1
|
Gerner-Mauro KN, Vila Ellis L, Wang G, Nayak R, Lwigale PY, Poché RA, Chen J. Morphogenic, molecular and cellular adaptations for unidirectional airflow in the chicken lung. Development 2025; 152:dev204346. [PMID: 40177910 PMCID: PMC12070062 DOI: 10.1242/dev.204346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Unidirectional airflow in the avian lung enables gas exchange during both inhalation and exhalation. The underlying developmental process and how it deviates from that of the bidirectional mammalian lung are poorly understood. Sampling key developmental stages with multiscale 3D imaging and single-cell transcriptomics, we delineate morphogenic, molecular and cellular features that accommodate the unidirectional airflow in the chicken lung. Primary termini of hyper-elongated branches undergo proximal-short and distal-long fusions, forming parabronchi for air conduction. Through the parabronchial smooth muscle, neoform termini extend radially to form gas-exchanging alveoli. Supporting this radial alveologenesis, branch stalks halt their proximalization, defined by SOX9-SOX2 transition, and become SOX9low parabronchi. Primary and secondary vascular plexi interface with primary and neoform termini, respectively. Single-cell and Stereo-seq spatial transcriptomics reveal a third, chicken-specific alveolar cell type expressing KRT14, hereby named luminal cells. Luminal, alveolar type 2 and alveolar type 1 cells sequentially occupy concentric zones radiating from the parabronchial lumen. Our study explores the evolutionary space of lung diversification and lays the foundation for functional analysis of species-specific genetic determinants.
Collapse
Affiliation(s)
- Kamryn N. Gerner-Mauro
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lisandra Vila Ellis
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Guolun Wang
- Department of Pediatrics, Perinatal Institute Division of Pulmonary Biology, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Richa Nayak
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Peter Y. Lwigale
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Ross A. Poché
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pediatrics, Perinatal Institute Division of Pulmonary Biology, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
2
|
Romero A, Walker BL, Krneta-Stankic V, Gerner-Mauro K, Youmans L, Miller RK. The dynamics of tubulogenesis in development and disease. Development 2025; 152:DEV202820. [PMID: 39959988 PMCID: PMC11883272 DOI: 10.1242/dev.202820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Tubes are crucial for the function of many organs in animals given their fundamental roles in transporting and exchanging substances to maintain homeostasis within an organism. Therefore, the development and maintenance of these tube-like structures within organs is a vital process. Tubes can form in diverse ways, and advances in our understanding of the molecular and cellular mechanisms underpinning these different modes of tubulogenesis have significant impacts in many biological contexts, including development and disease. This Review discusses recent progress in understanding developmental mechanisms underlying tube formation.
Collapse
Affiliation(s)
- Adrian Romero
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Brandy L. Walker
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kamryn Gerner-Mauro
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Baylor College of Medicine, Program in Development, Disease Models & Therapeutics, Houston, TX 77030, USA
| | - Lydia Youmans
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Rachel K. Miller
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Molecular and Translational Biology, Houston, TX 77030, USA
| |
Collapse
|
3
|
Myllymäki SM, Lan Q, Mikkola ML. Embryonic Mammary Gland Morphogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:9-27. [PMID: 39821018 DOI: 10.1007/978-3-031-70875-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Embryonic mammary gland development unfolds with the specification of bilateral mammary lines, thereafter progressing through placode, bud, and sprout stages before branching morphogenesis. Extensive epithelial-mesenchymal interactions guide morphogenesis from embryogenesis to adulthood. Two distinct mesenchymal tissues are involved, the primary mammary mesenchyme that harbors mammary inductive capacity, and the secondary mesenchyme, the precursor of the adult stroma. Placode and bud stages are morphologically similar with other ectodermal appendages like the hair follicle, reflecting the mammary gland's assumed evolutionary origin from an ancestral hair follicle-associated glandular unit. The shared features extend to signalling cascades such as the Wnt/β-catenin, fibroblast growth factor (Fgf), and ectodysplasin (Eda) pathways, while pathways unique to mammary gland include parathyroid hormone-like hormone (Pthlh) signalling and Hedgehog activity suppression. Mammary gland branching is highly non-stereotypic, achieved by the dynamic use of two distinct modes of branching: tip bifurcation and side branching and stochastic branch point formation. The cellular mechanisms driving the initial morphogenetic steps are slowly beginning to be unravelled. During placode and bud stages, mammary primordium predominantly grows through cell influx, while sprouting correlates with heightened proliferation. Branch elongation is driven by directional cell migration combined with differential cell motility and proliferation supplying the reservoir of migratory cells, whereas a bifurcating tip is associated with localized repression of the cell cycle and cell motility. Numerous similarities exist between embryonic programs and breast tumorigenesis, spanning cellular plasticity, epithelial-stromal interactions, and molecular regulators. Understanding embryonic mammogenesis may provide insights into how normal developmental processes can go awry, leading to malignancy, or how they can be reversed to prevent cancer progression.
Collapse
Affiliation(s)
- Satu-Marja Myllymäki
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Medicine, Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Qiang Lan
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Marja L Mikkola
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Javed SR, Skolariki A, Zameer MZ, Lord SR. Implications of obesity and insulin resistance for the treatment of oestrogen receptor-positive breast cancer. Br J Cancer 2024; 131:1724-1736. [PMID: 39251829 PMCID: PMC11589622 DOI: 10.1038/s41416-024-02833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Breast cancer is the most common cancer in women, and incidence rates are rising, it is thought in part, due to increasing levels of obesity. Endocrine therapy (ET) remains the cornerstone of systemic therapy for early and advanced oestrogen receptor-positive (ER + ) breast cancer, but despite treatment advances, it is becoming more evident that obesity and insulin resistance are associated with worse outcomes. Here, we describe the current understanding of the relationship between both obesity and diabetes and the prevalence and outcomes for ER+ breast cancer. We also discuss the mechanisms associated with resistance to ET and the relationship to treatment toxicity.
Collapse
Affiliation(s)
| | | | | | - Simon R Lord
- Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Gerner-Mauro KN, Ellis LV, Wang G, Nayak R, Lwigale PY, Poché RA, Chen J. Morphogenic, molecular, and cellular adaptations for unidirectional airflow in the chicken lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608866. [PMID: 39229219 PMCID: PMC11370416 DOI: 10.1101/2024.08.20.608866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Unidirectional airflow in the avian lung enables gas exchange during both inhalation and exhalation. The underlying developmental process and how it deviates from that of the bidirectional mammalian lung are poorly understood. Sampling key developmental stages with multiscale 3D imaging and single-cell transcriptomics, we delineate morphogenic, molecular, and cellular features that accommodate the unidirectional airflow in the chicken lung. Primary termini of hyper-elongated branches are eliminated via proximal-short and distal-long fusions, forming parabronchi. Neoform termini extend radially through parabronchial smooth muscle to form gas-exchanging alveoli. Supporting this radial alveologenesis, branch stalks halt their proximalization, defined by SOX9-SOX2 transition, and become SOX9 low parabronchi. Primary and secondary vascular plexi interface with primary and neoform termini, respectively. Single-cell and Stereo-seq spatial transcriptomics reveal a third, chicken-specific alveolar cell type expressing KRT14, hereby named luminal cells. Luminal, alveolar type 2, and alveolar type 1 cells sequentially occupy concentric zones radiating from the parabronchial lumen. Our study explores the evolutionary space of lung diversification and lays the foundation for functional analysis of species-specific genetic determinants.
Collapse
|
6
|
Satta JP, Lindström R, Myllymäki SM, Lan Q, Trela E, Prunskaite-Hyyryläinen R, Kaczyńska B, Voutilainen M, Kuure S, Vainio SJ, Mikkola ML. Exploring the principles of embryonic mammary gland branching morphogenesis. Development 2024; 151:dev202179. [PMID: 39092607 DOI: 10.1242/dev.202179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 06/21/2024] [Indexed: 08/04/2024]
Abstract
Branching morphogenesis is a characteristic feature of many essential organs, such as the lung and kidney, and most glands, and is the net result of two tissue behaviors: branch point initiation and elongation. Each branched organ has a distinct architecture customized to its physiological function, but how patterning occurs in these ramified tubular structures is a fundamental problem of development. Here, we use quantitative 3D morphometrics, time-lapse imaging, manipulation of ex vivo cultured mouse embryonic organs and mice deficient in the planar cell polarity component Vangl2 to address this question in the developing mammary gland. Our results show that the embryonic epithelial trees are highly complex in topology owing to the flexible use of two distinct modes of branch point initiation: lateral branching and tip bifurcation. This non-stereotypy was contrasted by the remarkably constant average branch frequency, indicating a ductal growth invariant, yet stochastic, propensity to branch. The probability of branching was malleable and could be tuned by manipulating the Fgf10 and Tgfβ1 pathways. Finally, our in vivo data and ex vivo time-lapse imaging suggest the involvement of tissue rearrangements in mammary branch elongation.
Collapse
Affiliation(s)
- Jyoti P Satta
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Riitta Lindström
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Satu-Marja Myllymäki
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Qiang Lan
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Ewelina Trela
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | | | - Beata Kaczyńska
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Maria Voutilainen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Satu Kuure
- GM-unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Seppo J Vainio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90014, Finland
- Kvantum Institute, Infotech Oulu, University of Oulu, Oulu 90014, Finland
| | - Marja L Mikkola
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
7
|
Zhang Z, Chen J, Ma R, Xu C, Lu Y, Zhou J, Xia K, Lu P. Tight Junction Component Occludin Binds to FIP5 to Regulate Endosome Trafficking and Mitotic Spindle Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308822. [PMID: 38884279 PMCID: PMC11321699 DOI: 10.1002/advs.202308822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/16/2024] [Indexed: 06/18/2024]
Abstract
The genetic basis of vertebrate emergence during metazoan evolution has remained largely unknown. Understanding vertebrate-specific genes, such as the tight junction protein Occludin (Ocln), may help answer this question. Here, it is shown that mammary glands lacking Ocln exhibit retarded epithelial branching, owing to reduced cell proliferation and surface expansion. Interestingly, Ocln regulates mitotic spindle orientation and function, and its loss leads to a range of defects, including prolonged prophase and failed nuclear and/or cytoplasmic division. Mechanistically, Ocln binds to the RabGTPase-11 adaptor FIP5 and recruits recycling endosomes to the centrosome to participate in spindle assembly and function. FIP5 loss recapitulates Ocln null, leading to prolonged prophase, reduced cell proliferation, and retarded epithelial branching. These results identify a novel role in OCLN-mediated endosomal trafficking and potentially highlight its involvement in mediating membranous vesicle trafficking and function, which is evolutionarily conserved and essential.
