
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Kolarzyk AM, Wong G, Lee E. Lymphatic Tissue and Organ Engineering for In Vitro Modeling and In Vivo Regeneration. Cold Spring Harb Perspect Med 2022; 12:a041169. [PMID: 35288402 PMCID: PMC9435571 DOI: 10.1101/cshperspect.a041169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The lymphatic system has an important role in maintaining fluid homeostasis and transporting immune cells and biomolecules, such as dietary fat, metabolic products, and antigens in different organs and tissues. Therefore, impaired lymphatic vessel function and/or lymphatic vessel deficiency can lead to numerous human diseases. The discovery of lymphatic endothelial markers and prolymphangiogenic growth factors, along with a growing number of in vitro and in vivo models and technologies has expedited research in lymphatic tissue and organ engineering, advancing therapeutic strategies. In this article, we describe lymphatic tissue and organ engineering in two- and three-dimensional culture systems and recently developed microfluidics and organ-on-a-chip systems in vitro. Next, we discuss advances in lymphatic tissue and organ engineering in vivo, focusing on biomaterial and scaffold engineering and their applications for lymphatic vessels and lymphoid organ regeneration. Last, we provide expert perspective and prospects in the field of lymphatic tissue engineering.
Collapse
Affiliation(s)
- Anna M Kolarzyk
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Ithaca, New York 14853, USA
- Biomedical and Biological Sciences PhD Program, Ithaca, New York 14853, USA
| | - Gigi Wong
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Ithaca, New York 14853, USA
- Biological Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Ithaca, New York 14853, USA
- Biomedical and Biological Sciences PhD Program, Ithaca, New York 14853, USA
| |
Collapse
|
13
|
Sha W, Bertram T, Jain D, Brouwer C, Basu J. Identification of functional pathways for regenerative bioactivity of selected renal cells. Stem Cell Res Ther 2022; 13:72. [PMID: 35177125 PMCID: PMC8851708 DOI: 10.1186/s13287-022-02713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background Selected renal cells (SRC) are in Phase II clinical trials as a kidney-sourced, autologous, tubular epithelial cell-enriched cell-based therapy for chronic kidney disease (CKD). In preclinical studies with rodent models of CKD, SRC have been shown to positively modulate key renal biomarkers associated with development of the chronic disease condition. Methods A comparative bioinformatic analysis of transcripts specifically enriched or depleted in SRC component sub-populations relative to the initial, biopsy-derived cell source was conducted. Results Outcomes associated with therapeutically relevant bioactivity from a systematic, genome-wide transcriptomic profiling of rodent SRC are reported. Key transcriptomic networks and concomitant signaling pathways that may underlie SRC mechanism of action as manifested by reparative, restorative, and regenerative bioactivity in rodent models of chronic kidney disease are identified. These include genes and gene networks associated with cell cycle control, transcriptional control, inflammation, ECM–receptor interaction, immune response, actin polymerization, regeneration, cell adhesion, and morphogenesis. Conclusions These data indicate that gene networks associated with development of the kidney are also leveraged for SRC regenerative bioactivity, providing evidence of potential mechanisms of action. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02713-6.
Collapse
Affiliation(s)
- Wei Sha
- Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 150 Research Campus Drive, Ste. 3333, Kannapolis, NC, 28081, USA
| | | | - Deepak Jain
- Prokidney, LLC, Winston-Salem, NC, 27103, USA
| | - Cory Brouwer
- Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 150 Research Campus Drive, Ste. 3333, Kannapolis, NC, 28081, USA
| | | |
Collapse
|
14
|
De Moor L, Smet J, Plovyt M, Bekaert B, Vercruysse C, Asadian M, De Geyter N, Van Vlierberghe S, Dubruel P, Declercq H. Engineering microvasculature by 3D bioprinting of prevascularized spheroids in photo-crosslinkable gelatin. Biofabrication 2021; 13. [PMID: 34496350 DOI: 10.1088/1758-5090/ac24de] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/08/2021] [Indexed: 01/01/2023]
Abstract
To engineer tissues with clinically relevant dimensions by three-dimensional bioprinting, an extended vascular network with diameters ranging from the macro- to micro-scale needs to be integrated. Extrusion-based bioprinting is the most commonly applied bioprinting technique but due to the limited resolution of conventional bioprinters, the establishment of a microvascular network for the transfer of oxygen, nutrients and metabolic waste products remains challenging. To answer this need, this study assessed the potential and processability of spheroids, containing a capillary-like network, to be used as micron-sized prevascularized units for incorporation throughout the bioprinted construct. Prevascularized spheroids were generated by combining endothelial cells with fibroblasts and adipose tissue-derived mesenchymal stem cells as supporting cells. To serve as a viscous medium for the bioink-based deposition by extrusion printing, spheroids were combined with a photo-crosslinkable methacrylamide-modified gelatin (gelMA) and Irgacure 2959. The influence of gelMA encapsulation, the printing process and photo-crosslinking conditions on spheroid viability, proliferation and vascularization were analyzed by live/dead staining, immunohistochemistry, gene expression analysis and sprouting analysis. Stable spheroid-laden constructs, allowing spheroid outgrowth, were achieved by applying 10 min UV-A photo-curing (365 nm, 4 mW cm-2), while the construct was incubated in an additional Irgacure 2959 immersion solution. Following implantationin ovoonto a chick chorioallantoic membrane, the prevascular engineered constructs showed anastomosis with the host vasculature. This study demonstrated (a) the potential of triculture prevascularized spheroids for application as multicellular building blocks, (b) the processability of the spheroid-laden gelMA bioink by extrusion bioprinting and (c) the importance of photo-crosslinking parameters post printing, as prolonged photo-curing intervals showed to be detrimental for the angiogenic potential and complete vascularization of the construct post printing.
Collapse
Affiliation(s)
- Lise De Moor
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jasper Smet
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Tissue Engineering Lab, Department of Development and Regeneration, Faculty of Medicine, KU Leuven, Kortrijk, Belgium
| | - Magalie Plovyt
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Bieke Bekaert
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Chris Vercruysse
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Mahtab Asadian
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Research Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Research Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Heidi Declercq
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Tissue Engineering Lab, Department of Development and Regeneration, Faculty of Medicine, KU Leuven, Kortrijk, Belgium
| |
Collapse
|
15
|
Alderfer L, Russo E, Archilla A, Coe B, Hanjaya-Putra D. Matrix stiffness primes lymphatic tube formation directed by vascular endothelial growth factor-C. FASEB J 2021; 35:e21498. [PMID: 33774872 DOI: 10.1096/fj.202002426rr] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
Dysfunction of the lymphatic system is associated with a wide range of disease phenotypes. The restoration of dysfunctional lymphatic vessels has been hypothesized as an innovative method to rescue healthy phenotypes in diseased states including neurological conditions, metabolic syndromes, and cardiovascular disease. Compared to the vascular system, little is known about the molecular regulation that controls lymphatic tube morphogenesis. Using synthetic hyaluronic acid (HA) hydrogels as a chemically and mechanically tunable system to preserve lymphatic endothelial cell (LECs) phenotypes, we demonstrate that low matrix elasticity primes lymphatic cord-like structure (CLS) formation directed by a high concentration of vascular endothelial growth factor-C (VEGF-C). Decreasing the substrate stiffness results in the upregulation of key lymphatic markers, including PROX-1, lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and VEGFR-3. Consequently, higher levels of VEGFR-3 enable stimulation of LECs with VEGF-C which is required to both activate matrix metalloproteinases (MMPs) and facilitate LEC migration. Both of these steps are critical in establishing CLS formation in vitro. With decreases in substrate elasticity, we observe increased MMP expression and increased cellular elongation, as well as formation of intracellular vacuoles, which can further merge into coalescent vacuoles. RNAi studies demonstrate that MMP-14 is required to enable CLS formation and that LECs sense matrix stiffness through YAP/TAZ mechanosensors leading to the activation of their downstream target genes. Collectively, we show that by tuning both the matrix stiffness and VEGF-C concentration, the signaling pathways of CLS formation can be regulated in a synthetic matrix, resulting in lymphatic networks which will be useful for the study of lymphatic biology and future approaches in tissue regeneration.