Collapse
Affiliation(s)
- Zichao Zhang
- MOE Key Lab of Rare Pediatric DiseasesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute of Cytology and GeneticsSchool of Basic Medical SciencesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute for Future SciencesHengyang Medical SchoolUniversity of South ChinaChangshaChina
| | - Jing Chen
- MOE Key Lab of Rare Pediatric DiseasesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute of Cytology and GeneticsSchool of Basic Medical SciencesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute for Future SciencesHengyang Medical SchoolUniversity of South ChinaChangshaChina
| | - Rongze Ma
- MOE Key Lab of Rare Pediatric DiseasesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute of Cytology and GeneticsSchool of Basic Medical SciencesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute for Future SciencesHengyang Medical SchoolUniversity of South ChinaChangshaChina
| | - Chongshen Xu
- MOE Key Lab of Rare Pediatric DiseasesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute of Cytology and GeneticsSchool of Basic Medical SciencesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute for Future SciencesHengyang Medical SchoolUniversity of South ChinaChangshaChina
| | - Yunzhe Lu
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Jiecan Zhou
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Kun Xia
- MOE Key Lab of Rare Pediatric DiseasesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute of Cytology and GeneticsSchool of Basic Medical SciencesHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Pengfei Lu
- MOE Key Lab of Rare Pediatric DiseasesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute of Cytology and GeneticsSchool of Basic Medical SciencesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute for Future SciencesHengyang Medical SchoolUniversity of South ChinaChangshaChina
| |
Collapse
|
8
|
Ma R, Feng D, Chen J, Zhou J, Xia K, Kong X, Hu G, Lu P. Targeting Tumor Heterogeneity by Breaking a Stem Cell and Epithelial Niche Interaction Loop. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307452. [PMID: 38708713 PMCID: PMC11234407 DOI: 10.1002/advs.202307452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/20/2024] [Indexed: 05/07/2024]
Abstract
Tumor heterogeneity, the presence of multiple distinct subpopulations of cancer cells between patients or among the same tumors, poses a major challenge to current targeted therapies. The way these different subpopulations interact among themselves and the stromal niche environment, and how such interactions affect cancer stem cell behavior has remained largely unknown. Here, it is shown that an FGF-BMP7-INHBA signaling positive feedback loop integrates interactions among different cell populations, including mammary gland stem cells, luminal epithelial and stromal fibroblast niche components not only in organ regeneration but also, with certain modifications, in cancer progression. The reciprocal dependence of basal stem cells and luminal epithelium is based on basal-derived BMP7 and luminal-derived INHBA, which promote their respective expansion, and is regulated by stromal-epithelial FGF signaling. Targeting this interaction loop, for example, by reducing the function of one or more of its components, inhibits organ regeneration and breast cancer progression. The results have profound implications for overcoming drug resistance because of tumor heterogeneity in future targeted therapies.
Collapse
Affiliation(s)
- Rongze Ma
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hengyang, Hunan, 421001, China
- Institute of Cell Biology, University of South China, Hengyang, Hunan, 421001, China
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Deyi Feng
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hengyang, Hunan, 421001, China
- Institute of Cell Biology, University of South China, Hengyang, Hunan, 421001, China
| | - Jing Chen
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Jiecan Zhou
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Kun Xia
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hengyang, Hunan, 421001, China
- Institute of Cell Biology, University of South China, Hengyang, Hunan, 421001, China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Pengfei Lu
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hengyang, Hunan, 421001, China
- Institute of Cell Biology, University of South China, Hengyang, Hunan, 421001, China
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
9
|
Li J, Ma R, Wang X, Lu Y, Chen J, Feng D, Zhou J, Xia K, Klein O, Xie H, Lu P. Sprouty genes regulate activated fibroblasts in mammary epithelial development and breast cancer. Cell Death Dis 2024; 15:256. [PMID: 38600092 PMCID: PMC11006910 DOI: 10.1038/s41419-024-06637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Stromal fibroblasts are a major stem cell niche component essential for organ formation and cancer development. Fibroblast heterogeneity, as revealed by recent advances in single-cell techniques, has raised important questions about the origin, differentiation, and function of fibroblast subtypes. In this study, we show in mammary stromal fibroblasts that loss of the receptor tyrosine kinase (RTK) negative feedback regulators encoded by Spry1, Spry2, and Spry4 causes upregulation of signaling in multiple RTK pathways and increased extracellular matrix remodeling, resulting in accelerated epithelial branching. Single-cell transcriptomic analysis demonstrated that increased production of FGF10 due to Sprouty (Spry) loss results from expansion of a functionally distinct subgroup of fibroblasts with the most potent branching-promoting ability. Compared to their three independent lineage precursors, fibroblasts in this subgroup are "activated," as they are located immediately adjacent to the epithelium that is actively undergoing branching and invasion. Spry genes are downregulated, and activated fibroblasts are expanded, in all three of the major human breast cancer subtypes. Together, our data highlight the regulation of a functional subtype of mammary fibroblasts by Spry genes and their essential role in epithelial morphogenesis and cancer development.
Collapse
Affiliation(s)
- Jiyong Li
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China
- Institute of Cell Biology, University of South China, Hu Nan Sheng, China
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hu Nan Sheng, China
| | - Rongze Ma
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China
- Institute of Cell Biology, University of South China, Hu Nan Sheng, China
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hu Nan Sheng, China
| | - Xuebing Wang
- Institute of Aix-Marseille, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jing Chen
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China
- Institute of Cell Biology, University of South China, Hu Nan Sheng, China
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hu Nan Sheng, China
| | - Deyi Feng
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China
- Institute of Cell Biology, University of South China, Hu Nan Sheng, China
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hu Nan Sheng, China
| | - Jiecan Zhou
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hu Nan Sheng, China
| | - Kun Xia
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China
- Institute of Cell Biology, University of South China, Hu Nan Sheng, China
| | - Ophir Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, UCSF Box 0422, 513 Parnassus Avenue, HSE1508, San Francisco, CA, 94143, California, USA
- Department of Pediatrics and Guerin Children's, Cedars-Sinai Medical Center, 8700 Gracie Allen Dr., Los Angeles, CA, USA
| | - Hao Xie
- Institute of Aix-Marseille, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Pengfei Lu
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China.
- Institute of Cell Biology, University of South China, Hu Nan Sheng, China.
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hu Nan Sheng, China.
| |
Collapse
|
10
|
Miller JL, Reddy A, Harman RM, Van de Walle GR. A xenotransplantation mouse model to study physiology of the mammary gland from large mammals. PLoS One 2024; 19:e0298390. [PMID: 38416747 PMCID: PMC10901318 DOI: 10.1371/journal.pone.0298390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/23/2024] [Indexed: 03/01/2024] Open
Abstract
Although highly conserved in structure and function, many (patho)physiological processes of the mammary gland vary drastically between mammals, with mechanisms regulating these differences not well understood. Large mammals display variable lactation strategies and mammary cancer incidence, however, research into these variations is often limited to in vitro analysis due to logistical limitations. Validating a model with functional mammary xenografts from cryopreserved tissue fragments would allow for in vivo comparative analysis of mammary glands from large and/or rare mammals and would improve our understanding of postnatal development, lactation, and premalignancy across mammals. To this end, we generated functional mammary xenografts using mammary tissue fragments containing mammary stroma and parenchyma isolated via an antibody-independent approach from healthy, nulliparous equine and canine donor tissues to study these species in vivo. Cryopreserved mammary tissue fragments were xenotransplanted into de-epithelialized fat pads of immunodeficient mice and resulting xenografts were structurally and functionally assessed. Preimplantation of mammary stromal fibroblasts was performed to promote ductal morphogenesis. Xenografts recapitulated mammary lobule architecture and contained donor-derived stromal components. Mammatropic hormone stimulation resulted in (i) upregulation of lactation-associated genes, (ii) altered proliferation index, and (iii) morphological changes, indicating functionality. Preimplantation of mammary stromal fibroblasts did not promote ductal morphogenesis. This model presents the opportunity to study novel mechanisms regulating unique lactation strategies and mammary cancer induction in vivo. Due to the universal applicability of this approach, this model serves as proof-of-concept for developing mammary xenografts for in vivo analysis of virtually any mammals, including large and rare mammals.
Collapse
Affiliation(s)
- James L Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alexandra Reddy
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
11
|
Kim HY, Sinha I, Sears KE, Kuperwasser C, Rauner G. Expanding the evo-devo toolkit: generation of 3D mammary tissue from diverse mammals. Development 2024; 151:dev202134. [PMID: 38276965 PMCID: PMC10905751 DOI: 10.1242/dev.202134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
The varying pathways of mammary gland development across species and evolutionary history are underexplored, largely due to a lack of model systems. Recent progress in organoid technology holds the promise of enabling in-depth studies of the developmental adaptations that have occurred throughout the evolution of different species, fostering beneficial phenotypes. The practical application of this technology for mammary glands has been mostly confined to rodents and humans. In the current study, we have successfully created next-generation 3D mammary gland organoids from eight eutherian mammals and the first branched organoid of a marsupial mammary gland. Using mammary organoids, we identified a role for ROCK protein in regulating branching morphogenesis, a role that manifests differently in organoids from different mammals. This finding demonstrates the utility of the 3D organoid model for understanding the evolution and adaptations of signaling pathways. These achievements highlight the potential for organoid models to expand our understanding of mammary gland biology and evolution, and their potential utility in studies of lactation or breast cancer.