Collapse
Affiliation(s)
- Laura Alderfer
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| | - Elizabeth Russo
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| | - Adriana Archilla
- Notre Dame Nanoscience and Technology (NDnano), University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| | - Brian Coe
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| | - Donny Hanjaya-Putra
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Notre Dame, IN, USA.,Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Notre Dame, IN, USA.,Notre Dame Nanoscience and Technology (NDnano), University of Notre Dame, Notre Dame, Notre Dame, IN, USA.,Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
16
|
Iglesias-Echevarria M, Johnson R, Rafuse M, Ding Y, Tan W. Vascular Grafts with Tailored Stiffness and a Ligand Environment via Multiarmed Polymer Sheath for Expeditious Regeneration. ACS APPLIED BIO MATERIALS 2021; 4:545-558. [PMID: 34458689 DOI: 10.1021/acsabm.0c01114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bypass graft is the mainstream of surgical intervention to treat vascular diseases. Ideal bypass materials, yet to be developed, require mechanical properties, availability, clinically feasible manufacturing logistics, and bioactivities with precise physicochemical cues defined to guide cell activities for arterial regeneration. Such needs instigated our fabrication of vascular grafts, which consist of coaxial, nanostructured fibers exhibiting a polycaprolactone (PCL) core and a photoclickable, 4-arm thiolated polyethylene glycol-norbornene (PEG-NB) sheath. The graft strength and bioactivity were modulated by the PCL concentration and the peptides (RGD, transforming growth factor β-1 or TGF-β1) conjugated to thiol-ene of PEG-NB, respectively. Structural, physical, and mechanical characterizations demonstrated that the fibrous grafts mimicked the key features of the native extracellular matrix, including a crosslinked fiber network for structural stability, viscoelasticity emulating arteries, hydration property, and high porosity for cell infiltration. Meanwhile, these grafts displayed strength and toughness exceeding or meeting surgical criteria. Furthermore, the grafts with higher PCL concentration (3 vs 1.8%) showed thicker fibers, lower porosity and pore size, and increased elastic and storage moduli. Graft bioactivity was determined by the mesenchymal stem cell (MSC) behaviors on the grafts and arterial regeneration in vivo using interposition grafting. Results showed that the cell adhesion and proliferation increased with the RGD density (25 vs 5 mM). After 1 week implantation, all peptide-functionalized PCL/PEG-NB grafts with or without MSC preseeding, as opposed to PCL grafts, showed expeditious endothelial lining, abundant vascular cell infiltration, and matrix production. Compared to RGD grafts, RGD/TGF-β1 grafts enhanced MSC differentiation into smooth muscle cells in vitro and developed thicker smooth muscle cell layers in vivo. Overall, the versatile porous vascular grafts offer superior properties and tunability for future translation.
Collapse
Affiliation(s)
- Monica Iglesias-Echevarria
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Richard Johnson
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Michael Rafuse
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Yonghui Ding
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
17
|
Li Y, Hoffman MD, Benoit DSW. Matrix metalloproteinase (MMP)-degradable tissue engineered periosteum coordinates allograft healing via early stage recruitment and support of host neurovasculature. Biomaterials 2021; 268:120535. [PMID: 33271450 PMCID: PMC8110201 DOI: 10.1016/j.biomaterials.2020.120535] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/17/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Despite serving as the clinical "gold standard" treatment for critical size bone defects, decellularized allografts suffer from long-term failure rates of ~60% due to the absence of the periosteum. Stem and osteoprogenitor cells within the periosteum orchestrate autograft healing through host cell recruitment, which initiates the regenerative process. To emulate periosteum-mediated healing, tissue engineering approaches have been utilized with mixed outcomes. While vascularization has been widely established as critical for bone regeneration, innervation was recently identified to be spatiotemporally regulated together with vascularization and similarly indispensable to bone healing. Notwithstanding, there are no known approaches that have focused on periosteal matrix cues to coordinate host vessel and/or axon recruitment. Here, we investigated the influence of hydrogel degradation mechanism, i.e. hydrolytic or enzymatic (cell-dictated), on tissue engineered periosteum (TEP)-modified allograft healing, especially host vessel/nerve recruitment and integration. Matrix metalloproteinase (MMP)-degradable hydrogels supported endothelial cell migration from encapsulated spheroids whereas no migration was observed in hydrolytically degradable hydrogels in vitro, which correlated with increased neurovascularization in vivo. Specifically, ~2.45 and 1.84-fold, and ~3.48 and 2.58-fold greater vessel and nerve densities with high levels of vessel and nerve co-localization was observed using MMP degradable TEP (MMP-TEP) -modified allografts versus unmodified and hydrolytically degradable TEP (Hydro-TEP)-modified allografts, respectively, at 3 weeks post-surgery. MMP-TEP-modified allografts exhibited greater longitudinal graft-localized vascularization and endochondral ossification, along with 4-fold and 2-fold greater maximum torques versus unmodified and Hydro-TEP-modified allografts after 9 weeks, respectively, which was comparable to that of autografts. In summary, our results demonstrated that the MMP-TEP coordinated allograft healing via early stage recruitment and support of host neurovasculature.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Michael D Hoffman
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA; Materials Science Program, University of Rochester, Rochester, NY, USA; Department of Chemical Engineering, University of Rochester, Rochester, NY, USA; Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
18
|
Bowers SLK, Kemp SS, Aguera KN, Koller GM, Forgy JC, Davis GE. Defining an Upstream VEGF (Vascular Endothelial Growth Factor) Priming Signature for Downstream Factor-Induced Endothelial Cell-Pericyte Tube Network Coassembly. Arterioscler Thromb Vasc Biol 2020; 40:2891-2909. [PMID: 33086871 PMCID: PMC7939123 DOI: 10.1161/atvbaha.120.314517] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE In this work, we have sought to define growth factor requirements and the signaling basis for different stages of human vascular morphogenesis and maturation. Approach and Results: Using a serum-free model of endothelial cell (EC) tube morphogenesis in 3-dimensional collagen matrices that depends on a 5 growth factor combination, SCF (stem cell factor), IL (interleukin)-3, SDF (stromal-derived factor)-1α, FGF (fibroblast growth factor)-2, and insulin (factors), we demonstrate that VEGF (vascular endothelial growth factor) pretreatment of ECs for 8 hours (ie, VEGF priming) leads to marked increases in the EC response to the factors which includes; EC tip cells, EC tubulogenesis, pericyte recruitment and proliferation, and basement membrane deposition. VEGF priming requires VEGFR2, and the effect of VEGFR2 is selective to the priming response and does not affect factor-dependent tubulogenesis in the absence of priming. Key molecule and signaling requirements for VEGF priming include RhoA, Rock1 (Rho-kinase), PKCα (protein kinase C α), and PKD2 (protein kinase D2). siRNA suppression or pharmacological blockade of these molecules and signaling pathways interfere with the ability of VEGF to act as an upstream primer of downstream factor-dependent EC tube formation as well as pericyte recruitment. VEGF priming was also associated with the formation of actin stress fibers, activation of focal adhesion components, upregulation of the EC factor receptors, c-Kit, IL-3Rα, and CXCR4 (C-X-C chemokine receptor type 4), and upregulation of EC-derived PDGF (platelet-derived growth factor)-BB, PDGF-DD, and HB-EGF (heparin-binding epidermal growth factor) which collectively affect pericyte recruitment and proliferation. CONCLUSIONS Overall, this study defines a signaling signature for a separable upstream VEGF priming step, which can activate ECs to respond to downstream factors that are necessary to form branching tube networks with associated mural cells.
Collapse
Affiliation(s)
- Stephanie L K Bowers
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Scott S Kemp
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Kalia N Aguera
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Gretchen M Koller
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Joshua C Forgy
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - George E Davis
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| |
Collapse
|
19
|
Kemp SS, Aguera KN, Cha B, Davis GE. Defining Endothelial Cell-Derived Factors That Promote Pericyte Recruitment and Capillary Network Assembly. Arterioscler Thromb Vasc Biol 2020; 40:2632-2648. [PMID: 32814441 PMCID: PMC7939110 DOI: 10.1161/atvbaha.120.314948] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We sought to identify and investigate the functional role of the major endothelial cell (EC)-derived factors that control pericyte recruitment to EC tubes and pericyte-induced tube maturation during capillary network formation. Approach and Results: We identify PDGF (platelet-derived growth factor)-BB, PDGF-DD, ET (endothelin)-1, TGF (transforming growth factor)-β, and HB-EGF (heparin-binding epidermal growth factor), as the key individual and combined regulators of pericyte assembly around EC tubes. Using novel pericyte only assays, we demonstrate that PDGF-BB, PDGF-DD, and ET-1 are the primary direct drivers of pericyte invasion. Their addition to pericytes induces invasion as if ECs were present. In contrast, TGF-β and HB-EGF have minimal ability to directly stimulate pericyte invasion. In contrast, TGF-β1 can act as an upstream pericyte primer to stimulate invasion in response to PDGFs and ET-1. HB-EGF stimulates pericyte proliferation along with PDGFs and ET-1. Using EC-pericyte cocultures, individual, or combined blockade of these EC-derived factors, or their pericyte receptors, using neutralizing antibodies or chemical inhibitors, respectively, interferes with pericyte recruitment and proliferation. As individual factors, PDGF-BB and ET-1 have the strongest impact on these events. However, when the blocking reagents are combined to interfere with each of the above factors or their receptors, more dramatic and profound blockade of pericyte recruitment, proliferation, and pericyte-induced basement membrane deposition occurs. Under these conditions, ECs form tubes that become much wider and less elongated as if pericytes were absent. CONCLUSIONS Overall, these new studies define and characterize a functional role for key EC-derived factors controlling pericyte recruitment, proliferation, and pericyte-induced basement membrane deposition during capillary network assembly.
Collapse
Affiliation(s)
- Scott S Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Kalia N Aguera
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Byeong Cha
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| |
Collapse
|
20
|
Abstract
Microvasculature functions at the tissue and cell level, regulating local mass exchange of oxygen and nutrient-rich blood. While there has been considerable success in the biofabrication of large- and small-vessel replacements, functional microvasculature has been particularly challenging to engineer due to its size and complexity. Recently, three-dimensional bioprinting has expanded the possibilities of fabricating sophisticated microvascular systems by enabling precise spatiotemporal placement of cells and biomaterials based on computer-aided design. However, there are still significant challenges facing the development of printable biomaterials that promote robust formation and controlled 3D organization of microvascular networks. This review provides a thorough examination and critical evaluation of contemporary biomaterials and their specific roles in bioprinting microvasculature. We first provide an overview of bioprinting methods and techniques that enable the fabrication of microvessels. We then offer an in-depth critical analysis on the use of hydrogel bioinks for printing microvascularized constructs within the framework of current bioprinting modalities. We end with a review of recent applications of bioprinted microvasculature for disease modeling, drug testing, and tissue engineering, and conclude with an outlook on the challenges facing the evolution of biomaterials design for bioprinting microvasculature with physiological complexity.
Collapse
Affiliation(s)
- Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sophia E. Silver
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael Yost
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
21
|
Heidari-Moghadam A, Bayati V, Orazizadeh M, Rashno M. Role of Vascular Endothelial Growth Factor and Human Umbilical Vein Endothelial Cells in Designing An In Vitro Vascular-Muscle Cellular Model Using Adipose-Derived Stem Cells. CELL JOURNAL 2020; 22:19-28. [PMID: 32779430 PMCID: PMC7481900 DOI: 10.22074/cellj.2020.7034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/26/2019] [Indexed: 11/07/2022]
Abstract
Objective Researchers have been interested in the creation of a favorable cellular model for use in vascular-muscle
tissue engineering. The main objective of this study is to determine the myogenic effects of vascular endothelial growth
factor (VEGF) and human umbilical vein endothelial cells (HUVECs) on adipose-derived stem cells (ADSCs) to achieve
an in vitro vascular-muscle cellular model.
Materials and Methods The present experimental research was conducted on two primary groups, namely ADSCs
monoculture and ADSCs/HUVECs co-culture that were divided into control, horse serum (HS), and HS/VEGF
differentiation subgroups. HUVECs were co-cultured by ADSC in a ratio of 1:1. The myogenic differentiation was
evaluated using the reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence in different
experimental groups. The interaction between ADSCs and HUVECs, as well as the role of ADSCs conditional medium,
was investigated for endothelial tube formation assay.
Results Immunofluorescence staining indicated that Tropomyosin was positive in ADSCs and ADSCs and HUVECs
co-culture groups on HS and HS/VEGF culture medium. Furthermore, the MyHC2 gene expression significantly
increased in HS and HS/VEGF groups in comparison with the control group (P<0.001). More importantly, there was a
significant difference in the mRNA expression of this gene between ADSCs and ADSCs and HUVECs co-culture groups
on HS/VEGF culture medium (P<0.05). Current data revealed that the co-culture of ADSCs and HUVECs could develop
endothelial network formation in the VEGF-loaded group. Also, the ADSCs-conditioned medium improved the viability
and formation of the endothelial tube in the HS and VEGF groups, respectively.
Conclusion It was concluded that ADSCs/HUVECs co-culture and dual effects of VEGF can lead to the formation
of differentiated myoblasts in proximity to endothelial network formations. These in vitro cellular models could be
potentially used in vascular-muscle tissue engineering implanted into organ defects where muscle tissue and vascular
regeneration were required.
Collapse
Affiliation(s)
- Abbas Heidari-Moghadam
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Electronic Address: .,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Vascular Remodeling in Moyamoya Angiopathy: From Peripheral Blood Mononuclear Cells to Endothelial Cells. Int J Mol Sci 2020; 21:ijms21165763. [PMID: 32796702 PMCID: PMC7460840 DOI: 10.3390/ijms21165763] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
The pathophysiological mechanisms of Moyamoya angiopathy (MA), which is a rare cerebrovascular condition characterized by recurrent ischemic/hemorrhagic strokes, are still largely unknown. An imbalance of vasculogenic/angiogenic mechanisms has been proposed as one possible disease aspect. Circulating endothelial progenitor cells (cEPCs) have been hypothesized to contribute to vascular remodeling of MA, but it remains unclear whether they might be considered a disease effect or have a role in disease pathogenesis. The aim of the present study was to provide a morphological, phenotypical, and functional characterization of the cEPCs from MA patients to uncover their role in the disease pathophysiology. cEPCs were identified from whole blood as CD45dimCD34+CD133+ mononuclear cells. Morphological, biochemical, and functional assays were performed to characterize cEPCs. A significant reduced level of cEPCs was found in blood samples collected from a homogeneous group of adult (mean age 46.86 ± 11.7; 86.36% females), Caucasian, non-operated MA patients with respect to healthy donors (HD; p = 0.032). Since no difference in cEPC characteristics and functionality was observed between MA patients and HD, a defective recruitment mechanism could be involved in the disease pathophysiology. Collectively, our results suggest that cEPC level more than endothelial progenitor cell (EPC) functionality seems to be a potential marker of MA. The validation of our results on a larger population and the correlation with clinical data as well as the use of more complex cellular model could help our understanding of EPC role in MA pathophysiology.
Collapse
|
23
|
Ding Y, Johnson R, Sharma S, Ding X, Bryant SJ, Tan W. Tethering transforming growth factor β1 to soft hydrogels guides vascular smooth muscle commitment from human mesenchymal stem cells. Acta Biomater 2020; 105:68-77. [PMID: 31982589 DOI: 10.1016/j.actbio.2020.01.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) hold great promise for vascular smooth muscle regeneration. However, most studies have mainly relied on extended supplementation of sophisticated biochemical regimen to drive MSC differentiation towards vascular smooth muscle cells (vSMCs). Herein we demonstrate a concomitant method that exploits the advantages of biomimetic matrix stiffness and tethered transforming growth factor β1 (TGF-β1) to guide vSMC commitment from human MSCs. Our designed poly(ethylene glycol) hydrogels, presenting a biomimetic stiffness and tethered TGF-β1, provide an instructive environment to potently upregulate smooth muscle marker expression in vitro and in vivo. Importantly, it significantly enhances the functional contractility of vSMCs derived from MSCs within 3 days. Interestingly, compared to non-tethered one, tethered TGF-β1 enhanced the potency of vSMC commitment on hydrogels. We provide compelling evidence that combining stiffness and tethered TGF-β1 on poly(ethylene glycol) hydrogels can be a promising approach to drastically enhance maturation and function of vSMCs from stem cell differentiation in vitro and in vivo. STATEMENT OF SIGNIFICANCE: A fast, reliable and safe regeneration of vascular smooth muscle cells (vSMCs) from stem cell differentiation is promising for vascular tissue engineering and regenerative medicine applications, but remains challenging. Herein, a photo-click hydrogel platform is devised to recapitulate the stiffness of vascular tissue and appropriate presentation of transforming growth factor β1 (TGF-β1) to guide vSMC commitment from mesenchymal stem cells (MSCs). We demonstrate that such concomitant method drastically enhanced regeneration of mature, functional vSMCs from MSCs in vitro and in vivo within only a 3-days span. This work is not only of fundamental scientific importance, revealing how physiochemical factors and the manner of their presentation direct stem cell differentiation, but also attacks the long-standing difficulty in regenerating highly functional vSMCs within a short period.
Collapse
|
24
|
Ding Y, Zhao AS, Liu T, Wang YN, Gao Y, Li JA, Yang P. An Injectable Nanocomposite Hydrogel for Potential Application of Vascularization and Tissue Repair. Ann Biomed Eng 2020; 48:1511-1523. [PMID: 32034609 DOI: 10.1007/s10439-020-02471-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/29/2020] [Indexed: 12/19/2022]
Abstract
In this contribution, an injectable hydrogel was developed with chitosan, gelatin, β-glycerphosphate and Arg-Gly-Asp (RGD) peptide: this hydrogel is liquid in room temperature and rapidly gels at 37 °C; RGD peptide promises better growth microenvironment for various cells, especially endothelial cells (EC), smooth muscle cells (SMC) and mesenchymal stem cells (MSC). Both stromal cell-derived factor-1 (SDF-1) nanoparticle and vascular endothelial growth factor (VEGF) nanoparticles were loaded in the injectable hydrogel to simulate the natural nanoparticles in the extracellular matrix (ECM) to promote angiogenesis. In vitro EC/SMC and MSC/SMC co-culture experiment indicated that the nanocomposite hydrogel accelerated constructing embryonic form of blood vessels, and chick embryo chorioallantoic membrane model demonstrated its ability of improving cells migration and blood vessel regeneration. We injected this nanocomposite hydrogel into rat myocardial infarction (MI) model and the results indicated that the rats heart function recovered better compared control group. We hope this injectable nanocomposite hydrogel may possess wider application in tissue engineering.