Collapse
Affiliation(s)
- Hahyung Y. Kim
- Department of Developmental, Chemical & Molecular Biology, Tufts University, Boston, MA 02111, USA
| | - Ishani Sinha
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Karen E. Sears
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Charlotte Kuperwasser
- Department of Developmental, Chemical & Molecular Biology, Tufts University, Boston, MA 02111, USA
- Laboratory for the Convergence of Biomedical, Physical, and Engineering Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Gat Rauner
- Department of Developmental, Chemical & Molecular Biology, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
12
|
Caruso M, Saberiseyedabad K, Mourao L, Scheele CLGJ. A Decision Tree to Guide Human and Mouse Mammary Organoid Model Selection. Methods Mol Biol 2024; 2764:77-105. [PMID: 38393590 DOI: 10.1007/978-1-0716-3674-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Over the past 50 years, researchers from the mammary gland field have launched a collection of distinctive 3D cell culture systems to study multiple aspects of mammary gland physiology and disease. As our knowledge about the mammary gland evolves, more sophisticated 3D cell culture systems are required to answer more and more complex questions. Nowadays, morphologically complex mammary organoids can be generated in distinct 3D settings, along with reproduction of multiple aspects of the gland microenvironment. Yet, each 3D culture protocol comes with its advantages and limitations, where some culture systems are best suited to study stemness potential, whereas others are tailored towards the study of mammary gland morphogenesis. Therefore, prior to starting a 3D mammary culture experiment, it is important to consider and select the ideal culture model to address the biological question of interest. The number and technical requirements of novel 3D cell culture methods vastly increased over the past decades, making it currently challenging and time consuming to identify the best experimental testing. In this chapter, we provide a summary of the most promising murine and human 3D organoid models that are currently used in mammary gland biology research. For each model, we will provide a brief description of the protocol and an overview of the expected morphological outcome, the advantages of the model, and the potential pitfalls, to guide the reader to the best model of choice for specific applications.
Collapse
Affiliation(s)
- Marika Caruso
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, Leuven, Belgium
| | | | - Larissa Mourao
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, Leuven, Belgium
| | | |
Collapse
|
13
|
Fioramonti M, Blanpain C. Modeling the complexity of mammary gland in vitro. Nat Methods 2023; 20:1879-1880. [PMID: 37919420 PMCID: PMC7615366 DOI: 10.1038/s41592-023-02064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Affiliation(s)
- Marco Fioramonti
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Bruxelles, Belgium.
| |
Collapse
|
14
|
Yuan L, Xie S, Bai H, Liu X, Cai P, Lu J, Wang C, Lin Z, Li S, Guo Y, Cai S. Reconstruction of dynamic mammary mini gland in vitro for normal physiology and oncogenesis. Nat Methods 2023; 20:2021-2033. [PMID: 37919421 DOI: 10.1038/s41592-023-02039-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/22/2023] [Indexed: 11/04/2023]
Abstract
Organoid culture has been extensively exploited for normal tissue reconstruction and disease modeling. However, it is still challenging to establish organoids that mimic in vivo-like architecture, size and function under homeostatic conditions. Here we describe the development of a long-term adult stem cell-derived mammary mini gland culture system that supports robust three-dimensional outgrowths recapitulating the morphology, scale, cellular context and transcriptional heterogeneity of the normal mammary gland. The self-organization ability of stem cells and the stability of the outgrowths were determined by a coordinated combination of extracellular matrix, environmental signals and dynamic physiological cycles. We show that these mini glands were hormone responsive and could recapitulate the entire postnatal mammary development including puberty, estrus cycle, lactation and involution. We also observed that these mini glands maintained the presence of mammary stem cells and could also recapitulate the fate transition from embryonic bipotency to postnatal unipotency in lineage tracing assays. In addition, upon induction of oncogene expression in the mini glands, we observed tumor initiation in vitro and in vivo in a mouse model. Together, this study provides an experimental system that can support a dynamic miniature mammary gland for the study of physiologically relevant, complex biological processes.
Collapse
Affiliation(s)
- Lei Yuan
- Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shaofang Xie
- Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huiru Bai
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaoqin Liu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Pei Cai
- Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jing Lu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Chunhui Wang
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Disease Modeling Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Zuobao Lin
- Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shuying Li
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Disease Modeling Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yajing Guo
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shang Cai
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Disease Modeling Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
15
|
Aure MH, Symonds JM, Villapudua CU, Dodge JT, Werner S, Knosp WM, Hoffman MP. FGFR2 is essential for salivary gland duct homeostasis and MAPK-dependent seromucous acinar cell differentiation. Nat Commun 2023; 14:6485. [PMID: 37838739 PMCID: PMC10576811 DOI: 10.1038/s41467-023-42243-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
Exocrine acinar cells in salivary glands (SG) are critical for oral health and loss of functional acinar cells is a major clinical challenge. Fibroblast growth factor receptors (FGFR) are essential for early development of multiple organs, including SG. However, the role of FGFR signaling in specific populations later in development and during acinar differentiation are unknown. Here, we use scRNAseq and conditional deletion of murine FGFRs in vivo to identify essential roles for FGFRs in craniofacial, early SG development and progenitor function during duct homeostasis. Importantly, we also discover that FGFR2 via MAPK signaling is critical for seromucous acinar differentiation and secretory gene expression, while FGFR1 is dispensable. We show that FGF7, expressed by myoepithelial cells (MEC), activates the FGFR2-dependent seromucous transcriptional program. Here, we propose a model where MEC-derived FGF7 drives seromucous acinar differentiation, providing a rationale for targeting FGFR2 signaling in regenerative therapies to restore acinar function.
Collapse
Affiliation(s)
- Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Jennifer M Symonds
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Carlos U Villapudua
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Joshua T Dodge
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Zurich, Switzerland
| | - Wendy M Knosp
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Daneshdoust D, Luo M, Li Z, Mo X, Alothman S, Kallakury B, Schlegel R, Zhang J, Guo D, Furth PA, Liu X, Li J. Unlocking Translational Potential: Conditionally Reprogrammed Cells in Advancing Breast Cancer Research. Cells 2023; 12:2388. [PMID: 37830602 PMCID: PMC10572051 DOI: 10.3390/cells12192388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Preclinical in vitro models play an important role in studying cancer cell biology and facilitating translational research, especially in the identification of drug targets and drug discovery studies. This is particularly relevant in breast cancer, where the global burden of disease is quite high based on prevalence and a relatively high rate of lethality. Predictive tools to select patients who will be responsive to invasive or morbid therapies (radiotherapy, chemotherapy, immunotherapy, and/or surgery) are relatively lacking. To be clinically relevant, a model must accurately replicate the biology and cellular heterogeneity of the primary tumor. Addressing these requirements and overcoming the limitations of most existing cancer cell lines, which are typically derived from a single clone, we have recently developed conditional reprogramming (CR) technology. The CR technology refers to a co-culture system of primary human normal or tumor cells with irradiated murine fibroblasts in the presence of a Rho-associated kinase inhibitor to allow the primary cells to acquire stem cell properties and the ability to proliferate indefinitely in vitro without any exogenous gene or viral transfection. This innovative approach fulfills many of these needs and offers an alternative that surpasses the deficiencies associated with traditional cancer cell lines. These CR cells (CRCs) can be reprogrammed to maintain a highly proliferative state and reproduce the genomic and histological characteristics of the parental tissue. Therefore, CR technology may be a clinically relevant model to test and predict drug sensitivity, conduct gene profile analysis and xenograft research, and undertake personalized medicine. This review discusses studies that have applied CR technology to conduct breast cancer research.
Collapse
Affiliation(s)
- Danyal Daneshdoust
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mingjue Luo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Zaibo Li
- Departments of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biostatics and Bioinformatics, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Sahar Alothman
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Bhaskar Kallakury
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Richard Schlegel
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Junran Zhang
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Deliang Guo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Priscilla A. Furth
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Departments of Pathology, Urology, and Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Martínez-Illescas NG, Leal S, González P, Graña-Castro O, Muñoz-Oliveira JJ, Cortés-Peña A, Gómez-Gil M, Vega Z, Neva V, Romero A, Quintela-Fandino M, Ciruelos E, Sanz C, Aragón S, Sotolongo L, Jiménez S, Caleiras E, Mulero F, Sánchez C, Malumbres M, Salazar-Roa M. miR-203 drives breast cancer cell differentiation. Breast Cancer Res 2023; 25:91. [PMID: 37542268 PMCID: PMC10401798 DOI: 10.1186/s13058-023-01690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
A hallmark of many malignant tumors is dedifferentiated (immature) cells bearing slight or no resemblance to the normal cells from which the cancer originated. Tumor dedifferentiated cells exhibit a higher capacity to survive to chemo and radiotherapies and have the ability to incite tumor relapse. Inducing cancer cell differentiation would abolish their self-renewal and invasive capacity and could be combined with the current standard of care, especially in poorly differentiated and aggressive tumors (with worst prognosis). However, differentiation therapy is still in its early stages and the intrinsic complexity of solid tumor heterogeneity demands innovative approaches in order to be efficiently translated into the clinic. We demonstrate here that microRNA 203, a potent driver of differentiation in pluripotent stem cells (ESCs and iPSCs), promotes the differentiation of mammary gland tumor cells. Combining mouse in vivo approaches and both mouse and human-derived tridimensional organoid cultures, we report that miR-203 influences the self-renewal capacity, plasticity and differentiation potential of breast cancer cells and prevents tumor cell growth in vivo. Our work sheds light on differentiation-based antitumor therapies and offers miR-203 as a promising tool for directly confronting the tumor-maintaining and regeneration capability of cancer cells.
Collapse
Affiliation(s)
- Nuria G Martínez-Illescas
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Cell Division and Cancer Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Osvaldo Graña-Castro
- Bioinformatics Unit, CNIO, Madrid, Spain
- Department of Basic Medical Sciences, Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), San Pablo-CEU University, Madrid, Spain
| | | | - Alfonso Cortés-Peña
- Flow Cytometry and Fluorescence Microscopy Unit (CAI), Complutense University, Madrid, Spain
| | | | - Zaira Vega
- Histopathology Unit, CNIO, Madrid, Spain
| | | | | | | | - Eva Ciruelos
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | - Consuelo Sanz
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | - Sofía Aragón
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | - Leisy Sotolongo
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | - Sara Jiménez
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | | | | | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain.
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain.
| | - Marcos Malumbres
- Cell Division and Cancer Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Cancer Cell Cycle Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
- ICREA, Passeig Lluís Companys 23, Barcelona, Spain.
| | - María Salazar-Roa
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain.
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain.