Collapse
Affiliation(s)
- Yilei Ding
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - An-Sha Zhao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| | - Tianmei Liu
- The Department of Pharmacy, Chengdu Xinhua Hospital, Chengdu, 610031, People's Republic of China
| | - Ya-Nan Wang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Yuan Gao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Jing-An Li
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450000, People's Republic of China.
| | - Ping Yang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| |
Collapse
|
25
|
Cooper LF, Ravindran S, Huang CC, Kang M. A Role for Exosomes in Craniofacial Tissue Engineering and Regeneration. Front Physiol 2020; 10:1569. [PMID: 32009978 PMCID: PMC6971208 DOI: 10.3389/fphys.2019.01569] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
Tissue engineering and regenerative medicine utilize mesenchymal stem cells (MSCs) and their secretome in efforts to create or induce functional tissue replacement. Exosomes are specific extracellular vesicles (EVs) secreted by MSCs and other cells that carry informative cargo from the MSC to targeted cells that influence fundamental cellular processes including apoptosis, proliferation, migration, and lineage-specific differentiation. In this report, we review the current knowledge regarding MSC exosome biogenesis, cargo and function. This review summarizes the use of MSC exosomes to control or induce bone, cartilage, dentin, mucosa, and pulp tissue formation. The next-step engineering of exosomes provides additional avenues to enhance oral and craniofacial tissue engineering and regeneration.
Collapse
Affiliation(s)
- Lyndon F. Cooper
- College of Dentistry, The University of Illinois at Chicago, Chicago, IL, United States
| | | | | | | |
Collapse
|
26
|
Design of Advanced Polymeric Hydrogels for Tissue Regenerative Medicine: Oxygen-Controllable Hydrogel Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1250:63-78. [DOI: 10.1007/978-981-15-3262-7_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Govaert P, Triulzi F, Dudink J. The developing brain by trimester. HANDBOOK OF CLINICAL NEUROLOGY 2020; 171:245-289. [PMID: 32736754 DOI: 10.1016/b978-0-444-64239-4.00014-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transient anatomical entities play a role in the maturation of brain regions and early functional fetal networks. At the postmenstrual age of 7 weeks, major subdivisions of the brain are visible. At the end of the embryonic period, the cortical plate covers the neopallium. The choroid plexus develops in concert with it, and the dorsal thalamus covers about half the diencephalic third ventricle surface. In addition to the fourth ventricle neuroepithelium the rhombic lips are an active neuroepithelial production site. Early reciprocal connections between the thalamus and cortex are present. The corticospinal tract has reached the pyramidal decussation, and the arteries forming the mature circle of Willis are seen. Moreover, the superior sagittal sinus has formed, and at the rostral neuropore the massa commissuralis is growing. At the viable preterm age of around 24 weeks PMA, white matter tracts are in full development. Asymmetric progenitor division permits production of neurons, subventricular zone precursors, and glial cells. Myelin is present in the ventral spinal quadrant, cuneate fascicle, and spinal motor fibers. The neopallial mantle has been separated into transient layers (stratified transitional fields) between the neuroepithelium and the cortical plate. The subplate plays an important role in organizing the structuring of the cortical plate. Commissural tracts have shaped the corpus callosum, early primary gyri are present, and opercularization has started caudally, forming the lateral fissure. Thalamic and striatal nuclei have formed, although GABAergic neurons continue to migrate into the thalamus from the corpus gangliothalamicum. Near-term PMA cerebral sublobulation is active. Between 24 and 32 weeks, primary sulci develop. Myelin is present in the superior cerebellar peduncle, rubrospinal tract, and inferior olive. Germinal matrix disappears from the telencephalon, except for the GABAergic frontal cortical subventricular neuroepithelium.
Collapse
Affiliation(s)
- Paul Govaert
- Department of Neonatology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Neonatology, ZNA Middelheim, Antwerp, Belgium; Department of Rehabilitation and Physical Therapy, Gent University Hospital, Gent, Belgium.
| | - Fabio Triulzi
- Department of Pediatric Neuroradiology, Università Degli Studi di Milano, Milan, Italy
| | - Jeroen Dudink
- Department of Neonatology, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
28
|
Wei Z, Volkova E, Blatchley MR, Gerecht S. Hydrogel vehicles for sequential delivery of protein drugs to promote vascular regeneration. Adv Drug Deliv Rev 2019; 149-150:95-106. [PMID: 31421149 PMCID: PMC6889011 DOI: 10.1016/j.addr.2019.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/04/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
In recent years, as the mechanisms of vasculogenesis and angiogenesis have been uncovered, the functions of various pro-angiogenic growth factors (GFs) and cytokines have been identified. Therefore, therapeutic angiogenesis, by delivery of GFs, has been sought as a treatment for many vascular diseases. However, direct injection of these protein drugs has proven to have limited clinical success due to their short half-lives and systemic off-target effects. To overcome this, hydrogel carriers have been developed to conjugate single or multiple GFs with controllable, sustained, and localized delivery. However, these attempts have failed to account for the temporal complexity of natural angiogenic pathways, resulting in limited therapeutic effects. Recently, the emerging ideas of optimal sequential delivery of multiple GFs have been suggested to better mimic the biological processes and to enhance therapeutic angiogenesis. Incorporating sequential release into drug delivery platforms will likely promote the formation of neovasculature and generate vast therapeutic potential.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eugenia Volkova
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael R Blatchley
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
29
|
Noh M, Choi YH, An YH, Tahk D, Cho S, Yoon JW, Jeon NL, Park TH, Kim J, Hwang NS. Magnetic Nanoparticle-Embedded Hydrogel Sheet with a Groove Pattern for Wound Healing Application. ACS Biomater Sci Eng 2019; 5:3909-3921. [PMID: 33438430 DOI: 10.1021/acsbiomaterials.8b01307] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Endothelial progenitor cells (EPCs) can induce a pro-angiogenic response during tissue repair. Recently, EPC transplantations have been widely investigated in wound healing applications. To maximize the healing efficacy by EPCs, a unique scaffold design that allows cell retention and function would be desirable for in situ delivery. Herein, we fabricated an alginate/poly-l-ornithine/gelatin (alginate-PLO-gelatin) hydrogel sheet with a groove pattern for use as a cell delivery platform. In addition, we demonstrate the topographical modification of the hydrogel sheet surface with a groove pattern to modulate cell proliferation, alignment, and elongation. We report that the patterned substrate prompted morphological changes of endothelial cells, increased cell-cell interaction, and resulted in the active secretion of growth factors such as PDGF-BB. Additionally, we incorporated magnetic nanoparticles (MNPs) into the patterned hydrogel sheet for the magnetic field-induced transfer of cell-seeded hydrogel sheets. As a result, enhanced wound healing was observed via efficient transplantation of the EPCs with an MNP-embedded patterned hydrogel sheet (MPS). Finally, enhanced vascularization and dermal wound repair were observed with EPC seeded MPS.
Collapse
Affiliation(s)
- Miyeon Noh
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Hwan Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongha Tahk
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Advanced Machinery and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungwoo Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Won Yoon
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Noo Li Jeon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Advanced Machinery and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
30
|
Abstract
Regulating the intrinsic interactions between blood vessels and nerve cells has the potential to enhance repair and regeneration of the central nervous system. Here, we evaluate the efficacy of aligned microvessels to induce and control directional axon growth from neural progenitor cells in vitro and host axons in a rat spinal cord injury model. Interstitial fluid flow aligned microvessels generated from co-cultures of cerebral-derived endothelial cells and pericytes in a three-dimensional scaffold. The endothelial barrier function was evaluated by immunostaining for tight junction proteins and quantifying the permeability coefficient (~10−7 cm/s). Addition of neural progenitor cells to the co-culture resulted in the extension of Tuj-positive axons in the direction of the microvessels. To validate these findings in vivo, scaffolds were transplanted into an acute spinal cord hemisection injury with microvessels aligned with the rostral-caudal direction. At three weeks post-surgery, sagittal sections indicated close alignment between the host axons and the transplanted microvessels. Overall, this work demonstrates the efficacy of exploiting neurovascular interaction to direct axon growth in the injured spinal cord and the potential to use this strategy to facilitate central nervous system regeneration.
Collapse
|
31
|
Alderfer L, Wei A, Hanjaya-Putra D. Lymphatic Tissue Engineering and Regeneration. J Biol Eng 2018; 12:32. [PMID: 30564284 PMCID: PMC6296077 DOI: 10.1186/s13036-018-0122-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
The lymphatic system is a major circulatory system within the body, responsible for the transport of interstitial fluid, waste products, immune cells, and proteins. Compared to other physiological systems, the molecular mechanisms and underlying disease pathology largely remain to be understood which has hindered advancements in therapeutic options for lymphatic disorders. Dysfunction of the lymphatic system is associated with a wide range of disease phenotypes and has also been speculated as a route to rescue healthy phenotypes in areas including cardiovascular disease, metabolic syndrome, and neurological conditions. This review will discuss lymphatic system functions and structure, cell sources for regenerating lymphatic vessels, current approaches for engineering lymphatic vessels, and specific therapeutic areas that would benefit from advances in lymphatic tissue engineering and regeneration.
Collapse
Affiliation(s)
- Laura Alderfer
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Alicia Wei
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Donny Hanjaya-Putra
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46656 USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556 USA
- Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Nanoscience and Technology (NDnano), University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
32
|
Wei Z, Gerecht S. A self-healing hydrogel as an injectable instructive carrier for cellular morphogenesis. Biomaterials 2018; 185:86-96. [PMID: 30236839 PMCID: PMC6432635 DOI: 10.1016/j.biomaterials.2018.09.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/06/2018] [Accepted: 09/02/2018] [Indexed: 12/24/2022]
Abstract
Transplantation of progenitor cells can accelerate tissue healing and regenerative processes. Nonetheless, direct cell delivery fails to support survival of transplanted cells or long-term treatment of vascular related diseases due to compromised vasculature and tissue conditions. Using injectable hydrogels that cross-link in situ, could protect cells in vivo, but their sol-gel transition is time-dependent and difficult to precisely control. Hydrogels with self-healing properties are proposed to address these limitations, yet current self-healing hydrogels lack bio-functionality, hindering the morphogenesis of delivered cells into a tissue structure. Here we establish a gelatin (Gtn)-based self-healing hydrogel cross-linked by oxidized dextran (Odex) as an injectable carrier for delivery of endothelial progenitors. The dynamic imine cross-links between Gtn and Odex confer the self-healing ability to the Gtn-l-Odex hydrogels following syringe injection. The self-healing Gtn-l-Odex not only protects the progenitors from injected shear force but it also allows controllable spatial/temporal placement of the cells. Moreover, owing to the cell-adhesive and proteolytic sites of Gtn, the Gtn-l-Odex hydrogels support complex vascular network formation from the endothelial progenitors, both in vitro and in vivo. This is the first report of injectable, self-healing hydrogels with biological properties promoting vascular morphogenesis, which holds great promise for accelerating the success of regenerative therapies.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
33
|
Dubé KN, Smart N. Thymosin β4 and the vasculature: multiple roles in development, repair and protection against disease. Expert Opin Biol Ther 2018; 18:131-139. [DOI: 10.1080/14712598.2018.1459558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Karina N. Dubé
- BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nicola Smart
- BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Lee Y, Son JY, Kang JI, Park KM, Park KD. Hydrogen Peroxide-Releasing Hydrogels for Enhanced Endothelial Cell Activities and Neovascularization. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18372-18379. [PMID: 29722526 DOI: 10.1021/acsami.8b04522] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reactive oxygen species (ROS) have been implicated as a critical modulator for various therapeutic applications such as treatment of vascular disorders, wound healing, and cancer treatment. Specifically, growing evidence has recently demonstrated that transient or low levels of hydrogen peroxide (H2O2) facilitates tissue regeneration and wound repair through acute oxidative stress that can evaluate intracellular ROS levels in cells or tissues. Herein, we report a gelatin-based H2O2-releasing hydrogel formed by dual enzyme-mediated reaction using horseradish peroxidase and glucose oxidase (GO x). The release behavior of H2O2 from the hydrogel matrices can be precisely controlled by varying the GO x concentrations. We demonstrate that H2O2-releasing hydrogels with the optimal condition increase transient upregulation of intracellular ROS levels in the endothelial cells (ECs), enhance proliferative activities of ECs in vitro, and facilitate neovascularization in ovo. We suggest that our H2O2-releasing hydrogels hold great potential as an injectable and dynamic matrix for the treatment of vascular disorders as well as in tissue regenerative medicine.
Collapse
Affiliation(s)
- Yunki Lee
- Department of Molecular Science and Technology , Ajou University , 5 Woncheon , Yeongtong, Suwon 16499 , Republic of Korea
| | - Joo Young Son
- Department of Molecular Science and Technology , Ajou University , 5 Woncheon , Yeongtong, Suwon 16499 , Republic of Korea
| | - Jeon Il Kang
- Department of Bioengineering and Nano-bioengineering, College of Life Sciences and Bioengineering , Incheon National University , 119 Academy-ro , Yeonsu-gu, Incheon 22012 , Republic of Korea
| | - Kyung Min Park
- Department of Bioengineering and Nano-bioengineering, College of Life Sciences and Bioengineering , Incheon National University , 119 Academy-ro , Yeonsu-gu, Incheon 22012 , Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology , Ajou University , 5 Woncheon , Yeongtong, Suwon 16499 , Republic of Korea
| |
Collapse
|
35
|
Kook YM, Kim H, Kim S, Heo CY, Park MH, Lee K, Koh WG. Promotion of Vascular Morphogenesis of Endothelial Cells Co-Cultured with Human Adipose-Derived Mesenchymal Stem Cells Using Polycaprolactone/Gelatin Nanofibrous Scaffolds. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E117. [PMID: 29463042 PMCID: PMC5853748 DOI: 10.3390/nano8020117] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
Abstract
New blood vessel formation is essential for tissue regeneration to deliver oxygen and nutrients and to maintain tissue metabolism. In the field of tissue engineering, in vitro fabrication of new artificial vessels has been a longstanding challenge. Here we developed a technique to reconstruct a microvascular system using a polycaprolactone (PCL)/gelatin nanofibrous structure and a co-culture system. Using a simple electrospinning process, we fabricated three-dimensional mesh scaffolds to support the sprouting of human umbilical vein endothelial cells (HUVECs) along the electrospun nanofiber. The co-culture with adipose-derived mesenchymal stem cells (ADSCs) supported greater sprouting of endothelial cells (ECs). In a two-dimensional culture system, angiogenic cell assembly produced more effective direct intercellular interactions and paracrine signaling from ADSCs to assist in the vascular formation of ECs, compared to the influence of growth factor. Although vascular endothelial growth factor and sphingosine-1-phosphate were present during the culture period, the presence of ADSCs was the most important factor for the construction of a cell-assembled structure in the two-dimensional culture system. On the contrary, HUVECs co-cultured on PCL/gelatin nanofiber scaffolds produced mature and functional microvessel and luminal structures with a greater expression of vascular markers, including platelet endothelial cell adhesion molecule-1 and podocalyxin. Furthermore, both angiogenic factors and cellular interactions with ADSCs through direct contact and paracrine molecules contributed to the formation of enhanced engineered blood vessel structures. It is expected that the co-culture system of HUVECs and ADSCs on bioengineered PCL/gelatin nanofibrous scaffolds will promote robust and functional microvessel structures and will be valuable for the regeneration of tissue with restored blood vessels.
Collapse
Affiliation(s)
- Yun-Min Kook
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea.
| | - Hyerim Kim
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea.
| | - Sujin Kim
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea.
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongman 13620, Korea.
| | - Min Hee Park
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea.
| | - Kangwon Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea.
- Advanced Institutes of Convergence Technology, Gyeonggi-do 16229, Korea.
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea.
| |
Collapse
|
36
|
Lee SW, Kwak HS, Kang MH, Park YY, Jeong GS. Fibroblast-associated tumour microenvironment induces vascular structure-networked tumouroid. Sci Rep 2018; 8:2365. [PMID: 29403007 PMCID: PMC5799156 DOI: 10.1038/s41598-018-20886-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/24/2018] [Indexed: 01/13/2023] Open
Abstract
In vitro three-dimensional (3D) tumour models mimic natural cancer tissue in vivo, bridging the gap between conventional 2D in vitro testing and animal models. Stromal and cancer tissues with extracellular matrix (ECM) can provide a tumour microenvironment (TME) with cell-to-cell and cell-to-ECM interactions. These interactions induce the exchange of biophysical factors, contributing to the progression, metastasis, and drug resistance of cancer. Here, we describe a 3D in vitro lung cancer model cultured in a microfluidic channel that is able to confirm the role and function of various stromal cells in tumourigenesis, thereby representing an in vivo-like TME. We founded that biophysical factors contribute to the role of fibroblast cells in tumour formation, especially, producing a nascent vessel-like tubular structure, resulting in the formation of vascularized tumour tissue. Fibroblast cells altered the gene expression of the cancer cells to enhance metastasis, survival, and angiogenesis. The device could be used for developing and screening anti-cancer drugs through the formation of the same multicellular tumour spheroids under TME interactions. We believe this microfluidic system provides interaction of TME for cancer research by culturing stromal tissue.