- Cell Division and Cancer Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
18
|
Mieczkowski K, Popeda M, Lesniak D, Sadej R, Kitowska K. FGFR2 Controls Growth, Adhesion and Migration of Nontumorigenic Human Mammary Epithelial Cells by Regulation of Integrin β1 Degradation. J Mammary Gland Biol Neoplasia 2023; 28:9. [PMID: 37191822 DOI: 10.1007/s10911-023-09537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
The role of fibroblast growth factor receptor 2 (FGFR2), an important mediator of stromal paracrine and autocrine signals, in mammary gland morphogenesis and breast cancer has been extensively studied over the last years. However, the function of FGFR2 signalling in the initiation of mammary epithelial oncogenic transformation remains elusive. Here, FGFR2-dependent behaviour of nontumorigenic model of mammary epithelial cells was studied. In vitro analyses demonstrated that FGFR2 regulates epithelial cell communication with extracellular matrix (ECM) proteins. Silencing of FGFR2 significantly changed the phenotype of cell colonies in three-dimensional cultures, decreased integrins α2, α5 and β1 protein levels and affected integrin-driven processes, such as cell adhesion and migration. More detailed analysis revealed the FGFR2 knock-down-induced proteasomal degradation of integrin β1. Analysis of RNA-seq databases showed significantly decreased FGFR2 and ITGB1 mRNA levels in breast tumour samples, when compared to non-transformed tissues. Additionally, high risk healthy individuals were found to have disrupted correlation profiles of genes associated with FGFR2 and integrin signalling, cell adhesion/migration and ECM remodelling. Taken together, our results strongly suggest that FGFR2 loss with concomitant integrin β1 degradation is responsible for deregulation of epithelial cell-ECM interactions and this process may play an important role in the initiation of mammary gland epithelial tumorigenesis.
Collapse
Affiliation(s)
- Kamil Mieczkowski
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Marta Popeda
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Dagmara Lesniak
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Rafal Sadej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Kamila Kitowska
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
19
|
Zhou Y, Ye Z, Wei W, Zhang M, Huang F, Li J, Cai C. Macrophages maintain mammary stem cell activity and mammary homeostasis via TNF-α-PI3K-Cdk1/Cyclin B1 axis. NPJ Regen Med 2023; 8:23. [PMID: 37130846 PMCID: PMC10154328 DOI: 10.1038/s41536-023-00296-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023] Open
Abstract
Adult stem cell niche is a special environment composed of a variety stromal cells and signals, which cooperatively regulate tissue development and homeostasis. It is of great interest to study the role of immune cells in niche. Here, we show that mammary resident macrophages regulate mammary epithelium cell division and mammary development through TNF-α-Cdk1/Cyclin B1 axis. In vivo, depletion of macrophages reduces the number of mammary basal cells and mammary stem cells (MaSCs), while increases mammary luminal cells. In vitro, we establish a three-dimensional culture system in which mammary basal cells are co-cultured with macrophages, and interestingly, macrophage co-culture promotes the formation of branched functional mammary organoids. Moreover, TNF-α produced by macrophages activates the intracellular PI3K/Cdk1/Cyclin B1 signaling in mammary cells, thereby maintaining the activity of MaSCs and the formation of mammary organoids. Together, these findings reveal the functional significance of macrophageal niche and intracellular PI3K/Cdk1/Cyclin B1 axis for maintaining MaSC activity and mammary homeostasis.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zi Ye
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Mengna Zhang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fujing Huang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinpeng Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
20
|
Aure MH, Symonds JM, Villapudua CU, Dodge JT, Werner S, Knosp WM, Hoffman MP. FGFR2b is essential for salivary gland duct homeostasis and MAPK-dependent seromucous acinar cell differentiation. RESEARCH SQUARE 2023:rs.3.rs-2557484. [PMID: 36824936 PMCID: PMC9949235 DOI: 10.21203/rs.3.rs-2557484/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Exocrine secretory acinar cells in salivary glands (SG) are critical for oral health and loss of functional acinar cells is a major clinical challenge. Fibroblast growth factor receptors (FGFR) are essential for early development of multiple organs, including SG. However, the role of FGFR signaling in specific epithelial SG populations later in development and during acinar differentiation are unknown. Here, we predicted FGFR dependence in specific populations using scRNAseq data and conditional mouse models to delete FGFRs in vivo. We identifed essential roles for FGFRs in craniofacial and early SG development, as well as progenitor function during duct homeostasis. Importantly, we discovered that FGFR2b was critical for seromucous and serous acinar cell differentiation and secretory gene expression (Bpifa2 and Lpo) via MAPK signaling, while FGFR1b was dispensable. We show that FGF7, expressed by myoepithelial cells (MEC), activated the FGFR2b-dependent seromucous transcriptional program. We propose a model where MEC-derived FGF7 drives seromucous acinar differentiaton, providing a rationale for targeting FGFR2b signaling in regenerative therapies to restore acinar function.
Collapse
Affiliation(s)
- Marit H. Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jennifer M. Symonds
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Carlos U. Villapudua
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Joshua T. Dodge
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Wendy M. Knosp
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Matthew P. Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
21
|
Yang X, Zhong X, Huang AJ, Reneker LW. Spontaneous acinar and ductal regrowth after meibomian gland atrophy induced by deletion of FGFR2 in a mouse model. Ocul Surf 2022; 26:300-309. [PMID: 34798325 DOI: 10.1016/j.jtos.2021.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE We have demonstrated that deletion of fibroblast growth factor receptor 2 gene (Fgfr2) leads to Meibomian gland (MG) atrophy in an inducible conditional knockout mouse model, referred as Fgfr2CKO. Herein, we investigated whether MG spontaneously recovers after atrophy in this model. METHODS Two months old Fgfr2CKO mice were injected peritoneally once or twice of doxycycline (Dox) at 80 μg/gm of body weight to induce MG atrophy of various severities via Fgfr2 deletion. Recovery of acinar and ductal tissues was monitored by meibography, lipid staining and immunofluorescence against keratin-6a in MG whole-mount. Biomarkers for acinar and ductal differentiation and proliferation were also examined by immunostaining. RESULTS Single Dox injection in Fgfr2CKO mice caused severe acinar and moderate ductal atrophy. Severe ductal shortening or loss occurred after second Dox injection, presumably related to the reported slower cycling of the ductal epithelia. Spontaneous acinar regrowth after atrophy was observed over a period of 60 days in both injection regimens. However, less robust acinar recovery was associated with more disrupted ductal structures in twice injected Fgfr2CKO mice. CONCLUSIONS Our current findings further substantiate the role of FGFR2 in MG homeostasis, and suggest that FGFR2-signaling may provide a potential strategy for regenerating acini from age-related MG dysfunction in humans. Our data demonstrated that spontaneous MG recovery depends on the extent of ductal atrophy, suggesting that ductal epithelia may provide the progenitor cells for acinar regeneration. Nonetheless, the role of ductal tissue as the source of acinar progenitors awaits further investigation.
Collapse
Affiliation(s)
- Xiaowei Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xingwu Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, China.
| | - Andrew Jw Huang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Lixing W Reneker
- Mason Eye Institute, Department of Ophthalmology, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
22
|
The Mammary Gland: Basic Structure and Molecular Signaling during Development. Int J Mol Sci 2022; 23:ijms23073883. [PMID: 35409243 PMCID: PMC8998991 DOI: 10.3390/ijms23073883] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The mammary gland is a compound, branched tubuloalveolar structure and a major characteristic of mammals. The mammary gland has evolved from epidermal apocrine glands, the skin glands as an accessory reproductive organ to support postnatal survival of offspring by producing milk as a source of nutrition. The mammary gland development begins during embryogenesis as a rudimentary structure that grows into an elementary branched ductal tree and is embedded in one end of a larger mammary fat pad at birth. At the onset of ovarian function at puberty, the rudimentary ductal system undergoes dramatic morphogenetic change with ductal elongation and branching. During pregnancy, the alveolar differentiation and tertiary branching are completed, and during lactation, the mature milk-producing glands eventually develop. The early stages of mammary development are hormonal independent, whereas during puberty and pregnancy, mammary gland development is hormonal dependent. We highlight the current understanding of molecular regulators involved during different stages of mammary gland development.
Collapse
|
23
|
Yoshitake R, Chang G, Saeki K, Ha D, Wu X, Wang J, Chen S. Single-Cell Transcriptomics Identifies Heterogeneity of Mouse Mammary Gland Fibroblasts With Distinct Functions, Estrogen Responses, Differentiation Processes, and Crosstalks With Epithelium. Front Cell Dev Biol 2022; 10:850568. [PMID: 35300413 PMCID: PMC8923650 DOI: 10.3389/fcell.2022.850568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
Fibroblasts have been shown to be one of the essential players for mammary gland organization. Here, we identify two major types of mouse mammary gland fibroblasts through single-cell RNA sequencing analysis: Dpp4 + fibroblasts and Dpp4 - fibroblasts. Each population exhibits unique functional characteristics as well as discrete localization in normal mouse mammary glands. Remarkably, estrogen, a crucial mediator of mammary gland organization, alters the gene expression profiles of fibroblasts in a population-specific manner, without distinct activation of estrogen receptor signaling. Further integrative analysis with the inclusion of five other publicly available datasets reveals a directional differentiation among the mammary gland fibroblast populations. Moreover, the combination with the mouse mammary epithelium atlas allows us to infer multiple potential interactions between epithelial cells and fibroblasts in mammary glands. This study provides a comprehensive view of mouse mammary gland fibroblasts at the single-cell level.
Collapse
Affiliation(s)
- Ryohei Yoshitake
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Gregory Chang
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Kohei Saeki
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States.,Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Desiree Ha
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
24
|
Caruso M, Huang S, Mourao L, Scheele CLGJ. A Mammary Organoid Model to Study Branching Morphogenesis. Front Physiol 2022; 13:826107. [PMID: 35399282 PMCID: PMC8988230 DOI: 10.3389/fphys.2022.826107] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Branching morphogenesis is the process that gives rise to branched structures in several organs, such as the lung, the kidney, and the mammary gland. Although morphologically well described, the exact mechanisms driving branch elongation and bifurcation are still poorly understood. Signaling cues from the stroma and extracellular matrix have an important role in driving branching morphogenesis. Organoid models derived from primary mammary epithelial cells have emerged as a powerful tool to gain insight into branching morphogenesis of the mammary gland. However, current available mammary organoid culture protocols result in morphologically simple structures which do not resemble the complex branched structure of the in vivo mammary gland. Supplementation of growth factors to mammary organoids cultured in basement membrane extract or collagen I were shown to induce bud formation and elongation but are not sufficient to drive true branching events. Here, we present an improved culture approach based on 3D primary mammary epithelial cell culture to develop branched organoids with a complex morphology. By alternating the addition of fibroblast growth factor 2 and epidermal growth factor to mammary organoids cultured in a basement membrane extract matrix enriched with collagen type I fibers, we obtain complex mammary organoid structures with primary, secondary, and tertiary branches over a period of 15-20 days. Mammary organoid structures grow >1 mm in size and show an elongated and branched shape which resembles in vivo mammary gland morphology. This novel branched mammary organoid model offers many possibilities to study the mechanisms of branching in the developing mammary gland.