Collapse
Affiliation(s)
- Sang Woo Lee
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Hyeong Seob Kwak
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Myoung-Hee Kang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Yun-Yong Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Gi Seok Jeong
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, Korea. .,Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
37
|
Fraineau S, Palii CG, McNeill B, Ritso M, Shelley WC, Prasain N, Chu A, Vion E, Rieck K, Nilufar S, Perkins TJ, Rudnicki MA, Allan DS, Yoder MC, Suuronen EJ, Brand M. Epigenetic Activation of Pro-angiogenic Signaling Pathways in Human Endothelial Progenitors Increases Vasculogenesis. Stem Cell Reports 2017; 9:1573-1587. [PMID: 29033304 PMCID: PMC5830028 DOI: 10.1016/j.stemcr.2017.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 11/25/2022] Open
Abstract
Human endothelial colony-forming cells (ECFCs) represent a promising source of adult stem cells for vascular repair, yet their regenerative capacity is limited. Here, we set out to understand the molecular mechanism restricting the repair function of ECFCs. We found that key pro-angiogenic pathways are repressed in ECFCs due to the presence of bivalent (H3K27me3/H3K4me3) epigenetic marks, which decreases the cells' regenerative potential. Importantly, ex vivo treatment with a combination of epigenetic drugs that resolves bivalent marks toward the transcriptionally active H3K4me3 state leads to the simultaneous activation of multiple pro-angiogenic signaling pathways (VEGFR, CXCR4, WNT, NOTCH, SHH). This in turn results in improved capacity of ECFCs to form capillary-like networks in vitro and in vivo. Furthermore, restoration of perfusion is accelerated upon transplantation of drug-treated ECFCs in a model of hindlimb ischemia. Thus, ex vivo treatment with epigenetic drugs increases the vascular repair properties of ECFCs through transient activation of pro-angiogenic signaling pathways. Pro-angiogenic pathways are maintained in a poised state in ECFCs Epigenetic drugs resolve bivalently marked genes toward an active state in ECFCs Treatment with epigenetic drugs activates multiple pro-angiogenic pathways in ECFCs Ex vivo treatment with epigenetic drugs increases ECFC-mediated vasculogenesis
Collapse
Affiliation(s)
- Sylvain Fraineau
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada; University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, ON K1H8L6, Canada; Ottawa Institute of Systems Biology, Ottawa, ON K1H8M5, Canada
| | - Carmen G Palii
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada
| | - Brian McNeill
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada
| | - Morten Ritso
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada
| | - William C Shelley
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nutan Prasain
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alphonse Chu
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada
| | - Elodie Vion
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada
| | - Kristy Rieck
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada
| | - Sharmin Nilufar
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada
| | - Theodore J Perkins
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada; University of Ottawa, Department of Biochemistry, Microbiology, Immunology, Ottawa, ON K1H8L6, Canada
| | - Michael A Rudnicki
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada; University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, ON K1H8L6, Canada
| | - David S Allan
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Erik J Suuronen
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, ON K1H8L6, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada; University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, ON K1H8L6, Canada; Ottawa Institute of Systems Biology, Ottawa, ON K1H8M5, Canada.
| |
Collapse
|
38
|
Gamboa NT, Taussky P, Park MS, Couldwell WT, Mahan MA, Kalani MYS. Neurovascular patterning cues and implications for central and peripheral neurological disease. Surg Neurol Int 2017; 8:208. [PMID: 28966815 PMCID: PMC5609400 DOI: 10.4103/sni.sni_475_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/28/2017] [Indexed: 12/20/2022] Open
Abstract
The highly branched nervous and vascular systems run along parallel trajectories throughout the human body. This stereotyped pattern of branching shared by the nervous and vascular systems stems from a common reliance on specific cues critical to both neurogenesis and angiogenesis. Continually emerging evidence supports the notion of later-evolving vascular networks co-opting neural molecular mechanisms to ensure close proximity and adequate delivery of oxygen and nutrients to nervous tissue. As our understanding of these biologic pathways and their phenotypic manifestations continues to advance, identification of where pathways go awry will provide critical insight into central and peripheral nervous system pathology.
Collapse
Affiliation(s)
- Nicholas T Gamboa
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Philipp Taussky
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Min S Park
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - William T Couldwell
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mark A Mahan
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - M Yashar S Kalani
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
39
|
Samuel R, Duda DG, Fukumura D, Jain RK. Vascular diseases await translation of blood vessels engineered from stem cells. Sci Transl Med 2016; 7:309rv6. [PMID: 26468328 DOI: 10.1126/scitranslmed.aaa1805] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of human induced pluripotent stem cells (hiPSCs) might pave the way toward a long-sought solution for obtaining sufficient numbers of autologous cells for tissue engineering. Several methods exist for generating endothelial cells or perivascular cells from hiPSCs in vitro for use in the building of vascular tissue. We discuss current developments in the generation of vascular progenitor cells from hiPSCs and the assessment of their functional capacity in vivo, opportunities and challenges for the clinical translation of engineered vascular tissue, and modeling of vascular diseases using hiPSC-derived vascular progenitor cells.
Collapse
Affiliation(s)
- Rekha Samuel
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Centre for Stem Cell Research, Christian Medical College, Bagayam, Vellore 632002, Tamil Nadu, India
| | - Dan G Duda
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
40
|
Bersini S, Yazdi IK, Talò G, Shin SR, Moretti M, Khademhosseini A. Cell-microenvironment interactions and architectures in microvascular systems. Biotechnol Adv 2016; 34:1113-1130. [PMID: 27417066 DOI: 10.1016/j.biotechadv.2016.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/02/2016] [Accepted: 07/09/2016] [Indexed: 02/06/2023]
Abstract
In the past decade, significant advances have been made in the design and optimization of novel biomaterials and microfabrication techniques to generate vascularized tissues. Novel microfluidic systems have facilitated the development and optimization of in vitro models for exploring the complex pathophysiological phenomena that occur inside a microvascular environment. To date, most of these models have focused on engineering of increasingly complex systems, rather than analyzing the molecular and cellular mechanisms that drive microvascular network morphogenesis and remodeling. In fact, mutual interactions among endothelial cells (ECs), supporting mural cells and organ-specific cells, as well as between ECs and the extracellular matrix, are key driving forces for vascularization. This review focuses on the integration of materials science, microengineering and vascular biology for the development of in vitro microvascular systems. Various approaches currently being applied to study cell-cell/cell-matrix interactions, as well as biochemical/biophysical cues promoting vascularization and their impact on microvascular network formation, will be identified and discussed. Finally, this review will explore in vitro applications of microvascular systems, in vivo integration of transplanted vascularized tissues, and the important challenges for vascularization and controlling the microcirculatory system within the engineered tissues, especially for microfabrication approaches. It is likely that existing models and more complex models will further our understanding of the key elements of vascular network growth, stabilization and remodeling to translate basic research principles into functional, vascularized tissue constructs for regenerative medicine applications, drug screening and disease models.
Collapse
Affiliation(s)
- Simone Bersini
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Iman K Yazdi
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Giuseppe Talò
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Lugano, Switzerland; Swiss Institute for Regenerative Medicine, Lugano, Switzerland; Cardiocentro Ticino, Lugano, Switzerland.
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia; College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
41
|
Arrigoni C, Bongio M, Talò G, Bersini S, Enomoto J, Fukuda J, Moretti M. Rational Design of Prevascularized Large 3D Tissue Constructs Using Computational Simulations and Biofabrication of Geometrically Controlled Microvessels. Adv Healthc Mater 2016; 5:1617-26. [PMID: 27191352 DOI: 10.1002/adhm.201500958] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/31/2015] [Indexed: 12/12/2022]
Abstract
A major challenge in the development of clinically relevant 3D tissue constructs is the formation of vascular networks for oxygenation, nutrient supply, and waste removal. To this end, this study implements a multimodal approach for the promotion of vessel-like structures formation in stiff fibrin hydrogels. Computational simulations have been performed to identify the easiest microchanneled configuration assuring normoxic conditions throughout thick cylindrical hydrogels (8 mm height, 6 mm ∅), showing that in our configuration a minimum of three microchannels (600 μm ∅), placed in a non-planar disposition, is required. Using small hydrogel bricks with oxygen distribution equal to the microchanneled configuration, this study demonstrates that among different culture conditions, co-culture of mesenchymal and endothelial cells supplemented with ANG-1 and VEGF leads to the most developed vascular network. Microchanneled hydrogels have been then cultured in the same conditions both statically and in a bioreactor for 7 d. Unexpectedly, the combination between shear forces and normoxic conditions is unable to promote microvascular networks formation in three-channeled hydrogels. Differently, application of either shear forces or normoxic conditions alone results in microvessels outgrowth. These results suggest that to induce angiogenesis in engineered constructs, complex interactions between several biochemical and biophysical parameters have to be modulated.
Collapse
Affiliation(s)
- Chiara Arrigoni
- Cell and Tissue Engineering Laboratory; IRCCS Galeazzi Orthopaedic Institute; Via R. Galeazzi 4 20161 Milan Italy
| | - Matilde Bongio
- Cell and Tissue Engineering Laboratory; IRCCS Galeazzi Orthopaedic Institute; Via R. Galeazzi 4 20161 Milan Italy
| | - Giuseppe Talò
- Cell and Tissue Engineering Laboratory; IRCCS Galeazzi Orthopaedic Institute; Via R. Galeazzi 4 20161 Milan Italy
| | - Simone Bersini
- Cell and Tissue Engineering Laboratory; IRCCS Galeazzi Orthopaedic Institute; Via R. Galeazzi 4 20161 Milan Italy
| | - Junko Enomoto
- Faculty of Engineering; Division of Materials Science and Chemical Engineering; University of Yokohama; 79-1 Tokiwadai Hodogaya-ku Yokohama 240-8501 Japan
| | - Junji Fukuda
- Faculty of Engineering; Division of Materials Science and Chemical Engineering; University of Yokohama; 79-1 Tokiwadai Hodogaya-ku Yokohama 240-8501 Japan
| | - Matteo Moretti
- Cell and Tissue Engineering Laboratory; IRCCS Galeazzi Orthopaedic Institute; Via R. Galeazzi 4 20161 Milan Italy
- Regenerative Medicine Technologies Lab; Ente Ospedaliero Cantonale (EOC); Lugano 6900 Switzerland
- Swiss Institute of Regenerative Medicine (SIRM); Lugano 6900 Switzerland
- Fondazione Cardiocentro Ticino; Lugano 6900 Switzerland
| |
Collapse
|
42
|
Abstract
Cardiovascular tissue engineering offers the promise of biologically based repair of injured and damaged blood vessels, valves, and cardiac tissue. Major advances in cardiovascular tissue engineering over the past few years involve improved methods to promote the establishment and differentiation of induced pluripotent stem cells (iPSCs), scaffolds from decellularized tissue that may produce more highly differentiated tissues and advance clinical translation, improved methods to promote vascularization, and novel
in vitro microphysiological systems to model normal and diseased tissue function. iPSC technology holds great promise, but robust methods are needed to further promote differentiation. Differentiation can be further enhanced with chemical, electrical, or mechanical stimuli.
Collapse
Affiliation(s)
- George A Truskey
- Department of Biochemical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
43
|
Said SS, O'Neil C, Yin H, Nong Z, Pickering JG, Mequanint K. Concurrent and Sustained Delivery of FGF2 and FGF9 from Electrospun Poly(ester amide) Fibrous Mats for Therapeutic Angiogenesis. Tissue Eng Part A 2016; 22:584-96. [PMID: 26955972 DOI: 10.1089/ten.tea.2015.0493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Therapeutic angiogenesis has emerged as a potential strategy to treat ischemic vascular diseases. However, systemic or local administration of growth factors is usually inefficient for maintaining the effective concentration at the site of interest due to their rapid clearance or degradation. In this study, we report a differential and sustained release of an angiogenic factor, fibroblast growth factor-2 (FGF2), and an arteriogenic factor, fibroblast growth factor-9 (FGF9), from α-amino acid-derived biodegradable poly(ester amide) (PEA) fibers toward targeting neovessel formation and maturation. FGF2 and FGF9 were dual loaded using a mixed blend and emulsion electrospinning technique and exhibited differential and sustained release from PEA fibers over 28 days with preserved bioactivity. In vitro angiogenesis assays showed enhanced endothelial cell (EC) tube formation and directed migration of smooth muscle cells (SMCs) to platelet-derived growth factor (PDGF)-BB and stabilized EC/SMC tube formation. FGF2/FGF9-loaded PEA fibers did not induce inflammatory responses in vitro using human monocytes or in vivo after their subcutaneous implantation into mice. Histological examination showed that FGF2/FGF9-loaded fibers induced cell niche recruitment around the site of implantation. Furthermore, controlled in vivo delivery of FGF9 to mouse tibialis anterior (TA) muscle resulted in a dose-dependent expansion of mesenchymal progenitor-like cell layers and extracellular matrix deposition. Our data suggest that the release of FGF2 and FGF9 from PEA fibers offers an efficient differential and sustained growth factor delivery strategy with relevance to therapeutic angiogenesis.
Collapse
Affiliation(s)
- Somiraa S Said
- 1 Biomedical Engineering Graduate Program, The University of Western Ontario , London, Canada
| | - Caroline O'Neil
- 2 Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario , London, Canada
| | - Hao Yin
- 2 Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario , London, Canada
| | - Zengxuan Nong
- 2 Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario , London, Canada
| | - J Geoffrey Pickering
- 2 Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario , London, Canada .,3 Department of Medicine (Cardiology), The University of Western Ontario , London, Canada .,4 Department of Biochemistry, The University of Western Ontario , London, Canada .,5 Department of Medical Biophysics, The University of Western Ontario , London, Canada
| | - Kibret Mequanint
- 1 Biomedical Engineering Graduate Program, The University of Western Ontario , London, Canada .,6 Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario , London, Canada
| |
Collapse
|
44
|
Engineered Polymeric Hydrogels for 3D Tissue Models. Polymers (Basel) 2016; 8:polym8010023. [PMID: 30979118 PMCID: PMC6432530 DOI: 10.3390/polym8010023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/04/2016] [Accepted: 01/15/2016] [Indexed: 12/11/2022] Open
Abstract
Polymeric biomaterials are widely used in a wide range of biomedical applications due to their unique properties, such as biocompatibility, multi-tunability and easy fabrication. Specifically, polymeric hydrogel materials are extensively utilized as therapeutic implants and therapeutic vehicles for tissue regeneration and drug delivery systems. Recently, hydrogels have been developed as artificial cellular microenvironments because of the structural and physiological similarity to native extracellular matrices. With recent advances in hydrogel materials, many researchers are creating three-dimensional tissue models using engineered hydrogels and various cell sources, which is a promising platform for tissue regeneration, drug discovery, alternatives to animal models and the study of basic cell biology. In this review, we discuss how polymeric hydrogels are used to create engineered tissue constructs. Specifically, we focus on emerging technologies to generate advanced tissue models that precisely recapitulate complex native tissues in vivo.
Collapse
|
45
|
Sun X, Altalhi W, Nunes SS. Vascularization strategies of engineered tissues and their application in cardiac regeneration. Adv Drug Deliv Rev 2016; 96:183-94. [PMID: 26056716 DOI: 10.1016/j.addr.2015.06.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/27/2015] [Accepted: 06/02/2015] [Indexed: 12/14/2022]
Abstract
The primary function of vascular networks is to transport blood and deliver oxygen and nutrients to tissues, which occurs at the interface of the microvasculature. Therefore, the formation of the vessels at the microcirculatory level, or angiogenesis, is critical for tissue regeneration and repair. Current strategies for vascularization of engineered tissues have incorporated multi-disciplinary approaches including engineered biomaterials, cells and angiogenic factors. Pre-vascularization of scaffolds composed of native matrix, synthetic polymers, or other biological materials can be achieved through the use of single cells in mono or co-culture, in combination or not with angiogenic factors or by the use of isolated vessels. The advance of these methods, together with a growing understanding of the biology behind vascularization, has facilitated the development of vascularization strategies for engineered tissues with therapeutic potential for tissue regeneration and repair. Here, we review the different cell-based strategies utilized to pre-vascularize engineered tissues and in making more complex vascularized cardiac tissues for regenerative medicine applications.