Collapse
Affiliation(s)
- Marika Caruso
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Sjanie Huang
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Larissa Mourao
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Colinda L. G. J. Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Ma R, Gong D, You H, Xu C, Lu Y, Bergers G, Werb Z, Klein OD, Petritsch CK, Lu P. LGL1 binds to Integrin β1 and inhibits downstream signaling to promote epithelial branching in the mammary gland. Cell Rep 2022; 38:110375. [PMID: 35172155 PMCID: PMC9113222 DOI: 10.1016/j.celrep.2022.110375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/08/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
Branching morphogenesis is a fundamental process by which organs in invertebrates and vertebrates form branches to expand their surface areas. The current dogma holds that directional cell migration determines where a new branch forms and thus patterns branching. Here, we asked whether mouse Lgl1, a homolog of the Drosophila tumor suppressor Lgl, regulates epithelial polarity in the mammary gland. Surprisingly, mammary glands lacking Lgl1 have normal epithelial polarity, but they form fewer branches. Moreover, we find that Lgl1 null epithelium is unable to directionally migrate, suggesting that migration is not essential for mammary epithelial branching as expected. We show that LGL1 binds to Integrin β1 and inhibits its downstream signaling, and Integrin β1 overexpression blocks epithelial migration, thus recapitulating the Lgl1 null phenotype. Altogether, we demonstrate that Lgl1 modulation of Integrin β1 signaling is essential for directional migration and that epithelial branching in invertebrates and the mammary gland is fundamentally distinct. Ma et al. show that Lgl1 is essential for mammary gland branching morphogenesis but not epithelial polarity. Lgl1 is required for directional migration by regulating Integrin β1 signaling levels and focal adhesion strengths. Finally, branching mechanisms are distinct between mammary gland and Drosophila systems where directional migration is indispensable.
Collapse
Affiliation(s)
- Rongze Ma
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Difei Gong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huanyang You
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chongshen Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gabriele Bergers
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Zena Werb
- Department of Anatomy and Program in Developmental and Stem Cell Biology, University of California, San Francisco, San Francisco, CA 94143-0452, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, UCSF Box 0422, 513 Parnassus Avenue, HSE1508, San Francisco, CA 94143-0422, USA
| | - Claudia K Petritsch
- Department of Neurological Surgery, Stanford University, Palo Alto, CA 94305, USA
| | - Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
26
|
Francavilla C, O'Brien CS. Fibroblast growth factor receptor signalling dysregulation and targeting in breast cancer. Open Biol 2022; 12:210373. [PMID: 35193394 PMCID: PMC8864352 DOI: 10.1098/rsob.210373] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023] Open
Abstract
Fibroblast Growth Factor Receptor (FGFR) signalling plays a critical role in breast embryonal development, tissue homeostasis, tumorigenesis and metastasis. FGFR, its numerous FGF ligands and signalling partners are often dysregulated in breast cancer progression and are one of the causes of resistance to treatment in breast cancer. Furthermore, FGFR signalling on epithelial cells is affected by signals from the breast microenvironment, therefore increasing the possibility of breast developmental abnormalities or cancer progression. Increasing our understanding of the multi-layered roles of the complex family of FGFRs, their ligands FGFs and their regulatory partners may offer novel treatment strategies for breast cancer patients, as a single agent or rational co-target, which will be explored in depth in this review.
Collapse
Affiliation(s)
- Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester M13 9PT, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| | - Ciara S. O'Brien
- The Christie Hospital NHS Foundation Trust, Wilmslow Road, Manchester M20 2BX, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
27
|
Lu Y, Zhou T, Xu C, Wang R, Feng D, Li J, Wang X, Kong Y, Hu G, Kong X, Lu P. Occludin is a target of Src kinase and promotes lipid secretion by binding to BTN1a1 and XOR. PLoS Biol 2022; 20:e3001518. [PMID: 35041644 PMCID: PMC8797263 DOI: 10.1371/journal.pbio.3001518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/28/2022] [Accepted: 12/19/2021] [Indexed: 11/29/2022] Open
Abstract
Lipid droplets (LDs) have increasingly been recognized as an essential organelle for eukaryotes. Although the biochemistry of lipid synthesis and degradation is well characterized, the regulation of LD dynamics, including its formation, maintenance, and secretion, is poorly understood. Here, we report that mice lacking Occludin (Ocln) show defective lipid metabolism. We show that LDs were larger than normal along its biogenesis and secretion pathway in Ocln null mammary cells. This defect in LD size control did not result from abnormal lipid synthesis or degradation; rather, it was because of secretion failure during the lactation stage. We found that OCLN was located on the LD membrane and was bound to essential regulators of lipid secretion, including BTN1a1 and XOR, in a C-terminus–dependent manner. Finally, OCLN was a phosphorylation target of Src kinase, whose loss causes lactation failure. Together, we demonstrate that Ocln is a downstream target of Src kinase and promotes LD secretion by binding to BTN1a1 and XOR. Lipid droplets are an essential eukaryotic organelle, but how they are secreted has remained unclear. This study shows that the tight junction protein Occludin is a phosphorylation target of Src kinase; Occludin binds to BTN1A1 and XOR to facilitate lipid droplet secretion in mammary epithelial cells.
Collapse
Affiliation(s)
- Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tao Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chongshen Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- Molecular Imaging Core Facility, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Deyi Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiyong Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xu Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Kong
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- * E-mail:
| |
Collapse
|
28
|
Sumbal J, Koledova Z. Single Organoids Droplet-Based Staining Method for High-End 3D Imaging of Mammary Organoids. Methods Mol Biol 2022; 2471:259-269. [PMID: 35175602 DOI: 10.1007/978-1-0716-2193-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the last decade, organoids became a tremendously popular technique in developmental and cancer biology for their high pathophysiological relevance to in vivo models with the advantage of easier manipulation, real-time observation, potential for high-throughput studies, and reduced ethical issues. Among other fundamental biological questions, mammary organoids have helped to reveal mechanisms of mammary epithelial morphogenesis, mammary stem cell potential, regulation of lineage specification, mechanisms of breast cancer invasion or resistance to therapy, and their regulation by stromal microenvironment. To exploit the potential of organoid technology to the fullest, together with optimal organoid culture protocols, visualization of organoid architecture and composition in high resolution in three dimensions (3D) is required. Whole-mount imaging of immunolabeled organoids enables preservation of the 3D cellular context, but conventional confocal microscopy of organoid cultures struggles with the large organoid sample size and relatively long distance from the objective to the organoid due to the 3D extracellular matrix (ECM) that surrounds the organoid. We have overcome these issues by physical separation of single organoids with their immediate stroma from the bulk ECM. Here we provide a detail protocol for the procedure, which entails single organoid collection and droplet-based staining and clearing to allow visualization of organoids in the greatest detail.
Collapse
Affiliation(s)
- Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
29
|
Sigurdardottir AK, Jonasdottir AS, Asbjarnarson A, Helgudottir HR, Gudjonsson T, Traustadottir GA. Peroxidasin Enhances Basal Phenotype and Inhibits Branching Morphogenesis in Breast Epithelial Progenitor Cell Line D492. J Mammary Gland Biol Neoplasia 2021; 26:321-338. [PMID: 34964086 PMCID: PMC8858314 DOI: 10.1007/s10911-021-09507-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
The human breast is composed of terminal duct lobular units (TDLUs) that are surrounded by stroma. In the TDLUs, basement membrane separates the stroma from the epithelial compartment, which is divided into an inner layer of luminal epithelial cells and an outer layer of myoepithelial cells. Stem cells and progenitor cells also reside within the epithelium and drive a continuous cycle of gland remodelling that occurs throughout the reproductive period. D492 is an epithelial cell line originally isolated from the stem cell population of the breast and generates both luminal and myoepithelial cells in culture. When D492 cells are embedded into 3D reconstituted basement membrane matrix (3D-rBM) they form branching colonies mimicking the TDLUs of the breast, thereby providing a well-suited in vitro model for studies on branching morphogenesis and breast development. Peroxidasin (PXDN) is a heme-containing peroxidase that crosslinks collagen IV with the formation of sulfilimine bonds. Previous studies indicate that PXDN plays an integral role in basement membrane stabilisation by crosslinking collagen IV and as such contributes to epithelial integrity. Although PXDN has been linked to fibrosis and cancer in some organs there is limited information on its role in development, including in the breast. In this study, we demonstrate expression of PXDN in breast epithelium and stroma and apply the D492 cell line to investigate the role of PXDN in cell differentiation and branching morphogenesis in the human breast. Overexpression of PXDN induced basal phenotype in D492 cells, loss of plasticity and inhibition of epithelial-to-mesenchymal transition as is displayed by complete inhibition of branching morphogenesis in 3D culture. This is supported by results from RNA-sequencing which show significant enrichment in genes involved in epithelial differentiation along with significant negative enrichment of EMT factors. Taken together, we provide evidence for a novel role of PXDN in breast epithelial differentiation and mammary gland development.
Collapse
Affiliation(s)
- Anna Karen Sigurdardottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Arna Steinunn Jonasdottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Arni Asbjarnarson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Hildur Run Helgudottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Haematology, Landspitali - University Hospital, Reykjavik, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
30
|
Mohan SC, Lee TY, Giuliano AE, Cui X. Current Status of Breast Organoid Models. Front Bioeng Biotechnol 2021; 9:745943. [PMID: 34805107 PMCID: PMC8602090 DOI: 10.3389/fbioe.2021.745943] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women globally. Although mouse models have been critical in advancing the knowledge of BC tumorigenesis and progression, human breast models comprising the breast tissue microenvironment are needed to help elucidate the underlying mechanisms of BC risk factors. As such, it is essential to identify an ex vivo human breast tissue mimetic model that can accurately pinpoint the effects of these factors in BC development. While two-dimensional models have been invaluable, they are not suitable for studying patient-specific tumor biology and drug response. Recent developments in three-dimensional (3D) models have led to the prominence of organized structures grown in a 3D environment called “organoids.” Breast organoids can accurately recapitulate the in vivo breast microenvironment and have been used to examine factors that affect signaling transduction, gene expression, and tissue remodeling. In this review, the applications, components, and protocols for development of breast organoids are discussed. We summarize studies that describe the utility of breast organoids, including in the study of normal mammary gland development and tumorigenesis. Finally, we provide an overview of protocols for development of breast organoids, and the advantages and disadvantages of different techniques in studies are described. The included studies have shown that breast organoids will continue to serve as a crucial platform for understanding of progression of BC tumors and the testing of novel therapeutics.
Collapse
Affiliation(s)
- Srivarshini Cherukupalli Mohan
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Tian-Yu Lee
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Armando E Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
31
|
Lu Y, Deng R, You H, Lu P. 3D in vitro culture system to study collective migration in mammary organoid epithelium. STAR Protoc 2021; 2:100778. [PMID: 34485944 PMCID: PMC8405933 DOI: 10.1016/j.xpro.2021.100778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
We recently established an in vitro culture system in which mammary gland organoid undergoes directional migration in response to an FGF10 concentration gradient. Here, we describe a step-by-step protocol for preparing organoids, the setup of the 3D culture system, and the image acquisition approach. The technical difficulties in conducting the 3D migration assay are choosing epithelial organoids of appropriate sizes and manually paring organoids and beads pre-soaked in FGF10 within a desirable distance (∼100 μm). For complete details on the use and execution of this protocol, please refer to Lu et al. (2020).
Collapse
Affiliation(s)
- Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ruolan Deng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Huanyang You
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
32
|
Hu Y, Peng T, Gao L, Tan K. CytoTalk: De novo construction of signal transduction networks using single-cell transcriptomic data. SCIENCE ADVANCES 2021; 7:7/16/eabf1356. [PMID: 33853780 PMCID: PMC8046375 DOI: 10.1126/sciadv.abf1356] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/24/2021] [Indexed: 05/02/2023]
Abstract
Single-cell technology enables study of signal transduction in a complex tissue at unprecedented resolution. We describe CytoTalk for de novo construction of cell type-specific signaling networks using single-cell transcriptomic data. Using an integrated intracellular and intercellular gene network as the input, CytoTalk identifies candidate pathways using the prize-collecting Steiner forest algorithm. Using high-throughput spatial transcriptomic data and single-cell RNA sequencing data with receptor gene perturbation, we demonstrate that CytoTalk has substantial improvement over existing algorithms. To better understand plasticity of signaling networks across tissues and developmental stages, we perform a comparative analysis of signaling networks between macrophages and endothelial cells across human adult and fetal tissues. Our analysis reveals an overall increased plasticity of signaling networks across adult tissues and specific network nodes that contribute to increased plasticity. CytoTalk enables de novo construction of signal transduction pathways and facilitates comparative analysis of these pathways across tissues and conditions.
Collapse
Affiliation(s)
- Yuxuan Hu
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Tao Peng
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Lin MJ, Lu CPJ. Glandular stem cells in the skin during development, homeostasis, wound repair and regeneration. Exp Dermatol 2021; 30:598-604. [PMID: 33686662 DOI: 10.1111/exd.14319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
Glands in the skin are essential for various physiological functions involving exocrine secretion. Like other tissues and organs, they possess the ability to repair injury and self-renew during homeostasis. Progenitor cells in glands are mostly unipotent but include some multipotent stem cells that function when extensive remodelling or regeneration is required. In this review, using two glandular models in skin, mouse sweat gland and mammary gland, we discuss lineage restriction that develops during glandular morphogenesis, as well as the mechanisms regulating cell fate and plasticity during wound repair and regeneration. Understanding the intrinsic and extrinsic factors that control the behaviours of glandular stem cell and maintain glandular functions will provide insight into future prospects for glandular regeneration.
Collapse
Affiliation(s)
- Meng-Ju Lin
- The Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY, USA
| | - Catherine Pei-Ju Lu
- The Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
34
|
Morato A, Martignani E, Miretti S, Baratta M, Accornero P. External and internal EGFR-activating signals drive mammary epithelial cells proliferation and viability. Mol Cell Endocrinol 2021; 520:111081. [PMID: 33181234 DOI: 10.1016/j.mce.2020.111081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
During puberty, the mammary gland undergoes an intense growth, dependent on the interplay between the Epidermal Growth Factor Receptor (EGFR) in the stroma and different mammary epithelial receptors. We hypothesize that EGFR expressed in the mammary epithelium also has a role in puberty and the epithelial cells can self-sustain by EGFR-mediated autocrine signaling. We adopted mammary cell lines from different species, as in vitro model for the epithelium, and we observed that EGFR-signaling positively affects their survival and proliferation. Once deprived of external growth factors, mammary cells still showed strong Erk 1/2 phosphorylation, abolished upon EGFR inhibition, coupled with a further reduction in survival and proliferation. Based on gene expression analysis, three EGFR-ligands (AREG, EREG and HBEGF) are likely to mediate this autocrine signaling. In conclusion, internal EGFR-activating signals sustain mammary epithelial cell proliferation and survival in vitro.
Collapse
Affiliation(s)
- Alessia Morato
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Eugenio Martignani
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Silvia Miretti
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Mario Baratta
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Paolo Accornero
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy.
| |
Collapse
|
35
|
Sumbal J, Budkova Z, Traustadóttir GÁ, Koledova Z. Mammary Organoids and 3D Cell Cultures: Old Dogs with New Tricks. J Mammary Gland Biol Neoplasia 2020; 25:273-288. [PMID: 33210256 DOI: 10.1007/s10911-020-09468-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
3D cell culture methods have been an integral part of and an essential tool for mammary gland and breast cancer research for half a century. In fact, mammary gland researchers, who discovered and deciphered the instructive role of extracellular matrix (ECM) in mammary epithelial cell functional differentiation and morphogenesis, were the pioneers of the 3D cell culture techniques, including organoid cultures. The last decade has brought a tremendous increase in the 3D cell culture techniques, including modifications and innovations of the existing techniques, novel biomaterials and matrices, new technological approaches, and increase in 3D culture complexity, accompanied by several redefinitions of the terms "3D cell culture" and "organoid". In this review, we provide an overview of the 3D cell culture and organoid techniques used in mammary gland biology and breast cancer research. We discuss their advantages, shortcomings and current challenges, highlight the recent progress in reconstructing the complex mammary gland microenvironment in vitro and ex vivo, and identify the missing 3D cell cultures, urgently needed to aid our understanding of mammary gland development, function, physiology, and disease, including breast cancer.
Collapse
Affiliation(s)
- Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Budkova
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Gunnhildur Ásta Traustadóttir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavík, Iceland.
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
36
|
Ciccone MF, Trousdell MC, Dos Santos CO. Characterization of Organoid Cultures to Study the Effects of Pregnancy Hormones on the Epigenome and Transcriptional Output of Mammary Epithelial Cells. J Mammary Gland Biol Neoplasia 2020; 25:351-366. [PMID: 33131024 PMCID: PMC7960614 DOI: 10.1007/s10911-020-09465-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
The use of mouse derived mammary organoids can provide a unique strategy to study mammary gland development across a normal life cycle, as well as offering insights into how malignancies form and progress. Substantial cellular and epigenomic changes are triggered in response to pregnancy hormones, a reaction that engages molecular and cellular changes that transform the mammary epithelial cells into "milk producing machines". Such epigenomic alterations remain stable in post-involution mammary epithelial cells and control the reactivation of gene transcription in response to re-exposure to pregnancy hormones. Thus, a system that tightly controls exposure to pregnancy hormones, epigenomic alterations, and activation of transcription will allow for a better understanding of such molecular switches. Here, we describe the characterization of ex vivo cultures to mimic the response of mammary organoid cultures to pregnancy hormones and to understand gene regulation and epigenomic reprogramming on consecutive hormone exposure. Our findings suggest that this system yields similar epigenetic modifications to those reported in vivo, thus representing a suitable model to closely track epigenomic rearrangement and define unknown players of pregnancy-induced development.
Collapse
|
37
|
Santolla MF, Maggiolini M. The FGF/FGFR System in Breast Cancer: Oncogenic Features and Therapeutic Perspectives. Cancers (Basel) 2020; 12:E3029. [PMID: 33081025 PMCID: PMC7603197 DOI: 10.3390/cancers12103029] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
One of the major challenges in the treatment of breast cancer is the heterogeneous nature of the disease. With multiple subtypes of breast cancer identified, there is an unmet clinical need for the development of therapies particularly for the less tractable subtypes. Several transduction mechanisms are involved in the progression of breast cancer, therefore making the assessment of the molecular landscape that characterizes each patient intricate. Over the last decade, numerous studies have focused on the development of tyrosine kinase inhibitors (TKIs) to target the main pathways dysregulated in breast cancer, however their effectiveness is often limited either by resistance to treatments or the appearance of adverse effects. In this context, the fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system represents an emerging transduction pathway and therapeutic target to be fully investigated among the diverse anti-cancer settings in breast cancer. Here, we have recapitulated previous studies dealing with FGFR molecular aberrations, such as the gene amplification, point mutations, and chromosomal translocations that occur in breast cancer. Furthermore, alterations in the FGF/FGFR signaling across the different subtypes of breast cancer have been described. Next, we discussed the functional interplay between the FGF/FGFR axis and important components of the breast tumor microenvironment. Lastly, we pointed out the therapeutic usefulness of FGF/FGFR inhibitors, as revealed by preclinical and clinical models of breast cancer.
Collapse
Affiliation(s)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| |
Collapse
|
38
|
Lu Y, Deng R, You H, Xu Y, Antos C, Sun J, Klein OD, Lu P. Asymmetric Stratification-Induced Polarity Loss and Coordinated Individual Cell Movements Drive Directional Migration of Vertebrate Epithelium. Cell Rep 2020; 33:108246. [PMID: 33053348 PMCID: PMC7668195 DOI: 10.1016/j.celrep.2020.108246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/04/2020] [Accepted: 09/17/2020] [Indexed: 01/05/2023] Open
Abstract
Collective migration is essential for development, wound repair, and cancer metastasis. For most collective systems, "leader cells" determine both the direction and the power of the migration. It has remained unclear, however, how the highly polarized vertebrate epithelium migrates directionally during branching morphogenesis. We show here that, unlike in other systems, front-rear polarity of the mammary epithelium is set up by preferential cell proliferation in the front in response to the FGF10 gradient. This leads to frontal stratification, loss of apicobasal polarity, and leader cell formation. Leader cells are a dynamic population and move faster and more directionally toward the FGF10 signal than do follower cells, partly because of their intraepithelial protrusions toward the signal. Together, our data show that directional migration of the mammary epithelium is a unique multistep process and that, despite sharing remarkable cellular and molecular similarities, vertebrate and invertebrate epithelial branching are fundamentally distinct processes.