Collapse
|
46
|
Huethorst E, Krebber MM, Fledderus JO, Gremmels H, Xu YJ, Pei J, Verhaar MC, Cheng C. Lymphatic Vascular Regeneration: The Next Step in Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2015. [PMID: 26204330 DOI: 10.1089/ten.teb.2015.0231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The lymphatic system plays a crucial role in interstitial fluid drainage, lipid absorption, and immunological defense. Lymphatic dysfunction results in lymphedema, fluid accumulation, and swelling of soft tissues, as well as a potentially impaired immune response. Lymphedema significantly reduces quality of life of patients on a physical, mental, social, and economic basis. Current therapeutic approaches in treatment of lymphatic disease are limited. Over the last decades, great progress has been made in the development of therapeutic strategies to enhance vascular regeneration. These solutions to treat vascular disease may also be applicable in the treatment of lymphatic diseases. Comparison of the organogenic process and biological organization of the vascular and lymphatic systems and studies in the regulatory mechanisms involved in lymphangiogenesis and angiogenesis show many common features. In this study, we address the similarities between both transport systems, and focus in depth on the biology of lymphatic development. Based on the current advances in vascular regeneration, we propose different strategies for lymphatic tissue engineering that may be used for treatment of primary and secondary lymphedema.
Collapse
Affiliation(s)
- Eline Huethorst
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Merle M Krebber
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Joost O Fledderus
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Hendrik Gremmels
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Yan Juan Xu
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Jiayi Pei
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Marianne C Verhaar
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Caroline Cheng
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands .,2 Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter , Rotterdam, The Netherlands
| |
Collapse
|
47
|
Martínez CE, Smith PC, Palma Alvarado VA. The influence of platelet-derived products on angiogenesis and tissue repair: a concise update. Front Physiol 2015; 6:290. [PMID: 26539125 PMCID: PMC4611136 DOI: 10.3389/fphys.2015.00290] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/02/2015] [Indexed: 01/22/2023] Open
Abstract
Platelet degranulation allows the release of a large amount of soluble mediators, is an essential step for wound healing initiation, and stimulates clotting, and angiogenesis. The latter process is one of the most critical biological events observed during tissue repair, increasing the growth of blood vessels in the maturing wound. Angiogenesis requires the action of a variety of growth factors that act in an appropriate physiological ratio to assure functional blood vessel restoration. Platelets release main regulators of angiogenesis: Vascular Endothelial Growth Factors (VEGFs), basic fibroblast growth factor (FGF-2), and Platelet derived growth factors (PDGFs), among others. In order to stimulate tissue repair, platelet derived fractions have been used as an autologous source of growth factors and biomolecules, namely Platelet Rich Plasma (PRP), Platelet Poor Plasma (PPP), and Platelet Rich Fibrin (PRF). The continuous release of these growth factors has been proposed to promote angiogenesis both in vitro and in vivo. Considering the existence of clinical trials currently evaluating the efficacy of autologous PRP, the present review analyses fundamental questions regarding the putative role of platelet derived fractions as regulators of angiogenesis and evaluates the possible clinical implications of these formulations.
Collapse
Affiliation(s)
- Constanza E Martínez
- Dentistry Academic Unit, Laboratory of Periodontal Biology and Regeneration, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Patricio C Smith
- Dentistry Academic Unit, Laboratory of Periodontal Biology and Regeneration, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Verónica A Palma Alvarado
- Laboratory of Stem Cells and Development, Faculty of Science, FONDAP Center for Genome Regulation, University of Chile Santiago, Chile
| |
Collapse
|
48
|
Lowenthal J, Gerecht S. Stem cell-derived vasculature: A potent and multidimensional technology for basic research, disease modeling, and tissue engineering. Biochem Biophys Res Commun 2015; 473:733-42. [PMID: 26427871 DOI: 10.1016/j.bbrc.2015.09.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/23/2015] [Indexed: 02/08/2023]
Abstract
Proper blood vessel networks are necessary for constructing and re-constructing tissues, promoting wound healing, and delivering metabolic necessities throughout the body. Conversely, an understanding of vascular dysfunction has provided insight into the pathogenesis and progression of diseases both common and rare. Recent advances in stem cell-based regenerative medicine - including advances in stem cell technologies and related progress in bioscaffold design and complex tissue engineering - have allowed rapid advances in the field of vascular biology, leading in turn to more advanced modeling of vascular pathophysiology and improved engineering of vascularized tissue constructs. In this review we examine recent advances in the field of stem cell-derived vasculature, providing an overview of stem cell technologies as a source for vascular cell types and then focusing on their use in three primary areas: studies of vascular development and angiogenesis, improved disease modeling, and the engineering of vascularized constructs for tissue-level modeling and cell-based therapies.
Collapse
Affiliation(s)
- Justin Lowenthal
- Medical Scientist Training Program, School of Medicine, Johns Hopkins University, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
49
|
Lachaud CC, Rodriguez-Campins B, Hmadcha A, Soria B. Use of Mesothelial Cells and Biological Matrices for Tissue Engineering of Simple Epithelium Surrogates. Front Bioeng Biotechnol 2015; 3:117. [PMID: 26347862 PMCID: PMC4538307 DOI: 10.3389/fbioe.2015.00117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022] Open
Abstract
Tissue-engineering technologies have progressed rapidly through last decades resulting in the manufacture of quite complex bioartificial tissues with potential use for human organ and tissue regeneration. The manufacture of avascular monolayered tissues such as simple squamous epithelia was initiated a few decades ago and is attracting increasing interest. Their relative morphostructural simplicity makes of their biomimetization a goal, which is currently accessible. The mesothelium is a simple squamous epithelium in nature and is the monolayered tissue lining the walls of large celomic cavities (peritoneal, pericardial, and pleural) and internal organs housed inside. Interestingly, mesothelial cells can be harvested in clinically relevant numbers from several anatomical sources and not less important, they also display high transdifferentiation capacities and are low immunogenic characteristics, which endow these cells with therapeutic interest. Their combination with a suitable scaffold (biocompatible, degradable, and non-immunogenic) may allow the manufacture of tailored serosal membranes biomimetics with potential spanning a wide range of therapeutic applications, principally for the regeneration of simple squamous-like epithelia such as the visceral and parietal mesothelium vascular endothelium and corneal endothelium among others. Herein, we review recent research progresses in mesothelial cells biology and their clinical sources. We make a particular emphasis on reviewing the different types of biological scaffolds suitable for the manufacture of serosal mesothelial membranes biomimetics. Finally, we also review progresses made in mesothelial cells-based therapeutic applications and propose some possible future directions.
Collapse
Affiliation(s)
- Christian Claude Lachaud
- Andalusian Center for Molecular Biology and Regenerative Medicine - Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) , Seville , Spain ; Centro de Investigación en Red sobre Diabetes y Enfermedades Metabólicas (CIBERDEM) , Madrid , Spain
| | - Berta Rodriguez-Campins
- Departamento de I+D, New Biotechnic S.A. , Seville , Spain ; Fundación Andaluza de Investigación y Desarrollo (FAID) , Seville , Spain
| | - Abdelkrim Hmadcha
- Andalusian Center for Molecular Biology and Regenerative Medicine - Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) , Seville , Spain ; Centro de Investigación en Red sobre Diabetes y Enfermedades Metabólicas (CIBERDEM) , Madrid , Spain
| | - Bernat Soria
- Andalusian Center for Molecular Biology and Regenerative Medicine - Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) , Seville , Spain ; Centro de Investigación en Red sobre Diabetes y Enfermedades Metabólicas (CIBERDEM) , Madrid , Spain
| |
Collapse
|
50
|
Caputo M, Saif J, Rajakaruna C, Brooks M, Angelini GD, Emanueli C. MicroRNAs in vascular tissue engineering and post-ischemic neovascularization. Adv Drug Deliv Rev 2015; 88:78-91. [PMID: 25980937 PMCID: PMC4728183 DOI: 10.1016/j.addr.2015.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 04/24/2015] [Accepted: 05/07/2015] [Indexed: 12/19/2022]
Abstract
Increasing numbers of paediatric patients with congenital heart defects are surviving to adulthood, albeit with continuing clinical needs. Hence, there is still scope for revolutionary new strategies to correct vascular anatomical defects. Adult patients are also surviving longer with the adverse consequences of ischemic vascular disease, especially after acute coronary syndromes brought on by plaque erosion and rupture. Vascular tissue engineering and therapeutic angiogenesis provide new hope for these patients. Both approaches have shown promise in laboratory studies, but have not yet been able to deliver clear evidence of clinical success. More research into biomaterials, molecular medicine and cell and molecular therapies is necessary. This review article focuses on the new opportunities offered by targeting microRNAs for the improved production and greater empowerment of vascular cells for use in vascular tissue engineering or for increasing blood perfusion of ischemic tissues by amplifying the resident microvascular network.
Collapse
Affiliation(s)
- Massimo Caputo
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK; RUSH University Medical Center, Chicago, IL, USA
| | - Jaimy Saif
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Cha Rajakaruna
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Marcus Brooks
- University Hospital Bristol NHS Trust-Vascular Surgery Unit, Bristol, UK
| | - Gianni D Angelini
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK; National Heart and Lung Institute, Imperial College London, London, England, UK
| | - Costanza Emanueli
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK; National Heart and Lung Institute, Imperial College London, London, England, UK.
| |
Collapse
|