Collapse
Affiliation(s)
- Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ruolan Deng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Huanyang You
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yishu Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Christopher Antos
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianlong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, UCSF Box 0422, 513 Parnassus Avenue, HSE1508, San Francisco, CA 94143-0422, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
39
|
Corso MC, Cortasa SA, Schmidt AR, Proietto S, Inserra PIF, Fernández MO, Di Giorgio N, Lux-Lantos V, Vitullo AD, Dorfman VB, Halperin J. Mammary gland-specific regulation of GNRH and GNRH-receptor gene expression is likely part of a local autoregulatory system in female vizcachas (Rodentia: Chinchillidae). Gen Comp Endocrinol 2020; 296:113518. [PMID: 32474048 DOI: 10.1016/j.ygcen.2020.113518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/06/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
In addition to key mammotrophic hormones such as the pituitary prolactin (PRL) and the ovarian steroids progesterone and estradiol, there are local factors that modulate the tissue dynamics of the mammary glands during pregnancy and lactation. By immunohistochemistry and RT-PCR, we found local transcription and translation of gonadotropin-releasing hormone (GNRH), GNRH receptor (GNRHR), PRL and PRL receptor (PRLR) in mammary glands of adult vizcachas during pregnancy and lactation. Both GNRH and GNRHR showed a lag between protein expression and gene transcription throughout the gestational period: while the highest transcription levels of these genes were recorded at early-pregnancy, the epithelial immunoexpressions of both showed their maximum during lactation. RIA results corroborated the presence of GNRH in mammary glands at all the analyzed stages and confirmed the maximum amount of this peptide in the lactating group. Significant amounts of GNRH were detected in milk samples as well. Conversely, PRL and PRLR shared similar protein and gene expression profiles, all exhibiting maximum values during lactation. GNRH peptide content in mammary glands of females with sulpiride-induced hyperprolactinemia (HP) was significantly lower than that of control females (CT). Although PRL mRNA levels remained unchanged, there was a marked increase in theα-lactalbumin (LALBA) transcription in mammary glands of HP- vs CT-females. These results suggest that after targeting mammary glands, PRL stimulates the expression of milk protein genes, but also, tempers the local expression of GNRH. Mammary gland-explantssupplemented with a GNRH analogue (GN-explants) had no differences in terms of PRLR orLALBA transcription levels compared to CT-explants, so the mammary PRLR signaling would not appear to be modulated by GNRH. Yet, mRNA expression levels of both GNRH and the GNRHR-downstream factor, EGR1, were significantly higher in GN-explants compared to that of CT which would point to a GNRH-positive feedback mechanism. In summary, the local coupled expression of GNRH, GNRHR and EGR1 in the mammary gland throughout pregnancy of vizcachas, the PRL-dependent mammary GNRH secretion as well as the GNRH positive feedback on its own transcription suggest an autocrine-paracrine regulatory mechanism and propose an active role for GNRH in mammary gland tissue remodeling.
Collapse
Affiliation(s)
- María Clara Corso
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Santiago Andrés Cortasa
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alejandro Raúl Schmidt
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sofía Proietto
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Pablo Ignacio Felipe Inserra
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marina Olga Fernández
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Noelia Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Verónica Berta Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
40
|
Tang C, van den Bijgaart RJE, Looman MWG, Triantis V, Nørskov Søndergaard J, Ansems M, Adema GJ. DC-SCRIPT affects mammary organoids branching morphogenesis by modulating the FGFR1-pERK signaling axis. Dev Biol 2020; 463:101-109. [PMID: 32422143 DOI: 10.1016/j.ydbio.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
Abstract
Loss of expression of the transcription regulator DC-SCRIPT (Zfp366) is a prominent prognostic event in estrogen receptor-positive breast cancer patients. Studying the inherent link between breast morphogenesis and tumorigenesis, we recently reported that DC-SCRIPT affects normal mammary branching morphogenesis and mammary epithelium homeostasis. Here we investigated the molecular mechanism involved in DC-SCRIPT mediated regulation of FGF2 induced mammary branching morphogenesis in a 3D organoid culture system. Our data show that the delayed mammary organoid branching observed in DC-SCRIPT-/- organoids cannot be compensated for by increasing FGF2 levels. Interestingly, FGFR1, the dominant FGF2 receptor, was expressed at a significantly lower level in basal epithelial cells of DC-SCRIPT deficient organoids relative to wildtype organoids. A potential link between DC-SCRIPT and FGFR1 was further supported by the predicted locations of the DC-SCRIPT DNA binding motif at the Fgfr1 gene. Moreover, ERK1/2 phosphorylation downstream of the FGFR1 pathway was decreased in basal epithelial cells of DC-SCRIPT deficient organoids. Altogether, this study shows a relationship between DC-SCRIPT and FGFR1 related pERK signaling in modulating the branching morphogenesis of mammary organoids in vitro.
Collapse
Affiliation(s)
- Chunling Tang
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands.
| | - Renske J E van den Bijgaart
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands.
| | - Maaike W G Looman
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands.
| | - Vassilis Triantis
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands.
| | - Jonas Nørskov Søndergaard
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands; Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, 17177, Stockholm, Sweden.
| | - Marleen Ansems
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands.
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands.
| |
Collapse
|
41
|
Uncovering mutation-specific morphogenic phenotypes and paracrine-mediated vessel dysfunction in a biomimetic vascularized mammary duct platform. Nat Commun 2020; 11:3377. [PMID: 32632100 PMCID: PMC7338408 DOI: 10.1038/s41467-020-17102-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
The mammary gland is a highly vascularized tissue capable of expansion and regression during development and disease. To enable mechanistic insight into the coordinated morphogenic crosstalk between the epithelium and vasculature, we introduce a 3D microfluidic platform that juxtaposes a human mammary duct in proximity to a perfused endothelial vessel. Both compartments recapitulate stable architectural features of native tissue and the ability to undergo distinct forms of branching morphogenesis. Modeling HER2/ERBB2 amplification or activating PIK3CA(H1047R) mutation each produces ductal changes observed in invasive progression, yet with striking morphogenic and behavioral differences. Interestingly, PI3KαH1047R ducts also elicit increased permeability and structural disorganization of the endothelium, and we identify the distinct secretion of IL-6 as the paracrine cause of PI3KαH1047R-associated vascular dysfunction. These results demonstrate the functionality of a model system that facilitates the dissection of 3D morphogenic behaviors and bidirectional signaling between mammary epithelium and endothelium during homeostasis and pathogenesis.
Collapse
|
42
|
Rivetti S, Chen C, Chen C, Bellusci S. Fgf10/Fgfr2b Signaling in Mammary Gland Development, Homeostasis, and Cancer. Front Cell Dev Biol 2020; 8:415. [PMID: 32676501 PMCID: PMC7333592 DOI: 10.3389/fcell.2020.00415] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor 10 (Fgf10) is a secreted ligand acting via the Fibroblast growth factor receptor 2b (Fgfr2b). Fgf10/Fgfr2b signaling plays important roles both in the epithelium and in the mesenchyme during mammary gland development. Evidence in mice show that Fgf10 is critical for the induction of four out of five of the mammary placodes and for the formation of the white adipose tissue. Fgfr2b ligands also play important function in the maintenance of the terminal end buds, specialized structures at the tip of the ramified ducts during the postnatal phase of mammary gland development. Finally, in humans, FGF10 has been described to be expressed in 10% of the breast adenocarcinoma and activation of FGFR2b signaling correlates with a worse prognostic. Therefore, Fgf10 plays pleiotropic roles in both mammary gland development, homeostasis and cancer and elucidating its mechanism of action and cellular targets will be crucial to either enhance mammary gland development or to find innovative targets to treat aggressive breast cancer.
Collapse
Affiliation(s)
- Stefano Rivetti
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Cardio-Pulmonary Institute and Institute of Lung Health, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Chaolei Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Cardio-Pulmonary Institute and Institute of Lung Health, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
43
|
Nerger BA, Nelson CM. Engineered extracellular matrices: emerging strategies for decoupling structural and molecular signals that regulate epithelial branching morphogenesis. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 13:103-112. [PMID: 32864528 PMCID: PMC7451493 DOI: 10.1016/j.cobme.2019.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The extracellular matrix (ECM) is a heterogeneous mixture of proteoglycans and fibrous proteins that form the non-cellular component of tissues and organs. During normal development, homeostasis, and disease progression, the ECM provides dynamic structural and molecular signals that influence the form and function of individual cells and multicellular tissues. Here, we review recent developments in the design and fabrication of engineered ECMs and the application of these systems to study the morphogenesis of epithelial tissues. We emphasize emerging techniques for reproducing the structural and molecular complexity of native ECM, and we highlight how these techniques may be used to decouple the different signals that drive epithelial morphogenesis. Engineered models of native ECM will enable further investigation of the dynamic mechanisms by which the microenvironment influences tissue morphogenesis.
Collapse
Affiliation(s)
- Bryan A. Nerger
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Celeste M. Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
44
|
Bhat SA, Ahmad SM, Ibeagha-Awemu EM, Mobashir M, Dar MA, Mumtaz PT, Shah RA, Dar TA, Shabir N, Bhat HF, Ganai NA. Comparative milk proteome analysis of Kashmiri and Jersey cattle identifies differential expression of key proteins involved in immune system regulation and milk quality. BMC Genomics 2020; 21:161. [PMID: 32059637 PMCID: PMC7023774 DOI: 10.1186/s12864-020-6574-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Exploration of the bioactive components of bovine milk has gained global interest due to their potential applications in human nutrition and health promotion. Despite advances in proteomics profiling, limited studies have been carried out to fully characterize the bovine milk proteome. This study explored the milk proteome of Jersey and Kashmiri cattle at day 90 of lactation using high-resolution mass spectrometry based quantitative proteomics nano-scale LC-MS/Q-TOF technique. Data are available via ProteomeXchange with identifier PXD017412. RESULTS Proteins from whey were fractionated by precipitation into high and low abundant proteins. A total of 81 high-abundant and 99 low-abundant proteins were significantly differentially expressed between Kashmiri and Jersey cattle, clearly differentiating the two breeds at the proteome level. Among the top differentiating proteins, the Kashmiri cattle milk proteome was characterised by increased concentrations of immune-related proteins (apelin, acid glycoprotein, CD14 antigen), neonatal developmental protein (probetacellulin), xenobiotic metabolising enzyme (flavin monooxygenase 3 (FMO3), GLYCAM1 and HSP90AA1 (chaperone) while the Jersey milk proteome presented higher concentrations of enzyme modulators (SERPINA1, RAC1, serine peptidase inhibitor) and hydrolases (LTF, LPL, CYM, PNLIPRP2). Pathway analysis in Kashmiri cattle revealed enrichment of key pathways involved in the regulation of mammary gland development like Wnt signalling pathway, EGF receptor signalling pathway and FGF signalling pathway while a pathway (T-cell activation pathway) associated with immune system regulation was significantly enriched in Jersey cattle. Most importantly, the high-abundant FMO3 enzyme with an observed 17-fold higher expression in Kashmiri cattle milk seems to be a characteristic feature of the breed. The presence of this (FMO3) bioactive peptide/enzyme in Kashmiri cattle could be economically advantageous for milk products from Kashmiri cattle. CONCLUSION In conclusion, this is the first study to provide insights not only into the milk proteome differences between Kashmiri and Jersey cattle but also provides potential directions for application of specific milk proteins from Kashmiri cattle in special milk preparations like infant formula.
Collapse
Affiliation(s)
- Shakil A. Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Srinagar, India
| | - Syed M. Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Srinagar, India
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec Canada
| | - Mohammad Mobashir
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Novels väg 16, 17165 Solna, Stockholm, Sweden
| | - Mashooq A. Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Srinagar, India
| | - Peerzada T. Mumtaz
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Srinagar, India
| | - Riaz A. Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Srinagar, India
| | - Tanveer A. Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, J & K India
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Srinagar, India
| | - Hina F. Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Srinagar, India
| | - Nazir A. Ganai
- Division of Animal Genetics and Breeding, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Srinagar, India
| |
Collapse
|
45
|
Kaihoko Y, Tsugami Y, Suzuki N, Suzuki T, Nishimura T, Kobayashi K. Distinct expression patterns of aquaporin 3 and 5 in ductal and alveolar epithelial cells in mouse mammary glands before and after parturition. Cell Tissue Res 2020; 380:513-526. [PMID: 31953689 DOI: 10.1007/s00441-020-03168-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Abstract
Milk osmolarity maintains an isotonic status for suckling infants during lactation. However, it remains unclear how the water content in milk is regulated in lactating mammary glands. In lactating mammary alveoli and ducts, mammary epithelial cells (MECs) are in direct contact with milk. In this study, we focus on two types of water channels, aquaporin 3 (AQP3) and AQP5, in alveolar and ductal MECs before and after parturition. AQP3 showed diffuse localization in the cytoplasm of ductal MECs but concentrated localization in the basolateral membrane of alveolar MECs during the late pregnancy and lactation periods. Translocation of AQP5 from the cytoplasm toward the apical membrane occurred in ductal MECs immediately before parturition. Subsequently, we examined the hormonal influences on the expression of AQP3 and AQP5 in cultured MECs in vitro. Progesterone and estrogen distinctly increased AQP3 and AQP5 in cultured MECs, respectively. Cotreatment with prolactin and dexamethasone significantly decreased both AQP3 and AQP5. Prolactin also facilitated the translocation of AQP5 into the apical membrane of MECs. In cultured MECs, AQP3 was homogeneously expressed in MECs, whereas AQP5 showed different expression levels between MECs regardless of the hormonal treatment. Different activation states of the prolactin/STAT5 pathway were also observed between ductal and alveolar MECs. These findings suggest that the expression pattern of AQP3 and AQP5 is distinctly regulated by lactogenic hormones in alveolar and ductal MECs before and after parturition. AQP5 expressed in ductal MECs may function as a water channel to regulate milk osmolarity in mice.
Collapse
Affiliation(s)
- Yoshiki Kaihoko
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Yusaku Tsugami
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Norihiro Suzuki
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Takahiro Suzuki
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan.
| |
Collapse
|
46
|
Jimenez-Rojo L, Pagella P, Harada H, Mitsiadis TA. Dental Epithelial Stem Cells as a Source for Mammary Gland Regeneration and Milk Producing Cells In Vivo. Cells 2019; 8:cells8101302. [PMID: 31652655 PMCID: PMC6830078 DOI: 10.3390/cells8101302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022] Open
Abstract
The continuous growth of rodent incisors is ensured by clusters of mesenchymal and epithelial stem cells that are located at the posterior part of these teeth. Genetic lineage tracing studies have shown that dental epithelial stem cells (DESCs) are able to generate all epithelial cell populations within incisors during homeostasis. However, it remains unclear whether these cells have the ability to adopt alternative fates in response to extrinsic factors. Here, we have studied the plasticity of DESCs in the context of mammary gland regeneration. Transplantation of DESCs together with mammary epithelial cells into the mammary stroma resulted in the formation of chimeric ductal epithelial structures in which DESCs adopted all the possible mammary fates including milk-producing alveolar cells. In addition, when transplanted without mammary epithelial cells, DESCs developed branching rudiments and cysts. These in vivo findings demonstrate that when outside their niche, DESCs redirect their fates according to their new microenvironment and thus can contribute to the regeneration of non-dental tissues.
Collapse
Affiliation(s)
- Lucia Jimenez-Rojo
- Department of Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland.
| | - Pierfrancesco Pagella
- Department of Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland.
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University Yahaba, Morioka 020-0023, Japan.
| | - Thimios A Mitsiadis
- Department of Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland.
| |
Collapse
|
47
|
Fu NY, Nolan E, Lindeman GJ, Visvader JE. Stem Cells and the Differentiation Hierarchy in Mammary Gland Development. Physiol Rev 2019; 100:489-523. [PMID: 31539305 DOI: 10.1152/physrev.00040.2018] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mammary gland is a highly dynamic organ that undergoes profound changes within its epithelium during puberty and the reproductive cycle. These changes are fueled by dedicated stem and progenitor cells. Both short- and long-lived lineage-restricted progenitors have been identified in adult tissue as well as a small pool of multipotent mammary stem cells (MaSCs), reflecting intrinsic complexity within the epithelial hierarchy. While unipotent progenitor cells predominantly execute day-to-day homeostasis and postnatal morphogenesis during puberty and pregnancy, multipotent MaSCs have been implicated in coordinating alveologenesis and long-term ductal maintenance. Nonetheless, the multipotency of stem cells in the adult remains controversial. The advent of large-scale single-cell molecular profiling has revealed striking changes in the gene expression landscape through ontogeny and the presence of transient intermediate populations. An increasing number of lineage cell-fate determination factors and potential niche regulators have now been mapped along the hierarchy, with many implicated in breast carcinogenesis. The emerging diversity among stem and progenitor populations of the mammary epithelium is likely to underpin the heterogeneity that characterizes breast cancer.
Collapse
Affiliation(s)
- Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Emma Nolan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey J Lindeman
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jane E Visvader
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
48
|
Lu P, Zhou T, Xu C, Lu Y. Mammary stem cells, where art thou? WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e357. [PMID: 31322329 DOI: 10.1002/wdev.357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
Tremendous progress has been made in the field of stem cell biology. This is in part due to the emergence of various vertebrate organs, including the mammary gland, as an amenable model system for adult stem cell studies and remarkable technical advances in single cell technology and modern genetic lineage tracing. In the current review, we summarize the recent progress in mammary gland stem cell biology at both the adult and embryonic stages. We discuss current challenges and controversies, and potentially new and exciting directions for future research. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.
Collapse
Affiliation(s)
- Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tao Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chongshen Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
49
|
Augustyniak J, Bertero A, Coccini T, Baderna D, Buzanska L, Caloni F. Organoids are promising tools for species-specific in vitro toxicological studies. J Appl Toxicol 2019; 39:1610-1622. [PMID: 31168795 DOI: 10.1002/jat.3815] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022]
Abstract
Organoids are three-dimensional self-aggregating structures generated from stem cells (SCs) or progenitor cells in a process that recapitulates molecular and cellular stages of early organ development. The differentiation process leads to the appearance of specialized mature cells and is connected with changes in the organoid internal structure rearrangement and self-organization. The formation of organ-specific structures in vitro with highly ordered architecture is also strongly influenced by the extracellular matrix. These features make organoids as a powerful model for in vitro toxicology. Nowadays this technology is developing very quickly. In this review we present, from a toxicological and species-specific point of view, the state of the art of organoid generation from adult SCs and pluripotent SCs: embryonic SCs or induced pluripotent SCs. The current culture organoid techniques are discussed for their main advantages, disadvantages and limitations. In the second part of the review, we concentrated on the characterization of species-specific organoids generated from tissue-specific SCs of different sources: mammary (bovine), epidermis (canine), intestinal (porcine, bovine, canine, chicken) and liver (feline, canine).
Collapse
Affiliation(s)
- Justyna Augustyniak
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Alessia Bertero
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-SB, IRCCS Pavia, Pavia, Italy
| | - Diego Baderna
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
50
|
Koledova Z, Sumbal J. FGF signaling in mammary gland fibroblasts regulates multiple fibroblast functions and mammary epithelial morphogenesis. Development 2019; 146:dev.185306. [DOI: 10.1242/dev.185306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor (FGF) signaling is crucial for mammary gland development. While multiple roles for FGF signaling in the epithelium were described, the function of FGF signaling in mammary stroma has not been elucidated. In this study, we investigated FGF signaling in mammary fibroblasts. We found that mammary fibroblasts express FGF receptors FGFR1 and FGFR2 and respond to FGF ligands. In particular, FGF2 and FGF9 induce sustained ERK1/2 signaling and promote fibroblast proliferation and migration in 2D. Intriguingly, only FGF2 induces fibroblast migration in 3D extracellular matrix (ECM) through regulation of actomyosin cytoskeleton and promotes force-mediated collagen remodeling by mammary fibroblasts. Moreover, FGF2 regulates production of ECM proteins by mammary fibroblasts, including collagens, fibronectin, osteopontin, and matrix metalloproteinases. Finally, using organotypic 3D co-cultures we show that FGF2 and FGF9 signaling in mammary fibroblasts enhances fibroblast-induced branching of mammary epithelium by modulating paracrine signaling and that knockdown of Fgfr1 and Fgfr2 in mammary fibroblasts reduces branching of mammary epithelium. Our results demonstrate a pleiotropic role for FGF signaling in mammary fibroblasts with implications for regulation of mammary stromal functions and epithelial branching morphogenesis.
Collapse
Affiliation(s)
- Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 625 00, Czech Republic
| | - Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 625 00, Czech Republic
| |
Collapse
|